
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Succinctness of Pattern-Based Schema Languages for XML

Peer-reviewed author version

GELADE, Wouter & NEVEN, Frank (2007) Succinctness of Pattern-Based Schema

Languages for XML. In: Proceedings of Database Programming Languages. p. 201-215.

DOI: 10.1007/978-3-540-75987-4_14

Handle: http://hdl.handle.net/1942/1957

Succinctness of Pattern-based Schema

Languages for XML

Wouter Gelade⋆ and Frank Neven

Hasselt University and Transnational University of Limburg
School for Information Technology

{firstname.lastname}@uhasselt.be

Abstract. Martens et al. defined a pattern-based specification language
equivalent in expressive power to the widely adopted XML Schema defi-
nitions (XSDs). This language consists of rules of the form (r, s) where r

and s are regular expressions and can be seen as a type-free extension of
DTDs with vertical regular expressions. Sets of such rules can be inter-
preted both in an existential or universal way. In the present paper, we
study the succinctness of both semantics w.r.t. each other and w.r.t. the
common abstraction of XSDs in terms of single-type extended DTDs.
The investigation is carried out relative to three kinds of vertical pattern
languages: regular, linear, and strongly linear patterns. We also consider
the complexity of the simplification problem for each of the considered
pattern-based schema’s.

1 Introduction

In formal language theoretic terms, an XML schema defines a tree language. The
for historical reasons still widespread Document Type Definitions (DTDs) can
then be seen as context-free grammars with regular expressions at right-hand
sides which define the local tree languages [2]. XML Schema [11] extends the ex-
pressiveness of DTDs by a typing mechanism allowing content-models to depend
on the type rather than only on the label of the parent. Unrestricted application
of such typing leads to the robust class of unranked regular tree languages [2]
as embodied in the XML schema language Relax NG [4]. The latter language
is commonly abstracted in the literature by extended DTDs (EDTDs) [10]. The
Element Declarations Consistent constraint in the XML Schema specification,
however, restricts this typing: it forbids the occurrence of different types of the
same element in the same content model. Murata et al. [9] therefore abstracted
XSDs by single-type EDTDs. Martens et al. [8] subsequently characterized the
expressiveness of single-type EDTDs in several syntactic and semantic ways.
Among them, they defined an extension of DTDs equivalent in expressiveness
to single-type EDTDs: ancestor-guarded DTDs. An advantage of this language
is that it makes the expressiveness of XSDs more apparent: the content model
of an element can only depend on regular string properties of the string formed

⋆ Research Assistant of the Fund for Scientific Research - Flanders (Belgium)

by the ancestors of that element. Ancestor-based DTDs can therefore be used
as a type-free front-end for XML Schema. As they can be interpreted both in an
existential and universal way, we study in this paper the complexity of translat-
ing between the two semantics and into the formalisms of DTDs, EDTDs, and
single-type EDTDs.

Table 1: Overview of complexity results for translating pattern-based
schema’s into other schema formalisms. For all non-polynomial complex-
ities, except the ones marked with a star, there exist examples matching
this upper bound. Theorem numbers are given between brackets.

other semantics EDTD EDTDst DTD

P∃(Reg) 2-exp (14(1)) exp (14(2)) exp (14(3)) exp* (14(5))

P∀(Reg) 2-exp (14(6)) 2-exp (14(7)) 2-exp (14(8)) 2-exp (14(10))

P∃(Lin) \ (16(1)) exp (16(2)) exp (16(3)) exp* (16(5))

P∀(Lin) \ (16(6)) 2-exp (16(7)) 2-exp (16(8)) 2-exp (16(10))

P∃(S-Lin) poly (19(1)) poly (19(2)) poly (19(3)) poly (19(6))

P∀(S-Lin) poly (19(7)) poly (19(8)) poly (19(9)) poly (19(12))

P∃(Det-S-Lin) poly (19(1)) poly (19(2)) poly (19(3)) poly (19(6))

P∀(Det-S-Lin) poly (19(7)) poly (19(8)) poly (19(9)) poly (19(12))

In the remainder of the paper, we use the name pattern-based schema, rather
than ancestor-based DTD, as it emphasizes the dependence on a particular pat-
tern language. A pattern-based schema is a set of rules of the form (r, s), where
r and s are regular expressions. An XML tree is then existentially valid w.r.t. a
rule set if for each node there is a rule such that the path from the root to that
node matches r and the child sequence matches s. Furthermore, it is universally
valid if each node vertically matching r, horizontally matches s. The existential
semantics is exhaustive, fully specifying every allowed combination, and more
DTD-like, whereas the universal semantics is more liberal, enforcing constraints
only where necessary.

Kasneci and Schwentick studied the complexity of the satisfiability and inclu-
sion problem for pattern-based schemas under the existential (∃) and universal
(∀) semantics [7]. They considered regular (Reg), linear (Lin), and strongly linear
(S-Lin) patterns. These correspond to the regular expressions, XPath-expressions
with only child (/) and descendant (//), and XPath-expressions of the form //w
or /w, respectively. A snapshot of their results is given in the third and fourth
column of Table 2. These results indicate that there is no difference between the
existential and universal semantics.

We, however, show that with respect to succinctness there is a huge difference.
Our results are summarized in Table 1. Both for the pattern languages Reg and
Lin, the universal semantics is exponentially more succinct than the existential
one when translating into (single-type) extended DTDs and ordinary DTDs.
Furthermore, our results show that the general class of pattern-based schemas is
ill-suited to serve as a front-end for XML Schema due to the inherent exponential

2

or double exponential size increase after translation. Only when resorting to
S-Lin patterns, there are translations only requiring polynomial size increase.
Fortunately, the practical study in [8] shows that the sort of typing used in XSDs
occurring in practice can be described by such patterns. Our results further show
that the expressive power of the existential and the universal semantics coincide
for Reg and S-Lin, albeit a translation can not avoid a double exponential size
increase in general in the former case. For linear patterns the expressiveness
is incomparable. Finally, as listed in Table 2, we study the complexity of the
simplification problem: given a pattern-based schema, is it equivalent to a DTD?

Table 2: Overview of complexity results for pattern-based schema’s. All re-
sults, unless indicated otherwise, are completeness results. Theorem num-
bers for the new results are given between brackets.

simplification satisfiability inclusion

P∃(Reg) exptime (14(4)) exptime [7] exptime [7]

P∀(Reg) exptime (14(9)) exptime [7] exptime [7]

P∃(Lin) pspace (16(4)) pspace [7] pspace [7]

P∀(Lin) pspace (16(9)) pspace [7] pspace [7]

P∃(S-Lin) pspace (19(4)) pspace [7] pspace [7]

P∀(S-Lin) pspace (19(10)) pspace [7] pspace [7]

P∃(Det-S-Lin) in ptime (19(5)) in ptime [7] in ptime [7]

P∀(Det-S-Lin) in ptime (19(11)) in ptime [7] in ptime [7]

Outline. The paper is further organized as follows. In Section 2, we recall the nec-
essary definitions concerning regular expressions, schema languages, and pattern-
based schemas. We define the decision problems we consider and introduce a no-
tation for succinctness. In Section 3, 4, and 5, we study pattern-based schemas
with regular, linear, and strongly linear expressions, respectively. We conclude
in Section 6. A version of this paper containing all proofs is available from the
authors’ webpages.

2 Preliminaries

In this section, we recall the necessary definitions and results concerning regular
expressions, schema languages for XML and pattern-based schemas. We also
formally define the problems we address.

2.1 Regular expressions

For the rest of the paper, Σ always denotes a finite alphabet. A Σ-symbol (or
simply symbol) is an element of Σ, and a Σ-string (or simply string) is a finite
sequence w = a1 · · · an of Σ-symbols. We define the length of w, denoted by |w|,

3

to be n. We denote the empty string by ε. The set of positions of w is {1, . . . , n}
and the symbol of w at position i is ai. By w1 · w2 we denote the concatenation
of two strings w1 and w2. For readability, we usually denote the concatenation
of w1 and w2 by w1w2. The set of all strings is denoted by Σ∗ and the set
of all non-empty strings by Σ+. A string language is a subset of Σ∗. For two
string languages L,L′ ⊆ Σ∗, we define their concatenation L · L′ to be the set
{w · w′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times) by Li.

The set of regular expressions over Σ, denoted by RE, is defined in the usual
way: ∅, ε, and every Σ-symbol is a regular expression; and when r1 and r2 are
regular expressions, then r1 · r2, r1 + r2, and r∗1 are also regular expressions.
The language defined by a regular expression r, denoted by L(r), is inductively
defined as follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(r1r2) = L(r1) · L(r2);
L(r1 + r2) = L(r1) ∪ L(r2); and L(r∗) = {ε} ∪

⋃∞
i=1 L(r)i. The size of a regular

expression r over Σ, denoted by |r|, is the number of Σ-symbols and operators
occurring in r. By r?, r+, and rk, with k ∈ N, we abbreviate the expression
r + ε, rr∗, and rr · · · r (k times), respectively. For a set S = {a1, . . . , an} ⊆ Σ,
we denote by S∗ the regular expression (a1 + · · ·+an)∗. The sets of prefixes and
suffixes of strings defined by r are Prefix(r) = {w | ∃v ∈ Σ∗, wv ∈ L(r)} and
Suffix(r) = {w | ∃v ∈ Σ∗, vw ∈ L(r)}.

A non-deterministic finite automaton (NFA) A is a 4-tuple (Q, q0, δ, F) where
Q is the set of states, q0 is the initial state, F is the set of final states and
δ ⊆ Q × Σ × Q is the transition relation. We write q ⇒A,w q′ when w takes A
from state q to q′.

We use the following theorem of Glaister and Shallit [6].

Theorem 1 ([6]) Let L ⊆ Σ∗ be a regular language and suppose there exists a
set of pairs M = {(xi, wi) | 1 ≤ i ≤ n} such that

– xiwi ∈ L for 1 ≤ i ≤ n; and
– xiwj /∈ L for 1 ≤ i, j ≤ n and i 6= j.

Then any NFA accepting L has at least n states.

We make use of the following results on transformations of regular expres-
sions. Theorem 2(3-4) are from [5].

Theorem 2 1. Let r1, . . . , rn, s1, . . . , sm be regular expressions. A regular ex-
pression r, with L(r) =

⋂
i≤n L(ri) \

⋃
i≤m L(si), can be constructed in time

double exponential in the sum of the sizes of all ri, sj, i ≤ n, j ≤ m.
2. Let r1, . . . , rn be regular expressions. A regular expression r, with L(r) =⋂

i≤n L(ri), can be constructed in time double exponential in the sum of the
sizes of all ri, i ≤ n.

3. For every n ∈ N, there are a linear number of regular expressions r1, . . . , rm

of size linear in n such that any regular expression r with L(r) =
⋂

i≤m L(ri)
must be of size at least double exponential in n.

4. For every n ∈ N, there is a regular expression rn of size linear in n such
that any regular expression r defining Σ∗ \ L(rn) is of size at least double
exponential in r.

4

5. For any regular expressions r and alphabet ∆ ⊆ Σ, an expression r−, such
that L(r−) = L(r) ∩∆∗, can be constructed in time linear in the size of r.

2.2 Schema Languages for XML

The set of unranked Σ-trees, denoted by TΣ , is the smallest set of strings over
Σ and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ (TΣ)∗,
a(w) is in TΣ . So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where
each ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to
the root labeled a. We write a rather than a(). Notice that there is no a priori
bound on the number of children of a node in a Σ-tree; such trees are therefore
unranked. For every t ∈ TΣ , the set of nodes of t, denoted by Dom(t), is the
set defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn),
where each ti ∈ TΣ , then Dom(t) = {ε} ∪

⋃n
i=1{iu | u ∈ Dom(ti)}. For a node

u ∈ Dom(t), we denote the label of u by labt(u). By anc-strt(u) we denote the
sequence of labels on the path from the root to u including both the root and u
itself, and ch-strt(u) denotes the string formed by the labels of the children of u,
i.e., labt(u1) · · · labt(un). In the sequel, whenever we say tree, we always mean
Σ-tree. Denote by t1[u ← t2] the tree obtained from a tree t1 by replacing the
subtree rooted at node u of t1 by t2. By subtreet(u) we denote the subtree of t
rooted at u. A tree language is a set of trees.

We make use of the following definitions to abstract from the commonly used
schema languages [8]:

Definition 3 Let R be a class of representations of regular string languages
over Σ.

1. A DTD(R) over Σ is a tuple (Σ, d, sd) where d is a function that maps
Σ-symbols to elements of R and sd ∈ Σ is the start symbol. For notational
convenience, we sometimes denote (Σ, d, sd) by d and leave the start symbol
sd implicit.

A tree t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n
children, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of
trees satisfying d.

2. An extended DTD (EDTD(R)) over Σ is a 5-tuple D = (Σ,Σ′, d, s, µ),
where Σ′ is an alphabet of types, (Σ′, d, s) is a DTD(R) over Σ′, and µ is
a mapping from Σ′ to Σ.

A tree t then satisfies an extended DTD if t = µ(t′) for some t′ ∈ L(d). Here
we abuse notation and let µ also denote its extension to define a homomor-
phism on trees. Again, we denote by L(D) the set of trees satisfying D. For
ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for
some natural numbers ka, and we set µ(ai) = a.

3. A single-type EDTD (EDTDst(R)) over Σ is an EDTD(R) D = (Σ,Σ′, d,
s, µ) with the property that for every a ∈ Σ′, in the regular expression d(a)
no two types b

i and b
j with i 6= j occur.

5

We denote by EDTD, and EDTDst the classes EDTD(RE), and EDTDst(RE),
respectively. As explained in [8, 9], EDTDs and single-type EDTDs correspond
to Relax NG and XML Schema, respectively. Furthermore, EDTDs correspond
to the unranked regular languages [2], while single-type EDTDs form a strict
subset thereof [8].

A regular tree language T is closed under label-guarded subtree exchange if
it has the following property: if two trees t1 and t2 are in T , and there are two
nodes v1 in t1 and v2 in t2 with the same label, then t1[v1 ← subtreet2(v2)] is
also in T . This notion is graphically illustrated in Figure 1.

t1

v1
∈ T

t2

v2
∈ T ⇒

t1

v2
∈ T

Fig. 1: Closure under label-guarded subtree exchange

Lemma 4 ([10]) A regular tree language is definable by a DTD iff it is closed
under label-guarded subtree exchange.

An EDTD D = (Σ,Σ′, d, sd, µ) is trimmed if for for every a
i ∈ Σ′, there

exists a tree t ∈ L(d) and a node u ∈ Dom(t) such that labt(u) = a
i.

Lemma 5 [8]

1. For every EDTD D, a trimmed EDTD D′, with L(D) = L(D′), can be
constructed in time polynomial in the size of D.

2. Let D be a trimmed EDTD. For any type a
i ∈ Σ′ and any string w ∈ L(d(ai))

there exists a tree t ∈ L(d) which contains a node v with labt(v) = a
i and

ch-strt(v) = w.

We give another schema formalism equivalent to single-type EDTDs. An
automaton-based schema D over vocabulary Σ is a tuple (A, λ), where A =
(Q, q0, δ, F) is a DFA and λ is a function mapping states of A to regular expres-
sions. A tree t is accepted by D if for every node v of t, where q ∈ Q is the state
such that q0 ⇒A,anc-str(v) q, ch-str(v) ∈ L(λ(q)). Because the set of final states
F of A is not used, we often omit F and represent A as a triple (Q, q0, δ).

Remark 6 Because DTDs and EDTDs only define tree languages in which ev-
ery tree has the same root element, we implicitly assume that this is also the
case for automaton-based schema’s and the pattern-based schema’s defined next.
Whenever we translate among pattern-based schema’s, we drop this assumption.
Obviously, this does not influence any of the results of this paper.

Lemma 7 Any automaton-based schema D can be translated into an equivalent
single-type EDTD D′ in time at most quadratic in the size of D, and vice versa.

6

2.3 Pattern-based XML schemas

We recycle the following definitions from [7].

Definition 8 A pattern-based schema P is a set {(r1, s1), . . . , (rm, sm)} where
all ri, si are regular expressions.

Each pair (ri, si) of a pattern-based schema represents a schema rule. We
also refer to the ri and si as the vertical and horizontal regular expressions,
respectively. There are two semantics for pattern-based schemas.

Definition 9 A tree t is existentially valid with respect to a pattern-based schema
P if, for every node v of t, there is a rule (r, s) ∈ P such that anc-str(v) ∈ L(r)
and ch-str(v) ∈ L(s). In this case, we write P |=∃ t.

Definition 10 A tree t is universally valid with respect to a pattern-based schema
P if, for every node v of t, and each rule (r, s) ∈ P it holds that anc-str(v) ∈ L(r)
implies ch-str(v) ∈ L(s). In this case, we write P |=∀ t.

Denote by P∃(t) = {v ∈ Dom(t) | ∃(r, s) ∈ P, anc-str(v) ∈ L(r) ∧ ch-str(v) ∈
L(s)} the set of nodes in t that are existentially valid. Denote by P∀(t) = {v ∈
Dom(t) | ∀(r, s) ∈ P, anc-str(v) ∈ L(r)⇒ ch-str(v) ∈ L(s)} the set of nodes in t
that are universally valid.

We denote the set of Σ-trees which are existentially and universally valid with
respect to P by T Σ

∃ (P) and T Σ
∀ (P), respectively. We often omit the existential

or universal quantifier if it is clear from the context which semantics is meant.
Likewise, we usually drop Σ.

When for every string w ∈ Σ∗ there is a rule (r, s) ∈ P such that w ∈ L(r),
then we say that P is complete. Further, when for every pair (r, s), (r′, s′) ∈ P
of different rules, L(r) ∩ L(r′) = ∅, then we say that P is disjoint.

In some proofs, we make use of unary trees, which can be represented as
strings. In this context, we abuse notation and write for instance w ∈ T∃(P)
meaning that the unary tree which w represents is existentially valid with respect
to P . Similarly, we refer to the last position of w as the leaf of w.

Lemma 11 For a pattern-based schema P , a tree t and a string w

1. t ∈ T∀(P) iff for every node v of t, v ∈ P∀(t).
2. if w ∈ T∀(P) then for every prefix w′ of w and every non-leaf node v of w′,

v ∈ P∀(w
′).

3. t ∈ T∃(P) iff for every node v of t, v ∈ P∃(t).
4. if w ∈ T∃(P) then for every prefix w′ of w and every non-leaf node v of w′,

v ∈ P∃(w
′).

Lemma 12 For any complete and disjoint pattern-based schema P , T∃(P) =
T∀(P).

7

2.4 Problems

We give an overview of the problems studied by Schwentick and Kasneci [7]
and the ones studied in this paper. We define all problems for the existential
semantics, and leave the identical definitions for the universal semantics implicit.

Definition 13 Given pattern-based schemas P, P ′

– satisfiability for P : Is there a non-empty tree t such that t ∈ T∃(P)?
– inclusion for P , P ′: Is T∃(P) ⊆ T∃(P

′)?
– simplification for P : Does there exist a DTD D with T∃(P) = L(D)?

2.5 Succinctness

We introduce some additional notation to characterize the complexity of trans-
lating pattern-based schema’s into DTDs and (single-type) EDTDs.

For a class S and S ′ of representations of schema languages, and F a class

of functions from N to N, we write S
F
→ S ′ if there is an f ∈ F such that for

every s ∈ S there is an s′ ∈ S ′ with L(s) = L(s′) which can be constructed in
time f(|s|). This also implies that |s′| ≤ f(|s|). By L(s) we mean the set of trees
defined by s.

We write S
F
⇒ S ′ if S

F
→ S ′ and there is an f ∈ F , a monotonically increasing

function g : N → N and an infinite family of schema’s sn ∈ S with |sn| ≤ g(n)
such that the smallest s′ ∈ S ′ with L(s) = L(s′) is at least of size f(g(n)). By

poly, exp and 2-exp we denote the classes of functions
⋃

k,c cnk,
⋃

k,c c2nk

and
⋃

k,c c22n
k

, respectively.
Further, we write S 6→ S ′ if there exists an s ∈ S such that for every s′ ∈ S ′,

L(s′) 6= L(s). In this case we also write S
F

6→ S ′ and S
F

6⇒ S ′ whenever S
F
→ S ′ and

S
F
⇒ S ′, respectively, hold for those elements in S which do have an equivalent

element in S ′.

3 Regular pattern-based schema’s

In this section, we study the full class of pattern-based schema’s which we denote
by P∃(Reg) and P∀(Reg). The results are shown in Theorem 14. We only give
sketches of some proofs.

Theorem 14 1. P∃(Reg)
2-exp
⇒ P∀(Reg)

2. P∃(Reg)
exp
⇒ EDTD

3. P∃(Reg)
exp
⇒ EDTDst

4. simplification for P∃(Reg) is exptime-complete.

5. P∃(Reg)
exp

6→ DTD

6. P∀(Reg)
2-exp
⇒ P∃(Reg)

8

7. P∀(Reg)
2-exp
⇒ EDTD

8. P∀(Reg)
2-exp
⇒ EDTDst

9. simplification for P∀(Reg) is exptime-complete.

10. P∀(Reg)
2-exp

6⇒ DTD

Proof. (1) We first show P∃(Reg)
2-exp
→ P∀(Reg). Let P = {(r1, s1), . . . , (rn, sn)}.

We show that we can construct a complete and disjoint pattern-based schema
P ′ such that T∃(P) = T∃(P

′) in time double exponential in the size of P . By
Lemma 12, T∃(P

′) = T∀(P
′) and thus T∃(P) = T∀(P

′).
For any non-empty set C ⊆ {1, . . . , n}, denote by rC the regular expression

which defines the language
⋂

i∈C L(ri)\
⋃

1≤i≤n,i/∈C L(ri) and by r∅ the expres-
sion defining Σ∗\

⋃
1≤i≤n L(ri). That is, rC defines any word w which is defined

by all vertical expressions contained in C but is not defined by any vertical ex-
pression not contained in C. Denote by sC the expression defining the language⋃

i∈C L(si). Then, P ′ = {(r∅, ∅)} ∪ {(rC , sC) | C ⊆ {1, . . . , n} ∧ C 6= ∅}. Now,

P∃(Reg)
2-exp
→ P∀(Reg) follows from the facts that T∃(P) = T∃(P

′) and that P ′

can be constructed from P in time double exponential in the size of P .

To show that P∃(Reg)
2-exp
⇒ P∀(Reg), we slightly extend Theorem 2(4).

Lemma 15 For every n ∈ N, there is a regular expressions rn of size linear in
n such that any regular expression r defining Σ∗ \L(rn) is of size at least double
exponential in r. Further, rn has the property that for any string w /∈ L(rn),
there exists a string u such that wu ∈ L(rn).

Now, let n ∈ N and let rn be a regular expression over Σ satisfying the
conditions of Lemma 15. Then, define Pn = {(rn, ε), (Σ∗, Σ)}. Here, T∃(Pn)
defines all unary trees w for which w ∈ L(rn).

Let P be a pattern-based schema with T∃(Pn) = T∀(P). Define U = {r |
(r, s) ∈ P ∧ ε /∈ L(s)} as the set of vertical regular expressions in P whose
corresponding horizontal regular expression does not contain the empty string.
Finally, let r be the disjunction of all expressions in U . Then, since L(r) =
Σ∗ \ L(rn), the size of P must be at least double exponential in n.
(4) For the upperbound, we combine a number of results of Kasneci and Schwentick
[7] and Martens et. al [8]. In the following, an NTA(NFA) is a non-deterministic
tree automaton where the transition relation is represented by an NFA. A
DTD(NFA) is a DTD where content models are defined by NFAs.

Given a pattern-based schema P , we first construct an NTA(NFA) AP with
L(AP) = T∃(P), which can be done in exponential time (Proposition 3.3 in
[7]). Then, Martens et. al. [8] have shown that given any NTA(NFA) AP it is
possible to construct, in time polynomial in the size of AP , a DTD(NFA) DP

such that L(AP) ⊆ L(DP) and L(AP) = L(DP) iff L(AP) is definable by a
DTD. Summarizing, DP is of size exponential in P , T∃(P) ⊆ L(DP) and T∃(P)
is definable by a DTD iff T∃(P) = L(DP).

Now, construct another NTA(NFA)A¬P which defines the complement of
T∃(P). This can again be done in exponential time (Proposition 3.3 in [7]). Since

9

T∃(P) ⊆ L(DP), T∃(P) = L(DP) iff L(DP) ∩ L(A¬P) 6= ∅. Here, DP and A¬P

are of size at most exponential in the size of P , and testing the non-emptiness
of their intersection can be done in time polynomial in the size of DP and A¬P .
This gives us an exptime algorithm overall.

For the lower bound, we reduce from satisfiability of pattern-based schema’s,
which is exptime-complete [7].

(6) The proof of P∀(Reg)
2-exp
→ P∃(Reg) is along the same lines as that of Theo-

rem 14(1).

We show that P∀(Reg)
2-exp
⇒ P∃(Reg). Let n ∈ N. According to Theorem 2(2),

there exist a linear number of regular expressions r1, . . . , rm of size linear in n
such that any regular expression defining

⋂
i≤m L(ri) must be of size at least

double exponential in n. For brevity, define K =
⋂

i≤m L(ri).
Define Pn over the alphabet Σa = Σ ⊎ {a}, for a /∈ Σ, as Pn = {(a, ri) | i ≤

m} ∪ {(ab, ε) | b ∈ Σ} ∪ {(b, ∅) | b ∈ Σ}. That is, T∀(Pn) contains all trees a(w),
where w ∈ K.

Let P be a pattern-based schema with T∀(Pn) = T∃(P). For an expres-
sion s, denote by s− the expression defining all words in L(s) ∩ Σ∗. Accord-
ing to Theorem 2(5), s− can be constructed from s in linear time. Define
U = {s− | (r, s) ∈ P ∧ a ∈ L(r)} as the set of horizontal regular expressions
whose corresponding vertical regular expressions contains the string a. Finally,
let rK be the disjunction of all expressions in U . Then, L(rK) = K, and thus
must the size of P be at least double exponential in n. ⊓⊔

4 Linear pattern-based schema’s

In this section, following [7], we restrict the vertical expressions to XPath expres-
sions using only descendant and child axes. For instance, an XPath expression
\\a\\b\c captures all nodes that are labeled with c, have b as parent and have
an a as ancestor. This corresponds to the regular expression Σ∗aΣ∗bc.

Formally, we call an expression linear if it is of the form w0Σ
∗ · · ·wn−1Σ

∗wn,
with w0, wn ∈ Σ∗, and wi ∈ Σ+ for 1 ≤ i < n. A pattern-based schema is linear
if all its vertical expressions are linear. Denote the classes of linear schema’s
under existential and universal semantics by P∃(Lin) and P∀(Lin), respectively.

Theorem 16 lists the results for linear schema’s. The complexity of simpli-

fication improves slightly, pspace instead of exptime. Further, we show that
the expressive power of linear schema’s under existential and universal seman-
tics becomes incomparable, but that the complexity of translating to DTDs
and (single-type) EDTDs is in general not better than for regular pattern-based
schema’s.

Theorem 16 1. P∃(Lin) 6→ P∀(Lin)

2. P∃(Lin)
exp
⇒ EDTD

3. P∃(Lin)
exp
⇒ EDTDst

4. simplification for P∃(Lin) is pspace-complete.

10

5. P∃(Lin)
exp

6→ DTD
6. P∀(Lin) 6→ P∃(Lin)

7. P∀(Lin)
2-exp
⇒ EDTD

8. P∀(Lin)
2-exp
⇒ EDTDst

9. simplification for P∀(Lin) is pspace-complete.

10. P∀(Lin)
2-exp

6⇒ DTD

Proof. (1) First, consider the following simple lemma. Given an alphabet Σ, and
a symbol b ∈ Σ, denote Σ \ {b} by Σb.

Lemma 17 There does not exist a set of linear regular expression r1, . . . , rn

such that
⋃

1≤i≤n L(ri) is an infinite language and
⋃

1≤i≤n L(ri) ⊆ L(Σ∗
b).

Now, let P = {(Σ∗bΣ∗, ε), (Σ∗, Σ)}. Then, T∃(P) defines all unary trees
containing at least one b. Suppose that P ′ is a linear schema such that T∃(P) =
T∀(P

′). Define U = {r | (r, s) ∈ P ′ and ε /∈ L(s)} as the set of all vertical
regular expressions in P ′ whose horizontal regular expressions do not contain
the empty string. We show that the union of the expressions in U defines an
infinite language and is a subset of Σ∗

b , which by Lemma 17 proves that such a
schema P ′ can not exist.

First, to show that the union of these expressions defines an infinite language,
suppose that it does not. Then, every expression r ∈ U is of the form r = w, for
some string w. Let k be the length of the longest such string w. Now, ak+1b ∈
T∃(P) = T∀(P

′) and thus by Lemma 11(2) every non-leaf node v of ak+1 is in
P ′
∀(a

k+1). Further, ak+1 /∈ L(r) for all vertical expressions in U and thus the
leaf node of ak+1 is also in P ′

∀(a
k+1). But then, by Lemma 11(1), ak+1 ∈ T∀(P

′)
which leads to the desired contradiction.

Second, let w ∈ L(r), for some r ∈ U , we show w ∈ Σ∗
b . Towards a contra-

diction, suppose w /∈ Σ∗
b , which means that w contains at least one b and thus

w ∈ T∃(P) = T∀(P
′). But then, for the leaf node v of w, anc-str(v) = w ∈ L(r),

and by definition of U , ch-str(v) = ε /∈ L(s), where s is the corresponding hori-
zontal expression for r. Then, v /∈ P ′

∀(w) and thus by Lemma 11(1), w /∈ T∀(P
′),

which again gives the desired contradiction.

(2-3) First, P∃(Lin)
exp
→ EDTDst follows immediately from Theorem 14(3). We

show P∃(Lin)
exp
⇒ EDTD, which then implies both statements. Thereto, we first

characterize the expressive power of EDTDs over unary tree languages.

Lemma 18 For any EDTD D for which L(D) is a unary tree language, there
exists an NFA A such that L(D) = L(A). Moreover, A can be computed from D
in time linear in the size of D.

Now, let n ∈ N. Define Σn = {$,#1,#2} ∪
⋃

1≤i≤n{a
0
i , a

1
i , b

0
i , b

1
i } and Kn =

{#1a
i1
1 ai2

2 · · · a
in

n $bi1
1 bi2

2 · · · b
in

n #2 | ik ∈ {0, 1}, 1 ≤ k ≤ n}. It is not hard to see
that any NFA defining Kn must be of size at least exponential in n. Indeed,
in Theorem 1, define M = {(x,w) | xw ∈ Kn ∧ |x| = n + 1} which is of size

11

exponential in n, and satisfies the conditions of Theorem 1. Then, by Lemma 18,
every EDTD defining the unary tree language Kn must also be of size exponential
in n. We conclude the proof by giving a pattern-based schema Pn, such that
T∃(Pn) = Kn, which is of size linear in n. It contains the following rules:

– #1 → a0
1 + a1

1

– For any i < n:

• #1Σ
∗a0

i → a0
i+1 + a1

i+1

• #1Σ
∗a1

i → a0
i+1 + a1

i+1

• #1Σ
∗a0

i Σ
∗b0

i → b0
i+1 + b1

i+1

• #1Σ
∗a1

i Σ
∗b1

i → b0
i+1 + b1

i+1

– #1Σ
∗a0

n → $
– #1Σ

∗a1
n → $

– #1Σ
∗$→ b0

1 + b1
1

– #1Σ
∗a0

nΣ∗b0
n → #2

– #1Σ
∗a1

nΣ∗b1
n → #2

– #1Σ
∗#2 → ε

(4) For the lower bound, we reduce from universality of regular expres-
sions. That is, deciding for a regular expression r whether L(r) = Σ∗. The
latter problem is known to be pspace-complete [12]. Given r over alphabet Σ,
let ΣP = {a, b, c, d} ⊎ Σ, and define the pattern-based schema P = {(a, b +
c), (ab, e), (ac, e), (abe,Σ∗), (ace, r)} ∪ {(abeσ, ε), (aceσ, ε) | σ ∈ Σ}. We show
that there exists a DTD D with L(D) = T∃(P) iff L(r) = Σ∗.

If L(r) = Σ∗, then the following DTD d defines T∃(P): d(a) = b+c, d(b) = e,
d(c) = e, d(e) = Σ∗, and d(σ) = ε for every σ ∈ Σ.

Conversely, if L(r) (Σ∗, we show that T∃(P) is not closed under label-
guarded subtree exchange. From Lemma 4, it then follows that T∃(P) is not
definable by a DTD. Let w,w′ be strings such that w /∈ L(r) and w′ ∈ L(r).
Then, a(b(e(w))) ∈ L(D), and a(c(e(w′))) ∈ L(D) but a(c(e(w))) /∈ T∃(P).

For the upper bound, we again make use of the closure under label-guarded
subtree exchange property of DTDs. Observe that T∃(P), which is a regular tree
language, is not definable by any DTD iff there exist trees t1, t2 ∈ T∃(P) and
nodes v1 and v2 in t1 and t2, respectively, with labt1(v1) = labt2(v2), such that
the tree t3 = t1[v1 ← subtreet2(v2)] is not in T∃(P). It can be shown that if there
exist such trees t1, t2 then there also exist such trees t′1, t

′
2 of polynomial depth,

which allows us to give a pspace algorithm for the problem.
(6) Let Σ = {a, b, c} and define P = {(Σ∗bΣ∗c, b)}. Then, T∀(P) contains all
trees in which whenever a c labeled node v has a b labeled node as ancestor,
ch-str(v) must be b. We show that any linear schema P ′ defining all trees in
T∀(P) under existential semantics, must also define trees not in T∀(P).

Suppose there does exist a linear schema P ′ such that T∀(P) = T∃(P
′). Define

wℓ = aℓc for ℓ ≥ 1 and note that wℓ ∈ T∀(P) = T∃(P
′). Let (r, s) ∈ P ′ be a rule

matching infinitely many leaf nodes of the strings wℓ. There must be at least
one as P ′ contains a finite number of rules. Then, ε ∈ L(s) must hold and r is
of one of the following forms:

12

1. an1Σ∗an2Σ∗ · · ·Σ∗ankc
2. an1Σ∗an2Σ∗ · · ·Σ∗ankcΣ∗

3. an1Σ∗an2Σ∗ · · ·Σ∗ankΣ∗

where k ≥ 2 and nk ≥ 0.
Choose some N ∈ N with N ≥ |P ′| and define the unary trees t1 = aNbaNcb

and t2 = aNbaNc. Obviously, t1 ∈ T∀(P), and t2 /∈ T∀(P). Then, t1 ∈ T∃(P
′)

and since t2 is a prefix of t1, by Lemma 11(4), every non-leaf node v of t2 is in
P ′
∃(t2). Finally, for the leaf node v of t2, anc-str(v) ∈ L(r) for any of the three

expressions given above and ε ∈ L(s) for its corresponding horizontal expression.
Then, v ∈ P ′

∃(t2), and thus by Lemma 11(3), t2 ∈ T∃(P
′) which completes the

proof. ⊓⊔

5 Strongly linear pattern-based schema’s

In [8], it is observed that the type of a node in most real-world XSDs only depends
on the labels of its parents and grand parents. To capture this idea, following
[7], we say that a regular expression is strongly linear if it is of the form w or
Σ∗w, where w is non-empty. A pattern-based schema is strongly linear if it is
disjoint and all its vertical expressions are strongly linear. Denote the class of all
strongly linear pattern-based schema’s under existential and universal semantics
by P∃(S-Lin) and P∀(S-Lin), respectively.

In [7], all horizontal expressions in a strongly linear schema are also required
to be deterministic or one-unambiguous [3], as is the case for DTDs and XML
Schema. The latter requirement is necessary to get ptime satisfiability and
inclusion which would otherwise be pspace-complete for arbitrary regular ex-
pressions. This is also the case for the simplification problem studied here,
but not for the various translation problems. Therefore, we distinguish between
strongly linear schema’s, as defined above, and strongly linear schema’s where
all horizontal expressions must be deterministic, which we call deterministic
strongly linear schema’s and denote by P∃(Det-S-Lin) and P∀(Det-S-Lin).

Theorem 19 shows the results for (deterministic) strongly linear pattern-
based schema’s. First, observe that the expressive power of these schema’s under
existential and universal semantics again coincides. Further, all considered prob-
lems become tractable, which makes strongly linear schema’s very interesting
from a practical point of view.

Theorem 19 1. P∃(S-Lin)
poly
→ P∀(S-Lin) and P∃(Det-S-Lin)

poly
→ P∀(Det-S-Lin)

2. P∃(S-Lin)
poly
→ EDTD and P∃(Det-S-Lin)

poly
→ EDTD

3. P∃(S-Lin)
poly
→ EDTDst and P∃(Det-S-Lin)

poly
→ EDTDst

4. simplification for P∃(S-Lin) is pspace-complete.
5. simplification for P∃(Det-S-Lin) is in ptime.

6. P∃(S-Lin)
poly

6→ DTD and P∃(Det-S-Lin)
poly

6→ DTD

13

7. P∀(S-Lin)
poly
→ P∃(S-Lin) and P∀(Det-S-Lin)

poly
→ P∃(Det-S-Lin)

8. P∀(S-Lin)
poly
→ EDTD and P∀(Det-S-Lin)

poly
→ EDTD

9. P∀(S-Lin)
poly
→ EDTDst and P∀(Det-S-Lin)

poly
→ EDTDst

10. simplification for P∀(S-Lin) is pspace-complete.
11. simplification for P∀(Det-S-Lin) is in ptime.

12. P∀(S-Lin)
poly

6→ DTD and P∀(Det-S-Lin)
poly

6→ DTD

Proof. (1) We show P∃(S-Lin)
poly
→ P∀(S-Lin). The key of this proof lies in the

following lemma:

Lemma 20 For each finite set R of disjoint strongly linear expressions, a finite
set S of disjoint strongly linear regular expressions can be constructed in ptime

such that
⋃

s∈S L(s) = Σ∗\
⋃

r∈R L(r).

We show how this lemma implies the theorem. For P = {(r1, s1), . . . , (rn, sn)},
let S be the set of strongly linear expressions for R = {r1, . . . , rn} satisfying the
conditions of Lemma 20. Set P ′ = P ∪

⋃
s∈S{(s, ∅)}. Here, T∃(P) = T∃(P

′) and
since P ′ is disjoint and complete it follows from Lemma 12 that T∃(P

′) = T∀(P
′).

This gives us T∃(P) = T∀(P
′). By Lemma 20, the set S is polynomial time com-

putable and therefore, P ′ is too.

(3) We show P∃(S-Lin)
poly
→ EDTDst. Given P , we construct an automaton-

based schema D = (A, λ) such that L(D) = T∃(P). By Lemma 7, we can then
translate D into an equivalent single-type EDTD in polynomial time. Let P =
{(r1, s1), . . . , (rn, sn)}. We define D such that when A is in state q after reading
w, λ(q) = si iff w ∈ L(ri) and λ(q) = ∅ otherwise. The most obvious way to
construct A is by constructing DFAs for the vertical expressions and combining
these by a product construction. However, this would induce an exponential
blow-up. Instead, we construct A in polynomial time in a manner similar to the
construction used in Proposition 5.2 in [7].

First, assume that every ri is of the form Σ∗wi. The following construction
can be extended to also handle vertical expressions of the form wi. Define S =
{w | w ∈ Prefix(wi), 1 ≤ i ≤ n}. Then, A = (Q, q0, δ) is defined as Q = S ∪{q0},
and for each a ∈ Σ,

– δ(q0, a) = a if a ∈ S, and δ(q0, a) = q0 otherwise; and
– for each w ∈ S, δ(w, a) = w′, where w′ is the longest suffix of wa in S, and

δ(w, a) = q0 if no string in S is a suffix of wa.

For the definition of λ, let λ(q0) = ∅, and for all w ∈ S, λ(w) = si if w ∈ L(ri)
and λ(w) = ∅ if w /∈ L(ri) for all i ≤ n. Note that since the vertical expression
are disjoint, λ is well-defined. ⊓⊔

6 Conclusion

In this paper, we studied the succinctness of pattern-based schema’s under ex-
istential and universal semantics with respect to each other and the common

14

schema formalisms: DTDs, EDTDs, and single-type EDTDs. This is done for reg-
ular, linear, and strongly linear pattern-based schema’s. The main observation is
that schema’s under existential semantics behave at least as good or better than
the corresponding schema’s under universal semantics. In some translations a
double exponential blow-up can even not be avoided. However, almost all prob-
lems for the class of strongly linear schema’s turn out to be tractable, which
makes this class very interesting from a practical point of view.

As our main motivation comes from using pattern-based schema’s as a front-
end to more traditional schema languages like XSDs, we only studied the trans-
lation of pattern-based schema’s to these formalisms. However, it would also be
interesting to see results for translations in the other direction. We leave open
the exact complexity of translating from regular and linear schema’s under exis-
tential semantics to DTDs, and of the transformation of linear schema’s between
the two semantics.

References

1. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-

puter Science, 120(2):197–213, 1993.
2. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge

languages over unranked alphabets. Technical report, The Hongkong University of
Science and Technologiy, April 3 2001.

3. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-

mation and Computation, 142(2):182–206, 1998.
4. J. Clark and M. Murata. RELAX NG Specification. OASIS, December 2001.
5. W. Gelade and F. Neven. Succinctness of the complement and intersection of

regular expressions. Manuscript, 2007.
6. I. Glaister and J. Shallit. A lower bound technique for the size of nondeterministic

finite automata. Inf. Process. Lett., 59(2):75–77, 1996.
7. G. Kasneci and T. Schwentick. The complexity of reasoning about pattern-based

XML schemas. In PODS, pages 155–163, 2007.
8. W. Martens, F. Neven, T. Schwentick, and G. Bex. Expressiveness and complexity

of XML schema. ACM Trans. Database Syst., 31(3):770–813, 2006.
9. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema

languages using formal language theory. ACM Trans. Internet Techn., 5(4):660–
704, 2005.

10. Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In
PODS, pages 35–46, 2000.

11. C.M. Sperberg-McQueen and H. Thompson. XML Schema.
http://www.w3.org/XML/Schema, 2005.

12. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In STOC, pages 1–9, 1973.

15

Appendix

For the convenience of the reader we give the full proofs of those theorems which
only have proof sketches. The point where the proof in the main text ended is
indicated by · · · . The proofs not mentioned in the body start by a · · · .

Proofs for Section 2

Proof of Theorem 2(1): Let r1, . . . , rn, s1, . . . , sm be regular expressions. A
regular expression r, with L(r) =

⋂
i≤n L(ri)\

⋃
i≤m L(si), can be constructed in

time double exponential in the sum of the sizes of all ri, sj, i ≤ n, j ≤ m.

Proof. · · · First, for every i ≤ n, construct an NFA Ai, such that L(ri) = L(Ai).
This can be done in polynomial time using for instance the Glushkov construction
[1]. Then, let A be the DFA accepting

⋂
i≤n L(Ai) obtained from the Ai by

determinization followed by a product construction. For k the size of the largest
NFA, this can be done in time O(2k·n). For every i ≤ m, construct an NFA Bi,
with L(si) = Bi, and let Bi be the DFA accepting

⋃
i≤m L(Bi) again obtained

from the Bi by means of determinization and a product construction. Similarly,
B can also be computed in time exponential in the size of the input. Then,
compute the DFA B′ for the complement of B by making B complete and
exchanging final and non-final states in B, which can be done in time polynomial
in the size of B. Then, the DFA C accepts L(A)∩L(B′) and can again be obtained
by a product construction on A and B′ which requires polynomial time in the
sizes of A and B′. Therefore, C is of exponential size in function of the input.
Finally, r, with L(r) =

⋂
i≤n L(ri) \

⋃
i≤m L(si), is obtained from C by means

of state elimination. This can be done in time exponential in C and thus yields
a double exponential algorithm in total. ⊓⊔

Proof of Theorem 2(5): For any regular expressions r and alphabet ∆ ⊆ Σ,
an expression r−, such that L(r−) = L(r)∩∆∗, can be constructed in time linear
in the size of r.

Proof. · · · The algorithm proceeds in two steps. First, replace every symbol
a /∈ ∆ in r by ∅. Then, use the following rewrite rules on subexpressions of r as
often as possible: ∅∗ = ε, ∅s = s∅ = ∅, and ∅ + s = s + ∅ = s. This gives us r−

which is equal to ∅ or does not contain ∅ at all, with L(r−) = L(r) ∩∆∗. ⊓⊔

Proof of Lemma 7: Any automaton-based schema D can be translated into an
equivalent single-type EDTD D′ in time at most quadratic in the size of D, and
vice versa.

Proof. · · · Let D = (A, λ), with A = (Q, q0, δ), be an automaton-based schema.
We start by making A complete. That is, we add a sink state q to Q and for every
pair q ∈ Q, a ∈ Σ, for which there is no transition (q, a, q′) ∈ δ, we add (q, a, q)
to δ. Construct D′ = (Σ,Σ′, d, si, µ) as follows. Let si be such that s is the root
symbol of any tree defined by D and (q0, s, qi) ∈ δ. Let Q ∪ {q } = {q0, . . . , qn}

16

for some n ∈ N, then Σ′ = {ai | a ∈ Σ ∧ qi ∈ Q} and µ(ai) = a. Finally,
d(ai) = λ(qi), where any symbol a ∈ Σ is replaced by aj when (qi, a, qj) ∈ δ.
Since A is complete, aj is guaranteed to exist and since A is a DFA aj is uniquely
defined. For the time complexity of the algorithm, we see that the number of
types in D′ can never be exceeded by the number of transitions in A. Then, to
every type one regular expression from D′ is assigned which yields a quadratic
algorithm.

Conversely, let D = (Σ,Σ′, d, s, µ) be a single-type EDTD. The equivalent
automaton-based schema D = (A, λ) with A = (Q, q0, δ) is constructed as fol-
lows. Let Q = Σ′, q0 = s, and for ai, bj ∈ Σ′, (ai, b, bj) ∈ δ if µ(bj) = b and bj

occurs in d(ai). Finally, for any type ai ∈ Σ′, λ(ai) = µ(d(ai)). ⊓⊔

Proof of Lemma 11: For a pattern-based schema P , a tree t and a string w

1. t ∈ T∀(P) iff for every node v of t, v ∈ P∀(t).
2. if w ∈ T∀(P) then for every prefix w′ of w and every non-leaf node v of w′,

v ∈ P∀(w
′).

3. t ∈ T∃(P) iff for every node v of t, v ∈ P∃(t).
4. if w ∈ T∃(P) then for every prefix w′ of w and every non-leaf node v of w′,

v ∈ P∃(w
′).

Proof. · · · (1,3) These are in fact just a restatement of the definition of uni-
versal and existential satisfaction and are therefore trivially true.

(2) Consider any non-leaf node v′ of w′. Since w′ is a prefix of w, there
must be a node v of w such that anc-strw(v) = anc-strw′

(v′) and ch-strw(v) =

ch-strw′

(v′). By Lemma 11(1), v ∈ P∀(w) and thus v′ ∈ P∀(w).
(4) The proof of (2) carries over literally for the existential semantics. ⊓⊔

Proof of Lemma 12: For any complete and disjoint pattern-based schema P ,
T∃(P) = T∀(P).

Proof. · · · We show that if P is complete and disjoint, then for any node v of
any tree t, v ∈ P∃(t) iff v ∈ P∀(t). The lemma then follows from Lemma 11(1)
and (3). First, suppose v ∈ P∃(t). Then, there is a rule (r, s) ∈ P such that
anc-str(v) ∈ L(r) and ch-str(v) ∈ L(s), and by the disjointness of P , anc-str(v) /∈
L(r′) for every other vertical expression r′ in P . It thus follows that v ∈ P∀(t).
Conversely, suppose v ∈ P∀(t). By the completeness of P there is at least one
rule (r, s) such that anc-str(v) ∈ L(r) and thus ch-str(v) ∈ L(s). It follows that
v ∈ P∃(t). ⊓⊔

Proofs for Section 3

Proof of Theorem 14(1): P∃(Reg)
2-exp
⇒ P∀(Reg)

Proof. We first show P∃(Reg)
2-exp
→ P∀(Reg). Let P = {(r1, s1), . . . , (rn, sn)}.

We show that we can construct a complete and disjoint pattern-based schema

17

P ′ such that T∃(P) = T∃(P
′) in time double exponential in the size of P . By

Lemma 12, T∃(P
′) = T∀(P

′) and thus T∃(P) = T∀(P
′).

For any non-empty set C ⊆ {1, . . . , n}, denote by rC the regular expression
which defines the language

⋂
i∈C L(ri)\

⋃
1≤i≤n,i/∈C L(ri) and by r∅ the expres-

sion defining Σ∗\
⋃

1≤i≤n L(ri). That is, rC defines any word w which is defined
by all vertical expressions contained in C but is not defined by any vertical ex-
pression not contained in C. Denote by sC the expression defining the language⋃

i∈C L(si). Then, P ′ = {(r∅, ∅)}∪{(rC , sC) | C ⊆ {1, . . . , n}∧C 6= ∅}. Here, P ′

is disjoint and complete. We show that T∃(P) = T∃(P
′). · · · By Lemma 11(3),

it suffices to prove that for any node v of any tree t, v ∈ P∃(t) iff v ∈ P ′
∃(t):

– v ∈ P∃(t) ⇒ v ∈ P ′
∃(t): Let C = {i | anc-str(v) ∈ L(ri)}. Since v ∈ P∃(t),

C 6= ∅ and there is an i ∈ C with ch-str(v) ∈ L(si). But then, by definition
of rC and sC , anc-str(v) ∈ L(rC) and ch-str(v) ∈ L(sC), and thus v ∈ P ′

∃(t).
– v ∈ P ′

∃(t) ⇒ v ∈ P∃(t): Let C ⊆ {1, . . . , n} be the unique set for which
anc-str(v) ∈ L(rC) and ch-str(v) ∈ L(sC), and choose some i ∈ C for
which ch-str(v) ∈ L(si). By definition of sC , such an i must exist. Then,
anc-str(v) ∈ L(ri) and ch-str(v) ∈ L(si), from which it follows that v ∈ P∃(t).

We conclude by showing that P ′ can be constructed from P in time double
exponential in the size of P . By Lemma 2(1), the expressions rC can be con-
structed in time double exponential in the size of the ri and si. The expressions
sC can easily be constructed in linear time by taking the disjunction of the right
expressions. So, any rule (rC , sC) requires at most double exponential time to
construct, and we must construct an exponential number of these rules, which
yields and algorithm of double exponential time complexity.

To show that P∃(Reg)
2-exp
⇒ P∀(Reg), we slightly extend Theorem 2(4).

Lemma 15. For every n ∈ N, there is a regular expressions rn of size linear in
n such that any regular expression r defining Σ∗ \L(rn) is of size at least double
exponential in r. Further, rn has the property that for any string w /∈ L(rn),
there exists a string u such that wu ∈ L(rn).

Proof. · · · Let n ∈ N. By Theorem 2(4), there exists a regular expression sn

of size linear in n over an alphabet Σ such that any regular expression defining
Σ∗ \ L(sn) must be of size at least double exponential in n. Let Σa = Σ ⊎ {a},
for a /∈ Σ. Define rn = sn + Σ∗

aa as all strings which are defined by sn or
have a as last symbol. First, note that rn satisfies the extra condition: for every
w /∈ L(rn), wa ∈ L(rn). We show that any expression r defining the complement
of rn must be of size at least double exponential in n. This complement consists
of all strings which don’t have a as last symbol and are not defined by sn. But
then, the expression s which defines L(r) ∩ Σ∗ defines exactly L(sn) \ Σ∗, the
complement of L(sn). Furthermore, by Theorem 2(4), s must be of size at least
double exponential in n and by Theorem 2(5), s can be computed from r in
time linear in the size of r. It follows that r must also be of size at least double
exponential in n. ⋄

18

Now, let n ∈ N and let rn be a regular expression over Σ satisfying the
conditions of Lemma 15. Then, define Pn = {(rn, ε), (Σ∗, Σ)}. Here, T∃(Pn)
defines all unary trees w for which w ∈ L(rn).

Let P be a pattern-based schema with T∃(Pn) = T∀(P). Define U = {r |
(r, s) ∈ P ∧ ε /∈ L(s)} as the set of vertical regular expressions in P whose
corresponding horizontal regular expression does not contain the empty string.
Finally, let r be the disjunction of all expressions in U . We now show that
L(r) = Σ∗ \ L(rn), thereby proving that the size of P must be at least double
exponential in n.
· · · First, let w /∈ L(rn) and towards a contradiction suppose w /∈ L(r).

Then, w /∈ T∃(Pn) = T∀(P). By Lemma 15, there exists a string u such that
wu ∈ L(rn), and thus wu ∈ T∃(Pn) by definition of Pn and so wu ∈ T∀(P). By
Lemma 11(2), for every non-leaf node v of w, v ∈ P∀(w). As w is not defined
by any expression in U , for any rule (r′, s′) ∈ P with w ∈ L(r′) it holds that
ε ∈ L(s′), and thus for the leaf node v of w, v ∈ P∀(w). So, by Lemma 11(1),
w ∈ T∀(P) which leads to the desired contradiction.

Conversely, suppose w ∈ L(r′), for some r′ ∈ U , and again towards a con-
tradiction suppose w ∈ L(rn). Then, w ∈ T∃(P) = T∀(P). But, since w ∈ L(r′),
and by definition of U for the rule (r′, s′) in P it holds that ε /∈ L(s′). It follows
that the leaf node v of w is not in P∀(w). Therefore, w /∈ T∀(P) by Lemma 11(1),
which again gives us the desired contradiction. This concludes the proof of The-
orem 14(6). ⊓⊔

Proof of Theorem 14(2) and (3):

– P∃(Reg)
exp
⇒ EDTD

– P∃(Reg)
exp
⇒ EDTDst

Proof. · · · We first show P∃(Reg)
exp
→ EDTDst, which implies P∃(Reg)

exp
→

EDTD.
Thereto, let P = {(r1, s1), . . . , (rn, sn)}. We construct an automaton-based

schema D = (A, λ) such that L(D) = T∃(P). By Lemma 7, D can then be
translated into an equivalent single-type EDTD in polynomial time and the
theorem follows. First, construct for every ri a DFA Ai = (Qi, qi, δi, Fi), such
that L(ri) = L(Ai). Then, A = (Q1 × · · · × Qn, (q1, . . . , qn), δ) is the prod-
uct automaton for A1, . . . , An. Finally, λ((q1, . . . , qn)) =

⋃
i≤n,qi∈Fi

L(si), and
λ((q1, . . . , qn)) = ∅ if none of the qi are accepting states for their automaton.
Here, if m is the size of the largest vertical expression in P , then A is of size
O(2m·n). Furthermore, an expression for

⋃
i≤n,qi∈Fi

L(si) is simply the disjunc-
tion of these si and can be constructed in linear time. Therefore, the total con-
struction can be carried out in exponential time.

Further, P∃(Reg)
exp
⇒ EDTD already holds for a restricted version of pattern-

based schemas, which is shown in Theorem 16(2). The latter implies P∃(Reg)
exp
⇒

EDTDst. ⊓⊔

Proof of Theorem 14(4): simplification for P∃(Reg) is exptime-complete.

19

Proof. For the upperbound, we combine a number of results of Kasneci and
Schwentick [7] and Martens et. al [8]. In the following, an NTA(NFA) is a non-
deterministic tree automaton where the transition relation is represented by an
NFA. A DTD(NFA) is a DTD where content models are defined by NFAs.

Given a pattern-based schema P , we first construct an NTA(NFA) AP with
L(AP) = T∃(P), which can be done in exponential time (Proposition 3.3 in
[7]). Then, Martens et. al. [8] have shown that given any NTA(NFA) AP it is
possible to construct, in time polynomial in the size of AP , a DTD(NFA) DP

such that L(AP) ⊆ L(DP) and L(AP) = L(DP) iff L(AP) is definable by a
DTD. Summarizing, DP is of size exponential in P , T∃(P) ⊆ L(DP) and T∃(P)
is definable by a DTD iff T∃(P) = L(DP).

Now, construct another NTA(NFA)A¬P which defines the complement of
T∃(P). This can again be done in exponential time (Proposition 3.3 in [7]). Since
T∃(P) ⊆ L(DP), T∃(P) = L(DP) iff L(DP) ∩ L(A¬P) 6= ∅. Here, DP and A¬P

are of size at most exponential in the size of P , and testing the non-emptiness
of their intersection can be done in time polynomial in the size of DP and A¬P .
This gives us an exptime algorithm overall.

For the lower bound, we reduce from satisfiability of pattern-based schema’s,
which is exptime-complete [7]. · · · Let P be a pattern-based schema over the
alphabet Σ, define ΣP = {a, b, c, e} ⊎ Σ, and define the pattern-based schema
P ′ = {(a, b + c), (ab, e), (ac, e), (abe, ε), (ace, ε)} ∪ {(acer, s) | (r, s) ∈ P}. We
show that T∃(P) is definable by a DTD iff P ′ is not existentially satisfiable.
Since exptime is closed under complement, the theorem follows.

If T∃(P) = ∅, then the following DTD d defines T∃(P): d(a) = b+c, d(b) = e,
d(c) = e, d(e) = ε.

Conversely, if there exists some tree t ∈ T∃(P), suppose towards a contradic-
tion that there exists a DTD D such that L(D) = T∃(P

′). Then, a(b(e)) ∈ L(D),
and a(c(e(t))) ∈ L(D). Since every DTD is closed under label-guarded subtree
exchange (Lemma 4), a(b(e(t))) ∈ L(D) also holds, but a(b(e(t))) /∈ T∃(P

′)
which yields the desired contradiction. ⊓⊔

Proof of Theorem 14(5): P∃(Reg)
exp

6→ DTD

Proof. · · · First, P∃(Reg) 6→ DTD already holds for a restricted version of

pattern-based schema’s (Theorem 19(6)). We show P∃(Reg)
exp

6→ DTD.
Simply translating the DTD(NFA), obtained in the previous proof, into a

normal DTD by means of state elimination would give us a double exponential
algorithm. Therefore, we use the following similar approach which does not need
to translate regular expressions into NFAs and back. First, construct a single-
type EDTD D1 such that L(D1) = T∃(P). This can be done in exponential
time according to Theorem 14(3). Then, use the polynomial time algorithm of
Martens et al [8], to construct an equivalent DTD D. In this algorithm, all
expressions of D define unions of the language define by the expressions in D1.
This can, of course, be done by taking the disjunction of expressions in D1. In
total, D is constructed in exponential time. ⊓⊔

20

Proof of Theorem 14(6): P∀(Reg)
2-exp
⇒ P∃(Reg)

Proof. · · · We first show P∀(Reg)
2-exp
→ P∃(Reg). We take the same approach

as in the proof of Theorem 14(1), but have to make some small changes. Let
P = {(r1, s1), . . . , (rn, sn)}, and for any set C ⊆ {1, . . . , n} let rC be the regu-
lar expression defining

⋂
i∈C L(ri)\

⋃
1≤i≤n,i/∈C L(ri). Let sC be the expression

defining the language
⋂

i∈C L(si) and define P ′ = {(r∅, Σ
∗)} ∪ {(rC , sC | C ⊆

{1, . . . , n} ∧ C 6= ∅}. Here, P ′ is disjoint and complete and, by the same argu-
mentation as in the proof of Theorem 14(1), can be constructed in time double
exponential in the size of P ′. So, by Lemma 12, T∃(P

′) = T∀(P
′). We show that

T∀(P) = T∀(P
′) from which T∀(P) = T∃(P

′) then follows. By Lemma 11(1), it
suffices to prove that for any node v of any tree t, v ∈ P∀(t) iff v ∈ P ′

∀(t):

– v ∈ P∀(t) ⇒ v ∈ P ′
∀(t): Let C = {i | anc-str(v) ∈ L(ri)}. If C = ∅, then

anc-str(v) ∈ r∅ and the horizontal regular expression Σ∗ allows every child-
string. Because of the disjointness of P ′ no other vertical regular expression
in P ′ can define anc-str(v) and thus v ∈ P ′

∀(t). If C 6= ∅, since v ∈ P∀(t),
for all i ∈ C, ch-str(v) ∈ L(si). But then, by definition of rC and sC ,
anc-str(v) ∈ L(rC) and ch-str(v) ∈ L(sC), combined with the disjointness of
P ′ gives v ∈ P ′

∀(t).
– v ∈ P ′

∀(t) ⇒ v ∈ P∀(t): Let C ⊆ {1, . . . , n} be the unique set for which
(rC , sC) ∈ P ′, anc-str(v) ∈ L(rC) and ch-str(v) ∈ L(sC). Since v ∈ P ′

∀(t)
and by the disjointness and completeness of P ′ there indeed exists exactly one
such set. If C = ∅, then anc-str(v) is not defined by any vertical expression
in P and thus v ∈ P∀(t). If C 6= ∅, then for all i ∈ C, anc-str(v) ∈ L(ri)
and ch-str(v) ∈ L(si), and for all i /∈ C, anc-str(v) /∈ L(ri). It follows that
v ∈ P∀(t).

We now show that P∀(Reg)
2-exp
⇒ P∃(Reg). Let n ∈ N. According to Theo-

rem 2(2), there exist a linear number of regular expressions r1, . . . , rm of size
linear in n such that any regular expression defining

⋂
i≤m L(ri) must be of size

at least double exponential in n. For brevity, define K =
⋂

i≤m L(ri).
Define Pn over the alphabet Σa = Σ ⊎ {a}, for a /∈ Σ, as Pn = {(a, ri) | i ≤

m} ∪ {(ab, ε) | b ∈ Σ} ∪ {(b, ∅) | b ∈ Σ}. That is, T∀(Pn) contains all trees a(w),
where w ∈ K.

Let P be a pattern-based schema with T∀(Pn) = T∃(P). For an expres-
sion s, denote by s− the expression defining all words in L(s) ∩ Σ∗. Accord-
ing to Theorem 2(5), s− can be constructed from s in linear time. Define
U = {s− | (r, s) ∈ P ∧ a ∈ L(r)} as the set of horizontal regular expressions
whose corresponding vertical regular expressions contains the string a. Finally,
let rK be the disjunction of all expressions in U . We now show that L(rK) = K,
thereby proving that the size of P must be at least double exponential in n.
· · · First, let w ∈ K. Then, t = a(w) ∈ T∀(Pn) = T∃(P). Therefore, by

Lemma 11(3), the root node v of t is in P∃(t). It follows that there must be a
rule (r, s) ∈ P , with a ∈ L(r) and w ∈ L(s). Now w ∈ Σ∗ implies w ∈ L(s−),
and thus, by definition of U and rK , w ∈ L(rK).

21

Conversely, suppose w ∈ L(s−) for some s− ∈ U . We show that t = a(w) ∈
T∃(P) = T∀(Pn), which implies that w ∈ K. By Lemma 11(3), it suffices to
show that every node v of t is in P∃(t). For the root node v of t, we know that
ch-str(v) = w ∈ L(s−), and by definition of U , that anc-str(v) = a ∈ L(r),
where r is the corresponding vertical expression for s. Therefore, v ∈ P∃(t).
All other nodes v are leaf nodes with ch-str(v) = ε and anc-str(v) = ab, where
b ∈ Σ since w ∈ L(s−). To show that any node with these child and ancestor-
strings must be in P∃(t), note that for every symbol b ∈ Σ there exists a string
w′ ∈ K such that w′ contains a b. Otherwise b is useless and can be removed
from Σ. Then, t′ = a(w′) ∈ T∀(Pn) = T∃(P) and thus there is a leaf node
v′ in t′ for which anc-str(v′) = ab and ch-str(v′) = ε. Since, by Lemma 11(3)
v′ ∈ P∃(t

′), also any leaf node v of t with anc-str(v) = ab is in P∃(t). It follows
that t ∈ T∃(P) = T∀(Pn). ⊓⊔

Proof of Theorem 14(7) and (8):

– P∀(Reg)
2-exp
⇒ EDTD

– P∀(Reg)
2-exp
⇒ EDTDst

Proof. · · · We first show P∀(Reg)
2-exp
→ EDTDst, which implies P∀(Reg)

2-exp
→

EDTD. Thereto, let P = {(r1, s1), . . . , (rn, sn)}. We construct an automaton-
based schema D = (A, λ) such that L(D) = T∀(P). By Lemma 7, D can then
be translated into an equivalent single-type EDTD and the theorem follows. We
construct A in exactly the same manner as in the proof of Theorem 14(3). For
λ, let λ((q1, . . . , qn)) =

⋂
i≤n,qi∈Fi

L(si), and λ((q1, . . . , qn)) = Σ∗ if none of
the qi are accepting states for their automaton. We already know that A can
be constructed in exponential time, and by Theorem 2(2) a regular expression
for λ((q1, . . . , qn)) =

⋂
i≤n,qi∈Fi

L(si) can be constructed in double exponential
time. It follows that the total construction can be done in double exponential
time.

Further, P∀(Reg)
2-exp
⇒ EDTD already holds for a restricted version of pattern-

based schemas, which is shown in Theorem 16(7). The latter implies P∀(Reg)
2-exp
⇒

EDTDst. ⊓⊔

Proof of Theorem 14(9): simplification for P∀(Reg) is exptime-complete.

Proof. · · · The proof is along the same lines as that of Theorem 14(4) ⊓⊔

Proof of Theorem 14(10): P∀(Reg)
2-exp

6⇒ DTD

Proof. · · · First, P∀(Reg) 6→ DTD already holds for a restricted version of
pattern-based schema’s (Theorem 19(12)).

We first show P∀(Reg)
2-exp

6→ DTD. Notice that the DTD(NFA) D constructed
in the above proof, conform the proof of Theorem 14(4), is constructed in time
exponential in the size of P . To obtain an actual DTD, we only have to translate
the NFAs in D into regular expressions, which can be done in exponential time

22

by means of state elimination. This yields a total algorithm of double exponential
time complexity.

Finally, P∀(Reg)
2-exp

6⇒ DTD already holds for a more restricted version of
pattern-based schema’s, which is shown in Theorem 16(10). ⊓⊔

Proofs for Section 4

Proof of Theorem 16(1): P∃(Lin) 6→ P∀(Lin)

Proof. We first prove the following simple lemma. Given an alphabet Σ, and a
symbol b ∈ Σ, denote Σ \ {b} by Σb.

Lemma 17. There does not exist a set of linear regular expression r1, . . . , rn

such that
⋃

1≤i≤n L(ri) is an infinite language and
⋃

1≤i≤n L(ri) ⊆ L(Σ∗
b).

Proof. · · · Suppose to the contrary that such a list of linear expressions does ex-
ist. Then, one of these expressions must contain Σ∗ because otherwise

⋃
1≤i≤n L(ri)

would be a finite language. However, if an expression contains Σ∗, then it also
defines words containing b, which gives us the desired contradiction. ⋄

Now, let P = {(Σ∗bΣ∗, ε), (Σ∗, Σ)}. Then, T∃(P) defines all unary trees
containing at least one b. Suppose that P ′ is a linear schema such that T∃(P) =
T∀(P

′). Define U = {r | (r, s) ∈ P ′ and ε /∈ L(s)} as the set of all vertical
regular expressions in P ′ whose horizontal regular expressions do not contain
the empty string. We show that the union of the expressions in U defines an
infinite language and is a subset of Σ∗

b , which by Lemma 17 proves that such a
schema P ′ can not exist.

First, to show that the union of these expressions defines an infinite language,
suppose that it does not. Then, every expression r ∈ U is of the form r = w, for
some string w. Let k be the length of the longest such string w. Now, ak+1b ∈
T∃(P) = T∀(P

′) and thus by Lemma 11(2) every non-leaf node v of ak+1 is in
P ′
∀(a

k+1). Further, ak+1 /∈ L(r) for all vertical expressions in U and thus the
leaf node of ak+1 is also in P ′

∀(a
k+1). But then, by Lemma 11(1), ak+1 ∈ T∀(P

′)
which leads to the desired contradiction.

Second, let w ∈ L(r), for some r ∈ U , we show w ∈ Σ∗
b . Towards a contra-

diction, suppose w /∈ Σ∗
b , which means that w contains at least one b and thus

w ∈ T∃(P) = T∀(P
′). But then, for the leaf node v of w, anc-str(v) = w ∈ L(r),

and by definition of U , ch-str(v) = ε /∈ L(s), where s is the corresponding hori-
zontal expression for r. Then, v /∈ P ′

∀(w) and thus by Lemma 11(1), w /∈ T∀(P
′),

which again gives the desired contradiction. ⊓⊔

Proof of Theorem 16(2) and (3):

– P∃(Lin)
exp
⇒ EDTD

– P∃(Lin)
exp
⇒ EDTDst

23

Proof. First, P∃(Lin)
exp
→ EDTDst follows immediately from Theorem 14(3). We

show P∃(Lin)
exp
⇒ EDTD, which then implies both statements. Thereto, we first

characterize the expressive power of EDTDs over unary tree languages.

Lemma 18. For any EDTD D for which L(D) is a unary tree language, there
exists an NFA A such that L(D) = L(A). Moreover, A can be computed from D
in time linear in the size of D.

Proof. · · · Let D = (Σ,Σ′, d, s, µ) be an EDTD, such that L(D) is a unary
tree language. Then, define A = (Q, q0, δ, F) as Q = {q0} ∪Σ′, δ = {(q0, s, s)} ∪
{(a, µ(b), b) | a, b ∈ Σ′ ∧ b ∈ L(d(a))}, and F = {a | a ∈ Σ′ ∧ ε ∈ d(a)}. ⋄

Now, let n ∈ N. Define Σn = {$,#1,#2} ∪
⋃

1≤i≤n{a
0
i , a

1
i , b

0
i , b

1
i } and Kn =

{#1a
i1
1 ai2

2 · · · a
in

n $bi1
1 bi2

2 · · · b
in

n #2 | ik ∈ {0, 1}, 1 ≤ k ≤ n}. It is not hard to see
that any NFA defining Kn must be of size at least exponential in n. Indeed,
in Theorem 1, define M = {(x,w) | xw ∈ Kn ∧ |x| = n + 1} which is of size
exponential in n, and satisfies the conditions of Theorem 1. Then, by Lemma 18,
every EDTD defining the unary tree language Kn must also be of size exponential
in n. We conclude the proof by giving a pattern-based schema Pn, such that
T∃(Pn) = Kn, which is of size linear in n. It contains the following rules:

– #1 → a0
1 + a1

1

– For any i < n:
• #1Σ

∗a0
i → a0

i+1 + a1
i+1

• #1Σ
∗a1

i → a0
i+1 + a1

i+1

• #1Σ
∗a0

i Σ
∗b0

i → b0
i+1 + b1

i+1

• #1Σ
∗a1

i Σ
∗b1

i → b0
i+1 + b1

i+1

– #1Σ
∗a0

n → $
– #1Σ

∗a1
n → $

– #1Σ
∗$→ b0

1 + b1
1

– #1Σ
∗a0

nΣ∗b0
n → #2

– #1Σ
∗a1

nΣ∗b1
n → #2

– #1Σ
∗#2 → ε

⊓⊔

Proof of Theorem 16(4): simplification for P∃(Lin) is pspace-complete.

Proof. For the lower bound, we reduce from universality of regular expres-
sions. That is, deciding for a regular expression r whether L(r) = Σ∗. The
latter problem is known to be pspace-complete [12]. Given r over alphabet Σ,
let ΣP = {a, b, c, d} ⊎ Σ, and define the pattern-based schema P = {(a, b +
c), (ab, e), (ac, e), (abe,Σ∗), (ace, r)} ∪ {(abeσ, ε), (aceσ, ε) | σ ∈ Σ}. We show
that there exists a DTD D with L(D) = T∃(P) iff L(r) = Σ∗.

If L(r) = Σ∗, then the following DTD d defines T∃(P): d(a) = b+c, d(b) = e,
d(c) = e, d(e) = Σ∗, and d(σ) = ε for every σ ∈ Σ.

Conversely, if L(r) (Σ∗, we show that T∃(P) is not closed under label-
guarded subtree exchange. From Lemma 4, it then follows that T∃(P) is not

24

definable by a DTD. Let w,w′ be strings such that w /∈ L(r) and w′ ∈ L(r).
Then, a(b(e(w))) ∈ L(D), and a(c(e(w′))) ∈ L(D) but a(c(e(w))) /∈ T∃(P).

For the upper bound, we again make use of the closure under label-guarded
subtree exchange property of DTDs. Observe that T∃(P), which is a regular
tree language, is not definable by any DTD iff there exist trees t1, t2 ∈ T∃(P)
and nodes v1 and v2 in t1 and t2, respectively, with labt1(v1) = labt2(v2), such
that the tree t3 = t1[v1 ← subtreet2(v2)] is not in T∃(P). · · · We refer to such
a tuple (t1, t2) as a witness to the DTD-undefinability of T∃(P), or simply a
witness tuple.

Lemma 21 If there exists a witness tuple (t1, t2) for a linear schema P , then
there also exists a witness tuple (t′1, t

′
2) for P , where t′1 and t′2 are of depth

polynomial in the size of P .

Proof. We make use of techniques introduced by Kasneci and Schwentick [7].
When P, P ′ are two linear schema’s, they stated that if there exists a tree t with
t ∈ T∃(P) but t /∈ T∃(P

′), then there exists a tree t′ of depth polynomial with
the same properties. In particular, they obtained the following property.

Let P be a linear pattern-based schema and t a tree. Then, to every node v
of t, a vector F t

P (v) over N can be assigned with the following properties:

– along a path in a tree, F t
P (v) can take at most polynomially many values in

the size of P ;
– if v′ is a child of v, then F t

P (v′) can be computed from F t
P (v) and the label

of v′ in t; and
– v ∈ P∃(t) can be decided solely on the value of F t

P (v) and ch-str(v).

Based on these properties it is easy to see that if there exists a tree t which
existentially satisfies P , then there exists a tree t′ of polynomial depth which
existentially satisfies P . Indeed, t′ can be constructed from t by searching for
nodes v and v′ of t such that v′ is a descendant of v, labt(v) = labt(v′) and
F t

P (v) = F t
P (v′), and replacing the subtree rooted at v by the one rooted at v′.

By applying this rule as often as possible, we get a tree which is still existentially
valid with respect to P and where no two nodes on a path in the tree have the
same vector and label and which thus is of polynomial depth.

We will also use this technique, but have to be a bit more careful in the
replacements we carry out. Thereto, let (t1, t2) be a witness tuple for P and
fix nodes v1 and v2 of t1 and t2, respectively, such that t3, defined as t1[v1 ←
subtreet2(v2)], is not in T∃(P). Since t3 /∈ T∃(P), by Lemma 11(3), there must
be some node v3 of t3 with v3 /∈ P∃(t3). Furthermore, v3 must occur in the
subtree under v2 inherited from t2. Indeed, every node v not in that subtree,
has the same vector and child-string as its corresponding node in t1, and since
t1 ∈ T∃(P) also v ∈ P∃(t1) and thus v ∈ P∃(t3). So, fix some node v3, with
v3 /∈ P∃(t3), occurring in t2. Then, we can partition the trees t1 and t2, and
thereby also t3, in five different parts as follows:

1. t1[v1 ← ()]: the tree t1 without the subtree under v1;

25

2. subtreet1(v1): the subtree under v1 in t1;
3. t2[v2 ← ()]: the tree t2 without the subtree under v2

4. subtreet2(v2)[v3 ← ()]: the subtree under v2 in t2, without the subtree under
v3;

5. subtreet2(v3): the subtree under v3 in t2;

This situation is graphically illustrated in Figure 2.

t1

v1

t1

t2

v2

v3

t2

t1

v2

v3

t3

Fig. 2: The five different areas in t1 and t2.

Now, let t′1 and t′2 be the trees obtained from t1 and t2 by repeating the
following as often as possible: Search for two nodes v, v′ such that v is an ancestor
of v′, v and v′ are not equal to v1, v2 or v3, v and v′ occur in the same part of
t1 or t2, lab(v) = lab(v′) and F t1

P (v) = F t1
P (v′) (or F t2

P (v) = F t2
P (v′) if v and v′

both occur in t2). Then, replace v by the subtree under v′.
Observe that, by the properties of F , any path in one of the five parts of t′1

and t′2 can have at most a polynomial depth, and thus t′1 and t′2 are of at most a
polynomial depth. Furthermore, t′1, t

′
2 ∈ T∃(P) still holds and the original nodes

v1, v2 and v3 still occur in t′1 and t′2. Therefore, for t′3 = t′1[v1 ← subtreet′
2(v2)],

F
t′
3

P (v3) = F t3
P (v3) and ch-strt′

3(v3) = ch-strt3(v3). But then, v3 /∈ P∃(t
′
3), which

by Lemma 11(3) gives us t′3 /∈ T∃(P). So, (t′1, t
′
2) is a witness tuple in which t′1

and t′2 are of at most polynomial depth. ⋄

Now, using Lemma 21, we show that the problem is in pspace. We simply
guess a witness tuple (t1, t2) and check in pspace, whether it is a valid witness
tuple. If it is, T∃(P) is not definable by a DTD. If T∃(P) is definable by a
DTD, there does not exist a witness tuple for P . Since, pspace is closed under
complement, the theorem follows.

By Lemma 21, it suffices to guess trees of at most polynomial depth. There-
fore, we guess t1 and t2 in depth-first and left-to-right fashion, maintaining for
each tree and each level of the trees, the sets of states the appropriate automata
can be in. Here, t1 and t2 are guessed simultaneously and independently. That
is, for each guessed symbol, we also guess whether it belongs to t1 or t2. At some
point in this procedure, we guess that we are now at the nodes v1 and v2 of t1
and t2. From that point we maintain a third list of states of automata, which
are initiated by the values of these of t1, but the subsequent subtree take the

26

values of t2. If in the end, t1 and t2 are accepted, but the third tree is not, then
(t1, t2) is a valid witness for P . ⊓⊔

Proof of Theorem 16(5): P∃(Lin)
exp

6→ DTD

Proof. · · · First, P∃(Lin) 6→ DTD already holds for a restricted version of

pattern-based schema’s (Theorem 19(6)). Then, P∃(Lin)
exp

6→ DTD follows imme-
diately from Theorem 14(5). ⊓⊔

Proof of Theorem 16(6): P∀(Lin) 6→ P∃(Lin)

Proof. Let Σ = {a, b, c} and define P = {(Σ∗bΣ∗c, b)}. Then, T∀(P) contains
all trees in which whenever a c labeled node v has a b labeled node as ancestor,
ch-str(v) must be b. We show that any linear schema P ′ defining all trees in
T∀(P) under existential semantics, must also define trees not in T∀(P).

Suppose there does exist a linear schema P ′ such that T∀(P) = T∃(P
′). Define

wℓ = aℓc for ℓ ≥ 1 and note that wℓ ∈ T∀(P) = T∃(P
′). Let (r, s) ∈ P ′ be a rule

matching infinitely many leaf nodes of the strings wℓ. There must be at least
one as P ′ contains a finite number of rules. Then, ε ∈ L(s) must hold and r is
of one of the following forms:

1. an1Σ∗an2Σ∗ · · ·Σ∗ankc
2. an1Σ∗an2Σ∗ · · ·Σ∗ankcΣ∗

3. an1Σ∗an2Σ∗ · · ·Σ∗ankΣ∗

where k ≥ 2 and nk ≥ 0.
Choose some N ∈ N with N ≥ |P ′| and define the unary trees t1 = aNbaNcb

and t2 = aNbaNc. Obviously, t1 ∈ T∀(P), and t2 /∈ T∀(P). Then, t1 ∈ T∃(P
′)

and since t2 is a prefix of t1, by Lemma 11(4), every non-leaf node v of t2 is in
P ′
∃(t2). Finally, for the leaf node v of t2, anc-str(v) ∈ L(r) for any of the three

expressions given above and ε ∈ L(s) for its corresponding horizontal expression.
Then, v ∈ P ′

∃(t2), and thus by Lemma 11(3), t2 ∈ T∃(P
′) which completes the

proof. ⊓⊔

Proof of Theorem 16(7) and (8):

– P∀(Lin)
2-exp
⇒ EDTD

– P∀(Lin)
2-exp
⇒ EDTDst

Proof. · · · First, P∀(Lin)
2-exp
→ EDTDst follows immediately from Theorem 14(3).

We show P∀(Lin)
2-exp
⇒ EDTD, which then implies both statements.

Let n ∈ N. According to Theorem 2(3), there exist a linear number of regular
expressions r1, . . . , rm of size linear in n such that any regular expression defining⋂

i≤m L(ri) must be of size at least double exponential in n. Set K =
⋂

i≤m L(ri).
Next, we define Pn over the alphabet Σ ⊎ {a} as Pn = {(a, ri) | i ≤ m} ∪

{(ab, ε) | b ∈ Σ} ∪ {(b, ∅) | b ∈ Σ}. That is, T∀(Pn) defines all trees a(w), for
which w ∈ K.

27

Let D = (Σ,Σ′, d, a, µ) be any EDTD with T∀(P) = L(D). By Lemma 5(a),
we can assume that D is trimmed. Let a→ r be the single rule in D for the root
element a. Let rK be the expressions defining µ(L(r)). Since D is trimmed, it
follows from Lemma 5(2) that rK cannot contain an a. But then, L(rK) = K,
which proves that the size of D must be at least double exponential in n. ⊓⊔

Proof of Theorem 16(9): simplification for P∀(Lin) is pspace-complete.

Proof. · · · The proof is along the same lines as that of Theorem 16(4). ⊓⊔

Proof of Theorem 16(10): P∀(Lin)
2-exp

6⇒ DTD

Proof. · · · First, P∀(Lin) 6→ DTD already holds for a restricted version of

pattern-based schema’s (Theorem 19(12)). Then, P∀(Lin)
2-exp

6→ DTD follows

immediately from Theorem 14(10). For P∀(Lin)
2-exp

6⇒ DTD, let n ∈ N. In the
proof of Theorem 16(7) we have defined a linear pattern-based schema Pn of
size polynomial in n for which any EDTD D′ with T∀(Pn) = L(D′) must be of
size at least double exponential in n. Furthermore, every DTD is an EDTD and
the language T∀(Pn) is definable by a DTD. It follows that any DTD D with
T∀(Pn) = L(D) must be of size at least double exponential in n. ⊓⊔

Proofs for Section 5

We give a more formal definition of one-unambiguous regular expressions. To
indicate different occurrences of the same symbol in a RE, we mark symbols
with subscripts. For instance, the marking of (a+b)∗a+bc is (a1 +b2)

∗a3 +b4c5.
We denote by r♭ the marking of r and by Sym(r♭) the subscripted symbols
occurring in r♭. When r is a marked expression, then r♮ over Σ is obtained from
r by dropping all subscripts. This notion is extended to words and languages.

A regular expression r is 1-unambiguous iff for all words w, u, v ∈ Sym(r♭)∗,
and all symbols x, y ∈ Sym(r♭), the conditions uxv, uyw ∈ L(r♭) and x 6= y
imply x♮ 6= y♮.

Proof of Theorem 19(1): P∃(S-Lin)
poly
→ P∀(S-Lin) and P∃(Det-S-Lin)

poly
→

P∀(Det-S-Lin)

Proof. We first show P∃(S-Lin)
poly
→ P∀(S-Lin). The key of this proof lies in the

following lemma:

Lemma 20. For each finite set R of disjoint strongly linear expressions, a finite
set S of disjoint strongly linear regular expressions can be constructed in ptime

such that
⋃

s∈S L(s) = Σ∗\
⋃

r∈R L(r).

Before we prove this lemma, we show how it implies the theorem. For P =
{(r1, s1), . . . , (rn, sn)}, let S be the set of strongly linear expressions for R =
{r1, . . . , rn} satisfying the conditions of Lemma 20. Set P ′ = P ∪

⋃
s∈S{(s, ∅)}.

28

Here, T∃(P) = T∃(P
′) and since P ′ is disjoint and complete it follows from

Lemma 12 that T∃(P
′) = T∀(P

′). This gives us T∃(P) = T∀(P
′). By Lemma 20,

the set S is polynomial time computable and therefore, P ′ is too.
Further, note that the regular expressions in P ′ are copies of these in P .

Therefore, P∀(Det-S-Lin)
poly
→ P∃(Det-S-Lin) also holds. We finally give the proof

of Lemma 20.

Proof (of Lemma 20). · · · For R a set of strongly linear regular expressions, let
Suffix(R) =

⋃
r∈R Suffix(r). Define U as the set of strings aw, a ∈ Σ, w ∈ Σ∗,

such that w ∈ Suffix(R), and aw /∈ Suffix(R). Define V as Suffix(R)\
⋃

r∈R L(r).
We claim that S =

⋃
u∈U{Σ

∗u} ∪
⋃

v∈V {v} is the desired set of regular ex-
pressions. For instance, for R = {Σ∗abc,Σ∗b, bc} we have U = {bbc, cbc, ac, cc, a}
and V = {c} which gives us S = {Σ∗bbc,Σ∗cbc,Σ∗ac,Σ∗cc,Σ∗a, c}.

We have to show that, given R: (1) S is finite and polynomial time com-
putable; (2) the expressions in S are pairwise disjoint; (3)

⋃
r∈R L(r)∩

⋃
s∈S L(s) =

∅; and (4)
⋃

r∈R∪S L(r) = Σ∗.
(1) Every r ∈ R is of the form w or Σ∗w, for some w. Then, for r there

are only |w| suffixes in L(r) which can match the definition of U or V . When a
string w′, with |w′| > |w| is a suffix in L(r) then, r must be of the form Σ∗w
and thus for every a ∈ Σ, aw is also a suffix in L(r), and thus aw /∈ U . Further,
w′ /∈ V . So, the number of strings in U and V is bounded by the number of rules
in R times the length of the strings w occurring in the expressions in R, times
the number of alphabet symbols, which is a polynomial. Obviously, we can also
compute these strings in polynomial time.

For (2), we must check that the generated expressions are all pairwise disjoint.
First, every expression generated by V defines only one string, so two expressions
generated by V always have an empty intersection. For an expression Σ∗aw gen-
erated by U and an string w′ in V , suppose that their intersection is non-empty
and thus w′ ∈ L(Σ∗aw). Then, aw must be a suffix of w′ and we know by defini-
tion of V that w′ ∈ Suffix(R). But then, also aw ∈ Suffix(R) which contradicts
the definition of U . Third, suppose that two expressions Σ∗aw,Σ∗a′w′ generated
by U have a non-empty intersection. Then, aw must be a suffix of a′w′ (or the
other way around, but that is perfectly symmetrical), and since aw 6= a′w′, aw
must be a suffix of w′. But w′ ∈ Suffix(R) and thus aw ∈ Suffix(R) must also
hold, which again contradicts the definition of U .

(3) The strings in V are explicitly defined such that their intersection with⋃
r∈R L(r) is empty. For the expression generated by U , observe that they only

define words which have suffixes that can not be suffixes of any word defined by
any expression in R. Therefore,

⋃
r∈R L(r) ∩

⋃
s∈S L(s) = ∅.

Finally, we show (4). Let w /∈ L(r), for any r ∈ R. We show that there exists
an s ∈ S, such that w ∈ L(s). If w ∈ V , we are done. So assume w /∈ V . Let w =
a1 · · · ak. Now, we go from left to right through w and search for the rightmost
l ≤ k+1 such that wl = al · · · ak ∈ Suffix(R), and wl−1 = al−1 · · · ak /∈ Suffix(R).
When l = k + 1, wl = ε. Then, w is accepted by the expression Σ∗al−1 · · · ak,
which by definition must be generated by U . It is only left to show that there
indeed exists such an index l for w. Thereto, note that if l = k+1, then it is easy

29

to see that wl = ε is a suffix of every string accepted by every r ∈ R. Conversely,
if l = 1 we show that wl = w can not be a suffix of any string defined by any
r ∈ R. Suppose to the contrary that w ∈ Suffix(r), for some r ∈ R. Let r be wr

or Σ∗wr. If w is a suffix of wr, then w is accepted by an expression generated
by V , which case we already ruled out. If w is not a suffix of wr, then r must
be of the form Σ∗wr and wr must be a suffix of w. But then, w ∈ L(r), which
also contradicts our assumptions. So, we can only conclude that w1 /∈ Suffix(R).
So, given that wk+1 ∈ Suffix(R), and w1 /∈ Suffix(R), we are guaranteed to find
some l, 1 < l ≤ k + 1, such that wl ∈ Suffix(R), and wl−1 /∈ Suffix(R). This
concludes our proof. ⊓⊔

Proof of Theorem 19(7): P∀(S-Lin)
poly
→ P∃(S-Lin) and P∀(Det-S-Lin)

poly
→

P∃(Det-S-Lin)

Proof. · · · For P = {(r1, s1), . . . , (rn, sn)}, let S = {r′1, · · · , r
′
m} be the set

of strongly linear expressions for R = {r1, . . . , rn} satisfying the conditions
of Lemma 20. Then, define P ′ = {(r1, s1), . . . , (rn, sn), (r′1, Σ

∗), . . . , (r′m, Σ∗)}.
Here, T∀(P) = T∀(P

′) and since P ′ is disjoint and complete it follows from
Lemma 12 that T∃(P

′) = T∀(P
′). This gives us T∀(P) = T∃(P

′). By Lemma 20,
the set S is polynomial time computable and therefore, P ′ is too.

Further, note that the regular expressions in P ′ are copies of these in P .

Therefore, P∃(Det-S-Lin)
poly
→ P∀(Det-S-Lin) also holds. This concludes the

proof. ⊓⊔

Proof of Theorem 19(2-3) and (8-9):

– P∃(S-Lin)
poly
→ EDTD and P∃(Det-S-Lin)

poly
→ EDTD

– P∃(S-Lin)
poly
→ EDTDst and P∃(Det-S-Lin)

poly
→ EDTDst

– P∀(S-Lin)
poly
→ EDTD and P∀(Det-S-Lin)

poly
→ EDTD

– P∀(S-Lin)
poly
→ EDTDst and P∀(Det-S-Lin)

poly
→ EDTDst

Proof. We show P∃(S-Lin)
poly
→ EDTDst, since deterministic strongly-linear schema’s

are a subset of strongly-linear schema’s, since single-type EDTDs are a subset
of EDTDs and since we can translate a strongly-linear schema with universal
semantics into an equivalent one with existential semantics in polynomial time
(Theorem 19(7)), all other results follow.

Given P , we construct an automaton-based schema D = (A, λ) such that
L(D) = T∃(P). By Lemma 7, we can then translate D into an equivalent single-
type EDTD in polynomial time. Let P = {(r1, s1), . . . , (rn, sn)}. We define D
such that when A is in state q after reading w, λ(q) = si iff w ∈ L(ri) and
λ(q) = ∅ otherwise. The most obvious way to construct A is by constructing
DFAs for the vertical expressions and combining these by a product construction.
However, this would induce an exponential blow-up. Instead, we construct A in
polynomial time in a manner similar to the construction used in Proposition 5.2
in [7].

30

First, assume that every ri is of the form Σ∗wi. We later extend the con-
struction to also handle vertical expressions of the form wi. Define S = {w | w ∈
Prefix(wi), 1 ≤ i ≤ n}. Then, A = (Q, q0, δ) is defined as Q = S ∪ {q0}, and for
each a ∈ Σ,

– δ(q0, a) = a if a ∈ S, and δ(q0, a) = q0 otherwise; and
– for each w ∈ S, δ(w, a) = w′, where w′ is the longest suffix of wa in S, and

δ(w, a) = q0 if no string in S is a suffix of wa.

For the definition of λ, let λ(q0) = ∅, and for all w ∈ S, λ(w) = si if w ∈ L(ri)
and λ(w) = ∅ if w /∈ L(ri) for all i ≤ n. Note that since the vertical expression
are disjoint, λ is well-defined.
· · · We prove the correctness of our construction using the following lemma

which can easily be proved by induction on the length of u.

Lemma 22 For any string u = a1 · · · ak,

1. if q0 ⇒A,u q0, then no suffix of u is in S; and
2. if q0 ⇒A,u w, for some w ∈ S, then w is the biggest element in S which is a

suffix of u.
3. if q0 ⇒A,u q, with λ(q) = ∅, then u /∈ L(ri), for any i ≤ n; and
4. if q0 ⇒A,u w, w ∈ S, with λ(w) = si, then u ∈ L(ri).

To show that L(D) = T∃(P), it suffices to prove that for any tree t, a node
v ∈ P∃(t) iff ch-str(v) ∈ L(λ(q)) for q ∈ Q such that q0 ⇒A,anc-str(v) q.

First, suppose v ∈ P∃(t). Then, for some i ≤ n, anc-str(v) ∈ L(ri) and
ch-str(v) ∈ L(si). By Lemma 22(4), and the definition of λ, q0 ⇒anc-str(v) q,
with λ(q) = si. But then, ch-str(v) ∈ L(λ(q)).

Conversely, suppose that for q such that q0 ⇒A,anc-str(v) q, ch-str(v) ∈
L(λ(q)) holds. Then, by Lemma 22(4), there is some i such that anc-str(v) ∈
L(ri), and by the definition of λ, ch-str(v) ∈ L(si). It follows that v ∈ P∃(t).

We have now shown that the construction is correct when all expressions are
of the form Σ∗w. We sketch the extension to the full class of strongly linear
expressions. Assume w.l.o.g. that there exists some m such that for i ≤ m,
ri = Σ∗wi and for i > m, ri = wi. Define S = {w | w ∈ Prefix(wi) ∧ 1 ≤ i ≤ m}
in the same manner as above, and S′ = {w | w ∈ Prefix(wi)∧m < i ≤ n}. Define
A = (Q, q′0, δ), with Q = {q0, q

′
0} ∪ S ∪ S′. Note that the elements of S and S′

need not be disjoint. Therefore, we denote the states corresponding to elements
of S′ by primes, for instance ab ∈ S′ corresponds to the state a′b′. Then, for
any symbol a ∈ Σ, δ(q′0, a) = a′ if a ∈ S′; δ(q′0, a) = a if a /∈ S′ ∧ a ∈ S;
and δ(q′0, a) = q0 otherwise. For a string w ∈ S′, δ(w′, a) = w′a′ if wa ∈ S′,
δ(w′, a) is the longest suffix of wa in S if it exists and wa /∈ S′, and δ(w′, a) = q0

otherwise. The transition function for q0 and the states introduced by S remains
the same. So, we have added a subautomaton to A which starts by checking
whether w = wi, for some i > m, much like a suffix-tree, and switches to the
normal operation of the original automaton if this is not possible anymore.

Finally, the definition of λ again remains the same for q0 and the states
introduced by S. Further, λ(q′0) = ∅, and λ(w′) = ri if w ∈ L(ri) for some

31

i, 1 ≤ i ≤ n, and λ(w′) = ∅ otherwise. The previous lemma can be extended
for this extended construction and the correctness of the construction follows
thereof. ⊓⊔

Proof of Theorem 19(4) and (10):

– simplification for P∃(S-Lin) is pspace-complete.
– simplification for P∀(S-Lin) is pspace-complete.

Proof. · · · This follows immediately from Theorem 16(4) and (9). The upper
bound carries over since every strongly linear schema is also a linear schema. For
the lower bound, observe that the schema used in the proofs of Theorem 16(4)
and (9) is strongly linear. ⊓⊔

Proof of Theorem 19(5) and (11):

– simplification for P∃(Det-S-Lin) is in ptime.
– simplification for P∀(Det-S-Lin) is in ptime.

Proof. · · · We give the proof for the existential semantics. By Theorem 19(7)
the result carries over immediately to the universal semantics.

The algorithm proceeds in a number of steps. First, construct an automaton-
based schema D1 such that L(D1) = T∃(P). By Theorem 19(3) this can be done
in polynomial time. Furthermore, the regular expressions in D1 are copies of
the horizontal expressions in P and are therefore also one-unambiguous. Then,
translate D1 into a single-type EDTD D2 = (Σ,Σ′, d2, a, µ), which by Lemma 7
can again be done in ptime and also maintains the one-unambiguity of the used
regular expressions. Then, we trim D2 which can be done in polynomial time
by Lemma 5(1) and also preserves the one-unambiguity of the expressions in
D2. Finally, we claim that L(D2) = T∃(P) is definable by a DTD iff for every
two types ai, aj ∈ Σ′ it holds that L(µ(d(ai))) = L(µ(d(aj))). Since all regular
expressions in D2 are one-unambiguous, this can be tested in polynomial time.
We finally prove the above claim:

First, suppose that for every pair of types ai, aj ∈ Σ′ it holds that µ(d2(a
i)) =

µ(d2(a
j)). Then, consider the DTD D = (Σ, d, s), where d(a) = µ(d2(a

i)) for
some ai ∈ Σ′. Since all regular expression µ(d2(a

i)), with µ(ai) = a, are equiva-
lent, it does not matter which type we choose. Now, L(D) = L(D2) which shows
that L(D2) is definable by a DTD.

Conversely, suppose that there exist types ai, aj ∈ Σ′ such that µ(L(d(ai))) 6=
µ(L(d(aj))). We show that L(D2) is not closed under ancestor-guarded sub-
tree exchange. From Lemma 4 it then follows that L(D2) is not definable by
a DTD. Since µ(L(d(ai))) 6= µ(L(d(aj))), there exists a string w such that
w ∈ µ(L(d(ai))) and w /∈ µ(L(d(aj))) or w /∈ µ(L(d(ai))) and w ∈ µ(L(d(aj))).
We consider the first case, the second is identical. Let t1 ∈ L(d2) be a tree with
some node v with labt1(v) = ai and ch-strt1(v) = w′ where µ(w′) = w. Further,
let t2 ∈ L(d2) be a tree with some node u with labt2() = aj . Since D2 is trimmed,
t1 and t2 must exist by Lemma 5(2). Now, define t3 = µ(t2)[u← µ(subtreet1(v))]

32

which is obtained from µ(t1) and µ(t2) by label-guarded subtree exchange. Be-
cause D2 is a single-type EDTD, it must assign the type aj to node u in t3.
However, ch-strt3(u) = w /∈ µ(L(d(aj))) and thus t3 /∈ L(D3). This shows that
D2 is not closed under label-guarded subtree exchange. ⊓⊔

Proof of Theorem 19(6) and (12):

– P∃(S-Lin)
poly

6→ DTD and P∃(Det-S-Lin)
poly

6→ DTD

– P∀(S-Lin)
poly

6→ DTD and P∀(Det-S-Lin)
poly

6→ DTD

Proof. · · · We first show that We show that P∀(Det-S-Lin) 6→ DTD and then

P∃(S-Lin)
poly

6→ DTD. Since deterministic strongly-linear schema’s are a subset
of strongly-linear schema’s and since we can translate a strongly-linear schema
with universal semantics into an equivalent one with existential semantics in
polynomial time (Theorem 19(7)), all other results follow.

First, to show that P∀(Det-S-Lin) 6→ DTD, let ΣP = {a, b, c, d, e, f} and
P = {(a, b + c), (ab, d), (ac, d), (abd, ε), (acd, f), (acdf, ε)}. Here, a(b(d)) ∈ T∀(P)
and a(c(d(f))) ∈ T∀(P) but a(b(d(f))) /∈ T∀(P). Therefore, T∀(P) is not closed
under ancestor-guarded subtree exchange and by Lemma 4 is not definable by a
DTD.

To show that P∃(S-Lin)
poly

6→ DTD, observe that the algorithm in the above
proof also works when the horizontal regular expressions are not one-unambiguous.
The total algorithm then becomes pspace, because we have to test equivalence
of regular expressions. However, the DTD D is still constructed in polynomial
time, which completes this proof. ⊓⊔

33

