Masterproef industriële ingenieurswetenschappen

Characterisation of materials suitable as NORM reference materials

Quinten Remijsen Academiejaar: 2014-2015

Background

- Industries that exploit huge volumes of natural resources generates large amounts of Naturally Occurring Radioactive Materials (NORM) in byproducts, residues and wastes
- Contamination of the environment and exposure of the public must be avoid
- More and better measurements are needed
- Measurement systems have to be developed and calibrated with calibration standards and (certified) reference materials (CRM/RM) that are adapted to the real composition and geometry of measured materials

Possible candidates

- 2 kinds of by-products from Ferro-Molybdenum (Hotspot and slag)
- Italian Tuff rock

Aim of the study

- Characterization of radionuclides and activity
- Homogeneity study through different samples of the same material

Materials and methods

- Gamma-ray spectrometry with a lowbackground high purity germanium detector (HPGe)
- Liquid solution together with certified radionuclide activities with Monte Carlo simulation was used for detector efficiency determination

Sample preparation and measurement

1) Grind sample

2) Put in O-ring sealed Teflon container

3) Weighing the sample

4) Gamma-ray spectrometry on HPGe detector

5) Efficiency correction with measured standard source and Monte Carlo simulation

OK

OK

OK

Results

Activity for dry mass in Bq/kg

Radio- nuclide	FeMo Hotspot	Rel-St- dev. (%)	FeMo Slag	Rel-St- dev. (%)	Tuff	Rel-St- dev. (%)
Sub-samples	4	/	4	/	2	/
U-238	480 ± 26	6	2381 ± 208	8	374 ± 38	11
Ra-226	249 ± 4	1	1975 ± 52	8	233 ± 7	3
Pb-210	165 ± 26	18	1543 ± 136	10	246 ± 28	13
Ra-228	2672 ± 77	2	4664 ± 156	6	347 ± 19	4
Th-228	2483 ± 94	7	4853 ± 100	8	355 ± 12	5
U-235	18 ± 1	4	103 ± 6	12	18 ± 2	8
Ac-227	23 ± 4	21	60 ± 4	6	10 ± 2	0
K-40	250 ± 4	2	35 ± 9	60	2085 ± 53	3

Conclusion

Important parameters for RM

Suitable radionuclides

 Activity level suitable for easy use (except Ac-227 (Hotspot and tuff) OK

Homogeneity

Radionuclide low Rel-Stdev

All 3 materials qualify as potential CRM's CRM development is a long and complex procedure that requires pre-studies like this one

Promotoren / Copromotoren:

Mikael Hult Guillaume Lutter Kenny Vanreppelen Remark: Phosphogypsum was also analysed. But due to confidentiality and agreement with the company the results may not be published.

