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Abstract 

The distributed control system of ELL-i open source co-operative consists of 3 parts: the Leaf 

node, the Site Controller and the Cloud Service. The Leaf node is an constrained device with 

limited ROM and RAM and uses CoAP for M2M communication. The Site Controller can use 

the Leaf node and potentially the Cloud Service for establishing the communication with the 

Leaf node. The only problem with this situation is that they communicate over the unsecure 

local network and therefore requires additional security. Besides the security, the Leaf node 

should be able to automatically connect with the Site Controller and exists only of open source 

software. 

The preferred security of CoAP is DTLS because of its handling of UDP. Most usages of DTLS 

are based on pre-shared key and raw public key in a constrained environment. A less used 

protocol for constrained environments is public-key cryptography and certificates. With 

WolfSSL, the best DTLS library as seen by the comparison, public-key cryptography can be 

implemented with a small footprint. With the X.509 certificate already embedded in the 

WolfSSL library, both devices can establish a mutual authenticated communication. However, 

according to the comparison of the certificates, the implicit certificate is more efficient for these 

environments. Furthermore, the elliptic curve cryptography is the best public-key algorithm 

for embedded devices.  





 
 

Abstract in het Nederlands 

Het gedistribueerd controlesysteem van ELL-i open source co-operative bestaat uit 3 delen: de 

Leaf node, de Site Controller en de Cloud Service. De Leaf node is een zeer simpel apparaat, 

heeft weinig RAM en ROM ter beschikking en gebruikt CoAP om te communiceren. De Site 

Controller kan de Leaf node aanspreken en eventueel de Cloud Service gebruiken om de 

communicatie te bevestigen met de Leaf node. Het enige probleem met deze situatie is dat de 

communicatie zich op het lokaal netwerk bevindt. Waardoor dit moet beveiligd worden tegen 

vreemden. Daarbovenop moet de Leaf node automatisch verbinden met de Site Controller en 

bestaan uit open source software. 

De geprefereerde beveiliging voor CoAP is DTLS vanwege zijn omgang met UDP. De 

protocollen voor DTLS zijn vaak gebaseerd op pre-shared key en raw public key. Een veel 

mindere gebruikte vorm voor Leaf nodes met beperkingen is het gebruik van certificaten en 

public-key cryptografie. Met WolfSSL als meest geschikte DTLS bibliotheek voor embedded 

systemen kan public-key cryptografie geïmplementeerd worden met een kleine voetafdruk. 

Met de certificaat type X.509 dat al geïmplementeerd is in WolfSSL kan de wederzijdse 

verificatie bekomen worden. Echter geeft de vergelijking van certificaten aan dat impliciete 

certificaten efficiënter zijn voor deze situatie. Daarnaast komt elliptic curve cryptografie uit als 

de beste kandidaat voor public-key cryptografie. 
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1 Introduction 

This thesis is made for ELL-i open source co-operative[1]. The idea of the system of ELL-i 

consists of constrained Leaf nodes controlled by the Site Controller and a Cloud Service 

which can be used as an trusted identity. The Leaf nodes are powered through the use of 

Power-over-Ethernet which means that the power is transmitted over the same cable as the 

communication. The software protocol used is Constrained Application Protocol(CoAP)[2], 

this protocol is specifically designed for lightweight communication. In addition this system 

is implemented within the local network. Furthermore, this structure causes the problem that 

the communication between the Leaf nodes and the Site Controller should be secure against 

outsiders trying to listen or even modify the data. Another aim of ELL-i is to have Leaf nodes 

that can automatically connect to the system. Their fundamental goal is to use only open-

source code. 

 

 

Figure 1: Diagram of the system of ELL-i[1] 

1.1 Problem definition 

The system of ELL-i is not safe to use in a network connected to the internet. The constrained 

Leaf node needs enough security with a strong defence against outsiders while permitting a 

Leaf node to be automatically configured into the system. The first problem is that the Leaf 

node is constrained and therefore should not use the entire storage of the Leaf node for 

security coding. Secondly, the Leaf node has to be authenticated by the Site Controller and 

vice versa so that the system has only trust worthy objects in its system. In order to have 

mutual authentication a trusted party or an common known key is needed. The trusted party 

or the common key has to be configured on the node prior to the bootstrap of the node with 

the Site Controller. If the Leaf node should work in any environment this trusted identity 

must be configured before use. Finally, because the Cloud Service does not yet exist, a basic 

web service should be implemented. In conclusion the most important part of this thesis is to 

implement the system with the goal of authentication and as a result having an automatically 

configured node. 
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1.2 Goal 

The primary goal is to have the basic functionalities, firstly a Cloud Server that provides the 

Site Controller with the necessary certificates and the needed information for the 

communication between the Site Controller and the Leaf node. Secondly the Site Controller 

must be able to communicate with the Cloud Service over an Secure Shell(SSH) tunnel and 

with the Leaf node over CoAP with DTLS security. And lastly the Leaf Node should work like 

a RESTful(Representational state transfer)  service where predefined resources and 

configurations can be read or even modified and in addition the Leaf node should have an 

reset functionality. The reset functionality erases all the keying material and certificates used 

in previous communications and lets the Node generate a new public-key pair in order for the 

Leaf node to work in all environments. For the DTLS secured communication, with and 

without the trusted identity stored in the Leaf node, two basic cipher suites should be 

implemented. The first one to configure an trusted identity and the second one to bootstrap 

the Leaf node with the Site Controller. Furthermore, the Leaf node should be developed using 

libraries made for embedded devices and consequently using no more than 42 kB of code for 

the entire certificate based handshake. 

1.3 Materials and methods 

Using the operating system of choice by ELL-i namely RIOT(The friendly Operating System 

for the Internet of Things)[3], cryptography libraries should be compared in function of size 

and peer reviewers. The size should be small and with a lot of peer reviewers so that the 

library is known to be safe.  

The security should be implemented with a public-key based cryptography as bootstrap while 

using the selected cryptography library. In addition a symmetric cryptography can be used to 

configure the Leaf node with the right trusted identity for the asymmetric bootstrap to work. 

These cipher suites should also be chosen so that the cryptography components of the 

symmetric cryptography can be used in the asymmetric cryptography to reduce footprint of 

the security. To reduce the footprint further the following objectives can be considered. 

Combining a small and an efficient process with protocols designed for embedded devices 

and selecting the right ratio of size and speed while configuring the algorithms to be either 

more size efficient or speed efficient. 

In order to retrieve certificates from the cloud service, the cloud service should be a RESTful 

web service written in JavaScript to maintain the preferred programming language of ELL-i. 

This Cloud Service will be based upon the node.js framework and potentially other well-

known modules to ensure safety, simplicity and free to distribute within for example the GPL 

licence. 
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2 Theory 

2.1 Constrained Application Protocol 

“An application-layer protocol tailored for the use with constrained devices and constrained 

networks is the Constrained Application Protocol(CoAP)” [4]. CoAP is a web transfer protocol 

based on UDP similar to the Hypertext Transfer Protocol. CoAP provides like HTTP a 

RESTful interface. The only difference is that CoAP focuses on being more lightweight and 

cost-effective. 

CoAP has four methods for a client to interact with a server: GET, PUT, POST and DELETE. 

They are respectively for retrieving, updating, creating and deleting a resource. In addition 

CoAP can offer binding methods. Three methods are available: polling, observe and push. 

The first method polling defines that the client should send periodically a GET request 

message for a specified CoAP resource. The next method, observe, defines that the CoAP 

client sends an initial GET request message with the Observe method and its attributes 

defined in the body of the message. Then the CoAP server should acknowledge this binding in 

order to accept the agreement. After that, the CoAP server can send periodically messages 

based upon the attributes. The last binding method is very similar to the observe binding 

method. With push, a resource can be preconfigured to be bound to a CoAP client’s address. 

Another functionality of CoAP is the discovery mechanisms of resources. The built-in 

discovery of CoAP allows for retrieving existing resources of a CoAP server. Furthermore, 

Datagram Transport Layer Security(DTLS) is the favoured security protocol  because CoAP 

runs on the unreliable UDP protocol and DTLS security can secure the UDP protocol by 

covering its unreliabilities and using cryptography to encrypt the data[2], [5]–[14]. 

2.2 Cryptography 

Cryptography is the study of mathematical techniques related to aspects of information 

security such as confidentiality, data integrity, entity authentication and data origin 

authentication. So there are four cryptographic goals: confidentiality, data integrity, 

authentication and non-repudiation.  

The goal of confidentiality is to keep the content of information from all but those authorized 

to access it. There are two ways to provide confidentiality: physical and logical protection. 

Examples of logical protection are mathematical algorithms which render data unintelligible. 

The data integrity goal is to have protection against alteration of data during transport. In 

order to assure data integrity, one must be able to detect an alteration. 

Authentication of an message ensures the origin of the data and entity. Information delivered 

over a channel should be authenticated as to originating entity, date of origin, data content, 

time sent and etc. Because of the two sided goal, it is often separated into two classes: entity 

authentication and data origin authentication. Data origin authentication implicitly provides 

data integrity(if a message is modified, the source has changed). 

And lastly the goal of non-repudiation prevents entities from denying previous commitments 

or actions. When a dispute arises due to an entity denying that certain actions were taken, a 

means to resolve the situation is necessary. Often a trusted third party is needed to resolve 

this dispute.  
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Figure 2 provides a schematic listing of the primitives that can be used and how they relate. 

Only the primitives useful for this thesis, e.g. symmetric-key and public-key primitives, will 

be explained in the following paragraphs. 

2.2.1 Symmetric-key encryption 

Symmetric-key cryptography or private-key cryptography uses a private key. All the peers of 

the communication know the private key in order to decrypt or encrypt data. Private-key 

encryption is used to provide confidentiality of messages. These symmetric-key encryption 

algorithms are usually grouped into stream ciphers and block ciphers. A stream cipher uses 1 

byte at a time whereas a block cipher uses blocks of data. The RC4 algorithm is an example of 

a stream cipher. The Triple DES and the AES algorithm are block ciphers.  

The process of encrypting a message is the following: the message will be first divided into 

blocks of data with the input length of the encryption function. Then the encryption will do a 

series of functions like XORing, permutations, bit-shifting and linear mixing. After these 

functions are done encrypting the block of data, the data will be known as ciphertext. Now 

there are the same amount of ciphertext blocks as plaintext blocks, the naïve way would be to 

just send them over to the other party. But this approach is dangerous because a stranger 

could use the lack of randomness to decipher the private key. In order to provide randomness 

to the messages a couple of basic encryption methods can be used: Cipher Block 

Chaining(CBC),  Counter(CTR) , Output Feed Back(OFB) and Cipher Feed Back(CFB). Only 

the most relevant modes of encryption for this thesis will be discussed. 

 

Figure 2: A taxonomy of cryptographic primitives[30] 
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In CBC mode, each block of plaintext is XORed with the previous ciphertext block before 

being encrypted. This ensures that the ciphertext always changes even if the plaintext is 

repeated. To change the first block of data an initialization vector(IV) is used. Because all the 

cipher-blocks are dependent on all the previous cipher-blocks, the last block can be used as 

authentication and integrity protection. This feature is used in CBC-MAC mode. A Message 

Authentication Code provides authentication and integrity protection to a message. 

The counter mode is an block cipher encryption algorithm that does not use the cross 

dependencies between cipher-blocks to provide randomness, instead it uses a nonce and a 

counter. The input block in Figure 4 can be a plaintext or cipher block and the output will be 

the corresponding cipher or plaintext block. 

CCM mode is an adaptation of the CTR mode with CBC-MAC to provide authentication, 

integrity and confidentiality. The CCM mode uses the CTR mode to encrypt but also the CBC-

MAC to create the MAC code. The CCM mode requires two block cipher encryption 

operations per each block of an encrypted-and-authenticated message and one encryption 

per each block of associated authenticated data. 

2.2.2 Asymmetric-key encryption 

The disadvantage of symmetric-key algorithms is the placement of the private-key on both 

ends. This can be solved with asymmetric-key algorithms because each device has its own set 

of keys. In this section, the concept of Public Key Cryptography and Public Key Infrastructure 

is explained with regards to securing IoT. 

The concept of PKC is based on how hard a mathematical problem is to solve, as in the 

complexity of calculations. Examples of hard to solve problems are prime factorization and 

Figure 3: The structure of CBC encryption. The last cipher block servers as CBC-
MAC[12] 

Figure 4: CTR encryption and decryption mode[12] 
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discrete logarithm problems. The most used public-key algorithm is RSA but an alternative is 

ECC. The first step of PKC is to generate key pairs, the public key and the private key. The 

private key is only used by the identity who is defined by the keys and it should be impossible 

for anyone to derive the private key from the public key. When a message is encrypted by the 

public key, only the private key can decrypt that message and the other way around. 

“Public-key cryptography is the de-facto standard for peer authentication across independent 

network domains in the Internet” [15]. Public-key cryptography is generally much harder to 

process than symmetric-key cryptography and they are therefore mostly used together. The 

process of public-key cryptography is often only used for establishing trust and an shared 

secret for the symmetric-key cryptography to use. The private key of PKC must be kept 

private at all times because the use of this key can indicate the identity of the peer. If 

someone would get hold of one another’s key, he could impersonate the original holder of the 

key. For this purpose there is the Public Key Infrastructure.  

RSA 

The RSA algorithm is based upon the problem of finding the prime factors of a number. For 

RSA, a key length of 1024 bit is required in order to have the same level of security as 

symmetric key cryptography with a key length of 128 bit. 

 Key exchange/agreement RSA 

The key agreement process is as displayed in Figure 5. Peer ‘A’ sends the new key encrypted 

with the public key of peer ‘B’ so that only ‘B’ can read the new key. The issue with this 

procedure is a Man in the middle attack. Peer ‘B’ cannot verify with this process who had 

send the new key. A more secure key exchange is the Diffie-Hellman key exchange[16]–[19]. 

Diffie-Hellman key exchange 

Diffie-Hellman(DH) key agreement scheme is the most famous key agreement protocol. It is 

based upon the hard to solve computational problem from logarithms. The process of DH is 

shown in Figure 6. Both Alice and Bob generate an unique large number(a and b). Both peers 

will calculate the same equation with the unique number being the only difference. The result 

of these calculations are seen as almost impossible to factor back into their begin form and 

are therefore secure for transportation. And then lastly due to mathematical properties of the 

earlier equation, both parties can derive the same secret by using the retrieved number as 

base of an exponentiation. 

Figure 6: Diffie-Hellman key agreement 
scheme[31] 

Figure 5: Encrypt new key using the public key of B[31] 
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ECC 

Elliptic Curve Cryptography is also a public-key cryptography, ECC is based on elliptic curves 

over finite fields. An 256 bit key length for ECC is equivalent to a 128 bit symmetric-key 

security. The standardization community IETF recommends AES-CCM with ECC for 

constrained devices[2].  

 ECDH 

The Elliptic curve Diffie-Hellman(ECDH) is a variant of the Diffie-Hellman protocol using 

the elliptic curve cryptography. It is used to securely exchange a secret key in an unprotected 

connection. First each party generates their own pair of private-public keys based upon an 

already agreed elliptic curve. If new keys are generated for the session the protocol is also 

defined as ephemeral ECDH(ECDHE) but static keys can be used. However this will not 

provide forward security. Next, the public keys are exchanged and the common point K on 

the elliptic curve is calculated with the following equation: 

𝑑𝑠𝑄𝑐 = 𝐾 = 𝑑𝑐𝑄𝑠 

This checks out because the pre-defined point on the curve is known to both parties and the 

following equation is valid: 

𝑑𝐴 𝑄𝐵  =  𝑑𝐴 𝑑𝐵 𝐺 =  𝑑𝐵 𝑑𝐴 𝐺 =  𝑑𝐵 𝑄𝐴 

After computing K, the x-coordinate value of K serves as a common secret between both 

parties. This secret is then used to derive the private key. An expansion function for the 

shared secret can be used to generate a shared-key with proper length. 

 ECDSA 

Elliptic Curve Digital Signature Algorithm(ECDSA) provides both authentication and 

integrity protection to a message. It is used in the key exchange of DTLS in order to deal with 

MITM attacks. The peer uses its private key to sign the message. This message can then be 

opened with only the corresponding public key and therefore provides identification of the 

sender. 

In order to provide perfect forward secrecy(PFS), ephemeral keys can be used. This practice 

is mostly used in conjunction with ECDH or DH. At the moment of creating the shared 

secret, newly generated keys are used instead of the static certified keys. This results in a 

secure communication even if the static keys are compromised. The only disadvantage of 

ephemeral keys is the extra computation cost of generating them[14], [18]–[21]. 

2.2.3 Public Key Infrastructure 

As described before, public-key cryptography uses sets of keys to identify, encrypt and 

decrypt data. So it is possible to use a set of keys to identify a peer but how do you know 

which set belongs to which peer? For this purpose certificates were designed. In today’s 

internet X.509 is the most used certificate to link a set of keys to an identity but there are 

other types like PGP, SPKI, Raw public key and Implicit certificates. 

  

Equation 1: Calculation of common point K[4] 

 

Equation 2: The deriven shared secret of both parties are equal. Where Qx: public key of x 
and dx: secret key of x[4] 
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X.509 

“X.509 Version 1 has been available since 1988, is widely deployed and is the most generic” 

[22]. A X.509 certificate can be represented by Figure 7. The X.509 certificate has resources 

identifying the subject and the issuer but because the X.509 is generic, additional resource, 

that are specific to the situation, can be added. The standard resources are the following: 

 Version 

 Serial number 

 Issuer name 

 Signature algorithm identifier 

 Validity period 

 Subject name 

 Subject public key information 

 Issuer digital signature 

The public key infrastructure of a X.509 certificate consists of a Certification Authority and a 

Registration Authority, Figure 8. The CA generates the certificates and are well known e.g. 

VeriSign. The RA is an authority that can verify user requests for a digital certificate so that 

the CA can make the certificate for this user[22].  

PGP 

The resources of a PGP certificate are very similar to the resources of a X.509 certificate. A 

PGP certificate includes the following resources: PGP version number, certificate holder’s 

public key, certificate holder’s information, digital signature of the certificate owner, validity 

period and the preferred symmetric encryption algorithm for the key. 

Figure 7: Representation of a X.509 certificate[22] 

Figure 8: Network of trust of X.509 certificates[22] 
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Figuratively speaking is a PGP certificate a public key with one or more labels tied to it as 

shown in Figure 9. The labels tie the identifying information of the owner to its public key. 

Each label can contain different means of identifying the key’s owner with for example 

private information. Besides the private information everybody may sign the 

key/identification pair to attest to their own assurance that the certificate is valid. This 

validating scheme is called web of trust as seen in Figure 9[22]. 

SPKI  

“A certificate of SPKI carries as few information on clients as possible compared to a 

certificate of PKIX( Public Key Infrastructure with X.509).[23]” According to Takamichi et al. 

there are three kinds of certificates: ID certificate, Attribute Certificate and an Authorization 

Certificate. The ID certificate guarantees the binding of an identity and a public key. The 

attribute Certificate guarantees the binding of an identity and an authority. And lastly the 

Authorization Certificate guarantees the binding of an authority and a public key. An 

authorization certificate is generated by a server and is held by a client who can use it to 

utilize the service of that server. This authorization certificate is based upon the SPKI 

certificate. 

The contents of a SPKI certificate include: Issuer, Subject, Delegation, Authorization, 

Validity. The first field, issuer, specifies who has created and signed the certificate. The issuer 

is represented as a public key or hash of a public key. The next field, subject, defines to whom 

the certificate has been issued. The subject is also represented by a public key or hash of a 

public key. The Delegation field specifies whether the authority specified in the certificate is 

delegatable or not, represented by a Boolean value. The authorization field specifies the 

authority of the certificate. The last field, validity, defines until when the certificate is 

valid[23]. 

Raw public key  

The raw public key method sends the public-key raw over the channel. This causes the 

problem that verifying the raw public key has to be installed out-of-band. There are three 

available methods: firstly retrieved from a DNSSEC secured resource record using DNS-

Based authentication of Named Entities (DANE), secondly obtained from a certificate chain 

from a Lightweight Directory Access Protocol (LDAP) server and thirdly the public-keys 

should be provisioned into the operating system firmware image and updated via software 

updates[24], [25]. 

Implicit certificate  

With a conventional certificate or explicit certificate like X.509, the public key and the digital 

signature are distinct data elements. An implicit certificate has in contrast to explicit 

certificates no public key element but uses a superimposed signature and public key. The 

certificate is built so that the public-key can be derived while verifying the certificate with the 

superimposed data element. The implicit certificate has also like an explicit certificates, 

identification data to identify the subject of the certificate[26], [27]. 

Figure 9: The PGP certificate on the left; Web of trust on the right[22] 
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2.3 IP security 

The most widely deployed protocol for securing IP-enabled devices is Transport Layer 

Security(TLS). TLS runs over the reliable Transmission Control Protocol (TCP) and provides 

protection against attacks such as eavesdropping, tampering and message forgery. In 

constrained environments however is UDP the most favoured transmission protocol because 

of its less complex structure and smaller overhead. This is also why CoAP runs over UDP and 

this has led to the development of Datagram Transport Layer Security(DTLS). Because UDP 

does not guarantee delivery, ordering or duplicate protection, DTLS has resources build in to 

cope with the disadvantages of having a connectionless communication protocol. In addition, 

most elements used by DTLS are based upon TLS thus providing the same security 

guarantees as TLS. This was done to minimize new security inventions and to maximize the 

amount of code and infrastructure reuse. 

The DTLS protocol consists of two objectives: the handshake layer to establish a secure 

connection and the traffic encryption layer to protect the communication via the secure 

connection. The handshake is always the first to execute. It sets up a secure communication 

for the encryption of messages. Both parties who are involved in the handshake have to agree 

on the security details they both will use and in addition the handshake can provide mutual 

authentication if needed. In the next paragraph all the flights during the handshake will be 

discussed to point out the capabilities of this handshake. 

Handshake  

Three different types of handshakes are possible in DTLS, it depends on what kind of 

authentication is required: no authentication, server authentication and mutual 

authentication. In this thesis mutual authentication is required.  The mutual authentication 

can be achieved by Pre-Shared Key(PSK), Raw Public Key(RPK) or certificates but it will be 

discussed later. As seen in Figure 10, the handshake consists of six flights and each flight is a 

group of multiple messages. This handshake is similar to the TLS handshake except from the 

first two flights. These are sent in order to prevent Denial of Service(DoS) attacks. 

The handshake begins with a ClientHello message to start the handshake. This message also 

includes the security parameters supported by the client and a random value that is used 

later. When the server receives this message it will create a stateless cookie with parameters 

from the ClientHello. The cookie is used to prevent DoS attacks because the client has to send 

another ClientHello as a response of the server sending an HelloVerifyRequest to create a 

state on the server. With flight 3, the ClientHello, the handshake can really begin. 

Flight 4 consists of up to five messages: ServerHello, Certificate, ServerKeyExchange, 

CertificateRequest and ServerHelloDone message. The ServerHello message contains the 

security parameters that will be used during the handshake and traffic encryption layer and 

the random value from the ClientHello. If both peers do not have an common known security 

suite, the handshake will be terminated. The security suite defines the algorithms used 

during and after the handshake layer. The next message of flight 4 is the optionally Certificate 

message. If the Client wants to verify the certificate of the server, to authenticate the server, 

the certificate is send. The ServerKeyExchange message is an cipher suite depended message 

which is only send with some suites that require additional parameters for deriving the 

premaster secret. For example, the cipher suite TLS_ECDHE_ECDSA_AES_128_CCM_8 

uses ECC for the key establishment and authenticating message. It uses AES with CCM_8 

mode for bulk encryption and authentication. This cipher suite needs the ServerKeyExchange 

to send the ephemeral ECDH public key of the server and the specification of the 

corresponding elliptic curve. The CertificateRequest message can be send in order to enable 

the authentication of the client, resulting in mutual authentication if both parties have 

verified each other. To finish flight 4, the ServerHelloDone message is send. 
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The messages of flight 5 are the Certificate, the ClientKeyExchange, the CertificateVerify, the 

ChangeCipherSpec and the Finished message. The first message, Certificate message, 

contains the certificate or another form of authentication data. This message is only send 

when the CertificateRequest from the server was send. Then the ClientKeyExchange is send. 

The ClientKeyExchange is the same as the ServerKeyExchange except for the sender and 

receiver. After the ClientKeyExchange comes the CertificateVerify message, it is used by the 

client to proof his possession of his private key. The client computes the hash of all 

exchanged flight messages so far and then computes the signature of the digest using the 

corresponding private key. Before flight 5 is finished with the Finished message an 

ChangeCipherSpec message is send to signal the server that the client will encrypt the 

subsequent messages with the negotiated algorithms. 

To end the handshake, flight 6 is send by the server with its own ChangeCipherSpec and 

Finished message. With the handshake being completed, both peers can communicate using 

the negotiated cipher suite. 

 

2.3.1 Cypher suites of DTLS 

TLS and DTLS uses standard cipher suites to enable easy configuration of the 

communication. Each named cipher suite defines a key exchange algorithm, bulk encryption 

algorithm, message authentication code(MAC) and a pseudorandom function. 

 The key exchange algorithm determines how the client and server will authenticate 

during the handshake. This can also be divided into an key exchange and an 

authentication algorithm. 

 The bulk encryption algorithm defines which algorithm is used to encrypt the message 

stream. It also includes the key size and the lengths of explicit and implicit initialization 

vectors. 

 The message authentication code algorithm creates the message digest, a cryptographic 

hash of each block of the message stream. 

 The pseudorandom function(PRF) creates the master secret. The master secret is used 

as a source of entropy when crating session keys, such as the one used to create the 

MAC.  

The application-layer protocol CoAP defines two mandatory cipher suites: TLS_PSK 

_AES_128_CCM_8 for PSK mode and TLS_ECDHE_ECDSA _AES_128_CCM_8 for RPK 

Figure 10: Flow of an DTLS handshake[15]. Messages with an 
'*' are optional 



26 
 

mode. This thesis will compare the algorithms that can be used for constrained environments 

so to choose the best cipher suite. 

Cryptographic hash 

A cryptographic hash is often used to verify the data’s integrity because these hashes are a 

one-way message-digest algorithm. The output hash value that comes out of the 

cryptographic hash cannot be used to retrieve the original input value. It is therefore only 

used to verify the integrity of the message. The most common used cryptographic hashes are 

MD5 and SHA but other methods are available as explained in the symmetric-key 

cryptography chapter.
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3 IP security 

In order to provide IP security for constrained devices using CoAP as communication 

protocol, DTLS is preferred. DTLS however has a lot of ways to provide the necessary security 

objectives. In this system three objectives are considered: lightweight, mutual authentication, 

interoperability and automatic integration. 

3.1 PSK, RPK and certificates 

The advantage of using public-key cryptography is the identity based establishment. If a peer 

has the right identity it can be allowed to communicate, and this makes the system more 

flexible in the sense of automatic configuration. 

PSK has in comparison to public-key cryptography the advantage of performance. The shared 

secret is based upon the PSK and therefore does not need to use the more resource expensive 

public-key cryptography. 

RPK is in a way the combination of certificates and PSK. The connection establishment is 

identity based but the public-key of the corresponding peer needs to be preconfigured by an 

out-of-the-band method.  

3.2 Public-key algorithms 

If public-key cryptography can be used in an constrained environment, which one would 

suite best? In order to compare the two public-key algorithms, two aspects can be compared. 

First of all the size of the key used in the algorithm and secondly the needed processing 

capability. 

3.2.1 Key size 

The security of the encryption is dependent on the length of the key. According to the 

National Institute of Standards and Technology(NIST), Table 1, is a 128-bit symmetric-key of 

similar security level as an 3072 bit RSA key. This RSA key is really large for a constrained 

device as the lowest end of devices have only 8kB of RAM. That would mean that only the key 

uses almost half of the volatile memory. Thankfully there is a possible substitute for RSA that 

uses much smaller keys, Elliptic curve cryptography. For an 128 bit of symmetric key security 

the elliptic curve key has to be 256 bit. 

Table 1: NIST-recommended key sizes in bits 

Symmetric-key (AES) RSA key Elliptic curve key 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 521 

3.2.2 Efficiency 

Table 2 provides the processing comparison between an RSA 2048 bit key against an ECC 

224-bit key based upon the NIST curve. The benchmark runs on the OPAL node[28] which 

features an Atmel SAM3u micro-controller and the Atmel AT97SC3203S TPM. The 

benchmark measures one Private Key and two public-key operations. The RSA and ECC 

implementations are based upon the WolfSSL project. 
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It is notable how faster the ECC based handshake is than the RSA counterpart. In addition, 

the ECC 224-bit key provides better security over the 2048-bit key according to the NIST-

recommended key sizes in Table 1. 

Table 2: Public-key part of DTLS handshake using software ECC and RSA on OPAL[17] 

Handshake Processor clock(MHz) Computation time(ms) 

RSA – 2048-bit 48 5165 

RSA 96 2583 

ECC – 224-bit 48 1614 

ECC 96 772 

3.3 Certificates 

In the environment of IoT, everything needs to be as constrained as possible. Therefore it is 

good to think about what certificates should be able to offer in the IoT environment. A 

certificate in an IoT environment needs to verify the trustworthiness of peers. A question that 

a peer could ask is: Is this peer allowed to communicate with me? There are four elements 

where the certificates could be different: the certificate, network of trust and revocation 

procedure. At the end of this chapter, a footprint comparison of three types of certificates is 

shown. 

3.3.1 Differences in certificate 

Every PGP certificate contains a self-signature and optionally multiple third party signatures. 

For a X.509 certificate supports only a single digital signature from the CA. Both the X.509 

and PGP certificates can have a lot of ‘personal’ information to verify the peer. A SPKI 

certificate on the contrary has as little as possible ‘personal’ information and is only signed by 

the issuer. Then there is the Implicit certificate, it has also identification data elements but in 

contrast to explicit certificate the signature and the public key are not separate data elements. 

The public key can be derived from the signature. 

3.3.2 Differences in network of trust 

A peer can create his or her own PGP certificate. This certificate can then be signed by 

everyone who wants to act as an introducer of that key and therefore contributing to the web 

of trust. In the case of X.509 certificates, only the CA can issue a certificate and it is the job of 

the RAs to approve the certificate request. This is similar with SPKI certificates, a trusted 

identity can sign and manage the certificates. The network of trust of implicit certificates are 

also based upon the X.509 network of trust with an issuer wo can sign the certificate. 

3.3.3 Differences in revocation procedure 

A revoked signature is the same as a revoked certificate in a X.509 certificate infrastructure 

provided that the signer(CA) the only is that made it valid. With X.509 certificates, only the 

issuer(CA) can revoke the certificate. PGP certificate is in contrast to X.509 certificates 

revoked by the user(subject). In case of the PGP, the user posts the revoked certificate on a 

certificate server. With X.509 the revoked certificate is put in the CRL. The revocation 

procedure for SPKI is similar to X.509. 

The revocation procedure of implicate certificates is non-existent. It is not done because 

implicit certificates can be generated more frequently so the CA can simply stop refreshing a 

user’s certificate. 
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3.3.4 Size comparison 

The X.509 and PGP certificates are almost similar in the data elements and will therefore not 

differ a lot. The SPKI and implicit certificate have less data elements and are therefore more 

likely to be smaller in size. But the most size expensive element of a certificate is the public 

key and the signature of the certificate. In Table 3 two certificates are compared, the X.509 

certificate and an implicit certificate (ECQV). In addition the X.509 certificate will be based 

upon a RSA and ECC certificate. When comparing a couple of security levels it is notable that 

the RSA certificate is much larger than the ECC certificate. This is because the keys of RSA 

cryptography need to be longer than ECC cryptography in order to achieve the same security 

level. Because the public-key and signature are combined in one data element with implicit 

certificates, another size reduction can be achieved. 

Table 3: Comparison of certificate sizes of implicit certificate(ECQV), ECC based certificate(ECDSA) and RSA 
based certificate[29] 

Security Level 

Certificate size (bits) Ratio 

ECQV/RSA 

certificates 
ECQV ECDSA RSA 

80 193 577 2048 10x 

112 225 673 4096 18x 

128 257 769 6144 23x 

192 385 1153 15360 39x 

256 522 1564 30720 57x 

 

3.4 Footprint  

To make a good comparison, the overall footprint can be considered. Figure 11 compares the 

RAM overhead of three different systems. The first certificate based system uses the 

certificate based handshake. The next system uses a symmetric-key based handshake PSK to 

establish a connection. And the last system is the proposed system of René Hummen et 

al[15]. The delegation system uses a special designed architecture based upon DTLS to enable 

the nodes in communication with over-the-internet devices. This system defeats the 

interoperable objective of this thesis and therefore cannot be used. Another system, 

presented by Thomas Kothmayr et al[17],  that implements X.509 certificates and DTLS 

system indicated an total usage of approximately 20kB of RAM and 67kB of ROM for the 

entire implementation including the networking and system code. 

The RAM overhead of the certificate based system uses almost three times more RAM than 

the symmetric based system. This is a considerable amount and can be directly linked to the 

storage space of certificates and public-keying resources. The smallest of current constrained 

devices have a minimum of 8kB of RAM,  in comparison to the total implementation usage of 

20kB . These devices will not be able to run X.509 certificate based DTLS. 

Figure 11: RAM overhead of the certificate based DTLS handshake, the 
symmetric-key based handshake and the delegation architecture[15] 
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The footprint on the storage is also considerable larger. Figure 12 compares the ROM usages 

of the same systems as the RAM overhead comparison. The ROM overhead of an certificate 

based DTLS handshake is yet again almost three times as high as the symmetric-key based 

DTLS handshake. To compare with a fully implemented system, the total system indicated an 

usage of 67kB of ROM. 

Is the ROM overhead significantly compared to the total storage space of today’s constrained 

devices? The lowest end devices have around 64kb ROM and 8 kb of RAM. Midrange devices 

can have up to 256 KB of ROM and from 4 to 32 KB of RAM. The high end devices have 

128KB up to 1MB of ROM and up to 128 KB of RAM. In the case of really low end devices 

public-key cryptography is almost not possible to implement because there is also the code in 

order to use Ethernet communication and application specific coding. If the node is rather 

from the mid-range or the high range of constrained devices, public-key crypto based DTLS is 

definitely a considerable option. 

3.5 Libraries 

A lightweight security can only be achieved by using code optimized for size. And to not 

reinvent code, libraries can be used. When comparing libraries for a company that wants to 

sell their product a couple of objectives can be considered: the number of algorithms, small 

footprint and peer reviewers. The amount of algorithms contribute to the easiness of 

adapting the product. The small footprint is to make the security in this case as small as 

possible. And the last objective peer reviewers is to make sure that most bugs are an can be 

easily resolved. 

The comparison of the libraries in Table 4 is done by comparing the objectives of the libraries 

by visiting their website. The peer reviewers is mostly based upon GitHub followers and 

Google search hits. The footprint is based upon their objectives. 

Table 4: Comparison of libraries 

Name Start date #Algorithms Small footprint Peer reviewers 

ARM mbed TLS 2006 ++ +(+) +++ 

Cryptlib 2003 ++ + +++ 

NaCL 2009 ++ ++ ++ 

Libsodium 2013 - + +/- 

Libtomcrypt 2003 + + - 

wolfSSL 2004 ++ ++ ++ 

Relic-toolkit 2009 + ++ +/- 

Tinydtls 2011 - ++ ++ 

Figure 12: ROM overhead of the certificate based DTLS handshake, the 
symmetric-key based DTLS handshake and the delegation architecture[15] 
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4 The system 

As explained in the introduction the system of ELL-I consists of three objects: Leaf node, Site 

Controller and the Cloud Service. In this chapter all the parts will be explained and how they 

relate to each other.  

4.1 Cloud Service 

The purpose of the cloud service is to act as an trusted identity/certificate authority. It needs 

to provide the Site Controller with the needed information for the automatic integration of 

the Leaf node in the local network. The cloud service is written in the preferred programming 

language by ELL-i, JavaScript. And to make a program with JavaScript Node.js must be used. 

Node.js provides an asynchronous coding style with basic functionalities to write programs. 

To provide the clients of ELL-I of an easy to use interface when they desire to use their own 

Site Controller, an interface must be made. To make such a interface a Web Service like 

interface can be coded, there is REST and SOAP. Because REST is surpassing SOAP in a lot of 

ways and is the most popular web API style, the choice is easy. So the Cloud Service’s API will 

be a REST API. 

If the Cloud Service needs to help the Site Controller connecting to a Leaf node, the Cloud 

Service needs to know which Leaf node is contacted. Therefore a database is used. The Leaf 

nodes of ELL-i will be stored into this database so that the Cloud Service can verify to which 

Leaf node the Site Controller is connecting. The database is the PostgreSQL database that can 

provide a lot of functionalities to ELL-i and it is free to use.  

To act as an certificate authority, the cloud service needs a certificate generator. Traditionally 

to make a certificate you would need to have the public key of the subject, data to identify the 

subject and then the CA keys to sign the certificate. The most secure way is for the subject to 

create a certificate request(CSR). A certificate request is a message send from the subject to 

the issuer to apply for a certificate. The most common format for CSR is PKCS #10. It 

contains the public key, identification material and his own signature so that the CA can 

verify the request. 

In Figure 13 the diagram of the web service is presented. The Site Controller will need to 

connect to the Cloud Service using an SSH connection so that the connection is secured. The 

Site Controller can use the Cloud Service by using the routes provided by the REST API. This 

interface makes sure that the Site Controller cannot directly modify or create any data from 

the database or certificate generator. The API can use the database manager to look up the 

Leaf node the site controller is trying to connect with. If the Site Controller is allowed to 

connect with the Leaf node, the API can generate a certificate for the Site Controller specific 

to the Leaf node if needed. 

Figure 13: The Cloud Service program 
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4.2 Leaf node 

The constrained Leaf node uses CoAP to communicate with DTLS security. The CoAP 

protocol provides the Leaf node with REST like interface for the Site Controller to retrieve 

and update resources. In the next paragraphs a couple of objectives are explained: service 

announcement, DTLS handshake and structure of the Leaf node. 

For the Site Controller to find the Leaf node an indicative message must be send. With the 

use of CoAP and IPv6 this can be done. If the Leaf node is connected to the local network it 

will need to receive an IP address. With this address it can then multicast into the local 

network to let know that it exists. This message needs to indicate to the Site Controller which 

Leaf node he will be talking to. For this CoAP can be used, the Leaf node will act as a CoAP 

client and will send a request to ‘PUT’ a new Leaf node with his identification as payload into 

the resources of the Site Controller. After that, the Site Controller can initiate communication 

with the Leaf node. 

The DTLS handshake will use public-key cryptography to authenticate and to establish an 

shared key. The identification certificate of the Leaf node and the trusted identity has to be 

preconfigured on the Leaf node, so it needs an alternative to the public-key cryptography for 

connecting and configuring the certificates on the Leaf node. Another advantage of enabling 

the Leaf node to have no certificates is that the Leaf node can reset and generate new keys so 

that the user of the Leaf node can configure it to use another trusted identity. With the reset 

functionality, the Leaf node can be renewed to make sure that the public keys are less likely to 

be exposed. 

If the Leaf node has all the certificates, the site controller can connect to it with its DTLS 

client. The Site Controller needs to support ECC(ECDHE and ECDSA) and AES with CCM_8 

mode. This is the best cipher suite for constrained devices. The Leaf node can verify the Site 

Controller’s certificate with the pre-installed certificate of the Cloud Service and a secure 

connection can be established. 

If the Leaf node has no certificates, a person of machine needs to be able to connect with the 

Leaf node in order to configure the certificates. This can be done by partly using the already 

available algorithms used by the public-key connection and a bit of additional code to support 

the PSK mode of DTLS. The first step for the person configuring the Leaf node is to make 

sure the network is secure. Then a pre-shared key that was configured during manufacturing 

and for example printed onto the Leaf node with QR-code can then be used to establish a 

secure connection with the Leaf node. After that, the user of the Leaf node can configure the 

certificates by using the CoAP interface of the Leaf node. 

Figure 14 provides the structure of the program on the Leaf node and the process of 

connecting to the Leaf node. The CoAP server of the Leaf node will run on top of the DTLS 

implementation while the CoAP client will only run on top of the UDP implementation 

because the service announcement will not be secured with DTLS. The process of the Leaf 

node connecting to the Site Controller is as explained before. The Leaf node will first send an 

service announcement. Then the Site Controller will initiate the DTLS handshake with the 

Leaf node to establish a secure communication channel between the Site Controller and the 

Leaf node. Finally when the secure connection is established, the Site Controller can start 

using the Leaf node’s resources. 
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4.3 Site Controller 

The Site Controller is the hearth of the system, it uses the Leaf nodes and the Cloud Service. 

It will use the Leaf node to read resource, e.g. temperature of a room, and the Site Controller 

can configure the Leaf node to for example close the blinds. If an installer needs to install this 

system, this person only needs to configure the Site Controller’s link to the Cloud Service if 

the Leaf nodes are pre-configured with the right certificates. The only remaining installation 

work is to insert the Leaf nodes into the local network. 

The configuration of the communication between Site Controller and Cloud Service is done at 

the moment by setting up a SSH connection to the Cloud Service and configuring the right 

key to start the communication with the Cloud Service. 

For the Site Controller to contact the API of the Cloud Service, SOCKS5 protocol is used. The 

SOCKS5 protocol enables the usage of an distant network. With this protocol the SSH tunnel 

can be used to connect to a specific port of the Cloud Service so that the API of the Cloud 

Service can be used. 

Node.js does not yet support DLTS. DTLS needs therefore to be implemented for the 

communication with the Leaf node. It is done by using Node.js’s ability to interface other 

languages. With node-ffi, C and C++ code can be interfaced in Node.js. To make sure the 

functions of the library does not provide additional problems, a more simplified interface is 

built on top of the library, see Figure 15. With the functions: initDTLS, connectToServer, 

writeDTLS and readDTLS a simple and asynchronous interface was build. 

To connect with the Leaf node, the Site Controller needs to have a CoAP client on top of a 

DTLS implementation and a CoAP server without DTLS that is listening for service 

announcements. This is also shown in Figure 17. When the Leaf node contacts the Site 

Controller about his service, it can retrieve the necessary information to initiate the DTLS 

connection with the Leaf node. 

Figure 16 provides the full process of a Leaf node connecting to the Site Controller. The first 

step of the system is for the Leaf node sending a Service announcement to the Site Controller. 

Figure 14: The program of the Leaf node 

Figure 15: Interface of DTLS in Node.js 
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Now that the Site Controller knows of the Leaf node, it can potentially request a certificate 

signed by the Cloud Service. When the Site Controllers possesses all the information needed 

to contact the Leaf node, it will initiate the DTLS communication. If the handshake is finally 

finished, it can start using the Leaf node. 

 

 

 

 

Figure 16: Process of the Leaf node connecting to the Site Controller 

Figure 17: The structure of the Site Controller's program 
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5 Conclusion 

An objectives for the system in this thesis is to make the Leaf nodes automatically 

configurable and to make them usable in every system. This can be achieved by 

implementing the certificate support with mutual authentication. If the peer communicating 

with the Leaf node has a certificate signed by the trusted identity, trusted by the Leaf node, 

then the Leaf node will continue with the communication. If the Site Controller locates a Leaf 

node in the local network, it can verify the Leaf node to be trustable by verifying the 

certificate of the Leaf node. The best certificate to use in an IoT environment is an implicit 

certificate. However, implicit certificates are not yet wide spread and X.509 certificates are 

therefore better for interoperability. 

To make the footprint as small as possible, a good library for DTLS can be chosen. The best 

library for these environments that has a lot of algorithms, a small footprint and lots of peer 

reviewers is WolfSSL. The best cipher suites for the communication with the Leaf node is 

ECDHE_ECDSA_AES_CCM_8 if there are certificates available. ECC is the lightest and 

smallest of public-key cryptography and therefore suitable for an IoT environment and 

AES_CCM_8 for its size in comparison to SHA based cipher suites. PSK_AES_CCM_8 

would be the best for establishing a connection without certificates, most of the algorithms 

and processes used in PSK mode with AES_CCM_8 are already available in the public-key 

mode handshake. 

At the moment of this writing the system is being implemented by using JavaScript for the 

Leaf node. The code of RIOT-os for ipv6 and Ethernet capabilities is being rewritten and 

therefore hard to use. In the future a lot of improvements could be done, for example 

implementing implicit certificates in WolfSSL and by optimizing the code in the Leaf Node. 
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