Masterproef industriële ingenieurswetenschappen

EEG signal analysis

Academiejaar: Frederik Vreys 2014-2015

Introduction

Background

Extended supervision of sleep patients is key to diagnosing more accurately.

The solution resides within the use of personal sleep-EEG systems.

However, existing ones only provide rough means of EEGsignals while diagnosing abnormal brain functioning cluster groups need to be precise.

In addition, the experience of a patient during certain brain activity could contain crucial information and should be registered systematically.

Furthermore, there is no universal standard of the frequency ranges of the brain waves.

Methods Sensor Flowchart Watchdog Reconnect Network communication **LabView Shared Variables** The EEG-sensor

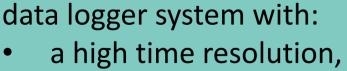
EEG

Results

Generated files

- Measurements (.csv type)
- Ratings from intentional awakenings (.txt type)
- Spontaneous ratings (.txt type) (person was not woken up)
- Settings (.txt type)

Registration with smartdevice


n 🧳 ? CPU: myRIO

,ı 🚜 ? 🙀

Real-time interface on host PC

MyRIO finite state machine

Reconnect Set date and time

Objectives

programmed awakenings,

To develop a diagnostic EEG-sleep

- registrations of a patient's experience,
- flexible frequency ranges,
- and real-time output.

Conclusion

The system acts as a stand-alone data logger, but can simultaneously also be used as a real-time interface.

There are numerous settings that can be applied for programmed awakenings and various frequency ranges that can be requested.

Promotoren / Copromotoren: Dr. Ir. Jos Klaps

Dr. Ir. Prof. Ronald Thoelen

