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Abstract 
In recent years, augmented reality (AR) applications have become more popular. Current 
applications on the market typically use an AR device to process the data. However, advanced 
AR applications require extensive processing power on the smartphone or Google Glass with 
higher power consumption. This results in unexpected draining of the battery or 
malfunctioning of the application. Therefore, it is advantageous to use a cloud server to 
accomplish the real-time image processing. Because the continuing growth of mobile traffic is 
overloading current cloud servers and networks there will be a high demand for moving 
cloud functionality to the edge. One example is the Radio Application Cloud Server (RACS), 
which allows high-speed data storage and processing.   

This Master’s Thesis studies the performance of cloud based image processing on for AR 
devices. Different applications are developed for a Smartphone and a Google Glass that 
cooperate with the RACS to process the real-time images. To determine if the cooperation 
with the server results in a better performance, the total processing time of the image on the 
device is compared with the processing time on the server including the transfer over the 
network 

Two examples have been implemented and tested. For the smaller example the connection 
costs outweighed the faster processing on the RACS, but for the larger example the offloading 
to the RACS reduced the time with a factor of approximately 80 %. Therefore the technique 
can be useful when the algorithm is sufficiently complex. 

  

 
 



 
 
  

 
 



 
 

Abstract 
Augmented reality (AR) applicaties zijn de laatste jaren volop aan het opkomen. De 
applicaties die momenteel op de markt zijn verwerken de data typisch op het AR apparaat 
zelf. Maar geavanceerde AR applicaties zorgen voor een hoger CPU- en batterij gebruik. Dit 
kan resulteren in een onverwachtse daling van de batterij of veel te traag werken van de 
applicatie. Daarom kan het handig zijn om de real-time beeldverwerking van deze applicaties 
te verplaatsen naar een performante Cloud server. Omdat de huidige Cloud servers 
overbelast worden door een grote toename van mobiele data gaat er een grote vraag zijn om 
de Cloud functionaliteit te verplaatsen naar de rand van het netwerk. Een voorbeeld hiervan 
is de Radio Application Cloud Server (RACS). 

Deze master thesis is een studie van de performance van Cloud gebaseerde beeldverwerking 
op de RACS voor AR apparaten. Er worden enkele test applicaties gemaakt voor een 
smartphone en een Google Glass die gaan samen werken met de RACS om de images te 
verwerken. Hierbij wordt een vergelijking gemaakt van de totale verwerktijd van de 
afbeelding gemeten op het toestel en de totale tijd gemeten in combinatie met de server.  

Er zijn twee voorbeelden geïmplementeerd en getest. Voor het kleinere voorbeeld zal de 
snelle verwerking van RACS teniet gedaan worden door hoge connectiekost maar voor het 
grotere voorbeeld zal de verplaatsing naar de RACS de tijd doen verminderen met een factor 
van 80 %. Daarom zal de techniek pas toepasbaar zijn als het algoritme voldoende complex 
wordt. 

  

 
 



 
 

 
 



 
 

1 Introduction 
This Master’s Thesis took place in the Department of Computer Science of the Aalto 
University in Finland. The focus of the research at this department is on advanced 
computational methods for modeling, analyzing and solving complex tasks in technology and 
science. The research aims at the development of fundamental computer science methods for 
the analysis of large datasets and for the modeling and design of complex software. 

Ongoing research in the department focuses on Mobile Edge Computing, a new concept that 
introduces an evolving role for the mobile base station. Together with voice and messaging , 
the base station also will be capable of processing data from Liquid Applications. At the root 
of Liquid Applications is the Nokia Radio Applications Cloud Server (RACS). Liquid 
applications are applications that are running in a RACS server in the base station. These 
applications improve the user experience by acceleration. RACS introduces the latest cloud 
technology and service creation capabilities into the base station [1]. 

An example of these Liquid Applications is an augmented reality GPS application that can 
detect road signs. The images that are captured with a smartphone, tablet or Google Glass are 
sent to the RACS where the pictures are processed. The RACS is mainly used for caching and 
processing images from the application. But is image processing on the cloud server always 
faster than handling the images on the phone or Google glass? The research on the difference 
in performance between an application that processes the data on the device or on the cloud 
server is the main purpose of this Master’s Thesis.  

1.1 Problem statement 
Augmented reality is a direct view of a real-world environment where elements are added on 
top of the real-time video on the screen [2]. Currently augmented reality applications on the 
market typically use the device for processing data, but this kind of applications require more 
and more CPU and power from the smartphone or Google Glass often resulting in 
unexpected draining of the battery or a malfunctioning of the application. Therefore it may 
be advantageous to use a cloud server to accomplish the real-time image processing. 
Currently there are almost no applications on the market that do this. 

Ongoing research transfers the data processing to a cloud server to reduce CPU usage and 
power consumption. Nevertheless there is no knowledge whether this method has a better 
performance than handling the data on the mobile devices. This Master’s Thesis compares 
the performance of an application that processes real-time images on the device with an 
application that relocates the image processing to a cloud server to determine which method 
has the best performance. The performance will be specifically measured for an application 
on an Android phone and Google Glasses. 

1.2 Objectives 
The creation of several applications on different devices is required to measure the difference 
in performance. First a cloud server application needs to be constructed to process the real-
time image stream from the application on the Android phone or Google Glasses. The server 
needs to ensure that the images from the incoming stream are saved locally. Secondly it 
needs to implement color blob detection on the saved images with OpenCV to detect objects 
with a specific color. The color will be determined by a touch on the screen of the Android 
application. And finally when the server is ready with the color blob detection, it has to send 
the detection back to the application. The processing time to do the color blob detection will 
be measured both on the server and the smartphone. Both measurements will be compared 
to determine which of the two processed the color blob the fastest.

 
 



 
 
For the development of the different augmented reality applications we use four set-ups: 
Only the Android phone, Android phone merged with the cloud server, only Google Glasses 
and Google Glasses combined with the cloud server. Each set-up needs another Android  
application to accomplish the object detection and measure the performance. There are four 
applications developed, one for each set-up. The application for only the phone and only 
Google Glass must do the same color blob detection as the server. The color of the detection 
on the phone will be determined with a touch on the screen. For Google Glass a predefined 
color will be used to detect objects. When the phone or Google Glass are merged with the 
server, the color blob Android application uses another approach: the application streams the 
camera images from the device to the server and renders the received images from the server 
on the screen.  

The execution times and energy consumption for the four scenarios are measured and 
compared to find out whether the applications that are merged with the server are faster and 
consume less energy than the applications that are only using the phone or Google Glass.  

In a second phase we added a more fine granularity for sending data from the device to the 
cloud server. Streaming the data at different points in the application gave us a better insight 
of which functions of the color blob detection are best processed in the server, allowing us to 
create an optimal ratio between functions processed on the server and the application. The 
ratio can be acquired by comparing the execution times of the functions for all variants. At 
the optimal ratio, the application will have the best balance between energy consumption and 
processing time. 

1.3 Structure and focus 
The rest of the Thesis is structured as follows. Chapter 2 covers briefly mobile cloud 
computing before introducing the concept of mobile edge computing  in Chapter 3. Chapter 4 
covers the RACS, the mobile edge concept of Nokia. It also explains Liquid Applications and 
briefly covers an augmented reality Liquid application example. 

Chapter 5 covers the setup of the design of the application and the server, as well as the 
connection between the application and the server. It also describes the used platform on 
which the server is built. Furthermore it also introduces OpenCV and the different object 
detection methods that are implemented in the application and the server. The 
implementation of the server and the applications are covered in detail in Chapter 6. The 
applications are evaluated in Chapter 7 by measuring the execution times of the different 
applications and streaming modes. Also the power consumption of the phone using the 
different applications is measured. Finally the Thesis concludes with discussion and 
conclusions in Chapter 8. 

The main focus is on assessing the benefits gained from moving image processing to the 
RACS. This is done by constructing different object detection applications that will move the 
processing of the images to a cloud server. These applications use different modes to stream 
the images to the server to find the best trade-off of offloading the image processing to the 
server. The implementation of the cloud server and the various applications are described 
and the execution times and power consumption of the applications are measured.  
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2 Mobile Cloud Computing  
Chapters 2 until 4 introduce the background concepts needed in the implementation of the 
server and the applications created in the cloud system. This section gives an explanation 
about the concept of Mobile Cloud Computing (MCC) and defines the architecture. The 
emerging of MCC is given to introduce Mobile Edge Computing (MEC).  

2.1 Introduction 
The fast growing amount of mobile applications and the emerging of cloud computing led to 
the introduction of Mobile Cloud Computing that has become a new technology for mobile 
users. In the concept of MCC the mobile devices cooperate with the Cloud to gain more 
advantages out of applications and to improve their functionality. This technology is 
emerging as one of the most important functionalities of cloud computing and the 
expectation is that it will ensure an expansion of the mobile ecosystems [3]. 

2.2 What is Mobile Cloud Computing? 
MCC is a combination of cloud computing, mobile computing and the use of the wireless 
network to deliver very powerful processing to the mobile subscriber. It is an infrastructure 
that is used as data storage as well as processing of data outside the mobile device. Mobile 
cloud applications relocate the processing power and data storage away from the device into 
the cloud allowing applications to have access to data that is not fixed on the device. This 
cooperation with the cloud makes it possible to run the same application from the 
smartphone on other mobile devices like tablets and laptops. The main goal of mobile cloud 
computing is to move heavy and slow data processing of applications to the cloud, so less 
powerful devices are also capable of running applications that they could not run before. It 
can also be an advantage for the powerful smartphones on the market, because even these 
devices can reach their limits in energy consumption and processing power. Even more 
extensive is that mobile cloud computing is a high performance cloud technology that 
implements the flexible resources from the cloud and network technology for great 
functionality. Moreover the data from the cloud will also be provided at any time and at any 
place across the internet [3].  

2.3 Advantages  
Data storage and processing power: 
Data storage is limited for mobile users because of the limited internal data storage of the 
mobile devices. Mobile Cloud Computing is developed to process high capacities of data and 
saving them in the cloud over wireless networks. Cloud storage provides data storage and 
energy saving of the mobile device since saved data can be processed on the Cloud instead of 
the device. 

Reliability: 
A major advantage of using Mobile Cloud Computing is that the mobile subscriber can access 
his data everywhere in the world. The only requirement is a wireless connection between the 
device and the internet. The data is not only available on mobile devices but also on any other 
device that is connected to the internet and is capable of requesting and processing the data 
from the Cloud. 
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Scalability: 
A big advantage for developers is the scalability of the server infrastructure. When usage 
increases server capacity will be automatically increased, often on a pay per use basis. And 
when less capacity is needed, servers scale down smoothly as well. The responsibility for 
scaling is moved from developer to infrastructure provider. 

Real time data: 
Mobile Cloud Computing provides access to real-time data where and whenever you want. 
Requesting and processing of data on the Cloud is real-time and multiple users can access the 
same data at the same time.  

2.4 Disadvantages 
Security: 
One of the major disadvantages of Mobile Cloud Computing is the data security. Mobile 
subscribers are sending sensitive data over the internet to the cloud. Therefore it will be very 
important that the cloud has good data security for the users. When there is no data security 
or when there is a security leak, sensitive information of the users can be leaked to third 
parties that are not allowed to get this information. 

Connectivity: 
Another concern is the stability of the internet connection of Mobile Cloud Computing. A 
stable internet connection between the Cloud and the device is necessary for the usage of 
services from the Cloud. With a wired internet connection where there is a physical link 
between the client and the service, a stable connection and a fixed network bandwidth is 
easily established. This is not the case with a wireless connection, which has the additional 
complexity that the network capacity must be shared by many users. Besides, the stability of 
the connection will be very important to reduce the latency with the Cloud. When there is a 
poor internet connection between the cloud and the device, it will be very difficult to request 
data from the cloud or it will happen with high latency. So a good connection is crucial to 
acquire an optimal use of mobile cloud computing.  

2.5 Architecture 
The general architecture of Mobile Cloud Computing is shown in Figure 1. Mobile devices are 
connected to the mobile networks via base stations. Examples of base stations are Access 
Points and base transceiver stations. The base station controls and establishes the 
connections between the networks and the mobile devices. Than requests and information 
from the mobile user are transmitted to the central processors that are connected to servers 
providing mobile network services. Thereafter, the user’s requests are delivered to the cloud 
through the Internet. Once in the cloud, the cloud will process the requests to provide mobile 
subscribers with the matching cloud services. These servers are developed with virtualization 
and service oriented architecture [4]. 

2.6 Rise of Mobile Cloud Computing 
The improvements of mobile technologies ensure a higher amount of connected devices to 
the mobile networks. Most applications on the devices will be dependent on real-time data 
from the Cloud. Moreover, those devices and applications are requesting more and more data 
from the mobile network increasing the load of the network. And not only smartphones will 
cause the increasing load but other electronic devices like laptops and tablets will take 
advantage of the mobile network.  
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The servers and data storage locations that process and store data are typically situated in 
cloud-based data centers far away from the mobile network. These servers are constructed 
flexible so they can grow along with the amount of users of a cloud server. But those servers 
are not made to handle an increase of the load of the network. When the data load rises the 
server may become a bottleneck and the communication with the users device will be 
disturbed. 

Relocating the datacenters to the edge of the network will provide a unique solution for the 
problem of servers that are located in normal datacenters. So instead of increasing the 
capacity of the servers in the centralized datacenters, there will be a transformation to the 
edge of the mobile network. This will give a better solution in terms of computational power 
and data storage. Furthermore the delay between the server and the users device will also be 
reduced. This relocation to the edge will meet to the needs of the communication industry for 
creating a robust network. Which means that the network will be resistant to errors that can 
occur in the network. Networks can even be capable of solving these problems [5].   

 

Figure 1. Mobile Cloud Computing architecture [3] 
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3 Mobile Edge Computing 
3.1 Introduction 
The fast increase of mobile video streaming, messaging and peer-to-peer applications cause a 
huge growth in mobile data traffic. This requires telecom companies to increase the capacity 
of the network to meet to the demand of mobile users. A solution to lower the mobile data 
traffic is to deliver the content faster to the subscribers. An example is Mobile Edge 
Computing (MEC), which moves the data storage and processing to the edge of the mobile 
network. Data and services can be provided to the mobile user to increase the responsiveness 
and speed up at the edge of the network and thus increase the user’s experience [6]. 

Unlike Mobile Cloud Computing where the storage and processing of the data occurs in 
centralized servers at the core of the network, Mobile Edge Computing transfers processing 
and data storage to the Mobile Network Services at the edge of the mobile network. This 
allows fast delivery of services to the mobile user. The Characterization of MEC is listed 
below.  

3.2 Characterization 
Localization: 
The edge is local, meaning that it can run isolated from the rest of the network while having 
access to local resources. This becomes important when networks needs to provide high data 
security. This will reducing data leakage by separating data from the rest of the network. 

Proximity: 
Being close to the source of information has several advantages. Mobile Edge Computing can 
be used to enable analyses, process and store big and complex data packets. The mobile 
providers can also encounter an advantage of implementing mobile edge computing in their 
network. This enables the development of specific applications that have direct access to the 
mobile edge. An example application can for example use the location awareness information 
to show specific information of the location to the mobile user.  

Lower latency: 
The short distance between the mobile edge and the mobile user reduces the latency. This can 
be used to improve the speed and user experience of applications. Furthermore, the 
reduction of the latency will also reduce the congestion with the rest of the network. 

Location awareness: 
The location of the base can be used to provide users with specific information. This 
positioning provides an innovative way for applications that can be developed to use the 
location of the base station. An example application can for example gather specific weather 
information from the base station and provide to the user of the application. 

3.3 Evolution of the base station 
In the past, the edge of the mobile network was only used by specialists that had knowledge 
about the network. The architecture of the edge was designed to deliver a good performance 
to some specific applications. This architecture and the connection with the core of the 
network where not developed to adjust. They used very specific protocols that date back to 
before the time that Internet Protocol (IP) became the standard for network 
communications. The quality of voice conversations was the main priority, not data transfer. 
With the arrival of IP a lot of changes were made to implement package based data transfer. 
This transformation to the implementation of IP enabled the development of new 
applications that can use the improvements of the telecom network. 
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The introduction of relocating the data processing to the edge of the network allows the 
execution of flexible services on strategic locations in the network, making them much more 
important and faster than applications or services that are running in the core of the network. 
These services can improve the QoS of the subscriber by reducing the latency of the network 
and providing location awareness applications to the user. An example of a service can be 
based on the location of the user where specific travel data in stations or airports can be 
provided to the user to guide him to the correct platform or gate. 

The next three changes have improved the base station and the architecture of the mobile 
network [7]: 

• Circuit switched connectivity services are replaced with packet switched services. As a 
result, in the future the legacy voice services will be replaced by voice-over-IP 
services; 

• The mobile networks will evolve to a flat architecture, this allows more favorable 
economies in terms of capacity for the infinite growth of the data traffic; 

• Cloud computing will also be introduced into the evolution of the network 
architecture, where it is expected that the control plane will be managed by 
sophisticated software that will run on very powerful servers what is known as 
virtualization. And the user plane will distribute the data by optimized routing 
platforms. 

3.4 MEC server platform and architecture 
Mobile edge computing provides a highly distributed environment that can be used to run 
applications and services. But it can also be used to process and store data in close proximity 
to the mobile user. These applications can access real-time network information and provide 
a personalized experience for the mobile user. Not only the QoS for the user will be improved 
but it enables also new monetizing opportunities which includes the development of new 
applications and services on the base station on the edge of the network. 

An important element of mobile edge computing is the MEC IT application server that is part 
of the Radio Access Network (RAN). The mobile edge is located in the RAN because it is 
located between the mobile device and the core of the network [8]. The MEC server provides 
computing power, storage capacity, connectivity and access to network information. 
Moreover, the architecture contains components and functional elements that allow 
innovation and expansion of the servers. Furthermore, the servers need to expand to follow 
the fast growth in the data communication. 

The MEC platform allows hosting of applications from mobile providers and consists of an 
application virtualization manager and application platform services. The virtualization 
manager supports a flexible, efficient run-time and hosting environment for the applications. 
This is enabled by the Infrastructure as a Service (IaaS) facilities. These facilities provides 
resources and security to the applications and the platform. Furthermore, virtual applications 
run on top of the IaaS layer and allows great flexibility to the implementation of applications. 
IaaS is a kind of cloud computing where the infrastructure of the cloud is provided virtually. 
The service providers contain the hardware like the server of the network infrastructure and 
the workstations. Moreover, the user of a server on the IaaS will only need to pay for part of 
the infrastructure that he is going to use. In the case of MEC virtual machines are provided as 
IaaS that can be used run an applications or save data [9]. 

The MEC hosting infrastructure that includes the connectivity to the RAN is beyond the 
scope of this Thesis and will not be discussed. 
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Figure 2. MEC server platform[6] 
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4 RACS  
4.1 Introduction  
The base station of mobile networks has not changed much in recent years. They were 
created in the Radio Access Network and were only used to connect mobile devices with the 
network. These base stations in the RAN were only used to transport data and voice 
conversations but now the base stations are evolving to intelligent service hubs which enables 
the creation and provision of  services on the edge of the network, something that was never 
done before. For example, Nokia Solutions and Networks totally changed the role of the base 
station in the mobile network. Moreover, the applications running inside the base station are 
called Liquid Applications, running specifically in a Radio Application Cloud Server (RACS) 
that is based on high performance Intel processors [10]. 

The RACS creates a new environment that allows the development and implementation of 
new applications and services in a way that gives full control to the mobile operators. As a 
result, they can reposition themselves within a value chain since their infrastructure is 
becoming more important. This will allow mobile providers to get more value out of the 
network by not only using is as a bit-pipe where data is just passing through the network but 
using the network to provide personalized services to the mobile users.  

4.2 Benefits of RACS 
The explosive growth of video data is becoming one of the most important loads of the mobile 
network. Furthermore, more users are going to download the same data (e.g. viral video or 
live streams) and most of the time even in the same location, which results in extensive usage 
of the network.  

A solution can be to cache the data locally on the edge of the network so it does not need to 
travel repeatedly over the internet, reducing the load of the network. Today this data is 
typically cached just outside or just inside the RAN of the mobile operator. With the 
introduction of RACS the popular data will not be stored in the RAN but inside the base 
station on the edge of the network. This enables the possibility to send the data directly to the 
mobile devices reducing the load of the network. Furthermore, the advantages of the mobile 
edge computing technique are listed below.  

Better user experience: 
Data will be loaded up to five times faster from the base station than when the data is 
requested from servers that are typically deeper in the network. As a result, mobile users will 
receive requested data much faster which will improve the user experience. For example, 
videos or live streams will be loaded faster when the user is connected with the RACS instead 
of receiving the data from elsewhere in the network.   

Cost savings: 
The intelligent base stations significantly increase the efficiency of the network. Data storage 
and processing will be carried out faster in the base station. This increase will reduce the time 
that services are used on the server. Meaning that a service provider needs to pay less for the 
use of an application or a service that is running on the base station. 

Exclusive control: 
Mobile operators control the applications and services that are running on their base station. 
They are also responsible for the delivery of data and services to mobile devices. So they can 
provide a guarantee to subscribers as well as other content providers about the quality of the 
services. 
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Localization features: 
Unlike services in the core network, the services of the base station are running locally so 
they can provide and deliver location based information to the users. For example providing 
information to a tourist that is watching a monument or a building. 

4.3 Base station architecture 
One of the design principles of the innovated base station architecture is to separate the IT 
domain (which contains the users applications and the IP traffic between the server and the 
applications) from the telecom domain. For economic reasons, the mobile networks are 
typically built between a few core networks. Accordingly there can be a certain gap between 
the Core Network (CN) and the user device. This geographical distance will be translated in a 
propagation delay that can be extended with the delay of the different network hops between 
the user device and the CN. With the conversion of the architecture of the base station, the 
distance between the user device and the CN will be significantly reduced resulting in a lower 
the propagation delay. 

Figure 3 shows the application architecture of the base station. The applications in the base 
station are split up into two groups, embedded and add-on applications. Each group has a 
different lifecycle. The provider of the base station develops the embedded applications and 
will provide a software release of the application on the base station. In contrast to the 
embedded applications, the add-on applications are released independent of the software 
release on the base station and can be developed by the provider of the base station or a third 
party. This concept provides a faster lifecycle of the applications in contrast to the traditional 
telecom networks. 

 

Figure 3. Base station application architecture [7] 
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The RACS is optimized with standardized 3GPP functions making the servers fully 
programmable. The servers are built around the lifecycles of the telecom, providing more 
flexibility from the datacenters in the server and containing data functionality in close 
proximity to the end user which allows fast data processing and storage [11]. 

4.4 Liquid Applications 
Liquid applications are applications that are running in a RACS in the base station. These 
applications improve the user experience by acceleration because applications are running in 
close proximity to the end user and thus can be delivered very fast. This is translated in a 
significantly increased throughput and time-to-content improvements that are only available 
on the network edge. Liquid applications have the possibility to retrieve and process real-
time data from the network, which allows network operators to detect problems very quickly 
in the network, implying that they can guarantee a good quality of the network. This real-
time data of the Liquid Applications can not only be used to improve the network operations 
but also provide a good review of the behavior of the users. These improvements unleash a 
new eco-system for services in and around the base station. Furthermore, location based 
applications and services can be provided to the user by the direct communication between 
the user and the network [1]. 

These liquid applications contains properties that make them robust, secure and able to 
deliver a better user experience. The properties are listed below: 

• Agility and flexibility allows the base station to transform into highly efficient data 
processing and storage on the edge of the network; 

• The time-to-content and the response time will be significantly improved because the 
server is located in a close proximity to the user; 

• Real-time exploitation of the network data, which dynamically responds to the 
changing environment of the server, can transform data, services and applications; 

• The state of the art technologies for the highly distributed application environment 
translates into fast development and deployment of the applications. 

4.5 Augmented reality application example 
Augmented reality applications are possible examples of applications that can use the 
capabilities of the RACS to improve the speed of the application. This cooperation with the 
RACS can improve the individual experience of the user. Augmented reality is not a new 
concept but it can be drastically improved if the augmented content is located in close 
proximity of the mobile user inside the base station of the RACS.  

An augmented reality application can for example be an application for tourists, where the 
tourist is pointing its camera towards a building or a monument and the information of the 
viewpoint will be displayed on the screen. This application needs content from the internet. 
As the content travels over the internet, congestion and latency will typically degrade the 
quality and the user experience of the video delivery. What could happen if the content of the 
same application is stored in close proximity to the mobile user [7]: 

• The video or virtual content is always requested and streamed from one base station, 
making it possible to build services and databases that only store location specific 
content. So the data does not need to travel over the internet. 

• The mobile user experience is enhanced, because the virtual content will be streamed 
faster to the user than in a centralized architecture. The streaming quality of the video 
can be much better because there will be no delay of the central network. 
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• When the virtual content is running on the device, the remainder of the mobile 
network will not be occupied by the transmission of video. Thus the network can serve 
more traffic and handle more data.  
 

 

Figure 4. Augmented reality application example [7] 
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5 Application design 
This Chapter will give the design of the application and the server that are created. Two 
streaming methods are compared that can be used for the data connection between the server 
and the application. OpenCV is also introduced just like the datatypes used for the images 
will be discussed. Furthermore an explanation of the color blob and square detection 
methods used in the applications are given. 

5.1 Server design 
To relocate the processing of the images to a more powerful location and to reduce the energy 
consumption of the devices a remote server application will be running on the RACS. This 
server will process the images that are received from the application and send them back to 
the application. When a connection between the server and the device is established data can 
be transferred to and from the server. Moreover, the connection between the server and the 
application needs to be a real-time data exchange because the image needs to be presented in 
real-time on the screen. So the delay between the server and the application needs to be as 
small as possible to deliver the best quality to the user. Two connection types between the 
server and the device are discussed. The first is a http long polling connection between the 
server and the application and the second is a full duplex communication with web sockets. 
In addition there will be a brief summary of the platform that is used to run the server. 

5.2 HTTP long polling 
HTTP polling consists of a sequence of request – response messages. First the client sends a 
request to the server. When the server receives this request it will respond with a new 
message if there is a message ready to send back. The server will respond with an empty 
message if there are no response messages available. Finally when the client is not receiving 
any messages after a request is sent, the client will poll the server again to see if there are any 
new messages ready. A weakness of http long polling is the number of unnecessary requests 
sent to the server when it has no new messages for the client [12]. 

5.3 WebSocket protocol 
With HTTP long polling, the client must repeat the HTTP headers in each request to the 
server and will receive these headers back in each response from the server. This extended 
adding of headers in the messages results into an increased communication overhead. 
Therefore the WebSocket protocol will eliminate the network overhead of the HTTP long 
polling and permits the connection to remain idle until the client or server initiates a request. 
This means that the client will be able to send image data to the server even when the server 
is not replying with processed images [13]. 

The WebSocket protocol provides a full-duplex, bidirectional communication channel that 
operates through a single socket over the web and is built to create real-time applications. 
The communication occurs over a single TCP connection and the protocol consists of two 
parts. The first part is the handshake that is constructed out of a message from the client and 
a handshake response from the server. This handshake is shown in Figure 5 and Figure 6 and 
is used to establish the connection between the client and the server. The second part is the 
data transfer [12]. In addition the communication occurs over TCP port number 80, which is 
of benefit for those environments which block non-web internet connections using firewall 
[14]. 

In this project WebSockets will be used instead of HTTP long polling for the creation of a 
real-time data communication between the server and the client. These WebSockets are used 
because a real-time data connection needs to be established between the server and the 
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client. When HTTP long polling would be used a big overhead of the continuous polling to the 
server will slow down the data transfer between the client and the server [12]. So the 
WebSocket protocol will be the best solution to establish the connection between the 
application and the server.  

 

 

Figure 5. Handshake from client [14] 

 

Figure 6. Handshake from server [14] 

 

5.4 OpenCV 
OpenCV will be used in the applications and server to detect objects in the images. OpenCV is 
an open source computer vision library that includes a lot of computer vision algorithms. The 
library is written in C and C++ and runs on Linux, Windows and Mac OS X. OpenCV is used 
for image processing with high computational efficiency and with a strong focus on real time 
applications. It is created and optimized in C and it takes advantage of multiple processors 
[15].  

The main goal of OpenCV is to provide a simple-to-use computer vision infrastructure that is 
created to help people build advanced vision applications. The OpenCV library contains over 
500 functions that span many areas in computer vision, including security, user interface, 
camera calibration, user interface and robotics. Computer vision is the transformation of data 
from a still or video camera into either a decision or a new representation. All 
transformations are done for achieving some particular goal. The input data can be used for 
example to detect an object in a moving image or to track an object. The image from the 
camera of the device will be used in this Thesis to detect an object depending on its color or 
shape.  

5.5 OpenCV datatypes 
OpenCV images can be represented as three image datatypes. The three datatypes are the 
CvArray, the CvMatrix and the IplImage and they have an object-oriented design as shown in 
Figure 7. These images can be represented in different color fields: Grayscale, color (RGB) or 
four-channel (RGB+apha). Each channel of a color field contains several integer or floating-
point numbers. The four-channel color type is more general than the three-channel 8-bit 
RBG Image. The OpenCV matrix will be used in OpenCV for Android to process the images. 
The matrix consists of 32-bit floats or un-signed integer 8-bit triplets. An element of a 
CvMatrix is not necessarily a single number, the capability to represent multiple values for a 
single entry in the matrix allows the representation of multiple color channels in a RGB 
image where each element of the matrix contains the RGB color of a pixel in the image [16]. 
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Figure 7. OpenCV datatypes [16] 

5.6 Color blob detection 
This Thesis will deal with two object detection methods to create the augmented reality 
applications. These AR applications can be used to detect road signs on the side of the road. 
The first method is a low processing color blob detection, the signs will be detected based on 
the color. The second method is a more complex square detection process, where the shape of 
the road signs will be used for the detection.  

Color blob detection will detect an area with a specific color. It refers to mathematical 
methods that are aimed at detecting regions in an image that have different properties, such 
as a specific color, compared to areas surrounding those areas. A blob is a region of the image 
in which some properties are constant or vary within a prescribed range of values [16]. When 
a property is specified, in this case the color of the road sign, the area can be detected on an 
image using OpenCV libraries. The detection will occur when passing through several steps. 
All the steps and the different datatypes used in the steps are shown in Figure 8.  

 

Figure 8. Color blob detection method 

First a color conversion from RGB to HSV needs to be done because RGB images are exposed 
to lot of environmental effects like difference in lighting, shadows, motion blur and vibration 
that can occur when taking a picture. This can mean that some objects with the specified 
color are not detected and others are. A conversion to the HSV color space is needed to get 
rid of the environmental effect and detect the object that needs to be detected [17]. The HSV 
color space stands for Hue-Saturation-Value and is a different color system than RGB. This 
color system is more natural for the human perception. So the detection with HSV will be 
more accurate, objects will be detected in images with diverse ligting. Because when an object 
is in a shadow environment the color will not be the same as when the object is in light. A 
human will think that the object has a specific color but the RGB detection will not detect it. 
When translating the image to the HSV color space, the colors are split into different values 
and are not affected by shades, motion blur or vibrations [18]. 

The second step in the color blob detection is to create a black and white mask. This needs to 
be created to tag all objects in the image with the same color. In order to create a mask, the 
detected color needs to be converted in an upper and lower boundary using a specified 
radius. The color that must be detected will be in range of the upper and lower boundary. The 
inRange() method from OpenCV is used to create the mask. This function will check if the 
pixels in an image fall within a certain specified range. Each pixel of the image will be 
compared with the range, when the value of the pixel is between the upper and the lower 
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boundary, then the corresponding value in the mask will be set to white (0xff). Otherwise the 
value in the mask will be set to black (0x00). The result is a mask with white spots 
representing the detected object. Next the mask is parsed with the dilate() function that will 
remove noise and melt small spots together. When the inRange() method is used a large 
detected region can be broken apart during the creation of the mask. The dilate function will 
melt the components back together.  

In the next step the contours are detected in the dilated mask. A contour is a list of points 
that represents a curve in an image. In OpenCV contours are represented by sequences in 
which every point in the sequence encodes information of the location of the next point on 
the curve. The findContours() method is used to find the contours of the white spots in the 
dilated mask. There are a few possible methods to represent contours in an image. The 
CV_CHAIN_APPROX_SIMPLE will be used in the application and on the server to represent 
the points. This mode will compress the vertical, horizontal and diagonal segment of all the 
points, leaving only the ending points. This will reduce the amount of points that need to be 
drawn the contour on the image thus speeding up de the detection. 
CV_CHAIN_APPROX_NONE is the other possible method that can be used to store the 
points of the contours. This method stores all the contour points and is not used in this 
Thesis because the data size of the contour points will be bigger than the other method and 
thus slowing the application.  

Finally the outlines of the contours are drawn on the original image using the 
drawContours() method from the OpenCV library.  

5.7 Square detection 
The second algorithm used in this research is a more complex square detection method. This 
can be used to detect square road signs near the edge of the road. Squares can be detected by 
looping through all the detected contours on the image and extracting only the contours that 
contain four points. This technique will detect all rectangles, the selection when a rectangle is 
exactly a square is not implemented. The process of finding rectangles out of an image is 
shown in Figure 9. 

First a color conversion from RGB color space to Grayscale needs to be done to convert the 
four channel RGB (each pixel is represented by Red, Green, Blue and Alpha)image into a one 
channel Grayscale image. The value of each pixel will be a single value that will carry only the 
intensity information. This will create a black and white image that is composed out of shades 
of grey, ranging from black at the weakest intensity to white at the strongest[16]. This 
greyscale image will be processed to detect the contours of squares. 

In the second part of the square detection, the Greyscale image needs to be converted in  
black and white images that can be used to find the contours. There are two possible modes 
to convert the image to detect squares. The first mode is the iterative method in which a 
threshold is used to create a mask and the second is the adaptive mode which requires an 
adaptive threshold to generate the mask. Both methods will generate almost the same 
detection, but in some cases the iterative mode will generate a more precise detection 
because it covers more threshold values. 

In the iterative mode, the image will loop several times through the threshold method using a 
different threshold value. The threshold is used to reject all the pixels above or below some 
value while keeping the other pixels. A different threshold value will be used to create a mask 
each times it loops through the threshold() function to eliminate strong lighting or reflection 
that can occur when the picture is taken. This method will give slightly better results than the 
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adaptive mode. A black and white mask that is created to find all the contours of white spots 
in the image using the findContours() function.  Next each contour that contains four points 
is extracted from the contours list leaving only a list with squares that can be drawn on the 
original image using the drawContour() function.  

The adaptive mode uses an adaptive threshold to create the mask. This is a modified 
threshold technique in which the threshold level is self-variable. This function is an 
automated version of the iterative mode where the threshold value is automatically changed. 
The adaptive technique is useful when there is strong lighting or reflection that will adapt the 
greyscale image and resulting in a bad mask when the threshold function is executed only one 
time. Once the mask is created using the adaptiveThreshold(), the contours of the white spots 
can be detected on the mask. Only the contours that contain exactly four points are extracted, 
leaving only squares that can be drawn on the original image. 

 

Figure 9. Square detection method 

5.8 Server Platform 
There is a lot of software available to create a server that is capable of processing the real-
time image data. There were three possible platforms that could be used to create an OpenCV 
image processing server. The first is PHP, second is Node.js and the third is Python. First 
PHP was researched to create a data connection between the server and applications. But 
PHP was not the right platform to develop the server because there are almost no libraries for 
implementing OpenCV. Then the server was first developed in Node.js to test the connection 
between the applications and the server. Node.js is a very efficient and lightweight platform 
to create a communication server and there were some OpenCV libraries for face detection. 
This worked smoothly but the supported face detection libraries where not sufficient. The 
color blob and square detection functions that we needed were not available for Node.js. 
Therefore we decided to switch to Python, as OpenCV fully supports Python. 

Another option might have been to create JavaScript modules for Node.js that convert C++ 
functions from the OpenCV C-library to JavaScript functions, but this method was too 
exhaustive and would have taken a long time to create this module. 
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6 Implementation 
This Chapter explains the implementation of the cloud server and the different applications 
that will move their processing to this server. The creation of AR cloud applications is 
required to measure the difference in performance between an AR application processing on 
the device or processing on the server. A cloud server is created to process the images from 
the AR device. Furthermore a color blob and a square detection application are developed 
that will co-operate with the server to process the detection.  

6.1 Server 
A cloud server is developed to move the image processing from the mobile device to the 
RACS. This server will be used to measure the performance and determine whether 
offloading the processing will improve the application by processing the images faster and 
reducing the energy consumption. The cloud server needs to be capable of maintaining the 
connection to the device. It also needs to process the received image from the mobile device 
and furthermore it needs to measure the processing times for the comparison with the mobile 
device. 

6.1.1 Used server libraries 
The server is developed in Python and uses four libraries. Autobahn is the first library that is 
imported to create a web socket server. The second is the OpenCV library for Python to detect 
objects in the images received from the applications. Moreover, NumPy is the third library 
and is used to convert binary strings to a n-dimensional array (NumPy[]) that can be used in 
OpenCV. The last one is called time. This library is used to measure the execution times of 
the functions. 

Autobahn is imported to create a web socket server that is able to communicate with any web 
socket client. The server has some protocols that can be used to communicate with the client. 
However a protocol class needs to be created to specify the behavior of the server. This 
behavior is determined by functions such as onOpen, onMessage and onClose. The onOpen 
method is called when a client opens a connection to the server. When the client disconnects 
from the server, the onClose method is called and the onMessage method is evoked when a 
message is received from the application. The type of the received and sent messages in 
Python is always a byte array (Byte[]).  

The actual server is based on the behavior of the protocol class and is created by instantiating 
the protocol class. A TCP listening server is created that will use the protocol class and is 
listening on a predefined port [19]. 

OpenCV is an open-source library that includes computer vision algorithms and is imported 
in the server to do the color blob and the square detection [15] as explained in the previous 
section.  

NumPy is an essential package for scientific computing with python. It is used to create a 
powerful n-dimensional array object that can be utilized to convert the byte array received 
from to client to a NumPy array that is used for the detection in OpenCV [20].  

Time is a module that contains various time-related functions. It is imported to measure the 
execution time of the OpenCV color blob detection in the server [21].  

6.1.2 Server implementation 
The server is developed to detect objects in the received images from the Android 
applications. It can detect color blobs or squares depending on the application that streams 
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the images. Furthermore the detection will be drawn on the received image and the processed 
image will be sent back to the android application. The server is forked in different parts to 
process the image and is shown in Figure 10. 

The first part is receiving the image as a byte array from the application. Images will be sent 
from the application to the server as soon as the connection is opened. First the detection 
mode is sent to the server before the image is sent. When the mode is received it will be saved 
and used to detect objects in the stream of images from the application. When an image is 
received in the server it will be converted from a byte array to a NumPy array that is needed 
for the object detection. 

The second part is the detection of objects in the incoming image stream. The color blob or 
square detection starts when the conversion to NumPy array is complete. There are some 
small differences in the implementation of the color blob detection between the server and 
the android application. One difference is that a color transformation from RGB to BGR is 
needed to receive the same detection results as the application. This is because the images on 
the application are processed as BGR images and the received image is in RGB format. The 
other difference is a threshold that is applied to the detection mask to remove some noise and 
to get a cleaner detection. Furthermore the contours of the detected object are added to the 
received image and the image is ready to be sent back to the application. But first the NumPy 
array needs to be converted to Byte array before the image can be returned to the application. 

 

Figure 10. Server implementation 

Different detection methods are implemented in the server to find the best trade-off of 
offloading the image processing to the server. For this purpose, the application will stream 
data from different points in the application to the server ranging from images to contours. 
Different functions needs to be executed on the server depending on the data that is streamed 
from the application. The server needs to receive the mode from the application to know 
which functions needs to be executed. This mode will be saved on the server and the 
following images that are received from the phone will be processed in the same way until the 
server receives a different streaming mode from the application. The server is capable of 
processing all the different streaming modes that are implemented in the color blob and 
square detection applications.  

6.2 Augmented reality applications  
A color blob and a square detection application have been created in this Master’s Thesis to 
measure the trade-off between the AR device and the RACS. The applications are developed 
for the Android operating system and the performance is tested with a Samsung Galaxy S4 
mobile phone and a Google Glass device. The smartphone is used to test the applications 
because it has a high CPU and a good battery. On the other side a Google Glass is used 
because it has less processing power and lower battery capacity. So when high processing 
needs to be done the Google Glass will be slower in processing than the phone and it can be 
advantageous to switch over to the RACS to do the processing of the images.  
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There are two AR applications developed for the smartphone and the Google Glass. The 
applications for the phone are almost the same as the applications for the Google Glass. The 
only difference between the two is the resolution of the images that are displayed on the 
screen. For the phone a resolution of 1920x1080 pixels is used and a resolution of 800x480 
pixels for Google glass. Specifically there will be one color blob and one square detection 
application for the phone and the Google Glass. These applications will also have different 
streaming modes. Data can be streamed from various points in the application to the server 
to determine the best trade-off with the server. The applications and the different streaming 
modes will be briefly explained in the next section.  

Figure 11 shows the general structure of both the color blob and the square detection 
application that cooperates with the cloud server. First the application will wait until an 
image from the camera is ready. Then a conversion of datatypes needs to be done because the 
image can only be streamed as a Byte array and the retrieved camera image is in the OpenCV 
matrix format. So the conversion from the OpenCV matrix to byte array is carried out. Next 
the image will be sent to the server and shortly after the processed image is received from the 
server. Then the received image is converted to the OpenCV matrix such that  it can finally be 
displayed on the screen. 

 

Figure 11. Augmented reality application structure 

6.3 Color blob detection application 
The color blob detection algorithm has been developed in two versions: the first one for the 
detection on the AR device and the other one for the detection in combination with de RACS. 
The application contains a button where the choice can be made between processing the 
image on the server or on the device. In the color blob detection application, objects of the 
same color will be outlined and shown on the screen. The color of the detectable object can be 
selected with a touch on the screen on the smartphone and a fixed color is used on the Google 
Glass. Figure 12 is a screenshot of the color blob detection application. In this scenario the 
blue color of the road signs were selected and the yellow contours on the image shows the 
color blob detection. 

The image can be processed on the phone or in combination with the server. When it is 
processed on the device, the image from the camera will be processed in the device and the 
detection will be done in the device using the OpenCV library for Android. Furthermore, the 
OpenCV surface view is used to show the images that are processed on the screen. When an 
image from the camera is ready to be processed the onCameraFrame() function will be called. 
This function receives the image from the camera and needs to return an image that will be 
displayed on the screen. This camera image will be used to detect objects with the selected 
color. When the detection processing is ready it will be shown on the display of the mobile 
device.  

37 
 



 
 
When the option is selected that the images will be processed on the server, the applications 
will use the Autobahn library to introduce web sockets to create a connection to the server on 
the RACS. The connection to the server is established when the application starts. Whenever 
an image from the camera is ready it will be sent to the server through the web socket 
connection. But before the image can be sent to the server they need to be converted from the 
OpenCV matrix to a byte array that can be used to send data through WebSockets. When the 
data conversion is finished the images can be streamed to the server. As the image arrives in 
the server it will be saved, processed and returned to the device through the same web socket 
connection. When the image is retrieved back on the mobile device it will be shown on the 
screen.   

 

Figure 12. Screenshot color blob application 

But sending images to the server and retrieving whole images back from the server is devious 
and a lot of data needs to be sent to the server. Because the images are quite big to send to the 
server and retrieve from the server it will introduce a delay when the server is used. To 
reduce this delay with the server different types of data are streamed from various points in 
the application to the server and received from the server to determine the best and fastest 
method to offload the image processing and to reduce the delay to a minimum. There are six 
methods tested that will each stream data from a different points in the application: 

• Send image – retrieve image: The image from the mobile device is sent to the server, 
on the server the image will be saved, processed and the full image with the detection 
in returned to the device.  

• Send image – retrieve contours: The image is streamed to the server and the server 
will only stream the contours back to the mobile device. Only returning the contours 
to the mobile device lowers the delay to the server because the sizes of the contours 
are lower than the size of the full image with the implemented detection. When the 
contours are received they need to be converted to the correct data type so they can be 
used to draw the contours on the original image. 

• Send image – retrieve mask: The image from the camera is sent to the server and the 
processed mask from the server is returned to the mobile device. The delay will be 
lower because the size of the mask is a lot smaller than the size of the processed 
image. 

• Send image – retrieve dilate mask: The image is streamed and the delate mask is 
returned. Just like retrieving the mask from the server, the delay will be lower 
because the size of the dilate mask is smaller. 

• Send mask – retrieve contours: Sending the already processed mask on the device to 
the server and the server will detect the contours on the retrieved mask and return the 
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contours. The received contours needs to be converted on the device to the correct 
datatype so they can be drawn on top of the original image. 

• Send dilate mask – retrieve contours: The dilate mask is processed on the mobile 
device and streamed to the server. On the server the contours of the selected color will 
be detected and streamed back to the device and drawn on the original image. 

6.4 Square detection application 
The android square detection applications is more complicated and takes more time to 
process an image than the color blob detection application. So for this application it can be 
more useful moving the image processing to the cloud server. This application is also split up 
into two versions, one part for processing the images on the mobile device and the other part 
for cooperating with the cloud server. There is also an option to choose if either the squares 
are detected using the fast adaptive threshold detection or the slower iterative way using the 
normal threshold for the detection of the squares. Figure 13 is a screenshot of the square 
detection application. The green squares on the figure show the detected road signs using the 
iterative square detection method. Also the buttons are shown where the selection can be 
made between processing the image on the server or on the mobile device. 

 

Figure 13. Screenshot iterative square detection 

The image from the camera of the mobile device will be used to detect the squares. When the 
onCameraFrame() method is called in the application an image from the camera is ready to 
be processed. When the image is received in the function, depending on which detection 
method is selected,  the squares will be detected and drawn on the image. When the detection 
is drawn on the image it will be displayed on the screen. The processing time will depend on 
the used detection method. When the adaptive threshold is used the images will be processed 
much faster than the iterative way because the iterative mode needs to loop a lot of times 
through the threshold which makes it slower.  

To reduce the image processing times of the square detection methods, a button in the 
application  can be used to send the images to the server. When the button is pressed the 
connection with the server will be established. First the images needs to be converted from 
the OpenCV matrix to byte array before the image can be streamed to the server. When the 
image is received on the server it will be saved and processed to detect squares in the image. 
As soon as the image processing is finished the image with the added detection will be sent 
back to the mobile device. Once the image is received on the mobile device it needs to convert 
the data back into an OpenCV matrix so it can be displayed on the screen. The image 
processing method on the server will be the same as the method that is selected on the device. 
Just like the color blob detection there are different methods implemented in the server and 
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the device to send and receive different data in the application to reduce the delay with the 
cloud server.  

Below are the two different send and receive methods implemented for each square detection 
method:  

• Send image – receive image: The image from the camera is streamed to the server. On 
the server the image will be processed using the adaptive or iterative mode depending 
on which method is selected in the application on the device. The image with the 
implemented detection is returned to the device as soon as the square detection is 
finished. 

• Send image – receive contour: The image from the device is sent to the server. When 
the image is received it will be processed and only the contours will be returned to the 
android device. On the android device the received contours are conversed into the 
correct datatype so it can be drawn on the original image and shown on the display.  
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7 Evaluation 
Augmented reality applications require powerful CPUs and consume a lot of power at the 
mobile devices. The latter can result in unexpected malfunction of the application. Therefore, 
it can be advantageous to use a cloud server to accomplish the real-time image processing. In 
this Thesis the performance of the applications are measured in collaboration with a cloud 
server that runs on a local PC and the distributed RACS.  

7.1 Execution times measurements setup 
The implementations of the different applications are evaluated in different modes in order 
to draw conclusions on which mode will result in the fastest and most energy efficient 
cooperation with the server. There are four different applications tested, the first and second 
are the color blob detection for either the phone or Google Glass. Furthermore, the third and 
fourth are the square detection applications that are developed for the phone and the Google 
Glass. The applications use different modes to send and receive data from the server in order 
to find the best trade-off between the server and the application. These different modes 
where the data is sent to the server and received from the server for the color blob detection 
application are given in Table 1. Moreover,  Table 2 provides the various methods used in the 
square detection application.  

Table 1. Color blob detection modes phone and Google Glass 

Mode Send Receive 
Image Image Image 
Contour Image Contours 
Mask Image Mask 
Dilate mask Image Dilate mask 
Stream 
mask 

Mask Contours 

Stream 
dilate 

Dilate Mask Contours 

 

The phone and the Google Glass will be connected to the server using the Wi-Fi connection of 
the mobile device. The server is running on a PC that has a wireless network card to create a 
local network where the devices can connect. The delay with the server is measured on the 
phone as well as the necessary time to convert the received data from the server and the data 
conversion to send the image to the server. The server will measure the total processing time 
of the image processing on the server and will send this data to the phone. All the gathered 
data is collected on the phone and logged into a text file.  

There were two scenarios carried out when measuring the different delays and execution 
times. All possible modes in the applications are tested with the same images in order to 
come to a conclusion. In the first scenario one image was applied for the color blob and 
square detection application. Because the execution times vary each time a functions is 
executed, an averages is taken out of looping twenty times through the image. The second 
scenario uses a loop of twenty different pictures to create an average delay and execution 
time. This reconstructs the scenario where the application will be used in a real world 
scenario because when it will be used to detect the square road sign in the real world the 
images will vary continuously. Both scenarios are tested and measured but this Thesis will 
deal only with one of the two scenarios. The slowest scenario of the image processing on the 
server will be chosen to determine the best trade-off between the server and the application. 
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This scenario is the worst possible and the other scenario will always be faster. Further a 
fixed color will be used for the color blob detection application to detect blue road sign in the 
images from the different scenarios. The server is tested with multiple applications that uses 
the server on the same time but all execution times are measured with the server that is not 
loaded and only dealing with one user. 

Table 2. Square detection modes phone and Glass 

Mode Send Receive 
Adaptive Image Image 
Adaptive 
contour 

Image Contours 

Iterative Image Image 
Iterative 
contour 

Image Contours 

 

7.1.1 Image streaming quality 
The delay with the server is the major drawback of the application and can be reduced by 
lowering the data size of the image to speed up the data transfer between the server and the 
application. The data size of the image will be reduced when the quality of the image is 
lowered. Sending data with different qualities is shown in Figure 14. The delay with the server 
will be very high when streaming the image in full quality. When the quality of the image is 
lowered the delay will be reduced. The images that are streamed in the application will be 
streamed with 40 % of the quality which results that the delay will be three times smaller 
than streaming in full quality. There will be almost no difference visible when the streamed 
image quality is reduced from 100 % to 40 % . 

 

 

Figure 14. Image streaming quality 

7.2 Execution times measurements 
The execution times of the image processing for different scenarios are measured on a server 
that runs on a local PC and a server on the RACS. Therefore, the benchmark performance of 
the operating systems are measured and compared. The performance of the systems will be 
used to discuss the image processing times on mobile phone, PC and RACS. Furthermore, the 
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server delay between the RACS and PC are compared just like the two measurement 
scenarios to select measurement results for the server delay measurements. The streamed 
data sizes are also measured in order to understand the different time measurements. 

7.2.1 Benchmark comparison 
The processor benchmark scores are measured for the phone and the different systems that 
use the server. Benchmarking is a way to characterize the performance of the device 
hardware by measuring different operations of the hardware, for example, the floating point 
operation performance [22]. Geekbench 3 from Primate Labs was used to measure the 
different benchmark scores [23]. This is a cross-platform benchmark tool to measure the 
computational power of processors. This cross-platform tool is used to compare the 
computational speed of the Android device with the servers that run on Linux. The processor 
benchmark scores are measured for the phone, the PC and the RACS. The phone contains a 
2.27GHz Qualcomm Snapdragon 800 processor with  four cores, the PC includes a 2.83Ghz 
Intel Core 2 Quad Q9550 processor with four cores and the RACS system has a 2.00GHz 
Intel Xeon E5-2640v2 processor with eight cores. The single core and multi core benchmark 
scores for the different processors are given in Table 3. The results show that the RACS has 
the best computational power for single and multicore processing. Furthermore the phone 
has the least computational power so it will be advantageous to move the processing from the 
mobile device to a cloud server either on the PC or on the RACS to accelerate the processing. 

Table 3. Processor benchmark score 

 Single core 
(points) 

Multi core 
(points) 

Phone 962 3123 
PC 1650 5686 
RACS 2099 16841 

 

The application that processes the images on the phone can benefit of multiple cores, 
OpenCV automatically divides the image processing among the different cores of the device 
[15]. This will result in faster processing than when only one core is used to process the 
images. The image processing on the server on PC will also benefit from the multiple core 
advantage of OpenCV. The RACS consists of multiple Virtual Machines (VM), each VM for 
different applications. The RACS will allocate one core for each VM and the server that 
cooperates with the detection applications on the device is running in one VM. There is only 
one core allocated for the VM that runs the server which causes that OpenCV cannot benefit 
of dividing the images processing over different cores. This is the case for the PC and mobile 
phone that contain  multiple processing cores. 

7.2.2 Image processing times comparison 
Figure 15 shows the comparison of the processing time of the color blob detection between 
the mobile phone, server on PC and the server on the RACS. Figure 16 and Figure 17 shows 
the comparison of processing times of the square detection methods with the different 
servers. The results shows that processing the images on the server is twice as fast for the 
color blob detection on the PC and a little bit faster on the RACS. The processing on the RACS 
will be slower than the PC because the PC has more computational power and has the 
advantage of using more cores. The processing of the image is carried out seven times faster 
on the server than on the phone for both the adaptive and iterative square detection methods. 
These measured processing times on the server are without the delay with the server and 
without the send and receive conversion times of the data. Hence, the total processing time 
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on the server will be higher and it is possible that the total processing time is larger than the 
processing time on the phone due to the extra delay that needs to be added. 

 

 

Figure 16. Adaptive square detection processing times 

 

Figure 17. iterative square detection processing times 

7.2.3 Server delay comparison PC and RACS 
The execution times of the different modes and applications are measured for both the server 
on the PC and on the RACS. Figure 18 shows the comparison of server delay between the PC 
and the RACS for the color blob detection processing. Furthermore Figure 19 compares the 
server delay for the square detection application. This server delay consists of uploading data 

Figure 15. Color blob detection processing times 
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from the application to the server, processing the data on the server and finally downloading 
the processed data from the server. 

The results for the color blob application shows that the delay with the server on PC will be 
two times larger than the delay with the RACS. This is because the RACS is situated in the 
base station at the edge of the mobile network, which allows a very fast communication with 
the mobile device. The server on PC is running in a local network that cannot reach the 
download and upload speed from the RACS. These results also show that the RACS is more 
powerful than the server on PC. 

 

Figure 18. Color blob server delay comparison between PC and RACS 

The server delay between the application and the server will also be smaller for the square 
detection when the server is deployed on the RACS instead of the PC. In general, the delay of 
the iterative square detection will be very high compared with the adaptive detection method. 
This is because in image processing on the server will take more time for the iterative than 
the adaptive square detection method.  

 
Figure 19. Square detection server delay comparison between PC and RACS 
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7.2.4 Measurement scenarios comparison 
The applications are deployed with two different testing scenarios. In the first scenario the 
application will be tested with one static image that will be used for the detection. For the 
second one a loop of different images will be used to measure the execution times of the 
different functions and detection techniques. Both scenarios will loop twenty times through 
the images to receive an average execution time of each function. The applications will be 
tested with a Samsung Galaxy S 4 and a Google Glass that will be cooperating with a server 
that is running on either the PC or the RACS. First a comparison between the two different 
measurement methods is carried out to choose the method with the slowest execution times 
on the server. And that method will be used to compare all the execution times with the 
processing times on the device because when the slowest scenario results in faster processing 
of the images, the other scenario will be even more advantageous.  

The comparison of the two measurement methods for the color blob detection on the phone 
and Google Glass is shown in Figure 20. When the server cooperates with the device, an 
average execution time of the different trade-off approaches is given for the comparison. The 
execution time of the color blob detection on the phone itself is faster than in cooperation 
with the server.  

 

Figure 20. Comparison of the different scenarios for color blob detection 

The average execution time for each method that uses one complex test image on the phone 
and Google glass is slower than when a loop of different images with varying complexity is 
used. The big difference between the two testing techniques is carried out by the amount of 
contours that will be detected on one image. In general, there will be more contours detected 
in the scenario that uses one complex image for the detection compared with the other 
scenario that loops through the different images because looping through images with 
different complexity will result in different contours for each image or even no contours can 
be detected resulting that the data size of the contours will be smaller. This is not always the 
case, It can be possible that looping through images with different complexity can result in 
more contours per image but with this test scenario the amount of contours of looping 
through one complex image is larger than the other scenario. The execution times of the 
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method that handles one complex image for the color blob detection will be used in the 
Thesis for the comparison of the trade-off between the devices and the server. 

In Figure 21 and Figure 22, the comparison of the execution times of the two measurement 
scenarios are given for the adaptive and iterative square detection application on the different 
devices. These execution times for the adaptive square detection are almost equal when 
cooperating with the server, but the measurement method that requires one image for 
measuring the execution time is slower than looping through different images. We will use 
the slowest method for comparing the trade-off between the server and the device. In this 
case the approach with one image is used further in the Thesis. This scenario will be less 
realistic than a series of images is used.  

Looping through a series of different images on the phone results in a slower execution time 
than looping with one image. This is not the case for the Google Glass, when one image is 
used the execution time will be faster than looping through the series of images. This 
difference between the phone and the Google Glass is due to the difference of image size. The 
phone uses 1920x1080p and the google glass 800x460p, this different sizes caused that the 
iterative square detection can detect more squares when looping through different images 
and when the size of the image is bigger on the phone. Using the Google Glass with the 
smaller images causes more squares will be detected when looping with one image instead of 
with a series of images.  

 

Figure 21. Comparison of the different scenarios for square detection adaptive 
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Figure 22. Comparison of the different scenarios for square detection iterative 

7.2.5 Streamed data sizes 
The data sizes that are streamed to and received back from the server have been explained 
before the trade-off between the mobile device and the server was discussed. The size of the 
data is involved in the object detection as well as the delay with the server. The bigger the size 
of the image the longer the object detection will take. Furthermore the size of the data is also 
important when data is sent to the server or received from the server. There will be a larger 
delay to the server when the data size is bigger than when fewer data is streamed. This delay 
with server needs to be as small as possible to improve the application that cooperates with 
the server.  

Table 4. Send-receive sizes color blob detection phone 

Mode Send 
size(kB) 

Receive size 
(kB) 

Phone 359 359 
Image 165 536 
Mask 165 166 
Dilate 165 178 
Contour 165 94 
Stream 
mask 

90 92 

Stream 
dilate 

96 92 

 

Table 4 shows the send and receive data sizes in the color blob application for the 
smartphone. These data sizes will vary depending on the used streaming mode. When the 
color blob detection is carried out on the phone there will be no connection with the server, 
but the given data size is the size of the image that needs to be processed on the phone. 
Furthermore, the received data from the server will be three times larger than the sent size. 
This is because the detection of the object will be added to the image causing it to grow in 
size. The received data from the contour mode will be smaller than the sent data because only 
the detection of the objects is returned to the application on the mobile device. The difference 
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between the data size used to process the images on the device and the images that are sent to 
the server can be explained by the quality of the images that are streamed to the server. To 
reduce the delay with the server the images are streamed with 40 % of the quality, this 
reduction of the quality is not visible to humans but the data size will be reduced with 55 % of 
the original image.  

Table 5 shows the send-receive sizes for the color blob detection application for the Google 
Glass. These image sizes for the Google Glass are an example when the data size of the 
received contour is larger than the sent data. This is carried out when the mask and the dilate 
mask are streamed to the server from the Google Glass. This is because the data sizes of the 
mask are very small in comparison with the detection that is returned. The contours returned 
from the server have almost always the same size independent from which mode is used to 
stream to the server. The received image size from the mask and dilate mask mode is smaller 
than receiving the whole image with detection from the server. When these modes are 
selected only the mask will be returned to the application on the mobile device in which this 
mask just contains black and white pixels indicating the detection. The size of the mask will 
be also smaller because the detection has not yet been added to the original image. 
Furthermore the image sizes from the phone are bigger than the images used in the Google 
Glass, this is due to the different image sizes used on the phone (1920x1080p) and on the 
Google Glass (800x460p).  

Table 5. Send-receive sizes color blob detection Google Glass 

Mode Send 
size(kB) 

Receive size 
(kB) 

Google 
Glass 

158 158 

Image 50 155 
Mask 50 55 
Dilate 50 57 
Contour 50 36 
Stream 
mask 

28 40 

Stream 
dilate 

28 40 

 

Table 6 and Table 7 shows the data sizes from the square detection application. The received 
adaptive contours from the server will be up to twenty times smaller for the phone and fifty 
times for the Google Glass than the sent image. This big difference is because there are only a 
few squares detected in the images. This will reduce the image size significantly.  

Table 6. Send-receive sizes square detection phone 

Mode Send 
size(kB) 

Receive size 
(kB) 

Phone adaptive 359 359 
Adaptive 165 393 
Adaptive Contour 165 9 
Phone iterative 293 293 
Iterative 140 337 
Iterative Contour 140 57 
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Table 7. Send-receive sizes square detection Google Glass 

Mode Send 
size(kB) 

Receive size 
(kB) 

Google Glass 
adaptive 

158 158 

Adaptive 50 103 
Adaptive Contour 50 1 
Google Glass 
iterative 

158 158 

Iterative 50 103 
Iterative Contour 50 23 

 

7.2.6 Server delay measurements 
The delay with the server is divided in three parts to compare the execution time of the 
processing on the device with the application that cooperates with the server. The first part is 
the time needed to convert the image to the right format so it can be streamed to the server. 
Then the second part is the delay with the server what contains the upload time to the server, 
the processing time on the server and the download time of the image from the server. And 
final part is the conversion of the received image so it can be displayed on the screen. 
Moreover, some processing needs to be carried out on the device depending on the selected 
streaming mode. 

Figure 23 shows the total execution time of the color blob detection on the phone for the 
different streaming modes. As a result of the high delay with the server the execution times of 
the different modes are ten times slower than when the mobile phone carries out the 
detection. This is due to the high processing power of the phone, the color blob detection is 
not a very powerful process so it is fast on the phone and the delay with the server will slow 
the application down. The processing of the images on the server is faster than the processing 
on the device but the delay to the server and the conversion times causes that the cooperation 
is slower for the color blob detection. Not only the delay with the server but also the 
conversion of the data will cause a delay that ensures that the application that moves the 
processing to the server will be slower than when the processing is accomplished on the 
phone. These conversion times of the images that are streamed to the server is almost equal 
to the processing time on the phone.  

The Contour, Stream mask and the stream dilate will have a very high conversion time of the 
received data from the server. This is because these modes receive a lot of contours from the 
server and it will take some time to convert the received contours into to the correct data 
format so they can be drawn on the original image. The mask and dilate mask mode where 
there is a good trade-off between the server and the application are the fastest but still slower 
than when the processing is carried out on the mobile device. With these modes the phone 
streams the full image to the server and the server will create a mask of the detected color 
blob and the application will use this mask to detect contours and draw the color blob on the 
original image. These modes will be faster because the size of the mask that is return from the 
server will be smaller than the other modes. So the delay with the server is smaller and a lot 
faster than returning the contours from the server.  

50 
 



 
 
 

 

Figure 23. Server delay measurements color blob detection phone 

The execution times of the color blob application for Google Glass are shown in Figure 24. 
The total processing time of the different modes are slower than when the detection is 
processed on the phone. This is because the data conversions and the delay with the server 
are too high to process the images faster on the server than the Google Glass. The color blob 
detection is not powerful enough to relocate the processing to the server. The results of some 
modes are better when the Google Glass is used instead of the phone but still slower than 
when the full processing is carried out on the Google Glass. In general, the data send 
conversion times and the server delay are smaller than when using the phone. This is due to 
the smaller size of the images. When the size is smaller, the conversion, uploading and 
downloading will be carried out much faster. All the streaming modes are slower but the 
Image, Mask and Dilate mask modes are the fastest of the modes where the application 
processes the images on the server. This is because the send and receive conversion times are 
lower due to the smaller image sizes. This smaller size ensure smaller delays. The modes that 
return the contours from the server are as slow as the same modes on the phone even if the 
send conversion and the delay with the server are lower. But it is the conversion of the 
received data that takes the most times. This is because the Google Glass has lower 
processing power than the phone. It will take a longer time to covert the received contours 
into the right format so they can be drawn on the image.  
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Figure 24. Server delay measurements color blob detection Google Glass 

Because the color blob detection was processed faster on the devices than in combination 
with the server, a heavier processing square detection application was developed to detect 
road signs. The processing time of the square detection method is up to seven times slower 
than the color blob detection so a relocation of the processing to the server needs to speed up 
the application. There are two possible square detection methods measured for both the 
phone and the Google Glass, an adaptive mode and a slower iterative mode.  

Figure 25 and Figure 26 shows the execution delay of square detection on the phone 
compared with the delays of processing of the square detection to the server. These results 
are more promising than the color blob detection. The Adaptive mode that returns the full 
image from the server will be faster when the square are detection on the server for both the 
adaptive and iterative contour mode. At this moment the connection cost of the server will be 
very low which causes that the application will be as fast as when it processes the image on 
the phone. In this case the use of a powerful server will be advantageous. Moreover, the 
adaptive contour mode will be slower than the adaptive mode. This is because the data 
conversion of the returned contours will take a longer time than when the full image needs to 
be converted. The iterative mode that processes the images on the phone is a very slow mode 
because it needs to execute the detection twenty times with different parameters to receive 
better detection results. When the same processing is carried out on the server, it will be 
twice as fast. This is because the server will process the iterative square detection  seven 
times faster than the phone. In general, the data conversion of the received contours will be 
much faster than the color blob detection because only the contours that contain four points 
are returned to the phone so the conversion of the received contours to the correct format 
will be much faster. For the adaptive and the iterative square detection it will be very useful 
to relocate the processing to a powerful server to enhance the application.  
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Figure 25. Server delay measurements adaptive square detection phone 

 

Figure 26. Server delay measurements iterative square detection phone 

The same square detection methods are also measured for the less powerful Google Glass. 
The full execution times of the adaptive and iterative mode are shown in Figure 27 and Figure 
28. The processing times for both methods are processed on the Google Glass as fast as the 
phone. This is because the images used in the detection on the Google Glass are smaller 
which allows the processing times to be smaller than when a bigger size of images are used. 
The results for the Google Glass are even better than the phone. Due to the smaller images 
the server will process the square detection even faster and the upload and download delay 
will also be smaller. The size of the image has more influence than the processing power 
when processing images on the RACS. So when the resolution of the camera image increases 
faster than the processing power of the mobile device, the image processing on the RACS 
becomes even more interesting. For Google Glass both adaptive modes that cooperate with 
the server are faster than the full processing on the device. The Adaptive contour mode is 
even faster than the Adaptive mode where the full image is streamed, this is because only a 
few squares will be detected and sent back what causes a very low delay with the server. It is 
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particularly advantageous to move the processing of the iterative square detection to the 
server. This cooperation with the server results in seven times faster processing of the image. 
The iterative contour mode will be slower than the normal iterative mode but still faster than 
the processing on the server. This is due to the higher data conversion time of the received 
data. There will be more squares detected in the iterative method what causes that more data 
needs to be streamed back to the Google Glass and the conversion time will be longer. But in 
general for both square detection modes it will be profitable the relocate the processing of the 
image to the server. 

 

 

Figure 27. Server delay measurements adaptive square detection Google Glass 

 

Figure 28. Server delay measurements iterative square detection Google Glass 

7.3 Power measurements  
Battery life is a crucial factor in today’s mobile devices. The images streaming and heavy 
processing on the mobile device could drain the battery very quickly. Therefore, the power 
consumption of the applications that use cloud processing are measured and is a part of this 
Thesis. The average power of the phone is measured for the color blob and the square 
detection application. For each measurement the streaming mode of the application was 
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changed to get a conclusion of the best trade-off between the server and the application. The 
average power of an object detection session is measured. These measurement session are 
sessions varying from three to four minutes. 

7.3.1 Power measurement setup 
For the power measurements the mobile device was connected to a Monsoon Power Monitor 
that powers up the device and measures its power consumption and current at the same time 
[24]. The power monitor logs the power consumption of the mobile phone several times a 
second. It will visualize the power consumption on the screen and the average power 
consumption of a measurement session will also be calculated.  

The mobile device a Samsung Galaxy S4 was connected to the Monsoon Power Monitor by 
bypassing the battery of the device. The positive voltage clip of the battery was covered with 
insulated tape and a copper foil tape was used to connect the Monsoon Power Monitor to the 
phone. The bypassing of the battery of the phone is shown in Figure 29 and allows the phone 
to continue the communication with the battery as only the voltage and the ground clips are 
bypassed. PowerTool is the software used to record the data measured by the Monsoon 
Power Monitor. An overall picture of the setup is given in Figure 30. 

 

Figure 29. Bypassing the battery of the phone [25] 

 

Figure 30. Power measurement setup [25] 

7.3.2 Measurements 
Figure 31 shows the power consumption difference between the different color blob detection 
streaming modes and the processing on the phone. The results show that the use of cloud 
processing does not necessarily save energy for all the modes. Even though the phone only 
needs to send and receive the images the power consumption will not be much lower than the 
full processing on the phone. A lot depends on the amount of processing the phone needs to 
do before the data is sent to the server and when the data is received. This can be seen in the 
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different modes. The Image, Mask and Dilate mask mode have the lowest consumption, this 
is because the application does not need to process a lot on the phone. In comparison, the 
modes that receive the contour from the server will have a higher power consumption 
compared with the other streaming modes. This is due to the higher processing time of the 
conversion of the received contours. The power consumption also depends on the amount of 
transmitted and received data, but in this case it depends more on the processing that still 
needs to be carried out on the mobile phone. This can be seen in the results, the Image mode 
need the transmit and receive the highest amount of data but the power consumption is the 
lowest. Compared with the Contour mode that transmits the smallest amount of data but 
results in a higher power consumption than the Image mode. 

 

 

Figure 31. Color blob detection average power measurements 

Figure 32 and Figure 33 shows the power consumption of the adaptive and iterative square 
detection methods. The results show that the higher processing times on the device are 
translated in high power consumption for both the square detection modes. But power 
consumption is lowered when the processing is carried out in the cloud. The Adaptive and 
Iterative Image mode consume the least power, this is because the device only needs to 
upload and download the image from the server so the connection will be the biggest power 
consumer but uses less power than the full processing on the device. The results of the modes 
that receive the contours from the server will consume a little bit more power compared with 
streaming the full image, this is because the device still needs to do some processing when 
the contours are received from the server. 
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Figure 32. Adaptive square detection average power measurements 

 

Figure 33. Iterative square detection average power measurements 

7.4 Discussion 
This Chapter analyzes the overall benefits of moving the image processing of augmented 
reality applications to a RACS. Improvement for the RACS server in the base station is also 
briefly discussed. 

7.4.1 Overall benefits of cloud processing 
Relocating the image processing from a mobile device to a server on either PC or RACS will 
improve the performance of the application. Although the color blob detection application 
will not be faster when the processing is relocated to the cloud but the power consumption of 
the application is reduced. A trade-off between speed and battery savings can be made, from 
the speed side the application will process the images rather slow when the server is used, but 
the power consumption will be lower so it can still be profitable to move the processing of the 
color blob the server to save energy of the device. But when the application needs to be time 
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critical and the images needs to be processed fast it is not beneficial to move the processing to 
the cloud.  

For the square detection methods it will be very advantageous to move the images processing 
to the server, because the use of the cloud server will speed up the application and will save a 
lot of energy of the device. Complex and high processing applications can be moved to the 
cloud to save energy and improve the processing speed of the application.  

7.4.2 Improvement of the RACS base station 
The base station where the current RACS is running is in the testing stage and is just a 
prototype. Currently the RACS contains multiple Virtual Machines that are each allocated 
only one core to process the application that is running on the Virtual Machine. To improve 
the processing speed of the RACS it could be profitable to allocate more cores to each VM. 
For example when a Virtual Machine can use two cores to process the application, OpenCV 
has the possibility to benefit of the multiple cores and speed up the application. So when 
more cores can be used the processing of the application will speed up the mobile application 
that cooperates with the server.  
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8 Conclusion 
Mobile Edge Computing is an emerging technology for mobile users where data storage and 
processing capacity is placed at the edge of the mobile network . In this way data and services 
can be provided to the mobile user to increase the responsiveness and speed up at the edge of 
the network and thus increase the user’s experience. RACS is introduced as a solution from 
Nokia Solutions and Networks.   

This Thesis deals with the trade-off of offloading image processing from mobile devices to the 
RACS. Several applications – on the mobile device and on the server – have been developed 
that cooperate with each other to relocate the image processing the RACS. Data will be 
streamed to the server from different locations to find the best trade-off. 

Firstly server software has been developed that processes the images received from the 
applications. This server is deployed both on a PC and on the RACS. Secondly two road sign 
detection applications have been developed for a Samsung Galaxy S4 and a Google Glass. 
One application is created that will detect road sign based on blob color detection. The other 
application detects the square road signs and is more complex than the color detection 
application. The total execution times of the image processing are measured for all the 
applications, resulting that the color blob detection will be slower using the server and it will 
be very advantageous to move the image processing of the square detection application to the 
server.  

Two different testing scenarios have been used to measure the execution times of the image 
processing. The first scenario loops twenty times using one complex image to measure the 
average processing time of the image. The second scenario uses a series of twenty different 
images with varying complexity.  

The measurements show that the blob color detection cannot benefit from offloading to the 
RACS. However for the more complex square detection the speed up could reach up to 80%. 

In another scenario different modes for when to stream the data to the RACS have been 
evaluated for both the color blob and square detection. Streaming the image to the server and 
receiving the processed image from the server for both the color blob and the square 
detection application gave the best results. The modes that return only the contours require 
less data traffic resulting in smaller delays with the server but the data conversion of the 
received contours in the application takes a lot of time what makes it overall slower than just 
streaming the full image.  

The average power of the phone is also measured using the Monsoon Power Monitor to 
measure the average power of a detection session of the application. The moving of the 
processing to the server will result in a reduced energy consumption for both the square and 
color blob detection application. So also for speeding up and save energy it will be 
advantageous to offload image processing from the mobile device to the RACS. 

The RACS can be even more improved by allocating more cores per Virtual Machine such 
that the image detection with OpenCV can benefit from using multiple cores.  
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8.1 Future work 
This Thesis proposed an outline for the trade-off of offloading image processing to the RACS. 
Based on these results the development of the applications can be continued by reducing the 
received and sent conversion times of the images. The most optimal way off offloading would 
be to send the image to the server and only receive the contours because this has the smallest 
delay with the server. Furthermore the RACS can be expanded by locating more cores to each 
virtual machine so applications can take benefit of multiple cores to speed up the processing. 

The offloading of the data processing to the RACS can be adapted to other fields than 
augmented reality applications. It can also be adapted to virtual reality applications that 
require more and more CPU and power from the phone. For example Oculus Rift 
applications for mobile devices can move the processing of the data to the RACS so only the 
data that needs to displayed on the screen needs to be streamed from the server. The latter 
can reduce battery usage and speed up the applications.  
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