
Naive Infinite Enumeration of Context-free Languages in

Incremental Polynomial Time

Christophe Costa Florêncio

(KU Leuven, Belgium

chris.costaflorencio@cs.kuleuven.be)

Jonny Daenen

(Hasselt University and transnational University of Limburg, Belgium

jonny.daenen@uhasselt.be)

Jan Ramon

(KU Leuven, Belgium

jan.ramon@cs.kuleuven.be)

Jan Van den Bussche

(Hasselt University and transnational University of Limburg, Belgium

jan.vandenbussche@uhasselt.be)

Dries Van Dyck

(Belgian Nuclear Research Centre (SCK-CEN),

Boeretang 200, BE-2400 Mol, Belgium

vandyck.dries@gmail.com)

Abstract: We consider the naive bottom-up concatenation scheme for a context-

free language and show that this scheme has the incremental polynomial time

property. This means that all members of the language can be enumerated with-

out duplicates so that the time between two consecutive outputs is bounded by

a polynomial in the number of strings already generated.

Key Words: context-free grammar, systematic generation, polynomial time

Category: F.4.2, F.2

1 Introduction

Let G be a context-free grammar that is arbitrary but fixed, i.e., G is not con-

sidered as part of the input. We can define two basic enumeration problems

concerning the language L(G) generated by G:

Given-length enumeration with polynomial delay: Given a natural num-

ber n, output all strings of length n belonging to L(G), without duplicates,

with polynomial delay. By “polynomial delay” we mean that the first output,

and every next output, is produced within p(n) time, for some fixed polyno-

mial p. Technically, the output is ended by an “end of output” (EOO) mes-

sage, and the time spent between the last output string and EOO should

also be bounded by p(n); moreover, if there are no strings of length n in

L(G), then the algorithm should output an EOO right away, again in time

bounded by p(n).

Infinite enumeration in incremental polynomial time: Output all strings

in L(G), without duplicates, in incremental polynomial time (IPT), meaning

that the time spent between the nth and the n + 1th output is bounded by

p(n) for some fixed polynomial p. Here, n is not directly related to string

length, but is simply a count of the number of strings that have been output

so far. Since all but the most trivial context-free languages are infinite, we

refer to this problem as infinite enumeration. In principle, an algorithm for

infinite enumeration runs forever (although one may of course abort it at

any time), but the incremental polynomial-time bound assures us that the

time for every next output grows only polynomially.

The notions of polynomial delay and incremental polynomial time were originally

introduced (in a setting unrelated to context-free languages) by [Johnson et al.

1988].

Basic as the above two problems are, the literature on them is relatively

scarce. Given-length enumeration was first discussed by [Mäkinen 1997], but

not solved completely; then [Dömösi 2000] presented a polynomial-delay solu-

tion to the same problem by a modification of the well-known CYK parsing

algorithm. His solution has the additional benefit of enumerating the strings in

lexicographic order. Later, [Dong 2009] reported linear-time improvements to

Dömösi’s algorithm. A related problem which has received quite some attention

in the literature is the efficient generation of a true random sample of a context-

free language [see Gore et al. 1997, Flajolet et al. 1994, Arnold and Sleep 1980].

So, efficient algorithms for given-length enumeration are already available.

In the present paper, we consider infinite enumeration. We will show, perhaps

unsurprisingly, that any algorithm for given-length enumeration with polynomial

delay can be adapted to do infinite enumeration in incremental polynomial time.

The main topic of this paper, however, is the naive, bottom-up generation

scheme that enumerates strings not by length, but by depth of their parse tree.

While this scheme is not as efficient as the above algorithms, it is still important

because it is so basic and natural. Indeed it is a natural question to ask: does

the naive bottom-up generation scheme already have the IPT property? In this

paper we answer this question affirmatively. We believe this result is interesting

mainly from a theoretical perspective as it adds to our most basic understanding

of enumerating context-free languages. The proof of our main result is elementary

and is based on detailed pumping-lemma-like arguments.

Infinite enumeration may have practical applications in software testing [see

Somerville 1998], where a language of test-inputs is described by a context-free

grammar [see Arnold and Sleep 1980, Duncan and Hutchinson 1981, Maurer

1990]. In this situation, exhaustive testing of the software on all inputs of the

language (e.g., up to a certain length, or until the time budget for testing is

exhausted) can be driven by infinite enumeration of the context-free language.

Conversely, infinite enumeration may also have applications in verification

of context-free languages. While this task is decidable for some properties [see

Baeten et al. 1993], it is undecidable for many other properties, e.g., containment

of one context-free language in another is undecidable [see Hopcroft and Ullman

1979]. In such cases, infinite enumeration may be useful to detect counterex-

amples to conjectured properties, or, when no counterexample is found after a

sufficiently long time, it may provide confidence in the conjecture, after which

the verifier may start an attempt to find a proof by other methods.

Also, there has been interest in tools for testing and debugging the grammars

themselves [see Lämmel 2001, Purdom 1972, Xu et al. 2011], where again infinite

enumeration may be helpful.

The paper is outlined as follows: in [Section 2] we first give the necessary

definitions and in [Section 3] we give a formal specification of the naive algorithm.

In [Section 4], four important results are obtained, which are used in [Section 5]

to show the IPT property of the naive algorithm. In [Section 6] a general method

is given for transforming a given-length enumeration algorithm with polynomial

delay to an algorithm for infinite enumeration in incremental polynomial time.

We conclude in [Section 7].

2 Preliminaries

A context-free grammar G is a tuple (N , Σ,P, S), where

– N is a finite set of non-terminals;

– Σ is a finite set of terminals, disjoint from N ;

– P is a set of productions of the form X → α with X ∈ N and α ∈ (Σ ∪N)∗;

– S ∈ N is the start symbol.

The number of non-terminals |N | is denoted by η, the number of productions

|P| is denoded by ρ.

We say a non-terminal A derives a string s, written as A⇒∗ s, if one of the

following holds:

– s ∈ Σ and A→ s ∈ P (one-step derivation); or

– ∃B,C ∈ N : ∃u, v ∈ Σ∗ : A→ BC ∈ P ∧B ⇒∗ u ∧ C ⇒∗ v ∧ s = uv.

The language of a non-terminal A is defined by L(GA) = {s | A⇒∗ s}. The

language of the start symbol S is also called the language of G and is defined by

L(G) = L(GS).

For the rest of the paper, we assume that the grammar is in Chomsky Normal

Form (CNF) [see Hopcroft and Ullman 1979] without ε-productions, i.e., all

productions are of the following form:

– A→ BC, a non-terminal production or

– A→ a, with a ∈ Σ, a terminal production

where A,B and C are non-terminals and a is a terminal. As we mentioned,

the empty string ε cannot be used. Importantly, this implies that we will only

deal with nonempty strings. In the rest of this paper, we limit our attention to

languages that do not contain ε.

We will also use the dependency graph of a context-free grammar. This is a

directed graph having N as set of nodes. There is an edge from A to B if there

exists a production of the form A→ BC or A→ CB, for some non-terminal C.

Note that it is possible for the dependency graph to contain self-loops. When

we speak of reachability in a directed graph, we always mean reachability by a

directed path. The length of a path π is equal to the number of edges it contains

and is denoted by l(π).

We classify the nodes in the dependency graph as follows: a node is recursive

when it belongs to a directed cycle. It is leeching when it can reach a recursive

node, but is not recursive itself. Finally, it is restricted when it is neither recursive

nor leeching. We assume the start symbol is either recursive or leeching, in order

to obtain an infinite language (see [Example 1] for the intuition). When the

start symbol is restricted, the context-free language described by the grammar

is finite and the enumeration problem becomes trivial. We denote the set of

recursive non-terminals by Nrec , the set of leeching non-terminals by Nleech and

the set of restricted non-terminals by Nres .

Without loss of generality, we may now make two additional assumptions

about the grammar. First, we assume all nodes in the dependency graph are

reachable from S. Second, we call a non-terminal productive when a string can

be derived from it; we require all non-terminals to be productive. When a non-

terminal does not satisfy any of these conditions it is called useless. [Hopcroft

and Ullman 1979] describe an algorithm to remove the useless non-terminals

from the grammar.

For each string s ∈ L(GA), there exists at least one parse tree that yields s

and in which the root of the parse tree is labelled with A. The depth of a parse

A

BC

E

F

S

D

G

Figure 1: The dependency graph of context-free grammar G1.

tree τ is equal to the length of a longest path (number of edges) from the root

to a leaf and is denoted by d(τ). Note that we do not restrict the grammar in

terms of ambiguity: ambiguous grammars are allowed, hence each string may

have multiple parse trees. This leads to the notion of a minimal parse tree of a

string: a parse tree of minimum depth. Note that a string may have more than

one minimal parse tree rooted at a non-terminal A.

Example 1. Consider the following context-free grammar G1:

S → AG C → c

A→ BD D → d

B → CE E → e

C → AF F → f

G→ g

The corresponding dependency graph is shown in [Fig. 1]. We observe the fol-

lowing classification of the non-terminals:

– Nrec = {A,B,C};

– Nleech = {S};

– Nres = {D,E, F,G}.

Note that all non-terminals are reachable and productive, and that L(G1) is

infinite.

3 Algorithm

We now present an iterative algorithm that generates the language described by

a given, fixed grammar G (not part of the input).

During the execution of the algorithm, every non-terminal is associated with

a set of strings. By ∆Ai we denote the set of all strings generated in iteration i

for non-terminal A. By Ai we denote the set of all strings generated in iterations

0 to i for non-terminal A.

The iterations are computed according to the following standard inductive

concatenation scheme:

A0 = {a ∈ Σ | A→ a ∈ P};
Ai+1 = A0 ∪ {u · v | ∃B,C ∈ N : A→ BC ∈ P ∧ u ∈ Bi ∧ v ∈ Ci};
∆A0 = A0;

∆Ai+1 = Ai+1 \Ai.

It is easy to see that Ai ⊆ Ai+1 for each A ∈ N and all i ∈ N.

Remark. In the second rule of the scheme, the use of Ai instead of A0 would

yield equivalent definitions. ut
The strings in Si are called output strings, these are the strings in L(G). Note

that the terminal productions are only used in iteration 0 and the non-terminal

productions are only used in the subsequent iterations.

The set∆Ai contains all strings that can be obtained by combining previously

generated strings, according to the associated production(s) of A, except for

those that have already been generated. Note that we are working with sets:

duplicates are removed, but it is still possible that in the same iteration, or in

two different iterations, two identical strings are generated for a non-terminal A

(see [Example 2]).

We denote the length of a string s by |s| and the maximal length of a string

in Ai by ωiA. Note that it is possible for Ai to be empty when i < η−1 (this will

be shown in [Section 4.2]), in which case ωiA is undefined. Clearly, ωi+1
A ≥ ωiA

holds for i ≥ η − 1.

We define

T i =
⋃
A∈N

Ai,

∆T i =
⋃
A∈N

∆Ai.

In addition to the output strings, these sets also contain the strings that are

only used as building blocks for the output strings, and are not output strings

themselves. These are called the intermediate strings. The maximal length of a

Non-terminal N ∆N0 ∆N1 ∆N2 ∆N3 . . .

S {} {ab} {abb} {abbb} . . .

A {a} {ab} {abb} {abbb} . . .

B {b} {} {} {} . . .

C {a} {} {} {} . . .

Table 1: Generated output and intermediate strings in the first iterations of ap-

plying the naive concatenation scheme to the context-free grammar G2.

string in T i is denoted by ωiT . Note that the same string might be generated for

multiple non-terminals, i.e., the union ∪A∈NAi that defines T i is generally not

a disjoint union.

Example 2. Consider the following grammar G2:

S → AB A→ a

S → CB B → b

A→ AB C → a

[Table 1] shows the results of the concatenation scheme applied on G2 for the

first few iterations. Observe that the string ab is generated both by both S →
CB and S → AB in two different iterations. In iteration 2 the string is already

present in S1, hence it is not added to ∆S2, even though it is generated. The

output strings shown in the table (S3) are ab, abb and abbb. The intermediate

strings shown in the table are a, b, ab, abb and abbb (this set equals T 3).

Remark. An equivalent but more efficient inductive concatenation scheme, which

avoids duplicate concatenations is the well-known “semi-naive” scheme [see Ceri

et al. 1990]:

A0 = {a ∈ Σ | A→ a ∈ P};
Ai+1 = Ai ∪ {u · v | ∃B,C ∈ N : (A→ BC) ∈ P

∧
(
(u ∈ Bi ∧ v ∈ ∆Ci) ∨ (u ∈ ∆Bi ∧ v ∈ Ci−1)

)
};

∆Ai+1 = Ai+1 \Ai.

Although this semi-naive scheme can give practical improvements in perfor-

mance, e.g., in applications to dabatases [see Bancilhon and Ramakrishnan

1986], the theoretical worst-case complexity is of the same order as the stan-

dard scheme. In this paper we will prove that the standard scheme already runs

in polynomial incremental time.

Table 2 gives an overview of the symbols used in the rest of the paper.

Symbol Meaning

η number of non-terminals

ρ number of productions

d(τ) depth of tree τ

|s| length of string s

|X| number of elements in set X

Nrec set of recursive non-terminals

Nleech set of leeching non-terminals

Nres set of restricted non-terminals

Ai strings generated for non-terminal A up to and including iteration i

∆Ai strings generated for non-terminal A in iteration i

T i intermediate strings generated up to and including iteration i

∆T i intermediate strings generated in iteration i

ωiA maximal length of a string in Ai

ωiT maximal length of a string in T i

Table 2: Overview of symbols.

4 Properties

Our main result is that the naive algorithm satisfies the IPT property described

in the introduction. In order to prove this, four important results are obtained

in this section:

– A formalization of the start-up phase in [Section 4.2].

– A relation between iteration number and the number of intermediate strings

in [Section 4.3].

– A relation between the maximum string length and the number of strings in

[Section 4.4].

– A relation between number of intermediate strings and the number of output

strings in [Section 4.5].

4.1 String properties

Lemma 1. For any non-terminal A, the set ∆Ai consists precisely of the strings

that can be derived from A and have a minimal parse tree depth of i+ 1.

Proof. We prove the lemma by induction on i.

Base For i = 0, ∆A0 contains all strings that can be derived from A in 1 step.

It is obvious that all these strings have a parse tree of depth 1 and no smaller

parse tree exists. Clearly, no other strings can be derived from A with a parse

tree of depth 1.

Induction For i > 0, suppose the lemma holds for all values smaller than i.

Consider a string s = u·v ∈ ∆Ai with u ∈ Bi−1, v ∈ Ci−1 and A→ BC ∈ P
for some B,C ∈ N . By induction u and v have minimal parse trees τu and

τv of depth at most i. Note that these parse trees cannot both have a depth

smaller than i, because then we could create a parse tree for s of depth

< i + 1; this would imply (by induction) that s ∈ Ai−1, which contradicts

s ∈ ∆Ai. We thus obtain that s has a minimal parse tree of depth i+ 1.

It remains to show that all strings with a minimal parse tree of depth i+ 1,

that can be derived from A, belong to ∆Ai. Thereto, consider such a string

s ∈ L(GA) that has a minimal parse tree τ of depth i+ 1.

We first show that s ∈ Ai. Since i > 0, τ has the form of an A-root with two

children τB and τC and A → BC ∈ P for some B,C ∈ N . Let u and v be

the strings yielded by τB and τC respectively, so s = u · v. Since τ has depth

i + 1, the trees τB and τC both have a depth ≤ i. By induction, u ∈ ∆Bj
and v ∈ ∆Ck, for some j, k < i. In particular, u ∈ Bi−1 and v ∈ Ci−1. It is

now obvious from the definition of Ai that s = u · v ∈ Ai.
Finally, we show that s ∈ ∆Ai = Ai\Ai−1 by proving that s /∈ Ai−1. Suppose

that s ∈ Ai−1. By induction, s has a minimal parse tree of depth ≤ i, which

contradicts our assumption. ut

Knowledge about the iteration in which a string is generated gives us infor-

mation about the length of the string. Specifically, we have:

Lemma 2. ∀i ∈ N : ∀s ∈ ∆Ai : i+ 1 ≤ |s| ≤ 2i.

Proof. [Lemma 1] shows that the minimal parse tree of a string s ∈ ∆Ai has

depth i+ 1. The yield of a parse tree of depth i+ 1 has length at least i+ 1 and

at most 2i. This because of the branching restrictions imposed by the CNF.

4.2 Start-up Phase

In this section we look at the first η iterations of the algorithm: the start-up

phase. After this initial start-up, all non-terminals will have generated at least

one (intermediate) string.

Consider the following definitions:

N 0 = {A ∈ N | ∃a : (A→ a) ∈ P};
N i+1 = N 0 ∪ {A ∈ N | ∃B,C ∈ N i : (A→ BC) ∈ P};
∆N 0 = N 0;

∆N i+1 = N i+1 \ N i.

Note that N i ⊆ N i+1 for all i. Intuitively, a non-terminal A is in ∆N i iff it

generates its first string in iteration i.

Definition 3 (Non-recursive parse tree). A non-recursive parse tree is a parse

tree in which no path contains two nodes labeled with the same non-terminal.

Lemma 4. ∀A ∈ N : A ∈ N i ⇔ Ai 6= ∅.

Proof. We prove the lemma by induction on i.

Base Let i = 0. If A ∈ N 0, there is a production A→ a ∈ P, and by definition

a ∈ A0. When A0 6= ∅, we know (from the concatenation scheme) there must

be a A→ a ∈ P. Now, by definition, A ∈ N 0.

Induction When i > 0, assume the lemma holds for all smaller values of i.

Suppose A ∈ N i. Consider two cases:

a) If A ∈ N i−1, by induction we know that Ai−1 6= ∅. It follows that Ai 6= ∅,
because Ai−1 ⊆ Ai.

b) Otherwise, there exists a production A → BC ∈ P, for some B,C ∈
N i−1. Then by induction Bi−1 6= ∅ and Ci−1 6= ∅. Consider two strings

u ∈ Bi−1 and v ∈ Ci−1. By definition u · v ∈ Ai, which shows Ai 6= ∅.
Now suppose Ai 6= ∅. Consider again two cases:

a) If Ai−1 6= ∅, by induction we know that A ∈ N i−1 ⊆ N i.

b) Otherwise, there exists a production A→ BC ∈ P, for some B,C ∈ N .

There exist strings u ∈ Bi−1 and v ∈ Ci−1 and therefore Bi−1 6= ∅
and Ci−1 6= ∅. By induction B,C ∈ N i−1 and therefore A ∈ N i, by

definition of N i.

Lemma 5. N η−1 = N .

Proof. Consider a non-terminal A and a non-recursive parse tree τ rooted at A.

We know τ exists because for each non-terminal N there exists a non-recursive

parse tree rooted at N (recall no non-terminal is useless). The depth of τ is at

most η, otherwise the parse tree would be recursive. Therefore, τ ∈ Ai−1 and by

[Lemma 4], it follows that A ∈ N η−1. Hence, all non-terminals are contained in

N η−1. The reverse containment is immediate. ut

The following corollary shows that every non-terminal contains at least one

string in iteration η − 1.

Corollary 6 (Start-up phase ending). ∀A ∈ N : Aη−1 6= ∅.

Proof. From [Lemma 5] we know A ∈ N η−1, for each A ∈ N . After applying

[Lemma 4] we obtain Aη−1 6= ∅.

crotch

zipper

non-recursive subtree

left shorts yield right shorts yield

A

A

Figure 2: A filled shorts tree for a recursive non-terminal A.

Remark. If A ∈ ∆N i, then the “first” string of A is generated in iteration i:

∀A ∈ N : A ∈ ∆N i ⇔ ∆Ai = Ai 6= ∅.

Remark. After iteration η−1, restricted non-terminals do not generate any new

strings:

A ∈ Nres , j ≥ η : ∆Aj = ∅.

4.3 Generation pace

In this section we discuss the “speed” at which strings are generated: the gen-

eration pace.

4.3.1 Recursive Non-terminals

The following definition is illustrated in [Fig. 2].

Definition 7 (Filled shorts tree). Let A ∈ Nrec . A filled shorts tree τ for A

is a parse tree rooted at A with the following properties:

1. A occurs at least twice (note that the root node is already labelled with A);

2. some non-root A-node is called the crotch. The path from the root to the

crotch is called the zipper. No non-terminal occurs more than once on the

zipper, except for A, which appears exactly twice on the zipper;

3. for any non-terminal node x not lying on the zipper, the subtree rooted at

x is non-recursive; and

4. the subtree rooted at the crotch is non-recursive.

The shorts yield of τ is the yield of τ without the yield of the crotch. The left

shorts yield (resp. right shorts yield) is the yield of τ before (resp. after) the

yield of the crotch. The shorts length is the length of the shorts yield.

Remark. Every filled shorts tree τ for a recursive non-terminal has a depth of

at most 2η. This can be easily seen: Consider a path π in τ from root to leaf.

There are now two options:

1. An initial segment of π equals the zipper, followed by a path below the crotch.

By definition, the zipper contains at most η edges. The path continues in a

non-recursive subtree, and therefore has an additional length of at most η.

Hence, in this case, the length of π is at most 2η.

2. The path π diverges from the zipper. This means π has at most η − 1 edges

in common with the zipper, after which it follows 1 edge to a non-recursive

subtree of depth at most η. Hence, in this case, the length of π is at most

η − 1 + 1 + η = 2η.

To see that this bound can actually be reached, consider the following gram-

mar:

S → BB

B → AA

A→ SS

A→ a

In this case, η = 3. Hence, a filled shorts tree has depth at most 6. In [Fig. 3], a

filled shorts tree of minimal depth for S that reaches this bound is depicted.

Lemma 8. For each A ∈ Nrec there exists a filled shorts tree.

Proof. Consider a simple path π from A to itself in the dependency graph. The

length of π is at most η (only A may appear twice). We now show that we can

expand π to a filled shorts tree for A.

Denote the second occurrence of A on π by xA. Consider a node xB on π

labelled with a node B that is followed directly by a node labelled with C (also

on π). There must exist a production B → CD or B → DC for some non-

terminal D. We know (see [Lemma 5]) that D has a non-recursive parse tree τD
of depth at most η. Add τD as a child of xB (left or right as indicated by the

production). Apply this construction to all nodes on π except for xA. Replace

xA with a non-recursive parse tree for A. Denote the resulting tree with τ .

It is now clear that τ can serve as a filled shorts tree for A, with π playing

the role of the zipper.

S

A

BB

A A A

a a aS

A A

a a

S

BB

A

a

A

a

zipper

crotch

A A

a a

BB

A

a

A

a

Figure 3: A filled shorts tree for a recursve non-terminal S, having minimal

depth.

Lemma 9. Let A ∈ Nrec, let τ be a filled shorts tree for A of depth δ and zipper

length ζ. For all i ≥ 0, there exists a parse tree τi for A, such that

d(τi) = δ + i · ζ.

Furthermore,

|si| = γ + i · ρ,

where si is the yield of τi, γ is the length of the yield of τ and ρ is the shorts

length of τ .

Proof. We first prove the existence of the parse trees τi by induction on i.

Base For τ0, we can take τ itself. By definition this parse tree has depth δ.

Induction Now let i > 0 and suppose τi−1 exists: τi−1 is a parse tree rooted at

A of depth δ + (i − 1) · ζ. Now replace the crotch of τ , which has label A,

with τi−1 to obtain a parse tree τi. We write this as τi = τ [τi−1]. This is

clearly a parse tree for A. Consider a path π from root to leaf. There are

two possibilities:

1. The path lies fully in τ . This means the length is at most δ.

2. The path goes through the crotch and the τi−1-subtree. This means the

first part of the path equals the zipper, and the second part has length

at most the depth of τi−1, which equals δ+ (i− 1) · ζ. Hence, the length

of π is at most ζ + δ + (i− 1) · ζ = δ + i · ζ.

Note that there always is a path of length δ + i · ζ, because τi−1 has depth

δ + (i− 1) · ζ. Hence d(τi) = δ + i · ζ.

crotch

zipper

leeching non-terminal

(recursive non-terminal)

A

R

Figure 4: An R-filled shorts tree for a leeching non-terminal A.

It only remains to show that |si| = γ+ i ·ρ. We show this again by induction.

Base When i = 0, obviously |s0| = γ, because τ0 = τ .

Induction When i > 0, suppose the lemma holds for i− 1. Denote the left and

right shorts yields of τ by ul and ur, and their respective lengths by ρl and

ρr. Because τi = τ [τi−1], it holds that

si = ulsi−1ur,

where si−1 is the yield of τi−1. Hence:

|si| = |ul|+ |si−1|+ |ur|
= ρl + (γ + (i− 1) · ρ) + ρr (by induction hypothesis)

= γ + (i− 1) · ρ+ ρ (ρl + ρr = ρ)

= γ + i · ρ.

Lemma 10. There exists a constant c, such that:

∀A ∈ Nrec ,∀i ≥ 0 : |Ac+η·i| > i.

Proof. Let τ be a filled shorts tree for A of depth δ with a zipper length of ζ. By

[Lemma 9], for each i ≥ 0, we have a different string si with a parse tree τi of

depth δ+ i · ζ, where δ ≤ 2η and ζ ≤ η. Hence, each τi yields a new string lastly

in iteration 2η + i · η. Therefore, |A2η+i·η| − 1 ≥ i, or |A2η+i·η| > i, for i ≥ 0.

4.3.2 Leeching Non-terminals

The following definition is illustrated in [Fig. 4]. In [Definition 7], we have defined

the notion of filled shorts tree for a recursive non-terminal. We now define the

analogous notion for a leeching non-terminal; this is illustrated in [Fig. 4].

Definition 11 (Filled shorts tree). Let A ∈ Nleech . A filled shorts tree for A

is a parse tree for A with the following properties:

1. it contains at least one recursive non-terminal;

2. it is non-recursive; and

3. some recursive node is called the crotch. The path from the root to the crotch

is called the zipper.

When the crotch is labeled with a recursive non-terminal R, we call the tree a

R-filled shorts tree for A. The notions of (left and right) shorts yield, and of

shorts length are defined in the same way as in [Definition 7].

Lemma 12. For each A ∈ Nleech there exists a filled shorts tree.

Proof. Consider a simple path π from A to a recursive non-terminal R that

consists of only leeching non-terminals (π must exist, because A is leeching).

The path has length at most η − 1. We now show that we can expand π to an

R-filled shorts tree for A.

Consider a node xB on π labelled with a (leeching) node B which is followed

by a node labelled with C. There must exist a production B → CD or B → DC

for some non-terminal D. We know that D has a non-recursive parse tree τD
of depth at most η. In particular, we know that τD does not contain any non-

terminals that appear before B on π, else these would be recursive, contradicting

our assumption. Add τD as a child of xB (left or right as indicated by the

production). Apply this construction to all leeching nodes on π and replace R

with a non-recursive parse tree τR for R. By similar reasoning, τR does not

contain any non-terminals that appear before R on π. Denote the resulting tree

with τ .

It is obvious that τ is a parse tree for A, which is non-recursive and contains

at least one recursive non-terminal (R). Hence, τ is an R-filled shorts tree for A.

Remark. Every filled shorts tree τ for a leeching non-terminal has a depth of at

most 2η.

Lemma 13. Let A ∈ Nleech and let τ be a B-filled shorts tree for A having depth

δ and zipper length ζ. Let τB be a filled shorts tree for B having depth δB and

zipper length ζB. For all i ≥ η there exists a parse tree τi for A, such that

d(τi) = ζ + δB + i · ζB .

Furthermore

|si| = ρ+ γB + i · ρB ,

where si is the yield of τi, ρ is the shorts length of τ , γB is the length of the yield

of τB and ρB is the shorts length of τB.

Proof. We know from [Lemma 8] and [Lemma 9] that B has parse trees τB,j , for

j > 0, such that d(τB,j) = δB + j · ζB and |sB,j | = γB + j · ρB , where sB,j is

the yield of τB,j . Now, construct the parse tree τi, for i ≥ 0, as follows: replace

the crotch of τ by a parse tree τB,i for B of depth δB + i · ζB . We write this as

τi = τs[τB,i].

To see that actually d(τi) = ζ + δB + i · ζB , consider a path π in τi from root

to leaf. There are two possibilities:

1. π is fully contained in τ and hence has a maximal depth of η.

2. π contains the crotch and ends in a leaf in τB,i. In this case, π consists of

the zipper, followed by a path of length at most δB + i · ζB . The total length

of π is at most ζ + δB + i · ζB .

Because d(τB,i) = δB+i·ζB , there exists at least one path in τi that has length

ζ+δB+i·ζB . Hence d(τi) ≥ ζ+δB+i·ζB . Since clearly ζ+δB+i·ζB ≥ η for i ≥ η,

we obtain d(τi) ≤ ζ+δB+i·ζB . We may now conclude that d(τi) = ζ+δB+i·ζB .

Finally, by construction, it is clear that |si| = ρ+ |sB,i| = ρ+ γB + i · ρB .

Remark. In the previous lemma, we can use the same construction to get a

different parse tree for each i < η, all yielding different strings. But, when i < η,

the depth of the parse tree is equal to max(d(τ), ζ + δB + i · ζB). ut
The next lemmas show a relationship between the iteration number and the

number of generated strings up to that iteration.

Lemma 14. There exists a constant c, such that:

∀A ∈ Nleech ,∀i ≥ 0 : |Ac+η·i| > i.

Proof. Consider a recursive non-terminal R, reachable by A, having a shorts tree

(by [Lemma 12]) of depth δR with a zipper length of ζR. By [Lemma 13] and

[Lemma 12], for each i ≥ η, we have a different string with a parse tree of depth

ζ + δR + i · ζR, where ζ ≤ η − 1, δR ≤ 2η and ζR ≤ η. Hence, each τi yields

a new string lastly in iteration η − 1 + 2η + i · η = 3η + i · η − 1. Therefore,

|A3η+i·η−1| − 1 ≥ i − η, or |A3η+i·η−1| > i − η, for i ≥ η. By substituting i′ for

i− η we obtain that, for i′ ≥ 0, |A3η+(i′+η)·η−1| > i′, or |A3η+i′·η+η2−1| > i′.

Corollary 15 (Non-terminal lower bound). There exists a constant c, such

that:

∀A ∈ Nrec ∪Nleech ,∀i ≥ 0 : η · |Ai+c| > i.

Proof. Consider the constants c1 and c2 respectively from [Lemma 10] and [Lemma 14].

We can choose c3 as the maximum of c1 and c2 and get:

∀A ∈ Nrec ∪Nleech ,∀k ≥ 0 : |Ac3+η·k| > k.

Now let A ∈ Nrec ∪Nleech and i be an arbitrary natural number. We distinguish

the following two cases to show that the corollary holds:

(a) i is a multiple of η.

Hence, i = η · k. We can now argue as follows:

|Ac3+η·k| > k ⇔ |Ac3+η·
i
η | > i

η

⇔ η · |Ac3+i| > i

(b) i is not a multiple of η.

Let i′ be the next multiple of η larger than i. We have i < i′ < i + η and

by (a) we know that i′ < η · |Ac3+i′ |. Also |Aj | ≤ |Aj′ | when j ≤ j′, since

Aj ⊆ Aj′ . Combining these observations we get:

i < i′ < η · |Ac3+i
′
| < η · |Ac3+i+η|.

When we choose c = c3 + η, we have η · |Ai+c| > i, for i ≥ 0.

Corollary 16 (Intermediate lower bound). There exists a constant c such

that

∀i ≥ 0 : η · |T i+c| ≥ i.

Proof. Fix some arbitrary A ∈ Nrec ∪Nleech . Clearly |T j | ≥ |Aj | for all j. Then,

by [Corollary 15] there exists a constant c such that:

η · |T i+c| ≥ η · |Ai+c| ≥ i.

4.4 Length bound

Lemma 17. Let s ∈ Ai with |s| ≥ 2η. Then Ai also contains a shorter string s′

with

|s| − 2η < |s′| < |s|.

Proof. Consider a parse tree τ for s of depth δ. Since |s| ≥ 2η, it follows from

[Lemma 2] that δ ≥ η + 1.

Let π be a path of maximal length from root to leaf in τ . Let π′ be the final

segment of π of length η+ 1 (π has length ≥ η+ 1 since δ ≥ η+ 1). On π′, some

non-terminal B occurs more than once; let nodes x and y, in that order on π′,

be labelled with B. The yields of the subtrees rooted at x and y are denoted by

sx and sy respectively.

In τ we can now replace the subtree τx rooted at x with the subtree τy
rooted at y. Since the depth of τ ′ is at most that of τ , and s ∈ Ai, it follows

from [Lemma 1] that also s′ ∈ Ai. The resulting parse tree τ ′ has a yield s′ with

length

|s′| = |s| − |sx|+ |sy|. (1)

Every node on the path from x to y (x included, y excluded) has precisely

two non-terminal children: one ancestor of y and one non-ancestor of y. Each

subtree rooted at a non-ancestor of y has a non-empty yield. It follows that the

yield of τy is a strict substring of the yield of τx and hence |sy| − |sx| < 0. It

now follows from (1) that

|s′| < |s|. (2)

Furthermore, since the depth of τx is at most η + 1, the string yielded by τx
has length at most 2η: |sx| ≤ 2η. We also know that τy yields a string of at least

length 1. It now follows from (1) that

|s′| ≥ |s| − 2η + 1 ≥ |s| − 2η. (3)

Combining (2) and (3) gives us the desired lengths bounds for s′.

Lemma 18. ∀A ∈ N ,∀i ≥ η − 1 : ωiA < 2η · |Ai|.

Proof. Since i ≥ η − 1, we know by [Corollary 6] that |Ai| ≥ 1. If ωiA < 2η

then the lemma is trivial. Else, let j =
⌊
ωiA/2

η
⌋
. [Lemma 17] can be repeatedly

applied at least j times, starting from s0 = s, yielding j additional distinct

strings s1, s2, . . . , sj ∈ Ai. Hence, |Ai| ≥ j + 1, and therefore |Ai| > ωiA/2
η.

Corollary 19 (Length bound). ∀i ≥ η − 1 : ωiT < 2η · |T i|.

Proof. For a given i ≥ η − 1, let s ∈ T i be a string of maximal length: s = ωiT .

By definition, s ∈ Ai and |s| = ωiA, for some A ∈ N (otherwise s could not have

maximal length). Now by [Lemma 18] we know obtain the desired inequality:

ωiT = |s| = ωiA < 2η · |Ai| ≤ 2η|T i|.

4.5 Intermediate string bound

In this section we bound the number of intermediate strings by the number of

output strings.

Lemma 20 (Past bound). ∀i ≥ 0 : ∀0 ≤ k ≤ i : |T i| ≤ 22
k−1 · |T i−k|2k .

Proof. We prove the lemma by induction on i.

Basis For i = 0, the only possible value for k is 0 and the inequality |T 0| ≤
22

0−1 · |T 0|20 becomes trivial.

Induction For i > 0, assume the lemma holds for i− 1:

|T i−1| ≤ 22
k−1 · |T i−1−k|2

k

(0 ≤ k ≤ i− 1).

Now note that for all j ≥ 0 : T j+1 ⊆ (T j · T j)∪T 0. This is immediate from

the iteration schema. We get:

|T i| ≤ |(T i−1 · T i−1) ∪ T 0|
≤ |T i−1| · |T i−1|+ |T 0|
= |T i−1|2 + |T 0|
≤ 2 · |T i−1|2 (T 0 ⊆ T i−1)

≤ 2 ·
(

22
k−1 · |T i−1−k|2

k
)2

(by induction hypothesis, 0 ≤ k ≤ i− 1)

= 22
k+1−1 · |T i−(k+1)|2

k+1

(0 ≤ k ≤ i− 1)

= 22
k−1 · |T i−k|2

k

(1 ≤ k ≤ i)

= 22
k−1 · |T i−k|2

k

(0 ≤ k ≤ i, k = 0 is immediate)

Now by the principle of induction the lemma holds.

Lemma 21 (String Growth). For each edge A→ B in the dependency graph

the following holds:

∀i ≥ η − 1 : ∀s ∈ Bi : ∃s′ ∈ Ai+1 : s is a strict substring of s′.

Proof. In iteration i ≥ η−1, every non-terminal contains at least one non-empty

string (Corollary 6). The edge from A to B indicates the presence of either a

rule A → BC or A → CB for some non-terminal C. The string s ∈ Bi will be

concatenated with a string u ∈ Ci to form some string s′ ∈ Ai+1, where s′ = s ·u
or s′ = u · s, depending on the production. Clearly s is a strict substring of s′.

Lemma 22 (Future bound). ∀i ≥ η − 1 : |T i| ≤ (ωi+ηS)2 · |Si+η|.

Proof. We first prove that every intermediate string will appear as a substring

of an output string, several iterations later. Next, we bound the number of

substrings of these output strings to obtain the desired bound.

Any string s ∈ T i appears in Ai for some A. Consider a simple path π from

S to A in the dependency graph; π has length at most η. By repeatedly applying

[Lemma 21] we know that Si+l(π) contains a string s′ that is a superstring of s.

Because l(π) ≤ η it holds that s′ ∈ Si+l(π) ⊆ Si+η. Hence, each string in T i has

a superstring in Si+η.

The number of substrings of a string s′ is bounded [see 1] by |s′|2. Conse-

quently, the number of substrings we can create using strings in Si+η is bounded

by (ωi+ηS)2 · |Si+η|. Together with the first observation, this gives:

|T i| ≤ (ωi+ηS)2 · |Si+η|.

[1] A much more precise bound could be used, but this would not improve our results.

Corollary 23 (Present bound). ∃c ∈ N : ∀i ≥ η − 1 : |T i| ≤ c · |Si|2η+2

.

Proof. We combine the Future and Past bounds to bound |T i|:

|T i| ≤ 22
η−1 · |T i−η|2

η

(Past bound)

≤ 22
η−1 ·

(
(ωiS)2 · |Si|

)2η
(Future bound)

= 22
η−1 · (ωiS)2

η+1

· |Si|2
η

≤ 22
η−1 · (2η · |Si|)2

η+1

· |Si|2
η

(Lemma 18)

≤ c · |Si|2
η+2

Remark (Present length bound). Although we will not make use of the following

theorem, we note out of interest:

∀i ≥ η − 1 : ωiT ≤ (ωiS)2
η

.

Proof. Consider a string s in T i having a length of ωiT , with s ∈ Ai. In the

dependency graph, there exists a simple path π from S to A having a length at

most η. This means there exists a string s′ ∈ Si+η that is a strict superstring of

s (Lemma 21). Therefore:

ωiT < ωi+ηS .

On the other hand, it is obvious that in the worst case, the maximal string length

doubles each iteration, therefore:

ωiT ≤ (ωi−ηT)2
η

.

Combining the inequalities above gives us:

ωiT ≤ (ωi−ηT)2
η

< (ωi−η+ηS)2
η

= (ωiS)2
η

.

5 Complexity

In order to prove that our naive generation algorithm yields an enumeration in

incremental polynomial time in the sense of [Johnson et al. 1988], we only require

the following proposition, which we prove using the results above:

Proposition 24. There exists a fixed polynomial p such that after each iteration

i, the total time spent by the algorithm so far is bounded by p(|Si−1|).

Proof. We will first look at the time necessary to generate one string, then at

the time necessary to generate one iteration and finally at the time needed to

generate strings up to an iteration i.

Consider an intermediate string s ∈ Ai. When i = 0, the only things that

needs to happen is to store s, given that there are no duplicate productions.

When i > 0, the following steps need to be performed:

1. concatenate two strings to form s;

2. check if the string has already been generated for A (duplicate check);

3. save the string in order to check for duplicates later.

The concatenation of two strings, resulting in s, can be done in time O (|s|).
A lookup and insertion, to keep track of the string, can both be done in time

O
(
|Ai| · |s|

)
[see 1].

Next, we construct a bound for the total number of intermediate strings

calculated in iteration i > 0. In the worst case, all strings in T i−1 will be

pairwise combined, for each production. Hence, the total number of candidates

in iteration i is bounded by

ρ · |T i−1|2,

where ρ is equal to the number of productions in the grammar.

Combining the two observations above gives us an upper bound on the total

work in iteration i:

O
(
ωiT · |T i| · |T i−1|2

)
. (4)

From the Past bound we know that |T i| = O
(
|T i−1|2

)
. The total work done up

to and including iteration i is therefore bounded by

O

 i∑
j=1

ωjT · |T
j−1|4

 .

Note that the work in iteration 0 is constant, since it requires storing just one

string for each terminal production. The work in the first η iterations is also

bounded by a constant:

η−1∑
j=1

ωjT · |T
j−1|4 ≤ η · ωηT · |T

η−1|4 = O (1) .

Hence, the total time spent up to and including iteration η − 1 is considered

constant.

In the remainder of the proof, we bound O
(∑i

j=η ω
j
T · |T j−1|4

)
by a poly-

[1] Actually, a much better bound can be obtained, but for other reasons the algorithm
will be polynomial anyway.

nomial in |Si−1|. First, observe the following:

i∑
j=η

ωjT · |T
j−1|4 ≤ i · ωiT · |T i−1|4

< c1 · i · |T i| · |T i−1|4 (Corollary 19)

≤ c2 · |T i+c3 | · |T i| · |T i−1|4 (Corollary 16)

≤ c4 · |T i−1|c5 (Past bound)

≤ c6 · |Si−1|c7 (Present bound)

for constants c1, . . . , c7.

Note that the applied lemmas only hold from iteration η − 1 on. This is not

a problem as they are only applied for j ≥ η. From the above we can conclude:

i∑
j=1

ωjT · |T
j−1|4 = O

(
|Si−1|c

)
,

for some constant c.

The time needed by the algorithm to calculate all intermediate strings up to

and including interation i is bounded by O
(
|Si−1|c

)
, which is clearly polynomial

in the size of Si−1, as desired.

Theorem 25. There is a fixed polynomial p such that the entire language L(G)

can be enumerated without duplicates in such a way that the time needed to

output the n+ 1th output string is bounded by p(n).

Proof. Consider the n+1th output string s. We know that s ∈ ∆Si for some i and

we also know, by [Proposition 24] that the time needed to calculate all strings

up to and including iteration i is bounded by O
(
|Si−1|c

)
, for some constant c.

Since |Si−1| ≤ n, we obtain a polynomial in n as desired.

6 From Given-Length to Infinite Enumeration

The purpose of this section is to show that we can always use an algorithm for

given-length enumeration with polynomial delay (GLEPD) to obtain an algo-

rithm for infinite enumeration in incremental polynomial time (IEIPT).

For a fixed context-free grammar G, consider a GLEPD-algorithm that, given

a natural number n, enumerates all strings w ∈ L(G) with |w| = n. We treat

the algorithm as a black box and denote it by EnumerateG(n). The polynomial

delay property holds for the algorithm: there exists a fixed polynomial pD such

that, on input n, the time before the first output, the time between two outputs

and the time after the last output until the algorithm terminates, is bounded by

pD(n).

Input: None

Output: all strings in L(G)

1 for i← 1 to ∞ do

2 EnumerateG(i)

3 end

Figure 5: The algorithm EnumerateG,∞.

From this algorithm, we can derive the algorithm EnumerateG,∞ [Fig. 5]. In

the remainder of this section, we prove that EnumerateG,∞ enumerates the entire

language L(G) in IPT.

Lemma 26. For each infinite context-free language L, there exist two constants

c ∈ N \ {0} and d ∈ N such that for each l ∈ N the language L contains at least

one string of length c · l + d.

Proof. Consider a context-free grammar G such that L(G) = L. Let S be the

start symbol of G. We know S must be recursive or leeching for L(G) to be

infinite. From [Lemma 9] and [Lemma 13] we know that there exist two constants

c, d ∈ N such that for each l ∈ N there is a string s ∈ L(G) with |s| = c · l + d.

Theorem 27 (EnumerateG,∞ runs in incremental polynomial time). Let G

be a context-free grammar. There exists a fixed polynomial p such that in the al-

gorithm EnumerateG,∞ the time spent between the mth output and the m+ 1th

output is bounded by p(m), where m > 0.

Proof. Consider the mth and the m + 1th output strings that are generated

consecutively by the algorithm and denote them by sm and sm+1 respectively.

For algorithm EnumerateG(n) we have the polynomial pD(n), guaranteed by the

polynomial delay property. We may assume pD is monotonically increasing over

the natural numbers. [see 1]

There are two cases to consider:

– |sm| = |sm+1|.
This means that the strings are generated in the same iteration i. Let c and

d be the constants given by [Lemma 26]. We consider two further cases:

(a) i ≤ d.

Let c0 be the total time performed by algorithm EnumerateG,∞ in the

iterations up to and including iteration d. Then clearly the time between

the outputs sm and sm+1 is bounded by c0.

[1] This can be achieved by converting all negative coefficients to positive.

(b) i > d.

Let l = b i−1−dc c. By [Lemma 26], at least l+ 1 strings have already been

generated before iteration i. Hence l + 1 < m. We can now argue as

follows:

l + 1 < m⇒ l < m

⇔
⌊
i− 1− d

c

⌋
< m

⇒ i− 1− d
c

< m

⇔ i < m · c+ d+ 1

⇔ i ≤ m · c+ d.

As the time between sm and sm+1 is bounded by pD(i), it is also bounded

by pD(m · c+ d), because pD is monotonically increasing. This is clearly

a polynomial in m.

– |sm| < |sm+1|.
This means that the strings are generated in different iterations. Let i be the

iteration in which sm was generated and j be the iteration in which sm+1

was generated. Clearly, 1 ≤ i < j. The total time spent between outputs sm
and sm+1 consists of three parts:

• the time spent in iteration i after the generation of sm;

• the time spent in iteration j before the generation of sm+1;

• the time spent in iterations i+ 1 . . . j − 1.

The first two parts are bounded by pD(i) and pD(j) respectively. In every

iteration k between i and j, the time needed to verify that there is no string

of length k in L(G) is bounded by pD(k). Hence, the total time spent between

sm and sm+1 is bounded by

pD(i) + pD(j) +

j−1∑
k=i+1

pD(k) ≤ pD(j) + pD(j) + (j − 2) · pD(j) = j · pD(j).

We know from [Lemma 26] that the maximal number of consecutive lengths

for which no string exists is bounded by a constant. Hence, for some constant

cwait we have j − i ≤ cwait. The total time spent between sm and sm+1 is

therefore bounded by

p′(i) := (i+ cwait) · pD(i+ cwait),

which is clearly a polynomial in i. As in the previous case, i ≤ c ·m+ d, so

we obtain p′(c ·m+ d) as a polynomial in m.

The proof is concluded by taking for p(m) the larger of the two polynomials

from the two cases, increased by the constant c0.

7 Conclusion

The fact that the simple algorithm, based on the naive bottom-up concatenation

scheme and described in [Proposition 24], already achieves the Incremental Poly-

nomial Time criterion, is, we hope, an interesting theoretical (if not didactical)

contribution of this paper, as we have not seen this noted elsewhere. Moreover,

an elementary approach as presented here has the best chances of being gener-

alizable. Indeed, we are currently investigating how the insights developed here

can be extended to apply to the more general setting of context-free sets of arbi-

trary combinatorial objects as introduced by [Courcelle and Engelfriet 2012] and

[Flajolet and Sedgewick 2009, Flajolet et al. 1991]. A major additional problem

in this context is to keep the duplicate check (step 2 in the proof of Proposi-

tion 24) polynomial. Fortunately, in the HR approach to graph rewriting, every

context-free graph language has bounded treewidth. In combination with im-

posing connectedness and a degree bound [see Matoušek and Thomas 1992] this

may produce a polynomial duplicate check.

We also note that for unambiguous grammars, the methods of [Flajolet and

Sedgewick 2009] can be used to count exactly the number of strings (or derivation

trees, which coincides for unambiguous grammars) of a given size.

Acknowledgement

We thank Hendrik Blockeel and Frank Neven for their contributions in the initial

phase of the project.

References

[Arnold and Sleep 1980] Arnold, D. B., Sleep, M. R.: “Uniform Random Gener-

ation of Balanced Parenthesis Strings”; ACM Trans. Program. Lang. Syst.; 2,

1 (1980), 122–128.

[Baeten et al. 1993] Baeten, J. C. M., Bergstra, J. A., Klop, J. W.: “Decidabil-

ity of Bisimulation Equivalence for Processes Generating Context-Free Lan-

guages”; J. ACM; 40, 3 (1993), 653–682.

[Bancilhon and Ramakrishnan 1986] Bancilhon, F., Ramakrishnan, R.: “An

Amateur’s Introduction to Recursive Query Processing Strategies”; SIGMOD

Rec.; 15, 2 (1986), 16–52.

[Ceri et al. 1990] Ceri, S., Gottlob, G., Tanca, L.: “Logic Programming and

Databases”; Springer (1990).

[Courcelle and Engelfriet 2012] Courcelle, B., Engelfriet, J.: “Graph Structure

and Monadic Second-Order Logic - A Language-Theoretic Approach”; vol-

ume 138 of Encyclopedia of mathematics and its applications; Cambridge

University Press (2012).

[Dömösi 2000] Dömösi, P.: “Unusual Algorithms for Lexicographical Enumera-

tion”; Acta Cybern.; 14, 3 (2000), 461–468.

[Dong 2009] Dong, Y.: “Linear algorithm for lexicographic enumeration of CFG

parse trees.”; Science in China Series F: Information Sciences; 52, 7 (2009),

1177–1202.

[Duncan and Hutchinson 1981] Duncan, A. G., Hutchinson, J.: “Using At-

tributed Grammars to Test Designs and Implementations”; Proceedings 5th

International Conference on Software Engineering; IEEE Press (1981); 170–

178.

[Flajolet et al. 1991] Flajolet, P., Salvy, B., Zimmermann, P.: “Automatic

Average-Case Analysis of Algorithm”; Theor. Comput. Sci.; 79, 1 (1991), 37–

109.

[Flajolet and Sedgewick 2009] Flajolet, P., Sedgewick, R.: “Analytic Combina-

torics”; Cambridge University Press (2009).

[Flajolet et al. 1994] Flajolet, P., Zimmermann, P., Cutsem, B. V.: “A Calculus

for the Random Generation of Labelled Combinatorial Structures”; Theor.

Comput. Sci.; 132, 2 (1994), 1–35.

[Gore et al. 1997] Gore, V., Jerrum, M., Kannan, S., Sweedyk, Z., Mahaney,

S. R.: “A Quasi-Polynomial-Time Algorithm for Sampling Words from a

Context-Free Language”; Inf. Comput.; 134, 1 (1997), 59–74.

[Hopcroft and Ullman 1979] Hopcroft, J. E., Ullman, J. D.: “Introduction to

Automata Theory, Languages, and Computation”; Addison-Wesley, Reading,

Massachusetts (1979).

[Johnson et al. 1988] Johnson, D. S., Yannakakis, M., Papadimitriou, C. H.:

“On Generating All Maximal Independent Sets”; Information Processing Let-

ters; 27, 3 (1988), 119–123.

[Lämmel 2001] Lämmel, R.: “Grammar Testing”; FASE; (2001); 201–216.

[Mäkinen 1997] Mäkinen, E.: “On Lexicographic Enumeration of Regular and

Context-Free Languages”; Acta Cybern.; 13, 1 (1997), 55–62.

[Matoušek and Thomas 1992] Matoušek, J., Thomas, R.: “On the complexity of

finding iso- and other morphisms for partial k-trees”; Discrete Mathematics;

108, 1-3 (1992), 343–364.

[Maurer 1990] Maurer, P. M.: “Generating Test Data with Enhanced Context-

Free Grammars.”; IEEE Software; 7, 4 (1990), 50–55.

[Purdom 1972] Purdom, P.: “A Sentence Generator for Testing Parsers”; j-BIT;

12, 3 (1972), 366–375.

[Somerville 1998] Somerville, I.: “Software Engineering”; Addison-Wesley

(1998); 5th edition.

[Xu et al. 2011] Xu, Z., Zheng, L., Chen, H.: “A Toolkit for Generating Sen-

tences from Context-Free Grammars”; Int. J. Software and Informatics; 5, 4

(2011), 659–676.

