2014•2015

Masterproef

Analyse van spuitgietparameters bij het toepassen van variothermtechniek bij microspuitgieten

Promotor : Prof. dr. ir. Albert VAN BAEL

Promotor : ing. JAN KERREMANS

Yannick Heijligen Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektromechanica

Gezamenlijke opleiding Universiteit Hasselt en KU Leuven

FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN master in de industriële wetenschappen: elektromechanica

2014•2015 Faculteit Industriële ingenieurswetenschappen master in de industriële wetenschappen: elektromechanica

Masterproef

Analyse van spuitgietparameters bij het toepassen van variothermtechniek bij microspuitgieten

Promotor : Prof. dr. ir. Albert VAN BAEL

Promotor : ing. JAN KERREMANS

Yannick Heijligen

Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektromechanica

Woord vooraf

Deze masterproef is het laatste hoofdstuk van mijn opleiding tot Master in de industriële wetenschappen in de elektromechanica en werd uitgevoerd bij Cel Kunststoffen op de campus van Diepenbeek. Dit eindwerk kon niet verwezenlijkt worden zonder de steun van een heel aantal mensen die zowel een directe als indirecte bijdrage hebben geleverd.

In het bijzonder wil ik eerst de heer Jan Kerremans bedanken om enerzijds deze prachtige masterproef op te stellen en anderzijds voor het goede advies en inzicht dat mij is verleend.

Wat mij brengt naar mijn promotor, de heer Albert Van Bael, die ik wil bedanken voor zijn tijd en toewijding maar vooral zijn oog voor detail.

Eveneens wil ik de medewerkers bedanken van Cel Kunststoffen die op elk moment klaar stonden om mij advies te verlenen op de momenten dat ik het nodig had.

Tot slot wil ik de mensen bedanken die mij niet alleen in dit eindwerk hebben gesteund maar in alles wat ik doe en waar ik voor sta. Mijn ouders voor mij de kans hebben gegeven om deze wereld van technologie te ontdekken, voor hun steun en hun geduld. Mijn broer en vriendin voor de coaching en behulpzaamheid.

Yannick Heijligen Diepenbeek, juni 2015

Inhoudsopgave

Woord vooraf	1
Tabellenlijst	5
Figurenlijst	7
Abstract	9
Abstract in English	

1. Inleiding131.1 Bedrijfsvoorstelling en situering131.2 Probleemstelling131.3 Doelstelling131.4 Materiaal en methode14

2.	Spu	itgiet	proces	15
	2.1	Spui	itgietmachine	15
	2.1.	1	Injectie-eenheid	15
	2.1.	2	Sluiteenheid	16
	2.2	De s	spuitgietcyclus	16
	2.3	Vari	otherm spuitgieten	17
	2.4	Vari	otherm unit	17
	2.5	Spui	itgietparameters	18
	2.5.	1	Parameters gerelateerd aan het spuitgietproces	18
	2.5.	2	Kritische parameters gerelateerd aan het spuitgietproces:	19
	2.6	Voo	rwaarde	20

3.	Para	ameteroptimalisatie voor conventioneel spuitgieten	21
	3.1	Inleiding	21
	3.2	Geboorteshots	21
	3.3	Bepaling van het procesvenster	21
	3.3.1	1 Stap 1: Viscositeitscurve voor de optimalisatie van injectiesnelheden	22
	3.3.2	2 Stap 2: Procesvenster bepalen	26
	3.4	DoE analyse voor conventioneel spuitgieten	28
	3.4.1	1 Inleiding	28

3.4.2	DoE Parametermatrix	. 28
3.4.3	Experimentopzet	. 29
3.4.4	Resultaten	. 30
3.4.5	Validatie en betrouwbaarheid van de meetgegevens	. 35
3.4.6	Controlemeting met de nanotom, CT-scanner	. 37
3.4.7	Conclusie	. 39

4.	Para	meteroptimalisatie voor variotherm spuitgieten	41
	4.1	Inleiding	41
	4.2	Experimentopzet	41
	4.3	Experimentele parameteroptimalisatie	41
	4.4	Verloop van het experiment	42
	4.4.1	1 Plan van aanpak en bespreking van moeilijkheden	42
	4.4.2	2 Resultaten experimentele parameteroptimalisatie	43
	4.4.3	3 Conclusie	49

5.	Сар	ability study	51
5	5.1	Inleiding	51
5	5.2	Capability study experiment	51
5	5.3	Conclusie	56

6. Be	spreking van de eindresultaten	57
6.1	Vergelijking tussen conventioneel en variotherm microspuitgieten	57
6.2	Eindconclusie	58
6.3	Aanbevelingen voor toekomstig onderzoek	59

Literatuurlijst	61
Bijlagen	63

Tabellenlijst

Tabel 1: Vuistregel voor koeltijden bij verschillende kunststoffen	19
Tabel 2: Gemiddelde piek injectiedruk in functie van de injectiesnelheid	23
Tabel 3: Bepalen van de viscositeit	25
Tabel 4: Meetresultaten voor het opstellen van het procesvenster	27
Tabel 5: DoE parameter waardes	29
Tabel 6: DoE Design matrix	29
Tabel 7: Resultaten van de meetonzekerheid tussen 2 operatoren	36
Tabel 8: Effectieve meetwaardes van de CT-scan	39
Tabel 9: Vergelijkingstabel tussen conventioneel en variotherm spuitgieten	57
Tabel 10: Meetresultaten van de DoE analyse	68
Tabel 11: Metingen van het variotherm experiment	71
Tabel 12: Richtwaarden voor de parameterinstellingen van spuitgietkunststoffen	81

Figurenlijst

Figuur 1: Fanuc ROBOSHOT S-2000i30B	. 15
Figuur 2: Schematische opbouw van een elektrische spuitgietmachine	. 15
Figuur 3: Schematische voorstelling van een Injectie-eenheid van een spuitgietmachine	. 15
Figuur 4: Sluiteenheid: kniehevel mechanisme	. 16
Figuur 5: Verschil in spuitgietcyclus tussen conventioneel en variotherm	. 17
Figuur 6: Schematische weergave van de variotherm opstelling	. 18
Figuur 7: Geprojecteerd oppervlak van een spuitgietproduct	. 18
Figuur 8: Nadruk in functie van de wanddikte	. 20
Figuur 9: Viscositeit in functie van afschuifsnelheid, Newtonian <-> non-Newtonian	. 22
Figuur 10: Drukverloop bij stijgende injectiesnelheid	. 24
Figuur 11: Screw Intensification Ratio	. 24
Figuur 12: Viscositeit in functie van injectiesnelheid	. 25
Figuur 13: Procesvenster, nadruk in functie van massatemperatuur	. 28
Figuur 14: Microspuitgietproduct	. 30
Figuur 15: Verklaring van de boxplot	. 31
Figuur 16: Boxplot van voorste kegelhoogtes voor de 16 DoE experimenten	. 31
Figuur 17: Boxplot van achterste kegelhoogtes van de 16 DoE experimenten	. 32
Figuur 18: Boxplot van voorste en achterste kegelhoogtes gecombineerd	. 32
Figuur 19: Pareto-analyse toegepast op de achterste kegelhoogtes	. 33
Figuur 20: Pareto-analyse toegepast op de voorste kegelhoogtes	. 33
Figuur 21: Effect van parameters op spreiding van de kegels achteraan	. 34
Figuur 22: Effect van parameters op spreiding van de kegels vooraan	. 34
Figuur 23: Ijkglas 1mm met een onderverdeling van 0.01 mm	. 35
Figuur 24: Optische meetmicroscoop van Keyence	. 35
Figuur 25: Gage study R&R: meetverschil tussen 2 operatoren	. 36
Figuur 26: CT-scanner: Phoenix nanotom	. 37
Figuur 27: Beeld van 5 producten onder de CT-scanner	. 37
Figuur 28: Het partial volume effect bij het verwerken van CT-scans	. 38
Figuur 29: 3D weergave van een CT-gescand product	. 38
Figuur 30: Metingen van producten ingescand met de CT nanotom	. 39
Figuur 31: Instellingsmogelijkheden voor de luchtuitwerper	. 41
Figuur 32: Degradatie zichtbaar in de aanspuiting van het product	. 42
Figuur 33: Aanspuiting met negatief van de ondersnijding	. 43
Figuur 34: Variotherm reeks 1: meetresultaten in functie van de matrijstemperatuur	. 43
Figuur 35: Variotherm reeks 2: meetresultaten in functie van de matrijstemperatuur	. 44
Figuur 36: Variotherm reeks 3: meetresultaten in functie van de matrijstemperatuur	. 44
Figuur 37: Variotherm reeks 4: meetresultaten in functie van de matrijstemperatuur	. 45
Figuur 38: Variotherm reeks 5: meetresultaten in functie van de matrijstemperatuur	. 45
Figuur 39: Variotherm reeks 6: meetresultaten in functie van de matrijstemperatuur	. 46
Figuur 40: Variotherm reeks 7: meetresultaten in functie van de matrijstemperatuur	. 47
Figuur 41: Variotherm reeks 8: meetresultaten in functie van de matrijstemperatuur	. 47
Figuur 42: Variotherm reeks 9: meetresultaten in functie van de matrijstemperatuur	. 48
Figuur 43: Variotherm reeks 10: meetresultaten in functie van de matrijstemperatuur	. 48

Figuur 44: Variotherm reeks 11: meetresultaten in functie van de matrijstemperatuur	49
Figuur 45: Capability study: spreiding bij het conventioneel spuitgieten	51
Figuur 46: Capability study: spreiding bij het variotherm spuitgieten	52
Figuur 47: Massakussenverloop doorheen de capability study	52
Figuur 48: Piek injectiedruk doorheen de capability study	53
Figuur 49: Betekenis van de Cp waarde	54
Figuur 50: Proces capability rapport voor conventioneel spuitgieten	55
Figuur 51: Proces capability rapport voor variotherm spuitgieten	55
Figuur 52: Optreden van flash bij conventioneel spuitgieten	58
Figuur 53: Vorm van de kegels bij variotherm en conventioneel	58
Figuur 54: Afmetingen van de aanspuiting (runner) en aanspuitpunt (gate) in voor- en zijaanzicht.	59

Abstract

Cel Kunststoffen is een onderzoeksgroep gericht op innovatieve kunststofverwerkingstechnieken. Deze masterproef kadert in een project rond variotherm microspuitgieten.

Het bestudeerde product is vervaardigd uit PMMA en heeft een micro-oppervlaktestructuur bestaande uit 100 kegels met een gewenste hoogte van 500 μ m. Om na te gaan of de structuur nauwkeurig kan geproduceerd worden, wordt er een vergelijkende studie gedaan tussen conventioneel en variotherm spuitgieten. Hieruit worden de voor- en nadelen van de variothermtechniek duidelijk.

Het onderzoek begint met in 2 stappen het procesvenster op te stellen dat als basis voor de design of experiments wordt gebruikt (DoE). De eerste stap is een *in-mold-rheology* experiment om de injectiesnelheid te bepalen op basis van de *in-mold-viscosity*. In de tweede stap wordt het procesvenster bepaald op basis van de massatemperatuur en nadruk.

De conventionele spuitgietmethode wordt geoptimaliseerd met behulp van een DoE. Na een statistische analyse wordt de beste parametercombinatie gekozen, deze dient tevens als basis voor de experimentele parameteroptimalisatie van het variotherm experiment. Tot slot wordt er een *capability study* uitgevoerd om te kijken naar de reproduceerbaarheid.

Het onderzoek wijst uit dat de variothermtechniek de gemiddelde spreiding op de hoogte van de kegels vermindert van 45µm (conventioneel) tot 8µm. Hier tegenover staat dat de gemiddelde kegelhoogte voor variotherm lager is, 419 t.o.v. 460µm, dit kan gecompenseerd worden door de matrijs aan te passen.

Abstract in English

Cel Kunststoffen is a research group that specializes in material behavior as well as plastic processing and innovation. This master's thesis is a case of variomicro project.

The product that is being studied in this case is made of PMMA and has a micro-surface structure that exists of 100 cones with a desired height of 500 μ m. To see if 500 μ m is achievable we will be doing a study to compare the convention injection molding process with the variotherm injection molding process, this study should also reveal the (dis)advantages of the variotherm technique.

We will start this research by determining the process window in 2 steps, this window will be used as the foundation for the Design of Experiments (DoE). In the first step an in-mold-rheology experiment is performed to determine the injection speed based on the in-mold-viscosity. In the second step we will be determining the process window based on the melt temperature and holding pressure.

The convention injection molding method will be optimized based on a DoE. A statistical analysis will determine the most ideal parameter settings, these settings will be used as the foundation for the experimental parameter optimization for the variotherm experiment. In the last step of this thesis we will be doing a capability study to determine the reproducibility.

The study show that the variotherm technique reduces the average dispersion from 45μ m, for the conventional method, to 8μ m. However, the maximum height of the cones made with the variotherm technique is lower than those made with the conventional method. This difference in height can easily be compensated for by making a few adjustments to the mold.

1. Inleiding

1.1 Bedrijfsvoorstelling en situering

Cel Kunststoffen is een onderzoeksgroep van de KU Leuven op de Technologiecampus Diepenbeek, die ondermeer gespecialiseerd is in volgende spuitgiettechnieken:

- Spuitgieten van holle producten
- Spuitgieten met lange glasvezels
- 2K spuitgieten
- Microspuitgieten
- Variotherm spuitgieten

In deze masterproef wordt een combinatie van twee gespecialiseerde technieken bestudeerd namelijk: microspuitgieten en variotherm spuitgieten. Het doel van mijn eindwerk om de spuitgietparameters bij het toepassen van variotherm microspuitgieten te optimaliseren om een productoppervlak met gewenste microstructuur te verkrijgen.

Deze masterproef kadert in een Europees Fonds voor Regionale Ontwikkeling (EFRO) project over variotherm microspuitgieten. EFRO projecten zijn gericht op regionale ontwikkeling, in ons geval op gebied van kunststoffen. De 700 bedrijven in Vlaanderen, waaronder 80% KMO's, die bezig zijn met kunststofverwerking liggen onder druk door de lage loonlanden. Om deze industrie, die 20.000 mensen te werk stelt, rendabel te houden in België is het belangrijk om op hoogtechnologische innovaties in te zetten. In dit project werkt Cel Kunststoffen een aantal cases uit waarin de mogelijkheden van het thermisch cycleren van de matrijstemperatuur voor microspuitgieten (variotherm microspuitgieten, VarioMicro) duidelijk worden. Mijn masterproef is een van deze cases, het betreft een product met een micro-oppervlaktestructuur dat ontworpen wordt voor de medische sector.

1.2 Probleemstelling

Het microspuitgietproduct is een plaatje dat vervaardigd moet worden uit PMMA en een oppervlaktestructuur heeft bestaande uit 100 kegeltjes met een hoogte van 500 µm. De klant (Sirris) zegt dat het product niet kan worden vervaardigd met de microspuitgietmachine die zij ter beschikking hebben. De vraag aan Cel Kunststoffen is of het product vervaardigd kan worden met de microspuitgietmachine en het variotherm systeem beschikbaar bij ons.

1.3 Doelstelling

Het doel van deze case bestaat uit twee delen. Enerzijds is het streefdoel een microoppervlaktestructuur te verkrijgen die voldoet aan de eisen van de klant, Sirris. De kegeltjes op het spuitgietproduct moeten een hoogte hebben van 500 µm. Om een goed beeld te krijgen van de invloed van de variothermtechniek wordt het experiment zowel met als zonder variotherm uitgevoerd. Anderzijds willen we inzicht verkrijgen in de invloed van de procesparameters op de haalbare nauwkeurigheid van het microspuitgietproduct.

1.4 Materiaal en methode

Voor het behalen van de gevraagde micro-oppervlaktestructuur maken we gebruik van een microspuitgietmachine (een FANUC roboshot) in combinatie met een variotherm unit. De eerste stap is het **procesvenster** bepalen. Dit wordt gedaan om het mogelijke werkingsgebied (de range) te bepalen van de inspuitsnelheid, nadruk en massatemperatuur. Vervolgens wordt er een **Design Of Experiments** (DoE) opgesteld, de DoE wordt toegepast op conventioneel spuitgieten. De resultaten van deze DoE zullen gebruikt worden als basis voor het thermisch cycleren van de matrijs (variotherm spuitgieten). Deze DoE bestaat uit een parametermatrix van de meest kritische spuitgietparameters. Elke parameter heeft een boven- en ondergrens. Met 4 kritische parameters (massatemperatuur, matrijstemperatuur, nadruk en inspuitsnelheid) krijgen we een matrix met 4² mogelijke instellingen. Voor elke instelling wordt een serie van 20 producten gemaakt. Nadat deze producten zijn opgemeten met een digitale microscoop en de meetresultaten zijn geanalyseerd met behulp van een statistisch software programma (Minitab) kunnen de instelling(en) gekozen worden die het beste voldoen aan de producteisen.

Bij het variotherm spuitgieten wordt het constant houden van de matrijstemperatuur vervangen door het thermisch cycleren van de matrijs. Deze parameters omvatten zowel de temperatuur van het koelwater als die van het verwarmingswater, de koeltijd en de opwarmtijd. Een DoE wordt hier niet gedaan omdat de variotherm parameter op zich uit 4 variabelen bestaat, samen met de 3 resterende kritische parameters wordt de DoE te uitgebreid. We hebben geopteerd om de beste instellingen van het conventioneel spuitgieten als basis te gebruiken voor het parameteronderzoek van variotherm spuitgieten. Op deze manier hebben we een goede basis en kunnen we ons focussen op het optimaliseren van de variotherm parameters. Door de matrijstemperatuur systematisch te laten toe nemen krijgen we bij elke instelling een goed beeld van het temperatuursverloop. Afhankelijk van de resultaten die voortvloeien uit de voorgaande instelling zal één van de parameters aangepast worden, op deze manier willen we het productresultaat optimaliseren.

Ten slotte wordt er gekeken of het proces realiseerbaar is op industriële schaal. Hiervoor wordt een *proces capability study* (haalbaarheidsstudie) uitgevoerd. Dit houdt in dat er een grotere reeks van producten wordt gemaakt volgens de beste instelling(en). Deze grotere reeks wordt opgemeten en statistisch verwerkt met als doel een constant proces te verkrijgen dat voldoet aan de opgestelde eisen.

2. Spuitgietproces

2.1 Spuitgietmachine

Een spuitgietmachine bestaat uit twee grote onderdelen: een sluiteenheid en een injectie-eenheid. Er bestaan zowel hydraulische, elektrische als hybride spuitgietmachines. In dit onderzoek is gebruik gemaakt van de Fanuc ROBOSHOT S-2000i30B, een volledig elektrische machine met een touch panel bediening zoals in Figuur 1

Figuur 1: Fanuc ROBOSHOT S-2000i30B [1]

Figuur 2: Schematische opbouw van een elektrische spuitgietmachine [2]

2.1.1 Injectie-eenheid

Het doel van de injectie-eenheid is het kunststofgranulaat homogeen te smelten (smelt) en vervolgens te injecteren in de matrijs. Belangrijk hier is dat de injectie-eenheid nauwkeurig de ingestelde waarden als massatemperatuur, shotvolume, injectiesnelheid, injectiedruk, ... kan verwezenlijken.

Figuur 3: Schematische voorstelling van een Injectie-eenheid van een spuitgietmachine[3]

2.1.2 Sluiteenheid

De sluiteenheid omvat de matrijs en de kleminstallatie. Het doel van de sluiteenheid is de 2 matrijsdelen onder voldoende kracht gesloten te houden tijdens het spuitgietproces. Als de sluitkracht niet voldoende is kunnen we braam of flash krijgen aan het product. Verder staat de sluiteenheid ook in voor het uitwerpen van de producten. Dit gebeurt door een (set) van uitwerpers, perslucht of een afstroopplaat. De sluiteenheid in de Fanuc spuitgietmachine maakt gebruik van een kniehevel mechanisme en is volledig elektrisch. Deze combinatie zorgt voor zeer snelle drooglooptijden (het doorlopen van de cyclus zonder de injectiestap) en zijn dus ideaal voor microproducten.

Figuur 4: Sluiteenheid: kniehevel mechanisme [4]

2.2 De spuitgietcyclus

Bij het spuitgieten worden verschillende processtappen doorlopen. Het variotherm microspuitgieten en conventioneel microspuitgieten verlopen op een bijna identieke manier. Het enige verschil zit in het temperatuurverloop doorheen de cyclus.

Bij conventioneel spuitgieten van thermoplasten gaat de matrijs relatief koud zijn doorheen de spuitgietcyclus. Bij variotherm spuitgieten zal de matrijs voorverwarmd worden om vervolgens te gaan injecteren en nadrukken. Vlak na het injecteren wordt er overgeschakeld op koelen. Rekening houdend met een dode tijd van ongeveer 5 seconden begint het koelen effectief tegen het einde van de nadruk. Het koelen wordt voornamelijk gedaan om de cyclustijd van het product in te korten. Net voor het uitwerpen wordt er terug overgeschakeld op verwarmen om de matrijs op temperatuur te hebben voor de volgende spuitgietcyclus, het verloop van de spuitgietcyclus is te zien in Figuur 5.

Figuur 5: Verschil in spuitgietcyclus tussen conventioneel en variotherm [5]

2.3 Variotherm spuitgieten

Variotherm spuitgieten is een spuitgiettechniek waarbij de matrijs thermisch gecycleerd wordt om op elk moment van de spuitgietcyclus de meest ideale procestemperatuur te verkrijgen, zie Figuur 5. De techniek is vooral effectief bij een matrijstemperatuur boven de Tg waarde van de gebruikte kunststof, in dit onderzoek werken we ook met temperaturen onder Tg om de invloed te ervan te bestuderen op de micro-oppervlaktestructuur. De variothermtechniek heeft een aantal voordelen: verminderen van inwendige spanningen, reductie van visuele vloeilijnen, verbeteren van de in-moldviscosity bij dunwandige producten, een meer nauwkeurige overname van het matrijsoppervlak en de reductie van de koeltijd bij dikwandige producten.

2.4 Variotherm unit

De variotherm unit is een randapparaat dat aangesloten kan worden op spuitgietmachines. Het is ontworpen om matrijzen gevuld te krijgen met extreem dunne stromingsdoorsnedes of extreme verschillen in wanddiktes. Verder kan deze techniek de oppervlaktekwaliteit, de maatnauwkeurigheid en de mechanische sterkte van vloeilijnen verbeteren. Het werkingsprincipe is relatief eenvoudig. De apparatuur bestaat uit:

- Schakeleenheid (switching unit), HB-VS160/180-20
- Sturingseenheid (control box)HB-VSC
- 2 temperature control units, warm en koud, HB-thermo-5

De control box is een LOGO van Siemens, een LOGO is een vereenvoudigde PLC en is programmeerbaar. We kunnen als input een extern signaal gebruiken en hieraan een tijdsvertraging toevoegen om het ideale omschakelmoment te verkrijgen. Op deze manier wordt de variotherm gekoppeld aan de cyclus van de spuitgietmachine en kunnen we op het juiste moment beginnen met koelen en verwarmen.

Voor het verwarmen is er een *temperature control unit* net als voor het koelen. Deze control units verwarmen/koelen het water dat gebruikt wordt om de matrijstemperatuur te variëren. Ten slotte is er de switching unit, een groot ventiel aangestuurd door de LOGO, om te schakelen tussen matrijskoeling of verwarming.

Figuur 6: Schematische weergave van de variotherm opstelling [6]

2.5 Spuitgietparameters

Het spuitgietproces is afhankelijk van verschillende parameters. Een aantal hiervan zijn machine gebonden, de andere zijn materiaalafhankelijk. De combinatie van geschikte instellingen levert een goed product.

In deze studie wordt gebruik gemaakt van Polymethylmethacrylaat (PMMA). PMMA is een amorfe commodity plastic. Commodity plastics zijn kunststoffen die in grote volumes gebruikt worden in een brede waaier van toepassingen. Deze kunststoffen hebben relatief lage mechanische eigenschappen en zijn relatief goedkoop.

2.5.1 Parameters gerelateerd aan het spuitgietproces

2.5.1.1 De sluitkracht:

Tijdens het spuitgieten ontstaat er een binnenvormdruk door het injecteren van de smelt. Deze druk werkt in op het geprojecteerd oppervlak van de matrijsholte en zal de sluitkracht tegenwerken. Onder geprojecteerd oppervlak verstaan we de projectie van de spuitgietdelen als we loodrecht op de matrijsholte kijken. Een voorstelling van het geprojecteerd oppervlak is te zien in Figuur 7

Figuur 7: Geprojecteerd oppervlak van een spuitgietproduct [7]

 $De \ sluitkracht(N) = \frac{geprojecteerd \ opp. \ (cm^2) \times gem.matrijsdruk \ (bar)}{1000}$

De gemiddelde matrijsdruk is zowel grondstofafhankelijk als van de wanddikte en maximale vloeilengte. Deze druk kan berekend worden aan de hand van een formule of met behulp van een figuur.

 $Gemiddelde matrijsdruk (bar) = \frac{druk \ aan \ het \ aanspuitpunt \ (bar) + druk \ einde \ vd \ vloeiweg(bar)}{2}$

2.5.1.2 Koeltijd:

De koeltijd is de tijd tussen het nadrukken en het uitwerpen van het product. Deze tijd is nodig om het product te laten afkoelen zodat het zonder vervorming of beschadigingen uit de matrijs verwijderd kan worden. Een vuistregel voor de meest gangbare kunststoffen is te vinden in Tabel 1. In deze tabel staat T_{koel} voor de koeltijd en *S (in millimeter)* voor de wanddikte.

Tabel 1: Vuistregel voor koeltijden bij verschillende kunststoffen

PC	$T_{koel} = 2.17 \times s^2$
PA6, PBT, LDPE	$T_{koel} = 2.64 \times s^2$
ABS, PS, SAN, PA6.6	$T_{koel} = 2.82 \times s^2$
HDPE, PMMA	$T_{koel} = 3.00 \times s^2$
PP	$T_{koel} = 3.67 \times s^2$
POM	$T_{koel} = 4.18 \times s^2$

De dikte van het micro spuitgietproduct bedraagt 2.5mm. Als richtwaarde wordt de koeltijd dan 19 seconden (=3*2.5²). Aangezien bij deze vuistregel geen rekening gehouden wordt met de matrijstemperatuur nemen wij als beginwaarde 30 seconden. Indien nodig kan de koeltijd op elk moment aangepast worden.

2.5.2 Kritische parameters gerelateerd aan het spuitgietproces:

2.5.2.1 Matrijs temperatuur:

Bij een te lage matrijstemperatuur zal de kunststof te snel stollen. Dit resulteert in een hogere viscositeit en geeft een gestolde laag aan het matrijs oppervlak. De doorstroombare ruimte daalt waardoor de injectiedruk stijgt.

2.5.2.2 Massa temperatuur:

De viscositeit van de kunststof staat in functie van de temperatuur. Deze temperatuur moet voldoende hoog zijn om een viscositeit te verkrijgen waarbij de injectiedruk nog door de spuitgietmachine geleverd kan worden blijft.

2.5.2.3 Injectiesnelheid

Als de injectiesnelheid toeneemt, stijgt de afschuifsnelheid en dus ook de interne wrijving. Deze factoren hebben dan weer invloed op de injectiedruk. De injectiedruk stijgt als de afschuifsnelheid en dus ook de injectiesnelheid stijgt, de verhoging aan interne wrijving hiermee gepaard gaat zorgt voor extra warmte en dus een temperatuursverhoging waardoor de viscositeit daalt. De injectiesnelheid wordt ofwel relatief (afgelegde weg van de schroef in functie van de tijd) ingesteld in mm/s ofwel absoluut geïnjecteerd volume per eenheid van tijd) in cm³/s. Wanneer we van een

relatieve snelheid naar een absolute snelheid willen gaan moet er rekening gehouden worden met de diameter van de schroef.

 $v_{abs} = \frac{v_{rel} \times d^2_{schroef} \times \pi}{4000}$ Met: $v_{abs.} = absolute injectie snelheid (cm^3/s)$ $v_{rel.} = relatieve injectie snelheid (mm/s)$ $d_{schroef} = schroefdiameter (mm)$

In veel situaties word er ook voor een inspuitprofiel gekozen. Typisch gaat hier de injectiesnelheid in het begin en einde lager liggen dan in het midden van de vulling van het product. Dit is bij microspuitgieten niet van toepassing aangezien we met een zeer klein shotvolume werken.

2.5.2.4 Nadruk:

De nadruk stellen we pas in als we een goed en constant resultaat hebben. Dit is visueel te controleren alsook door het product te wegen of aan de hand van het massakussen. De nadruk dient niet om het product verder te vullen maar enkel om de krimp van het materiaal compenseren en zorgt voor een product dat beter voldoet aan de opgegeven waarden. Zowel de nadrukkracht als tijd zijn afhankelijk van het product, grondstof en machine.

Figuur 8: Nadruk in functie van de wanddikte [5]

2.6 Voorwaarde

Aan het product zijn bepaald eisen gesteld. De eerste en meest belangrijke voorwaarde die gesteld werd is dat de gevraagde kegelhoogte zo goed mogelijk benaderd wordt voor alle kegels. De streefwaarde voor de hoogte van de kegels bedraagt 500µm. In het onderzoek blijkt echter dat er een grote spreiding optreed doorheen de producten waardoor de meeste belangrijke voorwaarde niet de kegelhoogte is maar een minimale spreiding. Ook het materiaal is bepaald door de opdrachtgever, het product moet vervaardigd worden uit PMMA. We stellen ons zelf de randvoorwaarde dat er geen of een minimum aan flash optreedt. Tot slot mogen de producten geen defecten of imperfecties vertonen die eigen zijn aan spuitgieten zoals: inval (verzakking), degradatie,... In het onderzoek wordt vooral gekeken naar de kegelhoogte aangezien dit de onderzoeksvraag is. De scherpte van de kegelpunt wordt buiten beschouwing gelaten.

3. Parameteroptimalisatie voor conventioneel spuitgieten

3.1 Inleiding

In dit hoofdstuk word een parameteroptimalisatie uitgevoerd voor het conventioneel spuitgietproces. Als eerste stap worden er een aantal geboorteshots gedaan. Dit is een serie van testproducten om na te gaan of de gevonden en berekende parameterinstellingen in de juiste bereik zitten. Vervolgens wordt het procesvenster opgesteld, hier wordt op basis van visuele inspectie het bereik bepaald voor de overige parameters. Tot slot wordt er een DoE uitgevoerd, er wordt een ontwerpmatrix opgesteld die elke mogelijke (kritische)parametercombinatie omvat. Deze test zal na een statistische analyse uitwijzen welke parametercombinaties het beste productresultaat oplevert.

3.2 Geboorteshots

Voor de start van het effectieve onderzoek worden eerst een aantal geboorteshots gedaan. Er worden een aantal producten gemaakt met de berekende en aanbevolen parameters. Deze producten worden enkel visueel gecontroleerd. Hieruit wordt duidelijk of de ingestelde parameters een goede maatstaf zijn om op verder te werken. Uit deze test is het volgende gebleken:

- Massatemperatuur: range kiezen we van 220°C tot 245°C in de plaats van 220°C tot 260°C die opgegeven is door de fabrikant. Bij 260°C vertonen de producten flash bij een nadruk van 200 bar en zijn de kegelhoogtes lager dan 280μm.
- Koeltijd: de koeltijd is berekend op 19 seconden. Dit bleek aan de lage kant te zijn omdat de producten niet volledig gestold waren bij het uitwerpen. Door de koeltijd incrementeel te verhogen bleek voor een matrijstemperatuur van 60°C, de ondergrens van de range, een koeltijd van 25 seconden voldoende. Bij een hoge matrijs temperatuur kan de koeltijd nog aangepast worden indien nodig.
- De injectiesnelheid: de injectiesnelheid kan zeer breed gekozen worden, in deze test hebben we gewerkt met een injectiesnelheid van 400mm/s.

In het geheel bekeken zijn de richtwaardes vrij geschikt, enkel de maximum massatemperatuur hebben we lager gekozen en de koeltijd hebben we groter gemaakt uit voorzorg.

3.3 Bepaling van het procesvenster

Spuitgieten is opgedeeld in twee grote fases. De eerste fase is de injectiefase. De matrijs wordt dan volledig gevuld met smelt (gesmolten kunststof). De tweede fase is de nadruk- en koelfase. De nadruk vangt de volumetrische krimp op bij het stollen van de kunststof door het in contact komen met de koude matrijswand.

In dit hoofdstuk gaan we het procesvenster in twee stappen bepalen. In de eerste stap gaan we de viscositeitscurve opstellen om de ideale inspuitsnelheid te bepalen. In de tweede stap wordt er op

basis van de nadruk en de massatemperatuur het procesvenster opgesteld. Het doel van het procesvenster is om visueel goede producten te creëren zodat het procesvenster als basis kan dienen voor de DoE. Onder visueel goede producten verstaan we volledig gevulde producten als ondergrens en producten zonder flash als bovengrens.

3.3.1 Stap 1: Viscositeitscurve voor de optimalisatie van injectiesnelheden

Elke kunststof is *non-Newtonian* of niet-Newtoniaans, dit wil zeggen dat de viscositeit niet constant blijft in functie van de afschuifsnelheid. In een zekere zin is het reologisch gedrag van kunststoffen zowel niet-Newtoniaans als Newtoniaans. Bij matige afschuifsnelheden gedraagt kunststof zich niet-Newtoniaans maar eens de afschuifsnelheid voldoende wordt, gaat de kunststof een gedrag vertonen dat eerder Newtoniaans is. Dit komt omdat bij een toenemende afschuifsnelheid de moleculeketens zich ontrafelen en meer gealigneerd worden in de richting van de vloei. [8]

Figuur 9: Viscositeit in functie van afschuifsnelheid, Newtonian <-> non-Newtonian [8]

In Figuur 9, zien we dat er 2 soorten niet-Newtoniaanse vloeistoffen zijn, dilatant en pseudoplastisch. Dilatante vloeistoffen zijn vloeistoffen die viskeuzer worden bij een toenemende afschuifsnelheid (*shear rate*), ook wel *shear hardening* genoemd. Pseudoplastics, zoals kunststoffen, vertonen het tegenovergesteld gedrag, deze worden minder viskeus (meer vloeibaar) bij een toenemende afschuifsnelheid, een fenomeen dat *shear tinning* genoemd wordt.

Als de afschuifsnelheden zich bevinden in het niet-Newtoniaans gebied van de curve kunnen kleine veranderingen in afschuifsnelheid grote variaties in viscositeit teweeg brengen. Dit heeft als resultaat dat de matrijs niet altijd op dezelfde manier gevuld wordt met gevolg dat er een grote productvariatie optreedt.

De viscositeit is afhankelijk van de afschuifsnelheid en de afschuifsnelheid is afhankelijk van de injectiesnelheid. Er kan dus een grafiek worden opgesteld, een viscositeitscurve, die matrijs een machine specifiek is. Deze techniek wordt *'in-mold-rheology'* genoemd.

De invloed van de massatemperatuur is minder groot dan de invloed van de afschuifsnelheid op de viscositeit, dit geldt zolang er binnen de effectieve range wordt gewerkt die opgegeven is door de fabrikant. Op deze manier zal de *in-mold* viscositeitscurve ongeveer gelijk zijn voor verschillende temperaturen.[8]

De "viscositeitscurve" die afgeleid wordt van de spuitgiettest geeft niet de echte viscositeit in functie van afschuifsnelheid weer, maar een gelijkaardige curve in functie van de injectiesnelheid, en deze laat toe om een geschikt werkingsgebied voor de injectiesnelheid te bepalen.

Hier verder volgt het stappenplan om de viscositeitscurve te bepalen:

- Aangezien we met PMMA werken gaan we eerst onze grondstof voordrogen 2 á 3 uur lang op maximum 93°C [9]. Dit doen we omdat PMMA vocht aantrekt [9] wat de productkwaliteit kan beïnvloeden.
- 2) We stellen onze matrijs temperatuur in op 60°C. [9]
- 3) We stellen een smelt temperatuur in zoals aanbevolen door fabrikant. Opgegeven is een temperatuur range van 220°C – 260°C. We hebben arbitrair de laagste temperatuur genomen omdat de viscositeitscurve normaal niet sterk varieert over het opgegeven temperatuurbereik. .

→ 220°C. [9]

- 4) Geen nadruk instellen, enkel injectie.
- Als maximaal toegelaten injectiedruk stellen we de maximale injectiedruk van de machine in. Als we de maximaal toegelaten injectiedruk beperken kan het immers zijn dat de gevraagde injectiesnelheid niet gehaald wordt.

→ 2500 bar. [10]

6) Er wordt een veilige (extra lange) koeltijd ingesteld.

 \rightarrow 30 sec.

7) We stellen de injectiesnelheid in op "laag" en maken een product. \rightarrow 25 mm/s.

Stel de doseerlengte (de verplaatsing van de schroef tijdens injectie) proefondervindelijk zodanig in dat het product 50% gevuld is. Op deze manier is het product nog gemakkelijk te verwijderen uit de matrijs.

8) We laten de injectiesnelheid incrementeel laten stijgen tot de machine zijn maximum bereikt of tot het punt waar de maximale piek injectiedruk wordt bereikt. Eens de maximale piek injectiedruk is bereikt heeft het geen nut meer de injectiesnelheid te verhogen aangezien deze niet bereikt kan worden. Het volume het product kan lichtjes toenemen bij een stijgende injectiesnelheid omdat er bij een hoge snelheid een stukje van het massakussen mee geïnjecteerd wordt. Bij de maximale injectiesnelheid passen we de doseerlengte aan zodat het product +/- 95% gevuld is.

De max injectiesnelheid van de Fanuc is 525mm/s. [10]

- 9) Nu maken we een 5 tal producten. Neem hiervan de vultijd en piekdruk op.
- 10) Verlaag de snelheid van 100% naar 90%. Neem weer de vultijd en piekdruk op.
- 11) Herhaal stap 8 tot aan de laagst mogelijke injectiesnelheid.

Op deze manier krijgen we de viscositeit in functie van de injectiesnelheid over een zeer groot bereik. We mikken op een 10-12 punten om een duidelijk overzicht te krijgen. De meetgegevens zijn terug te vinden in Tabel 2 en het verloop van de piek injectiedruk is te zien in Figuur 10.

Injectie snelheid											
(mm/s)	525	475	425	375	325	275	225	175	125	75	25
piek injectiedruk	1222	965	985	983	906	839	867	768	726	553	442
(bar)	1067	920	931	940	906	820	826	740	706	564	420
	1185	923	960	951	922	812	813	719	661	625	430
	999	997	904	980	897	853	857	743	642	604	420
	1032	984	955	960	860	869	802	756	671	609	446
gem. piek											
injectiedruk (bar)	1101	958	947	963	898	839	833	745	681	591	432

Tabel 2: Gemiddelde piek injectiedruk in functie van de injectiesnelheid

Figuur 10: Drukverloop bij stijgende injectiesnelheid

12) In de 6-step-study wordt gezegt dat de Screw Intensification Ratio (SIR) nodig is voor het berekenen van de viscositeit. De SIR is de drukverhouding van het zuigeroppervlak (A_h) en het schroefoppervlak (A_m), dit is te zien in Figuur 11. Meestal ligt deze waarde rond 10. Aangezien dat de microspuitgietmachine waar wij mee werken volledig elektrisch is, heeft deze geen overbrengingsverhouding. We mogen er van uit gaan dat de screw intensification ratio 1 is. [11]

Figuur 11: Screw Intensification Ratio [23]

13) De Viscositeit kunnen we bepalen met de volgende formule [8]:
 Viscositeit = Piek injectiedruk (bar) × Vultijd (s) × Screw Intensification Ratio

De meetresultaten en berekeningen van dit experiment zijn uitgezet in Tabel 3.

Tabel 3: Bepalen van de viscositeit

injectiesnelheid						1
(% t.o.v. het max 525	injectiesnelheid	piek injectiedruk		vultijd	Viscositeit	
mm/s)	(mm/s)	(bar)	SIR	(s)	(relatief)	
5	25	432	1	0,578	249	
14	75	591	1	0,206	122	
24	125	681	1	0,133	91	
33	175	745	1	0,103	77	
43	225	833	1	0,087	73	
52	275	839	1	0,077	65	
62	325	898	1	0,072	65	
71	375	963	1	0,069	66	
81	425	947	1	0,067	63	constante
90	475	958	1	0,066	63	berekend
100	525	1101	1	0,066	73	gemeten

14) Ten slotte plotten we de grafiek van de viscositeit in functie van de injectiesnelheid, deze is te zien in Figuur 12.

Figuur 12: Viscositeit in functie van injectiesnelheid

3.3.1.1 Conclusie

Uit Figuur 12 blijkt dat de viscositeit nagenoeg constant blijft boven een injectiesnelheid van ongeveer 175 mm/s. Als boven en ondergrens voor de injectiesnelheid nemen we 175 mm/s en 475 mm/s. Deze waardes zijn gekozen omdat rond 175 mm/s de grafiek een relatief constante waarde aanneemt en bij 475 mm/s deze terug begint te stijgen.

3.3.2 Stap 2: Procesvenster bepalen

Het theoretisch gewicht van het product is gelijk aan de dichtheid van de gebruikte kunststof vermenigvuldigd met het volume van de matrijsholte. Als er meer of minder kunststof wordt ingespoten resulteert dit in een over-gevulde of onder-gevulde matrijs. Dit brengt verschillende nadelen met zich mee. Voor een over-gevulde matrijs krijgen we flash en materiaalspanningen. Een onder-gevulde matrijsholte resulteert in producten met inval of onvolledige producten. [12]

Een overvol product kunnen we corrigeren door het shotvolume te verkleinen. Bij een niet vol product zijn er twee mogelijkheden. Als het product niet voldoende gevuld (als we door het massakussen zitten) is moet het shotvolume verhoogd worden. Als het product niet voldoet maar het shotvolume is correct kan dit opgevangen worden door de nadruk te verhogen.

Het procesvenster bestaat uit de smelttemperatuur in functie van de nadruk. Hier gaan we op zoek naar de 4 uiterste punten waar de producten visueel aanvaardbaar zijn, deze punten kunnen we omschrijven als:

- Het lage temperatuur lage nadruk punt
- Het lage temperatuur hoge nadruk punt
- Het hoge temperatuur lage nadruk punt
- Het hoge temperatuur hoge nadruk punt

Het procesvenster wordt bepaald met het opgestelde stappenplan [12]:

- 1) Als massatemperatuur kiezen we de onderste waarde van de opgegeven range. \rightarrow 220°C.
- 2) De injectiesnelheid ingesteld volgens de verkregen waarde uit stap 1, een waarde gelegen tussen 175-475 mm/s.
 → 275mm/s.
- 3) De nadruktijd en nadruk wordt ingesteld op 0.
- 4) De koeltijd wordt gekozen met marge zodat deze zeker voldoet.
 → 30 sec.
- 5) De doseerlengte wordt proefondervindelijk ingesteld zodat de producten 95% gevuld zijn.
- 6) Eerst laten we het proces stabiliseren door 5-8 shots te maken.
- 7) Nu stellen we een nadruktijd in waarbij de gate zeker is afgevroren. Voldoende hoog dus.
 → na experimenteren blijkt 3 seconden ruim voldoende.
- 8) We verhogen incrementeel de nadruk in stappen van 100 baren noteren waar een goed product gemaakt wordt.

 \rightarrow Dit is het lage temperatuur – lage nadruk punt.

- 9) Verhoog verder tot er flash optreedt.
 - \rightarrow Dit is het lage temperatuur hoge nadruk punt.
- 10) Herhaal 8) & 9) maar nu met de maximum waardes van het temperatuurbereik.
 - \rightarrow 260°C flash bij een nadruk van 200 bar \rightarrow 240°C

 \rightarrow Dit geeft het hoge temperatuur – lage nadruk en het hoge temperatuur – hoge nadruk punt.

Tabel 4: Meetresultaten voor het opstellen van het procesvenster

lage temperatuur									
instelling	1	2	3	4	5	6	7	8	
nadruk	100	200	300	400	500	600	700	800	bar
massakussen	3,33	3,32	3,2	3,15	3,2	3,2	2,65		mm
doseerlengte	doseerlengte 20 20 20 21 22 22 22 mm								

product		Kegelhoogte							
1	<130	<150	<170	<340	407	408	395	flash	μm
2					410	402	402	flash	μm
3					407	400	408	flash	μm
4					403	428	402	flash	μm
5					406	400	410	flash	μm
gemiddelde	130	150	170	340	407	408	403		μm

hoge temperatuur									
instelling	1	2	3	4	5	6	7	8	
nadruk	100	200	300	400	500	600	700	800	bar
massakussen	3,25	3,2	2,95	2,86					mm
doseerlengte	doseerlengte 20 20 20 20 mm								

product		Kegelhoogte							
1	348	355	365	377	flash	/	/	/	μm
2	346	349	350	370	flash	/	/	/	μm
3	355	338	346	363	flash	/	/	/	μm
4	355	348	368	373	flash	/	/	/	μm
5	351	355	360	376	flash	/	/	/	μm
gemiddelde	351	349	358	372					μm
	Te hoge temperatuur (260°C)								

		_							
1	flash bij	200	bar	en	hoogt	e <	280	μm	

11) Als we de hoeken van de uiterste waarde verbinden krijgen het procesvenster / *Molding area diagram,* te zien in Figuur 13.

Figuur 13: Procesvenster, nadruk in functie van massatemperatuur

De ondergrens voor een aanvaardbaar product wordt genomen bij een kegelhoogte vanaf 350 µm, dit komt overeen met een nadruk van 300 bar. De hoogste nadruk waar geen flash optreedt bedraagt 700 bar. De range voor onze nadruk wordt dus gekozen tussen de 300 en 700 bar.

3.4 DoE analyse voor conventioneel spuitgieten

3.4.1 Inleiding

Een Design of Experiments, ook wel gekend als een DoE is een vorm van experimenteel ontwerpen. Het is een studie die gebaseerd is op experimenten en gedefinieerd wordt door een systematische procedure die uitgevoerd word onder gecontroleerde omstandigheden. Een DoE kan gebruikt worden bij elk informatie verzamelend ontwerp waar de parameters een bepaalde range (werkingsgebied) hebben, de gebruiker is geïnteresseerd in het effect of de invloed van een inputverandering ten opzichte van de output. Dit maakt dat Design of Experiments een zeer breed toepassingsbereik heeft zowel in natuurlijke-, sociale- als ingenieurswetenschappen.

We gebruiken een DoE voor 2 redenen. De eerste is om een basis te krijgen van goede en minder goede instellingen die kunnen dienen als richtlijn voor het variotherm spuitgieten. De tweede rede is om te kijken wat de invloed is van het variotherm spuitgieten ten opzichte van het conventioneel spuitgieten.

3.4.2 DoE Parametermatrix

Aan de basis van de DoE staat een parametermatrix. In deze matrix zijn vier parameters gekozen namelijk: nadruk, injectiesnelheid, massatemperatuur en matrijstemperatuur, waarvan vorige studies [5] en [13] hebben aangetoond dat ze een grote invloed hebben op de productkwaliteit. De combinatie van de datasheet voor PMMA en het procesvenster dat we hebben bepaald zorgt ervoor dat we voor elke kritische parameter een range hebben bepaald, deze is terug te vinden in Tabel 5.

DoE Parameter waardes								
Parameter Eenheid Onderste waarde (L) Bovenste waard								
Injectiesnelheid	[mm/s]	175	475					
Massatemperatuur*(*)	[°C]	220	245					
Matrijstemperatuur* [°C] 60 80								
Nadruk** [bar] 300 700								

Tabel 5: DoE parameter waardes (met *uit Bijlage E en ** bepaald m.b.v. het procesvenster)

Voor elke parameter is er een boven en ondergrens bepaald die gaat dienen bij de DoE. We hebben 4 parameters waarvan we telkens 2 mogelijke instellingen hebben. Dit resulteert in een 2⁴ design matrix, Tabel 6.

Tabel 6: DoE Design matrix

DoE Design Matrix 2 ⁴									
No.	Matrijs temperatuur	Massa temperatuur	Injectiesnelheid	Nadruk					
1	L	L	L	L					
2	Н	L	L	L					
3	L	Н	L	L					
4	Н	Н	L	L					
5	L	L	Н	L					
6	Н	L	Н	L					
7	L	Н	Н	L					
8	Н	Н	Н	L					
9	L	L	L	Н					
10	Н	L	L	Н					
11	L	Н	L	Н					
12	Н	Н	L	Н					
13	L	L	Н	Н					
14	Н	L	Н	Н					
15	L	Н	Н	Н					
16	Н	Н	Н	Н					

3.4.3 Experimentopzet

Er zijn verschillende voorwaarden waar rekening mee gehouden moet worden. Ten eerste moet het gebruikt materiaal PMMA gedroogd worden op maximum 93°C voor een duur van 2 à 3 uur. Ook moeten we rekening houden met het feit dat we product uitval kunnen krijgen, bepaalde producten uitschieters vertonen en producten die beschadigd geraken. Om te voorkomen dat deze producten worden aanvaard als nauwkeurig productresultaat maken we series van 20 stuks voor elke instelling. Op deze manier zijn er minstens 15 goede producten die samen een beter resultaatbeeld geven van elke individueel experiment. Ten slotte moeten we rekening houden dat we met de juiste waardes werken:

- Massatemperatuur: bij het verhogen of verlagen van de massatemperatuur wordt een wachttijd van 20 minuten ingelast om ervoor te zorgen dat de cilinder homogeen is verwarmd.
- Matrijstemperatuur: na het aanpassen van de matrijstemperatuur wordt er een kleine 5 minuten gewacht om ervoor te zorgen dat de matrijs een homogene temperatuur heeft.

- Injectiesnelheid: De injectiesnelheid verandert onmiddellijk bij de volgende shot, hier zijn niet concreet extra maatregelen nodig.
- Nadruk: de nadruk verandert net als de injectiesnelheid onmiddellijk bij de volgende shot, ook hier zijn geen extra maatregelen nodig.

Na elke parameterwaarde die wordt aangepast worden er een aantal testshots gemaakt tot we zien dat alle systeemparameters gestabiliseerd zijn. Een van deze parameters is het massakussen, het massavolume dat gebruikt kan worden voor de nadruk om de krimp te compenseren, het massakussen staat ingesteld op 5mm als het massakussen onder de 2.5mm zakt wordt het shotvolume met 1mm verhoogd. Het massakussen "verbruik" mag niet te groot worden omdat dit wijst op een shotvolume dat te laag staat ingesteld.

3.4.4 Resultaten

Met behulp van de statische analyse software van Minitab kunnen we de metingen uit Bijlage B visueel voorstellen. Hierin gaan we op zoek naar een aantal zaken. Ten eerste moeten de kegelhoogtes zo groot mogelijk zijn. Ten tweede moet de spreiding minimaal zijn binnen een bepaalde productreeks. De spreiding van de kegelhoogtes binnen hetzelfde product moet ook minimaal zijn. Het grootste verschil in kegelhoogte is tussen de kegels aan de voor- en achterkant van het product Wat bedoeld wordt met voor – en achterkant van het product is te zien in Figuur 14.

3.4.4.1 Spreiding

In Figuur 16 en Figuur 17 zijn de boxplots te zien van de 16 instellingen uit de parametermatrix respectievelijk voor de kegelhoogtes aan de kant van het aanspuitpunt (voorste) en het verst van het aanspuitpunt (achterste).

Een boxplot is in de beschrijvende statistiek een beknopte grafische weergave van de 5getallensamenvatting: het minimum, het eerste kwartiel, de mediaan, het derde kwartiel en het maximum.

Figuur 15: Verklaring van de boxplot [14]

Als we gaan kijken naar de boxplots zien we dat er een groot verschil is tussen de voorste en achterste kegels zowel doorheen de instellingen als instelling specifiek. Zo blijken de kegelhoogtes aan de achterzijde over de gehele lijn meer constant op 3 instellingen na. Bij de voorste kegels valt het op dat er bij een hoge nadruk een kleine spreiding optreedt en een goede kegelhoogte. Instelling 7 en 8 hebben een lage nadruk maar vertonen ook een kleine spreiding vooraan, dit is vermoedelijk te wijten aan de combinatie van een hoge massatemperatuur en hoge injectiesnelheid. Instelling 9 en 10 hebben een hoge nadruk maar vertonen een grote spreiding. Het verschil tussen de kegelhoogtes voor- en achteraan is ook opmerkelijk. De betere instellingen vooraan hebben een kegelhoogte van ongeveer 480 µm gemiddelde terwijl dit achteraan slechts ongeveer 400 µm is.

Figuur 16: Boxplot van voorste kegelhoogtes voor de 16 DoE experimenten

Figuur 17: Boxplot van achterste kegelhoogtes van de 16 DoE experimenten

Figuur 18: Boxplot van voorste en achterste kegelhoogtes gecombineerd

3.4.4.2 Pareto-analyse

Aan de hand van een pareto-analyse kunnen we een visuele voorstelling maken van de invloeden van de parameters op kegelhoogtes. We hebben twee verschillende pareto's opgesteld.

De eerste is die de invloed van de parameters op de kegelhoogtes voorstelt. Voor zowel de voorste als de achterste kegelhoogtes, Figuur 19 en Figuur 20, blijkt dat de nadruk de grootste invloed heeft op de kegelhoogte. De invloed van de nadruk is ook zeer goed te zien in Figuur 16 en Figuur 18 als we weten dat vanaf instelling 9 wordt gewerkt met een hoge nadruk (700 bar). Op de tweede plaats staat de massatemperatuur. De matrijstemperatuur staat op de derde plaats. De variatie in matrijstemperatuur van 60°C tot 80 °C heeft het minste invloed op de hoogtes is nog maar net significant.. Dit wil echter niet zeggen dat de invloed van variotherm ook minimaal gaat zijn aangezien bij variotherm gewerkt wordt met hogere temperaturen kan de invloed hiervan vele malen groter zijn.

Figuur 19: Pareto-analyse toegepast op de achterste kegelhoogtes

Figuur 20: Pareto-analyse toegepast op de voorste kegelhoogtes

Als tweede hebben we een pareto-analyse gemaakt om te kijken naar de invloed van de parameters op de spreiding, deze zijn zichtbaar in Figuur 21 en Figuur 22. Ook hier blijkt de nadruk de grootste invloed te hebben op de beperking van de spreiding, net als bij de eerste pareto-analyse. De 2^e grootste invloed op de spreidingbeperking is de massatemperatuur. Wat opvalt is dat voor de kegelhoogtes vooraan de injectiesnelheid en de matrijstemperatuur een significante rol speelt terwijl dat deze bij de achterste te verwaarlozen zijn.

Figuur 21: Effect van parameters op spreiding van de kegels achteraan

Figuur 22: Effect van parameters op spreiding van de kegels vooraan
3.4.5 Validatie en betrouwbaarheid van de meetgegevens

De enige kritische variabele bij dit product is de kegelhoogte. De hoogte van deze kegels wordt opgemeten met behulp van een optische meetmicroscoop van Keyence, Figuur 24. Omdat we zeker moeten zijn dat de meetgegevens accuraat zijn is voor gebruik de microscoop gekalibreerd met behulp van een ijkglas, Figuur 23.

Figuur 23: Ijkglas 1mm met een onderverdeling van 0.01 mm

Figuur 24: Optische meetmicroscoop van Keyence

Eens de microscoop gekalibreerd is kunnen we gaan meten. Ter controle wordt ook een reeks van producten door een 2^e operator gemeten. Op basis van deze gegevens kunnen we zien of de meetgegevens betrouwbaar zijn. In Figuur 25 zien we de meetresultaten tussen 2 operatoren, hier is operator 2 de persoon ingeroepen voor de controlemeting, deze persoon heeft geen meetervaring. Uit deze figuren blijkt dat operator 1 een kleinere spreiding opmeet dan operator 2.

Figuur 25: Gage study R&R: meetverschil tussen 2 operatoren

In Tabel 7 is de meetonzekerheid berekent voor de kegelhoogtes voor- en achteraan voor de 2 operatoren.

Meet	onzekerheid k	egelhoogte	vooraan	
functie	function		operator 1	operator 2
isgetal	count	(aantal)	20	20
gemiddelde	average	(µm)	480,6	481,2
stdev.s	stdev.s	(µm)	3 <mark>,</mark> 6	6,2
betrouwbaarheid.t	confidence.t	(µm)	1,7	2,9
$\bar{\chi} \pm onzekerheid$		(µm)	481 ± 2	481 ± 3
Meeto	onzekerheid ke	egelhoogte	achteraan	
functie	function		operator 1	operator 2
isgetal	count	(aantal)	20	20
gemiddelde	average	(µm)	411,0	410,0
stdev.s	stdev.s	(µm)	5,4	6,0
betrouwbaarheid.t	confidence.t	(µm)	2,5	2,8

Tabel 7: Resultaten van de meetonzekerheid tussen 2 operatoren

Om te controleren of de meetgegevens nauwkeurig zijn is er op de meetresultaten van de 2 operatoren een onzekerheidsberekening gedaan. Hierboven is te zien dat de gemiddeld gemeten kegelhoogte voor de kegel vooraan identiek is, voor de kegels achteraan is er een verschil van 1 µm. De meetonzekerheid is ook vrijwel identiek, er is een meetonzekerheid van 1 μ m verschil op de kegels vooraan.

Wat de meetgegevens betreft mogen we ook stellen dat deze correct zijn als we kijken naar de meetonzekerheid is deze vrijwel hetzelfde voor de 2 operatoren. De meetonzekerheid is daar bovenop zeer klein 3 μ m op 500 μ m wat neerkomt op 0.6% en dus niet significant genoeg om de resultaten in twijfel te trekken.

3.4.6 Controlemeting met de nanotom, CT-scanner

Als extra controle is er een CT-scan uitgevoerd van een aantal producten. De CT-scan is uitgevoerd in Leuven met behulp van de Phoenix nanotom, te zien in Figuur 26.

Figuur 26: CT-scanner: Phoenix nanotom [15]

De Phoenix nanotom is een nano CT-scanner die gebruik maakt van een 180kV/15W hoog performante nano gefocuste X-ray buis. Er wordt een 3D-model gemaakt van de producten door, in ons geval, de producten traag te roteren en 2400 scans te maken, zoals de foto in Figuur 27 . Deze scans worden vervolgens met behulp van de software VGStudio max en GOM omgezet naar een 3Dmodel, zie Figuur 29 en Figuur 30. Indien de scan goed verloopt kan men het 3D-model gebruikt worden als een CAD model en kunnen er metingen op gedaan worden, FEM analyses,...

Figuur 27: Beeld van 5 producten onder de CT-scanner

Het merendeel van deze scans zijn helaas niet bruikbaar als betrouwbare meetresultaten. Dit is te wijten aan een fenomeen genaamd *"partial volume". Partial volume* is het verlies van volume in bepaalde delen van het 3D-model te wijten aan de beperkte resolutie van het beeldvormingssysteem of de lage dichtheid van de gescande producten. Het effect van *partial volume* is te zien in Figuur 28.

Figuur 28: Het partial volume effect bij het verwerken van CT-scans

In Figuur 30 zijn de meetresultaten uit de CT-scan te zien als lengte "L". Hier zijn de 10 kegels te zien die als enige niet het partial volume effect vertonen. De gemeten waardes van de 10 kegels die hieronder zijn voorgesteld zijn afgerond, de echte waardes zijn te zien in Tabel 8. De waardes die hier worden gemeten zijn in dezelfde ordegrootte als de gemiddelde waarden van de kegelhoogtes die vooraan gemeten worden bij instelling 7

Tabel 8: Effectieve meetwaardes van de CT-scan

Distance 1	485µm
Distance 2	495µm
Distance 3	488µm
Distance 4	484µm
Distance 5	487µm
Distance 6	485µm
Distance 7	483µm
Distance 8	435µm
Distance 9	479µm
Distance 10	472µm

Figuur 30: Metingen van producten ingescand met de CT nanotom

3.4.7 Conclusie

De kritische parameter met die het meeste invloed heeft op de kegelhoogte is de nadruk. Ook om de spreiding te beperken speelt de nadruk de belangrijkste rol. Op de tweede plaats staat zowel bij het beperken van de spreiding als de invloed op de kegelhoogte de massatemperatuur op de tweede plaats. In het algemeen zijn de achterste kegels minder gevoelig aan parameterwijzigingen dan de voorste kegels. Hier tegenover staat dan wel dat de kegel vooraan gemiddeld hoger zijn (gemiddelde kegelhoogte vooraan is ongeveer 490 μ m) dan achteraan (gemiddelde kegelhoogte ongeveer 421 μ m).

Als we naar de totale spreiding kijken in Figuur 18 is er een groot verschil tussen de kegelhoogtes aan de voorkant en de achterkant van de van het product. Instelling 7 heeft een gemiddelde spreiding van 68.5 µm met een maximum van 89 µm. Deze instelling heeft niet de laagste spreiding maar als we kijken naar de beste combinatie van kegelhoogte en spreiding is instelling 7 de beste oplossing, de instellingen voor de kritische parameters zijn terug te vinden in Tabel 5 en Tabel 6.

Wat de meetgegevens betreft mogen we ook stellen dat deze correct zijn als we kijken naar de meetonzekerheid is deze vrijwel hetzelfde voor de 2 operatoren. De meetonzekerheid is daar bovenop zeer klein 3 μ m op 500 μ m wat neerkomt op 0.6% en dus niet significant genoeg om de resultaten in twijfel te trekken.

4. Parameteroptimalisatie voor variotherm spuitgieten

4.1 Inleiding

Bij het variotherm experiment is er niet gekozen voor een DoE analyse, in dit hoofdstuk wordt de beste parameter op experimentele basis bepaald. De reden hierachter is dat de variotherm eenheid op zich een 4 parameters met zich meebrengt. Als deze mee in de DoE wordt verwerkt zou het experiment te groot worden voor de tijdspanne die beschikbaar is.

Als basis voor het variotherm onderzoek wordt de beste parametercombinatie uit de DoE analyse voor conventioneel spuitgieten genomen. Deze parameterset wordt aangepast afhankelijk van de meet- en systeemwaardes die voortvloeien uit het experiment

4.2 Experimentopzet

Om de variotherm unit gemakkelijk te kunnen gebruiken in combinatie met de spuitgietmachine kunnen we een extern 24V DC (I/O) signaal laten binnenkomen op de variotherm. Er kunnen verschillende signalen afgetakt worden van de spuitgietmachine: een persluchtsignaal (bv van de luchtuitwerper), de kerntrekker, robot input, ... Na alle opties met elkaar te vergelijken blijkt de beste oplossing voor het extern signaal de luchtejector te zijn van de microspuitgietmachine. De luchtejector van de machine is uitgebreid programmeerbaar, Figuur 31, wat het gebruiksgemak verhoogt. Bovendien werkt het ejectorsysteem ook met een 24V DC spanning om de relais van het persluchtventiel aan te sturen wat overeenkomt met de variotherm unit. De datasheets hierover zijn terug te vinden in Bijlage A. [10]

Figuur 31: Instellingsmogelijkheden voor de luchtuitwerper

4.3 Experimentele parameteroptimalisatie

De variothermtechniek wordt voornamelijk gestuurd vanuit 4 parameters namelijk: verwarmingstemperatuur, koeltemperatuur, warmtijd, koeltijd. Om deze reden is er gekozen voor een experimentele parameteroptimalisatie in de plaats van een DoE. Om een DoE uit te voeren van 7 parameters (4 variotherm parameters en 3 parameters van de kritische parameters uit de DoE) is er niet voldoende tijd. Als basis van de experimentele analyse wordt de beste instelling uit de DoE voor conventioneel spuitgieten gebruikt, dit is instelling 7.

Voor instelling 7 zijn de volgende waardes gebruikt:

- Massatemperatuur: 245 °C
- Injectiesnelheid: 475 mm/s
- Nadruk: 300 bar
- De constante matrijstemperatuur wordt nu vervangen door de variotherm unit: 90 °C-150 °C

Op basis van de resultaten die hier uit voortvloeien worden de parameters aangepast om een beter productresultaat te verkrijgen.

4.4 Verloop van het experiment

4.4.1 Plan van aanpak en bespreking van moeilijkheden

Bij variotherm spuitgieten wordt de matrijs thermisch gecycleerd. Om een stabiel proces te verkrijgen is het belangrijk dat het temperatuursverloop doorheen de cyclus constant blijft. Aangezien in onze matrijs geen thermokoppel is ingebouwd en niet voldoende tijd beschikbaar is om een thermokoppel in te bouwen zijn er twee opties om een constant proces te verkrijgen:

De eerste optie houdt in dat er gewacht wordt tot de terugvloeitemperatuur stabiliseert, op dit moment weten we dat matrijs warm is. Door een controlemeting uit te voeren met behulp van een thermokoppel weten we dat de effectieve matrijstemperatuur 4 °C lager is dan de ingestelde waarde.

Als er gewacht moet worden tot de matrijs de ingestelde temperatuur heeft bereikt verkrijgen we zeer grote cyclustijden, 172 tot 300 seconden. Aangezien we werken met een microspuitgietproduct hebben we een zeer klein shotvolume. De combinatie van een klein shotvolume en een hoge cyclustijd resulteert in het feit dat de verblijftijd van het materiaal, 11 – 12 min [16], in de schroef overschreden wordt waardoor degradatie optreedt, zie Figuur 32.

Figuur 32: Degradatie zichtbaar in de aanspuiting van het product

De tweede optie is een tijd-gebaseerd proces, hier gaan we streven naar een continu proces waar het temperatuursverloop altijd hetzelfde is door een vaste verwarmingstijd en koeltijd in te stellen. Dit proces is enkel haalbaar als we kunnen werken met een uitstoter, de cyclustijd moet steeds hetzelfde zijn zodat de warm- en koeltijden ook altijd hetzelfde zijn. Aangezien er op onze matrijs insert geen uitstoter was voorzien hebben we de koudslakholte (een uitparing waar de eerste kunststofsmelt in terecht komt bij het injecteren) deze kunststof is meestal niet op temperatuur) laten aanpassen zodat we wel gebruik konden maken van een ejectorpin. Ook een deel van het uitstoterpakket dat zich in de achtermatrijs bevond is verwijderd om er voor te zorgen dat de matrijs insert het uitstoterpakket accepteert, de matrijs insert is er niet op voorzien om alle ejectorpennen te laten uitschuiven. Voor deze reden zijn alle ejectorpennen verwijderd die tegen de insert zouden opstoten.

Eens de ejector functioneel was, bleek dat de producten in de voormatrijs bleven steken in de plaats van de achtermatrijs waarin de ejector zich bevindt. Dit probleem hebben we opgelost door de ejectorpen een ondersnijding te geven. Op deze manier functioneert de pen als een weerhaak en wordt het product meestal correct gelost van de matrijs, de ondersnijding is te zien in Figuur 33.

Figuur 33: Aanspuiting met negatief van de ondersnijding

4.4.2 Resultaten experimentele parameteroptimalisatie

Als basis voor de experimentele parameteroptimalisatie hebben we de beste instelling genomen uit de DoE analyse voor conventioneel spuitgieten. Op basis van de waarde die hier uit voortvloeien worden de parameters aangepast. De meettabellen voor het variotherm experiment zijn terug te vinden in Bijlage C.

Bij eerste variotherm reeks hebben we geen extra wachttijd ingevoerd voor het verwarmen van de matrijs, met gevolg dat er elke cyclus slechts een verwarmtijd is van ongeveer 5 seconden.

Figuur 34: Variotherm reeks 1: meetresultaten in functie van de matrijstemperatuur

Op het eerste zicht lijkt dit resultaat relatiefgoed, zie Figuur 34, maar we zien dat bij een ingestelde temperatuur van 130°C of hoger er inval optreedt in het product. Een tweede probleem is de flash die optreedt ongeacht de ingestelde temperatuur. Een trend die dadelijk opvalt en tegengesteld is aan de verwachting van variotherm is de dalende kegelhoogte bij een toenemende temperatuur.

Bij variotherm is het de bedoeling dat de matrijstemperatuur boven de glastemperatuur (110°C) zit, hier zijn de polymeerketens meer bewegelijk waardoor de vloeiweg langer wordt. Om ervoor te zorgen dat de matrijs voldoende tijd heeft om op te warmen wordt er na het sluiten een wachttijd ingesteld van 20 seconden voor de injectie begint.

Figuur 35: Variotherm reeks 2: meetresultaten in functie van de matrijstemperatuur

In reeks 2, Figuur 35, treedt er over de hele lijn flash op. De kegelhoogten bij een ingestelde temperatuur van 110 °C zien er veelbelovend uit maar als we naar de metingen gaan kijken, Bijlage C, zien we dat de rond 110°C – 120°C inval begint op te treden. Ook bij deze reeks is krijgen we een dalende kegelhoogte bij een stijgende temperatuur.

In reeks 3, Figuur 36, gaan we kijken of een verlaagde injectiesnelheid (175 mm/s i.p.v. 475 mm/s) invloed heeft op de productkwaliteit.

Figuur 36: Variotherm reeks 3: meetresultaten in functie van de matrijstemperatuur

Het verloop van de spreiding in reeks 3 is constanter als in reeks 2 maar er treed bij een ingestelde temperatuur van 110°C -120°C inval op net als in reeks 2. Tevens zet in deze reeks de trend zich voort van een dalende kegelhoogte bij een toenemende temperatuur.

Inval treedt telkens op voordat de glastemperatuur (110°C) is bereikt. Om de inval tegen te gaan wordt in reeks 4, Figuur 37, de nadruk verhoogd (700 bar i.p.v. 300 bar).

Figuur 37: Variotherm reeks 4: meetresultaten in functie van de matrijstemperatuur

De spreiding in reeks 4 is vergelijkbaar met die in reeks 3 maar zoals we kunnen bij de opmerkingen van de meetresultaten in Bijlage C is er geen inval meer.

Wat opvalt is dat bij variotherm de spreiding tussen de kegelhoogtes vooraan en achteraan kleiner is dan bij conventioneel spuitgieten. Deze spreiding willen we graag verder minimaliseren, in reeks 5 en 6, respectievelijk Figuur 38 en Figuur 39, gaan we na of dit mogelijk is door de massatemperatuur te verlagen van 245°C naar respectievelijk 220°C en 200°C.

Figuur 38: Variotherm reeks 5: meetresultaten in functie van de matrijstemperatuur

Figuur 39: Variotherm reeks 6: meetresultaten in functie van de matrijstemperatuur

Bij een massatemperatuur van 220°C zien we dat de kegelhoogtes zowel vooraan als achteraan lichtjes hoger liggen dan bij reeks 4 met een massatemperatuur van 245°C. Wat ook opvalt is dat de spreiding, voornamelijk bij de achterste kegels, kleiner is. Bij reeks 6 lossen de producten tot een ingestelde temperatuur van 110°C niet. Bij een hogere matrijstemperatuur zijn ze vergelijkbaar met de producten uit reeks 5.

De trend van de kegelhoogtes bij reeks 5 en 6 is, net als bij reeksen 1 tot en met 4, dalend bij een toenemende matrijstemperatuur. Het lijkt erop dat deze trend zich zal blijven voortzetten. Inval treedt wel niet meer op dankzij de verhoogde nadruk, net als de flash die ook sterk gereduceerd is.

In reeks 7 en 8 wordt de injectiesnelheid verder verlaagd, uit een studie [17] blijkt dat de overnamekwaliteit van een micro-oppervlaktestructuur toeneemt bij een plotse drukstijging ten opzichte van een gelijkmatige drukopbouw wat niet meer als logisch is. Het is dus mogelijk dat het drukverloop aan de voor- en achterkant van de deze matrijs verschillend is, met gevolg dat er een grote spreiding is in kegelhoogte tussen de voor- en achterkant van de matrijsholte. Als we door de injectiesnelheid te verlagen een meer gelijkmatige vulling krijgen van de voor- en achterkant zou het kunnen dat het drukverloop in de voor- en achterkant van de matrijsholte elkaar beter benaderd. Met gevolg dat het productresultaat ook significant een lagere spreiding kan vertonen.

Figuur 40: Variotherm reeks 7: meetresultaten in functie van de matrijstemperatuur

Figuur 41: Variotherm reeks 8: meetresultaten in functie van de matrijstemperatuur

Bij een zeer lage injectiesnelheid, reeks 8 in Figuur 41, zijn de kegelhoogtes vooraan lager dan achteraan. Geweten is dat de viscositeit daalt(meer vloeibaar wordt) bij een toenemende temperatuur. Net als een stijgende injectiesnelheid resulteert in een lagere viscositeit. Met gevolg dat een hogere temperatuur heeft dezelfde invloed op de viscositeit als een grotere injectiesnelheid.
[18]

Als de resultaten van reeks 7 en 8 met elkaar vergeleken worden kan er geconcludeerd worden dat er een injectiesnelheid bestaat waar de spreiding tussen de voor- en achterkant minimaal is.

In reeks 9, 10 en 11 is de injectiesnelheid aangepast naar respectievelijk 65, 75, 85 m/s om de perfecte injectiesnelheid te vinden die resulteert in een minimale spreiding van hoogtes doorheen de volledige productreeks. De meetresultaten van 9, 10 en zijn terug te vinden in Bijlage C.

Figuur 42: Variotherm reeks 9: meetresultaten in functie van de matrijstemperatuur

Figuur 43: Variotherm reeks 10: meetresultaten in functie van de matrijstemperatuur

Figuur 44: Variotherm reeks 11: meetresultaten in functie van de matrijstemperatuur

Als we naar de grafieken kijken van reeks 9, 10 en 11 in Figuur 42, Figuur 43 en Figuur 44 wordt snel duidelijk dat een injectiesnelheid van 75 mm/s en 85 mm/s niet het gewenste effect resultaat geeft. In reeks 9 daarentegen bij een ingestelde temperatuur van 100 °C is het hoogteverschil tussen de voor- en achterkant minimaal, met een maximale spreiding van 22 µm doorheen de 5 producten. De gemiddelde kegelhoogte voor de voor- en achterkant is respectievelijk 412.4 µm en 409 µm.

4.4.3 Conclusie

Een lagere injectiesnelheid resulteert in een tragere drukopbouw maar meer uniforme drukopbouw met gevolg dat de overname van de structuur minder goed, lees minder hoge kegels, is maar wel uniform doorheen het product.

Zowel een stijging van temperatuur als een stijging van injectiesnelheid heeft dezelfde invloed op de viscositeit. Dit kunnen we verklaren door het feit dat een hogere injectiesnelheid een verhoging in de *shear rate* teweeg brengt. Aangezien PMMA, net als alle kunststoffen, een niet-newtoniaanse pseudoplastic is, zal de viscositeit dalen bij een stijgende *shear rate*.

Tot slot kunnen we stellen dat bij reeks 9, door de combinatie van een ingestelde verwarmingstemperatuur van 100 °C en een injectiesnelheid van 65mm/s, een minimale spreiding optreedt (maximaal 21µm door de reeks van 5 producten). De kegelhoogte ligt hier beduidend lager dan bij conventioneel spuitgieten maar kan verbeterd worden door de matrijs aan te passen, mogelijke matrijsaanpassingen worden besproken in alinea 6.3.

5. Capability study

5.1 Inleiding

De laatste stap in het onderzoek is de capability study. Hier wordt onderzocht of de meest belovende instellingen een goede reproduceerbaarheid hebben. Het experiment wordt zowel voor de conventionele spuitgiettechniek getest alsook de variotherm techniek.

Elke capability study omvat 100 producten die volcontinu worden geproduceerd. Vervolgens worden deze producten opgemeten en analytisch verwerkt. De resultaten die hier uit voortvloeien zullen een duidelijk beeld schetsen van de reproduceerbaarheid van de producten gemaakt volgens een welbepaalde parameterset.

5.2 Capability study experiment

In onderstaande Figuur 45 en Figuur 46 is een spreidingsgrafiek te zien van het verloop van de geproduceerde producten in de capability study, dit voor zowel conventioneel als variotherm. Er zijn 2 zaken die hier direct opvallen, het eerste, zoals verwacht, is de gemiddelde spreiding bij de variothermtechniek veel lager dan bij de conventioneel methode, respectievelijk 7.81 μ m en 44.58 μ m. Het tweede wat opvalt is de spreiding tussen de kegelhoogtes aan 1 zelfde zijde, deze is bij het variotherm spuitgieten veel lager. Als we kijken naar de kegelhoogte is het overduidelijk dat bij het conventioneel spuitgieten een betere kegelhoogte wordt geproduceerd, voornamelijk aan de voorzijde.

Figuur 45: Capability study: spreiding bij het conventioneel spuitgieten

Figuur 46: Capability study: spreiding bij het variotherm spuitgieten

Als we kijken naar de stabiliteit van het proces en de kwaliteit van de producten valt het op dat er bij het conventioneel spuitgieten een slechte lossing is van de producten, dit brengt een met zich mee dat er productuitval ontstaat alsook een tragere productie. Ten tweede vertonen de conventionele producten vrij veel flash in vergelijking met de variotherm study, bij de variotherm producten is er nauwelijks flash merkbaar. Het productieproces verloopt bij variotherm zonder enige problemen.

In Figuur 47 en Figuur 48 volgt een analyse van de procesparameters, zowel de stabiliteit van het massakussen als de piek injectiedruk kunnen een goed beeld geven van hoe constant het proces verloopt.

Figuur 47: Massakussenverloop doorheen de capability study

Figuur 48: Piek injectiedruk doorheen de capability study

Als we naar het massakussen kijken valt op dat het variotherm proces constanter verloopt als het conventioneel proces, op de uitschieters na is er respectievelijk een spreiding van 0.01mm en 0.07mm.

Bij de piek injectiedruk is de spreiding bij het conventioneel proces 122 bar en voor het variotherm proces 141 bar. Op een gemiddelde van respectievelijk 1700 bar en 1520 bar is dit verschil te verwaarlozen.

Het valt op zowel de grafiek voor spreiding als de grafiek voor piekinjectiedruk een lichte stijging vertoont doorheen de productenreeks, dit is te wijten aan de zowel de machinetemperatuur als de temperatuur in de proceshal die doorheen de dag veranderd. Als we dit fenomeen willen tegengaan moet de spuitgietmachine in een geklimatiseerde ruimte worden geplaatst. [19]

In Figuur 50 en Figuur 51 zijn de *proces capability reports* te zien van respectievelijk de conventionele spuitgietmethode als de variotherm spuitgietmethode. In een capability analyse zijn een aantal indexen terug te vinden. Deze indexen geven aan in welke maten het proces voldoet aan de opgelegde specificaties. De meet gebruikelijke en meest belangrijke indexen zijn de Cp, Cpk, Pp en Ppk waarden

De Cp waarde is de index die aangeeft hoe goed de spreiding van het proces is in vergelijking met de toleranties. De Cp waarde vergelijkt enkel de procesvariatie met de tolerantie, deze waarde staat volledig los van de streefwaarde. In onderstaande Figuur 49 is te zien wat het effect is van de Cp waarde. Een Cp waarde tussen 1 en 1.33 is goed maar niet optimaal. Een hogere Cp waarde wijst dus op een kleinere spreiding. [20]

Figuur 49: Betekenis van de Cp waarde [20]

De Cpk waarde is een waarde die aangeeft hoe goed het proces gecentreerd is binnen de opgegeven toleranties. De waarde zelf kunnen we zien als hoeveel keer het proces verbreed kan worden tot de dichtstbijzijnde tolerantiegrens wordt geraakt. [21] Een voorbeeld:

Een voorbeeld:

Cpk = 1/2 betekent dat de processpreiding met de helft ½ de tolerantie overschrijd.

*C*pk =1 Het proces raakt net de dichtstbijzijnde limiet.

Cpk =2 het proces kan 2 maal groter worden voor de limiet geraakt wordt.

Cpk =3 het proces kan 3 maal groter worden voor de limiet geraakt wordt.

Pp en Ppk waardes zijn verwant aan de Cp en Cpk waardes, het grote verschil is dat de Pp en Ppk waardes de op lange termijn zijn gericht terwijl de Cp en Cpk waardes een beeld weergeven van een zeer korte periode.

Figuur 50: Proces capability rapport voor conventioneel spuitgieten

Figuur 51: Proces capability rapport voor variotherm spuitgieten

Op de Cp, Cpk, Pp en Ppk waarden kunnen we ons in deze studie niet op baseren aangezien er geen concrete limieten zijn opgegeven, de doelstelling is om zo goed mogelijk een hoogte van 500µm te benaderen. Maar de *proces capability reports* geven nogmaals duidelijk weer dat de spreiding miniem is voor variotherm in vergelijking met conventioneel.

5.3 Conclusie

In de capability study is nogmaals duidelijk geworden dat de variothermtechniek een zeer goede invloed heeft op het beperken van de spreiding. Hier tegenover staat dat de kegelhoogtes een gemiddeld 419 μ m zijn ten opzichte van de 460 μ m voor de conventionele techniek. Het proces verloopt stabieler bij variotherm en er treedt minder flash op.

6. Bespreking van de eindresultaten

In dit laatste hoofdstuk wordt een vergelijking gemaakt tussen de twee methodes, conventioneel en variotherm spuitgieten, deze beknopte vergelijking omvat de meest relevante meetresultaten, procesgegevens en waarnemingen. Tot slot wordt er een aanbeveling gedaan om naar de toekomst toe een product te verkrijgen waarschijnlijk dat nog beter voldoet aan de vooropgestelde verwachtingen.

6.1 Vergelijking tussen conventioneel en variotherm microspuitgieten

In Tabel 9 is een vergelijking gemaakt van de belangrijkste resultaten voor zowel conventioneel als variotherm spuitgieten, hierin worden de verschillen duidelijk tussen de twee spuitgiettechnieken. In de tabel zien we dat de gemiddelde kegelhoogte bij de conventionele spuitgiettechniek 8.2% (ten opzichte van de streefwaarde van 500µm) hoger ligt dan bij de variothermtechniek. Hier tegenover staat dat we bij het variotherm spuitgieten slechts een spreiding hebben van 1.6% (op 500µm) ten opzichte van de 9% voor conventioneel spuitgieten.

	CONVENTIO	NEEL S	PUITGIETE	IN	VARIC	THERM		TEN
GEM. KEGELHOOGTE VOORAAN	482	μm	96,4	%	423	μm	84,6	%
GEM. KEGELHOOGTE ACHTERAAN	438	μm	87,6	%	415	μm	83	%
GEM. KEGELHOOGTE	460	μm	92	%	419	μm	83,8	%
GEM. SPREIDING	44.6	μm	9	%	7.8	μm	1,6	%
SPREIDING MASSAKUSSEN	0.07	mm	1,4	%	0.01	mm	0,2	%
SPREIDING PIEK INJECTIEDRUK	122	bar	7,1	%	141	bar	9,3	%
LOSSING	slecht, lo	ossingsp	oray nodig		:	zeer go	ed	
FLASH		ja			v	/einig/ r	niet	

Tabel 9: Vergelijkingstabel tussen conventioneel en variotherm spuitgieten

Ook in de proces stabiliteit zit een groot verschil, de variatie in het massakussen is bij conventioneel spuitgieten 7 maal hoger dan voor variotherm spuitgieten. De variatie op de piek injectiedruk is voor conventioneel dan weer iets lager (19 bar) maar op een piekdruk van 1700 bar is dit verschil te verwaarlozen.

Als laatste is in de tabel de lossing en flash te zien, deze factoren zijn niet concreet meetbaar maar hebben een grote invloed op de product- en proceskwaliteit. Bij de conventionele techniek is het nodig om elke 5 shots lossingsmiddel toe te voegen aan de matrijsholte. Bij de variothermtechniek is dit niet het geval. Ook treedt er bij de conventionele techniek veel flash op in tegenstelling tot de variothermtechniek dit is te zien in Figuur 52.

Figuur 52: Optreden van flash bij conventioneel spuitgieten

Aan de kegelvorm is in dit onderzoek niet veel aandacht besteed aangezien de hoofdvraag betrekking heeft tot de kegelhoogte. In Figuur 53 zijn de kegels van variotherm en conventionele methode te zien, veel verschil is er niet tussen de 2 methodes. De conventionele kegels hebben een iets kleinere radius op de top (22 t.o.v. 33µm) dan de variotherme kegels maar om hier een correcte conclusie uit te trekken moet dit meer diepgaand onderzocht worden.

Figuur 53: Vorm van de kegels bij variotherm en conventioneel

6.2 Eindconclusie

Ondanks het feit dat de kegelhoogtes met de variothermtechniek kleiner zijn dan bij de conventionele techniek zijn de kegels met de variotherm proces veel gelijkmatiger. De spreiding van de kegels, zowel doorheen de productenreeks als productspecifiek is gereduceerd tot een minimum, er treedt weinig of geen flash op en het productieproces verloopt zonder enig probleem. De instellingen voor de parameters van het meest optimale variotherm experiment zijn:

•	Massatemperatuur:	220 °C
•	Injectiesnelheid:	65 mm/s
•	Nadruk:	700 bar
•	Nadruktijd	8 sec
•	Ingestelde matrijstemp. (verwarmen):	100 °C
•	Verwarmtijd:	20 sec
•	Ingestelde matrijstemp. (koelen)	55°C
•	Koeltijd	27 sec

Waarom zijn de kegelhoogtes bij variotherm kleiner? Het verschil in hoogte is een combinatie van 3 oorzaken:

- Een verhoogde matrijstemperatuur, de krimp treedt later op.
- De dikteverhouding van het product, het plaatje stolt traag door de dikteverhouding van het product en de micro-oppervlaktestructuur.
- De gate vriest te snel af, in Figuur 54 is te zien dat het spuitgietproduct een zeer kleine gate heeft, op deze manier is de aanspuiting gemakkelijk te verwijderen. Hier tegenover staat dat de gate te snel afvriest waardoor de krimp niet meer gecompenseerd kan worden door de nadruk.

Verder bestaat de kans ook dat er luchtinsluitsels ontstaan in de kegelholtes waardoor de matrijsholte niet volledig kan worden afgevuld. Aangezien er geen ontwerptekening beschikbaar is van de matrijs kunnen we dit ook niet verifiëren.

6.3 Aanbevelingen voor toekomstig onderzoek

Om het productresultaat verder te verbeteren is de eerste aanbeveling dat de aanspuiting breder en hoger wordt gemaakt. Op deze manier heeft de nadruk meer mogelijkheid om de krimp te compenseren. Verder moet nagegaan worden wat de precieze hoogte is van de kegelvormige openingen in de matrijs. Eventueel moeten deze dieper gemaakt worden om te compenseren voor luchtinsluitsels. Deze aanpassingen hebben het gevolg dat de in-mold-rheology verandert waardoor de parameteroptimalisatie opnieuw moet worden gedaan. Om de kosten te beperken kunnen deze aanpassingen eerst gesimuleerd worden met Moldflow vooraleer de matrijs aangepast wordt.

Literatuurlijst

- "ROBOSHOT Product FANUC." [Online]. Available: http://fanuc.co.jp/en/product/roboshot/index.htm. [Accessed: 05-Mar-2015].
- [2] "plastic injection, moulding machines how they work." [Online]. Available: http://www.rutlandplastics.co.uk/advice/moulding_machine.html. [Accessed: 05-Mar-2015].
- [3] J. Fischer, Handbook of Molded Part Shrinkage and Warpage, Second edi. PDL.
- [4] "Injection Molding Clamping Unit." [Online]. Available: http://www.beejaymolding.com/Clamping-unit.html. [Accessed: 05-Mar-2015].
- [5] Y. Santermans and J. Kerremans, *Basisopleiding Spuitgieten*, 1st ed. Diepenbeek, 2014.
- "Temperatur Control Units HB-THERM." [Online]. Available: http://www.hbtherm.ch/website/HB-Therm.nsf/vwallbyKey/thermo-5%7Cen?openDocument. [Accessed: 01-Apr-2015].
- [7] "How to Calculate Clamping force ~ Injection Mold Design Tutorial, Technology and Engineering." [Online]. Available: http://mould-technology.blogspot.be/2008/10/how-tocalculate-clamping-force.html. [Accessed: 03-Mar-2015].
- [8] S. Kulkarni, "The 6-step study: Developing a viscosity curve to optimize injection speeds," no. 760, pp. 1–5.
- [9] Evonik Industries, "PLEXIGLAS [®] 7N," Darmstadt, 2013.
- [10] F. R. S-, "OPERATOR' S MANUAL," 2000.
- "Calculating Intensification Ratio." [Online]. Available: http://www.injectionmoldingonline.com/forum/showthread.php?t=522. [Accessed: 04-Jun-2015].
- [12] S. Kulkarni, "The 6-step study- step 4 The process window study," no. 760, pp. 4–7.
- [13] S. Kulkarni, "The 6-step study- step 6 The cooling time study," no. 760, pp. 2–3.
- [14] "Boxplot Wikipedia." [Online]. Available: http://nl.wikipedia.org/wiki/Boxplot. [Accessed: 26-May-2015].
- [15] "phoenix nanotom s Nano CT from GE Healthcare : Get Quote, RFQ, Price or Buy." [Online]. Available: http://www.news-medical.net/phoenix-nanotom-s-Nano-CT-from-GE-Healthcare. [Accessed: 27-May-2015].
- [16] W. Hellerich, werkstoff-führer kunststoffe. 1986.
- [17] Y. E. Yoo, T. H. Kim, T. J. Je, D. S. Choi, C. W. Kim, and S. K. Kim, "Injection molding of micro patterned PMMA plate," *Trans. Nonferrous Met. Soc. China (English Ed.*, vol. 21, no. SUPPL. 1, pp. s148–s152, 2011.

- [18] S. Kulkarni, "The 6-step study step 2 Cavity balance study," no. 760, pp. 2–3.
- "Cleanroom Zwijnaarde: equipment." [Online]. Available: http://www.cmst.be/infrastructure/equipment/index.html. [Accessed: 20-May-2015].
- [20] "Statistical Process Control (SPC) Tutorial." [Online]. Available: https://www.moresteam.com/toolbox/statistical-process-control-spc.cfm. [Accessed: 21-May-2015].
- [21] "Process Capability (Cp, Cpk) and Process Performance (Pp, Ppk) What is the Difference?" [Online]. Available: http://www.isixsigma.com/tools-templates/capability-indices-processcapability/process-capability-cp-cpk-and-process-performance-pp-ppk-what-difference/. [Accessed: 19-May-2015].
- [22] Evonik industries, "Plexiglas and plexalloy molding compounds design and processing recommendations," Darmstadt.
- [23] "Machine intensification ratio, calculating | Search | Autodesk Knowledge Network." [Online]. Available: http://knowledge.autodesk.com/searchresult/caas/CloudHelp/cloudhelp/2015/ENU/MoldflowInsight/files/GUID-09D7459C-9C22-4883-9D1E-62C9B14DF97C-htm.html. [Accessed: 24-Mar-2015].

Bijlagen

Bijlage A: FANUC luchtejector	64
Bijlage B: DoE metingen voor conventioneel spuitgieten	68
Bijlage C: Variotherm metingen	71
Bijlage D: Richtwaarden voor de parameterinstellingen van spuitgietkunststoffen	81
Bijlage E: Datasheet PMMA	82

Bijlage A: FANUC luchtejector [10]

B-69664EN-1/05

3.11.1 Air Ejector (Option)

The air ejector function ejects products by using air pressure. This function can be used during automatic operation and manual operation.

A total of three air ejector systems (outlets) are provided: two systems are located on the moving platen, and one system is located on the stationary platen. Adjust air pressure (0 to 0.7 MPa) by using the regulator below the operator's panel.

3.11.1.1 Settings for the air ejector

AIR	EJECTR	START MODE	START	DELAY	OUTPUT	PAUSE	PULSE
1	OFF	IN OPEN	10.00 m	10.00 sec	10.00 sec	10.00	sec 1
2	OFF	IN OPEN	20.00 m	20.00 sec	20.00 sec	20.00	sec 2
3	OFF	IN OPEN	30.00 m	30.00 sec	30.00 sec	30.00	sec 3

Item	Description
AIR EJECTR switch	To output air from each of the air outlets, AIR 1 (stationary), AIR 2 (nozzle), and AIR 3 (moving), set the corresponding switch to <on></on> . When these switches are set to <on></on> , the self-diagnosis window displays the following messages, respectively: 130 Air ejector 1 function is in use. 131 Air ejector 2 function is in use. 132 Air ejector 3 function is in use.
START MODE	 Select the output start mode of the air ejector. IN OPEN: When the output delay time has expired after arrival of the clamp at a set position during clamp opening, air output starts. IN EJECT: When the output delay time has expired after the start of the ejector, air output starts. IN CLOSE: When the output delay time has expired after arrival of the clamp at a set position during clamp closing, air output starts. IN INJECT: When the output delay time has expired after arrival of the clamp at a set position during clamp closing, air output starts. IN INJECT: When the output delay time has expired after the start of injection, air output starts. IN COOL: When the output delay time has expired after the start of cooling, air output starts.
Output start position	Set the clamp position at which air output is to start. This setting is valid when <start mode=""></start> is <in open=""></in> or <in< b=""> CLOSE>.</in<>
Output delay time	Set a delay time for air output.
Output time	Set the time during which air is ejected. If the output time does not pass before the end of a cycle, air ejection is forcibly stopped.
PAUSE	When air is output more than once, set a time during which output is stopped.
PULSE	Set the number of times air is output.

3.11.1.2 Manual air ejector operation

Use the operator's panel of the molding machine to operate the air ejector manually.

- Before operating the air ejector manually, check that the following conditions are all satisfied:
 - (a) The molding machine is not in the emergency stop state.
 - (b) The molding machine is not in the alarm state.
 - (c) The safety gates (the front gate, the purge shield, and rear gate) are closed.
 - (d) The air ejector switch is set to ON.
 - (e) The clamp position is behind the air ejector output start position.
- (2) Air is ejected while the [AIR] button on the operator's panel is held down.

Air is output to all the air outlets simultaneously for which AIR EJECTR is set to <ON>.

3.11.1.3 Air ejector operation during automatic operation

The air ejector operates during dry cycle operation and actual molding cycle operation as follows:

NOTE

If the specified air ejector output time is long and if ejection does not end by the end of cycle, air ejection is forcibly stopped at the cycle end.

3.11.1.4 Setting the air ejector

3.11.1.4.1 Locations of the air outlets

One air outlet of the air ejector is located on the stationary platen, and two air outlets are located on the moving platen.

			щ	щ	щ	щ	щ	щ	m	щ	щ	щ	щ	щ	щ	щ	щ	щ	щ	щ	щ	щ	8
		6 achter	335	295	293	330	333	342	315	333	340	298	333	276	293	344	341	346	346	372	261	334	373.0
	6	6 voor	265	240	265	266	258	278	270	264	262	261	287	228	272	292	255	280	286	304	251	277	7681
		5 achter	394	377	385	394	379	370	390	376	378	395	389	200	407	403	380	389	382	389	372	400	3775
	5	5 voor	362	412	392	370	346	342	303	328	319	353	315	190	306	332	372	404	319	411	343	337	347.8
		4 achter	380	367	379	396	379	362	379	376	388	372	377	369	392	371	384	388	371	382	364	388	378.7
stelling	4	4 voor	359	365	441	356	375	315	368	324	453	376	357	366	344	382	398	394	370	450	362	450	380.3
DoE in		3 achter	463	383	381	403	381	391	390	364	377	400	375	408	386	399	392	401	400	391	400	395	394.0
	3	3 voor	462	354	357	462	363	346	335	365	344	377	377	379	465	360	352	355	366	359	435	367	379.0
		2 achter	182	340	153	154	143	153	163	162	136	154	151	291	119	144	144	153	157	151	136	161	167.4
	2	2 voor	195	283	207	187	186	183	198	194	199	181	185	262	145	235	180	193	187	176	182	190	197.4
		1 achter	144	166	174	149	106	111	135	141	135	149	160	142	152	144	133	155	134	144	154	128	142.8
	1	1 voor	161	196	194	170	152	164	184	181	183	175	194	190	184	187	187	185	180	168	182	164	179.1
product			1	2	3	4	5	9	7	8	9	10	11	12	13	14	15	16	17	18	19	20	gem.

Bijlage B: DoE metingen voor conventioneel spuitgieten

Tabel 10: Meetresultaten van de DoE analyse

product						DoE in	stelling						
	۲		8		6		10		11		12		
	7 voor	7 achter	8 voor	8 achter	9 voor	9 achter	10 voor	10 achter	11 voor	11 achter	12 voor	12 achter	
1	499	421	489	406	444	399	419	387	484	430	479	406	μm
2	486	421	486	409	440	405	450	380	489	424	475	407	Ш
3	485	431	485	407	433	397	421	400	487	420	470	411	μm
4	497	423	484	407	455	400	442	380	487	415	472	416	ШЦ
5	495	414	486	406	361	403	423	393	473	416	482	410	μm
6	494	415	483	406	444	402	436	388	490	411	476	416	μm
7	496	415	490	408	360	398	430	403	485	422	484	420	μm
8	481	428	489	409	428	400	444	406	490	425	480	408	μm
9	489	435	483	403	431	414	426	400	488	429	475	412	μm
10	489	421	485	403	382	396	417	393	476	417	483	413	μm
11	496	416	486	401	412	393	430	380	492	419	478	408	Ш
12	479	431	488	411	361	396	415	401	491	420	486	415	Ш
13	494	425	478	408	286	409	415	397	489	425	480	421	Ш
14	477	424	485	406	431	410	432	402	489	428	480	417	Ш
15	495	421	480	409	458	395	437	398	492	433	481	418	Ш
16	488	415	482	412	423	391	451	389	493	428	476	406	μ
17	497	410	484	400	407	408	451	399	495	429	483	414	Ш
18	491	418	481	408	453	397	420	400	488	424	477	404	Ш
19	488	422	483	402	440	404	421	397	486	428	480	402	Ш
20	490	430	484	407	437	407			490	433	475	416	Ш
gem.	490,3	421,8	484,6	406,4	414,3	401,2	430,5	394,4	487,7	423,8	478,6	412,0	Ш

			щ	ш	щ	щ	щ	щ	ш	щ	ш	щ	щ	ш	щ	ш	щ	ш	щ	щ	щ	щ	Ē
	5	16 achter	407	412	409	402	399	421	407	414	407	416	414	416	412	417	415	403	403	411	402	412	410,0
	controle 16	16 voor	485	494	474	489	482	471	481	478	488	476	485	482	480	475	474	472	486	482	487	482	481,2
		16 achter	415	418	405	410	408	420	404	405	419	413	411	413	407	408	404	407	407	417	410	419	411,0
	16	16 voor	479	475	481	484	480	477	472	485	484	484	483	481	486	481	477	479	477	484	482	480	480,6
telling		15 achter	419	419	424	404	405	411	404	421	413	410	414	419	426	415	412	408	410	417	419	416	414,3
DoE ins	15	15 voor	453	480	484	475	484	472	479	476	477	485	483	485	481	482	472	485	477	478	471	484	478,2
		14 achter	410	411	404	409	409	412	406	413	404	406	404	402	407	407	435	423	417	406	404	422	410,6
	14	14 voor	474	465	477	475	484	467	482	473	468	478	470	481	466	472	480	477	479	475	476	471	474,5
		13 achter	377	402	435	408	419	402	425	415	417	420	436	427	413	422	412	419	417	428	426	428	417,4
	13	13 voor	479	477	483	478	475	479	494	474	489	483	470	478	474	482	483	473	487	472	477	468	478,8
product			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	gem.
Bijlage C: Variotherm metingen

Tabel 11: Metingen van het variotherm experiment

variotherm reeks 1, (vol continu en koelwater= 20°)										
product	cyclus	massatemp	injectiesnelheid	nadruk	inges temp	voor	achter	opm. 1	opm. 2	
1	1862	245	475	300	90	475	449		flash	
2	1863	245	475	300	90	470	443		flash	
3	1864	245	475	300	90	480	437		flash	
4	1865	245	475	300	90	475	443		flash	
5	1866	245	475	300	90	480	438		flash	
6	1872	245	475	300	100	485	435		flash	
7	1873	245	475	300	100	486	442		flash	
8	1874	245	475	300	100	496	453		flash	
9	1875	245	475	300	100	490	450		flash	
10	1876	245	475	300	100	488	445		flash	
11	1882	245	475	300	110	471	427		flash	
12	1883	245	475	300	110	480	428		flash	
13	1884	245	475	300	110	472	442		flash	
14	1885	245	475	300	110	487	416		flash	
15	1886	245	475	300	110	486	438		flash	
16	1903	245	475	300	120	477	447		flash	
17	1904	245	475	300	120	483	448		flash	
18	1905	245	475	300	120	474	449		flash	
19	1906	245	475	300	120	466	425		flash	
20	1907	245	475	300	120	476	428		flash	
21	1912	245	475	300	130	476	451	lichte verzakking	flash	
22	1913	245	475	300	130	478	429	lichte verzakking	flash	
23	1914	245	475	300	130	458	447	lichte verzakking	flash	
24	1915	245	475	300	130	468	433	lichte verzakking	flash	
25	1916	245	475	300	130	466	452	lichte verzakking	flash	
26	1923	245	475	300	140	440	420	lichte verzakking	flash	
27	1924	245	475	300	140	449	416	lichte verzakking	flash	
28	1925	245	475	300	140	454	415	lichte verzakking	flash	
29	1926	245	475	300	140	456	420	lichte verzakking	flash	
30	1927	245	475	300	140	452	439	lichte verzakking	flash	
31	1936	245	475	300	150	426	367	verzakking	flash	
32	1937	245	475	300	150	465	428	verzakking	flash	
33	1938	245	475	300	150	455	405	verzakking	flash	
34	1939	245	475	300	150	443	425	verzakking	flash	
35	1940	245	475	300	150	453	423	verzakking	flash	
36	1946	245	475	300	160	432	399	verzakking	flash	
37	1947	245	475	300	160	427	406	verzakking	flash	
38	1948	245	475	300	160	435	400	verzakking	flash	
39	1949	245	475	300	160	433	400	verzakking	flash	
40	1950	245	475	300	160	433	400	verzakking	flash	
41	1956	245	475	300	170	341	308	verzakking	flash	
42	1957	245	475	300	170	327	314	verzakking	flash	
43	1958	245	475	300	170	347	316	verzakking	flash	
44	1959	245	475	300	170	333	294	verzakking	flash	
45	1960	245	475	300	170	331	325	verzakking	flash	

variotherm reeks 2, (20 sec verwarmen en koelwater van 55°C)										
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1	opm. 2	opm. 3
1	1975	245	475	300	90	457	451		flash	
2	1976	245	475	300	90	466	439		flash	
3	1977	245	475	300	90	459	448		flash	
4	1978	245	475	300	90	455	432		flash	
5	1979	245	475	300	90	462	415		flash	
6	1984	245	475	300	100	465	414		flash	
7	1985	245	475	300	100	452	409		flash	
8	1986	245	475	300	100	448	410		flash	
9	1987	245	475	300	100	455	409		flash	
10	1988	245	475	300	100	457	444		flash	
11	1995	245	475	300	110	456	442		flash	
12	1996	245	475	300	110	452	435		flash	
13	1997	245	475	300	110	456	442		flash	
14	1998	245	475	300	110	457	440		flash	
15	1999	245	475	300	110	458	446		flash	
16	2004	245	475	300	120	449	410	lichte verzakking	flash	
17	2005	245	475	300	120	432	411	lichte verzakking	flash	
18	2006	245	475	300	120	456	420	lichte verzakking	flash	
19	2007	245	475	300	120	465	411	lichte verzakking	flash	
20	2008	245	475	300	120	455	416	lichte verzakking	flash	
21	2021	245	475	300	130	403	370	lichte verzakking	flash	
22	2022	245	475	300	130	411	343	lichte verzakking	flash	
23	2023	245	475	300	130	417	343	lichte verzakking	flash	
24	2024	245	475	300	130	412	351	lichte verzakking	flash	
25	2025	245	475	300	130	413	358	lichte verzakking	flash	
26	2031	245	475	300	140	400	346	verzakking	flash	lost niet
27	2032	245	475	300	140	396	340	verzakking	flash	lost niet
28	2033	245	475	300	140	403	346	verzakking	flash	lost niet
29	2034	245	475	300	140	399	343	verzakking	flash	lost niet
30	2035	245	475	300	140	405	340	verzakking	flash	lost niet
31		245	475	300	150			verzakking	flash	lost niet

	variotherm reeks 3, (20 sec verwarmen en koelwater van 55°C)											
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1	opm. 2			
1	2046	245	175	300	90	455	428		flash			
2	2047	245	175	300	90	450	418		flash			
3	2048	245	175	300	90	445	423		flash			
4	2049	245	175	300	90	450	420		flash			
5	2050	245	175	300	90	445	419		flash			
6	2054	245	175	300	100	458	421		flash			
7	2055	245	175	300	100	450	416		flash			
8	2056	245	175	300	100	443	424		flash			
9	2057	245	175	300	100	447	419		flash			
10	2058	245	175	300	100	446	422		flash			
11	2060	245	175	300	110	442	428		flash			
12	2061	245	175	300	110	445	426		flash			
13	2062	245	175	300	110	456	420		flash			
14	2063	245	175	300	110	446	422		flash			
15	2064	245	175	300	110	448	412	lichte verzakking	flash			
16	2068	245	175	300	120	441	413	lichte verzakking	flash			
17	2069	245	175	300	120	440	414	lichte verzakking	flash			
18	2070	245	175	300	120	446	437	lichte verzakking	flash			
19	2071	245	175	300	120	444	412	lichte verzakking	flash			
20	2072	245	175	300	120	435	420	lichte verzakking	flash			
21	2076	245	175	300	130	418	417	lichte verzakking	flash			
22	2077	245	175	300	130	407	400	lichte verzakking	flash			
23	2078	245	175	300	130	416	404	lichte verzakking	flash			
24	2079	245	175	300	130	420	393	lichte verzakking	flash			
25	2080	245	175	300	130	430	400	lichte verzakking	flash			
26	2084	245	175	300	140	384	367	verzakking	flash			
27	2085	245	175	300	140	374	370	verzakking	flash			
28	2086	245	175	300	140	403	367	verzakking	flash			
29	2087	245	175	300	140	390	376	verzakking	flash			
30	2088	245	175	300	140	375	366	verzakking	flash			

	DoE VT reeks 4, (20 sec verwarmen en koelwater van 55°C, nadruktijd x2)									
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1		
1	2103	245	175	700	90	452	423	lichte flash		
2	2104	245	175	700	90	460	438	lichte flash		
3	2105	245	175	700	90	454	415	lichte flash		
4	2106	245	175	700	90	460	420	lichte flash		
5	2107	245	175	700	90	448	420	lichte flash		
6	2113	245	175	700	100	441	411	lichte flash		
7	2114	245	175	700	100	438	436	lichte flash		
8	2115	245	175	700	100	451	407	lichte flash		
9	2116	245	175	700	100	441	415	lichte flash		
10	2117	245	175	700	100	449	425	lichte flash		
11	2124	245	175	700	110	440	416	lichte flash		
12	2125	245	175	700	110	432	415	lichte flash		
13	2126	245	175	700	110	440	412	lichte flash		
14	2127	245	175	700	110	425	410	lichte flash		
15	2128	245	175	700	110	453	414	lichte flash		
16	2135	245	175	700	120	430	409	lichte flash		
17	2136	245	175	700	120	433	404	lichte flash		
18	2137	245	175	700	120	433	420	lichte flash		
19	2138	245	175	700	120	438	416	lichte flash		
20	2139	245	175	700	120	445	424	lichte flash		
21	2145	245	175	700	130	426	399	lichte flash		
22	2146	245	175	700	130	425	404	lichte flash		
23	2147	245	175	700	130	434	410	lichte flash		
24	2148	245	175	700	130	424	408	lichte flash		
25	2149	245	175	700	130	430	395	lichte flash		
26	2157	245	175	700	140	404	386	lichte flash		
27	2158	245	175	700	140	420	417	lichte flash		
28	2159	245	175	700	140	407	390	lichte flash		
29	2160	245	175	700	140	344	335	lichte flash		
30	2161	245	175	700	140	392	406	lichte flash		
31		245	175	700	150			lost niet		

variotherm reeks 5, (20 sec verwarmen en koelwater van 55°C)									
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1	
1	2195	220	175	700	90	475	435	lichte flash	
2	2196	220	175	700	90	482	426	lichte flash	
3	2197	220	175	700	90	467	425	lichte flash	
4	2198	220	175	700	90	472	432	lichte flash	
5	2199	220	175	700	90	466	434	lichte flash	
6	2205	220	175	700	100	469	421	lichte flash	
7	2206	220	175	700	100	476	432	lichte flash	
8	2207	220	175	700	100	473	424	lichte flash	
9	2208	220	175	700	100	471	433	lichte flash	
10	2209	220	175	700	100	468	424	lichte flash	
11	2241	220	175	700	110	468	421	lichte flash	
12	2242	220	175	700	110	457	428	lichte flash	
13	2243	220	175	700	110	464	431	lichte flash	
14	2244	220	175	700	110	453	428	lichte flash	
15	2245	220	175	700	110	457	424	lichte flash	
16	2250	220	175	700	120	460	424	lichte flash	
17	2251	220	175	700	120	464	415	lichte flash	
18	2252	220	175	700	120	455	412	lichte flash	
19	2253	220	175	700	120	470	409	lichte flash	
20	2254	220	175	700	120	467	410	lichte flash	
21	2270	220	175	700	130	440	399	lichte flash	
22	2271	220	175	700	130	437	403	lichte flash	
23	2272	220	175	700	130	430	400	lichte flash	
24	2273	220	175	700	130	432	395	lichte flash	
25	2274	220	175	700	130	423	397	lichte flash	
26	2279	220	175	700	140	420	401	lichte flash	
27	2280	220	175	700	140	419	400	lichte flash	
28	2281	220	175	700	140	412	395	lichte flash	
29	2282	220	175	700	140	432	386	lichte flash	
30	2283	220	175	700	140	413	382	lichte flash	

	variotherm reeks 6 , (20 sec verwarmen en koelwater van 55°C)										
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1	opm. 2		
1		200	175	700	90			lost niet	weinig flash		
2		200	175	700	90			lost niet	weinig flash		
3		200	175	700	90			lost niet	weinig flash		
4		200	175	700	90			lost niet	weinig flash		
5		200	175	700	90			lost niet	weinig flash		
6		200	175	700	100			lost niet	weinig flash		
7		200	175	700	100			lost niet	weinig flash		
8		200	175	700	100			lost niet	weinig flash		
9		200	175	700	100			lost niet	weinig flash		
10		200	175	700	100			lost niet	weinig flash		
11	2303	200	175	700	110	475	423		weinig flash		
12	2304	200	175	700	110	471	436		weinig flash		
13	2305	200	175	700	110	465	428		weinig flash		
14	2306	200	175	700	110	470	432		weinig flash		
15	2307	200	175	700	110	465	422		weinig flash		
16	2310	200	175	700	120	455	421		weinig flash		
17	2311	200	175	700	120	460	420		weinig flash		
18	2312	200	175	700	120	457	423		weinig flash		
19	2313	200	175	700	120	468	420		weinig flash		
20	2314	200	175	700	120	459	437		weinig flash		
21	2318	200	175	700	130	454	406		weinig flash		
22	2319	200	175	700	130	440	386		weinig flash		
23	2320	200	175	700	130	447	395		weinig flash		
24	2321	200	175	700	130	450	404		weinig flash		
25	2322	200	175	700	130	438	403		weinig flash		
26	2327	200	175	700	140	420	376		weinig flash		
27	2328	200	175	700	140	432	378		weinig flash		
28	2329	200	175	700	140	415	369		weinig flash		
29	2330	200	175	700	140	423	379		weinig flash		
30	2331	200	175	700	140	423	372		weinig flash		

variotherm reeks 7, (20 sec verwarmen en koelwater van 55°C)										
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1		
1	2342	220	100	700	90	459	420	lichte flash		
2	2343	220	100	700	90	470	433	lichte flash		
3	2344	220	100	700	90	473	427	lichte flash		
4	2345	220	100	700	90	462	436	lichte flash		
5	2346	220	100	700	90	470	418	lichte flash		
6	2354	220	100	700	110	452	425	lichte flash		
7	2355	220	100	700	110	441	406	lichte flash		
8	2356	220	100	700	110	438	410	lichte flash		
9	2357	220	100	700	110	445	407	lichte flash		
10	2358	220	100	700	110	444	400	lichte flash		
11	2368	220	100	700	130	423	400	lichte flash		
12	2369	220	100	700	130	437	404	lichte flash		
13	2370	220	100	700	130	435	393	lichte flash		
14	2371	220	100	700	130	444	388	lichte flash		
15	2372	220	100	700	130	440	389	lichte flash		
16	2377	220	100	700	140	412	381	lichte flash		
17	2378	220	100	700	140	409	380	lichte flash		
18	2379	220	100	700	140	416	384	lichte flash		
19	2380	220	100	700	140	418	388	lichte flash		
20	2381	220	100	700	140	417	399	lichte flash		
21		220	100	700	150			lost niet		

variotherm reeks 8, (20 sec verwarmen en koelwater van 55°C)										
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1		
1	2385	220	50	700	90	259	402	lichte flash		
2	2386	220	50	700	90	260	399	lichte flash		
3	2387	220	50	700	90	255	412	lichte flash		
4	2388	220	50	700	90	247	410	lichte flash		
5	2389	220	50	700	90	249	408	lichte flash		
6	2395	220	50	700	110	313	400	lichte flash		
7	2396	220	50	700	110	307	389	lichte flash		
8	2397	220	50	700	110	317	385	lichte flash		
9	2398	220	50	700	110	317	404	lichte flash		
10	2399	220	50	700	110	297	405	lichte flash		
11	2404	220	50	700	130	377	388	lost niet		
12	2405	220	50	700	130	380	391	lost niet		

	variotherm reeks 9, (20 sec verwarmen en koelwater van 55°C)										
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1			
1	2412	220	65	700	90	390	415				
2	2413	220	65	700	90	422	402	wainialaaan			
3	2414	220	65	700	90	397	406	flach			
4	2415	220	65	700	90	383	395	HdSH			
5	2416	220	65	700	90	407	406				
6	2435	220	65	700	100	413	420				
7	2436	220	65	700	100	421	411				
8	2437	220	65	700	100	420	410	flach			
9	2438	220	65	700	100	402	405	Hash			
10	2439	220	65	700	100	406	399				
11	2453	220	65	700	110	399	404				
12	2454	220	65	700	110	412	402	woinig/goon			
13	2455	220	65	700	110	409	397	weinig/geen			
14	2456	220	65	700	110	419	394	Hash			
15	2457	220	65	700	110	433	407				
16	2476	220	65	700	120	404	404				
17	2477	220	65	700	120	407	406	wainig/goon			
18	2478	220	65	700	120	414	393	flach			
19	2479	220	65	700	120	415	405	Hash			
20	2480	220	65	700	120	407	395				
21	2500	220	65	700	130	422	396				
22	2501	220	65	700	130	420	400	wainig/goon			
23	2502	220	65	700	130	415	407	flach			
24	2503	220	65	700	130	405	394	lidsii			
25	2504	220	65	700	130	400	402				
26		220	65	700	140			lost niet			

	variotherm reeks 10, (20 sec verwarmen en koelwater van 55°C)										
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1			
1	2418	220	75	700	90	447	412				
2	2419	220	75	700	90	454	423				
3	2420	220	75	700	90	442	418	flach			
4	2421	220	75	700	90	441	410	Hash			
5	2422	220	75	700	90	439	415				
6	2441	220	75	700	100	446	412				
7	2442	220	75	700	100	445	420				
8	2443	220	75	700	100	435	422	flach			
9	2444	220	75	700	100	452	416	HdSH			
10	2445	220	75	700	100	445	410				
11	2459	220	75	700	110	443	398				
12	2460	220	75	700	110	440	400	wainig/goon			
13	2461	220	75	700	110	437	421	flach			
14	2462	220	75	700	110	435	412	HdSH			
15	2463	220	75	700	110	427	416				
16	2482	220	75	700	120	422	404				
17	2483	220	75	700	120	441	406				
18	2484	220	75	700	120	426	411	flock			
19	2485	220	75	700	120	414	413	HdSH			
20	2486	220	75	700	120	451	399				
21	2506	220	75	700	130	429	390				
22	2507	220	75	700	130	428	404				
23	2508	220	75	700	130	418	395	weinig/geen			
24	2509	220	75	700	130	429	397	Hash			
25	2510	220	75	700	130	427	404				

	variotherm reeks 11, (20 sec verwarmen en koelwater van 55°C)										
product	cyclus	massatemp	injectiesnelheid	nadruk	inges. temp.	voor	achter	opm. 1			
1	2424	220	85	700	90	446	410				
2	2425	220	85	700	90	465	423	weinig/goon			
3	2426	220	85	700	90	453	416	flach			
4	2427	220	85	700	90	459	422	lidsii			
5	2428	220	85	700	90	457	425				
6	2447	220	85	700	100	453	404				
7	2448	220	85	700	100	455	411	wainig/goon			
8	2449	220	85	700	100	446	416	flach			
9	2450	220	85	700	100	445	410	HdSH			
10	2451	220	85	700	100	455	414				
11	2466	220	85	700	110	444	422				
12	2467	220	85	700	110	441	418	wainig/goon			
13	2468	220	85	700	110	442	419	flach			
14	2469	220	85	700	110	446	418	Hash			
15	2470	220	85	700	110	449	415				
16	2489	220	85	700	120	436	410				
17	2490	220	85	700	120	438	404	wainig/goon			
18	2491	220	85	700	120	437	416	flach			
19	2492	220	85	700	120	438	405	Hash			
20	2493	220	85	700	120	428	401				
21	2512	220	85	700	130	421	395				
22	2513	220	85	700	130	424	406				
23	2514	220	85	700	130	430	399	weinig/geen flash			
24	2515	220	85	700	130	420	390				
25	2516	220	85	700	130	420	403				

Bijlage D: Richtwaarden voor de parameterinstellingen van spuitgietkunststoffen

Table 8.2 Control values for processing											
Material	Nozzle-side cylinder temperature ^{1, 2} (°C)	Mould temperature (°C)	Injection pressure (Bar)	Holding pressure (Bar)	Back pressure (Bar)	Remarks, see footnotes					
PS	160-230	20-80	650-1550	350-900	40-80						
SB	160-250	50-80	650-1550	350-900	40-80						
SAN	200-260	40-80	650-1550	350-900	40-80						
ABS	180-260	50-85	650-1550	350-900	40-80						
PPO mod.	245-290	75-95	1000-1600	600-1250	60-90						
PVC - hard	160-180	20-60	1000-1550	400-900	40-80	3, 5, 8					
PVC - soft	150-170	20-60	400-1550	300-600	40-80	3, 5, 8					
CA	165-225	60-80	650-1350	400-1000	40-80	3, 4, 8					
CAB	160-190	60-80	650-1350	400-1000	40-80	3, 4, 8					
CP	160-190	60-80	650-1350	400-1000	40-80	3, 4, 8					
PMMA	220-250	20-90	1000-1400	500-1150	80-120	4					
PC	290-320	85-120	1000-1600	600-1300	80-120	4					
PES	320-390	100-160	900-1400	500-1100	80-120	4					
PE - soft	210-250	20-40	600-1350	300-800	40-80						
PS - hard	250-300	20-60	600-1350	300-800	60-90						
PP	220-290	20-60	800-1400	500-1000	60-90						
PA 6,6	270-295 ⁹	20-120	450-1550	350-1050	40-80	4, 8					
PA 6	230-2609	40-120	450-1550	350-1050	40-80	4, 8					
PA 6,10	220-2309	20-100	450-1550	350-1050	40-80	4, 8					
PA 11	200-250 ⁹	20-100	450-1550	350-1050	40-80	8					
PA 12	200-2509	20-100	450-1550	350-1050	60-90						
PA amorph.	260-300	70-100	900-1300	300-600	60-90						
POM	185-215	80-120	700-2000	500-1200	40-80	3, 8					
PET	260-280	20-140	800-1500	500-1200	80-120						
PBT	230-270	20-60	800-1500	500-1200	80-120						
PPS	300-360	20-200	750-1500	350-750	40-80						
FEP	340-370	150				5					
ETFE	315-365	80-120				5					
			-								

Tabel 12: Richtwaarden voor de parameterinstellingen van spuitgietkunststoffen [5]

 If no other empirical values are available: nozzle temperature = set nozzle-side cylinder temperature. Cylinder temperatures falling in direction of material throat, drop of 5-10 °C for each heating zone; max. temperature difference between nozzle-side and throat 20 °C. For more than 2 heating zones, set nozzle-side heating zone and the following to same temperature.

For heat-sensitive compounds set higher temperatures only for short cycle times (shorter dwell time in cylinder).

3. Heat-sensitive.

4. Process only dry granules.

5. Do not use shut-off nozzles, only open nozzles.

6. Injection without non-return valve recommended.

7. Work only without non-return valve.

8. Work only with low back pressure.

9. To improve material feed behaviour: set temperature at same level or slightly rising towards throat.

Bijlage E: Datasheet PMMA [22], [9]

Metering

Likewise, maintaining the standard values for the metering stroke is important for avoiding air intake during plasticizing. Here, the maximum metering stroke $3 \times D$ should not be exceeded. Metering strokes of $< 1 \times D$ should likewise be avoided. Metering strokes that are too short can also cause undesired air intake.

Screw speed

Dependent on the screw diameter: the larger the diameter, the lower the rotational speed (circumferential speed < 0.3 m/s).

Recommendations:

Screw diameter	Max. screw speed
30 mm	120 rpm
45 mm	90 rpm
60 mm	70 rpm
90 mm	50 rpm
20 mm	30 rpm

At increasing rotational speeds, the shear increases in the melt and the compound temperature rises.

Note: At temperatures that are too high, there is a danger of thermal damage (visible in the form of streaks on the molding surface).

Temperature control of the mold and cylinder

The influence of the mold temperature on the processing and the characteristics of the finished part is often underestimated. Injecting PLEXIGLAS® or PLEXALLOY® melt into a cold mold makes filling more difficult and often leads to high cooling stress, warpage, strong orientation, suboptimal surfaces, and sink marks in the molded part. Therefore it is necessary to guarantee a constant mold temperature by using a connected temperature control unit.

Back pressure

Up to 20 bar. This corresponds to a pressure in the molding compound of approximately 100 to 200 bar. At increasing back pressures, the compound temperature and mixing effect increase and the plasticizing capacity drops.

Injection speed

Thick-walled molded parts: slow (otherwise creases and sink marks). Thin-walled molded parts:fast (otherwise irregular surface and so-called orange peel effect).

Injection pressure (specific)

Keep injection pressure low at the begin-ning of production and increase until the mold cavity is completely filled. This will allow you to avoid unnecessarily high injection pressure!

Holding pressure

The constant pressure head (approx. 60 percent of the injection pressure) and the duration should be selected in such a way that the mold is well filled and no sink marks are visible.

Water thermostats are almost always sufficient, because a mold temperature higher than 90°C is seldom required. We advise against cooling purely with water during throughput (without thermostat) as a means of removing heat.

The heating-cooling channels in the mold should be distributed in such a way that all zones of the molded part are cooled more or less simultaneously; that means that more heat can be dissipated in thick areas than in thin ones.

The closer the channels are to the mold surface, the more effective the temperature control. For molded parts with large wall differences or for molded parts with unequal surfaces (one surface smooth, another surface textured), warpage can be compensated by separate temperature control of the two mold halves.

Cylinder temperatures

Pretreatment

and Processing

To guarantee stable feed, the first zone should be adjusted to a somewhat lower temperature. Cylinder temperatures according to molding compound grade approx. 210 to 260°C.

Treatment after injection molding

Released molded parts are statically loaded and there is a risk that they may attract ambient dirt and dust. Therefore the greatest possible cleanliness should be maintained when producing moldings with Class-A surfaces.

After injection molding, the surface of the molded part is especially vulnerable to scratches. We recommend that anyone handling the parts wear cloth gloves, or that a protective film be applied to the parts immediately after removing them from the mold. The scratch resistance of the parts increases with longer storage times due to the absorption of moisture.

Any possible testing of the scratch resistance should therefore only be performed at the earliest 48 hours after the protective film is removed or the production of the molded part is completed.

Properties:

	Parameter	Unit	Standard	PLEXIGLAS® 7N
Mechanical Properties				
Tensile Modulus	1 mm/min	MPa	ISO 527	3200
Stress @ Break	5 mm/min	MPa	ISO 527	73
Strain @ Break	5 mm/min	%	ISO 527	3.5
Charpy Impact Strength	23°C	kJ/m²	ISO 179/1eU	20
Thermal Properties				
Vicat Softening Temperature	B / 50	°C	ISO 306	103
Glass Transition Temperature		°C	ISO 11357	110
Temp. of Deflection under Load	0.45 MPa	°C	ISO 75	100
Temp. of Deflection under Load	1.8 MPa	°C	ISO 75	95
Coeff. of Linear Therm. Expansion	0 – 50°C	E-5 /°K	ISO 11359	8
Fire Rating			DIN 4102	B2
Flammability UL 94	1.6 mm	Class	IEC 707	НВ
Rheological Properties				
Melt Volume Rate, MVR	230°C / 3.8kg	cm³/10min	ISO 1133	6
Optical Properties	d=3 mm			
Luminous transmittance	D65	%	ISO 13468-2	92
Haze			ASTM D1003	< 0.5
Refractive Index			ISO 489	1.49
Other Properties				
Density		g/cm³	ISO 1183	1.19
Recommended Processing Conditions				
Predrying Temperature		°C		max. 93
Predrying Time in Desiccant-Type Drier		h		2 - 3
Melt Temperature		°C		220 - 260
Mold Temperature (Injection Molding)		°C		60 - 90

All listed technical data are typical values intended for your guidance. They are given without obligation and do not constitute a materials specification.

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling: Analyse van spuitgietparameters bij het toepassen van variothermtechniek bij microspuitgieten

Richting: master in de industriële wetenschappen: elektromechanica Jaar: 2015

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze overeenkomst.

Voor akkoord,

Heijligen, Yannick

Datum: 9/06/2015