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Efficiency of Single Particle Engines
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We study the efficiency of a single particle Szilard and Carnot engine. Within a first order
correction to the quasi-static limit, the work distribution is found to be Gaussian and the correction
factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is
studied for both models and the recent findings on efficiency fluctuations are confirmed numerically.
Special features are revealed in the zero temperature limit.

PACS numbers: 05.70.Ln, 07.20.Pe, 02.50.Ey

I. INTRODUCTION

Single particle engines have long been regarded as
thought experiments, designed to probe the very foun-
dations of thermodynamics and statistical mechanics. A
celebrated example is the Szilard engine [1–3], conceived
to investigate the notion of information in thermodynam-
ics. By now, with the spectacular progress in bio- and
nanotechnology, these machines are part of an experi-
mentally accessible reality [4–10]. Alongside these de-
velopments, there has been significant progress on the
theoretical side, starting with the discovery of the fluc-
tuation theorem and the Jarzynski and Crooks relations
[11–13], and developing into encompassing theories such
as stochastic thermodynamics [14, 15]. An intriguing re-
cent discovery concerns the properties of the stochastic
efficiency [10, 16–25]. This new concept derives from the
observation that the performance, and hence also the effi-
ciency of small machines is subject to strong fluctuations.
Based upon the fluctuation theorem, it was demonstrated
that for asymptotically long times, the reversible effi-
ciency is least probable for a machine operating under a
time-symmetric schedule, while under a time-asymmetric
driving the probability distributions of efficiency of the
time-forward and the time-reversed protocol intersect at
the reversible efficiency.

In the present paper we investigate a generic set-up
for a stochastic engine, namely a single particle moving
between a thermal wall and a piston [26–34], and apply
the obtained results to the Szilard engine and a simpli-
fied Carnot heat engine. For both engines we investi-
gate the macroscopic efficiency and the efficiency fluc-
tuations. The paper is organised as follows. Section II
introduces the Szilard engine and the simplified Carnot
engine. While the principle behind each engine is differ-
ent, i.e. information to work conversion and heat to work
conversion, respectively, the constitutive process, namely
a particle moving between a stationary thermal wall and
a perfectly reflecting moving wall, is the same. In sec-
tion III we analyse the quasi-static operation including
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a first order correction. In this limit, the work probabil-
ity distribution for the constitutive process is Gaussian,
analogous to other isothermal processes [35–38], and the
average work is the free energy difference times a fac-
tor that only depends on the reduced velocity defined as
the ratio of the velocity of the piston and the thermal
velocity associated with the thermal wall. The implica-
tions for both engines are discussed. In section IV, we
present a detailed numerical analysis of efficiency fluctua-
tions, including finite time results and confirming the pre-
dicted universal properties in the asymptotic time limit.
A slightly modified heat engine is introduced for which
analytical results are possible. Conclusions and outlook
are given in section V.

II. GENERAL SET-UP

The various heat and work exchange processes are
schematically represented in figure 1. We consider, with-
out loss of generality, a one-dimensional setting. The
constitutive process is shown in figure 1a and corresponds
to a single particle with mass m moving freely between
a stationary thermal wall and an infinitely heavy mov-
ing piston. Two types of thermodynamic events occur:
either the particle collides with the thermalising wall, or
it collides with the piston. In case of a collision with the
thermalising wall, the particle gets a new velocity drawn
from the Rayleigh distribution [39]:

φ(v) = ve−
v2

2 , (1)

with v the reduced, dimensionless velocity of the particle,
measured in terms of the thermal velocity

√

kBT/m with
kB the Boltzmann constant and T the temperature of the
wall. The change in kinetic energy then corresponds to
an exchange of heat with the thermal reservoir. Colli-
sions with the piston are assumed purely elastic. Hence
a particle with incoming velocity v, hitting the piston
moving at (dimensionless) velocity u, will recoil with ve-
locity 2u−v. The change in kinetic energy of the particle
implies an amount of work 2kBTu(v−u) done on the pis-
ton.

http://arxiv.org/abs/1506.07998v2
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Figure 1: Schematic representation of: a) The constitutive
process: a single particle bounces back and forth between a
thermal wall on the left and a moving piston on the right. b)
The Szilard engine: a piston is inserted a distance l from the
left wall, and subsequently moves away from the particle. c) A
simplified Carnot heat engine: alternating cycles of expansion
and compression, while in contact with a hot or cold left wall
at temperatures Th and Tc respectively; note the absence of
an adiabatic expansion and compression phase.

A. The Szilard engine

For the Szilard engine, shown in figure 1b, the vari-
ous steps per cycle are as follows. At the start, a par-
ticle bounces back and forth between two thermal walls
at temperature T and separated by a distance L. The
probability distribution for its position x0 and (dimen-
sionless) velocity v0 is given by thermal equilibrium:

pL(x0, v0) =
1

L

1√
2π

exp

(

−v
2
0

2

)

. (2)

A piston is then inserted a distance l from the left wall,
trapping the particle either on its left or right hand side.
A measurement is performed to find out in which com-
partment the particle resides. If the particle is in the

left compartment, the thermodynamic cost of the mea-
surement is: kB∆i = −kB lnx [40], where x = l/L is
the compression ratio. The equilibrium distribution is
now restricted to the left compartment, i.e. given by (2)
but with L replaced by l. The piston next moves to the
right with velocity u until the full length L is reproduced,
and an amount of work w is delivered. For finite piston
speed, the system will deviate from equilibrium and the
average of this work is bounded by the decrease ∆F in
free energy, 〈w〉 ≤ ∆F with:

∆F = −kBT lnx (3)

When the particle is found in the right compartment,
analogous results hold for the measurement cost ∆i, the
decrease in free energy ∆F and the work w, by replacing
x with 1− x. The efficiency of the above information to
work conversion is defined as:

η =
w

kBT∆i
. (4)

We will investigate the properties of this stochastic quan-
tity in more detail below. Upon repeating the Szilard
cycle many times, η will converge to a macroscopic ef-
ficiency η̄, which is, as we show below, bounded by the
reversible efficiency 1:

η̄ =
〈w〉

kBT 〈∆i〉 ≤ 1, (5)

see also figure 2a. Referring to the discussion of stochas-
tic efficiency, we also require the time-reversed process
of the Szilard engine, which is defined as follows. Ini-
tially, the particle is in thermal equilibrium and moving
between the two thermalising walls. The piston is then
brought in from one of the sides and pushed inward up
to position l. The piston either starts at position 0, with
probability 1−x, or at position L probability x. In both
cases, work is converted into information.

B. The simplified Carnot heat engine

The various stages of the single particle Carnot heat
engine are represented in figure 1c. When discussing the
heat engine, the reduced velocities are calculated with
respect to the thermal velocity at temperature Th. The
cycle starts with the piston moving outward (stage 1)
at constant velocity u until it reaches its final position
L. The particle is allowed to relax (stage 2), i.e. the
equilibrium distribution Eq. (2) is restored. After re-
laxation, the temperature of the heat bath is instanta-
neously switched to the lower value Tc < Th, and the
particle is again allowed to relax to the new equilibrium
state (stage 3). Next (stage 4) the piston moves inwards
with velocity u until it has returned to its original po-
sition l, after which the particle again relaxes (stage 5).
Finally, the temperature is instantaneously switched back
to the higher value Th, followed by a final relaxation
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Figure 2: (Color online) Macroscopic efficiency of a) the Szi-
lard engine and b) the heat engine (with Th = 2Tc) in function
of u and x.

(stage 6). The inclusion of the intermediate relaxation
stages destroys any correlations in position and veloc-
ity that would otherwise appear between the successive
stages, the relaxation stages are purely dissipative, there-
fore decreasing the efficiency, and have an infinitely long
duration, which leads to zero power output. The whole
cycle is then repeated. In this way heat q from the hot
bath is converted into work w with stochastic efficiency:

η =
w

q
. (6)

The macroscopic efficiency is bounded by:

η̄ =
〈w〉
〈q〉 ≤ ηC = 1− Tc

Th
. (7)

This bound is saturated only in the quasi-static regime
u → 0, with the additional limit x = l/L→ 0. For large
u on the other hand, the set-up will no longer operate
as a heat engine, since the average amount of delivered
work becomes negative. The time-reversed process cor-
responds to an expansion of the piston, while being in
contact with the cold reservoir, followed by a compres-
sion while in contact with the hot reservoir. Under this
protocol, the system operates as a refrigerator.

III. QUASI-STATIC LIMIT

We first focus on the quasi-static limit of the consti-
tutive process, and consider the work delivered by the
particle, initially at equilibrium and in presence of the
thermal wall at temperature T , on a piston, moving with
dimensionless speed u from the initial x = l/L to fi-
nal (reduced) location 1. The quasi-static regime corre-
sponds to the limit in which the velocity goes to zero,
u → 0. At lowest order, one obtains the familiar result
that the work converges to the decrease ∆F in free en-
ergy. An interesting feature appears when considering
the first correction, which turns out to be of order u lnu.

In appendix A, it is shown that the probability distri-
bution px,u(w) for the work w, upon moving the piston
from x to 1 at constant velocity u, is, at this order, given
by a Gaussian distribution, cf. figure 3:

px,u(w) =
1√

2πσx,u
e
−

(w−〈w〉x,u)2

2σ2
x,u +O(u). (8)

The convergence to the Gaussian entails that all cumu-
lants of higher than second order decrease proportional
to u in the limit u→ 0:

ln
〈

eλw
〉

= 〈w〉x,u λ+ σ2
x,u

λ2

2
+O(u). (9)

Remarkably, the reduction in average work due to the
finite speed of the piston only depends on the reduced
speed:

〈w〉x,u = ∆F

(

1 +

√

2

π
u lnu

)

. (10)

Similar for the dispersion:

σ2
x,u = −2kBT∆F

√

2

π
u lnu. (11)

We stress that the u lnu correction stems from the fact
that the average time for a particle, initialised in the
equilibrium state, to reach the thermal wall diverges log-
arithmically as u → 0. We note that this result differs
from the linear dependence found in e.g. low dissipative
systems [41]. Furthermore, the convergence to a Gaus-
sian distribution is rather slow, as the non-Gaussian cor-
rections of order u only become negligible compared to
u lnu for very small values of u.
The corresponding result for the time-reversed process,

i.e. compression of the piston from position 1 to position
x with dimensionless velocity u, is obtained by replacing
u lnu with −u lnu and ∆F by −∆F . Hence the corre-
sponding probability distribution, denoted by p̃x,u(w), is
also Gaussian with first two central moments

˜〈w〉x,u = 〈w〉x,u − 2∆F (12)

σ̃x,u = σx,u. (13)

We are thus in a position to perform an independent
check of the above finding, namely by verifying the
Crooks relation [13]. Since

px,u(w)

p̃x,u(−w)
= exp

[

−
(w − 〈w〉x,u)2 − (−w − ˜〈w〉x,u)2

2σ2
x,u

]

= exp

[

〈w〉x,u + ˜〈w〉x,u
σ2
x,u

(w −∆F )

]

, (14)

we find that the Crooks relation implies:

〈w〉x,u + ˜〈w〉x,u
σ2
x,u

= − 1

kBT
, (15)

which is indeed in agreement with Eqs. (10), (11) and
(12).
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A. The Szilard engine

For the Szilard engine, the distribution of information
gain and work during one iteration can be written as:

P1(∆i, w) = xpx,u(w)δ(∆i + lnx)

+ (1− x)p1−x,u(w)δ(∆i + ln(1 − x)). (16)

The probability distribution of the stochastic efficiency
of one iteration can be written as:

P1(η) = xpx,u(−kBTη lnx)
+ (1 − x)p1−x,u(−kBTη ln(1 − x)). (17)

Combining with Eq. (8), we conclude that the probability
distribution of the efficiency of the Szilard engine in the
quasi-static limit can be written as a sum of two Gaussian
distributions. Furthermore, the macroscopic efficiency is
found to be, cf. Eq. (10):

η̄ = −
x 〈w〉x,u + (1− x) 〈w〉1−x,u

kBT (lnx+ ln(1− x))

= 1 +

√

2

π
u lnu+O(u). (18)

Note that the first order correction to the macroscopic
efficiency is independent of the initial position of the pis-
ton, which leads to universal behaviour in the efficiency
near the quasi-static limit, as can be seen in figure 4a.

B. The simplified Carnot heat engine

The above calculations can also be repeated for the
heat engine. The joint probability distribution of pro-
duced work and absorbed heat from the hot reservoir in
one cycle can be written as:

P1(w, q) =
∫

dw0 p
h
x,u(w0) p̃

c

x,u

√

Th
Tc

(w − w0) f(q − w0). (19)

The index h or c appearing in the probability distribu-
tion of the constitutive process refers to the temperature
of the thermal wall (Th and Tc, respectively) during that

stage of the cycle. The extra factor
√

Th/Tc in the sub-
script of p̃c accounts for the fact that the velocity is al-
ways relative to the thermal velocity of the wall, and the
factor f(q − w0) accounts for the change in kinetic en-
ergy upon switching the temperature of the heat bath at
the end of stages 2 and 5. The corresponding probability
distribution f(q) is given by:

f(q) =
∫∫

dvh dvc

√
Th

2πTc
e
−

1
2

(

v2
h+

Th
Tc

v2
c

)

δ

(

q − kB
Thv

2
h − Tcv

2
c

2

)

=
e

(

1
kBTc

−
1

kBTh

)

q
2

πkB
√
ThTc

K0

((

1

kBTc
+

1

kBTh

) |q|
2

)

, (20)
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Figure 3: (Color online) Gaussian approximation (solid lines)
of the work distribution for an expansion from l = 0.5 to L = 1
near the quasi-static limit, together with numerical results, for
u = 10−5 (black crosses), 10−6 (orange dots) and 10−7 (purple
squares). Inset: second (solid line), third (dashed line) and
fourth (dotted line) cumulant of the scaled work distribution.

with K0 the modified Bessel function of the second kind
[42]. Although there appears to be no simple expression
for the probability distribution of the stochastic efficiency
η = w/q, we can calculate analytically the macroscopic
efficiency in the quasi-static limit, cf. appendix A:

η̄ =
2(Th − Tc) lnx

2Th lnx+ Tc − Th

+
2
√
2 lnx√
π

(2
√
ThTc lnx+ Tc − Th)(Th +

√
ThTc)

(2Th lnx+ Tc − Th)2
u lnu

+O(u). (21)

This is confirmed by figure 4b. As mentioned earlier,
Carnot efficiency can be reached in the limit x→ 0:

η̄ = 1− Tc
Th

+

√

2

π

Tc
Th

(

1 +

√

Th
Tc

)

u lnu+ O(u), (22)

see also figure 2b.

IV. EFFICIENCY FLUCTUATIONS

We now turn to the efficiency fluctuations of the en-
gines. The focus here is mainly on the large deviation
function (LDF) J(η) of the probability distribution Pn(η)
of the stochastic efficiency [43]:

J(η) = − lim
n→∞

1

n
lnPn(η), (23)

with n the number of cycles of the engine. For systems
under time-asymmetric driving, the LDF of the time-
forward process J(η) and the LDF of the time-reversed
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Figure 4: (Color online) Macroscopic efficiency of a) the Szi-
lard engine near the quasi-static limit, with x = 0.7 (light
blue), x = 0.5 (orange) and the time-inverse process of x = 0.5
(purple), and b) the heat engine near the quasi-static limit
with x = 0.5 for Th = 1.1Tc (red) and Th = 2Tc (green).
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Figure 5: (Color online) −(1/n) lnPn(η) for 10 (blue dotted
line), 20 (red dashed line) and 50 (dashed dotted green line)
cycles of the Szilard engine and its time-inverse, with u = 0.1
and x = 0.7. The purple full curve is the extrapolation to the
LDF. The macroscopic efficiency is η̄ = 0.80. The inset shows
P10(η).

process J̃(η) intersect at reversible efficiency ηr [17, 20]:

J(ηr) = J̃(ηr). (24)

In our numerical simulations, it is of course impossible
to take the limit of an infinite number of cycles n → ∞.
However the convergence to this asymptotic limit is in it-
self an interesting feature. We include the estimate of the

large deviation function using an extrapolation scheme,
which is presented in detail in [18, 19], and which leads
to accurate results.

The approach to the LDF for the Szilard engine are
shown in figure 5, including the result of the aforemen-
tioned extrapolation scheme. The obtained estimate
of the efficiency LDF reproduces the expected results:
J(η) ≥ 0 and reaches zero at macroscopic efficiency; the
LDF of forward and the reversed process intersect at
reversible efficiency ηr. Note however that the present
model differs from the theory discussed in [17, 18, 21],
because the information gain/loss in the engine cannot
become zero, even at a stochastic level. Consequently,
the LDF has no finite plateau at infinity and no power-
law behaviour is found in the corresponding probability
distribution.

The approach to the LDF of the time-forward and
the time-reversed heat engine are plotted in figure 6.
The LDFs intersect at Carnot efficiency, as expected.
The other predictions of the general analysis [17] are
reproduced: the maxima of both LDFs have the same
height J(η) converges to the same finite plateau value
for η → ±∞, and similarly so for the time-reversed pro-
cess. Concerning the finite time regime, we note that the
crossing of the probability distributions is actually always
quite close to the reversible efficiency and seems to con-
verge to Carnot efficiency as a power law in function of
the number of cycles, cf. inset of figure 6.

In order to derive analytical results for the efficiency
fluctuations, we introduce a slightly modified version of
the heat engine, and take the limit Tc → 0. When the
temperature of the thermal wall is zero, the particle sticks
to it upon collision. The modification is that the hot
reservoir at temperature Th is present only during an in-
finitesimal short time at the start of the cycle. In this
way, the particle is launched with a velocity v drawn
from the Rayleigh distribution (Eq. (1)) at temperature
Th. Immediately following the launch, the temperature
of the thermal wall is dropped to zero. Keeping the relax-
ation step after the expansion of the piston, the particle
eventually returns to the thermal wall and the piston can
be returned to its initial position without delivering any
work. It is clear that the relaxation step at the end of the
cycle becomes irrelevant, as the particle is immobilised,
and can be discarded. With this time-symmetric proto-
col, the particle will collide exactly once with the piston
during each cycle. Furthermore, setting x = 0.5, the
particle delivers work only when v > 2u. The efficiency
distribution during one cycle is given by:



6

P1(η) =

∫

dv φ(v)

(

θ(2u− v)δ(η) + θ(v − 2u)δ

(

η − 4u(v − u)

v2

))

=
(

1− e−2u2
)

δ(η) +
2u2

η3
f(η)4e−2( f(η)u

η )
2

f(η)− η
θ(1 − η2), (25)

 0.0

 0.5

 1.0

 1.5

 2.0

-5 -4 -3 -2 -1  0  1  2  3  4  5

 0.003

 0.004

 0.005
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Figure 6: (Color online) −(1/n) lnPn(η) for 5 (blue dotted
line), 10 (red dashed line) and 20 (green dashed, dotted line)
cycles of the heat engine and its time-inverse, with Th = 2Tc

(i.e. ηC = 1/2), u = 0.3 and x = 0.5. The purple full curve
is the extrapolation to the LDF. The macroscopic efficiency
is given by η̄ = −0.02 Inset: convergence of the intersections
efficiency η∗ of forward and time-reverse curves to ηC as the
number n of cycles increases. The dashed line is a power law
fit of the form α/nβ , with α = 5.49 · 10−3 and β = 0.13

with f(η) = 1 +
√
1− η and θ(x) the Heaviside func-

tion. The LDF can be found by numerically contracting
the cumulant generating function, as is done in the ap-
pendix. The results are shown in figure 7. It is clear that,
even at a stochastic level, only efficiencies between 0 and
1(= ηC) can be reached. Furthermore, the LDF diverges
at Carnot efficiency and the results from the extrapola-
tion are in good agreement with the analytical formula
derived in appendix B.

V. DISCUSSION

We have analysed the performance of two typical sin-
gle particle engines, the Szilard engine and a simplified
heat engine. Their analysis is based on the dynamics of
a single particle moving back and forth between a ther-
malising wall and a moving piston. For both engines,
we have shown that the distribution of delivered work
during one cycle becomes Gaussian in the quasi-static
limit. More precisely, the corrections of the first two cu-

-1

 0

 1

 2

 3

 4

 5

 0.0  0.2  0.4  0.6  0.8  1.0

-1

 0

 1

 2

 3

 4

 0.0  0.2  0.4  0.6  0.8  1.0

Figure 7: (Color online) −(1/n) lnPn(η) for 1 (blue dotted
line), 2 (red dashed line) and 5 (green dashed, dotted line)
cycles of the zero-temperature heat engine, with u = 0.1.
The purple full curve is the extrapolation to the LDF and the
black curve is the analytical LDF. The macroscopic efficiency
is given by η̄ = 0.23. Inset: P1(η).

mulants in the quasi-static limit scale as u lnu, whereas
the higher order cumulants are proportional to u. For
the heat engine, both work w and heat q can take on any
real value, and the fluctuations of efficiency η reproduce
the familiar universal features. For the Szilard engine
however, the information gain per cycle can only take on
two (positive) values − lnx or − ln(1 − x). As a result,
the asymptotes of the LDF’s for the efficiency diverge,
since extreme (positive or negative) efficiencies can only
arise from a corresponding extreme value of the deliv-
ered work. On the other hand, the universal crossing of
forward and time-reverse LDF’s at reversible efficiency
1 is reproduced. Our results can easily be extended to
other systems such as the full Carnot cycle [31] and the
Andersen cycle [34]. A question for further research is
to clarify how the sub-linear u lnu behavior fits into the
linear thermodynamics description of piston engines [29].
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Appendix A: Quasi-static limit

In [31], it is shown that the probability distri-
bution px,u(w, τ) of the produced work, with τ =

ln
(

1 + ut/L0

√

kBT/m
)

, L0 being the initial position

of the piston, t the time, T the temperature, and m the
mass of the particle, is given by:

p̂x,u(ω, λ) =
p̂i;x,u(ω, λ)p̂f ;x,u(ω, λ)

1− ψ̂u(ω, λ)
+O(u), (A1)

with p̂x,u(ω, λ) the probability distribution of the deliv-
ered amount of work, with w Fourier transformed to ω
and τ Laplace transformed to λ. Furthermore,

p̂i;x,u(ω;λ) = 1− λ 〈τ0〉x,u + iω 〈w0〉x,u +O(u), (A2)

ψ̂u(ω, λ) = e2ikBTωu2

g2u(ω, λ), (A3)

p̂f ;x,u(ω;λ) =

1

λ

(

1− gu(0, λ) + e2ikBTωu2

gu(2ω, λ)− ψ̂u(ω;λ)
)

,

(A4)

gu(ω, λ) =

∫

∞

max(u,0)

dv φ(v)
(

1− u

v

)λ

e−iωkBTuv

= 1− u

√

π

2
λ− iu

√

π

2
ωkBT

−λ(λ− 1)

2
u2 lnu+ O(u2), (A5)

with 〈τ0〉x,u the average modified time before the first

collision with the thermal wall, 〈w0〉x,u the average de-
livered amount of work after the first collision with the
thermal wall, and φ(v) the Rayleigh distribution. Filling
in the last equation in the upper two, gives:

ψ̂u(ω;λ) = 1−
√
2πu (λ+ ikBTω)

− 2λ(λ− 1)u2 lnu+O(u2), (A6)

and

p̂f ;x,u(ω;λ) = u
√
2π + 2(λ− 1)u2 lnu+O(u2). (A7)

If the system is initially in its steady state, we have:

〈τ0〉x,u = −
√

2

π
u lnu+O(u), (A8)

〈w0〉x,u = O(u), (A9)

3rd cumulant
u

u lnu

 10-6

 10-5

 10-4

 10-3

 10-2

 10-5  10-4  10-3u

Figure 8: 3rd cumulant of the work distribution in function
of u for x = 0.5, with u and u lnu fit.

 10-6
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 10-4

 10-3

 10-5  10-4  10-3

4th cumulant

u

u

u lnu

Figure 9: 4th cumulant of the work distribution in function
of u for x = 0.5, with u and u lnu fit.

so that:

p̂i;x,u(ω;λ) = 1 + λ

√

2

π
u lnu+O(u). (A10)

Combining these results, leads to:

p̂x,u(ω;λ) =
1

λ+ iωkBT

+

√

2

π

2iωλkBT + λ2 − iωkBT

(λ + iωkBT )2
u lnu+O(u). (A11)

The probability distribution of the produced amount of
work w and the information consumption ∆i can than be
directly calculated by inverse Laplace and Fourier trans-
forming. Furthermore, Eq. (A8) shows that the aver-
age time before the first collision diverges logarithmically
when u→ 0.
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To numerically check that the higher order cumulants
of the work distribution go as u instead of u lnu, we
plot the third and fourth cumulant of the distribution
of w/∆F in function of u and fit to both u and u lnu.
These plots clearly show that those cumulants are pro-
portional to u, as was discussed above.
It is also possible to calculate the efficiency of the heat

engine. The delivered amount of work can be directly
found from the above calculation:

〈w〉x,u = −kB lnx (Th − Tc)

−
√

2

π
kB lnx

(

Th +
√

ThTc

)

u lnu+O(u). (A12)

The dissipated heat on the other hand can be written as
the sum of the delivered amount of work and the heat
dissipation when the temperature of the heat bath is
changed:

〈q〉x,u =
kB
2

(Th − Tc)

− kBTh lnx

(

1 +

√

2

π
u lnu

)

+O(u), (A13)

after which Eq. (21) is found.

Appendix B: Zero temperature engine

The calculation of the cumulant generating function
or large deviation function of the efficiency of the zero
temperature engine is a non-trivial problem as efficiency
is a non-additive quantity. Instead, we shall first turn to
the cumulant generating function of the work and heat:

K(λ, µ) = ln
〈

eλw+µq
〉

= ln [A(λ, µ) +B(λ, µ)] , (B1)

with:

A(λ, µ) =
1

1− kBTµ

(

1− exp
(

2u2(kBTµ− 1
))

, (B2)

B(λ, µ) =
1

(1− kBTµ)
3
2

e−2(1+kBTλ)u2
(

e2kBT (2λ+µ)u2√

1− kBTµ

+
√
2πλkBTu exp

(

2

(

1 +
(kBTλ)

2

1− kBTµ

)

u2
)

erfc

(
√

2

1− kBTµ
(1− kBT (λ+ µ))u

))

.

(B3)

This can easily be numerically contracted to find the LDF
of the efficiency:

J(η) = −min
λ
K(λ,−ηλ). (B4)

In particular, we see that in the limit η → 1:

J(η) ∼ ln(1− η). (B5)
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