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Abstract

Generalized linear mixed models (GLMM) have become a frequently used tool for
the analysis of non-Gaussian longitudinal data. Estimation is based on maximum
likelihood theory which assumes that the underlying probability model is correctly
specified. Recent research is showing that the results obtained from these models are
not always robust against departures from the assumptions on which these models are
based. In the present work we have used simulations with a logistic random-intercept
model to study the impact of misspecifying the random-effects distribution on the
type I and II errors of the tests for the mean structure in GLMM. We found that
the misspecification can either increase or decrease the power of the tests, depending
on the shape of the underlying random-effects distribution, and it can considerably
inflate the type I error rate. Additionally, we have found a theoretical result which
states that, whenever a subset of fixed-effects parameters, not included in the random-
effects structure, equals zero, the corresponding maximum likelihood estimator will
consistently estimate zero. This implies that under certain conditions a significant
effect could be considered as a reliable result, even if the random-effects distribution is
misspecified.

KEY WORDS: Logistic random-intercept model; Maximum likelihood; Robust-
ness; Sandwich estimator.
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1 Introduction

Generalized linear mixed models (GLMM; Agresti, 2002; Diggle et al., 2002; Fahrmeir and

Tutz, 2001; Molenberghs and Verbeke, 2005) have become a frequently used tool in the anal-

ysis of hierarchical data and have been widely applied in different areas like, e.g., toxicology

(Molenberghs and Verbeke, 2005), epidemiology (Kleinman, Lazarus and Platt, 2004), dairy

science (Tempelman, 1998), etc. These models are an extension of generalized linear models

for non-Gaussian data with multiple sources of variation, and they are easy to apply using

software tools like the SAS procedures NLMIXED and GLIMMIX.

Thus far, limited research has been done to study the behavior of the parameter estimators

and the performance of the inferential procedures under certain model misspecifications. For

instance, due to software limitations, random effects are often assumed to be normally dis-

tributed. However, since random effects are not observed, the accuracy of this assumption

is difficult to check. So naturally we are concerned with the impact of misspecifying the

random-effects distribution on the maximum likelihood estimators. Verbeke and Lesaffre

(1997) showed that the maximum likelihood estimators for fixed effects and variance compo-

nents in linear mixed models, obtained under the assumption of normally distributed random

effects, are consistent and asymptotically normal distributed, even when the random-effects

distribution is not normal. Nevertheless, results obtained in recent years show that this does

not hold for generalized linear mixed models (Agresti, Caffo, and Ohman-Strickland, 2004;

Litière et al., 2006; Neuhaus, Hauck, and Kalbfleisch, 1992).

In the present work we address the impact of the misspecification of the random-effects

distribution on the type I and type II errors of the tests for the mean structure in GLMM.

First, the case study that motivated this work will be introduced and analyzed in Section 2.

Next, an overview of some results that have appeared in the literature, investigating model
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misspecifications in GLMM, will be presented in Section 3. In Section 4, we will study via

simulations, the impact of misspecifying the random-effects distribution on the type I and II

errors, and we will introduce a theoretical result that gives the conditions under which the

type I error is robust against misspecification. Section 5 contains some concluding remarks.

2 The Case Study

The case study consists of individual patient data from a randomized clinical trial, comparing

the effect of risperidone to conventional antipsychotic agents for the treatment of chronic

schizophrenia (Alonso et al., 2004). Several measures can be used to assess a patient’s global

condition. The Clinical Global Impression (CGI) is generally accepted as a subjective clinical

measure of change. It is a 7-grade scale used to characterize a subject’s mental condition.

Our binary response variable y is a dichotomous version of the CGI scale which equals 1

for patients classified as normal to mildly ill, and 0 for patients classified as moderately

to severely ill. Since it has been established that risperidone is most effective at doses

ranging from 4 to 6 mg/day, we included only those patients receiving either these doses

of risperidone (i.e., the treatment group z = 1) or an active control (i.e., the control group

z = 0). Treatment was administered for 8 weeks and the outcome was measured at 6 fixed

time points: at the beginning of the study and after 1, 2, 4, 6 and 8 weeks. One hundred

twenty-eight patients were included in the trial. Figure 1 summarizes the probability of

being classified as normal to mildly ill (P (Y = 1)) by time point and treatment group.

2.1 Generalized Linear Mixed Models

Let us denote by yij the response of subject i at time point j. Further, we assume that,

conditional on a vector of individual random effects bi all the outcome variables yij are
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independent and have density functions belonging to the exponential family

f(yij|θij , φ) = exp[φ−1{yijθij − ψ(θij)} + c(yij, φ)], (1)

where θij = η(β0 + xT
ijβ + zT

ijbi), η(.) denotes a known link function, β0 is an intercept, xij

and zij are vectors of covariates, β is a vector of unknown fixed regression coefficients, φ is

a scale parameter and c(.) is a function only depending on yij and φ. Furthermore, ψ(.) is a

function satisfying E(yij) = ψ′(θij) and V ar(yij) = φψ′′(θij).

The subject-specific effects bi are generally assumed to be normally distributed with mean

zero and variance-covariance matrix D. The parameters are then estimated by maximizing

the marginal likelihood, obtained by integrating out the random effects. In the next section

we apply these models to analyze the case study. All the analyses and simulations in this

paper were carried out using the SAS procedure NLMIXED, choosing adaptive Gaussian

quadrature with 50 quadrature points to approximate the likelihood.

2.2 Analysis of the Case Study

We analyzed the data introduced in Section 2 using a random intercept model and considering

different link functions and mean structures. The random intercept was assumed to follow

a normal distribution with mean zero and variance σ2

b . In the model building a total of nine

models were fitted. These models were constructed as combinations of three link functions

(i.e., the logit, log-log and probit link) and three different mean structures. For the mean

structure we considered i) intercept, treatment, time and treatment by time interaction, ii)

like in (i) but without treatment by time interaction and iii) like in (i) but without treatment.

The AIC criterion was used to select the best fitting model. Our final model had the form:

logit{P (yij = 1|bi)} = β0 + β1zi + β2tj + bi, (2)
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where zi = 1 (0) denotes the treatment (control) group, tj denotes the occasion of measure-

ment and bi denotes a random intercept. The maximum likelihood estimates of the fixed

effects are given in Table 1, and the variance of the random effects was estimated as 21.01

(S.E. = 6.81).

Figure 1 displays the plot of the fitted values obtained from our final model against the

observed probability of being classified as normal to mildly ill (P (Y = 1)) by time point

and treatment group. The fitted probabilities are calculated by numerically integrating out

the random effect for each subject. Until week 4 there seems to be a reasonable agreement

between the fitted and the observed values. Nevertheless, some discrepancy is observed in

the last two measurement occasions. It is important to point out that the proportion of

dropouts is significantly high for these two measurements, specially in week 8 for the control

group (50%). In presence of missing data such a discrepancy is not necessarily an evidence of

lack of fit (Molenberghs and Verbeke, 2005). However, we do not want to enter here in a full

discussion of the missing data problem so we will assume that the missing data generating

mechanism is MAR making our likelihood approach a valid option.

Note that, even though the model given by (2) emerged as the best fitting model among all

the ones considered in the model building exercise, it produces relatively extreme estimates

for the intercept and the variance component. We believe this is the result of some extreme

response pattern in the data. For example, in the control group a high proportion of the

patients (75%) have a response pattern of nothing but zeros whereas in the treatment group

a more variable pattern of responses is observed. There, only 56% of the patients have a

response pattern of all zeros.

Therefore, the large estimate for the variance of the random component could be explained

by the high inter-subject correlation that these data seem to suggest. Arguably, these cir-

cumstances could render the assumption of a normal distribution for the random effects
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questionable. However, this situation should not be considered exceptional or infrequent.

Indeed, in a typical placebo controlled clinical trial such an extreme pattern of all zeros

could be expected in the placebo control group, whereas a more variable pattern should be

expected in the responses of the treated group.

The problem is aggravated by the fact that random effects are unobserved latent variables

and it can be difficult to evaluate their distributional assumptions. Diagnostic tools to

analyze the random-effects distribution are not straightforward, for instance, one should be

careful in using empirical Bayes estimates of the random effects to detect departures from

normality. Indeed, it can be shown that in GLMM, the empirical Bayes estimates no longer

follow a normal distribution, even when the random-effects distribution is correctly specified

as normal. Nevertheless, the conventional wisdom among data analysts seems to be that the

choice of the random-effects distribution is not crucial to the quality of the inference about

regression coefficients, even though, as can be seen from Agresti et al. (2004), this does not

always hold. Therefore, the study of the impact of this misspecification on our inferences

is of utmost importance. Are the maximum likelihood estimators still consistent? How are

the power and the type I error of the tests for the mean structure parameters affected by

possible misspecification of the random-effects distribution? The following sections try to

shed light on these topics.

3 The Effect of Misspecification on the Maximum Like-

lihood Estimators

Let us consider a random variable y with density function g, and a parametric family of

density functions f = {f(y; ξ) : ξ ∈ Γ}. If there exists a ξ
0
∈ Γ such that g(y) = f(y, ξ

0
)

then the maximum likelihood estimator ξ̂n of ξ
0

is consistent and asymptotically normal.

However, since in practice g is unknown, it can be difficult to check whether f contains g or
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not. White (1982) found that under general regularity conditions, the maximum likelihood

estimator ξ̂n will (strongly) converge to the value of ξ, denoted by ξ∗, which minimizes the

Kullback-Leibler Information Criterion (KLIC)

I(g : f, ξ) = E
{

log
g(y)

f(y, ξ)

}

, (3)

where the expectation is taken with respect to the true distribution.

Note that if the model for y is correctly specified then the information criterion attains its

unique minimum at ξ∗ = ξ
0
. In this case, ξ̂n is a consistent estimator for ξ

0
. Nevertheless,

the maximum likelihood estimator can fail to be consistent due to misspecified distributional

assumptions. Additionally, Kent (1982) studied the asymptotic distribution of the likelihood

ratio statistic when the data generating mechanism differs from the assumed parametric

model. In general, the likelihood ratio statistic no longer follows an asymptotic chi-squared

distribution and an alternative approach is needed.

In the context of GLMM, Neuhaus et al. (1992) examined the performance of a random-

intercept logistic regression model with misspecified random-effect distributions. They showed

that the maximum likelihood estimators of the model parameters are inconsistent but that

the magnitude of the bias is typically small. Simulations by Chen, Zhang and Davidian (2002)

indicate that the estimation of the regression coefficients may be subject to only negligible

bias under misspecification of the random-effects distribution. Heagerty and Kurland (2001)

studied the impact of the misspecification of the random-effects distribution on the maximum

likelihood estimators of the regression coefficients in logistic regression models for clustered

binary response data. They found that the marginal regression parameters are much less

sensitive to misspecification than the parameters of the corresponding hierarchical model.

According to Agresti et al. (2004) the choice of the random-effects distribution seems to

have, in most situations, little effect on the maximum likelihood estimators. However, when

there is a severe polarization of subjects, e.g., by omitting an influential binary covariate,
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this can affect the quality of prediction of characteristics involving the random effects as well

as the fixed effects. Litière et al. (2006) found that, in some circumstances, misspecification

of the random-effects distribution can introduce substantial relative bias, especially in the

estimation of the variance-covariance parameters. However, the mean structure parameters

can also be affected.

This literature overview illustrates the wide variety of opinions about the impact of the

random-effects misspecification on GLMM. However, up to now, not much research has

been carried out to directly evaluate the performance, under misspecification, of the most

frequently used statistical tests in GLMM. In the following section we will investigate this

issue in more detail.

4 The Effect of Random-Effects Misspecification on

Statistical Inference

In many situations, data analysts consider test statistics and corresponding p-values to evalu-

ate, e.g., whether or not a drug has a significant influence. Therefore, the impact of misspec-

ifying the random-effects distribution on the type I and the type II error is very important

from a practical point of view. To explore this effect, we designed the following simulation

study. A binary response was generated using the logistic random-intercept model given by

(2). This model includes a treatment indicator z (0 or 1) and a within-cluster time variable

tj , with values 0, 1, 2, 4, 6 and 8. For the mean structure we chose β0 = −8 and β2 = 1,

whereas five different values for the treatment effect β1 were considered: 0, 0.5, 1, 2 and 5.

Further, 4 different random-effects distributions, each with variances σ2

b = 1, 4, 16, and 32

were included in the study. These distributions were a mean zero normal density, a power

function distribution, a discrete distribution with equal probability at two support points
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and an asymmetric mixture of two normal densities. If necessary, they were transformed

to satisfy the mean zero condition of the random effects. Note that on the one hand, the

variances σ2

b = 16 and 32 of the random effects will help us to investigate relatively more

extreme scenarios with variances in the same order of magnitude as the one observed in the

case study. On the other hand, the smaller values considered for σ2

b should allow us to study

the performance of the tests in less extreme settings. In this way we expect to cover in our

study a large range of practically relevant situations.

The simulations were performed for three different sample sizes, namely 25, 100, and 400.

For each setting, 500 data sets were generated and the model given by (2) was fitted to these

data under the assumption of normally distributed random effects. Further, we determined

the proportion of cases in which a treatment effect different from zero (at a 5% significance

level) was detected. When β1 = 0, this proportion corresponds to the type I error; otherwise,

it represents the power of the test. The results of these simulations are displayed in Figure 2.

It is clear from these graphs that misspecification can severely affect the power of the analysis,

depending on the shape and the variance of the real random-effects distribution. Actually,

the power can be seriously affected even in settings where the random intercept accounts for

a small variability. For example, let us consider in Figure 2 the graphs corresponding to a

sample of 100 patients, when β1 = 1. Even with σ2

b = 1, the power to detect a significant

treatment effect can drop as low as 20% for the power function distribution, whereas for the

correctly specified model, we observed a value around 70%. This makes it very difficult to

interpret negative results, i.e., it would be difficult to determine if we fail to reject the null

hypothesis because there is no real treatment effect or because of a lack of power due to

misspecification.

Interestingly, the type I error rate rarely exceeded the specified 5% level of significance in

all the scenarios displayed in Figure 2. This finding confirms the results of Neuhaus et al.
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(1992). Indeed, these authors showed for a similar logistic random-intercept model that

when β1 = 0, the corresponding maximum likelihood estimator consistently estimates zero.

It is possible to prove that in this situation a significant treatment effect could be considered

as a reliable result even though caution may be needed in the interpretation of the point

estimates. The question remains whether this is true only for this specific model or whether

the type I error also remains unaffected in more general situations. In the following theorem

we try to answer this question.

Theorem 1 Let yij denote the jth measurement for the ith subject, with i = 1, . . . , n and

j = 1, . . . , r. Conditional on a vector bi of individual random effects for subject i, it is

assumed that all responses yij are independent with density

f(yij|θij , φ) = exp[φ−1{yijθij − ψ(θij)} + c(yij, φ)], (4)

where θij is modeled as

θij = η(β0 + xT
ijβ + zT

ijbi), (5)

and η(.) denotes a known link function, β0 is an intercept, xij = (xF
ij ,x

R
ij) denotes a p-

dimensional vector of covariates with xF
ij

⋂

xR
ij = ∅, zij = xR

ij is a q-dimensional vector,

β = (βF ,βR) is a vector of fixed parameters and bi is a vector of random effects assumed

to follow a distribution F with E(bi) = 0. Without loss of generality, the covariates are

assumed to be centered around zero, i.e. E(xij) = 0.

If G represents the true random-effects distribution (G 6= F ) and if for any subset xF
Sij of xF

ij,

βF
S = 0, then under the assumptions A1-A3 given by White (1982), βF∗

S , which minimizes

the KLIC, is also zero. Therefore, the maximum likelihood estimator β̂
F

Sn, based on a model

with a misspecified random-effects distribution, satisfies

β̂
F

Sn

n
−→ 0. (6)
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A general idea of the proof can be seen in Appendix 1 whereas a full detailed proof can be

found in Web Appendix A. This theorem implies that if the parameters associated with a

subset of variables, which are not included in the random-effect structure, equal zero then

the corresponding maximum likelihood estimator will consistently estimate zero. The main

implication of this theorem is stated in the following corollary.

Corollary 1 Consider the hypothesis testing problem

H0 : βF
S = 0 vs H1 : βF

S 6= 0, (7)

and the corresponding Wald test statistic W = (β̂
F

Sn)TV −1

n (β̂
F

Sn)(β̂
F

Sn), where Vn(β̂
F

Sn) is

the so-called sandwich estimator of the asymptotic covariance matrix corresponding to β̂
F

S

(White, 1982). Let p0 denote the dimension of βF
S . Then, given the assumptions stated in

Theorem 1, the type I error rate associated with the critical region W > χ2

p0,1−α

2

is preserved

even under misspecification of the random-effects distribution, i.e.,

P (W > χ2

p0,1−α

2

| βF
S = 0) ≤ α (8)

The proof of this result can be found in Web Appendix B. This corollary implies that the type

I error will be maintained, even under a misspecified random-effects distribution, provided

that the corresponding subset of covariates is not included in the random-effects structure.

Both theorems can play a relevant role in studies where randomization is used. For example,

in a clinical trial, where patients are randomized, the treatment variable will usually not

be included in the random-effect structure and therefore, if a significant treatment effect is

observed, one could generally be confident about this result.

Notice that the two previous theorems are valid asymptotically. However, the practical

scope and reliability of an asymptotic result will heavily depend on its performance for small

sample sizes. To study this further, we have displayed in Table 2 the results for the type I
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error, obtained from the previous simulation study. Recall that in this study we evaluated

the performance of the Wald test associated with the treatment effect parameter β1. The

treatment variable was not included in the random effect structure and therefore in this case,

according to Corollary 1, the type I error should be maintained. Note that so far, only the

inverse of the Fisher information matrix had been used in all our analyses and simulations

to obtain standard errors for the estimates of the model parameters. However, now we used

both uncorrected and corrected standard errors, obtained using the sandwich estimator, to

calculate the test statistic. Clearly, the type I error was maintained in almost all the settings

even with relatively small samples sizes.

In a second simulation study the binary response variable was generated using the model

given by (2), with β0 = 0 (and β1 = 2, β2 = 1). The results of this study can be seen

in Table 3. Here, we study the performance of the Wald test associated with the intercept

parameter β0. Unlike the treatment variable the intercept was included in the random-effect

structure. The results clearly illustrate that the Type I error is severely affected by the

misspecification of the random-effects distribution. Even when the variance of the random

intercept is relatively small, e.g., when σ2

b = 1, the type I error rate can be dramatically

inflated, up to 16% in some scenarios.

Moreover, in the second study the sandwich correction for the variance-covariance matrix of

the parameter estimates did not always lead to better results. Actually, in some settings the

use of the correction seems to inflate even further the type I error. Additional simulations

(not shown) using more complicated models also seem to confirm this erratic behavior of the

sandwich estimator. Other problems with the standard errors have been recently described

in the literature in the generalized estimating equation framework (Pan and Wall, 2002;

Mancl and deRouen, 2001) and therefore some care should be taken when this correction is

used. However, a full discussion and study of this issue supersedes the scope and objectives
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of the present work and may require additional research.

5 Discussion

Generalized linear mixed models have become a powerful parametric tool in the analysis

of non-Gaussian longitudinal data. Importantly, recent research is showing that problems

can arise due to certain model misspecifications. In the present paper we have focused on

the impact of misspecifying the random-effects distribution on the inferences in GLMM. The

simulation results presented in Section 4 clearly show that the power can be seriously affected,

depending on the shape and the variance of the underlying random-effects distribution.

However, our simulations also showed that the type I error rate seems to be maintained

under the 5% level in all the considered scenarios. These findings have led us to a theoretical

result showing that the type I error associated with a test for a covariate’s effect will not be

asymptotically affected, as far as this variable is not included in the random-effects structure.

It is important to note that all these results are conditional on the correct specification of

any other aspect of the model, like the link function, the mean structure and so on.

The results reported in this work clearly show the need for alternative approaches to analyze

non-Gaussian longitudinal data. A plausible choice would be to replace the normal random-

effects distribution by a nonparametric distribution (Butler and Louis, 1992; Aitkin, 1999),

a semi-parametric distribution (Chen et al., 2002), or a finite mixture of normals (i.e., a

heterogeneity model; Fieuws, Spiessens, and Draney, 2004). However, Agresti et al. (2004)

reported that there can be some loss of efficiency, when using a nonparametric approach,

compared to a parametric assumption close to the real distribution. Additionally, model

comparison can be difficult in this setting as standard asymptotic theory does not apply.

On the other hand, modelling the random-effects distribution through a finite mixture of

Gaussian densities can be difficult from a computational point of view and especially sensitive
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to the choice of the initial values. As a general guideline we suggest to consider different

random-effects distributions as a way of sensitivity analysis to evaluate the robustness of our

conclusions. Obviously a lot of research is still necessary in this area, however, the results

obtained in the present work can allow us to feel relatively confident about the presence

of a treatment effect of risperidone on the CGI scores of schizophrenic patients. Clearly, a

valuable clinical finding.

Supplementary Materials

The Web Appendices referenced in Section 4 are available under the Paper Information link

at the Biometrics website http://www.tibs.org/biometrics.
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The general idea of the proof of Theorem 1 is as follows. For simplicity of notation we will

work out the proof for xF
Sij = xF
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First note that there always exists a lower triangular matrix U, so that bi = Uai with

E(ai) = 0 and V (ai) = I. This allows to write (5) as θij = η(β0 + xT
ijβ + zT

ijUai). Let

us further denote by G and F the true and the assumed distribution of the random effects.

According to White (1982), the maximum likelihood estimator of ξ = (β0,β,U) converges

to the unique value ξ∗ = (β∗
0
,β∗,U∗) which minimizes the KLIC (3), i.e. ξ∗ minimizes

I(G : F, ξ) = ExEy|x log
{

fG(y|ξ,x, z)

fF (y|ξ∗,x, z)

}

, (9)

where the expectation is taken with respect to the true model. In the previous expression,

fG(y|ξ,x, z) =
∫

∏

j

exp[φ−1{yjθj − ψ(θj)} + c(yj, φ)]dG(a),

fF (y|ξ∗,x, z) =
∫

∏

j

exp[φ−1{yjθ
∗
j − ψ(θ∗j )} + c(yj, φ)]dF (a),

with

θj = η(β0 + xT
j β + zT

j Ua),

θ∗j = η(β∗
0

+ xT
j β∗ + zT

j U∗a).

For simplicity of notation, the index i has been omitted from the previous equations. To find

ξ∗ we have to differentiate (9) with respect to β∗
0
, β∗ and U∗. This leads to the following

system of simultaneous equations

Ex

[
∫

ϕ(y|x, z)
{

∫

∑

i

hi(x,a)dF (a)
}

dy
]

= 0, (10)

Ex

[
∫

ϕ(y|x, z)
{

∫

∑

i

(xF
i )Thi(x,a)dF (a)

}

dy
]

= 0, (11)

Ex

[
∫

ϕ(y|x, z)
{

∫

∑

i

(xR
i )Thi(x,a)dF (a)

}

dy
]

= 0, (12)

Ex

[
∫

ϕ(y|x, z)
{

∫

∑

i

Mihi(x,a)dF (a)
}

dy
]

= 0, (13)

where ϕ(y|x, z) = fG(y|ξ,x, z)/fF (y|ξ∗,x, z) and

hi(x,a) = η′(ξ∗)φ−1{yi − ψ′(θ∗i )}
∏

j

(exp[φ−1{yjθ
∗
j − ψ(θ∗j )} + c(yj, φ)]).
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If βF = βF∗ = 0 then ϕ(y|x, z), η(β∗
0

+ xT
i β∗ + zT

i U∗a), φ(θ∗i ), φ
′(θ∗j ) and hi(x,a) are

functions which are independent of xF
i . Therefore, the left-hand side of (11) is zero for all

β0, βR, U, β∗
0
, βR∗ and U∗. Note now that equations (10), (12) and (13) determine β∗

0
, βR∗

and U∗ in terms of β0, βR and U. Thus, when βF = βF∗ = 0, we have found the unique

solution for ξ∗. Therefore, when βF = 0, the maximum likelihood estimate β̂
F

n consistently

estimates zero.
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Table 1: Parameter estimates and standard errors of the fixed effects in the logistic random-
intercept model given by (2) for the schizophrenia data.

Parameter Estimate S.E. p-value
β0 -7.37 1.18 < 0.0001
β1 2.14 1.08 0.049
β2 0.65 0.10 < 0.0001



Table 2: Type I error for detecting a significant treatment effect when β1 = 0 in the lo-
gistic random-intercept model given by (2), using both uncorrected and corrected (between
parenthesis) standard errors. Values for which the lower bound of the corresponding 95%
confidence interval was larger than 0.05 are highlighted

Distribution Sample size σ
2

b = 1 σ
2

b = 4 σ
2

b = 16 σ
2

b = 32

Normal n = 25 0.012 (0.015) 0.025 (0.029) 0.029 (0.047) 0.025 (0.041)
n = 100 0.041 (0.036) 0.052 (0.052) 0.050 (0.050) 0.026 (0.028)
n = 400 0.050 (0.052) 0.046 (0.044) 0.052 (0.054) 0.058 (0.058)

Power function n = 25 0.008 (0.031) 0.023 (0.030) 0.036 (0.056) 0.016 (0.028)
n = 100 0.041 (0.038) 0.040 (0.038) 0.050 (0.050) 0.028 (0.026)
n = 400 0.046 (0.046) 0.064 (0.060) 0.076 (0.074) 0.050 (0.050)

Discrete n = 25 0.023 (0.051) 0.012 (0.032) 0.014 (0.026) 0.004 (0.022)
n = 100 0.032 (0.034) 0.016 (0.018) 0.084 (0.100) 0.018 (0.018)
n = 400 0.048 (0.050) 0.080 (0.078) 0.024 (0.024) 0.088 (0.088)

Asymmetric n = 25 0.014 (0.027) 0.014 (0.032) 0.018 (0.034) 0.038 (0.040)
mixture n = 100 0.053 (0.048) 0.066 (0.064) 0.036 (0.032) 0.038 (0.036)

n = 400 0.053 (0.053) 0.057 (0.057) 0.036 (0.036) 0.032 (0.032)



Table 3: Type I error for detecting a significant intercept when β0 = 0 in the logistic random-
intercept model given by (2), using both uncorrected and corrected (between parenthesis)
standard errors. Values for which the lower bound of the corresponding 95% confidence
interval was larger than 0.05 are highlighted

Distribution Sample size σ
2

b = 1 σ
2

b = 4 σ
2

b = 16 σ
2

b = 32

Normal n = 25 0.014 (0.020) 0.035 (0.043) 0.016 (0.022) 0.023 (0.021)
n = 100 0.042 (0.044) 0.048 (0.052) 0.040 (0.038) 0.034 (0.036)
n = 400 0.060 (0.060) 0.046 (0.046) 0.054 (0.054) 0.050 (0.050)

Power function n = 25 0.019 (0.024) 0.031 (0.046) 0.028 (0.049) 0.022 (0.065)
n = 100 0.043 (0.045) 0.164 (0.174) 0.320 (0.308) 0.370 (0.366)
n = 400 0.158 (0.174) 0.682 (0.708) 0.946 (0.952) 0.962 (0.966)

Discrete n = 25 0.021 (0.029) 0.046 (0.054) 0.087 (0.064) 0.073 (0.082)
n = 100 0.040 (0.040) 0.060 (0.052) 0.136 (0.098) 0.156 (0.098)
n = 400 0.080 (0.074) 0.252 (0.212) 0.594 (0.494) 0.604 (0.510)

Asymmetric n = 25 0.015 (0.025) 0.025 (0.042) 0.011 (0.071) 0.045 (0.249)
mixture n = 100 0.030 (0.028) 0.328 (0.354) 0.408 (0.428) 0.886 (0.892)

n = 400 0.076 (0.080) 0.924 (0.938) 0.986 (0.992) 1.000 (0.998)
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Figure 1: Evolution of the observed and fitted (using Model (2)) probabilities to be classified
as a normal to mildly ill patient by treatment group. Here Z = 1 (0) denotes the treatment
(control) group.
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Figure 2: Power of the analysis of the logistic random-effects model given by (2) to detect a
significant treatment effect over a range of possible β1 values, for the 4 considered random-
effects distributions: normal (solid line), power function (dotted line), discrete (dash-dotted
line) and asymmetric mixture (dashed line).


