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SAMENVATTING 
Vervuiling van het milieu met metalen door menselijke activiteiten beïnvloedt vele regio’s wereldwijd. 

Cadmium (Cd) is een toxisch metaal dat makkelijk wordt opgenomen door planten en daardoor in de 

voedselketen terechtkomt, dit leidt tot negatieve gevolgen voor de gezondheid van verscheidene 

organismen. Eén van de belangrijkste effecten van Cd in planten is de inductie van oxidatieve stress 

door een verhoogde productie van reactieve zuurstofvormen (ROS). Om de cellulaire redox balans te 

behouden, bezitten organismen een antioxidatief verdedigingssysteem bestaande uit enzymen en 

metabolieten zoals ascorbaat (AsA) en glutathion (GSH). Daarnaast blijken AsA en GSH betrokken te 

zijn in de regulatie van de celcyclus. In een alternatieve celcyclus, endoreduplicatie genaamd, wordt 

chromosomaal DNA gerepliceerd zonder dat de cel mitose ondergaat. Dit resulteert in plantencellen 

die meerdere kopieën van het diploïde genoom bezitten, of endopolyploïdie. Daarnaast blijkt 

endoreduplicatie geïnduceerd te worden door externe stressfactoren zoals bijvoorbeeld UV-B straling. 

Daarom stellen we de hypothese dat Cd endoreduplicatie beïnvloedt in blaadjes van Arabidopsis 

thaliana en hierbij oxidative stress gebruikt wordt als een onderliggend mechanisme.   

  Om deze hypothese te onderzoeken werden in deze studie de effecten van Cd op 

endoreduplicatie en de mogelijke link met de Cd-geïnduceerde oxidatieve stress onderzocht in 

blaadjes van Arabidopsis thaliana. De eerste onderzoeksfase van deze studie had daarom als doel de 

mate van endoreduplicatie te bepalen in aparte blaadjes van A. thaliana gegroeid onder controle 

omstandigheden, van dag 11 tot dag 21 na het zaaien. Metingen door middel van flowcytometrie 

hebben aangetoond dat de mate van endoreduplicatie stijgt naarmate de blaadjes ouder worden door 

de opeenvolging van endocycli. Daarnaast werd er aangetoond dat endoreduplicatie een belangrijke 

rol speelt in de ontwikkeling van het blad, voornamelijk tijdens de expansiefase van bladgroei. Omdat 

endoreduplicatie leeftijdsafhankelijk blijkt te zijn en mogelijk gereguleerd wordt door redox 

signalisatie, werden ook oxidatieve stressgerelateerde parameters en leeftijdsafhankelijke verschillen 

bestudeerd onder controle omstandigheden. De concentratie GSH was in het algemeen lager in oude 

blaadjes ten opzichte van jonge blaadjes. Expressieniveaus van oxidatieve stress merkers waren in het 

algemeen gestegen in oude blaadjes vergeleken met jonge blaadjes. Daarom stellen we dat deze 

effecten te wijten zijn aan verhoogde gevoeligheid van jonge blaadjes voor stressfactoren, resulterend 

in een grotere behoefte aan metabolieten. Terwijl oude blaadjes, door naderende senescentie, 

verlaagde antioxidatieve capaciteiten en verhoogde niveaus van oxidatieve stress vertonen.  

 In de tweede fase van deze studie werden Cd-geïnduceerde effecten op endoreduplicatie en 

de mogelijke link met de Cd-geïnduceerde oxidatieve stress onderzocht in A. thaliana blootgesteld 

aan 0, 1, 2.5, 5, 7.5 en 10 µM Cd, vanaf dag 11 na het zaaien. Ondanks het feit dat onderzoek heeft 

aangetoond dat verscheidene externe stressfactoren endoreduplicatie induceren, tonen onze 

resultaten dat Cd blootstelling de mate van endoreduplicatie in blaadjes van A. thaliana verlaagt. 

Tegen onze verwachtigen in werden de expressieniveaus van SMR genen, positieve regulatoren van 

endoreduplicatie, verhoogd na blootstelling aan Cd. Expressieniveaus van DEL1, een negatieve 

regulator, werden daarentegen niet beïnvloedt door blootstelling aan Cd. Aangezien deze SMR genen 

ook een rol blijken te spelen in de ROS-geïnduceerde DNA schade respons, stellen we de hypothese 

dat ROS-geïnduceerde DNA schade ATM activeert en deze op zijn beurt de expressie van SMR genen 

induceert. Aangezien belangrijke regulatoren van endoreduplicatie dus een rol spelen in de Cd-

geïnduceerde oxidatieve DNA schade respons, en concentraties van antioxidatieve metabolieten, net 

zoals endoreduplicatie, sterk leeftijdsafhankelijk blijken te zijn, is Cd-geïnduceerde oxidatieve stress 

mogelijk betrokken in de Cd-geïnduceerde effecten op endoreduplicatie.
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ABSTRACT 
Environmental metal pollution caused by anthropogenic activities affects many regions worldwide. 

Cadmium (Cd) is a toxic metal which is easily taken up by plants and thereby introduced into the food 

chain, causing negative health effects in many organisms. One of the most important effects of Cd in 

plants is the induction of oxidative stress by an increased production of reactive oxygen species (ROS). 

In order to maintain the cellular redox balance, organisms possess an antioxidative defence system 

consisting of enzymes and metabolites. In addition to their role as antioxidative metabolites, ascorbate 

(AsA) and glutathione (GSH) are involved in the regulation of the cell cycle as well. In an alternative cell 

cycle mode called endoreduplication, chromosomal DNA is replicated without intervening mitoses. 

This results in plant cells containing multiples of the diploid genome and thus endopolyploidy. In 

addition, endoreduplication seems to be affected by external stress factors such as high UV-B 

irradiation. Therefore, we hypothesized that Cd affects endoreduplication in leaves of Arabidopsis 

thaliana using oxidative stress as an underlying mechanism.   

  In this study, Cd-induced effects on endoreduplication and the possible link with the Cd-

induced oxidative challenge were investigated in leaves of A. thaliana seedlings. The first objective of 

the study was to investigate the extent of endoreduplication in separate leaves of A. thaliana grown 

under control conditions from day 11 to day 21 after sowing. Flow cytometric measurements showed 

the extent of endoreduplication to increase with increasing leaf age by successive endocycling. In 

addition, endoreduplication was shown to play an important role in leaf development, especially 

during the expansion phase of growth. Since endoreduplication seems leaf age-dependent and may 

possibly be affected by redox signalling, oxidative stress-related parameters and age-related 

differences herein were measured under control conditions as well. Concentrations of GSH were 

generally lower in old leaves as compared to young leaves and expression levels of oxidative stress 

markers were increased in old leaves as compared to young leaves. We hypothesize that these effects 

might be due to a combination of increased vulnerability of younger leaves to external stressors and 

therefore higher antioxidative metabolite concentrations, and decreased oxidative capacities of old 

leaves approaching senescence which results in higher levels of oxidative stress.   

 In the second part of this study, Cd-induced effects on endoreduplication and the possible link 

with the Cd-induced oxidative challenge were investigated in leaves of A. thaliana seedlings exposed 

to 0, 1, 2.5, 5, and 7.5 or 10 µM Cd, starting from day 11 after sowing. Although research has shown 

several external stress factors to induce endoreduplication, our results showed Cd exposure to 

decrease the extent of endoreduplication in leaves of A. thaliana. In contrast to our expectations, SMR 

genes, positive regulators of endoreduplication, were increased in response to Cd exposure while 

expression levels of DEL1, a negative regulator of endoreduplication, remained unaltered. Since the 

measured SMR genes are also known to be involved in the ROS-induced DNA damage response, we 

hypothesize that ROS-induced DNA damage activates ATM and subsequently the SMR genes. This was 

supported by increased gene expression levels of ATM and oxidative stress markers. Since important 

regulators of endoreduplication seem to be involved in the Cd-induced oxidative DNA damage 

response and antioxidative metabolite concentrations seem to be leaf age-dependent, similar to 

endoreduplication, Cd-induced oxidative stress may be involved in the Cd-induced effects on 

endoreduplication.
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1 INTRODUCTION 
Extensive mining and industrial activities during the late 19th and early 20th century in addition to 

diverse anthropogenic activities nowadays, have led to a widespread environmental pollution by 

metals including cadmium (Cd)(1, 2). Their occurrence in the atmosphere, soil and water can cause 

problems to all organisms. After being released into the environment, these metals can be taken up 

by plants and introduced into the food chain, causing risk for human health(3).   

 Cadmium 

1.1.1 Cadmium in the environment 

Cadmium is a metal present in soils, water and the atmosphere and occurs as complex oxides, 

sulphides and carbonates in zinc (Zn), lead (Pb) and copper (Cu) ores. It is released from natural sources 

such as the earth’s crust and mantle by volcanic activity and weathering of rocks. However, historic 

anthropogenic Cd releases deposited in soils, landfills and waste piles have led to Cd concentrations 

exceeding those from natural sources. Up to now, anthropogenic activities such as the mobilisation of 

Cd impurities in raw materials (e.g. phosphate minerals, fossil fuels, Zn and Cu) and its intentional use 

in products and processes (e.g. non-ferrous metal production, power plants, cement production, 

nickel-Cd battery industry, phosphate fertilizers) still contribute to environmental Cd pollution(4, 5). For 

example, in Belgium, the rural northern part of the Kempen is polluted by Cd, primarily due to past 

emissions by zinc smelters from non-ferrous industries(6). 

1.1.2 Cadmium in humans 

During the last decades, Cd has raised great concern and has been recognised not only as an 

occupational health hazard but also as a serious risk to environmentally exposed populations(6, 7). Since 

Cd can be easily taken up from contaminated soils by plants, it is accumulated in crops and vegetables 

and introduced into the food chain. Therefore, human exposure to Cd is mainly due to the ingestion 

of contaminated food or exposure to tobacco smoke(7, 8). Other possible sources of exposure are house 

dust, ambient air and drinking water(4). Although dietary uptake of Cd is the primary route of exposure, 

absorption of Cd via the lungs is higher than via the gastrointestinal tract. Cadmium is inhaled as 

particulate matter and its absorption is strongly dependent upon particle size and solubility(9).   

 Once absorbed into the bloodstream, Cd is mainly stored in internal organs such as the liver 

and kidneys. With increasing exposure intensity, an increasing proportion of the absorbed Cd is stored 

in the liver, although the highest concentrations are generally found in the renal cortex(4).   

 The kidney is considered the critical target organ for chronic dietary Cd exposure. Effects of 

Cd-induced renal damage include proximal tubular reabsorptive dysfunction, which results in 

increased protein excretion in urine. Furthermore, prolonged exposure to high levels of Cd may lead 

to decreases in calcium absorption, bone mineralization and bone formation in addition to an increase 

in bone resorption, causing the so called itai-itai disease(7). The very long biological half-life of Cd, 

ranging from 10 to 30 years in the human body due to a generally slow excretion, is an important cause 

for human Cd toxicity(10). In addition, the International Agency for Research on Cancer (IARC) has 

classified Cd as a group I human carcinogen(4).   

1.1.3 Cadmium in plants 

Although Cd is a non-essential element and toxic metal for plants, it is readily taken up by their roots 

due to its high mobility and water solubility. Furthermore, transport of Cd ions via transmembrane 
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carriers involved in the uptake of Ca2+, Fe2+, Mg2+, Cu2+ and Zn2+ is facilitated due to their chemical 

similarity with these essential elements. The degree of Cd uptake by plants is strongly dependent on 

its concentration in the soil and its bioavailability, modulated by the soil pH, redox potential, 

temperature, presence of organic matter and concentrations of other elements(8, 11).   

 Once taken up by the roots, Cd-ligand complexes can reach the xylem through an apoplastic 

and/or symplastic pathway, and are transported to the aerial parts of the plant. However, most are 

retained in the roots(3).  

 Chlorosis, leaf roll and stunted growth of both roots and stems are visible symptoms caused 

by Cd toxicity. On a physiological level, Cd affects enzyme activities, damages the photosynthetic 

apparatus, disturbs the water balance and inhibits stomatal opening and mitochondrial oxidative 

phosphorylation. In this way, it affects important physiological processes such as photosynthesis, 

transpiration and respiration. Furthermore, Cd has been reported to interfere with uptake, transport 

and use of several elements and water by plants(2, 3). On a cellular level, the most important effect 

caused by Cd is oxidative stress(2). 

 Cd-induced oxidative stress 

Although Cd is a non-redox-active element and thus unable to generate free radicals directly, it has 

been shown to induce the production of reactive oxygen species (ROS). These are partially reduced 

forms of ground stage oxygen (3O2) such as singlet oxygen (1O2), superoxide radical ion (O2
•-), peroxide 

ion (O2
2-), hydrogen peroxide (H2O2). Furthermore, hydroxyl radicals (•OH) are produced through the 

Fenton reaction in which a free redox-active metal such as Fe2+ is oxidized to Fe3+, using H2O2. 

Afterwards, Fe3+ is reduced back to Fe2+ using O2
•- as a substrate. The overall reaction, called the Haber-

Weiss reaction, uses H2O2 and O2
•- to produce O2, OH- and the highly reactive •OH(12). The increased 

ROS production causes oxidative stress, which is defined as a disruption of the cellular balance 

between pro- and antioxidants in favour of the former.  

  Cadmium is shown to induce oxidative stress via many different pathways. For example, 

studies have reported mitochondrial ROS production, caused by physiological activity of the 

respiratory chain, to be increased by Cd. Furthermore, Cd has been shown to induce NADPH oxidase 

activity, increasing the production of O2
•-. Moreover, by its replacement of iron (Fe) due to 

interference with thiol groups in proteins, Cd increases the free Fe concentration and therefore the 

cellular amount of free redox-active metals, which can directly produce hydroxyl radicals (•OH) 

through the Fenton reaction. In addition, if interactions take place between Cd and antioxidative 

enzymes, their catalytic function may be inhibited. Finally, in order to prevent all of these interactions, 

Cd is scavenged by glutathione (GSH). Due to the high affinity of Cd for thiols, GSH is a primary target 

for free Cd-ions. However, the Cd-induced depletion of reduced GSH will result in a disturbed redox 

balance, leading to an oxidative challenge(13).  

 High levels of ROS can cause oxidative damage, which is the disruption of cellular 

macromolecules such as degradation of proteins, cross-linking of DNA and peroxidation of membrane 

fatty acids(2).  

 However, other than this damaging property, ROS have been shown to fulfil important 

signalling functions. By this means, oxidative stress can cause cellular damage, although, controlled 

levels of ROS play an important role in modulating signalling networks that control both physiological 

processes and stress responses(14). It is therefore of great importance to keep these levels of ROS within 

a certain range, a function which is performed by the antioxidative defence system. For this reason, 

in certain cases the term oxidative challenge is more appropriate to use. 
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1.2.1 Antioxidative defence system 

In order to maintain the cellular redox balance, organisms possess an antioxidative defence system 

consisting of both enzymes and metabolites(15).  

1.2.1.1 Antioxidative enzymes 

An interacting network of antioxidative enzymes provides protection against oxidative stress. 

Superoxide dismutases (SODs) catalyse the dismutation of O2
•- to H2O2 and are classified according to 

their metal cofactor. Plant cells possess three different SODs: CuZnSOD, FeSOD and MnSOD. 

Subsequently, in order to detoxify H2O2, peroxidases such as ascorbate peroxidase (APx) and 

glutathione peroxidase (GPx) couple the reduction of H2O2 to H2O to the oxidation of ascorbate (AsA) 

and glutathione, respectively. In addition, peroxiredoxins (PRxs) are important H2O2-removal systems 

due to cysteine (Cys) at the active sites of which the sulfhydryl- or thiol-groups (-SH) are oxidized by 

H2O2
(16). After oxidation, they are converted back to their reduced form by thiols from thioredoxin 

(TRx), glutaredoxin (GRx) and GSH(17). In contrast, catalases (CATs) break down H2O2 molecules to H2O 

and O2 without the use of any cellular reducing equivalents(13). 

1.2.1.2 Antioxidative metabolites 

Besides enzymes, certain metabolites also play an important role in antioxidative defence. Two groups 

of antioxidative metabolites are distinguished: lipid-soluble or hydrophobic metabolites such as 

vitamin E (vit E) and water-soluble or hydrophilic metabolites such as GSH and AsA(13).  

 Vitamin E or toctrienol effectively inhibits the peroxidation of lipids by its incorporation into 

lipid environments such as cellular membranes. It is hypothesized that Vit E is oxidized by quenching 

lipid radicals. The generated free radical (chromanoxyl) form is then reduced back by interactions 

between water- and lipid-soluble substances(18).  

 Glutathione is a thiol-containing tripeptide (γ-glutamyl-cysteinyl-glycine) and essential 

hydrophilic metabolite with thiol-disulphide interactions, making it a key antioxidant. The thiol group 

of cysteine enables a reversible oxidation of reduced glutathione by donating an electron directly to 

unstable molecules such as ROS. In this way, GSH is able to scavenge ROS non-enzymatically. After 

donating an electron, GSH itself becomes reactive and reacts with another reactive GSH to form 

glutathione disulphide (GSSG), which is recycled back to GSH by the nicotinamide adenine dinucleotide 

phosphate (NADPH)-dependent glutathione reductase (GR). In addition to this continuous reduction 

of GSSG by GR, GSH is also synthesized de novo via a pathway involving two enzymes, γ-

glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2)(17, 19). Besides its role in 

antioxidative defence, GSH is also involved in the detoxification of free metal ions, thereby regulating 

metal homeostasis. Glutathione S-transferase (GST) catalyses the conjugation forming a GSH-metal 

complex(17). In addition, GSH is the precursor of phytochelatins (PCs), which are metal-binding peptides 

synthesized by phytochelatin synthase (PCS) in response to Cd and other metals. Phytochelatins are 

able to sequester the metal as well, reducing the circulation of free Cd2+ ions. After chelation, these 

complexes are transported to the vacuole, leaving cytoplasmic enzymes undamaged(3). In the same 

way, metallothioneins (MTs) are proteins rich in cysteine clusters which detoxify Cd by complexation 

and vacuolar sequestration(13).   

 Ascorbate or vitamin C is another abundant water-soluble antioxidative metabolite which 

plays essential roles in multiple physiological processes. Together, GSH and AsA participate in the AsA-

GSH cycle which is located in various plant subcellular compartments and is responsible for 

detoxification of H2O2 (Figure 1). In this cycle, AsA is used by the plant-specific APx to reduce H2O2 to 

H2O. The oxidized form of AsA, dehydroascorbate (DHA), is then recycled by dehydroascorbate 
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reductase (DHAR) using GSH as an electron donor. Finally, the oxidized dithiol GSSG is reduced again 

to GSH using electrons from NADPH in a reaction catalysed by GR(17, 20). In this way, GSH transfers its 

reducing equivalents to enzymes or components in order to maintain the cellular redox balance(13).

 In addition to their role in the antioxidative defence system, both GSH and AsA are involved in 

the regulation of the cell cycle and thereby affect plant growth and development. 

 

Figure 1: The glutathione-ascorbate cycle. GR: glutathione reductase; GSH: glutathione; GSSG: glutathione disulphide; DHA: 
dehydroascorbate; DHAR: DHA reductase; AsA: ascorbate; APX: ascorbate peroxidase (adapted from Meyer et al. (2008)(20).  

 The cell cycle 

The cell cycle is an ordered sequence of events leading to cell growth and finally cell division into two 

separate daughter cells containing identical genetic material. This cell-division cycle typically consists 

of four phases: a gap 1 (G1) phase, a synthesis (S) phase, a gap 2 (G2) phase and finally mitosis (M).  

 During the G1 phase the cell is metabolically active and grows continuously. This phase is 

followed by the S phase, during which DNA replication takes place, doubling the nuclear DNA content 

from 2C to 4C (C-value refers to the degree of ploidy and is relative to the replication state of the 

cell(21)).  After DNA synthesis is fully completed, the cell will enter the G2 phase, in which it will continue 

to grow and synthesize proteins prior to mitosis. During the M phase, mitosis takes place. This will 

separate the chromosomes and is followed by cytokinesis. Cells can also exit the G1 phase to enter the 

G0, a quiescent stage of the cycle in which the cell remains metabolically active but no longer 

proliferates, unless it is stimulated by extracellular signals to do so(22).   

 In plants as well as other eukaryotes, cyclin-dependent kinases (CDK) are of great importance 

in the regulation of cell cycle progression. Their regulatory subunits, cyclins, fluctuate in phase with 

the cell cycle (Figure 2A). Which target proteins are phosphorylated by the CDK-cyclin complex is 

crucial to cell cycle progression and is determined by the associated cyclin, as each catalytic subunit 

can associate with diverse cyclins. Three classes of CDK-cyclin complexes regulate progression through 

the cell cycle: G1, S and M CDK-complexes.   

 During early G1, CDK activity is kept low in order to form pre-replication complexes at 

replication origins in preparation for the next S phase. In late G1 phase, G1 CDK activity rises due to the 

increasing level of G1 cyclins until it is sufficient to inactivate the S phase inhibitor Rb, releasing the S 

CDK complexes’ activity and triggering the S phase. During the S and G2 phase, mitotic CDK complexes 

are already synthesized, although their activity is kept low. In late G2 phase, transcription of M cyclins 

increases until a high level of M CDK-cyclin complexes is achieved and the cell enters the M phase. The 

anaphase-promoting complex (APC) will now become active and degrades anaphase inhibitors, thus 

commencing anaphase. Later in M phase, M cyclins are degraded by the APC, lowering the CDK activity 

back to early G1 levels(23).  

  As mentioned before, GSH and AsA play an important role in the regulation of the cell cycle as 

well. Arabidopsis thaliana mutants containing lowered endogenous AsA concentrations, showed 

retarded cell division and slow plant growth. It is hypothesized that the AsA-enhanced transition from 

G1 to S is due to the use of AsA for the biosynthesis of hydroxyproline-rich proteins required for this 

progression. In contrast, only a critical concentration of GSH is required for cell cycling(25). In G1 phase, 
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GSH is recruited into the nucleus so that the total cellular GSH pool exceeds the level present at early 

G1, which is considered essential for G1 to S phase progression(26). 

 

Figure 2: Roles of CDK-cyclin complexes in mitotic and endoreduplication cycles. (A) A typical mitotic cycle. During early G1, 
CDK activity must be low to allow licensing of replication origins. Late in G1, CDK levels rise due to increasing levels of G1 
cyclins, until the level of CDK activity is sufficient to inactivate Rb (or its homologs) and trigger S phase, including firing of 
replication origins and S-phase transcription. Maintenance of S phase requires specific CDK–cyclin complexes. During G2, 
transcription of M-phase cyclins rises, until a high level of active CDK–cyclin complexes is reached and M phase begins. In 
mid-M phase, mitotic cyclins are destroyed by the APC/C and CDK levels once again drop to early G1 levels. (B) Typical 
endocycle. CDK levels of G1 and S continue to cycle between low levels in a G1-like phase for licensing of the replication 
origins and the increased levels are needed to trigger S. Mitotic CDK complexes either never form or their activity is 
suppressed, with CDK activity never reaching the level necessary to trigger M as a consequence. CDK: cyclin-dependent 
kinases (adapted from De Veylder et al. (2011)(24)) 

1.3.1 Endoreduplication 

Besides the regular cell division cycle, plant cells can enter an alternative cell cycle mode called 

endoreduplication. During endoreduplication, chromosomal DNA is replicated (S-phase) without 

intervening mitoses (M-phase). This will give rise to polyploid plant cells which contain multiples of the 

diploid genome equivalent.  

 Besides higher plants also algal and fern cells as well as other eukaryotes undergo 

endoreduplication. Furthermore, many cell types show polyploidy, although it is mostly found in those 

undergoing differentiation and expansion. Between different species, ploidy levels vary greatly, 

ranging from 4C to 32C in A. thaliana and up to 24576C in extreme cases such as Arum maculatum(27).  

Moreover, within the same plant, older tissues often display higher levels of ploidy than younger ones.

  Endoreduplication is considered essential for growth and developmental processes, although 

its physiological purpose still remains unclear(24). Because of its high occurrence in tissues showing high 

metabolic activity, it is often hypothesized that endoreduplication provides a mechanism for increasing 
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the availability of DNA template in order to increase gene expression levels. Correspondingly, 

endoreduplication is suggested to be linked to increased nuclear volume and/or cell size. It has 

therefore been considered as a mechanism to provide sufficient DNA prior to massive increases in 

tissue mass, determining a potential range of cell volumes rather than a strict cell size(28). Besides its 

role in developmental processes, endoreduplication can be affected by external stress factors. For 

example, Gegas et al. (2014) has recently shown high UV-B irradiation to stimulate endoreduplication 

in leaves of A. thaliana(29). Similarly, water-deficit stress has been shown to increase endoreduplication 

in Arabidopsis leaf mesophyll cells(30). These findings suggest that endoreduplication may provide a 

mechanism to mitigate effects of exogenous stress.    

  The endoreduplication cycle is regulated by most of the same key regulators of the classical 

cell division cycle (Figure 2B). In order to establish an endocycle, the main challenge is to keep CDK-

activity below a level that triggers mitosis(24). This lowered CDK-activity is achieved either at the 

transcriptional or the post-translational level. At the transcriptional level, the down-regulation of 

genes encoding M cyclins was shown during the transition from mitosis to endoreduplication. At the 

post-translational level, activators of the APC promote proteolysis of M cyclins and therefore the 

inactivation of M-phase CDK kinase activity. Furthermore, two inhibitory proteins (ICK1 and ICK2) were 

found to inactivate CDK activity in Arabidopsis. However, their actual involvement in the impairment 

of M-CDK activity still needs to be confirmed. Altogether, the differential regulation of these key 

regulators determines whether a cell follows the cell division cycle or enters the endocycle, which is 

regulated at the transcriptional or post-translational level(28). Several important regulators and their 

interactions are presented in Figure 3. 

 

Figure 3: Regulatory wiring of the G2-M control machinery in mitosis and endoreplication. Positive interactions are indicated 
with a black arrow, negative with a red T-line. Positive regulators of mitosis in green, positive regulators of endoreplication 
in red with. Transcriptional regulators are drawn in squares, CKIs in triangles, protein degradation machinery with a diamond. 
The horizontal blue and green lines indicate hypothetical thresholds levels for DNA replication and mitosis, respectively. 
Please note that the biologically relevant composition of most of CDK–cyclin complexes is not clear at the moment and the 
presented data is largely derived from interaction studies. The transcriptional activation of the SMR SIM by GL3 limited to 
trichomes. However, a similar activation of SMRs in other cell types and tissues by developmentally acting transcription 
factors can be hypothesized. CYC: cyclin; KRP: KIP-related protein; DEL1: DP-E2F-like 1; CCS52A: cell cycle switch protein 52A; 
APC/C: anaphase-promoting complex/cyclosome; GL3: GLABRA 3; SMR: SIAMESE-related; SOG1: suppressor of gamma 
radiation 1; ILP1: increased level of polyploidy 1; MYB3R: 3-repeat MYB protein (adapted from De Veylder et al. (2011)(24)).  
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 Objectives 

The goal of this project is to increase our knowledge on endoreduplication in plants. In addition to 

studying this alternative cell cycle under control conditions, the effects of Cd exposure and the possible 

link with the Cd-induced oxidative challenge are investigated. For this project Arabidopsis thaliana 

was used. Its small genome and the availability of its genetic information facilitate molecular research. 

Furthermore, its rapid life cycle and relatively easy cultivation make this species a suitable model plant.  

1.4.1 Endoreduplication and oxidative stress related parameters under control conditions 

The first objective of this project is to study endoreduplication in A. thaliana leaves during normal 

growth and development. For this purpose, A. thaliana wild-type plants are grown under control 

conditions in a hydroponic cultivation system. Starting from day 11 after sowing, when the first two 

rosette leaves have fully emerged, the plants are analysed phenotypically during 10 days of normal 

development. For this, rosette diameter, leaf surface area, and fresh weight are measured daily.  

 Furthermore, nuclear ploidy levels of the first leaf pair are measured daily using flow 

cytometry. The nuclear DNA content of younger leaves is measured as well, (if these have already fully 

emerged) at day 12, 14, 18 and 21 after sowing. As preliminary experiments have shown that the level 

of nuclear ploidy is strongly dependent on the leaf age, measurements are performed on separate 

leaves.  

  Moreover, two oxidative stress-related parameters are studied under control conditions and 

compared between the oldest and younger leaves of the plant. Firstly, the concentration of GSH as 

well as the redox state are determined using a plate reader method. Secondly, expression levels of 

oxidative stress marker genes are measured using reverse transcription real-time polymerase chain 

reaction (RT-qPCR).  

1.4.2 Cd-induced effects on endoreduplication and the link with the Cd-induced oxidative 

challenge 

The next objective is to determine Cd-induced effects on endoreduplication in leaves of A. thaliana. 

Preliminary experiments have shown only mild effects on nuclear ploidy levels after short-term 

exposure of 19 day-old plants to Cd. However, since endoreduplication is most often found in 

metabolically active cells including those undergoing differentiation and expansion, plants exposed to 

Cd starting from an earlier time point during development may show more pronounced effects. 

Therefore, 11 day-old A. thaliana plants are exposed to a range of Cd concentrations.   

 The uptake and accumulation of Cd and essential nutrients in the leaves is determined after 

10 days of exposure using inductively-coupled plasma optical emission spectrometry (ICP-OES). 

  Nuclear ploidy levels of leaves are measured 24 hours, 72 hours, 7 days and 10 days after start 

of the exposure. Expression levels of important positive and negative regulators of endoreduplication 

as well as DNA damage signalling genes are measured in response to 11 days of Cd exposure.   

 A possible link with the Cd-induced oxidative challenge is investigated via the analysis of 

several oxidative stress-related parameters 10 days post-exposure. Leaf age-related differences in GSH 

and AsA concentrations and redox states are measured in addition to expression levels of oxidative 

stress marker genes. Furthermore, the extent of lipid peroxidation, a frequently used oxidative stress 

marker, is assessed using the TBARS assay.    
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2 MATERIALS AND METHODS 
In this study Cd-induced effects on endoreduplication and the possible link with the Cd-induced 

oxidative challenge were investigated in A. thaliana leaves (ecotype Columbia). To this end, nuclear 

ploidy levels and several oxidative stress-related parameters were determined in leaves of wild-type 

plants exposed to a range of environmentally relevant Cd concentrations (1, 2.5, 5, 7.5 or 10 µM 

CdSO4). 

 Plant cultivation and Cd exposure 

Seeds were surface-sterilized using a sodium hypochlorite solution and Tween 80. In order to 

synchronize germination, the seeds were spread on moist filter paper and incubated for 3 days at 4 °C 

in the dark. Next, they were grown in a hydroponic cultivation system as described by Keunen et al. 

(2011)(31). Therefore, they were first sown on sand-filled 15 mL polypropylene centrifuge tubes cut in 

half. These tubes were placed in a PVC frame on top of a container filled with a modified Hoagland 

solution (0.505 mM KNO3, 0.15 mM Ca(NO3)2 x 4 H2O, 0.1 mM NH4H2PO4, 0.1 mM MgSO4 x 7 H2O, 4.63 

µM H3BO3, 0.91 µM MnCl2 x 4 H2O, 0.03 µM CuSO4 x 5 H2O, 0.06 µM H2MoO4 x H2O, 0.08 µM ZnSO4 

7H2O, 1.64 µM FeSO4 x 7 H2O and 0.81 µM Na2-EDTA). Each frame contained 90 tubes and one 

oxygenator, continuously adding O2 to the solution. The plants were grown in a growth chamber at 

65% relative humidity with day/night temperatures of 22 °C/18 °C and a 12 hours photoperiod. A 

combination of blue, red and far-red LED lights was used (170 µmol m-2s-1 at the rosette level) to obtain 

a spectrum simulating the photosynthetic active radiation (PAR) in sunlight. The modified Hoagland 

nutrient solution was refreshed twice a week to maintain nutrient availability and pH.   

 Subsequently, 11-day old seedlings were exposed to 0, 1, 2.5, 5, 7.5 or 10 µM Cd by addition 

of CdSO4 to the Hoagland solution. Leaves were harvested 24 hours, 72 hours, 7 days or 10 days after 

exposure to Cd. Phenotypic measurements were performed immediately after harvesting of the 

plants, as described in section 1.2. Consequently, leaves were snap frozen in liquid nitrogen and stored 

at -70 °C for further analyses. Samples for element analysis were dried in an oven at 80 °C. 

 Kinematic analysis 
Phenotypic analyses were performed by weighing and scanning (Epson Perfection V330 Photo at 300 

dpi) plant rosettes and measuring root length. Next, all rosette leaves were detached and scanned 

separately. The rosette diameter and leaf surface area were analysed using ImageJ software (U. S. 

National Institutes of Health). In this way, rosette growth and leaf development were monitored.  

 Element analysis 
Leaf samples were analysed for Cd, phosphorous (P), sulphur (S), Zn, Fe and Cu content using 

inductively-coupled plasma optical emission spectrometry (ICP-OES) (Agilent Technologies 700 Series). 

Prior to measurement, leaf samples were dried for 2 weeks at 80 °C and digested using 70-71% HNO3 

and 37% HCl. Blank and reference (Trace elements in spinach, 1570a, Standard Reference Material) 

samples were used as a control. Finally, the samples were dissolved in 2% HCl and measured. 
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 Analysis of nuclear DNA content 

The nuclear DNA content, and thus the extent of endoreduplication, was determined using flow 

cytometry. Since nuclear ploidy levels have been shown to correlate with leaf age, all flow cytometric 

measurements were performed on separate leaves.   

 For the extraction and staining of nuclei, the CyStain PI Absolute P kit (Partec) was used. First, 

the leaf was chopped with a fresh razor blade in a petri dish containing 250 µL extraction buffer. After 

incubation for approximately 2 minutes, the extract was filtered through a 50 µm nylon filter (Partec 

Celltrics®). Next, 1 mL staining solution was added, containing 1000 µL staining buffer, 6 µL propidium 

iodide (PI) and 3 µL RNase. According to the size of the leaves, the volumes of extraction buffer and 

staining solution were halved if necessary. After at least 1 hour of incubation in the dark at 4 °C, the 

nuclear DNA content of 5000 gated nuclei was analysed using the BD FACSCalibur™ Flow Cytometer 

(BD Biosciences). For this purpose, the red/orange emission (FL-2, 585/42 nm) was measured after 

excitation by a blue argon-ion laser (488 nm) and plotted against the forward scatter (FSC). Analysis of 

the data was performed using FCS Express 4 Image Cytometry software (De Novo Software). 

 Gene expression analysis  

First, frozen leaf tissue was grounded using two stainless steel beads using the MM400 Mixer Mill 

(Retsch). Next, the RNA was isolated using the RNAqueous® Kit (Ambion Inc.). Both the concentration 

and purity of the RNA extracts were determined using the Nanodrop® ND-1000 Spectrophotometer 

(Nanodrop Technologies, Inc). Subsequently, the RNA samples were stored at -70 °C.  

 During the next step, the extracted RNA was converted to cDNA using the Primescript™ RT 

reagent Kit (TaKaRa Bio). For each sample, the same amount of RNA starting material (1 µg) was used 

in order to obtain comparable results after real-time PCR. Prior to the reverse transcription reaction, 

genomic DNA was removed using the TURBO DNA-free™ Kit (Ambion). Afterwards, the obtained cDNA 

samples were diluted 1/10 using 1/10 TE buffer and stored at -20 °C.    

  Real-time PCR reactions were performed according to the Fast SYBR® Green Master Mix 

protocol (Applied Biosystems). Reactions were performed in 96-well plates at universal cycling 

conditions (20 s 95 °C, 40 cycles of 3 s at 95 °C and 30 s at 60 °C) in the 7500 Fast Real-Time PCR System 

(Applied Biosystems). Each well contained 2 µL of 1/10 diluted cDNA and 8 µL of mastermix , consisting 

of 5 µL Fast SYBR® Green Master Mix, 0.3 µL forward primer, 0.3 µL reverse primer and 2.4 µL RNase-

free water. Melting curves were used to check PCR product specificity and were set 15 s at 95 °C, 60 s 

at 60 °C, 15 s at 95 °C and 15 s at 60 °C.   

 Using the 2-ΔCt method, expression levels of three reference genes (SAND, UBC and EF-1α) were 

used to normalize the expression of the genes of interest. Reference genes were selected using the 

GrayNorm algorithm(32). Forward and reverse primer sequences are listed in Table 1. 

 Metabolite analysis 

Reduced, oxidized and total concentrations of AsA and GSH were measured using a plate reader 

method adapted from Queval and Noctor(33). In order to compare AsA and GSH concentrations 

between leaves of a different age, rosettes were subdivided in samples consisting of leaf 1 to 4 and 

leaf 6 to 9 (Figure 4).   

  First, frozen leaves were extracted in 200 mM HCl using a cooled mortar and pestle. After 

centrifugation for 10 minutes at 13200 rpm and 4 °C, 30 µL 200 mM NaH2PO4 (pH 5.6) was added to 

300 µL of supernatant. Next, the pH of the samples was adjusted to 4.5 using 200 mM NaOH. 
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Figure 4: Rosette of a 21-day old A. thaliana plant. Leaves are numbered from the oldest leaf (leaf 1) to the youngest leaf 
(leaf 9) 

Reduced AsA was measured at 265 nm. Total AsA was measured at 265 nm after incubation of the 

samples with 25 µM dithiothreitol and 120 mM NaH2PO4 (pH 7.5) for 15 minutes at 20 °C, in order to 

fully reduce the AsA pool. Subsequently, the pH of the samples was adjusted to pH 5.5 using 200 mM 

HCl. This way, AsA oxidation was measured for 15 minutes after addition of 10 µL ascorbate oxidase. 

By subtracting the amount of reduced AsA from total AsA, DHA was determined. 

 In order to determine total GSH, the GR-dependent reduction of 5,5’-dithiobis(2-nitro-benzoic 

acid) (DTNB) was measured during 5 min at 412 nm. Glutathione disulphide was measured after 

incubation of the samples with 2-vinylpyridine for 30 minutes at 20 °C to precipitate reduced GSH. The 

difference between total GSH and GSSG was used to calculate reduced GSH. All measurements were 

performed using the FLUOstar Omega plate reader (BMG Labtech).  

 Analysis of lipid peroxidation 
In order to measure the extent of lipid peroxidation, levels of thiobarbituric acid (TBA)-reactive 

substances (TBARS) such as malondialdehyde were measured spectrophotometrically. First,  leaves 

were homogenised in 1 mL 0.1% trichloroacetic acid (TCA) using a cooled mortar and pestle. Next, the 

samples were centrifuged for 10 minutes at 13200 rpm and 4 °C. Subsequently, 400 µL of supernatant 

was added to 1 mL of 0.5% TBA in 20% TCA in duplo. For blank measurements, 0.1% TCA was used 

instead of supernatant. Then, samples were incubated for 30 minutes at 95 °C. After incubation, the 

samples were cooled down immediately and centrifuged for 10 minutes at 13200 rpm and 4 °C. Finally, 

the absorbance was measured at 532 nm (total absorbance) and 600 nm (aspecific absorbance) using 

the UV-1602 spectrophotometer (Shimadzu). 

 Statistical analysis 
The data obtained from the experiments described above were statistically analysed using ANOVA. 

First, the normality of the data was verified using the Shapiro-Wilk test. Homoscedasticity of the data 

was tested using a residual plot and the Bartlett’s test. In case of a non-normal distribution or 

heteroscedasticity of data, transformations (logarithmic, exponential, inverse or square root) were 

performed. Gene expression data were standardly log transformed. Post-hoc pairwise comparisons 

were performed using the Tukey-Kramer multiple comparisons of means. In case the assumptions for 

ANOVA were not met, a non-parametric Kruskal-Wallis test was used. In this case, the Wilcoxon Signed-

Rank test was used for pairwise comparisons of the data. All these statistical analyses were performed 

in R (The R Foundation for Statistical Computing; version 3.1.2). 
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Table 1: Overview of the primer sequences (5’-3’) used to determine the expression of the reference genes and genes of 
interest using RT-qPCR. SAND: SAND-family; UBC: ubiquitin conjugating enzyme; EF1α: elongation factor 1α; UPOX: 
upregulated under oxidative stress; TIR: toll-interleukin-resistance; SMR: SIAMESE-related; DEL1: DP-E2F-like 1; ATM: ataxia-
telangiectasia mutated; ATR: ATM- and RAD3-related. 

Gene Locus Forward primer Reverse primer 

Reference genes 

SAND AT2G28390 AACTCTATGCAGCATTTGATCCACT TGATTGCATATCTTTATCGCCATC 

UBC AT5G25760 CTGCGACTCAGGGAATCTTCTAA TTGTGCCATTGAATTGAACCC 

EF1α AT2G18720 TGAGCACGCTCTTCTTGCTTTCA GGTGGTGGCATCCATCTTGTTACA 

Oxidative stress marker genes 

UPOX AT2G21640 GACTTGTTTCAAAAACACCATGGAC CACTTCCTTAGCCTCAATTTGCTTC 

Defensin-like protein AT2G43510 ATGGCAAAGGCTATCGTTTCC CGTTACCTTGCGCTTCTATCTCC 

Unknown protein AT1G19020 GAAAATGGGACAAGGGTTAGACAAA CCCAACGAAAACCAATAGCAGA 

Unknown protein AT1G05340 TCGGTAGCTCAGGGTAAAGTGG CCAGGGCACAACAGCAACA 

TIR AT1G57630 ACTCAAACAGGCGATCAAAGGA CACCAATTCGTCAAGACAACACC 

Endoreduplication genes 

SMR4 AT5G02220 GATGGTGGTGAGAAAACGAGA TCTCTTCGAGGCTGTGCGTAG 

SMR1 AT3G10525 CAAGATCCGATCCAAAACCTCA  TTCTTGGGATGTGGGTGTGC 

SMR5 AT1G07500 CAGCATATCCGCCTTGTCCA CTGCTACCACCGAGAAGAACAAGT 

SMR7 AT3G27630 ACATCGATTCGGGCTTCACTAA CCGTGGGAGTGATACAAATTCC 

DEL1 AT3G48160 CTCCCTTGATGACGCTGCAA TGCTATATCATAAAGCCGCCTCAC 

DNA Repair genes 

ATM AT3G48190 TGATGTGCGCTGTTTCAGCTAA GATGGGTAATGGAGTTGTGCTGATA 

ATR AT5G40820 GCCGATGAAGCCGAGATACTT GTAAGCGGTTTATCATCGCAGTAAA 
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3 RESULTS 

 Endoreduplication and oxidative stress-related parameters under control 

conditions 

In the first part of the study, endoreduplication was investigated in A. thaliana leaves during 10 days 

of growth and development under control conditions. Furthermore, two oxidative stress-related 

parameters, GSH concentrations and gene expression of oxidative stress markers, were studied under 

control conditions. 

3.1.1 Nuclear ploidy levels in unexposed leaves 

Endoreduplication was first studied in leaves of A. thaliana grown under control conditions. Starting 

from day 11 after sowing, when the first two rosette leaves had fully emerged, nuclear ploidy levels 

were measured using flow cytometry. The nuclear DNA content of the first leaf pair (leaves 1 and 2) 

was determined daily. Ploidy levels of younger leaves, if these had already fully emerged, were defined 

at day 12, 14, 18 and 21 after sowing.   

  The distribution of nuclear ploidy levels in the first leaf pair clearly shifted from major 

proportions of cells containing 2C and 4C at day 11, to cells containing a nuclear DNA content of 2C, 

4C, 8C, 16C and 32C at day 21 after sowing (Figure 5A). More specifically, the fraction of cells of leaf 1 

and 2 containing a 2C nuclear DNA content immediately started decreasing, until day 18 after sowing, 

where it seemed to have reached a minimum (Figure 5B). The proportion of cells containing a nuclear 

DNA content of 4C first raised, although soon began decreasing and eventually dropped as well (Figure 

5C). On the other hand, the proportion of 8C increased strongly until day 16 after sowing, and then 

decreased (Figure 5D). In contrast, the fraction of 16C increased slowly until day 15, at which point it 

started increasing more steeply (Figure 5E). The proportion of 32C was negligible until day 16 after 

sowing, at which it increased rapidly (Figure 5F). In general, as the fraction of cells of a certain nuclear 

ploidy level (e.g. 4C) started increasing, the fraction of cells of the preceding ploidy level (in this case 

2C) started decreasing. Furthermore, this transition to higher nuclear ploidy levels was confirmed by 

the endoreduplication factor (EF) – the number of endocycles per 100 cells – as it increased almost 

linearly from day 11 to 21 (Figure 5G). The EF was determined as follows:  0 x 2C (%) + 1 x 4C (%) + 2 x 

8C (%)+3 x 16C (%) + 4x 32C (%).   

  A similar pattern was observed when comparing the distribution of nuclear ploidy levels and 

the EF between different leaves of a plant within one point in time. Arabidopsis thaliana seedlings 

grown for 21 days under control conditions showed increasing levels of nuclear ploidy from the 

youngest leaf (leaf 8) to the oldest leaves (leaf 1-2) (Figure 6A). The proportion of cells containing a 2C 

(Figure 6B) and 4C (Figure 6C) nuclear DNA content was higher in young leaves (e.g. leaf 8-5) as 

compared to the older leaves (leaf 4-1). The fraction of 8C cells though was highest in leaf 5, 4 and 3 

as compared to the other leaves (Figure 6D). In comparison to the oldest leaves, the proportion of 16C 

cells was lower in younger leaves and even absent in the youngest (Figure 6E). Although some cells of 

leaf 1-2 had already reached a 32C nuclear DNA content, proportions of 32C were negligible or absent 

in younger leaves (Figure 6F). Correspondingly, the EF of older leaves was higher than that of younger 

leaves (Figure 6G).   

  Furthermore, the EF of leaves 1-2 and leaves 3-8 was plotted against the surface area of these 

leaves (Figure 7). In both leaves 1-2 and leaves 3-8 a strong positive correlation between the EF and 

leaf surface area of R² = 0.8526 (p < 0.01) and R² = 0.8748 (p < 0.01), respectively, was observed, 

indicating a clear relationship between the extent of endoreduplication and the surface area of the 
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leaves. In addition, the EF of the first leaf pair increased to a greater extent with increasing leaf surface 

area as compared to that of younger leaves (leaves 3-8). Furthermore, this could also be observed 

when comparing leaf 3 to leaf 4, leaf 4 to leaf 5 and so on (Supplementary Figure 1). 

 

 

Figure 5: Nuclear ploidy levels (%) (A), the fraction of cells (%) containing a nuclear DNA content of 2C (B), 4C (C), 8C (D), 16C 
(E) or 32C (F) and the endoreduplication factor (G) in the first leaf pair of A. thaliana seedlings grown under control conditions 
from day 11 until day 21 after sowing. Data represent the mean (± S.E) of 4 biological independent replicates. 
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Figure 6: Nuclear ploidy levels (%) (A), the fraction of cells (%) containing a nuclear DNA content of 2C (B), 4C (C), 8C (D), 16C 
(E) or 32C (F) and the endoreduplication factor (G) in leaves of A. thaliana seedlings grown for 21 days under control 
conditions. Data represent the mean (± S.E) of 4 biological independent replicates. 
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Figure 7: Correlation plot of the endoreduplication factor versus leaf surface area (mm²) of leaves 1-2 and leaves 3-8 of A. 
thaliana seedlings grown for 21 days under control conditions. Measurements were performed at several time points from 
day 11 to day 21 after sowing. 

3.1.2 Oxidative stress-related parameters in unexposed leaves 

In order to acquire more insight into the oxidative challenge under control conditions and age-related 

differences herein, two oxidative stress-related parameters were compared between young (leaves 6 

to 9) and old (leaves 1 to 4) leaves of A. thaliana seedlings grown for 21 days under control conditions.  

  Firstly, leaf age-related differences in concentrations and redox state of GSH were determined 

in leaves of A. thaliana seedlings using spectrophotometry. Both the concentrations of GSH and GSSG 

as well as the total concentration of GSH were significantly lower in old leaves as compared to young 

leaves (Table 2).   

Table 2: Glutathione concentrations (nmol/g FW) in young (leaves 6-9) and old leaves (leaves 1-4) of 21-day old A. thaliana 
seedlings. Data represent the mean ± S.E. of 4 biological independent replicates. Significance levels compared to young leaves 
(one-way ANOVA): : p-value < 0.01. FW: fresh weight; GSH: glutathione (reduced form); GSSG: glutathione disulphide 
(oxidized form). 

Leaves GSH + GSSG GSH GSSG 

Young 360.14 ± 25.72 329.05 ± 23.39 31.08 ± 3.21 

Old 219.74 ± 6.67 207.27 ± 6.92 12.47 ± 1.07 

 

Secondly, the expression of five oxidative stress marker genes was determined via RT-qPCR and 

compared between young and old leaves of A. thaliana grown for 21 days under control conditions 

(Table 3). Gene expression levels of AT1G57630 were significantly higher in old leaves as compared to 

young leaves. A similar trend was observed for oxidative stress markers AT2G43510, AT1G19020 and 

AT1G05340.  

Table 3: Expression levels of oxidative stress marker genes in young (leaves 6-9) and old leaves (leaves 1-4) of 21-day old A. 
thaliana seedlings. The expression levels in old leaves are represented relative to those in young leaves (= 1.00 ± S.E.). Data 
represent the mean ± S.E. of at least 3 biological independent replicates. Significance levels (one-way ANOVA): : p-value < 
0.01 for an increased expression compared to young leaves. Significant differences are indicated only in case both normalized 
and non-normalized data (not-shown) are statistically significant.  

Leaves AT2G21640 AT2G43510 AT1G19020 AT1G05340 AT1G57630 

Young 1.00 ± 0.14 1.00 ± 0.08 1.00 ± 0.45 1.00 ± 0.29 1.00 ± 0.19 

Old 0.71 ± 0.12 4.64 ± 0.79 3.63 ± 1.68 3.31 ± 1.29 16.24 ± 3.66 
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 Cadmium-induced effects on endoreduplication and the possible link with the Cd-

induced oxidative challenge 

In the second part of this study, Cd-induced effects on endoreduplication were studied. Concentrations 

of Cd and essential elements were determined in leaves of A. thaliana. In addition, the length of the 

roots as well as rosette weight were measured in order to evaluate the effect if Cd on growth and 

development. Nuclear ploidy levels and expression levels of regulators of endoreduplication and DNA 

damage signalling genes were measured in response to Cd exposure. Furthermore, the possible link 

with the Cd-induced oxidative challenge was investigated by analysis of GSH and AsA concentrations, 

expression levels of oxidative stress marker genes as well as measurements of TBARS concentrations. 

3.2.1 Uptake of Cd and nutrients 

To determine the amount of Cd which was taken up by the plants and accumulated in the leaves, Cd 

concentrations were measured in leaves of plants exposed to 0, 1, 2.5, 5 or 10 µM Cd for 10 days, 

starting from day 11 after sowing, using ICP-OES (Figure 8). Furthermore, the leaf concentrations of 

essential macroelements (i.e. P and S) and microelements (i.e. Zn and Fe) was measured. 

 

Figure 8: Concentrations (mg/kg DW) of cadmium (A), phosphorous (B), sulphur (C), zinc (D) and iron (E) and percentage dry 
weight (F) in leaves of A. thaliana seedlings exposed to 1, 2.5, 5 or 10 µM Cd for 10 days, starting from day 11 after sowing. 
Data represent the mean ± S.E. of at least 5 biological independent replicates. Significance levels compared to control 
conditions (one-way ANOVA): *: p-value < 0.05; **: p-value < 0.01. DW: dry weight; Cd: cadmium; P: phosphorous; S: sulphur; 
Zn: zinc; Fe: iron. 
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The Cd concentration present in leaves of A. thaliana seedlings was significantly increased after 10 

days of exposure to 1, 2.5, 5 and 10 µM Cd, starting from day 11 after sowing (Figure 8A). Cadmium 

was hereby accumulated by plant leaves in a dose-dependent manner as the concentration of Cd 

doubled from 1 µM Cd to 2.5 µM Cd and consequently from 2.5 µM Cd to 5 µM Cd. However, leaves 

of plants exposed to 10 µM Cd accumulated less than half the concentration of Cd as compared to 

leaves of plants exposed to 5 µM Cd. The concentration of P present in the leaves was significantly 

increased in plants exposed to 1 µM Cd but decreased in those exposed to 10 µM Cd (Figure 8B). 

Furthermore, S concentrations were significantly higher in Cd-exposed plants as compared to the 

control, except for plants exposed to 10 µM Cd (Figure 8C). Accumulation of Zn in leaves of plants 

exposed to 1, 2.5 and 5 µM Cd was not affected, although it was significantly decreased in response to 

10 µM Cd (Figure 8D). No significant difference was found for the concentrations of Fe (Figure 8E). The 

dry weight of leaves of plants exposed to 1 and 2.5 µM Cd was significantly lower as compared to the 

control, though it was significantly higher in those exposed to 10 µM Cd (Figure 8F). 

 

Figure 9: Concentrations (mg/kg DW) of cadmium (A), phosphorous (B), sulphur (C), and iron (D) and percentage dry weight 
(E) in leaves of A. thaliana seedlings exposed to 1, 2.5, 5 or 7.5 µM Cd for 10 days, starting from day 11 after sowing. Data 
represent the mean ± S.E. of at least 4 biological independent replicates. Significance levels compared to control conditions 
(one-way ANOVA): **: p-value < 0.01. DW: dry weight; Cd: cadmium; P: phosphorous; S: sulphur; Fe: iron. 

In a similar experiment, Cd, P, S and Fe concentrations were measured in leaves of A. thaliana seedlings 

exposed to 1, 2.5, 5 and 7.5 µM Cd for 10 days, starting from day 11 after sowing. The Cd concentration 
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present in the leaves was increased significantly in response to exposure to 1, 2.5, 5 and 7.5 µM Cd 

(Figure 9A). Furthermore, the concentration of P was significantly lower in leaves exposed to 7.5 µM 

Cd (Figure 9B). Leaf concentrations of S were increased in plants exposed to 2.5 and 5 µM Cd (Figure 

9C). No significant difference was found for the concentrations of Fe (Figure 9D). The percentage dry 

weight of leaves of plants exposed to 7.5 µM Cd was significantly increased as compared to the control 

(Figure 9E). Because of technical issues, the concentration of Zn could not be measured. 

3.2.1.1 Growth responses 

In order to evaluate whether growth and development of the plants were disturbed by exposure to 1, 

2.5, 5 or 10 µM Cd, root length and rosette weight were determined.  

 Compared to the control, the root length of plants exposed to 10 µM Cd was significantly 

reduced (Figure 10A). Exposure of plants to lower Cd concentrations did not significantly inhibit root 

growth. However, rosette weight was significantly lower for plants exposed to 2.5, 5 and 10 µM Cd as 

compared to the control (Figure 10B). 

 

Figure 10: Root length (cm) (A) and rosette weight (mg) (B) of A. thaliana seedlings exposed to 0, 1, 2.5, 5 or 10 µM Cd for 10 
days, starting from day 11 after sowing. Data represent the mean ± S.E. of 6 biological independent replicates. Significance 
levels compared to control conditions (one-way ANOVA): **: p-value < 0.01.  

3.2.2 Nuclear ploidy and expression levels of regulators of endoreduplication in Cd-exposed 

leaves  

To determine the effects of Cd on endoreduplication, A. thaliana seedlings were exposed to 0, 1, 2.5, 

5 or 10 µM Cd for 10 days, starting from day 11 after sowing. Using flow cytometry, nuclear ploidy 

levels of leaves 1 and 3 were analysed 24 hours, 72 hours, 7 days and 10 days after exposure. 

Furthermore, expression levels of negative and positive regulators of endoreduplication were 

measured in leaves of A. thaliana seedlings exposed to 0, 1, 2.5, 5 and 7.5 µM Cd for 11 days, starting 

from day 11 after sowing.   

 After 24 hours of Cd exposure, nuclear ploidy levels were not significantly affected in leaf 1 

(Figure 11A). However, the proportion of cells of leaf 1 containing 16C was significantly decreased in 

response to exposure to 5 µM Cd for 72 hours (Figure 11C). Furthermore, the fraction of cells 

containing a 4C nuclear DNA content was significantly increased in response to exposure to 10 µM Cd 

at the same time point. This corresponded with significantly decreased proportions of 8C and 16C cells 

in leaf 1 of these plants as compared to the control. Correspondingly, the EF was decreased in leaf 1 

of plants exposed to 5 and 10 µM Cd for 72 hours. After 7 days of exposure, the fraction of cells of leaf 

1 containing a nuclear DNA content of 16C was significantly decreased in response to 10 µM Cd as 

compared to the control (Figure 11E). At the same time, the EF was significantly reduced in leaf 1 of 

plants exposed to 5 µM Cd. No significant effects were observed in plants exposed for 10 days (Figure 
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11G). Similarly, the EF was not significantly affected in response to Cd exposure (Figure 11H).  

  After 72 hours of exposure, no significant effects concerning nuclear ploidy levels were found 

in leaf 3 as compared to the control (Figure 12A). The proportion of cells containing a 16C nuclear DNA 

content was significantly decreased in leaf 3 of plants exposed to 10 µM Cd for 7 days (Figure 12C). 

Though, the EF was not significantly affected in response to Cd exposure for 7 days (Figure 12D).

 However, after 10 days of exposure to Cd nuclear ploidy levels of leaf 3 were significantly 

decreased (Figure 12E and F). After 10 days of exposure, the fraction of cells in leaf 3 containing a 

nuclear DNA content of 2C was not significantly affected in response to Cd exposure (Figure 12E and 

Supplementary Figure 2A). The proportion 4C was significantly increased in leaf 3 of plants exposed to 

10 µM Cd (Figure 12E and Supplementary Figure 2B). However, fractions of cells containing a 8C 

nuclear DNA content  were significantly higher in leaf 3 of plants exposed to 1, 2.5 and 5 µM Cd as 

compared to the control (Figure 12E and Supplementary Figure 2C). Proportions of 16C cells were 

significantly lower in plants exposed to all Cd concentrations tested as compared to the control (Figure 

12E and Supplementary Figure 2D). The fraction of cells containing a 32C nuclear DNA content was 

significantly lower in leaf 3 of plants exposed to 5 and 10 µM Cd (Figure 12E and Supplementary Figure 

2E). On average, the extent of endoreduplication in leaf 3 of Cd-exposed plants was reduced. This was 

confirmed by the EF, which was significantly lower in leaf 3 of plants exposed to 1, 5 and 10 µM Cd as 

compared to the control (Figure 12F).   

 Furthermore, expression levels of regulator genes of endoreduplication and DNA damage 

signalling genes were determined in leaves of A. thaliana seedlings exposed to 0, 1, 2.5, 5 and 7.5 µM 

Cd for 11 days, starting from day 11 after sowing (Table 4). In general, the expression of positive 

regulators of endoreduplication such as SIAMESE-related (SMR) genes SMR4, SMR5 and SMR7 was 

significantly increased after exposure to 5 and 7.5 µM Cd for 11 days. Additionally, expression levels 

of SMR4 increased after exposure to 1 µM Cd while levels of SMR5 increased after exposure to 1 and 

2.5 µM Cd as well. The transcriptional repressor of endoreduplication DP-E2F-like (DEL1) was not 

significantly affected in response to Cd exposure. The expression of ataxia-telangiectasia mutated 

(ATM), involved in DNA damage signalling, was significantly increased in plants exposed to 7.5 µM Cd. 

In contrast, the expression of ATM- and RAD3-related (ATR) was not significantly affected by any of 

the Cd exposure conditions. 
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Figure 11: Nuclear ploidy levels (%) and the endoreduplication factor in leaf 1 of A. thaliana seedlings after 24 hours (A, B), 
72 hours (C, D) 7 days (E, F) and 10 days (G, H) of exposure to 0, 1, 2.5, 5 or 10 µM Cd, starting from day 11 after sowing. Data 
represent the mean (± S.E.) of 4 biological independent replicates. Significance levels compared to control conditions (one-
way ANOVA): *: p-value < 0.05; **: p-value < 0.01. 
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Figure 12: Nuclear ploidy levels (%) and the endoreduplication factor in leaf 3 of A. thaliana seedlings after 72 hours (A, B), 7 
days (C, D) and 10 days (E,F) of exposure to 0, 1, 2.5, 5 or 10 µM Cd, starting from day 11 after sowing. Data represent the 
mean (± S.E.) of 4 biological independent replicates. Significance levels compared to control conditions (one-way ANOVA): *: 
p-value < 0.05; **: p-value < 0.01. 

Table 4: Expression levels of positive and negative endoreduplication regulator genes and DNA damage signalling genes in 
leaves of A. thaliana seedlings exposed to 0, 1, 2.5, 5 or 7.5 µM Cd for 11 days, starting from day 11 after sowing. Gene 
expression levels of Cd-exposed plants are represented relative to control conditions (= 1.00 ± S.E.). Data represent the mean 
± S.E. of at least 5 biological independent replicates. Significance levels (one-way ANOVA): : p-value < 0.05; : p-value < 0.01 
for an increased expression compared to the control. Significant differences are indicated only in case both normalized and 
non-normalized data (not-shown) are statistically significant. SMR: SIAMESE-related; DEL1: DP-E2F-like 1; ATM: ataxia-
telangiectasia mutated; ATR: ATM- and RAD3-related. 

Gene Control 1 µM Cd 2.5 µM Cd 5 µM Cd 7.5 µM Cd 

Positive regulators 

SMR1 1.00 ± 0.09 0.86 ± 0.03 0.88 ± 0.06 0.86 ± 0.07 0.82 ± 0.10 

SMR4 1.00 ± 0.12 1.46 ± 0.13 1.37 ± 0.23 3.26 ± 0.11 3.11 ± 0.52 

SMR5 1.00 ± 0.20 5.00 ± 1.05 2.66 ± 0.50 6.16 ± 1.06 3.03 ± 0.61 

SMR7 1.00 ± 0.13 1.13 ± 0.12 3.55 ± 0.94 11.81 ± 3.35 10.76 ± 3.22 

Negative regulators 

DEL1 1.00 ± 0.10 1.02 ± 0.13 0.99 ± 0.08 1.02 ± 0.04 1.10 ± 0.08 

DNA damage signalling 

ATM 1.00 ± 0.08 0.88 ± 0.08 1.23 ± 0.16 1.19 ± 0.03 1.45 ± 0.05 

ATR 1.00 ± 0.15 1.26 ± 0.06 1.16 ± 0.21 1.28 ± 0.03 1.21 ± 0.18 
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3.2.3 The effect of Cd exposure on oxidative stress-related parameters  

The possible link between Cd-induced effects on endoreduplication and the Cd-induced oxidative 

challenge was investigated by the measurement of three oxidative stress-related parameters: AsA and 

GSH concentrations and redox state, lipid peroxidation and expression of oxidative stress marker 

genes. Measurements of AsA and GSH and lipid peroxidation were performed on leaves harvested 

from A. thaliana seedlings exposed to 0, 1, 2.5, 5, 7.5 or 10 µM Cd for 10 days starting from day 11 

after sowing. Gene expression levels were determined in leaves of A. thaliana exposed to 0, 1, 2.5, 5 

or 7.5 µM Cd for 11 days, starting from day 11 after sowing.  

3.2.3.1 Antioxidative metabolite concentrations 

The concentrations and redox state of the antioxidative metabolites AsA and GSH were determined 

using spectrophotometry, in leaves of A. thaliana seedlings exposed to 1, 2.5, 5 and 10 µM Cd for 10 

days, starting from day 11 after sowing. In order to gain insight into leaf age-related differences in 

antioxidative metabolite concentrations in Cd-exposed plants, measurements were compared 

between young (leaves 6-9) and old leaves (leaves 1-4).   

 In general, concentrations of total, reduced and oxidized AsA as well as GSH were lower in 

older leaves in comparison to younger leaves (Table 5). However, in both old and young leaves of plants 

exposed to 10 µM Cd, total and reduced GSH concentrations were significantly increased as compared 

to the control. At the same time, decreased concentrations of GSSG were found in old leaves of plants 

exposed to 2.5 µM Cd and young leaves of plants exposed to 2.5 and 5 µM Cd. In addition, total and 

reduced AsA concentrations were significantly increased in both old and young leaves of plants 

exposed to 10 µM Cd.  

Table 5: Ascorbate and glutathione concentrations (nmol/g FW) in young (leaves 6-9) and old leaves (leaves 1-4) of A. thaliana 
seedlings exposed to 1, 2.5, 5 or 10 µM Cd for 10 days, starting from day 11 after sowing. Data represent the mean ± S.E. of 
at least 5 biological independent replicates. Significance levels compared to young leaves of plants exposed to the same Cd 
concentration: **: p < 0.01 and significance levels compared to control conditions of the same leaf age (two-way ANOVA): 
increase : p-value < 0.05; : p-value < 0.01 decrease : p-value < 0.05; : p-value < 0.01. FW: fresh weight; GSH: glutathione 
(reduced form); GSSG: glutathione disulphide (oxidized form); AsA: ascorbate (reduced form); DHA: dehydroascorbate 
(oxidized form).    

Leaves Control 1 µM Cd 2.5 µM Cd 5 µM Cd 10 µM Cd 

Young      

GSH+GSSG 309.02 ± 16.52 337.77 ± 30.10 335.36 ± 15.76 351.70 ± 17.36 484.09 ± 29.82 

GSH 266.78 ± 13.14 317.45 ± 33.61 320.63 ± 14.78 337.68 ± 20.09 440.13 ± 36.02 

GSSG 21.12 ± 2.51 10.16 ± 4.68 7.37 ± 3.03 5.96 ± 0.98 12.78 ± 4.77 

AsA+DHA 3.49 ± 0.23 3.59 ± 0.40 3.64 ± 0.38 3.94 ± 0.20 6.91 ± 0.57 

AsA 2.70 ± 0.46 2.73 ± 0.32 2.52 ± 0.24 2.68 ± 0.37 4.80 ± 0.54 

DHA 0.79 ± 0.42 0.86 ± 0.19 1.13 ± 0.23 1.26 ± 0.24 1.92 ± 0.52 

Old      

GSH+GSSG 196.96 ± 7.02** 202.19 ± 9.27** 214.93 ± 6.39** 212.87 ± 10.81** 345.16 ± 11.75** 

GSH 180.14 ± 5.44** 177.81 ± 7.99** 206.47 ± 5.90** 199.95 ± 9.39** 330.64 ± 11.15 

GSSG 8.41 ± 1.05** 12.19 ± 6.65 4.23 ± 0.72 6.46 ± 0.86 7.26 ± 1.05 

AsA+DHA 1.82 ± 0.12** 1.72 ± 0.08** 1.71 ± 0.13** 1.42 ± 0.13** 4.60 ± 0.55** 

AsA 1.26 ± 0.07** 1.15 ± 0.08** 1.12 ± 0.13** 1.14 ± 0.11** 3.64 ± 0.53 

DHA 0.56 ± 0.09 0.57 ± 0.06 0.59 ± 0.08 0.28 ± 0.12* 0.96 ± 0.25 
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3.2.3.2 Lipid peroxidation 

In order to determine the extent of lipid peroxidation in Cd-exposed plants, TBARS levels were 

spectrophotometrically determined in leaves of plants exposed to 0, 1, 2.5, 5 or 10 µM Cd for 10 days, 

starting from day 11 after sowing (Figure 13). Leaves of plants exposed to 10 µM Cd showed a strongly 

significant increase of TBARS levels as compared to leaves of control plants. No significant effects were 

found after exposure to lower Cd concentrations.   

 

Figure 13: Thiobarbituric acid-reactive substances (TBARS) (μmol/g FW) in leaves of A. thaliana seedlings exposed to 0, 1, 2.5, 
5 or 10 µM Cd for 10 days, starting from day 11 after sowing. Data represent the mean ± S.E. of at least 5 biological 
independent replicates. Significance levels compared to control conditions (one-way ANOVA): **: p-value < 0.01. FW: fresh 
weight. 

In a similar experiment, levels of TBARS were determined in leaves of plants exposed to 0, 1, 2.5, 5 or 

7.5 µM Cd for 10 days, starting from day 11 after sowing (Figure 14). No significant differences were 

found. 

 

Figure 14: Thiobarbituric acid-reactive substances (TBARS) (μmol/g FW) in leaves of A. thaliana seedlings exposed to 0, 1, 2.5, 
5 or 7.5 µM Cd for 10 days, starting from day 11 after sowing. Data represent the mean ± S.E. of at least 5 biological 
independent replicates. FW: fresh weight 

3.2.3.3 Expression of genes involved in oxidative stress 

To further investigate the molecular mechanisms underlying Cd-induced effects on endoreduplication 

and their link to Cd-induced oxidative stress, expression levels of oxidative stress marker genes were 

determined via RT-qPCR. The expression of these genes was measured in leaves of A. thaliana 

seedlings exposed to 0, 1, 2.5, 5 and 7.5 µM Cd for 11 days, starting from day 11 after sowing (Table 

6). In general, the expression of the oxidative stress marker genes was significantly increased in 

response to exposure to 1, 2.5, 5 and 7.5 µM Cd except for AT2G21640, which only responded to 5 and 

7.5 µM Cd. 



25 
 

Table 6: Expression levels of oxidative stress marker genes in leaves of A. thaliana seedlings exposed to 0, 1, 2.5, 5 or 7.5 µM 
Cd for 11 days, starting from day 11 after sowing. Gene expression levels of Cd-exposed plants are represented relative to 
control conditions (= 1.00 ± S.E.). Data represent the mean ± S.E. of at least 5 biological independent replicates. Significance 
levels (one-way ANOVA): : p-value < 0.01 for an increased expression compared to the control. Significant differences are 
indicated only in case both normalized and non-normalized data (not-shown) are statistically significant. 

Gene Control 1 µM Cd 2.5 µM Cd 5 µM Cd 7.5 µM Cd 

Oxidative stress marker genes 

AT2G21640 1.00 ± 0.09 1.44 ± 0.13 1.59 ± 0.11 3.08 ± 0.25 2.91 ± 0.82 

AT2G43510 1.00 ± 0.26 3.29 ± 0.61 3.52 ± 0.84 4.20 ± 0.67 4.51 ± 0.52 

AT1G19020 1.00 ± 0.18 5.93 ± 0.99 4.15 ± 0.93 7.31 ± 1.20 4.79 ± 0.91 

AT1G05340 1.00 ± 0.29 18.40 ± 3.06 12.80 ± 3.44 24.83 ± 2.93 16.23 ± 3.08 

AT1G57630 1.00 ± 0.17 4.99 ± 1.05 3.74 ± 0.89 7.07 ± 1.50 5.04 ± 0.99 
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4 DISCUSSION 
Environmental pollution by metals is a problem affecting many regions worldwide. Cadmium, a toxic 

metal and group I carcinogen is considered a worldwide concern in terms of its influence on 

environmental quality and health. Furthermore, Cd is easily taken up by plants and thereby introduced 

into the food chain, causing negative health effects in many organisms.  

  In this study, we investigated Cd-induced effects on endoreduplication in A. thaliana leaves 

and the possible link with the Cd-induced oxidative challenge. In order to evaluate the effect of Cd 

exposure on endoreduplication, this alternative cell cycle mode was first studied in leaves of A. 

thaliana during 10 days of growth under control conditions. Since endoreduplication seems to be age-

dependent and possibly affected by redox signalling, it was furthermore interesting to determine age-

related differences in oxidative stress related parameters under control conditions as well. Besides its 

function in the normal development and growth of the plant, endoreduplication can be induced by 

external stress factors such as UV-B irradiation(29). Therefore, we measured the effects of Cd-exposure 

on nuclear ploidy levels and expression levels of endoreduplication regulator genes in plants exposed 

for 10 days, starting from day 11 after sowing. Additionally, several oxidative stress-related parameters 

were studied in order to investigate the possible link of Cd-induced effects on endoreduplication with 

the Cd-induced oxidative challenge. 

 Endoreduplication and oxidative stress-related parameters under control 

conditions 

In the first part of this study we investigated the extent of endoreduplication in leaves of A. thaliana 

grown under control conditions. Therefore, we determined the extent of endoreduplication during 10 

days of growth and development, starting from day 11 after sowing. Furthermore, oxidative stress-

related parameters were studied in leaves of A. thaliana grown under control conditions. This way, 

both endoreduplication and oxidative stress-related parameters were investigated under control 

conditions, in order to compare these with the Cd-induced response later on. 

4.1.1 Endoreduplication in unexposed leaves of A. thaliana 

First we determined the extent of endoreduplication in leaves of A. thaliana seedlings during growth 

and development under control conditions. Different environmental factors affect the level of 

endoreduplication. For instance, light intensity and soil water content were shown to influence nuclear 

ploidy levels in leaves of A. thaliana(30). The specific growth conditions (e.g. relative humidity, 

temperature, photoperiod, growth medium etc.) used for cultivation of the plants will therefore most 

likely exert control on the extent of endoreduplication. Beemster et al. (2005)(34) has already shown an 

increasing nuclear ploidy levels in leaves 1 and 2 of A. thaliana from day 10 until day 22 after sowing. 

However, in order to evaluate the effect of Cd exposure on endoreduplication in the next part of this 

study, it is of great importance to define the extent of endoreduplication under control conditions, 

using our specific growth conditions. Therefore, nuclear ploidy levels of the first leaf pair (leaves 1-2) 

were measured daily using flow cytometry starting from day 11 after sowing, when the first two rosette 

leaves had fully emerged. Furthermore, the nuclear DNA content of younger leaves, if these had 

already fully emerged, was determined 24 hours, 72 hours, 7 days and 10 days after sowing.   

 From the results obtained in this experiment, it can be concluded that nuclear ploidy levels in 

the first leaf pair increase with increasing leaf age by successive endocycling (Figure 5). These results 

were in accordance with the results of Galbraith et al. (1991)(35), who showed an increasing trend of 

nuclear ploidy in the first, second and third leaf pair (leaves 1-2, 3-4 and 5-6 respectively) of A. thaliana 
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from day 9 to day 21 after germination. Gegas et al. (2014)(29) showed increasing levels of  

endopolyploidy in leaf 5 of Col-0 A. thaliana plants from 5 to 15 days post initiation. Moreover, 

Beemster et al. (2005)(34) showed an increasing extent of endoreduplication in the first leaf pair of A. 

thaliana from day 14 until day 22 after sowing. In addition, the authors reported that from day 14 

onwards, 8C cells were observed in combination with a reduced cell division rate, therefore indicating 

endoreduplication had started in the first leaf pair. They therefore suggested the leaf tissue to have 

shifted from proliferation (cell division rate matches the expansion rate) to expansion (cells continue 

to expand but stop dividing). These are the first two developmental phases through which growth is 

achieved. When cells no longer expand, the third developmental phase of growth, that is maturity, has 

been reached(34). Endoreduplication therefore seems most important during expansion. Since our 

results show the proportion of 8C cells to increase strongly at day 13-14 after sowing as well, we 

suggest endoreduplication in the first leaf pair to start at this time point, indicating the onset of the 

expansion phase.  

  Furthermore, older leaves of A. thaliana showed higher nuclear ploidy levels as compared to 

younger leaves of the same plant grown for 21 days under control conditions (Figure 6). This is 

confirmed by the EF as it increased gradually from leaf 8 to leaves 1-2. These results are in agreement 

with those reported by Galbraith et al. (1991)(35), who showed a higher extent of endoreduplication in 

older leaf pairs as compared to younger leaf pairs within the same plant, 21 days after germination. 

These findings suggest that endoreduplication is tissue dependent and that growth of the leaves and 

thus its developmental phase strongly determines the extent of endoreduplication.   

 Moreover, a positive correlation was found when plotting the EF against the leaf surface area 

(Figure 7). This indicated a positive relationship between nuclear DNA content and leaf surface area. 

These results were confirmed by Massonnet et al. (2011)(36) who reported a positive correlation 

between the surface area of leaf 6 and the EF. These findings support our previous suggestion that 

endoreduplication is important during expansion, and thereby correlated with leaf surface area.  

 Together, these findings provide the general picture of endoreduplication in leaves of A. 

thaliana grown under control conditions. Furthermore, they indicate that endoreduplication plays an 

important role in normal growth and development of A. thaliana leaves under control conditions. 

Moreover, the extent of endoreduplication seems to be strongly dependent on leaf age, which is 

coupled to a developmental phase. To the best of our knowledge, no data have been published 

concerning daily evaluations of nuclear ploidy levels in different leaves of A. thaliana. In future studies, 

it would be interesting to determine the cell number, size and division rate parallel to the leaf area and 

nuclear DNA content. Additionally, A. thaliana plants mutated in DEL1 or FZR2/CCS52A1, having an 

enhanced or reduced extent of endoreduplication, respectively, can be used to improve our 

understanding regarding the role of endoreduplication in these growth and developmental phases. 

4.1.2 Oxidative stress-related parameters under control conditions 

In order to gain more knowledge on the oxidative challenge under control conditions, antioxidative 

metabolite concentrations and gene expression levels of oxidative stress markers were determined in 

leaves of A. thaliana. Furthermore, as endoreduplication seems strongly dependent on leaf age, these 

oxidative stress-related parameters were compared between young (leaves 6 to 9) and old (leaves 1-

4) leaves of 21-day old A. thaliana seedlings grown under control conditions.  

 Overall, concentrations of total, reduced and oxidized GSH were lower in old leaves as 

compared to young leaves (Table 2). We hypothesize that younger leaves most likely suffer a greater 

vulnerability to environmental stress factors as compared to older leaves. Therefore, they require an 
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improved antioxidant defence system which is governed by the pool sizes of antioxidants and the 

ability to keep these pools in their reduced forms. To date, no data have been published on the 

difference in glutathione concentrations between old and young leaves of A. thaliana. In addition to 

their role in the antioxidative defence system, both GSH and AsA are supposed to be involved in the 

regulation of the cell cycle. On the other hand, merely the presence of a critical concentration of GSH 

is required for cell division to occur while any rise above this level is redundant. However in most cases, 

in terms of the cell cycle their role in redox signalling seems more important rather than the compound 

itself(25). Nevertheless, since younger leaves most likely contain more tissue undergoing cell division, 

this could explain the increased concentrations of GSH in comparison to older leaves. To further 

investigate these hypotheses it would be interesting to perform similar experiments using the cad2-1 

A. thaliana mutant, containing only 15-30% of GSH compared to wild-type levels, in combination with 

measurements of the cell division rate and occurrence.   

 Secondly, gene expression levels of several oxidative stress markers were determined in young 

and old leaves of A. thaliana plants grown for 21 days under control conditions (Table 3). Although no 

significant age-related differences were found except for one oxidative stress marker, AT1G57630, an 

increasing trend was observed when comparing the expression levels of old leaves to young leaves. 

Gadjev et al. (2006)(37) reported these genes to be hallmarks for the general oxidative stress response 

because of their consistent up-regulation in response to different oxidative stress-causing agents. 

Therefore, our findings indicate that the old leaves suffer increased levels of oxidative stress as 

compared to young leaves. Furthermore, AT1G57630 seems to be expressed during the final stage of 

leaf development, when the leaf ceases metabolic activity and reaches senescence(38). Moreover, leaf 

senescence seems to be closely related to oxidative stress tolerance(39).   

  In combination with the decreased concentrations of GSH in old leaves as compared to young 

leaves, these findings strongly suggest that the old leaves were most likely suffering increased levels 

of oxidative stress caused by decreased antioxidative capacities. The observed effect is most likely due 

to these leaves coming closer to leaf senescence, as was indicated by increased expression levels of 

AT1G57630, in combination with increased GSH concentrations in young leaves due to a higher 

vulnerability to environmental stressors. 

 Cd-induced effects on endoreduplication and the possible link with the Cd-induced 

oxidative challenge 

In the second part of the study, the main objective was to investigate the possible link between Cd-

induced effects on the oxidative challenge and endoreduplication. Therefore, the uptake of Cd and 

acquisition of nutrients was defined in response to Cd exposure. Furthermore, nuclear ploidy levels 

and expression levels of important regulators of endoreduplication and DNA damage signalling genes 

were determined in leaves of plants exposed to Cd. Finally, we investigated leaf age-related differences 

in antioxidative metabolite concentrations, expression levels of oxidative stress marker genes and the 

extent of lipid peroxidation in response to Cd exposure.  

4.2.1 Cadmium uptake and nutrient acquisition 

Concentrations of Cd, macro- (P and S) and microelements (Zn and Fe) were determined in leaves of 

21-day old Cd-exposed A. thaliana plants in order to evaluate their uptake and accumulation in the 

leaves in response to Cd exposure.   

 Cadmium was readily taken up from the Cd-contaminated Hoagland solution and accumulated 

in the leaves. This was shown by increased Cd concentrations in leaves of plants exposed for 10 days 
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to all Cd concentrations tested (Figure 8A). Furthermore, concentration-dependent increases in leaf 

Cd content were observed for plants exposed to 1, 2.5 and 5 µM Cd. However, leaves of plants exposed 

to 10 µM Cd accumulated only half the concentration of Cd in comparison to those exposed to 5 µM 

Cd. We hypothesize that this is due to disturbed growth of the roots which might reduce Cd uptake 

and subsequent translocation to the aerial parts of the plant. This was confirmed by a significant 

decrease in root length of plants exposed to 10 µM Cd as compared to the control (Figure 10A). 

However, these results are not in accordance to the results of Cuypers et al. (2011)(14), who reported a 

concentration-dependent increase in leaf Cd concentrations of A. thaliana seedlings exposed to 5 and 

10 µM Cd for 24 hours starting 3 weeks after sowing. However, in the current study, A. thaliana 

seedlings were exposed to Cd for 10 days starting from day 11 after sowing. Since these plants were 

exposed for a longer period starting from a younger age, they will most likely experience an increased 

vulnerability to the Cd-induced toxicity. In addition, acquisition of P (Figure 8B) and Zn (Figure 8D) 

further supports our hypothesis, as the accumulation of both essential elements was significantly 

decreased in leaves of plants exposed to 10 µM Cd as compared to the control, most likely due to 

disturbed root growth. In addition, Jozefczak et al. (2014)(40) reported the relative translocation of Cd 

from roots to leaves to be lower in plants exposed to 10 µM Cd as compared to those exposed to 5 µM 

Cd. A similar result was found in a study by Nocito et al. (2011)(41) who reported an increasing Cd 

retention in the roots with increasing Cd concentrations. These findings could further contribute to the 

limited accumulation of Cd observed in leaves of plants exposed to 10 µM Cd.   

 The leaf S concentration of plants exposed to 1, 2.5 and 5 µM Cd was furthermore significantly 

increased in a dose-dependent manner (Figure 8C). This could be explained by an increased sulphate 

uptake and assimilation for improving the synthesis of GSH and PCs in order to mitigate the Cd-induced 

oxidative stress and reduce the circulation of free Cd2+ ions(19). In contrast to the plants exposed to 1, 

2.5 and 5 µM Cd, the S concentration of leaves of plants exposed to 10 µM Cd was not significantly 

increased. These latter most likely will not be able to take up sufficient amounts of S due to disturbed 

root growth, as was suggested for the other nutrients. In addition, as the roots were in direct contact 

with the Cd containing nutrient solution, these organs will possibly suffer excessive oxidative stress. In 

this way, most of the S which was taken up, might be consumed in order to protect the roots from 

oxidative damage. Another possible explanation may be the fact that the uptake of inorganic sulphate 

is mediated via energy-dependent proton/sulphate co-transport systems located in the surface cell 

layers of roots(42). Depletions of ATP induced by oxidative damage in the roots may therefore inhibit 

uptake of S. Finally, ATP sulphurylase is shown to be easily affected by Cd(3). As this enzyme catalyses 

the first reaction – which is ATP-dependent as well – in S assimilation(43), its interaction with Cd may 

cause a reduced uptake of inorganic sulphate. Therefore, less S may be accumulated in the leaves of 

plants exposed to 10 µM Cd compared to those exposed to lower Cd concentrations.   

 However, in comparison to the control, this limited uptake of S in plants exposed to 10 µM Cd 

was not significantly decreased either. As this was the case for most of the other nutrients, it further 

confirms the increased demand of S uptake and assimilation in response to Cd exposure.   

 Because of an impaired accumulation of Cd and essential elements together with disturbances 

of root growth in plants exposed to 10 µM Cd, a similar experiment was performed exposing plants to 

7.5 µM Cd instead of 10 µM Cd (Figure 9). In general, the results of this experiment are in line with 

these described above. However, the uptake of essential nutrients was not as strongly affected by 

exposure to 7.5 µM Cd as compared to 10 µM Cd.   

 In order to fully investigate the uptake and translocation to the leaves of Cd as well as essential 

elements after Cd exposure, their concentrations should be measured in both roots and leaves. 
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Moreover, it would be interesting to determine the concentrations and synthesis rate of PCs in both 

organs in order to further clarify the results concerning S accumulation.  

4.2.2 Cadmium-induced effects on endoreduplication and its regulators in leaves of A. thaliana 

Besides its role in growth and developmental processes, research has shown that endoreduplication 

can be induced by external stress factors. Thereby it may provide a mechanism to mitigate the effects 

of exogenous stress. For instance, the extent of endoreduplication was increased in response to high 

UV-B irradiation in leaves of A. thaliana, as was recently shown by Gegas et al. (2014)(29). Moreover, 

nuclear ploidy levels were increased by water-deficit stress in Arabidopsis leaf mesophyll cells. In this 

part of the study, Cd-induced effects on endoreduplication and its regulators in A. thaliana leaves were 

investigated. Therefore, nuclear ploidy levels were determined in leaves 1 and 3 of plants exposed to 

0, 1, 2.5, 5 and 10 µM Cd for 24 hours, 72 hours, 7 days and 10 days. Expression levels of important 

regulators of endoreduplication were determined in leaves of plants exposed to 0, 1, 2.5, 5 and 7.5 µM 

Cd for 11 days, starting from day 11 after sowing.  

 After 24 hours of exposure to Cd, no significant effect was observed on the extent of 

endoreduplication in the oldest leaf (leaf 1) and nuclear ploidy levels appeared to be equally 

distributed in exposed and non-exposed plants (Figure 11A). After 72 hours of exposure, leaf 1 of plants 

exposed to 10 µM Cd showed significantly increased proportions of 4C and decreased proportions of 

8C and 16C (Figure 11C). However, only the proportion of 16C cells in leaf 1 was decreased after 7 days 

of exposure to 10 µM Cd (Figure 11E). Although a similar trend was observed in leaf 1 as compared to 

leaf 3 of A. thaliana plants exposed to Cd for 10 days, endoreduplication being significantly reduced in 

leaf 3, the extent of endoreduplication in leaf 1 was no longer significantly reduced as compared to 

the control at this time point (Figure 11G).   

 Leaf 3 showed no significant differences in nuclear ploidy levels in response to Cd exposure of 

plants for 72 hours (Figure 12A). However, plants exposed to 10 µM Cd for 7 days showed a significant 

decreased proportion of 16C cells (Figure 12C). Additionally, after 10 days of exposure to Cd, the extent 

of endoreduplication in leaf 3 of A. thaliana seedlings was significantly reduced (Figure 12E and 

Supplementary Figure 2). This effect was shown by significantly decreased proportions of cells 

containing nuclear ploidy levels of 16C (1, 2.5, 5 and 10 µM Cd) and 32C (5 and 10 µM Cd) after 10 days 

of exposure. Additionally, it was confirmed by a significantly reduced EF in leaves of plants exposed to 

1, 5 and 10 µM Cd as compared to the control (Figure 12F).   

 In the control experiment in which we daily determined nuclear ploidy levels in leaf 1-2 of A. 

thaliana seedlings during growth, we have shown endoreduplication, and therefore expansion, of 

these leaves to start around day 14 after sowing, when they were approximately 4 days old (Figure 5). 

This further explains our findings, as nuclear ploidy levels of leaf 1 were affected 72 hours after 

exposure, which is at day 14 after sowing. At this time point during growth, the extent of 

endoreduplication in leaf 1 starts to increase and is therefore most likely affected in response to Cd 

exposure. At this time, leaf 3 will be roughly one day old. However, after 7 days of exposure, when 

decreased proportions of 16C cells were observed, these leaves will be approximately 5 days old. 

Furthermore, after 10 days of exposure to Cd, the strongest reduction of nuclear ploidy levels was 

observed in leaf 3. Hence, we suggest that the delayed effect on endoreduplication in response to Cd 

in leaf 3 compared to leaf 1 is due to a delay in the expansion phase, in which endoreduplication seems 

to play an important role.   

  Although leaf 1 showed a similar trend compared to leaf 3 after 10 days of exposure to Cd, the 

extent of endoreduplication was no longer significantly reduced in leaf 1 at this time point. Therefore, 
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we suggest that the expansion phase of leaf 1, in which Cd exposure affected endoreduplication, was 

probably coming to an end after 10 days of exposure and the leaf approached the maturity phase of 

development in which cells no longer expand. These results are in accordance with increased 

expression levels of the oxidative stress marker AT1G57630, which is expressed during the final stage 

of leaf development, when the leaf ceases metabolic activity and reaches senescence. Nevertheless, 

although these findings suggest that the effect of Cd on endoreduplication of leaf 1 has weakened after 

10 days of exposure, the EF clearly showed a decreasing trend in an almost dose-dependent manner. 

In order to further investigate this, nuclear ploidy levels of younger leaves such as leaf 3 should be 

measured throughout the whole process of growth as well, from proliferation until senescence is 

reached.  

 Interestingly, the proportion of cells containing a nuclear DNA content of 8C was significantly 

increased in leaf 3 of plants exposed to 1, 2.5 and 5 µM Cd for 10 days (Figure 12E and Supplementary 

Figure 2C). This indicates that while cells of leaves of unexposed plants undergo successive endocycles 

reaching 16C nuclear DNA content proportions of nearly 20% (Supplementary Figure 2D), most of the 

cells in the Cd-exposed leaf cells were stalled at 8C. Sugimoto-Shirasu et al. (2002)(44) reported that 

DNA topoisomerase VI (topo VI; a subclass of type II DNA topoisomerases, type IIB) is required for 

successive endocycling beyond the 8C level in Arabidopsis, as it resolves DNA entanglements during 

DNA replication. Therefore, we hypothesize that Cd inhibits topo VI and thereby endocycling beyond 

8C nuclear ploidy levels. In addition, topo VI requires the divalent metal ion Mg2+ for both structural 

and catalytic functions, such as relaxation of supercoiled DNA. Another divalent metal ion such as Ca2+ 

was furthermore shown to modulate topo VI activity by replacing Mg2+, making the re-ligation process 

less effective(45). These findings support our hypothesis, as Cd2+, another divalent metal ion, might 

replace Mg2+, thereby affecting the activity of topo VI and consequently the process of 

endoreduplication. In order to further investigate this effect, it would be interesting to use A. thaliana 

mutants defective in topo VI. Since several enzymes of the DNA replication machinery (e.g. DNA 

polymerase) contain a Mg2+ cofactor, the effect of Cd exposure on these enzymes should be 

investigated as well.  

 To date, no data have been published on the effects of Cd exposure on endoreduplication in 

leaves of A. thaliana. In contrast to our results, Fusconi et al. (2006)(46) have shown Cd exposure of 

Pisum sativum to increase the proportion of primary root cells containing a 4C nuclear DNA content 

while decreasing the proportion of 2C after 48 hours of exposure. However, 4C nuclear ploidy levels 

do not necessarily imply endoreduplication, as the nuclear DNA content raises from 2C to 4C during 

the mitotic cycle as well. Furthermore, the proportion of cells containing a nuclear DNA content of 8C 

was not affected. However, this dissimilarity in Cd response may be due to the fact that these nuclear 

ploidy levels were measured in a different organ of a different organism which was cultivated using 

different growth conditions. Nevertheless, in a future experiment it would be interesting to determine 

Cd-induced effects on endoreduplication in roots of A. thaliana using the same growth conditions used 

in the current study on A. thaliana leaves.  

  In order to investigate the mechanisms underlying the Cd-induced decrease in 

endoreduplication, leaf expression levels of important regulators of endoreduplication were measured 

in response to 0, 1, 2.5, 5 and 7.5 µM Cd exposure for 11 days, starting from day 11 after sowing (Table 

4). In spite of these reduced nuclear ploidy levels in response to Cd exposure, expression levels of DEL1, 

a transcriptional repressor of endoreduplication, were not significantly affected in response to Cd. 

 Neither the expression levels of the measured positive regulators of endoreduplication 

explained the reduced extent of endoreduplication, as these were generally increased in response to 
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Cd exposure. These positive regulators of endoreduplication were all SMR genes, which encode a 

plant-specific class of CDK inhibitors (CKIs) and are therefore suggested to play a role in cell cycle 

regulation. However, these SMR genes were shown to be involved in the DNA damage response as 

well(47). Therefore, the increased expression levels of SMR genes may indicate increased DNA damage 

in our samples. Given the increased expression levels of the measured oxidative stress marker genes 

in response to Cd exposure, this is highly possible. Yi et al. (2014)(47) have shown SMR5 and SMR7 to 

be part of a signalling cascade inducing cell cycle checkpoints in response to ROS-induced DNA damage 

in leaf cells. Therefore, their expression depends on ATM, which is activated by DNA double-strand 

breaks (DSBs), rather than the expected ATR kinase, which is activated by DNA single-strand breaks or 

stalled replication forks. For this reason, the DNA damage signalling genes ATM and ATR were 

measured as well. Our results confirm the findings of Yi et al. (2014)(47) as the positive regulators SMR4, 

SMR5 and SMR7 were all significantly increased after exposure to 5 and 7.5 µM Cd and ATM was 

increased in leaves of plants exposed to 7.5 µM Cd. On the contrary, no significant differences were 

found for ATR expression levels.   

  From these findings we hypothesize that the increased expression levels of SMR genes are due 

to stimulation by ROS-induced DNA damage and the consequent activation of ATM (in 7.5 µM Cd 

exposed plants). This was furthermore supported by the increased expression of oxidative stress 

marker genes in response Cd exposure. However, no such relation between SMR, ATM and the 

oxidative stress markers was found for lower Cd concentrations. This may be caused by excessive 

amounts of DSBs in the highest Cd concentration. Changes at the transcriptional level are generally 

fast and most likely of short duration. A possible explanation may be the fact that we measured 

expression levels at 11 days after exposure, starting from 11 days after sowing. Therefore, Cd-induced 

effects on transcriptional level may have completely diminished by that time.   

 To fully investigate this, the amount of DNA damage in response to Cd exposure should be 

measured in addition to the expression of oxidative stress markers, endoreduplication regulators and 

DNA damage signalling genes. Furthermore, expression levels should be determined on different time 

points between 0 and 11 days after exposure to gain more insight on both short- and long-term Cd-

induced changes on transcriptional level. In addition to the genes measured in this study, we should 

measure expression levels of WEE1, a gene which is induced quickly upon DNA stress and is involved 

in cell cycle progression and the regulation of CDK activity(47). Furthermore, it would be interesting to 

determine CDK activity itself, parallel to these measurements. 

4.2.3 Cadmium-induced oxidative challenge 

In this next part of the study, we investigated the possible link between Cd-induced effects on the 

oxidative challenge and endoreduplication. Our results suggest that endoreduplication is strongly 

dependent on leaf age and is furthermore reduced in leaves of plants exposed to Cd. Therefore, we 

investigated leaf age-related differences in antioxidative metabolite concentrations of Cd-exposed 

plants as well. Furthermore, expression levels of oxidative stress marker genes were determined in 

response to Cd exposure. Finally, the concentration of TBARS was measured in order to evaluate the 

Cd-induced oxidative damage.  

 Antioxidative metabolite concentrations were measured in young (leaves 1-4) and old (leaves 

6-9) leaves of A. thaliana exposed to 0, 1, 2.5, 5 and 10 µM Cd for 10 days, starting at day 11 after 

sowing. As also shown in the previous experiment, investigating leaf age-related differences in GSH 

concentrations and redox state under control conditions, concentrations of total, reduced and oxidized 

GSH were lower in old leaves as compared to young leaves (Table 5). This trend was observed in leaves 
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of both control plants and Cd-exposed plants. Moreover, the same tendency was found for 

concentrations of total, reduced and oxidized AsA, as these were all higher in young leaves as 

compared to old leaves. These results further support our hypothesis that old leaves possess lower 

antioxidative capacities as compared to younger leaves. However, due to a higher vulnerability of 

young leaves to environmental stressors as compared to old leaves they may require increased 

antioxidative capacities. The correct explanation might be somewhere in-between.  

 Furthermore, significantly decreased concentrations of GSSG were observed in young (2.5 and 

5 µM Cd) and old leaves (2.5 µM Cd) in response to Cd exposure. These results are in accordance to 

the results of Jozefczak et al. (2014)(40), who reported significantly decreased leaf GSSG concentrations 

in combination with increased PCs levels and a dose-dependent induction of GR1 expression in leaves 

of A. thaliana seedlings exposed to 5 and 10 µM Cd for 24 hours, starting from day 19 after sowing. 

This was accompanied by a dose- and time-dependent increase in reduced and total GSH levels. 

Therefore, we hypothesize that the decreased GSSG concentration in the leaves of Cd-exposed plants 

is due to an increased activity of GR, which catalyses the reduction of GSSG to GSH. However, in 

contrast to Jozefczak et al. (2014)(40), decreased GSSG concentrations in leaves of plants exposed to 2.5 

and 5 µM Cd for 10 days did not coincide with increased concentrations of reduced or total GSH. 

Therefore, in addition to our previous hypothesis, we suggest that the increased GSH pool which was 

observed by Jozefczak et al. (2014)(40) up to 72 hours of exposure, has diminished after 10 days of 

exposure as the plant increases the synthesis of PCs for chelation and subsequent sequestration of Cd 

to less sensitive cell compartments such as the vacuole(48). To further investigate this hypothesis, gene 

expression levels of GR1, GSH1, GSH2, PCS1 and PCS2 and enzyme activities of GR, GSH1 and GSH2 

should be measured. Since PCS is post-transcriptionally activated at the enzyme level by Cd, we should 

also measure PCS activity.  

 Moreover, reduced and total GSH levels were significantly increased in both young and old 

leaves of plants exposed to 10 µM Cd for 10 days starting from day 11 after sowing. This might indicate 

that chelation by GSH and PCs in this case is insufficient, allowing free Cd2+ ions and thereby causing 

chronic Cd-induced oxidative stress. As the plants try to cope with this increased oxidative stress, the 

ROS scavenging pathway using AsA might be stimulated. This was supported by increased 

concentrations of both reduced and total AsA. Furthermore Jozefczak et al. (2014)(40) reported 

increased levels of AsA in leaves after 48 hours of exposure to 10 µM Cd as well.  

  Gene expression levels of oxidative stress markers were determined in leaves of A. thaliana 

plants exposed to 0, 1, 2.5, 5 or 7.5 µM Cd for 11 days, starting at day 11 after sowing. Overall, the 

expression of the oxidative stress marker genes was significantly increased in leaves of all Cd-exposed 

plants. These results indicate that the plants exposed to Cd suffer increased levels of oxidative stress 

as compared to the control.  

 Additionally, the extent of lipid peroxidation, which was measured as the concentration of 

TBARS, was determined in leaves of A. thaliana exposed to 0, 1, 2.5, 5 or 10 µM Cd for 10 days, starting 

at day 11 after sowing. Significantly increased TBARS levels were found in leaves of plants exposed to 

10 µM Cd (Figure 13). Similar results were found by Jozefczak et al. (2014)(40), who observed significant 

increased leaf TBARS levels after exposure of 19-day old A. thaliana plants to 10 µM Cd for 48 and 72 

hours. No significant differences were found in a similar experiment which we performed by exposing 

A. thaliana seedlings for 10 days to 7.5 µM Cd instead of 10 µM Cd (Figure 14). Hence, we conclude 

that these plants were able to cope with the Cd-induced oxidative stress in response to 7.5 µM Cd.  

  Furthermore, GSSG concentrations were reduced in response to Cd exposure, most likely due 

to an increased GR activity, recycling GSSG back to GSH and subsequent synthesis of PCs in order to 
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decrease the amount of free Cd2+ ions. However, plants exposed to 10 µM Cd showed increased 

concentrations reduced and total GSH and AsA in both young and old leaves. In these plants, GSH and 

PCs chelation of Cd2+ might not be sufficient, causing oxidative stress. This latter was confirmed by 

increased expression levels of oxidative stress markers in response to Cd exposure and subsequent 

DNA damage. In addition, measurements of TBARS concentrations have shown plants exposed to 10 

µM Cd to suffer oxidative damage, though plants were able to cope with concentrations up to 7.5 µM 

Cd. Furthermore, the accumulation of Cd and essential nutrients measurements as well as root growth 

were shown to be disturbed in plants exposed to 10 µM Cd for 10 days. Somewhere in-between 7.5 

and 10 µM Cd there most likely is a turning point at which the antioxidative defence system and Cd 

detoxification mechanism fail to deal with the amount of Cd. For this reason, in future studies exposing 

A. thaliana during 10 days starting from day 11, it may be better to use 7.5 µM Cd as the highest Cd 

concentration.  

  To conclude, reduced, oxidized and total concentrations of GSH and AsA were lower in old 

leaves compared to young leaves, in both control plants as Cd-exposed plants. We hypothesized earlier 

that this may be due to an increased vulnerability of young leaves in combination with a decreased 

antioxidative capacity of old leaves. However, this may also indicate that these young leaves were still 

fully in the expansion phase of growth after 10 days of exposure and therefore endocycling was still 

taking place at high rates. Hence, these leaves may contain increased concentrations of antioxidative 

metabolites compared to old leaves, in order to protect themselves from oxidative damage during this 

important phase of growth and to exert control on the endoreduplication process by redox signalling. 

This may explain why these age-related differences were seen in both control and Cd-exposed plants. 

However, additional research is needed to further investigate this hypothesis. In future experiments, 

it would be interesting to measure antioxidative metabolite concentrations in separate leaves and in 

combination with measurements of nuclear ploidy levels, cell growth parameters and the expression 

of endoreduplication regulators and oxidative stress markers. Furthermore, using the cad2-1 A. 

thaliana mutant, containing only 15-30% of GSH compared to wild-type levels, and vtc1-1 mutant, 

containing only 25-30% of wild-type AsA levels, the importance of these antioxidative metabolites in 

the process of endoreduplication and Cd-induced effects hereon could be evaluated.   
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5 CONCLUSION 
In this study, Cd-induced effects on endoreduplication and the possible link with the Cd-induced 

oxidative challenge were investigated in leaves of A. thaliana seedlings. Endoreduplication and 

oxidative stress-related parameters were first studied in plants grown hydroponically under control 

conditions in order to evaluate the effects of Cd exposure on this alternative cell cycle later in this 

study. During 10 days of growth and development starting from day 11 after sowing, when the first 

two rosette leaves had fully emerged, daily flow cytometric measurements of nuclear ploidy levels 

were performed on separate leaves. It was shown in this study that under control conditions the extent 

of endoreduplication increased with increasing leaf age by successive endocycling. In addition, as older 

leaves showed higher ploidy levels as compared to young leaves of the same rosette within one point 

in time, endoreduplication is strongly dependent on the developmental phase of the leaf. More 

specifically, this alternative cell cycle seems most important during the expansion phase of growth. 

Since endoreduplication seems leaf age-dependent, oxidative stress-related parameters were studied 

in young and old leaves of plants grown for 21 days under control conditions. Concentrations of GSH 

were generally lower in old leaves as compared to young leaves. We hypothesized that young leaves 

require an improved antioxidative defence system because of an increased vulnerability to 

environmental stress factors compared to old leaves. However, increased expression levels of 

AT1G57630 in old leaves of plants grown under control conditions indicated these leaves to approach 

senescence, as this oxidative stress marker gene is expressed during the final stage of leaf 

development. Since leaf senescence is furthermore strongly related to oxidative stress tolerance, this 

indicated that the lower concentrations of GSH found in old leaves are due to the leaves coming closer 

to senescence. Therefore, we hypothesized that the observed effect may be due to a combination of 

both young leaves suffering an increased vulnerability and old leaves reaching senescence.  

 In the second part of this study, Cd-induced effects on endoreduplication and the possible link 

with the Cd-induced oxidative challenge were investigated in leaves of A. thaliana seedlings. 

Preliminary experiments within our research group have shown only mild effects on nuclear ploidy 

levels of 19-day old plants in response to short-term Cd exposure. However, research has shown 

endoreduplication to play an important role during growth and development of plants. For this reason, 

11-day old A. thaliana plants were exposed to 0, 1, 2.5, 5 and 7.5 or 10 µM Cd for 10 days during their 

growth and development. First, the accumulation of Cd and essential macro- and microelements in the 

leaves was evaluated. Plants exposed to 1, 2.5 and 5 µM Cd showed a concentration-dependent 

increase in leaf Cd concentration. Remarkably, leaves of plants exposed to 10 µM Cd accumulated only 

half the concentration of Cd as compared to plants exposed to 5 µM Cd. Since plants exposed to 10 

µM Cd showed disturbed root growth and decreased concentrations of P and Zn were accumulated in 

leaves of these plants, we hypothesize that this limited accumulation of Cd and essential elements in 

plants exposed to 10 µM Cd is due to disturbed root growth caused by excessive oxidative damage. In 

accordance to results of earlier studies, S uptake and translocation was dose-dependently increased in 

response to Cd exposure. This indicated an improved synthesis of GSH and PCs in order to mitigate Cd-

induced oxidative stress and reduce the amount of free Cd2+ ions. However, plants exposed to 10 µM 

Cd did not show significantly increased nor decreased S accumulation in comparison to the control. 

Even though there is an increased demand for S assimilation in response to Cd exposure, plants 

exposed to 10 µM Cd were not able to accumulate increased amounts of S due to disturbed root 

growth. Subsequently, nuclear ploidy levels were measured 24 hours, 72 hours, 7 days and 10 days 

after the start of exposure. Research has shown external stress factors such as UV-B irradiation to 

induce endoreduplication in plants. However, the results obtained in this study have shown Cd 
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exposure to decrease the extent of endoreduplication in leaves of A. thaliana exposed to Cd for 10 

days, starting from day 11 after sowing. Furthermore, the delayed effect on endoreduplication in 

response to Cd in leaf 3 compared to leaf 1 is most likely due to a later emergence of leaf 3 and 

subsequently undergoing the expansion phase. In this phase, endoreduplication plays an important 

role and is therefore most likely affected. To date, no data have been published on the effects of Cd 

exposure on endoreduplication in leaves of A. thaliana. Interestingly, the proportion of 8C was 

significantly increased in leaf 3 of plants exposed to 1, 2.5 and 5 µM Cd for 10 days which coincided 

with significantly decreased proportions of 16C. Research has shown Topo VI to be required for 

endocycling beyond the 8C level in Arabidopsis. Therefore, we hypothesized that Cd affects Topo VI 

activity by replacement of its Mg2+ cofactor, and thereby inhibits endoreduplication beyond 8C nuclear 

ploidy levels. In addition, expression levels of important regulators of endoreduplication and DNA 

damage signalling genes were measured. In contrast to our expectations, expression of the negative 

regulator DEL1 was not altered after 11 days of Cd exposure. Furthermore, expression levels of the 

SMR genes were significantly increased in response to Cd. Besides their role as positive regulators of 

endoreduplication, SMR genes are shown to be involved in the ROS-induced DNA damage response 

and are activated by ATM, which is activated by DSBs and was significantly increased in response to Cd 

exposure as well. This led to the hypothesis that the expression of SMR was increased in response to 

ROS-induced DNA damage and consequently the activation of ATM, which was supported by increased 

expression levels of oxidative stress markers. For this reason, it would be interesting to measure the 

amount of DNA damage in future experiments. In order to investigate the possible link with the Cd-

induced oxidative challenge, leaf age-related differences in GSH and AsA concentrations, expression 

levels of oxidative stress marker genes and lipid peroxidation were determined in response to Cd 

exposure as well. Reduced and total GSH and AsA levels were increased in both young and old leaves 

of plants exposed to 10 µM Cd, which might indicate increased oxidative stress. Total, reduced and 

oxidized GSH and AsA concentrations were all higher in young leaves as compared to old leaves in both 

non-exposed and Cd-exposed plants. As stated previously, this may be due to a combination of 

increased vulnerability of young leaves and the old leaves reaching senescence. However, since the 

young leaves are still in the expansion phase we hypothesize that high concentrations of antioxidative 

metabolites may be required in order to protect the leaves from oxidative damage during this 

important developmental phase and possibly to exert control on endoreduplication by redox 

signalling. More research is needed to further investigate this hypothesis. In combination with the use 

of cad2-1 and vtc1-1 A. thaliana mutants, antioxidative metabolite concentrations should be studied 

in separate leaves together with measurements of nuclear ploidy levels, cell growth parameters and 

expression of endoreduplication regulators and oxidative stress markers.  In addition, increased levels 

of TBARS, disturbed accumulation of Cd and essential nutrients by disturbed root growth as well as 

increased expression of oxidative stress markers and DNA damage signalling genes were observed in 

plants exposed to 10 µM Cd for 10 days, starting from day 11 after sowing. In future studies exposing 

A. thaliana during 10 days of development, 7.5 µM Cd might be used instead of 10 µM Cd.  

  In general, it can be concluded that Cd reduces the extent of endoreduplication in leaves of A. 

thaliana. Furthermore, since endoreduplication plays an important role in growth and developmental 

processes, more specifically the expansion phase of growth, Cd-induced effects on endoreduplication 

are most prevalent during this period. In addition, since important regulators of endoreduplication 

seem to be involved in the Cd-induced oxidative DNA damage response, and antioxidative metabolite 

concentrations seem to be dependent on leaf age, Cd-induced oxidative stress may be involved in the 

Cd-induced effects on endoreduplication. Though, this hypothesis should be further investigated. 
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SUPPLEMENTARY DATA 

 

Supplementary Figure 1: Correlation plot of the endoreduplication factor versus leaf surface area (mm²) of leaves 1-2, 3, 4, 5, 
6, 7 and 8 of A. thaliana seedlings grown for 21 days under control conditions. Measurements were performed at several 
time points from day 11 to day 21 after sowing. 

 

Supplementary Figure 2: The fraction of cells (%) containing a nuclear DNA content of 2C (A), 4C (B), 8C (C), 16C (D) and 32C 
(E) in leaf 3 of A. thaliana seedlings exposed to 0, 1, 2.5, 5 or 10 µM Cd for 10 days, starting from day 11 after sowing. Data 
represent the mean ± S.E. of 4 biological independent replicates. Significance levels compared to control conditions (one-way 
ANOVA): *: p-value < 0.05; **: p-value < 0.01. 
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