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Abstract: Investigation of the local effects of travel demand and the study of thin flows (low 

volume travel demand) require micro-modelling and simulation. The ongoing Smart-PT project 

focuses on demand responsive public transport and other collective transportation services; 

the Leuven region is used as a research case. This paper reports on the first steps in the project. 

Those steps aim to model the large number of trips generated by the academic hospital in the 

moderately sized city. The hospital attracts patients and their visitors from all over Flanders. 

The method used to sample them from a synthetic population is described and first results are 

reported. The daily agendas for the synthetic individuals are generated by the FEATHERS 

activity-based model. The next steps consisting of schedule adaptation for hospital personnel 

and visitors are briefly discussed. Those are non-trivial but essential to support the micro 

modelling required to study local public and collective travel demand. 

 

Keywords: Activity-based modelling, FEATHERS, MATSim, schedule adaptation, attraction 

sites, hospitals 

 

1. Introduction 

 

Activity-based transport micro-simulations are commonly used to determine network loads. 

When these simulations are capable of simulating public transport, they can even be used to 

determine the capacity utilization of public transport. This is particularly interesting for public 

transport companies who want to optimize public transport in city centres. However, in order 

to accurately determine public transport occupation at city level, large attraction sites need to 

be taken into account. This paper investigates the capacity utilization for buses in the city of 

Leuven. This region is heavily influenced by hospital patients/personnel/visitors going to the 

University Hospitals Leuven, college and university students, and large company sites such as 

Interbrew. In a first attempt we will account for the hospital patients/personnel/visitors. The 

simulation will be executed for a Tuesday during July or August, to cancel out the effects of 

the students. 

FEATHERS will be used to generate a daily agenda for each member of the synthetic 

population. In order to account for the large number of trips generated by the University 

Hospitals Leuven, hospital patients/visitors will be simulated. Thereto individuals will be 

sampled from the population to become a patient/visitor. Their schedule will be adapted by 

insertion of a hospital appointment/visit. This paper reports on the patient/visitor sampling. 

This paper is organized in the following way. In Section 2 we describe the relationship between 

FEATHERS and MATSim. Section 3 focusses the techniques used to account for a large 

hospital attraction site, whilst Section 4 presents the preliminary results of these techniques. 
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The validation of the results is given in Section 5. Section 6 discusses the justification of this 

research. Finally, Section 7 concludes the paper and provides an expose of planned future work. 

 

2. FEATHERS-MATSim simulation 

 

Simulation of the city of Leuven will be done using the open-source software MATSim (Multi-

Agent Transport Simulation). To simulate public transport in MATSim (Rieser and Nagel, 

2009), three types of input data are required: network, plans and public transport. The network 

is extracted from OpenStreetMap (OSM). Public transport data of the public bus operator 

servicing the region of Leuven (De Lijn), was found on the GTFS (General Transit Feed 

Specification) Data Exchange website. Last but not least, MATSim needs an initial schedule 

for each agent in the simulation. These schedules where generated by FEATHERS, an activity-

based schedule generator for mutually independent individuals. FEATHERS, like other 

activity-based schedule generators, is a TAZ (traffic analysis zone) based predictor, trained 

using travel surveys (totalling to nearly 10,000 respondents) over the complete Flemish region. 

MATSim on the other hand is a coordinate based micro-simulator. Hence, every location in a 

FEATHERS schedule needs to be replaced by the coordinates of a street address in the 

corresponding TAZ. This is done using the Flemish CRAB database (Centraal 

ReferentieAdressenBestand; Central Reference Address Database). Another problem due to 

FEATHERS being a TAZ based predictor is that it is not able to accurately capture local effects 

caused by the presence of a large attraction site, unless the site constitutes a TAZ by itself. 

Furthermore, FEATHERS does not correctly model night workers since it assumes everyone to 

be at home at 3.00 a.m. This results in the absence of time-shift work in the generated schedules. 

This means we need to adapt the schedules predicted by FEATHERS in order to account for 

the local effects of the hospital. 

 

3. Hospital attraction site 

 

A large hospital, such as the University Hospitals Leuven, attracts many people who arrive and 

leave at different times over the course of the day. Based on the behaviour of large groups of 

people arriving at /leaving from the hospital (e.g. visitors need to abide visiting hours), we can 

divide these people into three main categories: patients, visitors and personnel. For the first two 

categories (patients and visitors) we discuss the home location determination of each person as 

well as the schedule adaptation procedure. The personnel category is not discussed here, since 

this paper covers work in progress. 

 

3.1. Hospital patients 

Patients are divided into two subclasses: critical (intensive care, palliative care, small children, 

etc.) and non-critical. The latter subclass also contains consultations. This is again based on the 

different behaviour between these two groups of patients. The details of these differences are 

discussed in the sections below. 

3.1.1. Location sampling 

Patients for each class are sampled uniformly from the complete population. This is based on 

the following assumption. The probability for an individual to be a hospital patient, given 

his/her home TAZ, is given by 

𝑃𝑟𝑜𝑏(𝑝(𝑖)|ℎ(𝑖) = 𝑇𝐴𝑍) = 𝑃𝑟𝑜𝑏(𝑝(𝑖)|𝑓(𝑖)) ∙ 𝑃𝑟𝑜𝑏(𝑓(𝑖)|ℎ(𝑖) = 𝑇𝐴𝑍) 

where 𝑖 denotes the individual, 𝑝(𝑖) is a boolean predicate stating that 𝑖 is a patient, ℎ(𝑖) is the 

home location for 𝑖 and 𝑓(𝑖) is a characteristic of individual 𝑖 that is a vector of predictors to 

be a patient. Each element in 𝑓 is the value for a specific element in 𝐹 which is the set of 

predictors for being a patient. This set contains age, gender, education level, etc. 
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In the current version we assume that 𝑃𝑟𝑜𝑏(𝑝(𝑖)|𝑓(𝑖)) = 𝑃𝑟𝑜𝑏(𝑝(𝑖)) = 𝐶; this makes the 

probability to become a hospital patient independent of the individual's characteristics. As a 

consequence we assume that the probability distribution is uniform. Hence, we do not need to 

assume that 𝑃𝑟𝑜𝑏(𝑓(𝑖)|ℎ(𝑖) = 𝑇𝐴𝑍) = 𝑃𝑟𝑜𝑏(𝑓(𝑖)) which means that the probability for a 

vector of influencing factors to occur is the same in each TAZ. Those considerations enable 

easy extension of the method if required. For now they lead to 

𝑃𝑟𝑜𝑏(𝑝(𝑖)|ℎ(𝑖) = 𝑇𝐴𝑍) = 𝐶 

In order to determine a patient's home location, we assume that a deterrence function similar to 

the one for social contacts holds, i.e. we assume that the attractivity is proportional to the 

distance (see (Lambiotte et al., 2008), (Wang et al., 2011) and (Krings et al., 2009)) to the 

hospital. Furthermore, we assume that the larger a hospital, the higher the probability to attract 

patients; we do not assume that this relationship is linear. Finally, an academic hospital is 

assumed to be more attractive to critical patients than a non-academic one. All these 

assumptions lead to 

𝑎ℎ,𝑝 ∝  𝑐ℎ,𝑝 ∙ (𝑆ℎ)𝛼 ∙ (𝑑𝑝,ℎ)
−𝛽

 

where 𝑎ℎ,𝑝 is the attraction of hospital ℎ to a patient 𝑝, 𝑐ℎ,𝑝 is the weight coefficient for the 

hospital to attract the patient, 𝑆ℎ is the hospital size (number of beds), 𝛼 is the coefficient that 

specifies the effect of the size on the attraction and 𝑑𝑝,ℎ is the distance [km] between the 

patient's home TAZ and the hospital TAZ; 𝛽 is a coefficient modulating the contribution of the 

distance. The weight coefficient 𝑐ℎ,𝑝 depends on the hospital type (academic, non-academic) 

and the patient class (critical, non-critical). The reason for making the weight dependent on the 

patient class is the fact that critical patients often are sent to university hospitals by their 

advising medical doctors. For non-academic hospitals (critical and non-critical patients) and 

academic hospitals (non-critical patients), 𝑐ℎ,𝑝 = 1, for academic hospitals (critical patients) 

𝑐ℎ,𝑝 =  hospitalWeightCritAcad. 

The patient class 𝑐𝑝is sampled using the critPatientsFraction configuration setting. 

For a given sampled individual 𝑖, the TAZ ℎ(𝑖) is determined. Then the attractivity for each 

hospital is determined and the probability for the hospital to be selected is given by 

𝑝(ℎ, 𝑖) =
𝑎ℎ,𝑖

∑ 𝑎ℎ,𝑖ℎ∈𝐻
 

where 𝐻 is the set of hospitals. A dataset listing the Flemish hospitals, their addresses and size 

(in terms of beds) is used. Note that this implies that each hospital is known by each patient. 

The patient population is determined by sampling individuals uniformly from the complete 

population and determining at which hospital the patient resides until a sufficient number of 

individuals are collected for the University Hospitals Leuven. This number can be configured 

through the referenceHospitalPatients setting. The amount of patients for each class is 

determined using the critPatientsFraction. 

3.1.2. Schedule adaptation 

Building a schedule for a hospital patient, is easier than building a schedule for a person from 

one of the other two categories. This due to the fact that we do not need to keep the original 

activities, i.e. we add the hospitalisation to the schedule and drop all other out-of-home 

activities. This is based on the assumption that people clear their schedule if they are 

hospitalized. Arrivals of critical patients are distributed uniformly over the day; 

arrivals/departures of non-critical patients and departures of critical patients are uniformly 

distributed over the patient intake periods. 

 

3.2. Hospital visitors 

Based on the division of the patients, visitors are also divided into two subclasses: critical 

patient visitors and non-critical patient visitors. This is based on the behaviour of the visitors of 

these two classes, e.g. critical patients are accompanied by relatives around the clock, whilst 
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non-critical patients are visited only during official visit time periods. Our current sampling 

method does not yet take this kind of behaviour in account, since this paper is based on work 

in progress. 

3.2.1. Location sampling 

Once we know who the patients are and where they live, we can determine where the visitors 

of a patient live and who they are. Papers (Lambiotte et al., 2008), (Wang et al., 2011) and 

(Krings et al., 2009) deliver evidence for a gravity model using the square of distance to 

correlate spatial distance to social closeness. In this project we use a simple distribution similar 

to the one found in (Krings et al., 2009) and defined by 

𝑓(𝑑(𝑎, 𝑏)) ∝
𝑘

𝑑2(𝑎, 𝑏)
 

where 𝑓(𝑑(𝑎, 𝑏)) is the probability density for the distance between the homes of individuals 

𝑎 and 𝑏 where 𝑑(𝑎, 𝑏) ≥ 1. Based on (Krings et al., 2009) it is assumed that for every individual 

𝑖 a fraction of 0.99 of 𝑖's acquaintances is living at a distance less than 100[km] from 𝑖's home 

TAZ. For 𝑎 = 100, this leads to 

∫
𝑘

𝑑2
𝑑𝑥 = 𝑘 (1 −

1

𝑎
) = 0.99

𝑎

1

 

⇒ 𝑘 = 1 
The resulting cumulative distribution is given by 

𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 = 1 − 𝑥−1 

and with a uniformly sampled value 𝐹0 the distance between a patient and his/her visitor 

becomes 𝑑𝑝,𝑣 =
1

1−𝐹0
. 

The home location for a visitor is sampled as follows. Let 𝑎 be the average area of a TAZ, then 

𝑟 = √𝑎 is used as a tolerance value to determine a set of TAZ locations ℒ =

{𝐿𝑖|𝑑𝑝,𝑣 − 𝑟 ≤ 𝑑(𝐿𝑝, 𝐿𝑖) ≤ 𝑑𝑝,𝑣 + 𝑟}, where 𝐿𝑝 is the patient's home location and 𝑑𝑝,𝑣 is the 

distance between the patient's location and the visitor's home. If ℒ is empty due to the way 

TAZs that lie within the tolerance zone at the required distance are shaped, then the tolerance 

value is doubled and ℒ is recalculated. This process is repeated until ℒ is non-empty. Each 

location in ℒ is a possible home location for the visitor and has a probability proportional to its 

population size to be selected by sampling: 

𝑝(𝐿𝑖) =
𝑝𝑜𝑝(𝑖)

∑ 𝑝𝑜𝑝(𝐿𝑖)𝐿𝑖∈ℒ
 

Visitors are sampled until a sufficient number of individuals are visiting a patient at the 

University Hospitals Leuven. This number can be configured through the 

referenceHospitalVisitors setting.  

3.2.2. Schedule adaptation 

In order to build a schedule for a hospital visitor of a non-critical patient, a schedule predicted 

by FEATHERS is taken and decomposed into individual activities. The purpose is to add a 

hospital visit while minimally decreasing the utility of the given schedule (Knapen et al., 2014). 

We begin with trying to replace an existing social visit activity by a hospital visit. If that fails, 

a new social visit activity is simply added. Next, a new schedule is constructed using the new 

activity set. During this reconstruction alternative locations can be chosen (e.g. for daily 

shopping), start and end times can be modified and trip modes can be altered. The utility for the 

resulting schedule is calculated, which can be lower than the utility for the original schedule 

due to duration compression. Therefore, in a final stage activities will be dropped if that leads 

to higher utility. 

Building a schedule for a visitor of a critical patient is easier, since these visitors will adapt their 

schedule thoroughly. 
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4. Preliminary Results 

 

Essential input data have been summarized in the Table 1. Data have been collected from annual 

reports published by the academic hospital board and from literature (e.g. the average daily 

visitors for a patient) (Duncan and Heady, 1976). The value for critPatientsFraction is derived 

from the ratio intensive care beds to regular beds and the value for hospitalWeightCritAcad is 

assumed (educated guess) since no relevant data have been found yet. The determination of the 

𝛼 and 𝛽 are discussed in Section 5. 

 

Variable Value 

critPatientsFraction  0.03 

hospitalWeightCritAcad  4 

referenceHospitalPatients  3356 

referenceHospitalVisitors  3213 

𝛼  1 

𝛽  2 

Table 1 : Configuration settings. 

 

Figure 1 shows the distribution of the home locations of the hospital patients of the University 

Hospitals Leuven (UZ-Leuven). It can be seen that most of the patients come from the region 

around Leuven, but smaller number of patients come from across whole Flanders. In regions 

where other hospitals are situated, the attraction of the University Hospitals Leuven is less. 

 

Figure 1 : Distribution of the home TAZs of the hospital patients. 
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Figure 2 shows the distribution of the home locations of the hospital visitors of patients of the 

University Hospitals Leuven (UZ-Leuven). It can be seen that this distribution mostly 

corresponds with the distribution of the patients, which agrees with correlation between the 

squared distance and social closeness. 

 

Figure 2 : Distribution of the home TAZs of the hospital visitors. 

 
 

5. Results Validation 

 

This section describes how to determine the optimal values for the 𝛼 and 𝛽 coefficients of the 

formulas given in Section 3.1.1. To do this we need to know the occupancy level 𝜂 of each 

hospital. This is the number of patients (excluding consultations) going to a hospital divided by 

the number of beds of the hospital. For the University Hospitals Leuven this value is equal to 

0.90 and we will assume that this value is identical for all other hospitals. Now we can express 

the total number of patients to be sampled for all hospitals by 

𝑁𝑝𝑎𝑡 = ∑ 𝑆ℎ ∙

ℎ∈𝐻

𝜂 

Let 𝑃 denote the set of individuals, i.e., the population. The expected value, after sampling, for 

the number of patients for a hospital ℎ can then be expressed by 

𝐸𝑝𝑎𝑡(ℎ) = ∑ 𝑃𝑟𝑜𝑏(ℎ|𝑝(𝑖)) ∙ 𝑃𝑟𝑜𝑏(𝑝(𝑖))

𝑖∈𝑃

 

= ∑
𝑎ℎ,𝑖

∑ 𝑎𝑥,𝑖𝑥∈𝐻
𝑖∈𝑃

∙ 𝑃𝑟𝑜𝑏(𝑝(𝑖)) 

= ∑
𝑎ℎ,𝑖

∑ 𝑎𝑥,𝑖𝑥∈𝐻
𝑖∈𝑃

∙
∑ 𝑆𝑥 ∙ 𝜂𝑥∈𝐻

|𝑃|
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The expected number of patients for each hospital should approximate the effective number of 

patients. In other words, the squared error between these two values for each hospital should be 

minimal.  

(𝛼, 𝛽) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝛼,𝛽 ∑[𝐸𝑝𝑎𝑡(ℎ) − 𝑆ℎ ∙ 𝜂]
2

ℎ∈𝐻

 

= 𝑎𝑟𝑔 𝑚𝑖𝑛𝛼,𝛽 ∑ [∑
𝑎ℎ,𝑖

∑ 𝑎𝑥,𝑖𝑥∈𝐻
𝑖∈𝑃

∙
∑ 𝑆𝑥 ∙ 𝜂𝑥∈𝐻

|𝑃|
− 𝑆ℎ ∙ 𝜂]

2

ℎ∈𝐻

 

= 𝑎𝑟𝑔 𝑚𝑖𝑛𝛼,𝛽 ∑ [∑
(𝑆ℎ)𝛼 ∙ (𝑑𝑖,ℎ)−𝛽

∑ (𝑆𝑥)𝛼 ∙ (𝑑𝑖,𝑥)−𝛽
𝑥∈𝐻

𝑖∈𝑃

∙
∑ 𝑆𝑥 ∙ 𝜂𝑥∈𝐻

|𝑃|
− 𝑆ℎ ∙ 𝜂]

2

ℎ∈𝐻

 

In the equation above, the computation of 𝑑𝑖,ℎ can be time consuming. Therefore, observe that 

∑
(𝑆ℎ)𝛼 ∙ (𝑑𝑖,ℎ)−𝛽

∑ (𝑆𝑥)𝛼 ∙ (𝑑𝑖,𝑥)−𝛽
𝑥∈𝐻

𝑖∈𝑃

= ∑ ∑
(𝑆ℎ)𝛼 ∙ (𝑑𝑖,ℎ)−𝛽

∑ (𝑆𝑥)𝛼 ∙ (𝑑𝑖,𝑥)−𝛽
𝑥∈𝐻

𝑖∈𝑃𝑧𝑧∈𝑍

 

Because no individual addresses are used 𝑑𝑖,ℎ = 𝑑𝑧(𝑖),ℎ, where 𝑧(𝑖) denotes the zone where 

individual 𝑖 lives. Let 𝑍 denote the set of zones and let 𝑁𝑧 denote the number of inhabitants of 

zone 𝑧, then it follows that  

∑
(𝑆ℎ)𝛼 ∙ (𝑑𝑖,ℎ)−𝛽

∑ (𝑆𝑥)𝛼 ∙ (𝑑𝑖,𝑥)−𝛽
𝑥∈𝐻

𝑖∈𝑃

= ∑|𝑁𝑧|
(𝑆ℎ)𝛼 ∙ (𝑑𝑧,ℎ)−𝛽

∑ (𝑆𝑥)𝛼 ∙ (𝑑𝑧,𝑥)−𝛽
𝑥∈𝐻

𝑧∈𝑍

 

This results in minimizing the following equation: 

(𝛼, 𝛽) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝛼,𝛽 ∑ [∑|𝑁𝑧|
(𝑆ℎ)𝛼 ∙ (𝑑𝑧,ℎ)−𝛽

∑ (𝑆𝑥)𝛼 ∙ (𝑑𝑧,𝑥)−𝛽
𝑥∈𝐻

𝑧∈𝑍

∙
∑ 𝑆𝑥 ∙ 𝜂𝑥∈𝐻

|𝑃|
− 𝑆ℎ ∙ 𝜂]

2

ℎ∈𝐻

 

Since no data is available for the distribution of the hospital-home distance, the alpha and beta 

values cannot be determined from the data we have available. We therefore need to determine 

one of the values by other means. 

Figure 3 shows the squared error for 𝛼𝜖{0, … ,3} and 𝛽𝜖{1.4, … ,2.6}. Based on the evidence in 

(Lambiotte et al., 2008), (Wang et al., 2011) and (Krings et al., 2009) we assume that the 

optimal value for 𝛽 = 2. The optimal value for 𝛼, the one that minimizes the squared error, 

when 𝛽 = 2, approximates 1. This justifies our values for 𝛼 and 𝛽 in Section 4. 

During the experiment of Section 4 we also collected data about how many patients go to each 

hospital. Figure 4 shows a scatterplot of this data in relation to the number of beds. Note that 

the number of patients is always higher than the number of beds, this due to consultations being 

included in the total number of patients. Most of the points are situated near the trend line, 

except for the three outliers at the top left of the plot. These three outliers each represent a 

hospital in the surrounding of Brussels. Looking at the surrounding of these hospitals quickly 

shows there are multiple smaller hospitals located in the immediate environment, which we did 

not account for due to lack of detailed data. Not taking these outliers into account results in the 

correlation depicted in Figure 5, where there are no more heavy outliers. This can be seen by 

the correlation coefficient which has increased from 0.8565 to 0.9695. This indicates that our 

values for 𝛼 and 𝛽 approach reality. 

 

Figure 3 : Squared error. 
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Figure 4 : Correlation between the number of beds and number of patients for all hospitals. 

 
 

Figure 5 : Correlation between the number of beds and number of patients for all hospitals except those in 

Brussels. 



BIVEC/GIBET Transport Research Day 2015 

 9 

 
 

6. Discussion 

 

The goal of the project is to determine the demand for public transportation services at a local 

level (an area of 50 km by 40 km). Particular city governments and public transportation 

operators are interested in those estimates in order to allocate scarce resources. However, it can 

turn out that TAZ based modelling is not sufficient in such cases. Specific cases require micro-

modelling and microsimulation. The University Hospitals Leuven are claimed to generate 

approximately 30k trips per day. Furthermore, it is at a distance of about 5 km from the train 

station at the opposite site of the historic centre of the city. The station and the hospital are 

connected by bus services. Evaluation of the required capacity for PT services in such context 

requires micro-modelling.  

Therefore, we combine FEATHERS and MATSim (which is street address based) to reach a 

finer granularity. This means that we shall model some large sites in detail. Taking large 

attraction sites into account requires a large amount of specific data collection. Annual reports 

for the University Hospitals Leuven and studies estimating the traffic flows and parking 

requirements for hospitals in the US and Canada have been used as sources (Duncan and Heady, 

1976). This data is not easily available, in contrast to network or public transport data, which 

only needs to be downloaded. One of the research goals is to find out whether this extensive 

data collection is worth the effort. A second research objective is to find out how to model the 

boundary problem, i.e., the effect of what happens in the area surrounding the study area. 

Finally, the experience with the specific schedule adaptation used in this project contributes to 

our understanding of how to build a multi-day agenda generator consisting of separate planning 

and scheduling components. 

 

7. Conclusion and future work 

 

The first stages of a project to determine the demand for public transportation in a city using 

micro-modelling and micro-simulation are reported. Schedules (daily plans) for synthetic 

individuals are generated using the FEATHERS activity-based model. Academic hospital 
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patients and their visitors are sampled from that population making use of data collected from 

annual reports for the hospital at hand and from international literature. 

The next step for the hospital patients/visitors consists of schedule adaptation and PT demand 

generation. Modelling the hospital personnel requires generation of schedules for people 

working in time-shifts. 

This work serves as a basis for ongoing research focusing on multi-modality, schedule 

adaptation and alternative collective transportation facilities that require micro-modelling due 

to the required level of granularity and the focus on thin flows. 
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