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Abstract

Conventional video conferencing (e.g. Skype with a webcam) suffers from some fundamental
flaws that keep it from attaining a true sense of immersivity and copresence and thereby
emulating a real face-to-face conversation. Not in the least does it not allow its users to
look directly into each other’s eyes. The webcam is usually set up next to the screen or at
best integrated into the bezel. This forces the user to alternate his gaze between looking at
the screen to observe his remote conferencing partner and looking into the webcam. It is
this conflict between both viewing directions that stands in the way of experiencing true eye
contact. This issue of missing eye contact is the central problem to solve in this dissertation.

An Image-Based Approach We opt for an image-based approach to solving our prob-
lem, meaning that we synthesize an eye gaze corrected image from real-world (live) captured
images. In the newly reconstructed image, the user’s gaze will be corrected and thus the
conflict between viewing directions will no longer be present. By using live imagery, we
avoid the more artificial look and feel of many previous solutions that employ model-based
reconstructions or avatar-based representations. Specifically, we investigate three main view
synthesis algorithms to reach our goal. This results in contributions to environment mapping,
disparity estimation from rectified stereo, and plane sweeping.

By designing and implementing all algorithms for and on the GPU exclusively, we take
advantage of its massive parallel processing capabilities and guarantee real-time performance
and future-proof scalability. This strategy of exploiting the GPU for general – non-graphical
– computations is known as general-purpose GPU (GPGPU) computing.

Although developed here to correct eye gaze in video conferencing, our algorithms are
more generally applicable to any type of scene and usage scenario.

Four Prototypes We develop four different system prototypes, with each prototype
relying on its specific (combination of) view synthesis algorithm(s) to reconstruct the eye
gaze corrected image. Each view synthesis algorithm is enabled by a specific configuration
of the capturing cameras, allowing us to arrange and present the prototypes according to
increasing physical complexity of their camera setup.
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Maintaining Camera Calibration Maintaining the calibration of those cameras, how-
ever, may pose a challenge for a prototype that can be subject to a lot of dynamic user activity.
Therefore, we first develop an efficient algorithm to detect camera movement and to subse-
quently reintegrate a single displaced camera into an a priori calibrated network of cameras.

Assuming the intrinsic calibration of the displaced camera remains known (physical
movement is reflected in the extrinsic parameters), we robustly recompute its extrinsic cal-
ibration as follows. First, we compute pairs of essential matrices between the displaced
camera and its neighboring cameras using image point correspondences. This provides us
with an estimate of a local coordinate frame for each camera pair, with each pair related to
the real world coordinates up to a similarity transformation. From all these estimates, we
deduce a (mean) rotation and (intersecting) translation in the common coordinate frame of
the previously fully calibrated system.

Unlike other approaches, we do not explicitly reconstruct any 3D scene structure, but rely
solely on image-space correspondences. We achieve a reprojection error of less than a pixel,
comparable to state-of-the-art (de-)centralized network recalibration algorithms.

Prototype 1: Environment Remapping Our first prototype is immediately our most
outside-of-the-box solution. It requires only the bare minimum of capturing cameras, namely
a single one, together with a single projector for display. Drawing inspiration from the field
of environment mapping, we capture omnidirectional video (in other words, the environment)
by filming a spherical mirror (the northern hemisphere) and combine this – after a remap of
the captured image – with projection on an identically-shaped spherical screen (the southern
hemisphere). Both hemispheres are combined into a single full sphere, forming a single
communication device that allows to capture from the top and display at the bottom.

The unconventional novelty lies in the observation that we do not perform image interpo-
lation in the traditional sense, but rather compose an eye gaze corrected image by remapping
the captured environment pixel-to-pixel. We develop the mathematical equations that govern
this image transformation by mapping the captured input to the projected output, both inter-
preted as parallel rays of light under an affine camera model. The resulting equations are
completely independent of the scene structure and do not require the recovery of the depth of
scene. Consequently, they have to be precomputed only once, which allows for an extremely
lightweight implementation that easily operates in real-time on any contemporary GPU and
even CPU.

Unfolding the environmental reflection captured on a (relatively small) specular sphere
yields omnidirectional imagery with a projection center located at the center of that sphere.
Consequently, the user looks directly into the camera when looking at the center of the sphere
and eye contact is inherently guaranteed. Moreover, the prototype effortlessly supports mul-
tiple users simultaneously, unveils their full spatial context and offers them an unprecedented
freedom of movement. Its main drawback, however, is the image quality. It is severely di-
minished by limitations of the mathematical model and off-the-shelf hardware components.
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Edge-Sensitive Disparity Estimation with Iterative Refinement Our second proto-
type, which we will present in a moment, relies heavily on our novel algorithm for accurate
disparity estimation. We make three main contributions.

First, we present a matching cost aggregation method that uses two edge-sensitive shape-
adaptive support windows per pixel neighborhood. The windows are defined such that they
cover image patches of similar color; one window follows horizontal edges in the image,
the other vertical edges. Together they form the final aggregation window shape that closely
follows all object edges and thereby achieves increased disparity hypothesis confidence.

Second, we formalize an iterative process to further refine the estimated disparity map. It
consists of four well-defined stages (cross-check, bitwise fast voting, invalid disparity han-
dling, median filtering) and primarily relies on the same horizontal and vertical support win-
dows. By assuming that color discontinuity boundaries in the image are also depth disconti-
nuity boundaries in the scene, the refinement is able to efficiently detect and fill in occlusions.
It only requires the input color images as prior knowledge, can be applied to any initially es-
timated disparity map and quickly converges to a final solution.

Third, next to improving the cost aggregation and disparity refinement, we introduce the
idea of restricting the disparity search range itself. We observe that peaks in the disparity
map’s histogram indicate where objects are located in the scene, whereas noise with a high
probability represents mismatches. We derive a two-pass hierarchical method, where, after
analyzing the histogram at a reduced image resolution, all disparity hypotheses for which the
histogram bin value does not reach a dynamically determined threshold (proportional to the
image resolution or the histogram entropy) are excluded from the disparity search range at
the full resolution. Constructing the low-resolution histogram is relatively cheap and in turn
the potential to simultaneously increase the matching quality and decrease the processing
complexity (of any local stereo matching algorithm) becomes very high.

Implementation is done in CUDA, a modern GPU programming paradigm that exposes
the hardware as a massive pool of directly operable parallel threads and that maps very well to
scanline-rectified pixel-wise algorithms. On contemporary hardware, we reach real-time per-
formance of about 12 FPS for the standard resolution (450×375) of the Middlebury dataset.

Our algorithm is easy to understand and implement and generates smooth disparity maps
with sharp object edges and little to no artifacts. It is very competitive with the current state-
of-the-art of real-time local stereo matching algorithms.

Prototype 2: Stereo Interpolation Our second prototype turns to rectified stereo inter-
polation. We mount two cameras around the screen, one to the left and one to the right, and
let the user be seated in the horizontal middle. We then interpolate the intermediate (and thus
eye gaze corrected) viewpoint by following (and extending) the depth-image-based rendering
(DIBR) pipeline. This pipeline essentially consists of a disparity estimation and view synthe-
sis stage. The view synthesis is straightforward and very lightweight, but relies heavily on
accurate disparity estimation to correctly warp the input pixels to the intermediate viewpoint.
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On the one hand, the prototype is able to synthesize an eye gaze corrected image that
contains very sharp and clearly discernible eyes. On the other hand, its reliance on stereo
matching also gives rise to its biggest disadvantages. First, the user is restricted to move
on the horizontal baseline between the left and right cameras, which causes eye contact to be
difficult to maintain. Second, the small baseline preference of dense stereo matching forces us
to either place the cameras around a smaller screen or assume a larger user-to-screen distance
to avoid too large occlusions.

Prototype 3: Plane Sweeping Our third prototype aims to overcome these shortcom-
ings by mounting six cameras closely around the screen on a custom-made lightweight metal
frame. The more general camera configuration avoids large occlusions, but, as such a config-
uration is no longer suitable for rectified stereo, we must turn to plane sweeping to interpolate
the eye gaze corrected image. The flexible plane sweeping algorithm allows us to reconstruct
any freely selectable viewpoint, without the need of image extrapolation. Combined with
a concurrently running eye tracker to determine the user’s viewpoint, this ensures that eye
contact is maintained at all times and from any position and angle.

A number of carefully considered design and implementation choices ensures over real-
time performance of about 40 FPS for the SVGA resolution (800× 600) without noticeable
loss of visual quality, even on low-end hardware.

First, from our strategy for disparity range restriction, we devise a method to efficiently
keep a uniform distribution of planes focused around a single dominant object-of-interest
(e.g. the user’s head and torso) as it moves through the scene. A Gaussian fit on the his-
togram of the depth map will indicate the depth (mean) and extent (standard deviation) of the
object. We can use this to retroactively respond to movements of the object by dynamically
shifting a condensed set of planes back and forth, instead of sweeping the entire space with a
sparser distribution. This not only leverages the algorithmic performance, but also implicitly
increases the accuracy of the plane sweep by significantly reducing the chance at mismatches.

Second, we present an iterative spatial filter that removes photometric artifacts from the
interpolated image. It does so by detecting and correcting geometric outliers in the jointly
linked depth map that is assumed to be locally linear.

Third, we use OpenGL and Cg to reprogram the GPU vertex and fragment processing
stages of the traditional graphics rendering pipeline, which better suits the inherent structure
and scattered memory access patterns of plane sweeping. We even further improve the end-to-
end performance by developing granular optimization schemes that map well to the polygon-
based processing of the traditional graphics pipeline.

Finally, a fine-tuned set of user-independent parameters grants the system a general appli-
cability. The result is a fully functional prototype for close-up one-to-one eye gaze corrected
video conferencing that has a minimal amount of constraints, is intuitive to use and is very
convincing as a proof-of-concept.
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Prototype 4: Immersive Collaboration Environment Our fourth and final proto-
type is realized after recognizing that current tools for computer-supported cooperative work
(CSCW) suffer from two major deficiencies. First, they do not allow to observe the body
language, facial expressions and spatial context of the (remote) collaborators. Second, they
miss the ability to naturally and synchronously manipulate objects in a shared environment.

We solve these issues by integrating our plane sweeping algorithm for eye gaze correc-
tion into an immersive environment that supports collaboration at a distance. In doing so, we
identify and implement five fundamental technical requirements of the ultimate collaborative
environment, namely dynamic image-based modeling, subsequent reconstruction and correc-
tion for rendering, a spatially immersive display, cooperative surface computing, and aural
communication.

We also propose our last adaptation of the plane sweeping algorithm to efficiently inter-
polate a complex scene that contains multiple dominant depths, e.g. when multiple users are
present in the environment. This time, we interpret the cumulative histogram of the depth
map as a probability density function that describes the likelihood that a plane should be po-
sitioned at a particular depth in the scene. The result is a non-uniform plane distribution that
responds to a redistribution of any and all content in the scene.

Our final prototype truly brings together many key research areas that have been the
focus of our institute as a whole over the past years: view interpolation for free viewpoint
video, calibration of camera networks, tracking, omnidirectional cameras, multi-projector
immersive displays, multi-touch interfaces, and audio processing.

Seven Evaluated Requirements From practical experience with our prototypes, we
learn that other factors besides eye contact contribute to attaining a true sense of immer-
sivity and copresence in video conferencing. Seven constantly recurring requirements have
been identified: eye contact (and the related gaze awareness), spatial context, freedom of
movement, visual quality, algorithmic performance, physical complexity, and communica-
tion modes (one-to-one, many-to-many, multi-party). We discover that they are subject to
many trade-offs and interdependencies as we use them to (informally) evaluate and compare
all our prototypes.

A concise sociability study not only points toward the importance of the seven require-
ments, but also validates our initial preference for image-based methods. However, to arrive
at the ideal video conferencing solution, more insight should be gained into the concept of
presence, what it means to experience a virtual telepresence and exactly what factors enable
this experience. Nevertheless, we believe that the seven requirements provide a reference
framework around the experience gained in this dissertation on which to design, develop and
evaluate any future solution to eye gaze corrected video conferencing.
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2 Introduction

Figure 1.1: This figure serves as a leading thread throughout this dissertation. We develop real-time
image-based rendering techniques to correct eye gaze in video conferencing. We implement our solu-
tions in four different system prototypes that may be arranged by the complexity of their camera setup
at each peer side. We also deal with maintaining the calibration of all the cameras and perform a concise
sociability study. Please refer to section 1.2 for a detailed overview.
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In today’s increasingly globalizing world, economical and ecological factors are making it
less and less viable to travel large distances to meet in person. As such, a growing demand
for teleconferencing solutions arises to allow people to efficiently and naturally communi-
cate over large distances while simultaneously enjoying a sense of copresence. Audiovisual
technology to support this is evolving rapidly, yet many limiting factors prevent a major
breakthrough.

1.1 Problem Statement
Current video conferencing solutions suffer from some fundamental flaws with regard to
attaining a true sense of immersivity and copresence. Consider for a moment the conventional
arrangement of a computer screen with a single webcam, shown in Figure 1.2. Eye contact is
lost because the user is unable to simultaneously look at the screen and into the camera that
is commonly located in the vicinity of the screen. With eye contact missing, the user has to
alternate his gaze between the screen to observe his (remote) conferencing partner and the
camera to signal his own involvement.

Figure 1.2: Standard video conferencing fundamentally suffers from incorrect eye gaze. (left) Direct
eye contact is impossible because the user has to choose between looking at his screen or looking
into the camera filming him. This causes the disturbing sense that the remote conferencing partner
is constantly looking away. (right) Furthermore, only very limited context information on the user’s
environment is available.

Eye contact (and generally eye expression) has proven to be one of the most crucial el-
ements in human communication and social interaction [Argyle and Cook, 1976; Argyle,
1988; Novick et al., 1996; Cohen et al., 2000; Gemmell et al., 2000]. Serving many pur-
poses, making eye contact influences how people perceive you (e.g. trustworthy or shady,
shy or self-confident), asserts dominance or submission, elicits or suppresses response and
signals agreement or disagreement (e.g. rolling of the eyes). Broader than strict eye contact,
gaze awareness signifies the ability to estimate at who or what (or at least in what direction)
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a participant in the conversation is gazing. It facilitates the flow control of conversations,
specifically with regard to turn taking. Mutual gaze awareness is eye contact as a special
case of gaze awareness, where two people are simultaneously aware that they are looking at
each other’s eyes. Gaze awareness and eye contact may indicate that a participant is ready to
speak, ready to listen, wishes to redirect focus or is not attending the conversation anymore.

More limitations apply. A single camera offers only a narrow field of view and therefore
provides very little spatial context on the remote user’s environment. The lack of context
information and the related inability to observe the remote user’s actions severely impedes
communication and collaboration. A static image also lacks parallax effects that would oth-
erwise create the immersive effect of a virtual window into the world of the remote user.

This dissertation aims to offer solutions to the aforementioned problems and explore their
limitations. To this end, we develop and evaluate four different system prototypes. Each
prototype takes its own image-based rendering approach, where the correction of eye gaze
boils down to the synthesis of a novel view from (live) captured images. Consequently,
efficient and accurate view synthesis is where the focus of this dissertation will lie.

Furthermore, as each view synthesis technique is enabled by a specific configuration of
the capturing cameras, the prototypes can be arranged according to increasing physical com-
plexity of their camera setup. A more detailed exposition of our prototypes and their view
synthesis techniques is coming up in an overview of this dissertation in section 1.2.

From experience with our prototypes, we will discover that seven requirements that any
ideal solution should meet will emerge naturally:

• Eye Contact: Eye gaze should be corrected, so that the users are able to look each
other in the eye. Ideally, this includes the broader concept of gaze awareness, i.e. the
more general ability to gauge in what direction, at what or at who the remote user is
looking.

• Spatial Context: Sufficient spatial context on the environment of the remote user
should be made available.

• Freedom of Movement: Users should be able to move as freely as possible in their
own environment.

• Visual Quality: Synthesized eye gaze corrected images should be of high perceptual
quality.

• Algorithmic Performance: Algorithms should run in real-time with high end-to-end
system performance and low latency.

• Physical Complexity: The physical construction should be of low complexity, i.e. easy
to set up, calibrate and maintain.

• Communication Modes: Could the prototype support one-to-one (two-way), many-
to-many (two-way) and even multi-party (multi-way) communication?
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The last (communication modes) is not a requirement in the strict sense, since it largely
depends on what form of communication the prototype is developed to facilitate. We never-
theless include it for ease of comparison, as the form of communication that we choose to
support may influence the other requirements. Furthermore, the requirements are subject to
many trade-offs and interdependencies that impact the user experience. For example, offering
a higher visual quality will demand more computationally intensive algorithms, which in turn
may decrease the end-to-end performance of the system. It is challenging to optimize for all
requirements simultaneously and we will observe these issues in practice.

For each prototype that we present, the requirements will be evaluated on a 7-point scale,
informally defined as:

1 Terrible
2 Bad
3 Reasonable
4 Average
5 Good
6 Very Good
7 Excellent

This will allow us to compare the sometimes very diverse prototypes in a consistent man-
ner. The evaluations can be found at the end of each prototype’s dedicated chapter, in a section
specifically titled Requirements Evaluation, i.e. in section 4.7, p. 63, in section 6.5, p. 124, in
section 7.5, p. 154, and in section 8.5, p. 180. They give a clear and concise overview of each
prototype’s strengths and weaknesses.

1.2 Dissertation Overview
We classify our prototypes for eye gaze corrected video conferencing by the complexity of
the camera setup at each peer side, starting at a very minimum and working our way up to
a multitude of cameras and associated increased processing. In this way, as the complexity
of its camera setup increases, the requirements summarized in section 1.1 that the prototype
is able to fulfill will also vary. It is this classification that dominates the structure of this
dissertation. It has been conceptualized in Figure 1.1, which will serve as a leading thread.

In chapter 2, we offer background on the main topics covered in this dissertation. Previ-
ously proposed solutions and related techniques will be explored and placed into context.

Before we can get the ball rolling, we must first learn how to keep cameras calibrated
in an environment that can be subject to a lot of dynamic user activity. In chapter 3, we
introduce our image-based approach to maintaining a functional camera calibration in an a
priori calibrated network of cameras [Hermans et al., 2007b].

In chapter 4, we present our first prototype. It requires only the very minimum amount
of cameras, that is to say a single one. Based on the concept of environment mapping, it
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combines the capture of omnidirectional video by filming a hemispherical mirror with corre-
sponding projection on a hemispherical screen [Hermans et al., 2006, 2007a]. Both capture
and display are performed by a single camera (resp. projector) on a single sphere, forming
the single communication device depicted in Figure 1.1(a). The users are located in the 360-
degree space around the sphere, thereby receiving nearly unlimited freedom of movement and
spatial context. However, the visual quality suffers and the physical setup is unconventional
at best.

In chapter 5, we develop a fast and accurate novel stereo matching algorithm [Dumont
et al., 2014b,c, 2015]. This algorithm is then applied to the problem of eye gaze correction
in chapter 6, where we delve into rectified stereo interpolation to synthesize an eye gaze
corrected image from two cameras mounted to the left and to the right of the screen. This
is depicted in Figure 1.1(b). Although this is imaginably the least complex physical setup
and has superior visual quality, we expect it to offer fairly limited freedom of movement and
arguably little spatial context.

In chapter 7, we attempt to offer a higher degree of freedom of movement and smoother
overall performance by mounting more than two cameras around the screen. Six cameras
are used in practice, as represented in Figure 1.1(c). As such a general camera configuration
can no longer be processed by conventional rectified stereo algorithms, we turn to plane
sweeping to interpolate the eye gaze corrected image [Dumont et al., 2008, 2009b; Rogmans,
2013; Dumont et al., 2014a]. We will see that plane sweeping inherently allows for much
more flexibility in choosing a viewpoint to maintain eye contact.

We present the final logical evolution in chapter 8, where we aim to achieve the would-be
holy grail of immersive video conferencing and, consequently, collaboration environments.
Specifically, we drastically improve the user experience by projecting the environment on
a spatially immersive display, together with enabling collaboration by providing both sides
with networked surface computing, as illustrated in Figure 1.1(d) [Dumont et al., 2010, 2011].
Not only does this prototype at its core lean on the techniques and algorithms developed in
the previous chapters, but the observant reader will also recognize that many key research
areas that have been the focus of our research group as a whole over the past years are truly
brought together. The result is a very high level of immersivity, coupled with a broad freedom
of movement and support for both one-to-one and, ultimately, many-to-many use cases.

In chapter 9, we pose the important question of whether users really require eye contact
when communicating in the first place. We look for the answer to this and other questions in
a concise sociability study.

Finally, we reflect and conclude in chapter 10.

1.3 Scientific Contributions and Acknowledgments

We summarize our main research contributions. We also give scientific acknowledgment by
citing all original publications, because progress is rarely made alone.



1.3 Scientific Contributions and Acknowledgments 7

• In chapter 3, we develop a novel algorithm to keep cameras calibrated in a dynamic
environment. A displaced camera is reintegrated into the initially calibrated camera
network by tracking salient features in the images and recomputing the extrinsic cali-
bration based solely on image-space correspondences. [Hermans et al., 2007b]

• We develop and compare three different view synthesis methods to compute an eye
gaze corrected image: environment remapping in chapter 4, rectified stereo matching
and interpolation in chapters 5 & 6, and plane sweeping in chapters 7 & 8.

• We develop four different prototype systems that rely on our three different view syn-
thesis methods to reconstruct the eye gaze corrected image:

– For our first prototype in chapter 4, we capture incoming rays of light on one
specular side of a sphere and develop the equations that map them to outgoing
rays of light on the other diffuse side of the sphere. The resulting image transfor-
mation is completely independent of the scene depth and is placed in the context
of environment mapping. [Hermans et al., 2006, 2007a]

– For our second prototype in chapter 6, we investigate the limits of rectified stereo
interpolation in the context of close-up one-to-one eye gaze correction. Also,
the conventional depth-image-based rendering pipeline is refined and extended.
Rectified stereo interpolation requires accurate disparity estimation:

∗ In chapter 5, we develop a novel disparity estimation algorithm. First, we ag-
gregate matching costs using edge-sensitive windows that adapt their shape
in both a horizontal and vertical orientation. Second, we formalize an iter-
ative disparity refinement process that can be applied to any local disparity
estimation algorithm and that has a large effect on the final quality of the
disparity map. [Dumont et al., 2014b,c, 2015]

– In chapter 7, we rely on plane sweeping to develop our third prototype: an end-
to-end system prototype for close-up one-to-one eye gaze corrected video con-
ferencing. Plane sweeping allows us to efficiently interpolate any viewpoint be-
tween multiple cameras closely surrounding the screen. We combine this with an
eye tracker to continuously determine the optimal position of the virtual camera
and thereby avoid the horizontal baseline restriction of rectified stereo interpola-
tion. Each module is carefully defined for optimal system performance, even on
low-end hardware. We investigate the end-to-end system performance. [Dumont
et al., 2008, 2009b,a; Rogmans, 2013; Dumont et al., 2014a]

– In chapter 8, we bring all of this together in our fourth and final prototype, an
immersive collaboration environment, by implementing and extending the fun-
damental requisites of The Office Of The Future defined by Raskar et al. [1998].
[Dumont et al., 2010, 2011]
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• We develop several dynamic control mechanisms for stereo matching and plane sweep-
ing that decrease their algorithmic complexity while increasing their view synthesis
quality. The control mechanisms are all based on a histogram analysis of the concern-
ing disparity or depth map. They are developed for stereo matching by hierarchically
restricting the disparity range (in section 6.2, p. 105) [Rogmans et al., 2009a; Rog-
mans, 2013], for single object-of-interest plane sweeping by redistributing the planes
uniformly in a dynamic depth range (in section 7.2.5, p. 142) [Dumont et al., 2008,
2009b; Rogmans, 2013; Dumont et al., 2014a] and for full-scene plane sweeping by
redistributing the planes non-uniformly in a fixed depth range (in section 8.3, p. 170)
[Goorts et al., 2013b; Goorts, 2014; Goorts et al., 2014b; Dumont et al., 2014a].

• We design all our view synthesis methods for – and implement them on – the GPU
to take advantage of its massive parallel processing infrastructure. In fact, this whole
dissertation from beginning to end runs on the GPU, an approach known as general-
purpose GPU (GPGPU) computing.

• In section 1.1, we define seven requirements that any solution for immersive video con-
ferencing should meet: eye contact (and the related gaze awareness), spatial context,
freedom of movement, visual quality, algorithmic performance, physical complexity,
and communication modes. We observe these requirements to naturally emerge from
experience with our prototypes.

• For each of these requirements, we (informally) evaluate our four prototypes on a 7-
point scale at the end of their dedicated chapters. These evaluations give a clear and
concise overview of each prototype’s strengths and weaknesses.

• In chapter 9, we perform a sociability study on eye gaze correction. Although con-
cise, the study does provide pointers in the right direction. [Mechant et al., 2008; van
Nimwegen, 2008]

1.4 Demonstration Videos
Videos that demonstrate our various solutions to eye gaze correction in video conferencing
are available online. We invite the reader to have a look in order to gain a better understanding
of their possibilities and complexities. Please visit any of:

• http://research.edm.uhasselt.be/~mdumont/phd/

• http://phd.maartendumont.net

• http://www.youtube.com/user/dwerftje/

http://research.edm.uhasselt.be/~mdumont/phd/
http://phd.maartendumont.net
http://www.youtube.com/user/dwerftje/
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Figure 2.1: This chapter offers background on the main topics covered in this dissertation.



2.1 Image-Based Rendering 11

This chapter offers background on the main topics covered in this dissertation, summarized
in Figure 2.1. The reader who is familiar with these topics may skip this chapter. We will
refer when relevant in the following chapters.

View interpolation is the first part of this dissertation’s title. Most approaches to eye gaze
correction boil down to the interpolation of a novel view from images acquired by any number
of cameras in a configuration under certain constraints. We will investigate two of these view
interpolation methods, more specifically rectified stereo interpolation in chapters 5 & 6 and
plane sweeping in chapter 7. In chapter 4, however, we will first demonstrate that the same
eye gaze correcting effect can be achieved without conventional interpolation by capturing
the environment from, and subsequently reprojecting it on, appropriately curved rather than
planar surfaces. All of these view synthesis methods can be placed in the broader context of
image-based rendering in section 2.1.

We use view interpolation to solve the problem stated in the second part of this disserta-
tion’s title: correcting eye gaze in video conferencing, discussed in section 2.2.

All view synthesis methods are designed for and implemented on the GPU to take advan-
tage of its massive parallel processing infrastructure. In section 2.3 we briefly explain how
to exploit the GPU for general-purpose, i.e. non-graphics, computations and thereby achieve
the real-time keyword of this dissertation’s title.

But before getting there, all of our solutions ask for accurately calibrated cameras. Main-
taining the calibration of an a priori calibrated camera in a dynamic environment will be the
topic of chapter 3. Some background on initial camera calibration is given in section 2.4.

2.1 Image-Based Rendering

Conventional computer graphics requires an a priori specified 3D geometric model of the
scene (by means of e.g. vertex meshes, polygon triangulations, sub-division surfaces, etc.),
together with color, texture, lighting, etc. This data is then processed by the rendering pipeline
which ultimately performs a perspective projection of the 3D model to produce a 2D rendered
image. Image-based rendering (IBR), on the other hand, does not start from a common geo-
metric model. Instead, it synthesizes a novel view directly from real-world captured images.
The advantage is a built-in degree of true-to-life visual realism that is difficult to achieve with
traditional geometric modeling and texturing.

Although many IBR methods often defy rigid classification, they can still be broadly
categorized on a spectrum that requires little to no geometry on one end (section 2.1.1) and
explicitly provided geometry on the other (section 2.1.3), with varying degrees of implicitly
determined geometry in between (section 2.1.2). Usually a trade-off is observed between
(the accuracy of) the geometry and the number of images: the less geometry, the more input
images (from differing viewpoints) are required to reliably reconstruct a scene, and vice versa.
The spectrum is visualized in Figure 2.2. For an extensive overview, please refer to Shum
and Kang [2000], Magnor [2005], Shum et al. [2007] and Szeliski [2010].
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Figure 2.2: Image-based rendering (IBR) algorithms can be broadly categorized on a spectrum that
requires little to no geometry on one end and explicitly provided geometry on the other, with varying
degrees of implicitly determined geometry in between. A geometry versus number of images trade-off
is observed. Environment mapping and projection mapping are used in chapter 4, rectified stereo in
chapters 5 & 6 and plane sweeping in chapter 7. Spectrum adapted from Szeliski [2010].

2.1.1 IBR Without Geometry

Image-based rendering techniques that do not require any geometric information about the
scene all rely on some (more or less restricted) form of the plenoptic function.

The Plenoptic Function The plenoptic function in its most general form was origi-
nally conceived by Adelson and Bergen [1991] as the 7D function of the intensity of light
rays arriving at every viewing location (Vx,Vy,Vz), at every possible angle represented by the
spherical coordinates (θ,φ) and for every wavelength of light λ at every time t:

P7 = (Vx,Vy,Vz,θ,φ,λ, t)

This all-encompassing function in essence answers the question: what information about
the world is contained in the light filling a region of space at any time?

Plenoptic Modeling McMillan and Bishop [1995] define a 5D sample P5 of the general
plenoptic function P7 to be the full spherical map of a scene at a fixed moment in time:

P5 = (Vx,Vy,Vz,θ,φ)

where the wavelengths λ from P7 collapse into the RGB channels of a recorded color image.
An incomplete sample is some solid angle subset (θ,φ) of this spherical map, shown in Fig-
ure 2.1(a). They define plenoptic modeling to be the goal of reconstructing a novel viewpoint
of a scene from reference images (i.e. incomplete 5D samples) of that scene.
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(a) Environmental reflection of a
residential kitchen on a specular sphere.

(b) Unfolded on the sides of a box.

Figure 2.3: Concept of environment mapping: unfolding (a) the environmental reflection captured on
a specular sphere yields (b) omnidirectional imagery with the projection center located at the center of
the sphere Debevec [1998].

The Lumigraph and Light Fields If we stay outside an object’s bounding box (or
more precisely, its convex hull), the 5D plenoptic function simplifies to a 4D function P4:

P4 = (u,v,s, t)

where (u,v) and (s, t) parametrize two planes parallel to the bounding box. This 4D func-
tion was concurrently formalized as the lumigraph by Gortler et al. [1996] and as light field
rendering by Levoy and Hanrahan [1996]. To capture a light field, the position of the cam-
era is restricted to the (u,v) plane, with its focus on the (s, t) plane. To reconstruct a novel
viewpoint, the radiance information from both planes is resampled. Jorissen et al. [2014]
qualitatively compare light field rendering with the MPEG stereo interpolation algorithm.

Environment Mapping The more constraints we put on the camera location, the sim-
pler the plenoptic function becomes. If we do not move at all, we end up with a 2D spherical
environment map:

P2 = (θ,φ)
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Figure 2.4 (continued on facing page): A panorama is a solid angle subset of an environment map.
An international group of friends are enjoying each other’s company around a dinner table. From left to
right: Rafaela (PT), Donald (BE), Jordan (US), Steven (BE), Lucas (FR), Blanca (ES), Sofie (BE), Inge
(BE), Iva (BG), Gustavo (MX), Sabine (BE), Patrik (BE) and Maarten (BE, author). July 26, 2015.

which captures all light that arrives from all directions at a fixed point in the scene.
Debevec [1998] captures environment maps by filming a (relatively small) specular reflec-

tive sphere in the center of a (relatively distant) scene. As he demonstrates in Figure 2.3, un-
folding the captured environmental reflection yields omnidirectional imagery with the projec-
tion center located at the center of the sphere. This observation is key to our solution for eye
gaze correction in chapter 4, as we will capture environment maps over time (in other words,
video) by filming a spherical mirror, thus adding back the time parameter: P3 = (θ,φ, t).

Image Mosaicing and Panoramas For a solid angle subset, P2 reduces to image mo-
saicing, i.e. capturing a sequence of images along a predefined viewpoint, as we did in Fig-
ure 2.4. Many approaches have been proposed to construct cylindrical and spherical panora-
mas by stitching multiple images together, among them by Chen [1995], Szeliski [1996]
Hermans et al. [2008] and Vanaken [2011].

Capturing panoramas and environment maps is even easier if fisheye lenses [Xiong and
Turkowski, 1997] or omnidirectional cameras [Nalwa, 1996; Nayar, 1997; Peleg et al., 2001;
Weissig et al., 2012] are used. We will use a Point Grey Ladybug3 omnidirectional camera
to capture the user’s panoramic background in our immersive collaboration environment in
chapter 8.

2.1.2 IBR With Implicit Geometry

Image-based rendering with implicit geometry first estimates the depth of the scene from
any information contained in the input images. Once depth is available for every pixel of an
image, the image can be rendered from any nearby viewpoint by warping its pixels to the
image plane of the desired viewpoint, based on the recovered depth information [McMillan,
1997]. This class of image-based rendering algorithms is therefore also known as depth-
image-based rendering (DIBR).
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Stereo Matching and Interpolation In Figure 2.5(a), two objects are placed at differ-
ent depths in front of a pair of cameras. When switching from the left to the right camera
position, the objects’ position relative to each other (and to the background) will appear to
change. Objects in the background (the palm tree) will appear to move less in comparison to
objects in the foreground (the blue buddy). This effect is known as the parallax effect.

If both cameras are in a perfectly rectified stereo configuration (i.e. if their epipolar lines
run parallel with the X-axis), the parallax effect causes a horizontal displacement of the pixels
in both captured images. This displacement of a pixel is called the pixel’s disparity (see
Figure 2.5(b)) and is inversely proportional to the object’s depth in the scene:

d = f × b
z

(2.1)

with d the disparity, z the depth, f the camera’s focal length measured in pixels and b the
baseline distance [Chai et al., 2000].

The goal of stereo matching is to compute a dense disparity map by estimating each
pixel’s displacement [Scharstein and Szeliski, 2002], which will be the topic of chapter 5.
The disparity map can then be used to synthesize intermediate viewpoints by shifting each
pixel on its scanline proportionally to its disparity [Scharstein, 1996; Rogmans et al., 2009c].
For example, in Figure 2.5(c) each pixel of the left color image was shifted with half its
disparity to synthesize a novel image positioned exactly halfway between the left and the
right camera viewpoints. Though heavily simplified here, in essence this is how we will
correct eye gaze in chapter 6.

Plane Sweeping Take a look at Figure 2.6 to conceptually grasp plane sweeping
[Collins, 1996; Yang et al., 2002]. Cameras C1 to C3 are real cameras in a general con-
figuration, whereas camera Cv is the virtual camera of which we wish to reconstruct the color
image and the scene depth.

Any voxel f in 3D space at e.g. plane depth z1 is projected onto the pixels pi on the 2D
image plane of the respective cameras Ci. Conversely, inversely projecting (i.e. deprojecting)
the pixels pi into 3D space will have them match at one single voxel f at the corresponding
plane depth z1. On all other plane depths z j ( j 6= 1) the pixels pi deproject on points fi that
do not coincide, as illustrated on plane depth z2. Visually, reprojecting these points fi back
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Figure 2.5: Concept of stereo matching and interpolation. (a) A scene is captured using two rectified
cameras. Stereo matching attempts to estimate the apparent movement (i.e. disparity) of the objects
across the images. (b) A large disparity corresponds to close objects (a low depth value) and vice versa.
(c) If the disparity of each pixel is known, intermediate viewpoints can be interpolated.

onto the image plane of the virtual camera Cv causes a non-focused ghosting artifact on the
virtual image plane.

For instance, for the two person scene of Figure 2.6, the person answering the phone at
the desk in the foreground will be in focus at depth z1 (see projected images Iz1), whereas
the person walking by in the background is out of focus at the same hypothesized depth z1.
The background person in turn will be in focus on plane depth z2 (see projected images Iz2),
hence suggesting that his corresponding voxels are indeed at depth z2. Looking even deeper
into the scene, the whiteboard in the far background is de- and reprojected in focus at its
corresponding plane depth, say z4, and is now in fact readable (see projected images Iz4).

Plane sweeping, used to correct eye gaze in chapter 7, can be regarded as a more gener-
alized form of stereo matching. They are closely related techniques that estimate the depth-
of-scene from image correspondences, determined using some measure of (color-based) con-
sensus between the pixels. By design, plane sweeping processes multiple input images simul-
taneously and is thereby more robust to illumination mismatches and camera misalignment.
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Figure 2.6: Concept of plane sweeping. Deprojecting real cameras Ci (1 ≤ i ≤ 3) on different plane
depths z j for virtual camera Cv may cause ghosting, depending on whether or not the scene object in
question is present at depth z j.

Also unlike stereo matching, which requires its input image pair to be stereo rectified, plane
sweeping inherently rectifies its input images by projecting them onto the planes. Further-
more, the relation between plane depths z and stereo disparities d is again expressed by Equa-
tion 2.1. Finally, the recovery of the scene depth is not essential in plane sweeping, but rather
a by-product of a novel view rendering process. Even so, if nothing else, the reconstructed
depth can be helpful during image post-processing.

Optical Flow Stereo matching assumes that the images are stereo rectified so that the
search for pixel correspondences is restricted to corresponding scanlines. Optical flow, also
known as motion estimation, relaxes this condition by widening the search for pixel cor-
respondences to any 2D direction on the image planes [Lucas and Kanade, 1981; Shi and
Tomasi, 1994]. If the epipolar geometry is known, the epipolar line corresponding to a pixel
in one image can constrain the search for corresponding pixels in the other image. From
two input images, given dense optical flow between them, the view interpolation method of
Chen and Williams [1993] can reconstruct arbitrary viewpoints. It can be seen as a relaxation
of rectified stereo to tensor space, which expresses the relation between three images in a
generalized configuration [Avidan and Shashua, 1997].
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Layered Depth Images Information in the synthesized image may be missing because
it was hidden behind (occluded by) foreground objects in the reference image. Layered depth
images alleviate this problem by storing several depth and color values for every pixel in a
reference image, especially for pixels near transitions between foreground and background
[Shade et al., 1998; Chang et al., 1999; Zitnick et al., 2004]. Layers can be hierarchically
composed from a larger collection of images using optical flow.

Visual Hulls As we get closer on the spectrum in Figure 2.2 to methods that rely on
explicitly defined geometry, we move away from depth maps defined in 2D image space to
– still implicitly determined – geometry defined in 3D world space. We first encounter the
well-known concept of visual hulls, introduced by Laurentini [1994]. A foreground object’s
silhouette (i.e. segmentation) is deprojected to a cone in 3D space. The intersection of multi-
ple of these cones from multiple cameras defines the object’s visual hull. The visual hull is an
equal or tighter fit than the object’s convex hull and is silhouette-consistent across the cam-
eras, meaning it projects within the object’s silhouette in each camera. Matusik et al. [2000]
describe an efficient image-based approach to computing and texturing visual hulls that are
reconstructed from cameras in a wide-baseline configuration. The concept was further re-
fined as photo hulls (taking into account color information) by Slabaugh et al. [2002] and
as depth hulls (from active depth cameras) by Bogomjakov et al. [2006]. [Feldmann et al.,
2009a] integrate visual hulls and stereo matching to estimate depth for their 3D multi-user
video conferencing system.

Billboards Lastly, billboards [Hayashi and Saito, 2006; Waschbüsch et al., 2007] are
straightforward geometric proxies (usually planes) that are placed in 3D world space at the
object of interest’s general location, yet are always oriented toward the viewing camera. A
novel viewpoint is reconstructed by rendering the proxies, textured with the appropriate color
information. While perspective distortions may be perceived by projecting on too simplified
geometry proxies, the visual quality remains reasonable when keeping the novel viewpoint
close to the reference camera positions.

2.1.3 IBR With Explicit Geometry

Traditional computer graphics maps textures on predefined geometry. It requires very accu-
rate geometric models but only a sparse set of color images (textures).

View-Dependent Texture Mapping View-dependent texture mapping was introduced
by Debevec et al. [1996] as a method of texturing a more basic model of the scene, while
still simulating geometric detail. They incorporate a stereo matching algorithm to determine
the deviation between the real scene and the basic model. Their stereo matching relies on the
basic model to robustly recover accurate depth from more widely-spaced image pairs. They



2.2 Eye Gaze Correction 19

later demonstrated how to efficiently implement view-dependent texture mapping on graphics
hardware by exploiting its projective texture mapping capabilities [Debevec et al., 1998].

Unstructured Lumigraph Rendering Unstructured lumigraph rendering [Buehler
et al., 2001] combines the principles of light field rendering with those of view-dependent
texture mapping and is thereby able to relax (approximate) the geometry proxy. Unlike light
field rendering, the cameras and image planes are no longer restricted to be coplanar. Mul-
tiple cameras are blended together according to the angle of the view rays, field of view and
resolution penalties, and visibility (occlusions) in relation to the geometry proxy. Take a
look ahead at Figure 7.16, p. 152, showing an unstructured lumigraph rendering of a user in
front of our prototype for eye gaze correction that employs plane sweeping to reconstruct the
geometry proxy.

Floating Textures More recently, Eisemann et al. [2008] apply floating textures to
coarse geometry to generate novel viewpoints. To cope with 3D geometry errors and vis-
ibility constraints, they allow textures to float over the geometry, while ensuring projected
textures are color consistent by rearranging parts of the textures using optical flow methods.

Model-Based Rendering Full model-based rendering reconstructs a model of the (hu-
man) actors in the scene, often with the goal of synthesizing not only new viewpoints [Car-
ranza et al., 2003; Starck and Hilton, 2003], but new poses too [Vanaken et al., 2008; Vanaken,
2011].

Projection Mapping Projection mapping leaves the virtual world and enters the phys-
ical one by projecting on real-world objects of various shapes and sizes. To ensure correct
perspective, it requires an accurate geometric model of the object [Raskar et al., 2001, 2003].
The field is also known as spatial augmented reality [Bimber and Raskar, 2005]. In chapter 4
we will illuminate a spherical display as if it were a reflective mirror. In chapter 8 we will use
multiple projectors to cover a 180-degree panoramic screen in our immersive collaboration
environment.

2.2 Eye Gaze Correction
Early solutions to correcting eye gaze took to model-based approaches. Vetter [1998] maps a
single image of a face on a generic 3D model of a human head. Similarly, Jerald and Daily
[2002] warp the imagery of the eyes within a single captured video frame so that the eyes ap-
pear to be looking at the camera, even though the head is turned away. Gemmell et al. [2000]
texture map the face onto a 3D head model and furthermore replace the eyes with newly
synthesized ones with corrected gaze. Yang and Zhang [2002] triangulate a 3D model from
point correspondences determined by stereo matching and then warp the model to the correct
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virtual viewpoint orientation. Giger et al. [2014] apply recent shape deformation techniques
to generate a 3D face model that matches the user’s face. They then render a gaze corrected
version of this face model and insert it into the original image. Schreer et al. [2008a] do away
with all image-based rendering and instead track the users’ facial expressions and gestures
and map those to animated avatars. Similarly, Di Fiore et al. [2008] let facially animated
avatars convey emotions in networked virtual environments. Generally, these model-based
solutions often lack in natural expression, with users talking to humanoid looking avatars.
The visual quality is directly dependent on the quality of the model and we will therefore not
investigate these methods further.

One of the first purely depth-image-based rendering approaches is presented by Criminisi
et al. [2003]. They employ stereo matching to estimate dense disparity maps from rectified
images captured by two cameras placed on either side of the screen. They then achieve eye
contact by synthesizing a view from a virtual camera that is located roughly where the im-
age of the head should be displayed on the screen. We will take a similar approach to eye
gaze correction in chapter 6. However, their stereo matching algorithm is based on dynamic
programming, which typically suffers from a streaking effect between horizontal scanlines.
Furthermore, they implement their framework on commodity CPUs, resulting in a very low
frame rate when sufficient visual quality is required. In chapter 5 we develop a novel stereo
matching algorithm that is able to generate high quality disparity maps in real-time by mas-
sive parallel processing on the GPU.

Recent research has paid attention to image-based rendering techniques that integrate
geometry acquired by consumer-level active depth cameras such as the Microsoft Kinect
[Zhang, 2012]. Kuster et al. [2012] synthesize only the gaze corrected face and transfer it
in a seamless manner into the original image. Maimone et al. [2012] merge data acquired
from multiple depth cameras and present techniques for automatic color calibration. We will
also use the Kinect to guide the view interpolation when multiple users are in view in our
immersive collaboration environment in chapter 8.

Opposite to image-based rendering approaches, hardware-based solutions often involve
the use of expensive dedicated hardware or an unpractical system setup. Vertegaal et al.
[2003] approximate eye contact by placing three cameras behind a half-silvered mirror and
selecting the camera that is closest to where the user is looking. On the other hand, in an
attempt to offer a higher degree of freedom of movement, the Coliseum system by Baker et al.
[2002, 2005] features five cameras in an unpractical 180-degree configuration surrounding the
user at eye level.

Many others optimize parts of the application, such as multi-view video coding [Chien
et al., 2003; Guo et al., 2005] for efficient data communication, or the networking component
and QoS in multi-party settings [Yang et al., 2005, 2006b,c; Wu et al., 2008; Yang et al.,
2010b]. However, neither of them integrate and optimize the entire end-to-end system. In
chapter 7 we will develop a fully functional prototype for close-up one-to-one eye gaze cor-
rected video conferencing and analyze its end-to-end performance.
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2.3 General-Purpose GPU Computing

An everyday part of consumer-grade personal computers, the graphics processing unit (GPU)
is responsible for rendering a 3D scene to a 2D display. It can, however, also be put to work
to solve problems other than graphics rendering, a concept known as general-purpose GPU
(GPGPU) computing [Luebke and Humphreys, 2007; McCool, 2007; Owens et al., 2007,
2008; Asanovic et al., 2009].

Compared with a CPU’s SISD (single instruction, single data) design, the GPU’s SIMD
(single instruction, multiple data) architecture offers much higher throughput and scalability,
at the expense of caching and flow control. These properties are especially advantageous to
algorithms that are easily parallelizable: in particular all image processing in this dissertation,
but also searching, sorting, algebraic problems, signal processing, physics simulations and
many more [Fernando, 2004].

The original approach to GPGPU was to trick the GPU into making general-purpose
computations by reprogramming its graphics rendering pipeline (section 2.3.1). Being a prag-
matic – but nevertheless valid – approach to GPGPU, it is clear, however, that the GPU was
originally not designed for this purpose. The graphics API is misused and intricate knowl-
edge of the rendering pipeline and its hardware implementation is required. To overcome
these hurdles and to ease the adoption of GPGPU, in recent years the GPU has been trans-
formed from a pure graphics renderer into a general massively parallel computing platform
(section 2.3.2). Even so, when developing our various view interpolation algorithms for eye
gaze correction, both approaches maintain their specific strengths and weaknesses [Ryoo
et al., 2008; Rogmans et al., 2009b; Goorts et al., 2009, 2010].

2.3.1 The Programmable Graphics Pipeline (OpenGL/Cg)

To render a geometric model of a scene to the screen, the GPU follows the graphics rendering
pipeline outlined in Figure 2.7. This pipeline consists of a number of stages that operate in
parallel, while at the same time the output of each stage serves as sequential input for the next
stage [Shreiner, 2009].

Input to the pipeline is provided by the host application in the form of ordered vertex data.
This data must minimally contain the vertices’ positions (homogeneous quadruplets in world
space) and primitive assembly information. The assembly information describes how distinct
vertices combine to form the boundaries of geometric primitives, i.e. basic drawing shapes
such as points, lines and (most commonly) triangles that compose the models in the scene.
Optional property information for each vertex may be included, such as texture coordinates,
color values, lighting components, normal vectors, etc. Lastly, the graphics pipeline is (to
a limited extend) configurable by setting its various state parameters, e.g. the position and
orientation of the viewing camera, the view frustrum (the visible volume of the scene in front
of the viewing camera), the viewport (the output area in the framebuffer), etc.
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Figure 2.7 (continued on facing page): Stages of the GPU’s graphics rendering pipeline. The vertex
and fragment transformation stages are programmable, allowing creative use of the GPU for general-
purpose computations.

The vertex transformation stage processes each vertex individually. At the very least, it
projects the vertex from its world space position to clip space coordinates inside (or outside)
the view frustrum. It can also generate or modify vertex property information. The processing
is one-to-one, meaning that each input vertex must map to a unique output vertex.

The primitive assembly stage connects vertices into geometric primitives, based on the
provided assembly information. The result is an ordered sequence of primitives that only
move on to the rasterization stage if they pass a clipping (i.e. inside the view frustrum) and
culling (i.e. front- or back-facing) test. Primitives that cross the boundary of the view frustrum
are split and the outside part is discarded. To map to the requested output resolution and area,
the remaining vertices are transformed from clip space to screen space via the perspective
division and the viewport transform.

The rasterizer subdivides each remaining primitive into pixel-sized fragments for each
pixel that the primitive covers. Different from a pixel, a fragment should be seen as a state
that will eventually contribute to the final value of a pixel in the output framebuffer. It not
only has a position on the screen, but also a depth value and an associated set of interpolated
parameters. To determine the latter, the vertex properties are interpolated to assign a smooth
gradient of values across the fragments. There is no meaningful relation between the number
of vertices a primitive consists of and the number of fragments that are generated when it is
rasterized. A triangle composed of just three vertices could project over the entire screen and
thereby generate millions of fragments.

In the fragment transformation stage, a final color for each fragment is determined
through a sequence of per-fragment operations on the rasterized properties (texture coor-
dinates, color values, lighting components, surface normals, etc.). This stage also has the
final word on the fragment’s depth value and may even discard a fragment altogether. For
example, if each vertex of the triangle in Figure 2.7 was assigned a color value at input, those
values will at this point have been blended across the fragmented surface.
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In the raster operations stage, the fragment undergoes a last series of tests. Most impor-
tantly, the depth value of the fragment is compared with the depth values of other fragments
that projected to the same location and only the nearest one is retained. The stencil test can
additionally be applied to restrict the area of rendering. If the fragment passes both tests, it
is written to (or blended into) the framebuffer, where it finally graduates to be a pixel in the
output image.

All this functionality is generally fixed in hardware, except for the vertex and fragment
processing stages. Those stages can be reprogrammed by implementing a vertex or fragment
shader: pieces of code with strictly defined input and output requirements that are executed
for each incoming vertex and fragment separately. Meanwhile, additional GPU capabilities,
such as projective coordinate generation and depth testing, are directly employable and ma-
nipulable. It is this flexible programmability that allows the creative use for purposes other
than graphics rendering. The whole pipeline maps exceptionally well to the algorithmic
structure of plane sweeping, as we will discover in chapter 7.

A shader is not a stand-alone application, but rather a set of strings that is passed for
compilation to the GPU hardware driver from within a host application that uses a graphics
rendering API. Many languages facilitate shader programming, among them most notably
the industry standard GLSL (OpenGL Shading Language) [Rost et al., 2009] and Microsoft’s
proprietary HLSL (High-Level Shading Language) for use with Direct3D [Blythe, 2006]. We
will use NVIDIA’s Cg (C for Graphics) [Mark et al., 2003], of which the compiler is able to
output both DirectX and OpenGL shader programs.

2.3.2 Compute Unified Device Architecture (CUDA)

CUDA (Compute Unified Device Architecture) is a parallel computing platform developed
by NVIDIA [Sanders and Kandrot, 2010; NVIDIA Corporation, 2007]. The platform dis-
cerns two separate models: the execution and the architectural model. The execution model
exposes the GPU to the programmer as a massive pool of directly accessible parallel threads.
It prescribes how the algorithm should be written to be suitable for execution, what param-
eters need to be set and what limits need to be taken into account. The model shields the
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Figure 2.8: The CUDA executional model presents the GPU as a hierarchy of (equally sized grids of)
equally sized blocks of parallel threads. The programmer can set the block size so that a one-to-one
mapping between a thread and a pixel of an image emerges.

programmer of how his program will eventually be executed on the architectural level, in-
cluding the actual level of parallelism. The functionality of a thread is directly specified
by the programmer in a kernel which is essentially a piece of C-language code with CUDA
syntax extensions.

According to the execution model, the threads are arranged in a three-dimensional hi-
erarchy. That is to say, a (conceptual) volume of threads exists, grouped into equally sized
blocks, grouped into equally sized grids. Each thread is able to uniquely identify itself inside
the hierarchy by means of a series of coordinates that are retrievable at run-time. They are:
the thread index (tx, ty, tz) (position inside the block), the block size (Bx,By,Bz) (number of
threads in the block), the block index (bx,by,bz) (position inside the grid) and the grid size
(Gx,Gy,Gz) (number of blocks in the grid).

It is up to the programmer to set the size parameters according to the needs of his ap-
plication. For example, a two-dimensional grid of two-dimensional blocks defines a layout
that is ideally suited for pixel-wise operations in most image processing tasks. Given this
arrangement, each thread maps exactly to one pixel coordinate (x,y):

x = bx×Bx + tx (2.2)

y = by×By + ty (2.3)

which is illustrated for a simplified 27×20 resolution image in Figure 2.8.
A memory hierarchy also exists. Each thread has to its disposal a number of very rapidly

accessible registers for local calculations. Additionally, threads of the same block share a
section of memory with equally fast access speed. This shared memory can be used for inter-
thread communication and to reduce memory operations by caching data manually. To avoid
dirty memory access while communicating, threads in the same block can be synchronized by
the programmer. Lastly, there is global memory. Global memory is randomly accessible by
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all threads and by the host CPU. It is very large, but also (relatively) very slow, and accessing
it should be avoided as much as possible. Global memory can also be mapped to texture
memory to provide interoperability with OpenGL and other graphics rendering libraries.

On the architectural level, the dedicated functional units (e.g. the vertex and fragment
shaders of section 2.3.1) have been replaced by a homogeneous collection of universal scalar
floating point processors, called stream processors or CUDA cores. Each stream processor
functionally represents one thread, but can also be allocated to emulate the programmable
graphics pipeline. Stream processors are grouped into independent multiprocessors, with
thread blocks being scheduled among multiprocessors for execution. While being executed,
the threads of a block are in turn divided into groups of threads called warps. As each warp
has its own program counter, the threads in a warp are physically executed in parallel. This
also implies that divergent branching will not result in lost processing power, as long as all
threads in a warp follow the same execution path.

The execution parameters and architectural hardware limits give rise to a number of fea-
tures and concepts that the programmer is best familiar with, should he wish to successfully
optimize his application. This includes memory coalescing (threads from the same half-
warp can read sequential 32-bit memory addresses in one instruction), thread synchroniza-
tion (warps can be suspended while being forced to wait for other warps in the block to catch
up), memory latency hiding (blocks can be suspended while waiting for memory transfers)
and occupancy (the ratio between actual warps being executed on a multiprocessor and the
maximum possible number of warps). Discussing all the intricacies would lead us too deep
down the rabbit hole; they are well documented elsewhere [Goorts et al., 2010; NVIDIA
Corporation, 2015].

NVIDIA connects a compute capability to its GPUs, i.e. a version number that collects
many of the execution parameters and architectural limits. Hardware is guaranteed to sup-
port any compute capability up to its own compute capability. For example, the very recent
GeForce GTX TITAN Black (Kepler architecture) [NVIDIA Corporation, 2012] has com-
pute capability 3.5, with 15 multiprocessors and 192 CUDA cores per multiprocessor (2880
CUDA cores in total), 1024 threads per block, a warp size of 32 threads, 255 registers per
thread, 48 KB of shared memory per block and 6 GB of GDDR5 global memory.

Essentially, only the execution model must be understood to design a parallel algorithm.
Cleverly mapping the execution model on the architectural model and designing with a spe-
cific compute capability in mind, however, will yield high levels of scalability and parallelism
in the application. Considering memory coalescing, for example, it pays to create thread
blocks with the width of a scanline for scanline-wise rectified stereo matching in chapter 5.

CUDA is only available for NVIDIA devices. Other parallel computing technologies that
provide comparable functionality include Microsoft’s DirectCompute [Boyd, 2008] and the
cross-platform OpenCL [Stone et al., 2010].
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2.4 Camera Calibration

In this dissertation, unless stated otherwise, it may be assumed that all input cameras and
images have been geometrically calibrated (section 2.4.1), photometrically calibrated (sec-
tion 2.4.2), corrected for lens distortion (section 2.4.3) and Bayer demosaiced (section 2.4.4).

2.4.1 Geometric Calibration

Consider the projection of points in space onto a plane. This is illustrated in Figure 2.9(left),
with the center of projection C at the origin of a euclidean coordinate frame. The plane Z = f
is called the image plane or focal plane, with f the focal length. The ray from the camera
center C perpendicular to the image plane is called the principal axis of the camera and the
point where the principal axis meets the image plane is called the principal point p. In what
follows we borrow from Hartley and Zisserman [2004].

The Pinhole Camera Model From geometry of similar triangles in Figure 2.9(right),
it can easily be derived that a point X = [X ,Y,Z]T in 3D world space is mapped to the point
x = [ f X/Z, fY/Z, f ]T on the image plane, where the ray joining the point X to the center of
projection C meets the image plane. By introducing homogeneous coordinates, this can be
expressed as a linear mapping:

 f X
fY
Z

=

 f 0
f 0

1 0




X
Y
Z
1

 (2.4)

which is known as the pinhole camera model for central projection.

The Camera Projection Matrix For a general camera with arbitrary position and ori-
entation in a projective coordinate system, Equation 2.4 generalizes to:

x ∝ PX (2.5)

with P the 3× 4 homogeneous camera projection matrix, and X = [X ,Y,Z,1]T and x =

[x,y,1]T the homogeneous world and image coordinates respectively. Since the camera matrix
P maps elements of two projective spaces, it too can be regarded as a projective element with
only 11 degrees of freedom. Multiplication by any non-zero scalar results in an equivalent
camera matrix. The symbol ∝ therefore indicates equality up to a scale factor.

In the metric case, the matrix P factorizes into two independent components:

P = K[R|t] (2.6)
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Figure 2.9: Pinhole camera geometry. (left) C is the camera center and p is the principal point. The
camera center is here placed at the origin. (right) From geometry of similar triangles, the projection of
a point X in 3D world space onto x on the image plane can be derived. [Hartley and Zisserman, 2004]

Extrinsic Camera Parameters The matrix [R|t] = R[I| −C] contains the external or
extrinsic camera parameters. This rigid transformation encodes the position of the camera
center C and the camera’s orientation matrix R in world space. Using this information, the
coordinates of a world space point X within the camera’s own coordinate frame (eye space)
can be computed:

Xeye =

[
R −RC
0 1

] 
X
Y
Z
1

=

[
R t
0 1

]
X (2.7)

Intuitively, we’re translating the camera center back to the origin and realigning its prin-
cipal axis with the Z axis, as was the case in Figure 2.9(left) to begin with.

The problem of estimating the parameters of the rotation matrix R and the translation
vector t is referred to as extrinsic camera calibration. In a setup with multiple cameras, the
cameras’ extrinsic calibration determines the cameras’ relative position and orientation in a
common world coordinate frame.

Intrinsic Camera Parameters Once the coordinates of the point Xeye are known, the
point can finally be projected onto the image plane:

x= KXeye (2.8)

where K is the intrinsic calibration matrix. It is of the general form:

K =

 αx s x0

αy y0

1

 (2.9)

with:
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(a) Before: too much red. (b) During: MacBeth chart. (c) After: colors just right.

Figure 2.10: Photometrically calibrating the cameras will increase the reliability of pixel matches.

• αx and αy scale factors in the X-coordinate and Y-coordinate direction,

• (x0,y0) the coordinates of the principal point on the image plane,

• and s the skew, which is zero for most common cameras.

The problem of estimating these parameters is referred to as intrinsic camera calibra-
tion. When dealing with a single camera, determining the camera’s intrinsic calibration often
suffices.

Calibration and Recalibration Many libraries and toolboxes for geometric camera
calibration are available. We use the one from Svoboda et al. [2005], which concurrently esti-
mates intrinsic and extrinsic parameters from point correspondences in synchronized frames.
The point correspondences are determined by waving a bright spot (e.g. a laser pointer)
through the working volume.

If a camera’s extrinsic calibration is lost, but its intrinsic calibration is maintained, its
extrinsic parameters can be efficiently estimated again by the recalibration algorithm that we
will develop in chapter 3.

2.4.2 Photometric Calibration

A majority of the view synthesis algorithms in this dissertation rely on matching pixels be-
tween different cameras. Hence, photometrically calibrating the cameras will increase the
reliability of the matches. Photometric calibration attempts to bring the colors that the cam-
eras capture as close as possible to the Macbeth color chart (shown in Figure 2.10(b)) by
adjusting the camera’s white balance accordingly. The Macbeth color chart colors were cho-
sen to represent various natural objects, colors that are problematic for color reproduction,
additive and subtractive primaries, and a gray scale [McCamy et al., 1976].
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(a) Distortion not corrected. (b) Estimating parameters. (c) Distortion corrected.

Figure 2.11: (a) The lines of the bookshelves are clearly bent, (c) but are straightened out after the
image has been corrected for lens distortion. (b) Estimating the distortion parameters involves detecting
lines on a checkerboard calibration pattern.

2.4.3 Lens Distortion Correction

We often use lenses with a short focal length to guarantee a sufficiently wide field of view.
However, such lenses introduce significant non-linear distortion that cannot be modeled by
the pinhole camera, because the world space point X, its distorted projected image point x,
and the camera center C are no longer collinear. This is corrected by applying the Brown-
Conrady distortion model [Brown, 1966], which models both radial and tangential distortion:

[
xd

yd

]
= L(r)

[
xu− xc

yu− yc

]
+

[
∆x

∆y

]
(2.10)

with:

• (xd ,yd) the distorted pixel position,

• (xu,yu) the undistorted pixel position,

• (xc,yc) = the center of distortion,

• r =
√
(xu− xc)2 +(yu− yc)2 the radial distance from the center of distortion,

• L(r) = 1+κ1r2 +κ2r4 + . . . the radial distortion function, with κi the radial distortion
parameters,

• ∆x = (P1(r2 +2x2
u)+2P2xy)(1+P3r2 +P4r4 + . . .) the tangential distortion function in

the X-coordinate direction, with Pi the tangential distortion parameters,

• ∆y = (2P1xy+P2(r2 +2y2
u))(1+P3r2 +P4r4 + . . .) the tangential distortion function in

the Y-coordinate direction, with Pi the same tangential distortion parameters,
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(a) Bayer pattern. (b) Demosaiced RGB image.

Figure 2.12: (a) A one-channel RGGB Bayer pattern must be (b) demosaiced into an RGB image.

and where . . . indicates a Taylor series expansion. Usually a second order (r2) approximation
suffices to achieve an accuracy of about 0.1 pixels in image space for lenses exhibiting large
distortion [Devernay and Faugeras, 2001].

Many libraries and toolboxes exist to estimate the distortion parameters. We use the
GML toolbox [Velizhev, 2005], which involves detecting lines on a checkerboard calibration
pattern. Figure 2.11 contains an example.

2.4.4 Bayer Demosaicing

Typical cameras contain a CCD array of sensors that only measure light intensity. A wave-
length filter is placed in front of the sensor array and only lets the desired red, green or blue
wavelength of the light spectrum pass. The captured one-channel image is called a Bayer pat-
tern, where every pixel only has a specific intensity value for its associated color wavelength.
The values of the other color channels must be reconstructed from its neighboring pixels, a
process that is called demosaicing and that is illustrated in Figure 2.12.

Many demosaicing algorithms have been developed, ranging from straightforward bilin-
ear interpolation of the surrounding pixels [Ramanath et al., 2002] to gradient-based methods
[Malvar et al., 2004; Goorts et al., 2012b] and advanced anti-aliasing approaches Hirakawa
and Parks [2005]. An in-depth discussion is beyond the scope of this dissertation.

For our purposes, it is important to understand that the Bayer pattern is a one-channel
image and thus only one third the size of its three-channel RGB counterpart. In other words,
only one third of the memory bandwidth is required to transfer a Bayer pattern to the GPU for
further processing. This means a considerable reduction in bandwidth consumption, which
can greatly increase the overall performance in real-time applications. We will return to this
when developing an end-to-end system prototype in chapter 7.
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Figure 3.1: This chapter shows how to maintain the calibration of all the cameras depicted in the
overview in Figure 1.1, p. 2.
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When recording images for real-time applications, a robust camera calibration needs to be as-
sured during the entire session. At every occurrence of camera movement, whether intended
or not, it is often not feasible to interrupt the capturing to perform a full system recalibration.
Even if we can shut down the system and completely recalibrate the entire camera network,
this proves to be a time consuming and burdening operation. Moreover, in case of a single
displaced camera, there is no immediate need to recalibrate the entire camera network. Com-
pared with the initial calibration, there is only a small subset of changed variables, namely
the extrinsic parameters of the moved camera.

This chapter presents an efficient algorithm to detect when the extrinsic parameters of a
camera are no longer valid and subsequently reintegrate the displaced camera into the initially
calibrated camera network by robustly recomputing its extrinsic calibration. We use available
information of the remaining calibrated cameras and the known intrinsic calibration of the
moved camera to reintegrate the camera in the common coordinate frame. Alternatively,
when the intrinsic parameters of all cameras involved are known, the algorithm can also be
applied to build ad-hoc distributed camera networks by starting from three calibrated cameras
and gradually adding new cameras.

Based on image point correspondences, we compute pairs of essential matrices from the
displaced camera to its neighboring cameras, which provide us with local coordinate esti-
mates for each camera pair. These canonical pairs are related to the real world coordinates,
up to a similarity transformation. From these estimates, a mean rotation and translation can
be deduced in the coordinate frame of the previous full system calibration. Unlike other
approaches, we do not explicitly compute any 3D structure [Hermans et al., 2007b; Goorts
et al., 2014c].

This chapter shows how to maintain the calibration of all the cameras of all our prototypes
in the overview in Figure 1.1, p. 2, highlighted again in Figure 3.1. It is organized as follows.
Related work is first discussed in section 3.1, together with one alternative approach that
is closely related to our own and therefore worth taking a closer look at. Next, working
constraints that we set on the host system are described in section 3.2. The following two
sections compose our recalibration algorithm. Before we should recalibrate a camera, we
need to detect in section 3.3 that it has indeed moved in the first place. Once detected to have
moved, the camera is then reinserted into the calibrated network of cameras by computing
its new calibration in section 3.4, where our main contribution in this chapter can be found.
Results are presented in section 3.5 and we conclude in section 3.6.

3.1 Related Work

Calibration algorithms for multi-camera setups are generally divided in four steps [Hartley
and Zisserman, 2004]: (1) detect feature points in each camera and determine correspon-
dences, (2) perform an initial reconstruction, (3) refine by applying bundle adjustment and
(4) upgrade to a metric reconstruction.
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In the first step, detecting and matching feature points is usually facilitated by the use of
a calibration object. This object can come in many different flavors, usually either a planar
surface with an imprinted binary pattern (such as a checkerboard, parallel lines [Baker and
Aloimonos, 2003] or evenly spaced circles or boxes [Baker and Aloimonos, 2003; Tsai, 1987;
Zhang, 2000]), or a single moving bright spot (such as a laser pointer [Svoboda et al., 2002,
2005]). All these methods provide either point-to-point, line-to-line constraints, or both, of
which the accuracy is critical to the success of the rest of the algorithm.

Our algorithm will be executed during capturing time and therefore does not have the lux-
ury of being able to use a specifically designed calibration object. Although in a controlled
environment the calibration object could be an explicit part of the scene (e.g. a checker-
board pattern on the floor), we make no such assumptions. Furthermore, as our technique
is intended for a wide variety of applications, we make no assumptions about the nature of
the camera baselines. We employ SIFT (scale-invariant feature transform) [Lowe, 2004], the
current state-of-the-art feature detector and descriptor to match over wide baselines. More re-
cently, an interesting alternative for real-time applications has emerged in the form of SURF
(speeded up robust features) [Bay et al., 2008].

The second step (the initial reconstruction) is where the key difference between most of
the multi-camera algorithms lies. These techniques can roughly be labeled as either top-down
or bottom-up methods.

Algorithms that employ a top-down approach are generally employed in controlled envi-
ronments, such as a lab or a recording studio, calibrating the cameras all at once. A widely
used approach of this category is the projective factorization proposed by Martinec and Pa-
jdla [2002]. This method requires the estimation of projective depths for proper initialization,
which is achieved using epipolar geometry as done by Sturm and Triggs [1996]. Occlusion
handling is solved by an extension of the method by Jacobs [1997] to fill in missing data.
This extension can exploit the geometry of the perspective camera so that both points with
known and unknown projective depths are used.

Algorithms of the bottom-up category are often more suitable for less controlled environ-
ments, distributed applications [Mantzel et al., 2004], and video sequences [Fitzgibbon and
Zisserman, 1998] (i.e. a dynamic scene viewed by a single camera, as opposed to multiple
viewpoints of the same static scene). The general strategy here is to first perform a local cal-
ibration for one or more small clusters of cameras and then gradually converge to a solution
using the previously computed building blocks.

The method used by Sinha et al. [2004] shows some resemblance to our own. They first
resolve for a set of three cameras with non-collinear centers, for which the three fundamental
matrices F12,F13,F23 have been computed. Given these, they compute a corresponding triplet
of camera matrices P1,P2,P3. This provides a general projective frame for the rest of the re-
construction. To complete the N-view camera network, they then inductively add each of the
remaining cameras. The key observation in this method is that, given camera matrices P1,P2

and fundamental matrices F12,F13, the third camera matrix P3 spans a 4D subspace of P8.
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This can be solved linearly, calculating a F23 = [e32]xP3P+
2 that most closely approximates

the given F23. The similarity with our work is that we also use information from neighboring
camera matrices and fundamental (essential) matrices to restore the missing camera parame-
ters. However, the differences between this method and ours are twofold. First and foremost,
we assume the intrinsic parameters of our cameras to be known. Therefore, we are dealing
with essential matrices instead of fundamental matrices. Second, unlike Sinha et al. [2004],
our building block does not need to be a camera triplet. We can use information from two or
more neighbors to find a solution.

The third step (refinement) consists of applying bundle adjustment to the previously com-
puted results, usually by minimizing the reprojection error using the Levenberg-Marquardt
algorithm [Moré, 1978]. This procedure results in a projective reconstruction {Pi,X j} of the
detected feature points {xi

j}.
If a metric calibration is desired (step four), a rectifying homography H can be computed

from auto-calibration constraints to upgrade the reconstruction to a metric one {PiH,H−1X j}.
To obtain this homography, we can choose between direct and stratified methods [Hartley and
Zisserman, 2004]. The direct auto-calibration methods involve computing the absolute conic
or its image, whilst the stratified methods solve the reconstruction in two steps: first solving
for the plane at infinity, then using this to solve for the absolute conic.

3.1.1 An Alternative Approach

Besides the work referenced in section 3.1, one alternative algorithm stems from the follow-
ing theorem.

Theorem 3.1. [Hartley and Zisserman, 2004, p. 385] Given three compatible fundamental
matrices F21,F31 and F32 satisfying the non-collinearity condition, the three corresponding
camera matrices P, P′ and P′′ are unique up to the choice of a 3D projective coordinate
frame.

The first two camera matrices P and P′ can be determined from the fundamental matrix
F21. The third camera matrix P′′ can then be determined in the same projective frame as
follows:

1. Select a set of matching points x j↔ x′j in the first two images, satisfying x′Tj F21x j = 0,
and use triangulation to determine the corresponding 3D points X j.

2. Use epipolar transfer to determine the corresponding points x′′j in the third image, using
the fundamental matrices F31 and F32.

3. Solve for the camera matrix P′′ from the set of 3D-2D correspondences X j↔ x′′j .

This is essentially the approach of triangulation (determining the 3D points X j) and lo-
calization (determining camera pose from 2D-3D correspondences, more commonly known
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as camera resectioning) in the work of Mantzel et al. [2004]. It should be noted that they
employ the described algorithm with essential matrices rather than fundamental matrices. To
ensure the validity of the computed camera matrix in step three, they also have the need to
ensure the orthogonality of the rotation component. This leads to an iterative algorithm that
alternates between optimization of the camera rotations and translations.

An essential issue of the described method consists of the fact that it does not use all
the constraints available. We choose to take a different approach, making direct use of the
available information in the form of the intrinsic camera calibration, reducing the available
degrees of freedom.

Another issue of this approach consists of the cumulative error that is introduced at every
stage of the algorithm. Even though the approach can be extended to multiple cameras,
there is still the need at every stage to remove outliers in the feature point matches. The
accuracy of the camera resectioning in the third stage is also very dependent on the success
of the previous stages (3D reconstruction and point-transfer) and runs the risk of becoming
inaccurate in case of a low amount of point correspondences. Our approach needs to only
perform a single feature matching step, exclusively in image space. This reduces the chance
of introducing cumulative error to a minimum.

3.2 System Assumptions

We define our algorithm for a centralized network structure. More specifically, we make
the following assumptions: (1) the network is synchronized and (2) the station on which the
algorithm is performed has access to the neighboring cameras of the moved camera and their
synchronized images. Thus we assume the algorithm to be running on a system that has
access to all the nodes containing cameras, as depicted in Figure 3.2.

The algorithm can also be applied to a distributed camera network, running an instance
of the algorithm at each node, assuming that the conditions mentioned above are met.

Network delays have little to no impact on the system: as long as we have a means to
ensure synchronous image pairs between two cameras, all requirements for essential matrix
computation are met. The time differences between acquired image pairs is irrelevant. We
end acquisition when we have enough point correspondences to commence recalibration.

3.3 Movement Detection

The goal of our system is to ensure that all cameras in the network remain calibrated. We
therefore need to detect when a camera has moved, in other words when its known external
calibration is no longer valid. This movement detection algorithm loops continuously during
the entire application and can be divided into two parts, shown in Algorithm 3.1.
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Figure 3.2: We define our algorithm for a centralized network structure in which the central system has
access to all the nodes and their connected cameras.

3.3.1 Initialization

This procedure is executed at each iteration to initialize new cameras that were previously
unknown to the network. When a new camera is introduced to a running application, we need
to prepare it for calibration and recalibration.

First, we estimate a background from a predefined number of frames of the new camera.
There are several approaches to this estimation and some are better suited for our purposes
than others, e.g. we observed that applying a median filter on consecutive frames results in
unnecessary sharp transitions in areas where the background is only exposed during a very
limited time. This has undesirable consequences for the rest of our algorithm. Instead, we
employ an averaging filter. Even so, more sophisticated approaches could be devised to
improve the initial conditioning of the detection phase.

Our next step is to detect two layers of hotspots, as illustrated in Figure 3.3. We define a
hotspot as an interesting feature that remains immobile during the entire recording process.
This could be in any form, varying from special-purpose markers in the scene to distinctive
features in the background. We opt for the latter approach, as it allows for the capturing of
more general scenes.
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Algorithm 3.1 Camera Movement Detection
Continuous loop:

1. Initialize new cameras since last iteration (section 3.3.1):

(a) Compute the background image.

(b) Determine primary and secondary hotspots.

2. For each camera that currently is not being recalibrated (section 3.3.2):

(a) Cross-correlate patches around primary hotspots.

(b) If number of good primary patches lies below threshold:

i. Cross-correlate patches around secondary hotspots.

ii. If number of good secondary patches lies again below threshold: recalibrate
camera (section 3.4, Algorithm 3.2).

As we are not interested in advanced aspects of feature detection (scale-space, affine
invariance, etc. [Mikolajczyk and Schmid, 2005; Mikolajczyk et al., 2005]), but only in their
cornerness, we have chosen to apply feature detection as done by Shi and Tomasi [1994]. The
cornerness property allows us to impose a rank-order on the feature set. From the detected
features, we sample two subsets which we label the primary and secondary hotspots. The
primary set contains a small set of features that lie at a large spatial distance from each other,
while the secondary set is larger and denser. The sets are completely independent from one
another, but it is possible that a feature exists in both the primary and the secondary set. We
add a predefined number of features to each set, starting with the best features (i.e. highest
minor eigenvalues) and iteratively adding new features that are not too close to the features
already added.

In case of a large change in the scene condition (e.g. completely different lighting), the
background needs to be refreshed and the hotspots need to be recomputed. As this is a
computationally expensive operation, it should only occur when, for every camera in the
network, a large portion of its associated background image is different from the current
frame. Alternatively, we could simply let the user trigger the background recomputation at
his discretion.

3.3.2 Detection

For each camera that currently is not being recalibrated, we perform a double check.
First, we verify that each of the primary hotspots is still in place. For a hotspot located at

pixel coordinate (x,y), we perform a normalized cross-correlation between the n×n windows
centered around (x,y) in both the current frame and the previously computed background. If
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Figure 3.3: Given a set of detected features with an established rank-order, we can extract two subsets
with high (red markers) and low (green markers) intra-element distances. We label them the primary
and secondary hotspots respectively.

the computed value is below a certain threshold, this indicates that either the camera has
moved or the feature point has been occluded. If a predefined number of primary hotspots
for a camera can be validated, we move on to the next camera. If not, we move on to the
camera’s secondary layer of hotspots.

The secondary layer of hotspots serves to avoid unnecessary recalibration attempts. We
repeat the algorithm described above for this additional set of feature points. If it returns a
number of validated hotspots below a predefined threshold, we assume the camera needs to
be recalibrated.

While our primary check is a quick process, slightly more time is needed for the sec-
ondary hotspots (approximately 0.1 to 1 ms), but this amount is still significantly less than
the time-consuming SIFT feature detection and matching performed in the recalibration phase
(approximately a second per camera). This approach reduces computation time to a level
where the detection algorithm can run in parallel to other real-time algorithms, for which
overtaxing the processor would be unacceptable.
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A final note should be made for practical purposes. If the cameras are very close to the
recorded scene, it is not uncommon for a user to completely occlude the background. To
avoid unnecessary attempts at recalibration, it is recommended to let the camera perform an
additional detection phase, a predefined amount of time after movement was first detected.
This way, a passing user will not trigger the recalibration algorithm.

3.4 Recalibration

Once a camera has been determined to have moved by Algorithm 3.1 (section 3.3), it is
flagged as inactive until the recalibration algorithm, as shown in Algorithm 3.2, is com-
pleted. The recalibration algorithm, our main contribution in this chapter, is explained from
section 3.4.2 onward. But before we get there, our notation requires some clarification in
section 3.4.1.

Algorithm 3.2 Camera Recalibration
If Algorithm 3.1 (section 3.3) detected a camera to have moved:

1. Assign index 0 to the moved camera C0.
Find its N nearest neighbor cameras Ci, i ∈ [1,N].

2. For each neighboring camera Ci (section 3.4.2):

(a) Compute the essential matrix E0i.

(b) Compute the canonical camera matrix pair:
PLi

i = [I|0] and PLi
0 = [RLi

0 |t
Li
0 ].

3. Compute the mean rotation matrix RW
0 (section 3.4.4).

4. Compute the translation vector tW
0 (section 3.4.5).

3.4.1 Notation

Unless noted otherwise, we adopt the notation formalized by Hartley and Zisserman [2004].
Projective geometry and homogeneous coordinates are used.

Normalized Cameras Equation 2.5 and Equation 2.6, p. 26, describe the perspective
projection of the scene onto the image plane. If the intrinsic calibration matrix K is known,
then its inverse may be applied to the point x to obtain:

x̂= K−1x= [u,v,1]T (3.1)
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and we refer to these coordinates as normalized coordinates. The camera matrix K−1P= [R|t]
is called a normalized camera matrix. Going forward, we assume all our camera matrices to
be of this form.

Coordinate Frames The Euclidean coordinate frame of the original calibration is re-
ferred to as the world coordinate frame W . For example, PW

1 denotes the camera matrix of
the first camera in the world coordinate frame.

The coordinate frames derived from essential matrices are referred to as local. For ex-
ample, PL2

1 denotes the matrix of the first camera in the local coordinate frame of the second
camera.

Cross Product If a = [a1,a2,a3]
T is a 3-vector, then its corresponding skew-symmetric

matrix is defined as:

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (3.2)

which is to say [a]× satisfies the skew-symmetric condition −[a]× = [a]T×. The cross product
of two 3-vectors a×b is then related to skew-symmetric matrices according to:

a×b = [a]×b =
(
aT [b]×

)T
(3.3)

Diagonal Matrix Lastly, the notation diag(a1,a2,a3) denotes a diagonal matrix:

diag(a1,a2,a3) =

 a1 0 0
0 a2 0
0 0 a3

 (3.4)

3.4.2 Determining Local Coordinate Frames

Let us denote the moved camera with C0. The first step in Algorithm 3.2 is to find the N
nearest neighbors Ci, i ∈ [1,N] of the moved camera C0, with respect to its original location
and orientation. If the cameras are part of nodes equipped with radio sensors and transmitters,
the current nearest neighbors could be determined from broadcast intervals instead.

Once we have determined the neighbors, we compute the essential matrices E0i between
the moved camera C0 and each of its neighbors Ci (step 2(a)). We employ the standard robust
estimation algorithm, explained in Algorithm 3.3.

On the estimated essential matrices we apply the following theorem.
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Algorithm 3.3 Robust Essential Matrix Estimation
As described by Hartley and Zisserman [2004]:

1. Feature point detection: Find feature points in N cameras for M frames using the
SIFT detector.

2. Putative correspondences: Determine a set of feature point matches based on the
SIFT descriptor.

3. Robust estimation: Until a predefined threshold has been reached, use random sam-
ples of feature point matches (RANSAC, [Fischler and Bolles, 1981]) and the normal-
ized eight-point algorithm [Hartley, 1997] to find an essential matrix E with a large
support of inliers.

4. Non-linear estimation: Re-estimate E from all correspondences classified as inliers
by minimizing a cost function using the Levenberg-Marquardt algorithm [Moré, 1978].

5. Guided matching: Further interest point correspondences are now determined using
the estimated E.

The last two steps are iterated until the number of correspondences is stable.

Theorem 3.2. [Hartley and Zisserman, 2004, p. 259] For a given essential matrix E =

Udiag(1,1,0)V T and first camera matrix P = [I|0], there are four possible choices for the
second camera matrix P′, namely:

P′ = [UWV T |+u3] or [UWV T |−u3] or
[UW TV T |+u3] or [UW TV T |−u3]

Testing with a single point to determine if it is in front of both cameras is sufficient to
decide between the four different solutions for the camera matrix P′. Since these points are
already available from our initial essential matrix estimation, we now have a metric local
coordinate frame for each essential matrix: PLi

0 = P′ (step 2(b)).

3.4.3 Linking Local And World Coordinate Frames

We will now compare the projection of a scene point X = [X Y Z 1]T onto the image planes
of any pair of cameras (C0,Ci), both in world and local coordinate frames.

The world coordinates are our reference frame, hence we dub them to be exact. This gives
us the following equations:

[u0 v0 1]T = [RW
0 |tW

0 ]
[
XW YW ZW 1

]T
[ui vi 1]T = [RW

i |tW
i ]

[
XW YW ZW 1

]T (3.5)
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On the other hand, the local coordinate frame is known only up to scale. However, as we
know it to be metric as well, the camera matrices are of the following form:

[u0 v0 1]T = [±RLi
0 |λtLi

0 ]
[
XLi Y Li ZLi 1

]T
[ui vi 1]T = [I|0]

[
XLi Y Li ZLi 1

]T (3.6)

As the normalized image coordinates x̂= [u,v,1]T are identical in both the local and world
(metric) coordinate frames, we can link these equations as:

XLi =

[
±RLi

0 λtLi
0

0 1

]−1 [
RW

0 tW
0

0 1

]
XW

XLi =

[
I 0
0 1

]−1 [
RW

i tW
i

0 1

]
XW

(3.7)

This consequently provides us with two equations that define the requested rigid transfor-
mation [RW

0 |tW
0 ]:

RW
0i = RLi

0 RW
i (3.8)

tW
0i = RLi

0 tW
i +λtLi

0 (3.9)

where the subscript i has been added to RW
0 and tW

0 to indicate that this is only one of N
possible estimates. The ± sign (direction of rotation) has also been omitted for now.

3.4.4 Estimating World Space Rotation

Equation 3.8 provides us with N estimates of the moved camera’s orientation. Using these
approximate solutions, we now compute a mean rotation (step 3 in Algorithm 3.2).

Averaging rotations is not trivial and there are several approaches to this problem. Very
often the barycenter of quaternions or matrices that represent the rotations are used as an
estimate of the mean. One could point out that these methods neglect that rotations belong to a
non-linear manifold and that to obtain proper rotations, renormalization or orthogonalization
must be applied. However, Gramkow [2001] showed that using the simpler linear methods
gives us a very good approximation of the non-linear average. Therefore, we employ the
barycenter of rotation matrices as our method of choice.

The eigenvalues of an orthogonal matrix Rort are of the form (1,eiθ,e−iθ), where the
eigenvector corresponding to the unit eigenvalue represents the rotation axis. Based on this,
the mean rotation is defined as [Gramkow, 2001]:
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R = argmin
Rort

∑
i

θ
2(R−1Ri) (3.10)

≈ argmax
Rort

tr

(
R−1

∑
i

Ri

)
(3.11)

The latter optimization problem is actually the core of the 3D-3D pose problem, which
has been solved by Horn [1987], Arun et al. [1987] and Umeyama [1991]. The solution can
be seen as the rotation that best rotates the identity matrix into the matrix consisting of the
sum of rotations. It is most easily obtained by singular value decomposition UWV T , where
the singular values are arranged in descending order. Introducing the matrix S, the mean
rotation in the above problem is simply given by [Gramkow, 2001]:

∑
i

RW
0i =UWV T (3.12)

S = diag(1,1,det(U)det(V T )) (3.13)

R =USV T (3.14)

One step has been omitted in Equation 3.12. As there are two valid possibilities for each
RWi

0 (the omitted plus-minus sign ± in Equation 3.8), we have to designate one orientation
as the dominant one. To achieve this, we first compute RW

01. Next, we apply the following
transformation for all remaining RW

0i , i∈ [2,N], to make sure all orientations are located within
the same hemisphere [Golub and Van Loan, 1996]:

∀i ∈ [2,N] : RW
0i = arg min

R∈{±RW
0i }
‖RW

01−R‖2 (3.15)

3.4.5 Estimating World Space Translation

Each local coordinate frame defines the new position of the moved camera up to scale (step
4 in Algorithm 3.2). This translates into Equation 3.9 which defines the baseline connecting
the camera centers of the camera pair (C0,Ci) in the world coordinate frame. Theoretically,
the moved camera C0 should be located at the intersection of all these lines, as depicted in
Figure 3.4. In practice, this boils down to a least-squares minimization problem in which we
minimize the 3D Euclidean point-line distance. The distance d between the line parametrized
by Equation 3.9 and the point X0 is:
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Figure 3.4: The local coordinate frames, obtained from essential matrices between the moved camera
C0 and its N nearest neighboring cameras Ci, provide us with a baseline estimate (dotted lines) for each
camera pair (C0,Ci). These estimates should have a common intersection point, reducing the problem
to finding a point X0 with a minimized distance to each baseline. This will be the location of the new
camera center.

d =
‖tLi

0 × (RLi
0 tW

i −X0)‖
‖tLi

0 ‖
(3.16)

=

∥∥∥∥∥
(
−[tLi

0 ]×

‖tLi
0 ‖

)
X0−

(
−
[tLi

0 ]×RLi
0 tW

i

‖tLi
0 ‖

)∥∥∥∥∥ (3.17)

Although this definition provides us with three linear equations per neighboring camera,
only two of them are linearly independent, because [tL

0 ]× is a rank two matrix (the rank of a
skew-symmetric matrix is an even number).

Combining the rows of N baseline estimates gives us a minimization problem of the
form ‖AX− b‖, where A is a 2N× 3 matrix and b is a 2N vector. We find the least-squares
solution to this problem using the normal equations AT AX = AT b. If AT A is invertible, then
the solution is X= (AT A)−1AT b.
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3.5 Results

We implemented our system on a clustered network of workstations (2.8 GHz Intel Xeon
processors with 2 GB RAM) connected by FireWire to four Point Grey Flea cameras at each
node, counting 20 cameras in total. The recalibration algorithm was running on one of the
nodes, acquiring images via network connections as needed. Camera calibration information
was stored on the respective workstations.

Uniformly colored backgrounds contain little to no useful intensity variation. This is a
common problem for feature matching algorithms and our movement detection is no excep-
tion to this rule. As we employ feature point detection as the basis for our hotspots, the
movement detection routine depends on a sufficient amount of background texture. A pos-
sible workaround is to provide the scene with markers serving as traceable hotspots. In a
dense camera network these markers could be assigned to the cameras themselves, allowing
the cameras to track each other. Processing time for the detection phase is in the order of
10−4 to 10−3 seconds per iteration, making it attractive for real-time applications.

Recalibration time is severely reduced when compared with full system recalibration,
even though there is still the matter of the time consuming SIFT detector. The time needed to
detect and describe SIFT features in each camera frame proves to be the main bottleneck of
our system (approximately a second per camera). In comparison, we also implemented the
algorithm for small-baseline setups, using a normalized cross-correlation of RGB intensities
as our matching criterion. This results in a significant reduction in computation time, often to
less than a second. For unknown scene configurations, however, a wide-baseline setup must
be assumed and SIFT is currently still the state-of-the-art descriptor available. If aiming for
real-time applications, using SURF [Bay et al., 2008] should result in speed improvements
comparable to the small-baseline implementation.

We have observed the recalibration algorithm to give accurate results in practice, on par
with state-of-the-art (de-)centralized network recalibration algorithms. Using the newly com-
puted camera matrix, the essential matrices associated with its neighbors produce a reprojec-
tion error of less than a pixel.

3.6 Conclusion

We developed a novel algorithm to robustly maintain the calibration of a camera network
after the event of an (un-)intended camera displacement, without the need for a full system
recalibration. The algorithm detects when the extrinsic parameters of a camera are no longer
valid and reintegrates the displaced camera into the previously calibrated camera network.

Detection of displacement is done by means of hotspots, i.e. traceable features in the
background image. A sparse and a dense layer of features are matched in a temporal sequence
of frames, to establish whether they are still present and located at the same pixel coordinates.
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If a large enough quantity of the hotspots remain in place, the camera is deemed stable. If
not, the displaced camera is recalibrated.

Recalibration is achieved using image point correspondences only, without the need to
compute the underlying 3D scene structure. We compute essential matrices from the dis-
placed camera to its neighboring cameras, providing us with local coordinate estimates for
each camera pair. These canonical pairs are related to the real world coordinates, up to a
similarity transformation. From these estimates, a mean rotation and translation is deduced
in the coordinate frame of the original full calibration.

It is important to note that our calibration algorithm is based on fitting camera pair esti-
mates, rather than fitting 2D-3D correspondences. This means our computations have a lower
dimensionality (two rotations and translations instead of a large set of point correspondences)
and avoid the unneeded step of computing the 3D estimates.

The results of our algorithm are comparable to those of state-of-the-art (de-)centralized
network recalibration algorithms.

3.6.1 Future Work

The main limitation of our algorithm is that it is unable to discern between a change in
extrinsic and intrinsic camera parameters. If a change is detected, it automatically assumes
that it has physically moved (i.e. its extrinsic parameters have changed), even though a change
in intrinsic parameters might have occurred instead, e.g. a change in the zoom level.
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Figure 4.1: This chapter remaps the environment to implement the minimal one-camera solution de-
picted in the overview in Figure 1.1(a), p. 2.
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We start off the main part of this dissertation with a somewhat unconventional solution to
the problems introduced in section 1.1, p. 3, that is based on the concept of environment
mapping. We placed environment mapping in the context of depth-image-based rendering
without geometry in section 2.1.1, p. 12.

Two key observations are illustrated by Figure 4.2(a). First, when looking head-on into
a spherical mirror, a user looks into his own eyes. This implies correct eye gaze, as his gaze
immediately locks on to his reflection’s gaze. Second, this happens without losing a clear
view of the environment, exactly due to the non-planar spatial nature of the viewing window.
As artificially composed in Figure 4.2(b), being able to exchange such views between two
(groups of) people would create a natural way of communicating. This is the core idea behind
this chapter.

To realize this idea, we combine the capture of omnidirectional video (in other words,
the environment) by filming a spherical mirror (shown in Figure 4.2(c)) with corresponding
projection on a diffuse white spherical screen (represented in Figure 4.2(d)). Both capture
and display are performed on a single sphere, forming a single communication device. In
essence this creates a virtual overlap between the screen and the camera, which results in the
user looking directly into the camera while at the same time looking at the display. We have
dubbed this single device a JanusLight, after the Roman two-faced god, and will henceforth
refer to it by this name [Hermans et al., 2006, 2007a].

The unconventional novelty in this approach is that we correct eye gaze without the need
of view interpolation, the latter which will be the subject of the following chapters. Instead,
this chapter demonstrates that the same effect can be achieved by capturing and projecting
video on appropriately curved rather than planar surfaces. With a given external calibration
of the camera-projector setup, the pixel-to-pixel mapping used for the image transforma-
tion has to be computed only once and our solution essentially becomes one of environment
remapping.

This chapter corresponds to the minimal one-camera solution, depicted in the overview
in Figure 1.1(a), p. 2, and enlarged in Figure 4.1. It is organized as follows. We set off
by discussing related work in section 4.1. Next, we define two possible user configurations
(many-to-many and one-to-one) for our JanusLights in section 4.2. Each configuration re-
quires a different image mapping between the captured input and the projected output and we
develop the mathematical equations for those mappings in section 4.3. This is followed by a
presentation of various application scenarios in section 4.4. How we construct our proof-of-
concept prototypes is explained in section 4.5, after which results are presented in section 4.6.
In section 4.7 we discuss how our prototypes measure up to the requirements laid out in sec-
tion 1.1, p. 3, and we conclude in section 4.8.
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(a) Looking into a spherical mirror. (b) (Artificially) exchanged views.

(c) Capturing omnidirectional video. (d) Projecting on a spherical screen.

Figure 4.2: (a) When looking head-on into a spherical mirror, a user looks into his own eyes with-
out losing a clear view of his environment. (b) If we’d be able to exchange such views between two
people (accomplished artificially here), we’d create a natural way of communicating. (c) We realize
this core idea by combining the capture of omnidirectional video from a spherical mirror, (d) with the
corresponding display by projection on a diffuse white spherical screen.

4.1 Related Work
We introduced environment mapping and projection mapping and placed them in the context
of image-based rendering in section 2.1, p. 11. They can also be placed in the context of
image-based lighting (IBL) [Debevec, 2002], i.e. to simulate real-world lighting or to project
images as light sources.

Environment Mapping An environment map is an omnidirectional representation of
real-world light information, captured as an image (or texture) [Blinn and Newell, 1976].
It can be used to simulate highly detailed real-world lighting for objects in a computer-
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generated scene, thereby avoiding the need to accurately model or simulate illumination using
a more complex rendering technique (e.g. ray tracing).

Debevec [1998] presents a method that uses measured scene radiance and global illumi-
nation in order to add virtual objects to real-world scenes with correct lighting. He computes
the scene radiance by filming a specular reflective sphere in the center of the distant scene.
As he demonstrates in Figure 2.3, p. 13, unfolding the environmental reflection captured on a
specular sphere yields omnidirectional imagery with a projection center located at the center
of the sphere. For this to be valid, he necessarily makes two assumptions: a (relative to the
environment) small sphere and an orthographic (affine) camera projection. Nevertheless, this
observation is key to our solution for eye gaze correction in this chapter, as we film a spher-
ical mirror to similarly provide us with the light intensities coming from all directions and
arriving at the center of the sphere.

Very recently, Michiels et al. [2014] proposed a technique to augment video with new
virtual objects that are rendered under the same lighting conditions of the video. Realistic
rendering is achieved by applying the omnidirectional video frames as environment lighting
in the rendering equation.

Projection Mapping The goal of the recent field of projection mapping, also known as
spatial augmented reality, is to deform an image that is to be projected in such a way that it
projects in correct perspective on a real-world, often irregularly shaped, object [Bimber and
Raskar, 2005]. Moving away from conventional planar displays, previously static objects can
be augmented to include dynamic lighting, notions of movement, optical illusions, etc.

Originally conceived as shader lamps by Raskar et al. [2001], they animate neutral ob-
jects – diffuse white objects with a defined geometry, but without any texture information –
with image-based illumination. In later work they extend the concept with self-configuring
geometry-aware projectors [Raskar et al., 2003].

Very recent projection mapping research includes Microsoft’s IllumiRoom [Jones et al.,
2013] which augments the space surrounding a television screen with peripheral projected
illusions to enhance traditional gaming experiences. The illusions can relight the user’s living
room, react to what happens in the game by distorting reality, extend the field of view, etc. A
Microsoft Kinect captures the room, after which a projector projects an image that has been
compensated for the specific color and geometry of the room around the television screen.

4.2 Configurations

Our JanusLights – partly diffuse, partly specular spheres – are used in one of two configura-
tions:

• The many-to-many configuration has one camera at a distance on top, and a projec-
tor from below, while the users are located in the lower horizontal space around the
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(a) The many-to-many configuration. (b) The one-to-one configuration.

Figure 4.3: JanusLights can be set up in two configurations, each with their own usage scenario and
image mapping. (a) The many-to-many configuration has one camera capturing from a distance at
the top and a projector displaying from below, while the users are located in the 360-degree space
around the sphere. (b) The one-to-one configuration has a triangular camera-projector setup with two
cameras capturing from behind the sphere and a projector displaying on the front of the sphere. Green
(input) indicates specular surfaces recorded by the camera(s), while red (output) represents diffuse white
projection surfaces.

sphere. Capture and projection are performed by a single camera and projector. The
image captured from the specular northern hemisphere is transformed by the many-
to-many image mapping and the remapped image is projected on the diffuse southern
hemisphere. A typical setup is depicted in Figure 4.3(a), where the users sit around a
meeting table with a hole in the center.

• The one-to-one configuration has a triangular camera-projector setup with two cam-
eras behind the sphere and a projector in front of the display screen. The user’s viewing
direction is the same as that of the projector, so the projector is put above the shoul-
der of the user. The images captured by the cameras are transformed according to the
one-to-one image mapping and the remapped image is projected on the display surface
of the JanusLight. To acquire the needed information from both cameras, we need to
slightly reduce the angle of the vertical field of view for this setup. This results in an
eye-like display screen, as can be seen in Figure 4.3(b).
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4.3 Image Mapping
Similar to procedures that compute environmental reflection, we can map points on the spher-
ical mirror to directions of reflected light on the display surface, as if the display wasn’t dif-
fuse at all, but a perfect mirror itself. As long as the gaze direction of the user meets the
center of projection (which it should, as the user looks into the center of the sphere head-
on), he automatically looks into the camera when watching the display and thus eye gaze is
correct.

We first describe a general camera-projector mapping in section 4.3.1. From this general
mapping, we specify the variables for both the many-to-many and the one-to-one configura-
tion in section 4.3.2 and section 4.3.3 respectively. The notation refers to the vectors shown
in Figure 4.4.

4.3.1 General Mapping

Without loss of generality, we assume the (x,y) image coordinates of the input cameras to
be centered on the image of the captured sphere. On the projector side, we make the similar
assumption that the pixel at (0,0) is projected onto the center of the diffuse surface of the
sphere. In both configurations we perform a backward mapping, starting in the coordinate
frame of the receiver (output) and ending in the coordinate frame of the sender (input).

4.3.1.1 Output

To accommodate for possible imperfections in the constructed hardware, in actuality we
model the JanusLight as a spheroid QJL rather than a perfect sphere. This provides us with a
first equation for any point q = [Xq,Yq,Zq,1]T on the spheroid’s surface (q ∈ QJL):

[
Xq Yq Zq 1

]


1
a2 0 0 0
0 1

b2 0 0
0 0 1

a2 0
0 0 0 −1




Xq

Yq

Zq

1

= 0 (4.1)

The input of a JanusLight is omnidirectional video with the projection center in the cen-
ter of the sphere. For our calculations this implies the use of an affine camera model. This
assumption is valid in case of a substantially large camera-sphere and projector-sphere dis-
tance, relative to the radius of the sphere. The larger the JanusLight, the larger the required
distances. To retain uniformity, we make a similar assumption at the output side. The affine
camera matrix is defined as:

A =

 1 0 0 0
0 1 0 0
0 0 0 1

 (4.2)
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Figure 4.4: In both configurations, we use a backward mapping from projected pixels to camera pixels.
Rays coming from the projector (direction ~o) are mapped to their normal ~n or more naturally, their
reflection direction ~r2. Using the corresponding reflection ~r1 on the input side and the direction of the
camera~i, we can find the intersection of the normal ~m and the coordinate of the wanted pixel in the
camera image.

We also know the position(s) of the camera(s), which can be reached with a rotation
around the X-axis with angle α. Combining this knowledge with the affine model gives us:

 xout

yout

1

= A RX (α)


Xq

Yq

Zq

1

 (4.3)

Putting these first three equations together, we can see that equating the light intensities
arriving at point q = [Xq,Yq,Zq,1]T on the JanusLight to the image coordinates (xout ,yout) of
the projector, results in the following group of constraints:

Xq = xout

Yq =
yout−sin(α)Zq

cos(α)

Zq =
yout−cos(α)Yq

sin(α) ≥ 0
X2

q +Z2
q

a2 +
Y 2

q
b2 = 1

(4.4)

Our goal on the receiving side is to mimic the illumination of a mirror on the sending
side. In order to do this, we need to compute the reflection direction for each point q ∈ QJL.
We know that for each point X on a quadric Q, the tangent plane πX is found:
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πX = QX (4.5)

The tangent plane πq in point q defines the normal~n:

~n =

[
Xq

a2 ,
Yq

b2 ,
Zq

a2 ,0
]T

(4.6)

Given this normal and the projector (output) direction ~o, the corresponding reflection
direction~r is computed as:

~r = 2~n(~n ·~o)−~o (4.7)

4.3.1.2 Input

On the sending side, we need to map from the reflection direction to the corresponding image
pixel in the camera. First we compute the normal from the reflection direction and the camera
direction:

~m =
~r+~i
‖~r+~i‖

= [Xm,Ym,Zm,0]T (4.8)

The light ray reflecting on the JanusLight according to the given reflection direction,
touches the spheroid at a point p. The corresponding tangent plane in p is defined as:

πp = [a2Xm,b2Ym,a2Zm,−1]T (4.9)

From this equation, we can derive p itself:

p = [Xp,Yp,Zp,1]T ∈ πp∩QJL

⇓

p =
[a2Xm,b2Ym,a2Zm,

√
a2Xm+b2Ym+a2Zm]

T√
a2Xm+b2Ym+a2Zm

(4.10)

Once we know the location of the surface point p, we can seek its projection in the
corresponding camera – with angle θ around the X-axis – thus completing the transformation:

 xin

yin

1

= A RX (θ)


Xp

Yp

Zp

1

 (4.11)
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4.3.2 Many-To-Many Mapping

In this configuration a single camera is positioned at angle θ = π

2 in the YZ-plane, while the
projector is located at an angle α = −π

2 . The many-to-many image mapping varies slightly
from the general one. The reason for this is twofold: (a) users look at the JanusLight from
the sides instead of standing right in front of it (α = −π

2 ), and (b) multiple users use the
JanusLight at the same time, so the projected image has to be view independent.

Our proposed approach is to map the reflection~r in the receiving JanusLight to the normal
~n in the sending one:

(Xq = xout)∧
(

Yq =

√
b2− b2(x2

out+y2
out )

a2

)
∧ (Zq = yout)

⇓

~n = [Xn,Yn,Zn,0]T

=

 xout
a2 ,

√
b2− b2(x2

out+y2
out )

a2

b2 , yout
a2 ,0

T
(4.12)

According to the law of reflection (~r = 2~m(~m ·~i)−~i), this normal gets mapped to reflection
~r in the sending JanusLight:

(~m ·~i)~m = ~r+~i
2

⇓

Zm[Xm,Ym,Zm,0] =− [Xn,Yn,Zn−1,0]
2

⇓

Zm←
√

1−Zn
2 ∧ Xm←− Xn

2Zm
∧ Ym←− Yn

2Zm

(4.13)

Derivation of the corresponding image point from the normal on the sender’s side can be
done analogously to the derivation in the general mapping.

4.3.3 One-To-One Mapping

In this configuration, we can directly apply the general image mapping described earlier.
More specifically, the cameras are positioned at angles α = 0 and α = 2π

3 in the YZ-plane,
while the user looks at the scene from θ =− 2π

3 degrees. Depending on the pixel position in
the projected image (yout ≤ 0 or yout > 0), the system chooses the correct camera to perform
the mapping.
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4.4 Applications

Depending on the configuration used, we can have different application scenarios. These
include:

• The combination of a diffuse and a specular hemisphere, mapping reflections on the
projector side to normals on the camera side, generates sensible images from any point
of view around the device. This allows for many-to-many communication. A meeting
room with a central table would be an excellent candidate for the use of our JanusLights
as video conferencing devices. Figure 4.7 illustrates this application scenario.

• A triangular camera-projector setup is suited for one-to-one communication. Typical
applications would be standard video conferencing, be it a stand-alone system like a
telephone or a webcam-like extension for a personal computer. An example of this
application can be seen in Figure 4.8

• JanusLights can also be used as decorative lighting devices, offering a point of view
into (network-) linked spaces, such as living rooms, pubs, halls, theaters, events, etc.
Figure 4.9 shows the many-to-many setup at work as an eye-catcher at an art exposition
at a local theater.

Figure 4.5 shows an attractive artist’s impression of these scenarios as imagined in a day-
to-day personal living room environment.

4.5 Implementation

For our prototypes, we used off-the-shelf hemispherical mirrors, the kind typically used for
shop surveillance. Two of these stuck together form a sphere. In the case of the many-to-
many configuration, one hemispherical mirror is completely coated in diffuse white paint to
project on, whereas for the one-to-one configuration only a quarter of the whole sphere is
coated. Our prototype builds are shown in Figure 4.6, as the realization of the schematics of
Figure 4.3.

As the mirrors are neither perfectly spherical nor specular, image quality suffers most. As
explained in section 4.3, we attempt to compensate for these spatial deformations by model-
ing our sphere as a spheroid with a vertical axis of a different length than the horizontal ones.
Another hardware limitation on image quality consists of the inherent resolution restrictions
of the projector and the cameras. It is important to note that both issues are related to the
hardware of the prototype rather than to the system concept.

In order to balance the perceived intensities of the pixels when projected on the spheri-
cal display, each pixel in the projected image is best multiplied by an attenuation factor that
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Figure 4.5: Artist’s impression of JanusLights, used in various application scenarios and set in a day-
to-day personal living room environment. Sketch courtesy of Eric Joris [CREW].

depends on the distance from the projection center. This factor results in an increased lu-
minance value for pixels in the outer rim when compared with center pixels, noticeable in
Figure 4.7(c).

All image manipulations are straightforward pixel-wise 2D or 3D operations which makes
them very suitable for implementation and execution on the GPU. Moreover, most operations
need to be computed only once, ahead of the rendering step. The pixel-to-pixel mapping
code, for example, can be computed as a preprocessing step, which produces a reference
table that can be uploaded to the GPU as a texture.

Lastly, we extend the basic system in several ways to provide the user with more options
for personal use. These additions have no significant impact on system performance:

• During many-to-many communication, users can easily rotate the view by performing
a simple 2D rotation on the captured scene. When used as a decorative lighting device,
applying a small constant rotation results in an increased feeling of affiliation with the
linked space, as a local non-moving user is able to gradually get a full mental image of
the remote site.
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(a) The many-to-many prototype. (b) The one-to-one prototype.

Figure 4.6: Our prototypes are built from off-the-shelf hemispherical shop surveillance mirrors, stuck
together to form a full sphere. (a) In the case of the many-to-many configuration, one hemispherical
mirror is completely coated in diffuse white paint to project on. (b) For the one-to-one configuration
only a quarter of the whole sphere is coated. Compare with Figure 4.3.

• The many-to-many output can be divided in a number of equally sized slots – much
like a pie-chart – equal to the number of users on the viewing side. Together with
the rotations mentioned in the previous extension, this gives each user an individual
viewing window under his control. In the same way, these slots can easily be adapted
to support multi-party communication.

4.6 Results

Our lightweight implementation easily operates at a real-time rendering speed of at least 25
FPS on an NVIDIA GeForce 8800 GTX graphics card (Tesla architecture) [Lindholm et al.,
2008] with no mentionable delay other than network and frame grabbing delays. This also
accounts for the extensions described in section 4.5.

Overall, our many-to-many (Figure 4.7) and one-to-one (Figure 4.8) prototypes look
promising. Our experiments have shown that the concept works, despite technical difficulties.
In the next sections we will address these difficulties and any remaining artifacts.
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4.6.1 Many-To-Many Results

As the light rays emitted from the projector are bundled like a cone, projection on the edges
of the display side is suboptimal (Figure 4.7(a)). There are two possible ways to resolve
this issue. The first option is to place concave mirrors to bend the projected rays to their
corresponding 3D coordinate on the sphere. This method still uses an external projector and
thus requires additional careful calibration. The second option allows fixed one-time factory-
calibration by placing the projector inside the sphere. Spherical display systems with the
projectors stored on the inside, such as the Omniglobe [ARC Science Simulations, 2003]
or the Magic Planet [Global Imagination, 2002], provide excellent alternatives, but they are
more difficult to construct. Furthermore, using internal projections would obviously alter our
mapping method, as the output mapping will become that of a concave mirror, yet the main
principles remain the same.

Another noticeable issue is the vanishing point at the center of the projected image. This
occurs because of the poor quality of the information gathered from the edge of the captured
sphere. This is understandable, as there is no way to view the content directly beneath the
sphere. Fortunately for our purposes, discomfort is minimized by two facts. First, in an
office scenario a JanusLight is usually placed above a uniformly colored meeting table, which
means the pixels associated with the artifact are roughly all of the same color. Second, no user
is positioned at the viewing angle where the artifact occurs in the first place. This is clear from
Figure 4.7(c), where the vanishing point is located at the center of the white conferencing
table.

Finally, Figure 4.9 shows two network-linked JanusLights in a many-to-many configura-
tion used as decorative lighting devices at an art exposition at a local theater.

4.6.2 One-To-One Results

Our one-to-one setup cannot afford to suffer from the vanishing point artifact, because it
would be located in the center of the display screen. Hence we opted for a two-camera
setup, where we merge the halves of the transformed camera images that do not contain their
respective vanishing point, as illustrated in Figure 4.8. The use of two cameras at the same
time results in improved image quality, as our view of the needed reflection surfaces and the
associated light intensities is now available at a better angle.

Merging the two different input views, however, comes at a cost. The transformed images
must be carefully aligned to create a uniform output image, but inaccuracies in the camera
positions may result in image distortions. Therefore external camera-sphere-projector cali-
bration is more of a recommendation rather than a luxury. For our prototypes we settled for
a soft blending approach to mask such artifacts.
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(a) A bottom view as seen by a typical
user in a meeting around a white desk.

(b) A top view, the spherical mirror
reflecting a hallway with staircase.

(c) Remapped image to be projected
on the spherical screen in (a).

(d) Projection of the remapped image
of the hallway captured in (b).

Figure 4.7: Our many-to-many prototype seen from various viewpoints in various scenarios.

4.7 Requirements Evaluation

We evaluate to what degree the presented solution adheres to the requirements laid out in the
problem statement in section 1.1, p. 3. The scores correspond to the scale defined there and
are plotted in Figure 4.10.

Eye Contact Because unfolding the environmental reflection captured on a (relatively small)
specular sphere yields omnidirectional imagery with a projection center located at the
center of that sphere, the user looks directly into the camera and eye contact is inher-
ently guaranteed. However, image quality and pixel resolution are obvious limiting
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(a) Two views blended into a single image. (b) Our one-to-one prototype in action.

Figure 4.8: For the one-to-one prototype, the halves of the transformed camera images that do not
contain their respective vanishing point are merged and soft blending is employed to mask artifacts.

(a) A JanusLight located at
the top floor of a local theater.

(b) A linked JanusLight located at
the bottom floor of the same theater.

Figure 4.9: Many-to-many JanusLights can be used as decorative lighting, offering a point of view into
(network-) linked spaces, e.g. pubs, halls, theaters, exhibitions, events, etc.

factors. Nevertheless, when pixel resolution was high enough to see the eyes of the
remote user, we have witnessed eye gaze to be accurate. 3/73/73/7 (reasonable)

Spatial Context The spherical nature of the display screen unveils the full spatial context
of the users. Compared with the limited information provided by a 2D viewing win-
dow, we believe this to be a significant enhancement. However, the displaying sphere
remains relatively small. 6/76/76/7 (very good)
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Figure 4.10: Requirements evaluation of our environment remapping prototype for eye gaze correction.
The scores correspond to the scale defined in section 1.1, p. 3. Missing data will be filled in as more
solutions are developed in the next chapters.

Freedom of Movement In the many-to-many configuration, the local user receives an un-
precedented freedom to move around in the entire 360-degree space surrounding his
own JanusLight, while never loosing sight of the remote user and maintaining eye con-
tact at any moment. The one-to-one configuration is slightly more limited, yet still
offers considerable freedom of movement in front of the JanusLight. 7/77/77/7 (excellent)

Visual Quality It is clear that the very low image quality proves to be the Achilles’ heel of
our JanusLights system, severely limiting eye contact and spatial context. Although
we are currently unable to verify this in practice, we postulate that this is mainly due
to limitations of the mathematical model and the prototypes’ off-the-shelf components
rather than the concept itself. 1/71/71/7 (terrible)

Algorithmic Performance The view synthesis is completely independent of the scene struc-
ture. It does not require the recovery of the depth of the scene, but instead relies on
the mathematical equations that map the captured input to the projected output, both
interpreted as parallel rays of light under an affine camera model. This pixel-to-pixel
mapping can be precomputed, which allows for an extremely lightweight implementa-
tion that easily operates at a real-time rendering speed on any contemporary GPU and
even CPU. 7/77/77/7 (excellent)

Physical Complexity Perhaps not the most convenient physical setup, since larger spheres
requires a larger camera/projector to sphere distance. This may especially pose a prob-
lem if a large viewing surface is desired. A small viewing surface further limits eye
contact, spatial context and freedom of movement. 2/72/72/7 (bad)
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Communication Modes Although the solution is best suited for many-to-many communi-
cation, one-to-one and even limited multi-party communication (by subdividing the
many-to-many projection) are supported. 5/75/75/7 (good)

4.8 Conclusion
We presented a novel camera-projection system for one-to-one and many-to-many video con-
ferencing based on the capture of omnidirectional video from a spherical mirror combined
with display on a spherical surface.

Eye gaze correction is achieved using only one capturing camera (at least in the many-
to-many user scenario) and without any need to perform computationally expensive view
interpolation. Instead, synthesizing the eye gaze corrected image is completely independent
of the scene structure. It does not require the recovery of the depth of the scene, but instead
relies on the mathematical equations that map the captured input to the projected output,
both interpreted as parallel rays of light. This pixel-to-pixel image transformation has to be
precomputed only once, resulting in a very fast and lightweight implementation.

Because unfolding the environmental reflection captured on a (small, relative to the envi-
ronment) specular sphere yields omnidirectional imagery with a projection center located at
the center of the sphere, the user looks directly into the camera when looking at the sphere
and eye contact is inherently guaranteed. Moreover, the omnidirectional nature of the device
allows many users to communicate simultaneously, while the spherical screen unveils their
full spatial context. They also possess an unprecedented freedom of movement in the entire
space around the device.

Image quality suffers because of limitations of the mathematical model and the use of
off-the-shelf hardware components (e.g. imperfect store surveillance mirrors). In spite of
these limitations, we were still able to attain promising results and show it to be a functional
concept.

4.8.1 Future Work

The image remapping equations are governed by an affine camera model. Using perspective
cameras might complicate calculations to some extent, but it should be able to alleviate the
vanishing point artifacts to some degree. Any missing image information at the vanishing
point coordinates can then be interpolated.

We also assume a known external calibration of the camera-sphere-projector configura-
tion. Achieving this alignment proves to be an elaborate manual process. An automatic
calibration would decrease the setup time and at the same time would remove image distor-
tions originating from misalignment. The work of Svoboda [2000], Pajdla et al. [2001] and
Francken et al. [2007] is a good place to start.
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Figure 5.1: This chapter develops a novel stereo matching algorithm. In chapter 6, this algorithm will
form an integral part of the two-camera solution depicted in the overview in Figure 1.1(b), p. 2.
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Stereo matching takes a pair of images, estimates the apparent movement of each pixel from
one image to the next and expresses this movement in a disparity map for the image under
consideration. In chapter 6 we will correct eye gaze by interpolating between two cameras in
a rectified stereo configuration. As stereo matching is the basis for stereo interpolation, one of
the more common approaches to view interpolation in the literature, chapter 6 will rely heav-
ily on the stereo matching algorithm that we develop here. Both chapters together constitute
the two-camera solution in the overview in Figure 1.1(b), p. 2, repeated in Figure 5.1. We
conceptually explained both and placed them in the context of depth-image-based rendering
with implicitly determined geometry in section 2.1.2, p. 14.

We start this chapter with an in-depth overview of stereo matching research in section 5.1.
As we will find out there, local disparity estimation algorithms typically consist of four stages:
cost calculation, cost aggregation, disparity selection and disparity refinement [Scharstein and
Szeliski, 2002]. Our main contribution in this chapter lies in the refinement stage [Dumont
et al., 2014c, 2015]. In section 5.4 we present an iterative disparity refinement method to
significantly improve the quality of any initially estimated disparity map. One iteration of
the refinement consists itself of four strictly defined stages: a disparity cross-check (sec-
tion 5.4.1), bitwise fast voting (section 5.4.2), invalid disparity handling (section 5.4.3) and
median filtering (section 5.4.4). We will also observe that the iterative process tends to con-
verge to a final solution.

Our refinement depends heavily on local support windows that we first define in sec-
tion 5.2. As a second contribution, we construct two edge-sensitive windows around the
currently considered pixel that adapt their shape to the underlying color information in the
input images. Hereby we assume that pixels with similar colors belong to the same object
and therefore should get the same disparity value (or depth in the scene). Each window favors
a specific edge direction. One window grows in the horizontal direction and stops at edges,
and likewise the other window grows in the vertical direction. Unlike the method of Zhang
et al. [2009a] which uses only a horizontal window, we combine these two directions so that
vertical edges are not favored.

Although applicable to a disparity map that was computed using any disparity estimation
algorithm, the ultimate success of our refinement still depends on the quality of the initial
disparity map. In our third contribution we therefore develop a novel disparity map estima-
tion algorithm. It is presented in section 5.3 and covers the other three stages previously
mentioned: cost calculation (section 5.3.1), cost aggregation (section 5.3.2) and disparity se-
lection (section 5.3.3). This time the novelty lies in the cost aggregation stage, where we
combine the edge-sensitive local support windows from section 5.2 into a global support
window for increased disparity hypothesis confidence [Dumont et al., 2014b, 2015].

We demonstrate the effectiveness of our stereo matching method on various standard
Middlebury datasets [Scharstein and Szeliski, 2003] in section 5.5. First we quantitatively
and qualitatively compare our iteratively refined disparity maps with their ground truth (sec-
tion 5.5.1), after which we take a look at processing time (section 5.5.2). As local pixel-wise
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algorithms map very well to parallel hardware, we achieve real-time performance by imple-
menting the entire stereo matching pipeline in CUDA [Sanders and Kandrot, 2010; NVIDIA
Corporation, 2007]. This exposes the GPU as a massive pool of directly programmable paral-
lel threads [Ryoo et al., 2008; Goorts et al., 2009, 2010], as explained in section 2.3.2, p. 23,
and depicted in Figure 2.8, p. 24. We finally conclude in section 5.6.

Throughout this chapter, we illustrate our stereo matching algorithm on the Middlebury
Teddy scene. Both its left and right color images, together with their ground truth disparity
maps, are shown in Figure 5.2. The full algorithmic chain is quite extensive, but an overview
is given in Figure 5.3. The left (I) and right (I′) color images serve as input to this chain (step
(a)) and our goal now becomes to estimate disparity maps that are as close as possible to their
left (DGT ) and right (D′GT ) ground truth.

5.1 Related Work

Stereo matching algorithms for dense disparity estimation can typically be classified as ei-
ther local or global. The stereo matching algorithm developed in this chapter is character-
ized as local, as it restricts itself to matching local neighborhoods around pixels. Scharstein
and Szeliski [2002] break down stereo matching in a clear and concise taxonomy, with four
well-defined stages: cost calculation, cost aggregation, disparity selection and disparity re-
finement. Later, Rogmans et al. [2009c] formalize the taxonomy introduced by Scharstein
[1996] for intermediate view synthesis.

Local stereo matching algorithms rely heavily on good and efficient cost aggregation,
where the matching costs of neighboring pixels are taken into account to acquire a more con-
fident cost. The early conventional approach was to use fixed-size square windows, where
at best the support weight for each pixel in the window tapers off gradually, according to
its geometric proximity to the center pixel [Nishihara, 1984; Faugeras et al., 1993]. While
extremely fast and straightforward to implement, the result is often noisy and contains severe
artifacts. This is because the naive local approach does not integrate any scene knowledge at
all, as it implicitly assumes that all pixels in the square window have similar disparity value
as the center pixel does. Furthermore, the ideal window size may vary within a single image:
larger ones for weakly textured areas and smaller ones for areas with finer detail. Conse-
quently, local stereo matching very easily suffers from edge fattening, a phenomenon that
manifests itself as leakage of disparities over object (occlusion) edges and depth discontinu-
ity boundaries. The general consensus in attempting to counteract these nefarious properties,
is to adapt the aggregation window to the underlying information in the reference images by
varying its size, shape, location, support weights, or a mixture of all those.

A common approach is to choose from a range of predefined rectangular window sizes
[Kanade and Okutomi, 1994; Boykov et al., 1998]. Yang and Pollefeys [2003] implement
a multi-resolution hierarchical approach to combine cost measurements for square windows
of varying sizes on commodity graphics hardware. Additionally, Veksler [2003] efficiently
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I I′

DGT D′GT

Figure 5.2: The Teddy scene of the standard Middlebury dataset [Scharstein and Szeliski, 2003], which
will serve as a running example throughout this chapter. Our goal is to estimate as well as possible the
left (DGT ) and right (D′GT ) ground truth disparity maps from the left (I) and right (I′) input images.
Black patches in the ground truth disparity maps indicate missing data.

aggregates costs over those windows by using the integral images technique, a technique that
we will also adopt in section 5.3.2.1.

Using shiftable windows entails placing multiple windows at different locations (not just
centered around the pixel that we are trying to match) and selecting the one that produces the
smallest matching cost [Fusiello and Roberto, 1997; Bobick and Intille, 1999; Kang et al.,
2001; Hirschmüller et al., 2002]. Yang et al. [2004a] exploit the GPU’s bilinear sampling
functionality to efficiently aggregate matching costs over six different window shapes sur-
rounding the pixel of interest. Another approach is to take an isotropic 2D kernel, truncate
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it into its four constituent parts (upper/lower, left/right) and use hierarchical combinations of
those parts to aggregate costs [Lu et al., 2007, 2009]. It combines the advantages of large sup-
port windows and shiftable windows, while also being moderately edge-aware and providing
support weights on geometric proximity.

Rectangular windows struggle with arbitrarily shaped depth discontinuities. However, in
many cases we may assume that image patches with similar color belong to the same ob-
ject and therefore have the same depth in the scene. In other words, the color discontinuity
boundaries in the images are often also the depth discontinuity boundaries in the scene. Based
on this property, segmentation-based approaches select the sizes and shapes for cost aggre-
gation windows accordingly. Both methods that incorporate color segmentation [Tao and
Sawhney, 2000; Bleyer and Gelautz, 2005; Gerrits and Bekaert, 2006; Tombari et al., 2008;
Wang and Zheng, 2008] and edge detection [Gong and Yang, 2005] have received attention.
These methods mostly struggle with representing irregularly shaped aggregation windows in
an efficient manner.

Instead of changing the size or shape of the aggregation windows, a recent development
with promising results is to adapt the support weights in fixed-size windows. Commonly
known as bilateral filters, they were originally developed as edge-preserving and noise-
reducing smoothing filters for images [Tomasi and Manduchi, 1998; Durand and Dorsey,
2002; Chen et al., 2007]. In essence, the support weights depend not only on the geometric
distance between pixels, but also on the photometric difference [Ansar et al., 2004; Yoon and
Kweon, 2006]. An approximated bilateral grid, extended with aggregation in the temporal
domain, is presented by Richardt et al. [2010], whereas Tombari et al. [2007] incorporate
segmentation information. Hosni et al. [2009] improve on the photometric distance of the bi-
lateral filter by using the geodesic distance. For a neighboring pixel to obtain a high support
weight, there must be a path to the center pixel along which the color does not change signifi-
cantly. Recently, the bilateral filter has been redefined as a special case of the guided filter by

Figure 5.3 (facing page): Overview of our stereo matching method. (a) The input is a pair of rec-
tified stereo images, in this case the standard Middlebury dataset Teddy from Figure 5.2. (b) First,
a horizontal and vertical edge-sensitive local support window is constructed in each image, based on
color consistency. (c) Next, a pixel-wise cost per disparity is computed. (d) These costs are aggre-
gated over the support windows. There are two windows and thus two sets of aggregated costs. (e)
The costs of the two windows are combined. (f) The most suitable disparity value is selected by a
winner-takes-all (WTA) approach. (g) A cross-check is performed to find any mismatches, typically
caused by occlusions around edges. (h) The local support windows are used again to let the bitwise fast
voting determine the most occurring disparity value in each window. (i) Finally, any remaining invalid
disparities are filled in by looking for the nearest valid disparity on the same scanline, (j) and a median
filter is applied to remove noise. The steps (c)–(f) estimate the initial disparity map and are executed
only once. The steps (g)–(j) constitute the iterative disparity refinement and can be repeated multiple
times. The result is two dense disparity maps, one for each input image.
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He et al. [2010]. Rhemann et al. [2011] let this filter smooth matching costs in 2D (x,d) slices
of the 3D (x,y,d) disparity space image (a.k.a. matching cost volume). Since this filter is well
behaved near edges, the edge fattening effect is largely avoided. Moreover, the guided filter
can transfer structure of the reference image to the filtered output, enabling new applications
beyond stereo matching. Unfortunately, the non-linearity and non-separability of bilateral
filters – every support weight is uniquely dependent on its center pixel – results in high mem-
ory consumption and computational complexity. It remains challenging to obtain accurate
real-time performance, even on contemporary graphics hardware [Yang, 2014]. Hosni et al.
[2013] evaluate the performance of various methods for computing adaptive support weights.

In our work, we construct two edge-sensitive support windows around the current pixel
of interest. Instead of adapting the windows’ weights, we adapt their shape to the underlying
color discontinuity boundaries in the reference images. Each window favors a specific edge
direction. One window grows in the horizontal direction and stops at edges, likewise the other
window grows in the vertical direction. Opposite to the method of Zhang et al. [2009a], which
uses only a horizontal window, we combine two directions, so that vertical edges are not
favored. Next, our windows are employed not only in the cost aggregation (section 5.3.2), but
also in the refinement stage (section 5.4). This last stage is often regarded as an optional post-
processing stage. Even more so in real-time environments, where low-complexity refinement
or no refinement at all is generally favored. We, however, argue that the refinement stage is
of equal – if not more – importance and is best not to be ignored. We formulate a four-step
iterative refinement process that is able to reliably correct mismatches and fill in occlusions,
while taking into account the challenging depth discontinuities.

Overall, the proposed method has some unique advantages. It is much easier to imple-
ment and more memory efficient than many leading real-time methods. The windows’ shape
is determined at run-time (without complex a priori color segmentation) and efficiently rep-
resented by a single quadruplet (the extent of two perpendicular axes, see section 5.2). We
thereby not only avoid a complex window representation, but also additional computational
complexity that comes from support weight dependency on the center pixel. Moreover, the
compact representation is ideally suited for massive parallel processing on the GPU.

Alternatively to local stereo matching methods, global methods generally aim to optimize
a global energy function of one form or another. They do not necessarily follow the afore-
mentioned four stages and are based on (or include a combination of) graph cuts [Kang et al.,
2001; Kolmogorov and Zabih, 2001; Deng et al., 2007; Papadakis and Caselles, 2010], belief
propagation [Sun et al., 2003, 2005; Yang et al., 2006a, 2009, 2010a], dynamic programming
[Forstmann et al., 2004; Kim et al., 2005; Wang et al., 2006b], segmented patches [Bleyer
and Gelautz, 2005; Klaus et al., 2006; Zitnick and Kang, 2007; Yang et al., 2008], spatiotem-
poral consistency [Davis et al., 2005; Shechtman et al., 2005; Gong, 2006], structured light
[Scharstein and Szeliski, 2003; Hermans, 2011] and numerical minimization methods [Min
and Sohn, 2008].
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We specifically develop our stereo matching algorithm to be very suitable for implemen-
tation on the GPU and thereby achieve high online processing speed. Another popular – easy
to embed but less flexible – approach to achieve real-time performance is to implement on FP-
GAs (field programmable gate arrays) [Darabiha et al., 2006; Lazaros et al., 2008; Ambrosch
et al., 2009; Banz et al., 2010; Zhang et al., 2011b].

Finally, all stereo matching algorithms discussed here determine dense correspondences
in small-baseline setups. Wide-baseline matchers do exist, but they generate only sparse
point-to-point correspondences [Pritchett and Zisserman, 1998; Tuytelaars and Van Gool,
2000; Lowe, 2004; Matas et al., 2004; Strecha et al., 2004; Mikolajczyk and Schmid, 2005;
Mikolajczyk et al., 2005; Bay et al., 2008].

For an in-depth overview and comparison of real-time local stereo matching algorithms,
refer to Scharstein and Szeliski [2002], Wang et al. [2006a], Gong et al. [2007], Rogmans
et al. [2009c], Szeliski [2010] and Min et al. [2011].

5.2 Edge-Sensitive Local Support Windows
We first explain how to construct two edge-sensitive local support windows. They will be
used both during the initial disparity map estimation in section 5.3 and during the iterative
refinement in section 5.4.

For every pixel p of the left image I, we first determine a horizontal axis H(p) and vertical
axis V(p) crossing in p. These two axes can be represented as a quadruplet A(p):

A(p) = (h−p ,h
+
p ,v
−
p ,v

+
p ) (5.1)

where the component h−p represents how many pixels the horizontal axis extends to the left
of p, v+p represents how many pixels the vertical axis extends above p, and so forth. Some
of these axis quadruplets are drawn as yellow crosses of their horizontal and vertical axes in
Figure 5.4 and in the overview in Figure 5.3(b).

To determine each component of the axis quadruplet, we keep extending an axis until the
difference between the center pixel p and the outermost pixel q becomes too large:

max
c∈{r,g,b}

|Ic(p)− Ic(q)| ≤ τ (5.2)

where Ic(p) is the red, green or blue color channel of pixel p and τ is the threshold for color
consistency. We also stop extending if the size exceeds a maximum predefined length L.

From these four components, two local support windows for pixel p can be derived,
referred to respectively as the horizontal local support window W H(p) and the vertical local
support window WV (p). Both derivations are illustrated in Figure 5.5.

Let’s start by constructing the horizontal window W H(p). First, we need to create its
vertical axis based on the values of v−p and v+p . We call this the primary vertical axis V(p).
Next, we consider the values of h−q , and h+q for each pixel q on the primary vertical axis.
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A A′

Figure 5.4: Some left (A) and right (A′) axis quadruplets from Equation 5.1, drawn as yellow crosses
of their horizontal and vertical axes.

These define a horizontal axis per pixel q on the primary vertical axis and are called the
subordinate horizontal axes H (q). In short, this results in the orthogonal decomposition:

W H(p) =
⋃

q∈V(p)

H (q) (5.3)

Completely analogous, but in the other direction, we construct the vertical local support
window WV (p) by creating a primary horizontal axis H(p) using h−p , and h+p , and on this axis
creating the subordinate vertical axes V (q):

WV (p) =
⋃

q∈H(p)

V (q) (5.4)

To construct both windows for a center pixel p, we only require its single axis quadru-
plet (h−p ,h

+
p ,v
−
p ,v

+
p ), together with the quadruplets that have been precomputed for every

neighboring pixel. Thus memory usage and access is severely reduced, which is a serious
consideration when using GPU computing.

Constructed this way, our windows are sensitive to edges in the image. The horizontal
window W H(p) will fold nicely around vertical edges, because the width of each subordinate
horizontal axis is variable. Horizontal edges are not followed as accurately, because the
height of the window is fixed and only determined by its primary vertical axis. This situation,
however, is reversed for the vertical window WV (p). Thus by using both windows, we do not
favor a single edge direction, which will yield better results.

Finally, the notation W ′H(p′) and W ′V (p′) represents the local support windows for each
pixel p′ in the right image I′.
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W H(p) WV (p)

Figure 5.5: Derivation of the horizontal (W H(p), Equation 5.3) and vertical (WV (p), Equation 5.4)
local support windows for pixel p, using its axis quadruplet A(p) = (h−p ,h

+
p ,v
−
p ,v

+
p ) of Equation 5.1.

5.3 Initial Disparity Estimation
In this section, our goal is to estimate an initial disparity map that will serve as input to our
iterative refinement process in section 5.4. First, in section 5.3.1, we consider each disparity
and calculate for each pixel in the left image the difference (i.e. matching cost) between that
pixel and the corresponding pixel in the right image, based on the disparity under considera-
tion. Next, in section 5.3.2, the costs of neighboring pixels are aggregated to obtain a more
confident matching cost. Once the costs are aggregated per pixel and per disparity value, the
most suitable disparity with the lowest cost is selected in section 5.3.3.

5.3.1 Per-Pixel Matching Cost

Let the range R of valid disparity values d be R = [dmin,dmax]. Then for a disparity hypothesis
d ∈ R and pixel p of the left image I, consider the raw per-pixel matching cost Ed(p), defined
as the sum of absolute differences (SAD):

Ed(p) =
∑c∈{r,g,b} |Ic(p)− I′c(p′)|

emax
(5.5)

where pixel p in the left image I is compared with pixel p′ in the right image I′, and the
coordinates of p = (xp,yp) and p′ = (xp′ ,yp′) relate to the disparity hypothesis d as xp′ =
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xp− d, yp′ = yp. The constant emax normalizes the cost Ed(p) to the floating point range
[0,1]. For example, when processing RGB images with 8 bits per channel, emax = 3×255.

We calculate Ed(p) for each pixel p and refer to Ed as the per-pixel left confidence (or
cost) map for disparity d. Similarly the per-pixel right confidence map E ′d can be constructed
by calculating E ′d(p′) for each pixel p′ analogously to Equation 5.5, with the x-coordinates
of p and p′ now related as xp = xp′ + d. The left and right per-pixel confidence maps for
disparity d = dmin are shown in Figure 5.3(c).

5.3.2 Cost Aggregation over Global Support Windows

To reliably aggregate costs, we must simultaneously consider both local support windows
W (p) for pixel p in the left image and W ′(p′) for pixel p′ in the right image. If we only
consider the local support window W (p), the matching cost aggregation will be polluted by
outliers in the right image and vice versa. Therefore, while processing for disparity hypoth-
esis d, the two local support windows are combined into a global support window Ud(p).
Distinguishing again between horizontal and vertical support windows, they are defined as:

UH
d (p) =W H(p)∩W ′H(p′) (5.6)

UV
d (p) =WV (p)∩W ′V (p′) (5.7)

where the coordinates of p = (xp,yp) and p′ = (xp′ ,yp′) are again related to the disparity
hypothesis d as xp′ = xp− d, yp′ = yp. In practice, this simplifies beautifully to taking the
component-wise minimum of their axis quadruplets from Equation 5.1:

Ad(p) = min
(
A(p),A′(p′)

)
(5.8)

Two more confident matching costs εH
d (p) and εV

d (p) can now be aggregated over each
pixel s of the horizontal and vertical global support windows UH

d (p) and UV
d (p) respectively:

ε
H
d (p) =

1∥∥UH
d (p)

∥∥ ∑
s∈UH

d (p)

Ed(s) (5.9)

ε
V
d (p) =

1∥∥UV
d (p)

∥∥ ∑
s∈UV

d (p)

Ed(s) (5.10)

where the number of pixels ‖Ud(p)‖ in the support window acts as a normalizer. These
aggregated confidence maps are shown in Figure 5.3(d) for disparity hypothesis d = dmin.

We next propose three methods to select the final aggregated cost εd(p), based on εH
d (p)

and εV
d (p). The first method tries to match as large as possible windows, assuming that larger

windows are less error-prone:
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εd(p) =

{
εH

d (p) if
∥∥W H(p)

∥∥≥ ∥∥WV (p)
∥∥

εV
d (p) otherwise

(5.11)

The second method uses a weighted sum and is more robust against errors in the matching
process:

εd(p) = γ ε
H
d (p)+(1− γ)ε

V
d (p) (5.12)

where 0≤ γ≤ 1 allows to steer toward scenes with primarily horizontal or vertical edges.
The third and final method takes the minimum and assumes that the absolute lowest cost

is the correct solution:

εd(p) = min
(
ε

H
d (p),εV

d (p)
)

(5.13)

Again the combined confidence map εd is shown in Figure 5.3(e).
The aggregation is repeated over the right image, which means computing A′d(p′) =

min(A(p),A′(p′)), with p and p′ now related as xp = xp′ + d and from there setting up
an analogous reasoning to end up at the right aggregated confidence map ε′d .

5.3.2.1 Fast Cost Aggregation using Orthogonal Integral Images

From the global axis quadruplet Ad(p) of Equation 5.8 and following the same reasoning
that defined the local support windows in section 5.2, an orthogonal decomposition of the
global support windows UH

d (p) and UV
d (p) can be obtained analogously to Equation 5.3 and

Equation 5.4:

UH
d (p) =

⋃
q∈Vd(p)

Hd(q) (5.14)

UV
d (p) =

⋃
q∈Hd(p)

Vd(q) (5.15)

This orthogonal decomposition is key to a fast and efficient implementation of the cost
aggregation step [Crow, 1984; Veksler, 2003; Zhang et al., 2009a]. Substituting Equa-
tion 5.14 into Equation 5.9 and Equation 5.15 into Equation 5.10, we separate the inefficient
∑s∈Ud(p) Ed(s) into a horizontal and vertical integration:

ε
H
d (p) = ∑

q∈Vd(p)

 ∑
s∈Hd(q)

Ed(s)

 (5.16)

ε
V
d (p) = ∑

q∈Hd(p)

 ∑
s∈Vd(q)

Ed(s)

 (5.17)
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DW D′W

Figure 5.6: The left (DW ) and right (D′W ) winner-takes-all disparity maps, as determined by Equa-
tion 5.18.

where the normalizer 1
‖Ud(p)‖ has been omitted for clarity.

For the global horizontal support window UH
d (p), Equation 5.16 intuitively means to first

aggregate costs over its subordinate horizontal axes Hd(q) and then over its primary vertical
axis Vd(p). Vice versa for the vertical configuration of UV

d (p) in Equation 5.17.

5.3.3 Disparity Selection

After the left and right aggregated confidence maps have been computed for every disparity
d ∈R= [dmin,dmax], the best disparity per pixel (i.e. the one with lowest cost εd(p)) is selected
using a winner-takes-all (WTA) approach:

DW (p) = argmin
d∈R

εd(p) (5.18)

which results in the disparity maps DW for the left image and D′W for the right image, both
shown in Figure 5.6 and in the overview in Figure 5.3(f). These disparity maps will serve as
input to the iterative refinement process described next in section 5.4.

Finally, we also keep a horizontally and vertically aggregated confidence map:

ε
H(p) = min

d∈R
ε

H
d (p) (5.19)

ε
V (p) = min

d∈R
ε

V
d (p) (5.20)
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5.4 Iterative Disparity Refinement

We now iteratively refine the two initial disparity maps DW and D′W . One iteration consists
of four stages, (g) to (j) in the overview in Figure 5.3.

First we cross-check the disparities between the two disparity maps in section 5.4.1. Next,
the local support windows as described in section 5.2 are employed again to update a pixel’s
disparity with the disparity that appears most inside its windows. This method is the most
powerful and is detailed in section 5.4.2. Any invalid disparities that remain after this are
handled in section 5.4.3. In the last stage in section 5.4.4, the disparity map is median fil-
tered to remove any remaining speckle noise. Finally, we initialize for the next iteration in
section 5.4.5.

5.4.1 Disparity Cross-Check

A left-to-right cross-check means that for each of the pixels p of the left disparity map DW , the
corresponding pixel p′ is determined in the right image based on the disparity value DW (p),
and the disparity value D′W (p′) in the right disparity map is compared with DW (p). If they
differ, the cross-check fails and the disparity is marked as invalid. Introducing the superscript
i≥ 1 to denote the current refinement iteration, this is expressed as:

Di
C(p) =

{
Di−1

W (p) if Di−1
W (p) = D′i−1

W (p′)

INVALID otherwise
(5.21)

with D0
W = DW and D′0W = D′W , and with p now related to p′ as xp′ = xp−Di−1

W (p), yp′ = yp.
The process is then reversed for a right-to-left cross-check of the disparity map D′i−1

W , which
leaves us with the left and right cross-checked disparity maps Di

C and D′iC.
Invalid disparities are most likely to occur around edges in the image, where occlusions

are present in the scene. These occluded regions are shown as pure black (marked as invalid)
pixels in Figure 5.7 and in the overview in Figure 5.3(g).

5.4.2 Bitwise Fast Voting over Local Support Windows

This second stage updates a pixel’s disparity with the disparity that is most present inside its
local support windows W H(p) and WV (p) as defined in section 5.2. We may say that this is
valid, because pixels in the same window have similar colors by definition and therefore with
high probability belong to the same object and should have the same disparity. Confining
the search to the local support windows also ensures that we greatly reduce the risk of edge
fattening artifacts.

To efficiently determine the most frequent disparity value within a support window, we
apply a technique called bitwise fast voting [Zhang et al., 2009b, 2011a] and adapt it to
handle both horizontally and vertically oriented support windows. At the core of the bitwise
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D1
C D′1C

Figure 5.7: The left-to-right (D1
C) and right-to-left (D′1C ) cross-checked disparity maps, as determined

by Equation 5.21. Black patches are disparities that have been invalidated by the cross-check.

fast voting technique lies a procedure that derives each bit of the most frequent disparity
independently from its other bits.

First consider a pixel p with local support window W (p). We sum the kth bit bk(s) (either
0 or 1) of the disparity value Di

C(s) of all pixels s in the support window and call the result
Bk(p) (for clarity, we drop the superscript i for a moment). Furthermore distinguishing again
between horizontal and vertical support windows, this gives:

BH
k (p) = ∑

s∈W H (p)

bk(s) (5.22)

BV
k (p) = ∑

s∈WV (p)

bk(s) (5.23)

The kth bit Dk
B(p) of the final disparity value DB(p) is then decided as:

Dk
B(p) =

{
1 if Bk(p)> β×N(p)

0 otherwise
(5.24)

where β ∈ [0,1] is a sensitivity factor that we will come back to below. All this is illustrated
in Figure 5.8.

We are left to determine exactly what Bk(p) and N(p) in Equation 5.24 are. For this we
again propose three methods. The first method is similar to Equation 5.11 and assumes that
the voting is more reliable over larger windows:
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Figure 5.8: Bitwise fast voting aims to update a pixel’s disparity with the most occurring value inside
a local support window around that pixel. In this example, the disparities inside a square 3×3 window
W (p) are considered. The most occurring value happens to be 6 (binary 0110), thus we expect the
center pixel p to be updated to 6. X’s may be any valid disparity, including 6. To calculate pixel p’s
new disparity DB(p) efficiently, the bitwise fast voting sums every bit bk (0≤ k ≤ 3) of every disparity
(in green) into the counter Bk. In other words, Bk counts how many bits on position k are 1. If the
amount of bits on position k is overwhelmingly 1, the kth bit of pixel p’s new disparity DB(p) is also
voted to be 1 (in red). Here, overwhelmingly means more than half of the window size N(p) = 9 (thus
more than 4), but is really expressed by Equation 5.24 with β = 0.5. Also, instead of a simple square
window, we use a combination of our horizontal and vertical windows W H(p) and WV (p).

Bk(p) =

{
BH

k (p) if
∥∥W H(p)

∥∥≥ ∥∥WV (p)
∥∥

BV
k (p) otherwise

(5.25)

N(p) = max
(∥∥W H(p)

∥∥ ,∥∥WV (p)
∥∥) (5.26)

The second method uses a weighted sum:

Bk(p) = γ BH
k (p)+(1− γ) BV

k (p) (5.27)

N(p) = γ
∥∥W H(p)

∥∥+(1− γ)
∥∥WV (p)

∥∥ (5.28)

where γ is as in Equation 5.12.
The third and final method is similar to Equation 5.13:

Bk(p) =

{
BH

k (p) if ε̄H(p)≤ ε̄V (p)

BV
k (p) otherwise

(5.29)

N(p) =

{∥∥W H(p)
∥∥ if ε̄H(p)≤ ε̄V (p)∥∥WV (p)
∥∥ otherwise

(5.30)
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D1
B D′1B

Figure 5.9: The left (D1
B) and right (D′1B ) disparity maps after bitwise fast voting, as determined by

Equation 5.24 and following. Black patches are remaining invalid disparities that the bitwise vast
voting was unable to fill in.

where ε̄(p) weights every bit vote bk(s) that counts toward Bk(p) with its confidence value
ε(s) (as an extension to Equation 5.22 and Equation 5.23), and where we also need to differ-
entiate again between the horizontal and vertical local support windows:

ε̄
H(p) =

∑s∈W H (p)
[
bk(s) εH(s)

]
∑s∈W H (p) bk(s)

(5.31)

ε̄
V (p) =

∑s∈WV (p)
[
bk(s) εV (s)

]
∑s∈WV (p) bk(s)

(5.32)

with either bk(s) = 0 or bk(s) = 1 (as defined earlier). This is the most precise yet most expen-
sive method, because the computation of ε̄H(p) and ε̄V (p) requires an extra aggregation of the
– already once aggregated – confidence maps εH and εV (Equation 5.19 and Equation 5.20)
over the local support windows W H(p) and WV (p).

To recap, for a pixel p, Equation 5.24 states that the kth bit of its final disparity value is
1 if the kth bit appears as 1 in most of the disparity values under its local support window.
The number of actual appearances of 1 are counted in Bk(p), whereas the maximum possible
appearances of 1 is given by the window size N(p). Both Bk(p) and N(p) are determined by
one of the three methods of Equations 5.25–5.30. The sensitivity factor β controls how many
appearances of 1 are required to confidently vote the result and is best set to 0.5.

It is important to note that certain disparities might be invalid due to the cross-check of
Di

C(p) in section 5.4.1. While counting bit votes, we must take this into account by reducing
N(p) accordingly. This way the algorithm is able to update an invalid disparity by depending
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D1
I D′1I

Figure 5.10: The left (D1
I ) and right (D′1I ) disparity maps after any remaining invalid disparities have

been filled in, as described in section 5.4.3.

on votes from valid neighbors only and thereby reliably fill in occlusions and handle part of
the image borders.

Reintroducing the superscript i for the ith iteration, the result of performing Equation 5.24
for all bits k and all pixels p is denoted as Di

B. It is shown in Figure 5.9 and in the overview
in Figure 5.3(h). The improvement in quality that this method yields in the disparity maps is
also very apparent from the visual differences between Figure 5.6 to Figure 5.9.

A couple of key observations make that this method deserves to be called fast. First, the
number of iterations needed to determine every bit of the final disparity value is limited by
dmax. For example, in the Middlebury Teddy scene we use dmax = 53, which is represented
in binary as 110101, and thus only 6 iterations suffice. Moreover, in Figure 5.8 the disparity
value 6 is represented in binary as 110 and thus calculating B3 was in fact unnecessary. Fur-
thermore, the votes can be counted very efficiently by orthogonally separating Equation 5.22
and Equation 5.23, analogously to Equation 5.16 and Equation 5.17. All this results in high
efficiency with a low memory footprint.

5.4.3 Invalid Disparity Handling

The bitwise fast voting removes many invalid disparities by replacing them with the most
occurring valid value inside their windows. It will fail, however, if the window does not
contain any valid values, or in other words, if N(p) = 0 in Equation 5.24. This occurs mostly
near the borders of the disparity maps, but can also manifest itself anywhere in the image
where the occlusions are large enough.
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D1
M D′1M

Figure 5.11: The left (D1
M) and right (D′1M) disparity maps after application of a 3×3 median filter, as

described in section 5.4.4. This completes one iteration of the disparity refinement process.

For each remaining pixel with an invalid disparity, we search to the left and to the right on
its scanline for the closest valid disparity and store it in the corrected disparity map Di

I . Unlike
the bitwise fast voting, this scanline search is necessarily not confined to image patches of
similar color. The result is shown in Figure 5.10 and in the overview in Figure 5.3(i).

5.4.4 Median Filter

In the last refinement step, small disparity outliers are filtered using a median filter. This
results in the final disparity maps (for the current iteration) Di

M and D′iM , shown in Figure 5.11
and in the overview in Figure 5.3(j). A median filter has the property of removing speckle
noise, in this case caused by disparity mismatches, while returning a sharp signal (unlike an
averaging filter). We calculate the median for each pixel over a 3× 3 window using a fast
bubble sort implementation in CUDA [Astrachan, 2003].

5.4.5 The Next Iteration

This completes one iteration of the disparity refinement. The next iteration i+1 immediately
starts again with the disparity cross-check of Equation 5.21 by setting Di

W = Di
M and D′iW =

D′iM to obtain Di+1
C and D′i+1

C . With each iteration the disparity map is considerably improved.
In practice three to five iterations (3 ≤ i ≤ 5) suffice more often than not, at which point the
refinement tends to converge to its final solution.
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5.5 Results

We demonstrate the effectiveness of our method on the left viewpoint of various standard
Middlebury datasets [Scharstein and Szeliski, 2003]. Section 5.5.1 performs a quantitative
evaluation and discusses the effect of the iterative refinement, while section 5.5.2 takes a look
at performance and processing time.

5.5.1 Quantitative Quality Evaluation

All quantitative measurements are expressed in dB PSNR (peak signal-to-noise ratio, where
higher is better) compared with the respective scene’s ground truth. Black patches in the
ground truth disparity maps indicate invalid pixels (missing data) and are therefore not taken
into account.

Our iterative refinement contributes significantly to the final quality of the disparity maps,
as we will show in Figure 5.14 to Figure 5.17. Overall, many visual improvements are appar-
ent, including the elimination of speckle noise, few errors at the image borders and sharply
delineated edges with little to no edge fattening. All PSNR measurements are summarized in
Table 5.1. From their plot in Figure 5.12, it is clear that the iterative refinement reaches its
peak quality level after no more than three to five iterations, after which it tends to stabilize.

The effect of applying just one iteration of the refinement is already clear from the dif-
ference in visual quality for the Teddy scene in Figure 5.14. Without any refinement the
result remains noisy, with a PSNR of 19.40 dB (D0

W ). Furthermore, the left border cannot
be reliably matched and remains ambiguous, because this information is missing in the right
image. One refinement iteration already increases the quality with 8 dB to 27.53 dB (D1

M),
yet some substantial noise overall and errors in the left border remain. A second iteration
(D2

M , 29.56 dB) resolves these issues for the most part and adds another 2 dB in PSNR. The
next iterations take care of the last visually noticeable artifacts (e.g. the black erroneous patch
in the lower left corner) and slightly better delineate the objects’ edges, until the algorithm
reaches its peak quality level at 29.96 dB for the fifth iteration (D5

M). Performing any more
iterations barely has any effect at all and the algorithm stabilizes on a final solution. One
obvious erroneous patch remains next to the pink teddy’s right ear. However, we postulate
that this is due to the limited accuracy of the color consistency check that determines the local
support windows (Equation 5.2), rather than a limitation of the refinement as a whole.

The Cones scene of Figure 5.15 is another challenging dataset that our iterative refinement
is able to handle very well. Without refinement (D0

W , 15.62 dB) the disparity map naturally
remains noisy and one refinement iteration (D1

M , 18.55 dB) is not able to improve the quality
satisfactorily. A considerable amount of noise and errors remain, e.g. on the white cone in
the background, on the little white box in the foreground, and in the left border. A second
iteration is required to increase the quality with nearly 8 dB to 26.44 dB (D2

M). The PSNR
continues to slowly rise hereafter, until by the ninth iteration (D9

M , 26.97 dB) even the mis-
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Fig. Dataset D0
W D1

M D2
M D3

M D4
M D5

M D6
M D7

M D8
M D9

M
5.14 Teddy 19.40 27.53 29.56 29.57 29.72 29.96 29.54 29.54 29.54 29.45
5.15 Cones 15.62 18.55 26.44 26.75 26.83 26.87 26.88 26.91 26.95 26.97
5.16 Tsukuba 20.04 24.16 24.18 24.30 24.15 24.09 24.06 24.05 24.05 24.04
5.17 Venus 19.76 25.04 28.97 30.83 30.88 31.06 31.10 31.08 31.10 31.09
5.18 Sq. Win. 18.21 23.53 26.44 28.10 28.03 27.94 27.83 27.74 27.69 27.65

Table 5.1: PSNR measurements in dB, for 1 (D1
M) to 9 (D9

M) iterations of our iterative refinement pro-
cess from section 5.4 on the left disparity map of various Middlebury datasets [Scharstein and Szeliski,
2003]. The initial disparity map (D0

W ) has been computed with our stereo matching algorithm from
section 5.3. The bottom entry (Sq. Win.) is an exception, where the initial disparity map of the Teddy
dataset was computed using a conventional 17×17 square window and subsequently refined using our
iterative refinement. Boldfaced numbers are referenced in the text and figures.

matches on the wooden framework in the background are fully resolved. During these many
iterations, none of the other features in the disparity map are destroyed and all cones remain
well discernible. Note in particular the outline of the green cone with blue base in front of
the red cone. The cones in the left border disappear, because this information is again not
available in the right image.

For the Tsukuba scene in Figure 5.16 the initial disparity map is rather noisy at 20.04 dB
(D0

W ). In particular the orange lamp and the face statue in the foreground show signs of edge
fattening (due to occlusions) at their left side. Just one refinement iteration (D1

M , 24.16 dB)
adds just over 4 dB and resolves most of these issues, but leaves some speckle noise in the
background. After two more iterations the algorithm reaches its peak quality level at 24.30
dB (D3

M), when even all mismatches between the arms of the orange lamp are resolved. Even
so, the algorithm struggles to accurately match the background and tripod camera.

Venus in Figure 5.17 consists of three to four slanted planes with large homogeneously
textured regions interspersed with rapidly changing fine – but similar – detail that may easily
throw off most local window-based cost aggregation. However, after a few iterations the
algorithm succeeds to comprehend the slanting of the planes and continues to refine it. It even
surpasses the 30 dB frontier at the third iteration (D3

M , 30.83 dB) and peaks three iterations
later at 31.10 dB (D6

M). However, the disparity map will always remain more coarse and lacks
the smooth gradual change in gray-scale luminance of its ground truth (DGT ).

A great strength of our iterative refinement is that it can be applied to any local stereo
matching algorithm, as long as the initial disparity map is of sufficient quality. To demon-
strate this in the extreme case, we applied it to a disparity map that was computed using a
conventional 17× 17 square cost aggregation window. This causes a lot of edge fattening
artifacts in the initial disparity map (D0

W ), as shown in Figure 5.18. Our refinement improves
the disparity map dramatically with nearly 10 dB: from 18.21 dB for D0

W to 28.10 dB for D3
M

after only three iterations. Nevertheless, all artifacts from a naive stereo matching algorithm
cannot be eliminated, not even by applying many more iterations.



5.5 Results 89

Figure 5.12: From this plot of the PSNR measurements of Table 5.1, it is clear that the iterative refine-
ment quickly reaches its peak quality level and then stabilizes.

5.5.2 Processing Time Measurements

With regard to processing time, Table 5.2 lists the measurements to compute the disparity
map of the Teddy scene for one side (i.e. left or right) only. The Teddy scene has a resolu-
tion of 450× 375 and a disparity range of [dmin,dmax] = [12,53] (42 disparities), which we
determined from its ground truth.

To complete the pipeline up to and including one iteration of the refinement (i.e. to com-
pute D1

M or D′1M), our algorithm takes about 34 ms on an NVIDIA GeForce GTX TITAN
Black. Of these 34 ms, about 29 ms (or 86%) is taken by the initial disparity estimation,
whereas one refinement iteration only requires about 4.5 ms (or 13%). The remaining 1% (a
negligible 0.5 ms) is taken to compute the local support windows. Adding a minimum of two
more iterations of the refinement totals 34+2×4.5 = 43 ms, resulting in a very comfortable
real-time performance at about 23 FPS (or about 163 MDE/s) to compute either D3

M or D′3M .
To arrive at those 23 FPS we have ignored one crucial detail however. In each new

iteration of the refinement, the disparity cross-check requires both the left and right disparity
maps of the previous iteration. More specifically, computing either D3

M or D′3M requires both
D2

M and D′2M to be cross-checked against each other. This effectively halves the 23 FPS to
11.5 FPS, if we rely on a single GPU only. Fortunately, the disparity cross-check is the only
point in the entire pipeline at which information from both sides is required. The left and
right disparity maps can be computed completely independent from each other on separate
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Modules GT 640 GTX TITAN TITAN Black
Sec. Name ms % ms % ms %

5.2 Local Support Windows 2.905 1.08 0.510 1.16 0.388 1.15

5.3 Initial Disparity Estimation 217.825 81.04 37.464 84.90 29.024 86.27
5.3.1 • Per-Pixel Matching Cost 4.684 1.74 0.748 1.70 0.638 1.90
5.3.2 • Cost Aggregation 213.141 79.30 36.716 83.20 28.386 84.37

5.4 Iterative Disparity Refinement 48.053 17.88 6.155 13.94 4.231 12.58
5.4.1 • Disparity Cross-Check 0.100 0.04 0.014 0.03 0.012 0.04
5.4.2 • Bitwise Fast Voting 47.693 17.74 6.100 13.82 4.186 12.44
5.4.3 • Invalid Disparity Handling 0.067 0.03 0.010 0.02 0.009 0.03
5.4.4 • Median Filter 0.193 0.07 0.031 0.07 0.024 0.07

Total 268.783 100.00 44.129 100.00 33.643 100.00
• FPS 3.72 22.66 29.72
• MDE/s 26.365 160.602 210.640

Table 5.2: Per-module breakdown of absolute (ms) and percentage-wise (%) processing time, measured
on an NVIDIA GeForce GT 640 (Fermi architecture) [NVIDIA Corporation, 2009], GTX TITAN and
GTX TITAN Black (both Kepler architecture) [NVIDIA Corporation, 2012] for the Middlebury Teddy
scene of Figure 5.2. This scene has a resolution of 450× 375 and a disparity range of [dmin,dmax] =

[12,53] (42 disparities). In general, the times listed are to process one side only (D1
M or D′1M). The

exception is the local support windows entry. This entry includes computing the local windows for both
the left and right input images, because both local windows must be combined into one global window
during the cost aggregation. The disparity selection (section 5.3.3) is inherent to the implementation of
the cost aggregation and cannot be timed separately. Boldfaced numbers are referenced in the text.

GPUs, after which they can be exchanged to prepare for the next iteration. If both GPUs
are connected to the same bus, the exchange can be carried out with negligible overhead
in memory management, resulting in a minimal impact on the 23 FPS. Figure 5.13 breaks
down the time required to compute both D3

M and D′3M on one GPU by combining the relevant
modules of Table 5.2 appropriately.

Finally, adding two more iterations totals 43+2×4.5 = 52 ms, which still comes down
to 9.5 FPS on one GPU and 19 FPS (134.6 MDE/s) on two GPUs to compute D5

M and D′5M .

5.6 Conclusion

We presented two main contributions to local stereo matching for dense disparity estimation.
First, we developed a reliable matching cost aggregation method. It combines two edge-

sensitive support windows that adapt their shape to the underlying color information in the
input images. One window follows the horizontal edges in the image, the other the vertical
edges. Together they forms the final aggregation window shape that rigorously follows all
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Figure 5.13: Detailed workload profiling to compute the disparity map up to and including three it-
erations of the refinement (D3

M and D′3M). Processing time is measured on an NVIDIA GeForce GTX
TITAN Black graphics card for the 42 disparities of the 450×375 resolution Middlebury Teddy dataset.

object edges in varying directions. The windows cover image patches of similar color, which
are assumed to belong to the same surface and therefore should possess the same disparity
(or depth in the scene). Our shape-adaptive windows are represented by a single quadruplet
per pixel, which renders the complexity of our solution comparable to existing methods.

Second, we proposed a novel iterative disparity refinement process. It can be applied to
any stereo matching algorithm and increases the quality of a disparity map with several dB
PSNR. Its overall success is in large part attributable to the repeated interaction between four
rigorously defined lightweight modules and especially between the disparity cross-check and
the bitwise fast voting. Taking both the left and right disparity maps, the cross-check detects
and removes all disparities that were incorrectly estimated, i.e. mainly occlusions around
object edges and in the borders of the images. Next, by assuming that color discontinuity
boundaries in the image are also depth discontinuity boundaries in the scene, the bitwise fast
voting is able to reliably fill in the occlusions and smooth out disparities over patches of
similar color. In between this, the invalid disparity handling helps to fill in invalid pixels that
the bitwise fast voting cannot reach and the median filter removes speckle noise. It would be
expected that an indefinite repetition would eventually have a detrimental effect on the quality
of the disparity map. However, we observed that the interaction between the four modules
prevents this from happening and instead the process tends to converge to a final solution.

Our whole algorithm has been designed for efficient GPU processing with negligible
overhead, executes in real-time, is easy to understand and implement and generates smooth
disparity maps with sharp object edges and little to no artifacts.
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I D0
W (19.40 dB)

D1
M (27.53 dB) D2

M (29.56 dB)

D5
M (29.96 dB) DGT

Figure 5.14: Our iterative refinement on the Middlebury Teddy scene: (I) left image, (D0
W ) initial

disparity map, (D1
M) – (D5

M) 1 to 5 refinement iterations, (DGT ) ground truth.
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I D0
W (15.62 dB)

D1
M (18.55 dB) D2

M (26.44 dB)

D9
M (26.97 dB) DGT

Figure 5.15: Our iterative refinement on the Middlebury Cones scene: (I) left image, (D0
W ) initial

disparity map, (D1
M) – (D9

M) 1 to 9 refinement iterations, (DGT ) ground truth.
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I D0
W (20.04 dB)

D1
M (24.16 dB) D2

M (24.18 dB)

D3
M (24.30 dB) DGT

Figure 5.16: Our iterative refinement on the Middlebury Tsukuba scene: (I) left image, (D0
W ) initial

disparity map, (D1
M) – (D3

M) 1 to 3 refinement iterations, (DGT ) ground truth.
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I D0
W (19.76 dB)

D1
M (25.04 dB) D3

M (30.83 dB)

D6
M (31.10 dB) DGT

Figure 5.17: Our iterative refinement on the Middlebury Venus scene: (I) left image, (D0
W ) initial

disparity map, (D1
M) – (D6

M) 1 to 6 refinement iterations, (DGT ) ground truth.
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D0
W (18.21 dB) D1

M (23.53 dB)

D2
M (26.44 dB) D3

M (28.10 dB)

D4
M (28.03 dB) D5

M (27.94 dB)

Figure 5.18: The Middlebury Teddy scene, but with (D0
W ) the initial disparity map computed using a

conventional 17×17 square window and (D1
M) – (D5

M) subsequently refined using our iterative refine-
ment. Compare with Figure 5.14.
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5.6.1 Future Work

We currently consider the weakest link in our stereo matching algorithm to be the way the lo-
cal support windows are determined. The pixel-wise color consistency check in section 5.2 is
rather rudimentary. Relying on color-based image segmentation to more precisely define the
local support windows has the potential to increase the matching quality considerably. Good
segmentation to consider is mean-shift segmentation [Comaniciu and Meer, 2002; Gerrits
and Bekaert, 2006] and superpixels [Zitnick and Kang, 2007]. Not only the cost aggrega-
tion stage, but also the iterative refinement (the bitwise fast voting counts bit votes within a
coherently colored image patch) would benefit greatly from this.

As we will use our stereo matching algorithm to restore eye contact in video conferencing
in chapter 6, it is especially worth considering incorporating temporal information [Davis
et al., 2005]. By extending our shape-adaptive planar windows to volumetric grids in the
temporal domain, we would be able to process over successive video frames.
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Figure 6.1: This chapter employs stereo interpolation to implement the two-camera solution depicted
in the overview in Figure 1.1(b), p. 2. It relies on the stereo matching algorithm developed in chapter 5.
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The environment mapping experiment in chapter 4 required only one input camera to restore
eye contact, but offered very limited image quality, among other restrictions. In this chapter
we therefore take a look at correcting eye gaze for one-to-one video conferencing by inter-
polating an image from two cameras positioned in a stereo configuration, as shown in the
overview in Figure 1.1(b), p. 2, and repeated in Figure 6.1.

The same configuration is seen in Figure 6.2, which contains two camera views offset to
the left (Figure 6.2(a)) and to the right (Figure 6.2(c)), capturing the user. These captured im-
ages will serve as the main dataset for the purpose of this chapter and our goal then becomes
to reconstruct the unknown image of the virtual central camera (Figure 6.2(b)).

A big part of the road to that goal is our stereo matching algorithm that we developed
in chapter 5. The stereo matching pipeline from Figure 5.3, p. 72, can be extended with
a view synthesis part, shown in Figure 6.8, that enables us to reconstruct any viewpoint
positioned anywhere on the baseline between the left and right viewpoints. Consequently, the
reconstructed image will be eye gaze corrected if the correct intermediate position is chosen.
To reconstruct an intermediate viewpoint, the view synthesis takes the rectified stereo images
and warps them to the requested viewpoint, based on their disparity maps. In other words,
to continue with our dataset, we require its disparity maps. They are shown in Figure 6.2(d)
and Figure 6.2(f), as computed by our stereo matching algorithm. Additionally shown in
Figure 6.2(g)–(i) are the disparity maps and interpolated color image as computed by the
MPEG reference software (explained in section 6.4). Although of high quality, the MPEG
algorithm is very computationally expensive and thus does not fit real-time applications such
as ours. Nevertheless, we regard this as the ground truth solution to strive for.

Stereo matching followed by view synthesis is well known as the unified depth-image-
based rendering (DIBR) framework. We previously defined depth-image-based rendering as
image-based rendering with implicitly determined geometry in section 2.1.2, p. 14. Also
refer there for a conceptual explanation of stereo matching followed by view interpolation.

The depth-image-based-rendering algorithmic chain has been formalized by Scharstein
[1996] and Rogmans et al. [2009c] and is depicted in Figure 6.4. This chain will be the
leading thread throughout this chapter, but for our purposes we must adapt and extend it
even further with the white modules. For starters, two cameras can rarely ever be manually
set up in a perfectly rectified configuration and thus will have to be rectified before being
offered as input to the stereo matching process. This is the responsibility of the rectification
module in section 6.1. Next, in section 6.2, we introduce what we designate the complexity
control module to increase the efficiency and quality of any stereo matching algorithm by
limiting its disparity search range. The pipeline is finally completed to allow for novel view
synthesis in section 6.3. Conventionally, the image warping module immediately warps the
color images to the desired intermediate viewpoint. We, however, deviate from this by first
warping the actual disparity maps to the desired viewpoint. Doing so allows us to further
refine the intermediate disparity map (Figure 6.2(e)) in a more consistent manner, before
composing the final color image in a postponed recoloring stage.
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(a) Left input color image I. (b) Middle color image Ĩα,
to be reconstructed.

(c) Right input color image I′.

(d) Our left disparity map D. (e) Middle disparity map D̃α,
to be reconstructed.

(f) Our right disparity map D′.

(g) MPEG’s left disparity map
DMPEG.

(h) MPEG’s reconstructed
middle color image ĨMPEG.

(i) MPEG’s right disparity map
D′MPEG.

Figure 6.2: Our main dataset for the purpose of this chapter. (a), (c) Two cameras in a stereo con-
figuration capture the user. (b) The goal of this chapter is to employ rectified stereo interpolation to
reconstruct the image of the central camera, which consequently will have correct eye gaze. (d), (f) For
this, we need the disparity maps as computed in chapter 5, (e) so that they can be warped by the view
synthesis to the central viewpoint. (g), (i) The disparity maps and (h) reconstructed central color image
computed by the MPEG reference software serve as ground truth solution.

In section 6.4 we compare our result with the MPEG reference algorithm. In section 6.5
we judge to what degree our stereo interpolation solution for eye gaze correction meets the
requirements enumerated in the problem statement in section 1.1, p. 3. We conclude in sec-
tion 6.6.
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6.1 Stereo Rectification

Any stereo matching algorithm (including the one developed in chapter 5) assumes that its
input images are rectified with respect to one another. What this means is that disparities
between the images must be in the x-direction only, i.e. corresponding pixels must lie on the
same image scanline, or more specifically the epipolar lines must run parallel with the X-axis.

The Middlebury dataset used in chapter 5 is inherently stereo rectified, but we may not
assume that this is the case for the live imagery captured by the camera configuration of Fig-
ure 6.2. Put side by side in Figure 6.3(a) and Figure 6.3(b), it is indeed clear that these images
are not rectified and therefore any attempt at scanline-based matching will fail. However, they
can be efficiently rectified by resampling each according to their specific projective transfor-
mation. The process to compute these projective transformations (also called homographies)
is well explained by Hartley and Zisserman [2004] and is summarized as:

(1) Find a set of point-to-point matches pi↔ p′i between the two images. At least 7 (1 ≤
i≤ 7) correspondences are needed, though more are preferable for stability.

(2) From these correspondences, compute the fundamental matrix F (piF p′i = 0) and find
the epipoles e and e′ in the two images.

(3) Compute a homography H ′ that maps the epipole e′ to the point at infinity, H ′e′ =
[1,0,0]T .

(4) Compute the matching homography H that minimizes the least-squares distance
∑i d(H pi,H ′p′i).

(5) Resample the left image I according to the homography H and the right image I′ ac-
cording to the homography H ′.

If the cameras are geometrically calibrated (as explained in section 2.4.1, p. 26), steps (1)
and (2) can be skipped and the required point correspondences and epipoles can be computed
directly from the known camera matrices [Hebert et al., 1995; Su and He, 2011]. Otherwise,
for step (1) we detect and match SIFT (scale-invariant feature transform) [Lowe, 2004] fea-
tures across the images, as shown in Figure 6.3(c). In any case, steps (1) to (4) only have to
be performed once and thus the homographies H and H ′ can be computed offline as a prepro-
cessing step, after which each newly captured frame during a live video conferencing session
is rectified by the same precomputed homography. In other words, in step (5) the left input
image I is resampled using its homography H according to the pseudo code:
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(a) Captured left image. (b) Captured right image.

(c) SIFT correspondences between the non-rectified images.

(d) Rectified left image. (e) Rectified right image.

Figure 6.3: Overview of the stereo rectification process. (a)–(b) First, the captured images have al-
ready been color calibrated (section 2.4.2) and corrected for lens distortion (section 2.4.3). (c) Then,
SIFT correspondences are determined between the two images. (d)–(e) From these correspondences,
two homographies are calculated that remap the pixels of the non-rectified images to their rectified
counterparts. This is not a one-to-one pixel mapping, causing loss of information along the borders.
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J← empty image
for all p = (xp,yp) do

q← H−1 p
J(p)← I(q)

end for
I← J

(6.1)

and completely analogous for the resampling of I′ using H ′.
The resampling is done backwards: for each pixel in the rectified image J, its color is

looked up in the non-rectified image I by an inverse projection H−1. Note also that this
projection is not a one-to-one pixel mapping, which causes black patches of missing color
information along the borders of the rectified images in Figure 6.3(d) and Figure 6.3(e). In
practice these can be cropped before passing them on to the stereo matching algorithm, if so
desired.

6.2 Complexity Control: Restricted Disparity Range

In section 6.2.1 we introduce a method that can greatly increase the quality of our stereo
matching algorithm of chapter 5 – or of any other local stereo matching algorithm for that
matter – and then go on to put that method to use as a control feedback loop to increase the
performance of the depth-image-based rendering pipeline in section 6.2.2 [Rogmans et al.,
2009a; Rogmans, 2013].

Keep in mind that we will further develop this idea in the context of plane sweeping
for one-to-one and many-to-many communication in respectively section 7.2.5, p. 142, and
section 8.3, p. 170.

6.2.1 Quality Increase

To achieve an increase in matching quality, the algorithm is executed twice, but over different
disparity ranges. In the first pass, the entire disparity range R = [dmin,dmax] is searched and
the disparity map D is computed as conventional. Next, an analysis on the disparity map D
is performed by computing its histogram H(d). As illustrated in Figure 6.5, the histogram
peaks indicate the disparities where objects are actually located. We can use this information
to determine which subset R̄⊆ R to take by comparing the histogram bin values with a given
threshold δ. A second pass then executes the matching algorithm over only the restricted
disparity range R̄. This efficiently filters out noise due to mismatches inherent to the full
range R. The result is a higher quality disparity map D̄.



106 Stereo Interpolation

Figure 6.4 (continued on facing page): The depth-image-based rendering chain takes two rectified
stereo images and reconstructs any intermediate viewpoint on their horizontal baseline. For the purpose
of our eye gaze corrected video conferencing prototype, we extend this chain with an image rectification
and complexity control module. We also adapt the view synthesis stage by adding a recoloring module.

Figure 6.5: (left) First, the full disparity range is scanned. (middle) Peaks in the disparity map’s
histogram then indicate where objects are located in the scene. (right) This information is used to
restrict the disparity range during a second scan.

In other words, disparities for which less than δ pixels match, and which can thus be
presumed to be noisy mismatches, are excluded from the search range in a second pass.
Consequently, δ should be set proportionally to the image resolution:

δ = ρ×Xres×Yres (6.2)

where we have observed in practice that ρ = 0.006 offers a good initial estimate.
Alternatively, instead of fixing the threshold δ, it can be made dynamic by setting it

proportional to the discrete entropy of the histogram. Doing so will set the threshold low for
complex scenes with fine-grained geometry and high when little geometry is present. Before
applying the threshold, the histogram can also be smoothed to remove outliers.

In Figure 6.6 we apply this method to our dataset from Figure 6.2. This dataset has
an SVGA (800× 600) resolution and its left viewpoint (after rectification) is repeated in
Figure 6.6(a). In the first pass, our disparity estimation algorithm is executed over the full
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disparity range R = [23,106], which we determined from the MPEG reference algorithm
that we regard as the ground truth (shown in Figure 6.2(g), repeated in Figure 6.6(b)). This
results in the disparity map D in Figure 6.2(d), repeated in Figure 6.6(d). Next, the histogram
analysis restricts the disparity range R to R̄ = [38,45]∪ [88,103]. This can be easily verified
by visual inspection of the histogram H(d) of the disparity map D in Figure 6.6(c), where
the threshold was set to approximately δ = 3000 (the thin red line). A second pass of the
algorithm over only the restricted disparity range R̄ then results in a disparity map D̄ of much
higher quality, as shown in Figure 6.6(e). In the histogram, notice how the higher peak
corresponds with the background (disparity range [38,45]), while the lower peak represents
the person in the foreground (disparity range [88,103]). Everything in between will be cut out
of the disparity range and will not be matched, but more importantly, will not be mismatched.

6.2.2 Complexity Decrease

To enable the idea from section 6.2.1 as a control feedback loop for the DIBR pipeline de-
picted in Figure 6.4, suppose we first scan a lower resolution version of the input images over
its full disparity range and analyze the resulting disparity map’s histogram as before. The
result of this analysis can then be used to restrict the disparity range of a higher resolution
version of the same input images.

For the quarter-SVGA (400× 300) resolution version of our scene, the histogram anal-
ysis will restrict its full disparity range from R1/4 = [11,53] to R̄1/4 = [19,23] ∪ [44,52],
see Figure 6.7(a)–(b). We can use this result to more efficiently process the full SVGA
(800× 600) resolution version of our scene, after correcting the disparity range R̄1/4 for
the quadruple increase in resolution (doubled in both the horizontal and vertical direction)
to 2× R̄1/4 = [38,46]∪ [88,104]. This very well approximates R̄ = [38,45]∪ [88,103], the
original restricted disparity range for the high-resolution images that we determined in sec-
tion 6.2.1: R̄≈ 2× R̄1/4.

After the histogram analysis, the detected subset 2× R̄1/4 = [38,46]∪ [88,104] is only
31% of the original high-resolution disparity range R = [23,106]. As the low-resolution
scan is at most 12.5% (1/4 image resolution and 1/2 disparity range) of the high-resolution
complexity, a theoretical complexity reduction of 100% - (31% + 12.5%) = 56.5% can be
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(a) Left input image I. (b) Ground truth disparity map DMPEG of (a).

(c) Histogram H(d) of (d), with threshold δ marked with a thin red line.

(d) Disparity map D of (a),
computed over the full range R.

(e) Disparity map D̄ of (a), computed over
the restricted range R̄, as determined in (c)

Figure 6.6: Overview of our histogram analysis scheme to improve the quality of the disparity map
computed by any local stereo matching algorithm. (a) We use the left viewpoint of our dataset as input.
(d) In the first pass, the matching algorithm is executed over the full disparity range R, (c) after which
an analysis of the disparity map’s histogram restricts the disparity range R to R̄ by applying a threshold
δ. (e) A second pass of the algorithm over only the restricted range R̄ then results in a disparity map of
much higher visual quality, (b) as can be noted by visual comparison with its ground truth.
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(a) Quarter-SVGA
(400×300) disparity map.

(b) Histogram of (a).

(c) Sixteenth-SVGA
(200×150) disparity map.

(d) Histogram of (c).

Figure 6.7: Histograms computed from lower resolution disparity maps can be used to restrict the
disparity range for a higher resolution disparity map. This is possible because both lower resolution
histograms still well represent the general shape of the full resolution histogram in Figure 6.6(c), if the
stereo matching algorithm performs well.

achieved. In practice, however, at least some overhead comes into play. This is evident from
the raw numbers listed in Table 6.1, as 1 - (36.764 ms + 142.203 ms) / 386.465 ms = 53.69%.
Moreover, we did not take into account the time required to downsample the input images
and to construct and analyze the histogram. Also note that the degree to which the disparity
range can be restricted highly depends on the specific structure of the scene.

To investigate the extreme case, let us downsample the input images once more to a
sixteenth-SVGA (200× 150) resolution. This is illustrated by Figure 6.7(c)–(d). The his-
togram analysis now restricts the disparity range to R̄1/16 = [8,11]∪ [21,27]. After correcting
for the sixteen-times change in resolution, this becomes 4× R̄1/16 = [32,44]∪ [84,108]. This
still quite well approximates R̄ = [38,45]∪ [88,103] and comes down to a theoretical com-
plexity reduction of 100% - (45% + 1.56%) = 53.44%.

The histogram information acquired from low-resolution disparity estimation over the full
disparity range leads to accurate high-resolution disparity estimation over an adaptive range.
The complexity of the histogram computation is relatively low and in turn the potential to
accelerate the local stereo matching algorithm becomes very high. At the same time, match-
ing quality is increased by excluding superfluous disparity hypotheses and thus inherently
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1/16 SVGA 1/4 SVGA SVGA
(200×150) (400×300) (800×600)

R1/16 #d ms R1/4 #d ms R #d ms
[5,27] 23 5.032 [11,53] 43 36.764 [23,106] 84 386.465

R̄1/16 #d ms R̄1/4 #d ms R̄ #d ms
[19,23]∪ [44,52] 16 15.166 [38,46]∪ [88,104] 26 142.203

[8,11]∪ [21,27] 11 2.847 [32,44]∪ [84,108] 38 192.032

Table 6.1: Disparity ranges for various resolutions of our dataset from Figure 6.2 and the time it takes
(in ms) to compute a disparity map on an NVIDIA GeForce GTX TITAN Black (Kepler architecture)
[NVIDIA Corporation, 2012]. The top row lists the full ranges, determined by the MPEG reference
software. In the bottom rows we have restricted the disparity range of the sixteenth-SVGA (200×150)
and quarter-SVGA (400× 300) resolutions, using our histogram analysis scheme. As the resolution
quadruples from the left to the right columns, so must the disparity ranges adapt by doubling their
limits (and consequently, the number of processed disparities #d raises significantly). We can use this
observation to increase matching quality while decreasing processing complexity. To this end, the
boldfaced numbers are referenced in an example in the text for the SVGA (800×600) resolution.

preventing mismatches. In general, the less pronounced foreground fattening [Scharstein and
Szeliski, 2002; Szeliski, 2010] an algorithm exhibits, the more the input image resolution can
be reduced in the first pass, while still maintaining a representative histogram. In the case
of our stereo matching algorithm from chapter 5, we have seen that the image dimensions
can safely be reduced with a factor four. Considering that the complexity of the first pass is
almost negligible, the complexity control add-on in Figure 6.4 allows for a speedup propor-
tional to the amount of void space in the scanned volume. While the technique is applicable
to all types of scenes, it proves to be particularly useful in video conferencing, as usually only
the user and his background need to be scanned in a rather large space.

6.3 View Synthesis

The view synthesis part of the DIBR pipeline in Figure 6.4 takes two rectified stereo images
as input, together with one or both disparity maps that were estimated by the stereo matching
part, and reconstructs a novel intermediate view that is positioned anywhere on the horizontal
baseline between the left and right input images. It accomplishes this in three steps, concep-
tualized in Figure 6.8 which can be regarded as a continuation of the stereo matching pipeline
of Figure 5.3, p. 72. First, the image warping module (section 6.3.1) warps an input disparity
map (and optionally its associated color image) to the desired viewpoint, after which the hole
handling module (section 6.3.2) fills in the occlusions and holes that are inevitable due to the
warping procedure not being a one-to-one pixel mapping. Lastly, the warped disparity map
is recolored (section 6.3.3) to produce the final synthesized color image.
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6.3.1 Image Warping

The image warping module accepts a color image and its joint disparity map and forward
warps (as opposed to inverse warping, which can be regarded as a two-frame variant of the
more generalized multi-frame plane sweeping algorithm) each pixel of the color image to the
correct coordinate on the image plane of the intermediate viewpoint. The relative position
of the intermediate viewpoint on the horizontal baseline between the left and right input
viewpoints is determined by the parameter α ∈ [0,1], where by convention α = 0 indicates
the left viewpoint and α = 1 the right. As such, we use Iα to denote the novel color image that
results from a forward warping of the left input image I = Iα=0. It is synthesized according to
the following pseudo code [Scharstein, 1996; Seitz and Dyer, 1997; Rogmans et al., 2009c]:

for all p = (xp,yp) do
for d← 0; d ≤ α×dmax; d++ do

if α×D(xp +d,yp) = d then
Iα(p)← I(xp +d,yp)

end if
end for

end for

(6.3)

where a pixel p = (xp,yp) in the warped image Iα is filled with the color I(xp + d,yp) from
the source image I whenever the disparity map D indicates that the pixel at disparity d maps
to the intermediate position α according to α×D(xp +d,yp) = d. To save on computational
complexity, only disparities up to α× dmax are tested, as it is pointless to search for larger
disparities than those that may occur by the rules of motion parallax.

Contrary to the algorithmic chain formalized by Scharstein [1996] and Rogmans et al.
[2009c], we would like to postpone the synthesis of the actual color image to the very end
of the pipeline (in section 6.3.3) and prefer to continue with the forward warped disparity
map Dα instead, as this will allow us to make further refinements during the hole handling
(in section 6.3.2). Thus the above warping algorithm is adjusted to:

for all p = (xp,yp) do
Dα(p)← INVALID
for d← 0; d ≤ α×dmax; d++ do

if α×D(xp +d,yp) = d then
Dα(p)← α×D(xp +d,yp)

end if
end for

end for

(6.4)
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where the estimated disparity d = α×D(xp + d,yp) for pixel p is kept in Dα(p), with D =

Dα=0 (see Figure 6.8(c)(left)).

As the forward warp is not a one-to-one pixel mapping, it is possible for multiple pixels
from the source image to map to the same pixel location in the novel image. However, by
explicitly testing the candidate disparities from smaller to larger (in the for loop in Equa-
tion 6.3), a pixel is always filled with the color with the largest corresponding disparity, since
any previous matches with smaller disparities are overwritten. This approach is known as the
occlusion compatible warping order, because large disparities indicate foreground objects
which occlude background objects with smaller disparities [McMillan, 1997]. Regardless,
not all pixels in Iα (identically in Dα in Equation 6.4) will be filled in and the image will
still contain gaps that are caused not only by occlusions, but also by mismatches and noise in
the disparity map. To denote this variety of visual artifacts, we opt for the more generalized
term holes [Scharstein, 1996; Rogmans et al., 2009c]. Holes are marked by setting some
predefined invalid value.

To handle holes in section 6.3.2, we will also require the right disparity map D′ to be
warped to the same intermediate position α. This can be expressed from the standpoint of
the right viewpoint by introducing the notation α′ = 1−α, such that the warped disparity
map is denoted by D′

α′ , with now D′ = D′
α′=0 (see Figure 6.8(c)(right)). The warping of D′ to

position α′ then proceeds analogously to Equation 6.4:

Figure 6.8 (facing page): Overview of our rectified stereo interpolation method. The goal is to recon-
struct the image of any viewpoint located anywhere on the horizontal baseline between the left and right
input images. The position of the intermediate viewpoint relative to the left viewpoint is determined by
the baseline parameter α ∈ [0,1]. Here, we have chosen α = 0.3 (and thus α′ = 1.0−α = 0.7 relative
to the right viewpoint). (a) The input is a pair of rectified stereo images I and I′. In this figure we
purposefully use the same Middlebury Teddy scene [Scharstein and Szeliski, 2003] that also served to
develop our stereo matching algorithm in chapter 5. In fact, the whole Figure 5.3, p. 72, is contained
in module (b), where our stereo matching algorithm estimates the disparity maps D and D′ of the left
and right input images respectively. (c) These disparity maps are then forward warped to the desired
viewpoint by the image warping module (section 6.3.1). As the warping procedure is not a one-to-one
pixel mapping, some pixels in the forward warped disparity maps Dα and D′

α′ may not be filled in.
These invalid pixels are marked in red. (d) Next, the hole handling module (section 6.3.2) combines
both warped disparity maps into the final disparity map D̃α of the intermediate viewpoint. Pixels are
marked in green if taken from the left forward warped disparity map Dα, whereas they are marked in
blue if taken from the right forward warped disparity map D′

α′ . Because α = 0.3 < 0.5, most pixels are
taken from Dα and thus marked in green. Remaining pixels at occlusions around object edges and in
the right image border are taken from D′

α′ and thus marked in blue. (e) Finally, the recoloring module
(section 6.3.3) recolors the intermediate disparity map D̃α by taking colors appropriately from the left
and right input images and thereby reconstructs (f) the desired interpolated image Ĩα.
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α
′← 1−α

for all p = (xp,yp) do
D′

α′(p)← INVALID
for d← 0; d ≤ α

′×dmax; d++ do
if α

′×D′(xp−d,yp) = d then
D′

α′(p)← α
′×D′(xp−d,yp)

end if
end for

end for

(6.5)

In Figure 6.9(a) the left image of our scene has been forward warped to α = 0.5, while
in Figure 6.9(b) the right image has been forward warped to the same relative position α′ =

1−α = 0.5. In Figure 6.9(a) occlusions from the left are clearly noticeable as black patches
of missing color information, and likewise in Figure 6.9(b) for occlusions from the right. For
this, we used the disparity maps that are the result of the iterative stereo matching process of
chapter 5, combined with the disparity range restriction of section 6.2. They have also been
forward warped in Figure 6.9(c) and Figure 6.9(d).

6.3.2 Hole Handling

The two forward warped disparity maps Dα and D′
α′ from section 6.3.1 must now be com-

bined into one disparity map D̃α, as illustrated in the overview in Figure 6.8(d).
If α < 0.5, it can be assumed that the occlusions in the left forward warped disparity map

Dα will be less severe than the occlusions in the right forward warped disparity map D′
α′ , as

the latter will have been warped over a distance of α′ = 1−α > 0.5. We therefore start from
the left forward warped disparity map Dα and attempt to fill in any holes with information
from the right forward warped disparity map D′

α′ as follows:

for all p = (xp,yp) do
if Dα(p) = VALID then

D̃α(p)← Dα(p)
else if D′

α′(p) = VALID then
D̃α(p)← D′

α′(p)
else

D̃α(p)← INVALID
end if

end for

(6.6)
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(a) Left forward warped color image Iα. (b) Right forward warped color image I′
α′ .

(c) Left forward warped disparity map Dα. (d) Right forward warped disparity map D′
α′ .

(e) Occlusions in (c) marked in red. (f) Occlusions in (d) marked in red.

Figure 6.9: The left and right color images and disparity maps of our dataset from Figure 6.2 are
forward warped to the same relative intermediate position α = α′ = 0.5. Occlusions from the left
(resp. right) are clearly noticeable as black patches, or marked in red in the bottom row.
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Analogously, when α > 0.5, the combined disparity map D̃α is positioned closer on the
baseline to the right viewpoint than it is to the left viewpoint, and thus we start from the right
forward warped disparity map D′

α′ :

for all p = (xp,yp) do
if D′

α′(p) = VALID then
D̃α(p)← D′

α′(p)
else if Dα(p) = VALID then

D̃α(p)← Dα(p)
else

D̃α(p)← INVALID
end if

end for

(6.7)

Of course, when α = 0.5 either one of the two approaches can be chosen.

These routines will almost certainly leave some pixels in D̃α marked as invalid, shown in
Figure 6.10(a). How we proceed to handle these invalid pixels closely resembles the four-
stage disparity refinement process of section 5.4, p. 81.

First, additional mismatches and occlusions can be detected by performing a cross-check
on the forward warped disparity maps Dα and D′

α′ . If Dα(p) and D′
α′(p) are both valid, a

pixel p in D̃α should still be marked as invalid if any of the following conditions are met:

D̃α(p) =


INVALID if Dα(p) 6= α× (Dα(p)+D′

α′(p))

INVALID if D′
α′(p) 6= α′× (Dα(p)+D′

α′(p))

VALID otherwise

(6.8)

This cross-check can yield better results in heavily occluded scenes where the disparity
refinement still failed. It is not unlike the disparity cross-check of section 5.4.1, p. 81. Second,
any remaining invalid pixels are filled in using a scanline-restricted hole filling procedure that
is completely analogous to the one of section 5.4.3, p. 85. Third, a median filter as the one
of section 5.4.4, p. 86, can be applied. Special care should be taken, however, to differentiate
between disparities that were warped from the left and ones that were warped from the right.
Lastly, note that the bitwise fast voting of section 5.4.2, p. 81, cannot be applied, as we lack
a reference color image to determine the local support windows.

The final hole handled disparity map of the intermediate viewpoint is shown in Fig-
ure 6.10(c). It remains to be recolored to obtain the synthesized color image.



6.3 View Synthesis 117

(a) Occlusion handled disparity map D̃α,
with some remaining invalid pixels.

(b) Same as (a), but color-coded.

(c) Any remaining invalid pixels from (a) filled in. (d) Same as (c), but color-coded.

Figure 6.10: (a) The left and right forward warped disparity maps Dα and D′
α′ from Figure 6.9 are

combined into the occlusion handled disparity map D̃α of the intermediate viewpoint. (b) Same as
(a), but with pixels that were taken from the left marked in green, pixels from the right in blue, and
remaining invalid pixels in red. (c) The final hole handled disparity map, where any remaining invalid
pixels have been filled in. (d) Same as (c), but again color-coded. No red pixels remain.

6.3.3 Recoloring

In this final view synthesis step, the hole handled disparity map D̃α (see Figure 6.10(c)) is
recolored to produce the final synthesized color image Ĩα (see Figure 6.11(a)). The procedure
is illustrated in the overview in Figure 6.8(e).

If a pixel p of D̃α took on a value of the left forward warped disparity map Dα (green in
Figure 6.10(d)), its associated color must be fetched from the left color image I:

Ĩα(p)← I(xp + D̃α(p),yp) (6.9)
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If on the other hand the same pixel p of D̃α contains a value coming from the right forward
warped disparity map D′

α′ (blue in Figure 6.10(d)), its color must be retrieved from the right
color image I′:

Ĩα(p)← I′(xp− D̃α(p),yp) (6.10)

Note that because color information is taken from both the left I and right I′ color images
to put together the final output image Ĩα, it is imperative that the images are photometrically
calibrated according to the process outlined in section 2.4.2, p. 28.

6.4 Results

The final interpolated image Ĩα is shown in Figure 6.11(a). Figure 6.2(h), i.e. the image
synthesized by the MPEG reference software, is enlarged in Figure 6.11(b) for easy visual
comparison.

About The MPEG Reference Software The MPEG Reference Software for Depth Estima-
tion (DERS) [Stankiewicz et al., 2013] and View Synthesis (VSRS) [Wegner et al.,
2013] was originally developed by Nagoya University and Poznan University of Tech-
nology and updated with improvements throughout MPEG’s standardization process.
The depth estimation performs stereo matching with aggregation blocks and employs
graph cuts for global refinement to compute depth maps for the input color images
Boykov and Kolmogorov [2004]. The view synthesis then uses this depth informa-
tion to warp and blend the color images to synthesize the desired viewpoint [Tanimoto
et al., 2009]. Missing information in the synthesized image is filled with the closest
available pixel values or by using texture patches when the invalid areas are relatively
large [Ndjiki-Nya et al., 2011; Koppel et al., 2012]. The algorithm is described in more
detail by Jorissen et al. [2014].

Visually, our result is completely on par with MPEG’s result and both images very much
resemble each other in every meaningful way. Both the foreground and the background of
the interpolated image contain very few artifacts. Eye gaze is convincingly corrected and the
eyes are clearly visible. A minimal amount of noise is still present, but the most noticeable
artifact – one that both solutions suffer from – is the contour of visual disturbances closely
surrounding the user. This halo-like effect is caused by occlusions during the disparity es-
timation that are then propagated by the forward warping. In this case, information that is
missing in the left input image (marked in red in Figure 6.9(e)) must be filled in with infor-
mation that is only available in the right image (marked in blue in Figure 6.10(d)). Although
often challenging for pixel-wise local stereo matching algorithms, the results show that our
algorithm is able to adequately handle this problem. It especially means that our iterative
disparity refinement of chapter 5 is able to reliably fill in occlusions.
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(a) Our interpolated image Ĩα.

(b) MPEG’s interpolated image ĨMPEG.

Figure 6.11: (a) The final synthesized image Ĩα as the result of recoloring the final disparity map D̃α of
Figure 6.10(c). (b) The same viewpoint interpolated by the MPEG reference software, which we regard
as the ground truth solution.
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Computationally, the MPEG algorithm takes about half an hour to produce its result for
the SVGA (800×600) resolution. This includes both estimation of the scene depth and sub-
sequent synthesis of the novel image, making it currently unviable for real-time applications.
In contrast, Table 6.2 breaks down the time required by our algorithm for various resolutions.
The view synthesis (i.e. section 6.3 in this chapter) is extremely lightweight, but relies heavily
on accurate disparity estimation (i.e. all of chapter 5). The view synthesis, in fact, barely has
any impact at all, as it requires a measly 0.115 ms for a QVGA (320×240) resolution to still
just under 12 ms for full high-definition (1920× 1080). Due to the weight of the disparity
estimation, however, real-time performance of at least 15 FPS is obtained only for resolutions
up to about 450×375 (common for Middlebury datasets). For VGA (640×480) and SVGA
(800×600) resolutions, new frames still keep coming at a near real-time speed of 4.49 FPS
and 2.57 FPS respectively, but starting from XGA (1024× 768) the frame rate drops – not
unexpectedly – to 1 FPS and lower.

Two strategies are readily available to increase the frame rate. First, Table 6.2 lists the
time required to match over the full disparity range. In section 6.2.2, however, we found that
the algorithmic complexity can be decreased by about 50% by restricting the disparity range.
From the discussion connected to Table 6.1, for example, we know that the time required
for disparity estimation at the SVGA resolution can be brought back from about 386 ms to
about 179 ms (36.764 ms + 142.203 ms). Considering the view synthesis is independent
from the stereo matching and practically negligible in execution time (1.252 ms), this means
a doubling of the frame rate from 2.57 FPS to 5.54 FPS. The same strategy can be applied
to all resolutions. In addition, Table 6.2 also lists the time when executed on a single GPU.
We saw in section 5.5.2, p. 89, that the disparity estimation time can once again by halved
by splitting the algorithm over two GPUs and computing the left and right disparity maps
separately. This would mean another doubling of the frame rate, thus successfully reaching
about 10 FPS for the SVGA resolution.

Stereo matching (and consequently stereo interpolation) prefers small baselines. To in-
vestigate the wider-baseline case, we recorded the scene in Figure 6.12. As the baseline
distance increases, the quality of the interpolated image usually drops off quickly. This is
no different for the MPEG algorithm, which really struggles to interpolate the wider baseline
in Figure 6.12(c). Occlusions around the head and arms are handled poorly and the text on
the shirt exhibits ghosting artifacts. Our own algorithm in its standard form arguably does
not perform much better, as many disturbing artifacts are visible in Figure 6.12(d). They are
mainly caused by mismatches and are especially unacceptable on the face. To produce this
result, however, we did not yet restrict the disparity range. This time our strategy is applied
not necessarily to decrease the algorithmic complexity, but to increase the quality by prevent-
ing many mismatches, as explained in section 6.2.1. The final result in Figure 6.12(e) is very
convincing. Some noise is present in the background where occlusions were filled in, but
surprisingly few artifacts are left on the face and on the body.
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Modules QVGA 1/4 SVGA Middlebury VGA
Sec. Name (320×240) (400×300) (450×375) (640×480)

5 Disparity Estimation 21.964 36.764 62.718 221.675
• Range R (#d) [9,43] (35) [11,53] (43) [13,60] (48) [18,85] (68)

• FPS 45.52 27.20 15.94 4.51
• MDE/s 122.357 140.352 129.114 94.212

6.3 View Synthesis 0.115 0.205 0.307 0.666
6.3.1 • Image Warping 0.091 0.169 0.261 0.580
6.3.2 • Hole Handling 0.013 0.021 0.028 0.056
6.3.3 • Recoloring 0.011 0.015 0.018 0.030

Total 22.079 36.969 63.025 222.341
• FPS 45.29 27.04 15.86 4.49

Modules SVGA XGA WXGA FHD
Sec. Name (800×600) (1024×768) (1280×720) (1920×1080)

5 Disparity Estimation 386.465 965.295 2424.383 11452.515
• Range R (#d) [23,106] (84) [30,135] (106) [37,169] (133) [56,254] (199)

• FPS 2.58 1.03 0.41 0.08
• MDE/s 104.025 85.862 50.254 33.011

6.3 View Synthesis 1.252 2.473 3.617 11.485
6.3.1 • Image Warping 1.126 2.272 3.388 10.939
6.3.2 • Hole Handling 0.081 0.130 0.147 0.362
6.3.3 • Recoloring 0.045 0.071 0.082 0.184

Total 387.717 967.768 2428.000 11464.000
• FPS 2.57 1.03 0.41 0.08

Table 6.2: Per-module breakdown of the processing time (in ms) and resulting frames per second
(FPS) required to interpolate an eye gaze corrected image for our dataset of Figure 6.2 with resolutions
ranging from Quarter VGA to Full HD. Time was measured on an NVIDIA GeForce GTX TITAN Black
(Kepler architecture) [NVIDIA Corporation, 2012]. The view synthesis performs extremely efficiently
for resolutions up to full HD and above, but relies heavily on accurate disparity estimation. Therefore,
to get a more complete picture, the disparity estimation section has been included. It lists the time taken
by our stereo matching algorithm to compute both the left and right disparity maps with one iteration
of the refinement, i.e. both D1

M and D′1M according to chapter 5. Also reported are the full disparity
range and the FPS and MDE/s (million disparity estimations per second) achieved for each resolution.
The time listed for the Middlebury (450×375) resolution is in line with the one reported in Table 5.2,
Table 5.2, allowing us to evaluate our stereo matching algorithm for more resolutions. The performance
can be further improved by restricting the disparity range (the 1/4 SVGA entry fits into Table 6.1) and
by dividing the algorithm over two GPUs. Boldfaced numbers are referenced in the text.
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(a) Left input image. (b) Right input image.

(c) MPEG’s result. (d) Our result, without range restriction.

(e) Our result, with range restriction.

Figure 6.12: The small-baseline preference of rectified stereo forces us to either place the cameras
around a narrower screen or assume a larger user-to-screen distance. (a)–(b) Input images with a wider
baseline than the one in Figure 6.2. (c) Disturbing artifacts remain in MPEG’s reference algorithm. Our
own algorithm, however, performs much better (e) with disparity range restriction than (d) without.
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Iα=0.0 Ĩ0.1 Ĩ0.2

Ĩ0.3 Ĩ0.4 Ĩ0.5

Ĩ0.6 Ĩ0.7 Ĩ0.8

Ĩ0.9 I′
α=1.0

Figure 6.13: Visual quality is maintained as we sweep from the left image Iα=0.0 to the right image
I′
α=1.0 by interpolating all images Ĩα,α ∈ {0.1, . . . ,0.9}. The user is restricted to move in the horizontal

space. However, as he is seated in the center, eye contact is lost in all viewpoints except Ĩ0.5.
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One last limitation that we run in to is the fact that rectified stereo only allows us to
reconstruct viewpoints on its horizontal baseline. Consequently, the user is confined to move
in the strict horizontal space between the cameras and his eye gaze is corrected only if his
position corresponds to the position determined by the baseline parameter α. This is evident
from Figure 6.13, where we sweep from the left image Iα=0.0 to the right image I′

α=1.0 by
interpolating a series of intermediate images Ĩα. As the user is seated exactly in the middle,
his eye gaze is only corrected when α = 0.5. Deviating even slightly from this position will
destroy eye contact. In practice, this imposes a not to be underestimated constraint on the
usability of rectified stereo for natural eye gaze corrected video conferencing. Nevertheless,
the visual quality is maintained for every interpolated viewpoint.

6.5 Requirements Evaluation
We are finally ready to evaluate our stereo interpolation solution for eye gaze correction.
The evaluation is carried out on the requirements defined in section 1.1, p. 3. The scores
correspond to the scale defined there and are plotted in Figure 6.14.

Eye Contact Eye gaze is corrected and eye contact is restored well. However, this is only the
case as long as both users remain in the horizontally intermediate position determined
by their respective baseline parameter α. A trade-off with freedom of movement thus
exists. 5/75/75/7 (good)

Spatial Context It is difficult for stereo interpolation to offer more spatial context than an
ordinary webcam can. Just as much of the user’s background is visible, if interpolated
correctly. Parallax effects are of course an advantage over an ordinary webcam that
contribute to immersivity. 4/74/74/7 (average)

Freedom of Movement The user’s freedom to move is virtually non-existent. He is re-
stricted to the position defined by α, the relative position of the interpolated viewpoint
on the horizontal baseline between the two cameras. Deviate even a little from this
position and eye contact will be lost. 2/72/72/7 (bad)

Visual Quality The few artifacts that remain in the interpolated image can nonetheless be
distracting. They easily arise due to mismatching or occlusions and are notoriously
difficult to prevent, especially if trying to achieve relatively high algorithmic perfor-
mance. The eyes themselves, however, are very clearly discernible. Notwithstanding
interpolation of pixel values and other image quality degrading operations performed
by the image rectification, the synthesized image should be every bit as sharp as the
input images. 7/77/77/7 (excellent)

Algorithmic Performance The interpolation process itself is very lightweight, but depends
heavily on accurate disparity estimation. Reliable stereo matching algorithms, in turn,
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Figure 6.14: Requirements evaluation of our stereo interpolation prototype for eye gaze correction. The
scores correspond to the scale defined in section 1.1, p. 3. Environment remapping has been evaluated
in section 4.7, p. 63. Missing data will be filled in as more solutions are developed in the next chapters.

are computationally expensive and have an impact on performance that is not to be
underestimated. This is no different for our stereo matching algorithm. Although it
is very performant compared with other local disparity estimation algorithms, it still
performs much less efficiently compared with our environment remapping (chapter 4)
and plane sweeping (chapter 7) approaches. 4/74/74/7 (average)

Physical Complexity Modern cameras are small, cheap, and can easily be integrated into the
bezel of any display. Moreover, they can be factory-calibrated to be in perfect stereo.
7/77/77/7 (excellent)

Communication Modes Only one user can be active in front of the screen at the same time.
3/73/73/7 (reasonable)

6.6 Conclusion

We took two cameras in a rectified stereo configuration and captured the user who is seated
in the horizontal middle. We then interpolated an eye gaze corrected image by following the
depth-image-based rendering pipeline, which essentially consists of a disparity estimation
(chapter 5) and view synthesis (this chapter) stage. The view synthesis is very lightweight,
but relies heavily on accurate disparity estimation.

To further improve the accuracy of the disparity estimation, we introduced the idea of
limiting the disparity search range. In a two-pass process, the images are first matched over
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the full disparity range, but at a downsampled resolution. Peaks in the disparity map’s his-
togram then indicate where objects are located in the scene and thus where the search range
can be restricted during a second pass over the full image resolution. The result is a decrease
in processing time, while at the same time an increase in matching quality. In general, the
complexity reduction is proportional to the void space in the scene. While the technique is
applicable to all types of scenes, it proves to be particularly useful in video conferencing, as
usually only the user and his background need to be scanned in a comparatively large space.

The final eye gaze corrected image is virtually indistinguishable from the image interpo-
lated by the (industry standard but not real-time) MPEG reference software. It is very sharp,
contains few artifacts and the eyes are clearly discernible. A substantial amount of spatial
context is also retained, in spite of most information that is not visible in both cameras be-
ing lost. This has the potential to offer convincing parallax effects if the user moves and the
reconstructed viewpoint follows.

Nevertheless, we do run into a few limitations. First, the freedom to move is restricted
to the horizontal baseline between the left and right capturing cameras. This causes eye
contact to be difficult to maintain, as it depends on the user remaining stationary in the sweet
spot of the reconstructed viewpoint. Finally, the small baseline preference of rectified stereo
forces us to either place the cameras around a smaller screen or assume a larger user-to-screen
distance. To overcome these limitations, we will turn to a technique that can handle multiple
cameras with wider baselines in a more general (i.e. non-rectified) configuration. Coming up
next, in chapter 7: plane sweeping.

6.6.1 Future Work

One angle that is worth investigating is further refining the forward warped disparity map
during the hole handling stage. The formalization by Scharstein [1996] and Rogmans et al.
[2009c] immediately warps the color images to the desired intermediate viewpoint, based on
their associated disparity maps. We deviate from this by first warping the actual disparity
maps to the desired viewpoint. We then fill in occlusions in the forward warped disparity
maps using a straightforward nearest neighbor search on the scanlines, before composing
the final color image in a postponed recoloring stage. More advanced occlusion handling
could be looked at, among them (mostly global) methods based on segmentation [Bleyer and
Gelautz, 2005; Wang and Zheng, 2008], graph cuts [Kang et al., 2001; Deng et al., 2007], be-
lief propagation [Sun et al., 2005; Yang et al., 2009] and dynamic programming [Wang et al.,
2006b]. A more local pixel-based solution would be to incorporate silhouette information by
segmenting the user from his background, similar to what we will do for plane sweeping in
chapter 7. This would allow to better identify and handle occlusions in the forward warped
image, thereby to a certain extent alleviating the small-baseline limitation.
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Figure 7.1: This chapter employs plane sweeping to implement the multi-camera solution depicted in
the overview in Figure 1.1(c), p. 2.
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In chapter 6 we corrected eye gaze by interpolating images captured by two cameras in a rec-
tified stereo configuration. We ran into a number of constraints, the main one being very little
freedom of movement, as the user is confined to the strict horizontal baseline. Furthermore,
we saw that stereo matching is geared at smaller baselines, which forces the user to keep a
considerable distance from the screen to avoid large occlusions. In this chapter we there-
fore aim to develop a fully functional end-to-end prototype for close-up one-to-one eye gaze
corrected video conferencing [Dumont et al., 2008, 2009b; Rogmans, 2013; Dumont et al.,
2014a]. We tackle the constraints of the previous chapter by mounting multiple – instead of
only two – cameras around the screen. We will observe that solutions to typical problems
for genuine practical usage emerge, such as continuous eye contact and a higher freedom of
movement.

Figure 7.2 shows our prototype. It is the realization of its sketched conception in the
overview in Figure 1.1(c), p. 2, repeated in Figure 7.1. The proposed six-fold camera setup
is easily integrated in the monitor bezel and is used to interpolate an image as if a virtual
camera captures that image through a transparent screen. However, this camera placement
makes it impossible to enforce the condition of them being rectified for stereo matching. We
therefore turn to plane sweeping [Yang et al., 2002], an image-based rendering technique that
is able to interpolate cameras in a more general configuration. We conceptually explained
plane sweeping and placed it in the context of depth-image-based rendering with implicitly
determined geometry in section 2.1.2, p. 14.

Our stereo vision algorithms in chapters 5 & 6 were implemented in CUDA [Sanders and
Kandrot, 2010; NVIDIA Corporation, 2007], which exposes the GPU directly as a massive
pool of programmable parallel threads. In this chapter, however, we exploit the traditional
graphics rendering pipeline for general-purpose computations by reprogramming its vertex
and fragment processing stages through OpenGL and Cg [Mark et al., 2003; Rost et al.,
2009; Shreiner, 2009]. This approach lends itself better to the inherent structure and scattered
memory access patterns of plane sweeping [Rogmans et al., 2009b; Goorts et al., 2010], as
we explained in section 2.3.1, p. 21.

This chapter is organized as follows. We begin with an in-depth overview of work related
to plane sweeping in section 7.1. Next, section 7.2 describes our system’s architecture in de-
tail. To achieve real-time performance, we propose several carefully selected algorithms that
are all appropriate for implementation on graphics hardware. Details on the implementation,
together with a number of optimizations that map well to the traditional graphics pipeline, are
given in section 7.3. The optimizations enable our prototype to achieve high subjective visual
quality, while still allowing for further algorithmic advancement, without losing real-time
capabilities. Results are presented in section 7.4, where we also present a fine-tuned set of
user-independent parameters to optimize the application’s end-to-end performance. Section
7.5 holds the by now familiar discussion on the requirements defined in section 1.1, p. 3, and
section 7.6 ultimately concludes the chapter.
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Figure 7.2: Our fully functional end-to-end prototype for close-up one-to-one eye gaze corrected video
conferencing. Six cameras are mounted on a custom-made lightweight metal frame closely surrounding
the screen: two above, two below and one to each side.

7.1 Related Work

Plane sweeping was originally developed by Collins [1996] as a true multi-image technique
to simultaneously determine 2D feature correspondences and 3D positions of feature points
in the scene. Yang et al. [2002] subsequently showed how to efficiently implement plane
sweeping on commodity graphics hardware. They state that compared with other image-
based rendering algorithms, their method easily achieves real-time performance, can deal
with any arbitrary object shape and does not require silhouette information or complex geo-
metric modeling of the scene.

Since then, many strategies have been devised to increase the accuracy of the plane sweep.
Lots of research focuses on increasing the accuracy of the matching cost for each pixel on
each plane, similar to the plethora of cost aggregation techniques for stereo matching that we
discussed in section 5.1, p. 70. Yang et al. [2004b] show how to efficiently aggregate match-
ing costs over variable square window sizes by exploiting the GPU’s mipmapping functional-
ity. Nozick et al. [2006] remove statistical outliers that deviate too much from the average of
all colors that project to the same pixel on a plane. Geys et al. [2004] and Zach et al. [2008]
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follow a more globally oriented approach to cost aggregation by incorporating graph cuts
and Markov random fields respectively. Similarly, Kang et al. [2001] dynamically match a
subset of neighboring viewpoints and explicitly label occluded pixels within a global energy
minimization framework. Merrell et al. [2007] sweep from multiple viewpoints and fuse the
results together while taking into account visibility constraints.

Other strategies include changing the shape or the direction of the planes to sweep. Zabu-
lis et al. [2006] project on spherical surfaces instead of planes. Cornells and Van Gool [2005]
take a two-pass approach whereby a depth map reconstructed in the first pass is swept again
with small offsets to find local minima in the matching cost. Gallup et al. [2007] change
the direction of the planes so that fronto-parallel surfaces are not favored. The sweep is per-
formed for multiple orientations and the orientation that leads to the minimum data entropy
of the depth map histogram is selected.

None of these strategies, however, look at the distribution of the planes in 3D space. We
will do so in section 7.2.5 and section 8.3, p. 170.

Finally, plane sweeping serves in many other applications next to video conferencing.
Among them are image stitching [Kang et al., 2004], interpolation of sports scenes [Goorts
et al., 2014a; Goorts, 2014] and reconstruction of urban scenes [Pollefeys et al., 2008].

7.2 System Architecture

The core functionality of our system at one user’s side is visualized in Figure 7.3. It consists
of five consecutive processing modules, all of which run entirely on the GPU. Notice also
the structural similarities between Figure 7.3 and the depth-image-based rendering pipeline
in Figure 6.4, p. 106.

The input to our system is N images I1, . . . , Ii, . . . , IN that are captured from N cameras
C1, . . . ,Ci, . . . ,CN mounted closely around the screen on a custom-made lightweight metal
frame, as can be seen in Figure 7.2. To overcome occlusions we mount N = 6 cameras. Two
cameras are placed above, two below and one to each side of the screen.

The preprocessing module (section 7.2.1) corrects for lens distortion and performs image
segmentation. It is specifically designed to enhance both the quality and speed of the subse-
quent view interpolation and to ensure a high arithmetic intensity in the overall performance.

The view interpolation module (section 7.2.2) employs plane sweeping to interpolate an
image Iv as it would be captured by a virtual camera Cv positioned behind the screen. The im-
age is computed as if the virtual camera captured it through a completely transparent screen,
thereby enabling the user to look directly into the virtual lens. The plane sweeping algorithm
also inherently produces a joint depth map Zv with dense depth information of the scene.

The interpolated image will still contain a number of noticeable artifacts in the form of
erroneous patches and speckle noise. The depth refinement module (section 7.2.3) is there-
fore specifically designed to tackle these problems under a real-time constraint. It marks
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Figure 7.3: (bottom) System architecture of our end-to-end prototype. (top) An image is reconstructed
as if a virtual camera (dotted lines) captures that image through a transparent screen. The virtual camera
can be positioned freely, so that it always represents the remote user’s eyes.

photometric outliers in the virtual image Iv by detecting and correcting geometric outliers in
the joint depth map Zv. The result is the final refined depth map Z̃v.

The depth refinement destroys the link between the interpolated image Iv and the refined
depth map Z̃v. The recoloring module (section 7.2.4) restores this link by recoloring the
refined depth map Z̃v to produce the final eye gaze corrected image Ĩv. Our system currently
supports to recolor the synthesized image by either blending all N cameras or by selecting the
color from the camera which has the highest confidence of accurately capturing the required
pixel.

In the final step, the refined depth map Z̃v is also analyzed to dynamically adjust the
system and thereby avoid heavy constraints on the user’s movements. The complexity control
module for plane sweeping that we present in section 7.2.5 is the natural continuation of the
one for stereo matching in section 6.2.
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Next to the main processing on the GPU to synthesize the eye gaze corrected image, the
virtual camera must also be correctly positioned to restore eye contact between the users. An
eye tracking module (section 7.2.6) therefore concurrently runs on the CPU and determines
the 3D position of the local user’s eyes. The eye coordinates are then sent to the remote user’s
side to correctly conduct the virtual camera.

By sending the local eye coordinates to the remote user, the N input images do not need
to be sent over the network, but can be processed locally. This results in a minimum amount
of data transfer, as only the eye coordinates and the synthesized eye gaze corrected image
must be exchanged between both users.

7.2.1 Preprocessing

The first task of the preprocessing module is to correct the input images for lens distortion.
We do this by pixel-wise applying the Brown-Conrady distortion model [Brown, 1966]. This
model was explained in section 2.4.3, p. 29, with an example before and after correction for
lens distortion shown in Figure 2.11, p. 29.

Next, each input image Ii is segmented into a binary (foreground versus background)
silhouette Si. We propose two methods of segmentation: chroma keying and background
subtraction. Both are evaluated pixel-wise and require very little processing power. Chroma
keying on the green channel (green screening) is done according to:

Si =

{
FG if Ii|g > ρg×

(
Ii|r + Ii|g + Ii|b

)
BG otherwise

(7.1)

where Ii|r, Ii|g and Ii|b are the red, green and blue channels of image Ii, ρg determines the
sensitivity of the green screen test, and FG and BG are predefined constants that indicate
foreground and background. The pixel coordinate pi = (xi,yi) has been omitted for clarity.

Background subtraction serves in more practical scenarios:

Si =


FG if ‖Ii−Bi‖2 > τ f

or ‖Ii−Bi‖2 ≥ τb and cos(ÎiBi)≤ τa

BG if ‖Ii−Bi‖2 < τb

or ‖Ii−Bi‖2 ≤ τ f and cos(ÎiBi)> τa

(7.2)

where Bi is the background image for camera Ci, and τ f (foreground), τb (background) and τa

(angle) are experimentally determined thresholds that are subjected to parameter fine-tuning.
The distance metric ‖Ii−Bi‖2 is the sum of squared differences (SSD):

‖Ii−Bi‖2 = ∑
c∈{r,g,b}

(
Ii|c−Bi|c

)2 (7.3)
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Ii Si

Figure 7.4: Background subtraction performed according to Equation 7.2 on our six input cameras.
The geometric calibration of the cameras is known, which allows us to draw them here as they appear
mounted around the screen. The remaining noise in the silhouettes will be removed by some morpho-
logical operations.

For shadow removal, the cosine of the angle ÎiBi between the color component vectors of
the image pixel and the background pixel is determined and thresholded against τa. This ren-
ders the test robust against moderate illumination changes. Figure 7.4 illustrates background
subtraction on our six input cameras.

The segmentation silhouettes will allow the upcoming view interpolation module to ade-
quately lever speed and quality. Its performance may, however, still be profoundly impacted
by any remaining noise in the silhouettes. As a final step, the noise is easily removed by a
few morphological operations, i.e. erosions and dilations [Yang and Welch, 2002].

Lastly, we should note that in practice our system asks for the raw one-channel Bayer
patterns (see section 2.4.4, p. 30) directly from the cameras and immediately transfers these
to the GPU. It is then the very first task of the preprocessing module to convert them to three-
channel RGB images. Doing so means a significant reduction in bandwidth consumption
and thus improves performance considerably, as one-channel Bayer patterns are only a third
the size of three-channel RGB images. Moreover, this avoids uncontrolled processing that
would otherwise be integrated into the camera electronics. We will come back to this when
we discuss specifics of the implementation in section 7.3.

7.2.2 View Interpolation

Figure 7.5(left) depicts how we interpolate the desired viewpoint by adopting and adapt-
ing the plane sweeping algorithm of Yang et al. [2002]. The 3D space is discretized into
M ≥ 2 planes parallel to the image plane of the virtual camera Cv. The planes have depths
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{z1, . . . ,z j, . . . ,zM} relative to the virtual camera image plane and are uniformly distributed
in the range [zmin,zmax]:

z j = zmin +
j−1

M−1
(zmax− zmin) (7.4)

so that z1 = zmin and zM = zmax.
For every depth z j, every pixel pv of the (to be reconstructed) virtual camera image Iv

is back-projected to a voxel f j on the plane with depth z j and subsequently reprojected to a
pixel pi in each input camera image Ii:

f j = M−1
v ×K−1

v ×Tj× pv (7.5)

pi = Ki×Mi× f j (7.6)

with M = [R|t] and K the extrinsic and intrinsic camera calibration matrices as defined in
section 2.4.1, p. 26. Tj is a transformation matrix that contains a translation and scaling to
define the position and extent of the plane with depth z j in world space:

Tj =


z j×Xres 0

z j×Yres 0
1 z j

1

 (7.7)

with Xres×Yres the resolution of the virtual camera image. The relation between all these
coordinate frames is clarified in Figure 7.5(right).

Pixels of the virtual camera image that reproject outside the foreground silhouette of at
least one of the input images are immediately rejected and all further operations are auto-
matically discarded by the GPU hardware. This is the case for pixel qv in Figure 7.5(left).
This provides a means to lever both speed and quality because noise in the segmentation
silhouettes will, with high probability, not be available in all N cameras.

If pixel pv is not discarded for plane depth z j, its mean (i.e. interpolated) color ψ j and
joint matching cost ε j are computed:

ψ j(pv) =
N

∑
i=1

Ii(pi)

N
(7.8)

ε j(pv) =
N

∑
i=1

∥∥ψ j(pv)− Ii(pi)
∥∥2

3N
(7.9)

where pixel pv reprojects to pixel pi according to Equation 7.5 and Equation 7.6.
To finally produce the interpolated image Iv and joint depth map Zv, the plane is swept for

all M depths {z1, . . . ,zM} and the best match is selected on a winner-takes-all (WTA) basis:
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Figure 7.5: Concept of our plane sweeping algorithm that takes into account input image segmentation
to discard unwanted computations. (left) Pixel qv is discarded because it deprojects to voxel g1 on plane
depth z1 and subsequently projects to pixel qi outside of the foreground silhouette of at least one input
image. Pixel pv does project inside all foreground silhouettes, via voxel f1. (right) The relation between
coordinate frames to project pixels from the virtual camera image to the input camera images.

Iv(pv) = argmin
ψ j(pv) | z j∈{z1,...,zM}

ε j(pv) (7.10)

Zv(pv) = argmin
z j∈{z1,...,zM}

ε j(pv) (7.11)

The result is shown in Figure 7.6.
Similar to Equation 5.19 and Equation 5.20, p. 80, we can also keep a final confidence

map εv:

εv(pv) = min
z j∈{z1,...,zM}

ε j(pv) (7.12)

Contrary to Yang et al. [2002], in Equation 7.9 we propose to use all input cameras to
compute the matching cost. By matching N = 6 cameras at once, the reliability of a pixel-
to-pixel match is significantly increased and the need for very expensive cost aggregation
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Iv Zv

Figure 7.6: The view interpolation module outputs an interpolated image Iv and its joint depth map
Zv. The interpolated image is shown surrounded by the input images Ii and the depth map by the
segmentation silhouettes Si.

is eliminated. This is in stark contrast to the stereo matching of chapter 5, where the cost
aggregation demanded over 80% of the total processing time (see Table 5.2, p. 90). The view
interpolation is thus kept extremely efficient, which frees up resources for extensive post-
processing in the upcoming depth refinement module. Should cost aggregation nevertheless
be desired, an efficient way of doing so is to use OpenGL’s mipmapping capabilities on
each plane’s confidence map ε j (Equation 7.9) to hierarchically aggregate costs over variable
window sizes [Yang and Pollefeys, 2003; Yang et al., 2004b].

7.2.3 Depth Refinement

The interpolated image Iv still contains photometric errors due to mismatches caused by varia-
tions in illumination, partially occluded areas and natural homogeneous texture of the human
face. They are more easily detectable and correctable in the joint depth map Zv, if we as-
sume that it must be locally linear. We discern two specific types of errors to treat: erroneous
patches (section 7.2.3.1) and speckle noise (section 7.2.3.2). The result is a refined depth map
Z̃v which is, however, no longer linked to the interpolated image Iv. This link will be restored
by the recoloring module in section 7.2.4. A step by step overview is given in Figure 7.8.

7.2.3.1 Erroneous Patch Filtering

To detect erroneous patches, we propose the spatial filter kernel depicted in Figure 7.7(a).
The entire following process is conceptually explained in Figure 7.7(b)–(e).

First, on the area around every pixel pv = (xv,yv) of the depth map Zv, a two-dimensional
depth consistency check is performed:
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Figure 7.7: The depth refinement module uses a spatial filter kernel to detect and correct depth incon-
sistencies. (left) The proposed filter kernel and (right) the outlier correction concept, whereby (b)–(c)
erroneous patches are detected (red), (c)–(d) grown outward, and (d)–(e) filled inward with reliable
neighboring depth values (green).

‖Zv(xv−λ,yv)−Zv(xv +λ,yv)‖2 < δc (7.13)

‖Zv(xv,yv−λ)−Zv(xv,yv +λ)‖2 < δc (7.14)

where δc is a small threshold to represent the depth consistency and λ determines the maxi-
mum size of patches that can be detected.

If the area passes the consistency check in either one of the dimensions, the pixel pv is
flagged as an outlier if pv itself does not exhibit the same consistency by exceeding a given
threshold δo:

∥∥∥∥Zv(xv,yv)−
Zv(xv−λ,yv)+Zv(xv +λ,yv)

2

∥∥∥∥2

> δo (7.15)∥∥∥∥Zv(xv,yv)−
Zv(xv,yv−λ)+Zv(xv,yv +λ)

2

∥∥∥∥2

> δo (7.16)

Next, the detected center is grown only if its neighboring pixels exhibit the same depth
consistency as the initial outliers and the full patch is thereby detected.

Finally, the direction of growth is reversed and the detected patch is filled with reliable
depth values from its neighborhood. Detected erroneous patches and the corrected depth map
are shown in Figure 7.8(middle row).

Figure 7.8 (facing page): The initial interpolated image Iv still contains erroneous patches and speckle
noise. The depth refinement module takes the initial depth map Zv as input. First, erroneous patches are
detected and corrected. Next, high-frequency speckle-noise is removed by applying a Gaussian low-
pass filter. The result is the refined depth map Z̃v, which will ultimately be recolored by the recoloring
module to produce the final interpolated image Ĩv.
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Iv Zv

Zv: erroneous patches detected Z̃v: erroneous patches corrected

Z̃v: speckle noise filtered Ĩv
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Since all of these procedures operate iteratively and pixel-wise, they are inherently appro-
priate for parallel implementation on a GPU, thereby again achieving a tremendous speedup
over a generic CPU algorithm.

7.2.3.2 Speckle Noise Filtering

The human face naturally contains large homogeneously textured regions with skin color.
These areas are easily mismatched, which causes the depth map to contain spatial high fre-
quency speckle noise. This type of noise is most efficiently suppressed by a low-pass filter
and we therefore apply a standard two-dimensional isotropic Gaussian filter. The final refined
depth map Z̃v is shown in Figure 7.8(bottom-left).

Although applying a low-pass filter eliminates the geometrical correctness of the depth
map, this still significantly enhances the subjective visual quality, as opposed to other more
geometrically correct approaches [Lei and Hendriks, 2002]. Furthermore, a Gaussian filter
can be orthogonally separated into a one-dimensional row and column convolution, which
again allows for a highly optimized implementation on graphics hardware.

To conclude, note that the refined depth values are not necessarily elements of the initial
collection of uniformly distributed depth values {z1, . . . ,zM}anymore. Care should be taken
to ensure that they are still at least within the range [zmin,zmax], as this will be a requisite for
the upcoming complexity control module in section 7.2.5.

7.2.4 Recoloring

The depth refinement changes the geometry of the depth map Zv, which is normally – inherent
to the plane sweep – jointly linked to the interpolated image Iv. To restore this link, we will
require the ability to reproject the pixels (depth values) of the refined depth map Z̃v to pixels
in the input images Ii:

fv = M−1
v ×K−1

v × T̃v× pv (7.17)

pi = Ki×Mi× fv (7.18)

which is the exact same process as Equation 7.5 and Equation 7.6, but with a different trans-
lation and scaling matrix T̃v that incorporates the reprojected pixel’s depth value Z̃v(pv):

T̃v =


Z̃v(pv)×Xres 0

Z̃v(pv)×Yres 0
1 Z̃v(pv)

1

 (7.19)

so that the world space position of voxel fv for pixel coordinate pv is now determined by its
refined depth value Z̃v(pv), instead of by a given plane depth z j as in Equation 7.7.
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(a) N-camera recoloring. (b) Confident-camera recoloring.

Figure 7.9: The recoloring module recolors the refined depth map to produce the final interpolated
image. (a) N-camera recoloring equally blends all N input cameras. (b) Confident-camera recoloring
selects a single input camera that is closest in angle to the virtual camera, determined using the color-
coded index map in which each color represents another input camera.

We next devise two methods to resolve the color of the final interpolated image Ĩv: N-
camera recoloring (section 7.2.4.1) and confident-camera recoloring (section 7.2.4.2). Each
method has its particular effect on the visual quality.

7.2.4.1 N-Camera Recoloring

This simplest and fastest recoloring method obtains the interpolated pixel color by blending
all N cameras:

Ĩv(pv) =
N

∑
i=1

Ii(pi)

N
(7.20)

where pixel pv of the interpolated image Ĩv reprojects to pixel pi in the input image Ii accord-
ing to Equation 7.17 and Equation 7.18.

As Figure 7.9(a) shows, this approach generates very smooth transitions of the input
images in the recolored result, at the expense of loss of detail.

7.2.4.2 Confident-Camera Recoloring

For each pixel pv of the image Ĩv, the second recoloring method determines which input
camera Ci is closest in angle to the virtual camera Cv and stores that information in an index
map K:

K(pv) = argmax
i∈{1,...,N}

cos
(
~̂kv~ki

)
(7.21)

where we search for the largest cosine of the angle between the vector~kv = fv−Cv from the
virtual camera center Cv to the voxel fv and the vector~ki = fv−Ci from the input camera
center Ci to the same voxel fv. We assume C to represent the optical center of the camera
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in world space, while the voxel fv is the pixel coordinate pv deprojected to world space
according to Equation 7.17.

Selecting the final color from a single camera designated by the index map K ensures a
sharply detailed recolored image:

Ĩv(pv) = Ik(pk) (7.22)

with index k = K(pv). However, the quality is sensitive to inaccuracies in the refined depth
map and to deviating colors between input cameras due to variations in illumination and
photometric calibration (section 2.4.2, p. 28). This recoloring scheme is illustrated in Fig-
ure 7.9(b), together with its color-coded index map.

This approach can also be interpreted as a simplified version of unstructured lumigraph
rendering [Buehler et al., 2001], where the refined depth map Z̃v would serve as a geometry
proxy and where the index map K would incorporate angular, resolution, field of view and
visibility constraints.

7.2.5 Complexity Control: Dynamic Uniform Plane Distribution

To avoid heavy constraints on the user’s freedom of movement, a large depth range needs to
be swept. This implies a lot of redundant computations, since in actuality the head of the
user only occupies a small range. On the other hand, simply keeping the depth range fixed
to a narrow range will not do either. The user could then easily move out of range and this
would have a distorting effect on the interpolated image, as shown in Figure 7.10 rows (a)–
(b). Instead, we would like a narrow depth range to stay focused around the user’s head while
he moves, as depicted in Figure 7.10 row (f).

At the end of each iteration of the processing chain, the new range for the next iteration
can be determined. This is done by analyzing the histogram H(z) on the depth values of the
refined depth map Z̃v, which was computed over the current range [zmin,zmax]. Three separate
cases can be distinguished, shown in Figure 7.10 row (c), as the user moves in front of the
screen:

Figure 7.10 (facing page): Our histogram analysis scheme for dynamic uniform plane depth distri-
bution in plane sweeping. (a) The user can easily move out of a fixed narrow range, (b) which has a
distorting effect on the interpolated image. (c) If the user moves forward the histogram of the depth map
will contain an exceptionally large number of depth values toward zmin. Likewise for zmax if the user
moves backward. The depth range for the next iteration can be determined from a Gaussian fit G(µ,σ)
on the histogram, by Equation 7.23. (d)–(e) Approximations to G(µ,σ) can be made by reducing the
number of histogram bins and the number of depth values to bin. (f) The result is a narrow depth range
that stays focused around the user.
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• Forward Movement: If the user moves forward, he will exit the depth range that is
currently being swept. Therefore, the histogram will contain an exceptionally large
number of depth values toward zmin.

• No Movement (Stable): When the user keeps his head more or less motionless, the
histogram will contain a clear peak in the middle.

• Backward Movement: Analogous to forward movement, the histogram will show a
peak toward zmax if the user moves out of range backward.

For practical applicability and generality of parameters, the histogram is in fact computed
on the depth values after they have been normalized to the range [0,1]. We next fit a Gaussian
distribution G(µ,σ) with center µ ∈ [0,1] and standard deviation σ ∈ [0,1] on the normalized
histogram. These parameters are also printed in Figure 7.10 row (c). The current range
[zmin,zmax] is then updated according to:

z′min = zmin +(µ−b1σ)(zmax− zmin)

z′max = zmin +(µ+b2σ)(zmax− zmin)
(7.23)

where [z′min,z
′
max] is the resulting depth range for the next iteration, and b1 and b2 are constant

forward and backward bias factors that can be adapted to the inherent geometry of the object
in the scene.

As the user moves forward or backward, the center µ of the Gaussian fit changes and
dynamically adapts the effective depth range of the system. For the next iteration, all M
plane depths are uniformly distributed in the range [z1 = z′min,zM = z′max]. In other words, the
circle is completed by inputting z′min and z′max in Equation 7.4.

As expressed by the inversely proportional relation in Equation 2.1, p. 15, choosing a uni-
form distribution of plane depths results in a non-uniform distribution of disparities (and vice
versa) [Chai et al., 2000; Feldmann et al., 2003], which in turn risks undersampling the im-
age resolution. Our approach presented here, however, not only leverages the dynamic range
of the plane distribution in space, but also implicitly increases the accuracy by significantly
reducing the chance at mismatches.

The histogram – and with it the parameters of the Gaussian fit – can be approximated
by reducing the number of histogram bins and the number of depth values to bin. This is
illustrated in Figure 7.10 rows (d)–(e), but we will examine this closer when we discuss
implementation-specific optimizations in section 7.3.

Our approach proposed here is similar to the one we employed earlier to increase the per-
formance and quality of our stereo matching algorithm. In section 6.2, p. 105, we analyzed
the disparity map histogram H(d) to restrict the disparity search range. However, the match-
ing algorithm had to be executed twice per frame: once at reduced resolution and once at full
resolution. Our approach here does not introduce extra iterations of the view interpolation.
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It does, however, come at the expense of being behind one frame in responsiveness, as the
depth range for the next iteration is determined at the end of the current iteration. Exactly
because this update is always one frame behind, the interpolated image is briefly distorted if
the user moves out of range, but will quickly recover as the range is adapted. A real-time
high frame rate therefore increases the responsiveness of the system and allows it to stabilize
quickly. Consequently, movement at normal moderate speed will not be visually noticed by
the users.

7.2.6 Eye Tracking For Virtual Camera Positioning

Eye contact will only be convincing if the virtual camera at the local site accurately represents
the eyes of the remote user, and vice versa, as illustrated in Figure 7.11(a). However, for eye
gaze to be correct, the position and orientation of the virtual camera must be expressed in
3D and cannot be defined directly on the screen in the eyes of the remote user [Waizenegger
et al., 2012]. The eye tracking method that we present here tracks the user’s eyes in 3D
and determines their position relative to the screen. It is suitable for robust and efficient
implementation on the CPU and can thus run concurrently with the main view interpolation
on the GPU. The algorithm is described in detail by Maesen [2016].

First we detect skin and eye candidates in every input image. Each input image is trans-
formed to the YCbCr color space, with Cb and Cr the blue-difference and red-difference
chroma components respectively. The luminance (brightness) component Y is redundant for
our purposes, as brightness does not contribute to characterizing skin colors under normal
lighting conditions. A pixel is marked as a skin pixel if it complies to:

|Cbi−σb|< τs

and

|Cri−σr|< τs

(7.24)

with Cbi and Cri the chroma components of the input image Ii and normalized to the range
[0,1], and with τs a given threshold. The parameters σb and σr identify the subspace associ-
ated with skin color. It has been shown that in the CbCr subspace the human skin color forms
a compact class that can be modeled by a 2D Gaussian distribution [Bergasa et al., 2000; Hsu
et al., 2002]. For our purposes, however, the 1D approximation above suffices.

Eye candidates are detected in the same color space. A pixel is marked as an eye candidate
if it complies to [Hsu et al., 2002]:

1
3
(
(Cbi)

2 +(1−Cri)
2 +(Cbi/Cri)

)
> τe (7.25)

with τe again a given threshold.
Lastly, the eye candidates are clustered and the cluster means are validated by cross-

checking them over their epipolar geometry between all input images and by requiring them
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(a) The local user moves and the remote virtual camera must follow. (b) Skin and eye pixels.

Figure 7.11: (a) Whenever the local user moves, the virtual camera at the remote side – a substitute for
the local user’s real eyes at the remote side – needs to move accordingly to ensure that the virtual image
is reconstructed from the correct viewpoint. Conceptually, the two screens are pasted back-to-back
against each other, with both users peering into each other’s world. (b) The virtual camera is positioned
by tracking the user’s eyes. As a first step, skin (red) and eye (green) pixels are detected in each input
image. The procedure is described in detail by Maesen [2016].

to be surrounded by skin pixels. Detected skin and eye pixels in one input image are marked
in Figure 7.11(b).

Once the eye coordinates of the local user have been located in every input image, they
are triangulated to 3D coordinates in world space. Next, the triangulated coordinates are ex-
pressed in a local coordinate frame relative to the screen. They are then sent over the network
to the remote side, where they are mirrored toward the screen to determine the position of the
virtual camera. An orientation is added by requiring the virtual camera to point (i.e. look) at
the middle of the screen, while its field of view is bounded by the screen’s corners. The two
screens (one at each user’s side) are placed in a common (metric) coordinate frame, as if they
were pasted back-to-back against each other. This creates the immersive effect of a virtual
window into the world of the remote user.

7.2.7 Networking

Our prototype system sends the local user’s eye coordinates over the network, allowing the
eye gaze corrected image to be synthesized locally at the remote user’s side where the rel-
evant images are captured. The total peer-to-peer communication thus consists only of the
interpolated images and the eye coordinates. This avoids the transfer of all N input images
and brings the required network communication to a minimum. Hence, data processing and
communication are optimized to guarantee the real-time aspect of the system, even when
running on inexpensive commodity hardware.
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7.3 Implementation and Optimizations
The modular design of our prototype allows us to carefully select independent algorithms that
each efficiently exploit the GPU for general-purpose computations. In this section, we take
a closer look at some of the design and implementation choices that we made to harness the
powerful computational resources of the graphics hardware and the optimizations that follow
from them.

First, the arithmetic intensity of the algorithm is maximized to ensure real-time perfor-
mance in section 7.3.1. Next, the system is further accelerated by elevating the processing
granularity from pixels to tiles in section 7.3.2. Lastly, our just-in-time approach to GPU
code compilation is explained in section 7.3.3.

7.3.1 Increased Arithmetic Intensity

Slow download and readback speed to and from the GPU is a frequent bottleneck in many
real-time applications. The culprit is the memory bandwidth provided by PCIexpress, the
bus connection between the motherboard north bridge controller and the GPU. We can tackle
this bottleneck by directly retrieving one-channel Bayer patterns from the cameras and trans-
ferring these instead to the GPU memory, which reduces the bandwidth consumption by a
factor three. For the simultaneous download of N = 6 input images the impact on the overall
system performance is not to be underestimated, as is clearly understood by comparing the
left and right pie charts in Figure 7.12. The download time is reduced from 12.78 ms to 3.08
ms, which allows the frame rate to increase with no less than 35% from 34 FPS to 46 FPS.

Of course, as a consequence, the preprocessing module now requires an additional Bayer
demosaicing step. We explained Bayer demosaicing in section 2.4.4, p. 30, with an example
shown in Figure 2.12, p. 30. By default we use the bilinear demosaicing method [Ramanath
et al., 2002], because it lends itself very well for efficient pixel-wise implementation on the
GPU. More complex methods are available also [Malvar et al., 2004; Hirakawa and Parks,
2005; Goorts et al., 2012b].

Naturally, more online computations are introduced by inserting an additional demosaic-
ing processing step. In this case, however, this increased arithmetic intensity is desirable and
not detrimental to the overall performance. The reason is that graphics hardware benefits
greatly from kernels with high arithmetic intensity, as it processes instructions significantly
faster than it transfers data.

Processing time measurements of all other modules are also available in Figure 7.12. We
will have a detailed look at these when we discuss results in section 7.4.

7.3.2 Elevated Granularity

Commonly, the programmable graphics rendering pipeline, as depicted in Figure 2.7, p. 22,
can be exploited for pixel-wise general-purpose computations as follows. A single quad
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Figure 7.12: Workload profiling for (left) slow RGB images versus (right) fast Bayer patterns down-
load. Downloading one-channel Bayer patterns instead of three-channel RGB images to the GPU means
a significant reduction in bandwidth consumption and thus improves performance considerably. A more
detailed workload profiling with Bayer patterns download is shown in Figure 7.17.

is drawn and the pipeline (matrix stack, viewport, etc.) is configured in such a way that
the quad’s four corner vertices project to the corners of an off-screen buffer with the same
resolution as the image that we wish to process. Texturing the quad with the image then
results in a pixel-to-pixel mapping between each texel (i.e. a pixel of the texture image) and
each fragment (i.e. a pixel of the off-screen buffer). The hardware invokes a user-configurable
program (the fragment shader) for each fragment, allowing us to perform our own pixel-wise
computations on the image and write the result to the off-screen buffer. Suppose the fragment
shader implements the green screening test of Equation 7.1, then each pixel can be tested in
parallel as illustrated in Figure 7.13.

As there can be millions of fragments and the fragment shader runs independently for each
and every one of them, the fragment processing stage is also the most performance-sensitive
part of the graphics pipeline. Much of its functionality, however, can often be carried over
to the preceding vertex processing stage. Again the hardware invokes a user-configurable
program (the vertex shader) for each incoming vertex, in our case the quad’s four corner
vertices. By triangulating the quad into smaller tiles, we effectively elevate the processing
granularity from pixels to tiles. Computations are only performed on the vertices (corner
points) of the tiles and the result of pixels inside the tiles is approximated by hardware-
inherent linear interpolation.
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Figure 7.13: We can configure the graphics rendering pipeline of Figure 2.7, p. 22, in such a way that
a fragment-to-texel mapping emerges between the fragments of a single rendered quad and the texels
of an input texture. By implementing our own fragment shader functionality, massively parallel pixel-
wise general-purpose computations on the input texture become possible. This example shows how to
compute a segmentation silhouette of a 27×20 image by implementing Equation 7.1.

As a result, the computational complexity becomes inversely proportional to the granu-
larity of the tessellation. If the tile size is chosen wisely, the overall execution speed can be
drastically increased without noticeable impact on the visual quality. We implement three
optimization schemes based on this speed versus quality trade-off. Their granularity can be
configured by a set of well-defined parameters 0 < t ≤ 1.

Tiled Undistortion Lens distortion is generally corrected on a per-pixel basis by the
preprocessing module of section 7.2.1. However, it can be efficiently approximated by tri-
angulating (tiling) a quad, offsetting the vertices of the triangles according to the distortion
model, and finally texturing the (un-)distorted quad with the image that is to be corrected.
The subdivision resolution is configurable by a scaling factor 0 < tu ≤ 1.

The lens correction is hence completely ported from the fragment to the vertex processing
stage. The fragment stage becomes available to perform the subsequent image segmentation
in a single pipeline pass, thereby significantly leveraging the GPU utilization.

Tiled Tallying in Reduced Bins For the complexity control module of section 7.2.5,
a first approximation to the histogram can be made by reducing the resolution of the depth
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map to be binned. As such, the multi-resolution capabilities of the GPU are used to tally tiles
instead of pixels in the histogram bins. This is expressed by a factor 0 < ts ≤ 1 proportional
to the sampling resolution.

Evidently, it is of no use to have more histogram bins than the number of planes (depth
values z j) in the sweep. The essential part, however, is deriving the parameters µ and σ

of the Gaussian fit to dynamically adjust the depth range by Equation 7.23. As illustrated
in Figure 7.10 row (d), the histogram can be further approximated by reducing the number
of bins, without a large impact on the Gaussian parameters. More specifically, the number
of bins are determined proportionally to the number of planes M by a factor 0 < tb ≤ 1.
Heavily reducing the number of bins in Figure 7.10 row (e) causes the center µ to become
less accurate, as it is pulled toward the center of the depth range. An optimal trade-off point
exists, since the accuracy loss will cause the responsiveness of the system to decrease.

Many options are available for efficient histogram binning on the GPU. We implemented
and compared three, but found no significant difference in performance between the OpenGL
GL_HISTOGRAM extension [Segal and Akeley, 1999], vertex scattering [Green, 2005] and
occlusion querying [NVIDIA Corporation, 2005].

Tiled Recoloring For the confident-camera recoloring of section 7.2.4.2, the depth map
can again be tessellated by a factor 0 < tk ≤ 1. This significantly accelerates the construction
of the index map K (Equation 7.21) by interpolating angles between the tile corners.

7.3.3 Just-In-Time Compilation

We dynamically generate and compile the vertex and fragment shader code at run time, when-
ever a change is required in the code. This increases performance in many ways. First and
foremost, loops can be unrolled and unnecessary branching is simply cut away. Furthermore,
many parameters that otherwise would need to be passed by value can be compiled into the
code. Just-in-time compilation is feasible because the system’s parameters rarely change
once they are configured.

7.4 Results

We built our prototype by mounting N = 6 auto-synchronized Point Grey Grasshopper cam-
eras on a custom-made frame that closely surrounds the screen, as shown in Figure 7.2. This
camera setup avoids large occlusions and has the potential to generate high quality eye gaze
corrected images, since no image extrapolation is necessary. We calibrate the cameras of-
fline as described in section 2.4.1, p. 26, and if necessary maintain the external calibration
using the procedure developed in chapter 3. However, in an end product the cameras could
be built into the monitor bezel, which would fix the camera parameters and make extensive
calibration superfluous.
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(a) N-camera recoloring. (b) Confident-camera recoloring.

Figure 7.14: Eye gaze corrected images using (a) N-camera versus (b) confident-camera recoloring.

Steven Sammy

Figure 7.15: More eye gaze corrected images using N-camera recoloring.

A final eye gaze corrected result that compares both recoloring schemes is shown in Fig-
ure 7.14. For the N-camera recoloring, some small artifacts along the ears and chin, together
with minor ghosting around the neck, remain noticeable due to limitations of the depth re-
finement. The result generated with the confident-camera recoloring is sharper and much
more detailed, although some minor artifacts are still caused by abrupt camera transitions in
the index map K (Equation 7.21). More results for different users are shown in Figure 7.15.
All images maintain their integrity, are regarded to be of high subjective visual quality and
convincingly seem to be making eye contact with the reader.
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(a) Triangulated proxy. (b) Moderately sideways. (c) Extremely sideways.

Figure 7.16: Unstructured lumigraph rendering from non eye gaze corrected viewpoints. The refined
depth map has been triangulated into (a) a geometry proxy, which has then been rendered from (b) a
moderately deviating viewpoint and (c) an extremely deviating viewpoint. In particular the latter shows
that the refined depth map approximates the true shape of the face well.

Figure 7.16 shows an unstructured lumigraph rendering [Buehler et al., 2001] (see sec-
tion 2.1.3, p. 18) of a user in front of our prototype. First, we use our plane sweeping algo-
rithm to compute the refined depth map Z̃v of the eye gaze corrected viewpoint. Next, from
the depth map in image space, we triangulate a geometry proxy in world space. Finally, we
render the proxy from an alternate (not eye gaze corrected) viewpoint and apply the unstruc-
tured lumigraph algorithm to take into account angular, resolution, field of view and visibility
penalties. The figure allows us to judge that the geometric correctness of the refined depth
map is very acceptable.

All these results are generated under moderately varying ambient conditions (e.g. chang-
ing illumination), but with the fixed set of fine-tuned parameters grouped in Table 7.1. We
observed this configuration of parameters to behave well for various types of users, thus fur-
ther demonstrating the genuine practicality of our prototype.

Processing time measurements were already previewed in Figure 7.12 (belonging to sec-
tion 7.3.1), where we compared the impact of downloading three-channel RGB images with
one-channel Bayer patterns on the system performance. A more detailed workload profiling
is shown in Figure 7.17, with the N-camera recoloring used in Figure 7.12(right) replaced
with the sharper, but more expensive, confident-camera recoloring.

We make some observations on the processing times of the different modules. Reading
back a single eye gaze corrected RGB image takes more or less the same time as downloading
N = 6 one-channel Bayer patterns, i.e. about 13% of the total processing time. The prepro-
cessing and view interpolation modules are the most expensive, as together they consume
half of the total processing time (25% each). The depth refinement and recoloring module
only require about 10% each. The confident-camera recoloring is, however, remarkably more
expensive than the N-camera recoloring: 2.52 ms (11%) versus only 0.15 ms (1%). In the
end, the complexity control module turns out to be the least expensive, as it takes just 5%
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Module Parameter Value

Preprocessing ρg 0.355
τ f 0.010
τb 0.002
τa 0.998
tu 0.2

View Interpolation N 6
M 35

Depth Refinement λ 20
δc 0.2
δo 0.3

Confident-Camera Recoloring tk 0.2
Complexity Control b1 2.0

b2 2.0
ts 0.5
tb 0.4

Eye Tracking σb 0.352
σr 0.473
τs 0.017
τe 0.446

Table 7.1: Fixed set of parameters for genuine practical usage of our prototype for close-up one-to-one
eye gaze corrected video conferencing. We observed these parameters to behave well for various types
of users under varying ambient conditions. This demonstrates the real-life practicality of our prototype.

of the total processing time. This is a great testament to its strength, as it itself prevents the
already time-consuming view interpolation module from gobbling up even more time.

Processing time was measured on an NVIDIA GeForce 8800 GTX graphics card, with
SVGA (800×600) input/output resolution and parameters configured as in Table 7.1. Sum-
ming up the individual modules, we reach a confident speed of 42 FPS. However, our exper-
imental setup is limited by 30 Hz support in the cameras and FireWire controller hardware.
Still, we foresee these specifications to enable genuine practical usage, since the end-to-end
system is developed with minimal constraints. Compared with stereo interpolation in chap-
ter 6, our solution presented here is much more performant. Moreover, the system’s current
speed offers room for further quality improvements by advancing the algorithm and compu-
tational complexity.

Our system supports many-to-many communication, although some limitations apply.
First, a larger screen is needed to show multiple users side by side. Consequently, the cameras
are spaced further apart, which in turn requires a larger user-to-screen distance to alleviate
occlusions. Furthermore, the complexity control module as it was developed in section 7.2.5
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Figure 7.17: Detailed workload profiling of the end-to-end optimized processing chain. Processing
time was measured on an NVIDIA GeForce 8800 GTX graphics card (Tesla architecture) [Lindholm
et al., 2008], with an SVGA (800× 600) input/output resolution and parameters configured as in Ta-
ble 7.1. Compared with Figure 7.12(right), we have opted here to use the more expensive confident-
camera recoloring instead of N-camera recoloring.

only supports depth range adaptation for one object (i.e. one user) in the scene. This forces
the users to remain more or less stationary and side by side at the same depth in the scene.
In section 8.3, p. 170, we will extend the complexity control module to support multiple
objects in the scene at different depths. Lastly, the synthesized image can naturally provide
eye contact with only one user at the same time. Four users are experiencing our prototype
simultaneously in Figure 7.18.

7.5 Requirements Evaluation

As is familiar by now, we here discuss to what degree our solution complies to the require-
ments specified in section 1.1, p. 3. The scores correspond to the scale defined there and are
accompanied by the scores of environment remapping (chapter 4) and stereo interpolation
(chapter 6) in Figure 7.19.
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Figure 7.18: Our prototype for eye gaze correction using six cameras mounted around a larger screen
supports limited many-to-many communication. However, a larger user-to-screen distance is required
to alleviate occlusions.

Eye Contact The eyes are clearly visible and the eye gazes of both users are automatically
locked on to each other by a concurrently running eye tracker. Moreover, the plane
sweeping algorithm allows the virtual camera to move in any direction. This is much
more flexible than the horizontal baseline restriction of stereo interpolation (chapter 6)
and it means that eye contact is always maintained, even if a user moves. 7/77/77/7 (excellent)

Spatial Context To overcome artifacts caused by occlusions that arise from the very small
user-to-screen distance, the input images are segmented into foreground and back-
ground and only the foreground (i.e. the face) is interpolated. This improves visual
quality, but removes spatial context. We will overcome this in our immersive environ-
ment in chapter 8. 2/72/72/7 (bad)

Freedom of Movement Thanks to the eye tracker and the plane sweeping algorithm that can
reconstruct the image for any virtual viewpoint (within reason), the user undeniably has
more space available to move around in front of the screen, compared with the stereo
interpolation solution (chapter 6). However, his space is still restricted by the bounding
box of the 3D space that is visible to the cameras. 5/75/75/7 (good)

Visual Quality The N-camera recoloring scheme repaints the refined depth map by aver-
aging all six input colors, thereby causing a slight blur and washed out effect. The
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Figure 7.19: Requirements evaluation of our plane sweeping prototype for eye gaze correction. The
scores correspond to the scale defined in section 1.1, p. 3. Environment remapping has been evaluated
in section 4.7, p. 63, and stereo interpolation in section 6.5, p. 124. The missing data for the immersive
collaboration environment will be filled in after it has been developed in chapter 8.

confident-camera recoloring scheme overcomes this by picking the best color based on
angular distance to the input cameras, at the risk of bringing out variations in illumina-
tion and photometric calibration. Regardless of the recoloring strategy, most artifacts
are noticeable along the edges of the face, due to imperfections in the segmentation
and the lack of a background image. 5/75/75/7 (good)

Algorithmic Performance By matching multiple cameras simultaneously, the reliability of
a pixel-to-pixel match is significantly increased and the need for very expensive match-
ing cost aggregation is eliminated. This is in stark contrast to our stereo matching algo-
rithm (chapter 5), where the cost aggregation demanded the majority of the processing
time. The algorithmic complexity is further reduced by a control module that redis-
tributes the planes in space and thereby leverages their dynamic range. The result is a
fully functional prototype that confidently achieves end-to-end real-time speed on any
contemporary graphics card. 6/76/76/7 (very good)

Physical Complexity As with our stereo interpolation solution of chapter 6, the cameras
could easily be integrated into the monitor bezel. On the other hand, we would still
have to integrate multiple (six, in our prototype) instead of only two cameras. Being
watched from nearby by multiple cameras might deter users. 6/76/76/7 (very good)

Communication Modes The prototype has been specifically developed with close-up one-
to-one communication in mind. However, it can also support limited many-to-many
communication, given a large enough screen as in Figure 7.18. 4/74/74/7 (average)
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7.6 Conclusion
We developed a fully functional end-to-end prototype for close-up one-to-one eye gaze cor-
rected video conferencing.

We interpolated the eye gaze corrected image from a convenient six-fold camera setup
that closely surrounds the screen and avoids large occlusions. The flexible plane sweeping
algorithm allows us to synthesize high-quality images from any freely selectable viewpoint,
without the need of image extrapolation. Combined with a concurrently running eye tracker
to position the desired viewpoint, this ensures that eye contact is maintained at all times and
from any position and angle.

Using a histogram-based analysis on the depth map, the complexity control module keeps
a narrow depth range focused around the user’s head while he moves. This allows us to
condense planes in a dynamically shifting range, instead of sweeping the entire space with a
sparser distribution. This not only leverages the algorithmic performance, but also implicitly
increases the accuracy of the plane sweep by significantly reducing the chance at mismatches.

Our software framework harnesses the computational resources of the graphics hardware.
By exploiting the traditional graphics rendering pipeline to trick the GPU into performing
general-purpose computations, we are able to achieve over real-time performance. We reach
a comfortable real-time frame rate of 42 FPS for SVGA (800× 600) image resolution on
an NVIDIA GeForce 8800 GTX, but our experimental setup is limited by a 30 Hz refresh
rate of the cameras. We improved the end-to-end performance of the system by maximiz-
ing arithmetic intensity and by introducing granularity-based optimization schemes, without
noticeable loss of visual quality. A fine-tuned set of generalized user-independent parame-
ters allows us to synthesize eye gaze corrected images with subjectively high visual quality –
rather than being geometrically correct – under variable conditions.

Our system has a minimal amount of constraints, is intuitive to use and is very convincing
as a proof-of-concept.

7.6.1 Future Work

The geometric accuracy of the depth map could be improved by taking into account spatial
and temporal constraints as explored by Kang et al. [2001] or visibility constraints following
the fusion principles of Merrell et al. [2007].

The confident-camera recoloring scheme could be improved by incorporating visibility
and resolution constraints in a camera blending field, similar to unstructured lumigraph ren-
dering [Buehler et al., 2001]. Alternatively, techniques from floating textures to color the
geometry proxy could be investigated [Eisemann et al., 2008].

In the largest extent, the background could be interpolated with correct motion parallax.
This would complete the immersive effect of a virtual window into the remote user’s world.
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Figure 8.1: This chapter designs an immersive collaboration environment that corresponds to the many-
camera solution depicted in the overview in Figure 1.1(d), p. 2.
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We ultimately arrive at the goal that we initially set in the introduction in chapter 1: the
realization of a spatially immersive environment that enables computer-supported cooperative
work (CSCW) [Schmidt and Bannon, 1992] and video conferencing with restored eye gaze.
Professional collaboration over large distance has and continues to become more and more
a necessity. This creates the need for an immersive environment where people can instantly
communicate and collaborate at a distance, as if they were in the same place at the same time,
anywhere and anytime. Envisioned by Raskar et al. [1998] as The Office Of The Future in
Figure 8.2, it brings together several fundamental areas of computer science, not in the least
a unification of computer vision and graphics. Three fundamental components emerged from
Raskar’s work to crystallize this idea:

(1) Dynamic Image-Based Modeling: The computer vision part that acquires and ana-
lyzes the scene and potential display surfaces and dynamically models them in real-
time for further processing or augmentation with virtual images.

(2) Rendering: The computer graphics part that renders the models according to the pos-
sibly irregularly shaped display surfaces, position and viewing direction of the users.

(3) Spatially Immersive Displays: The hardware part that provides a sufficiently immer-
sive medium for displaying the virtual or augmented images of the generated models
and physical scene. The display should at least engulf the user’s peripheral vision.

These system components are enumerated independently from the description of their
actual implementation and it is our goal in this chapter to specify such an implementation
[Dumont et al., 2010, 2011]. Although this of course does not exclude the use of many of
the techniques others have developed in each of these areas, it remains a challenge because
it requires the integration of advanced computer vision, graphics and hardware that must all
function seamlessly together within a real-time networked constraint.

This chapter presents our fourth and final prototype that we originally introduced in the
overview in Figure 1.1(d), p. 2 (repeated in Figure 8.1). It is organized as follows. First, we
discuss background and related work on immersive video conferencing and collaboration en-
vironments in section 8.1. Then, how we choose to implement – and extend – the fundamental
components is described in section 8.2. The image-based modeling (i.e. component (1)) will
require the plane sweeping algorithm from chapter 7. Therefore, in section 8.3 a histogram-
guided approach is presented (building on the approach from section 7.2.5, p. 142) to increase
the efficiency of the plane sweep for complex scenes with multiple subjects in view. Proto-
type results are presented in section 8.4, after which we have the familiar discussion on the
requirements in section 8.5. Finally, we conclude in section 8.6.

The reader is encouraged to recognize that many key research areas that have been the fo-
cus of our research group as a whole over the past years are truly brought together: view inter-
polation for free viewpoint video, calibration of camera networks, tracking, omnidirectional
cameras, multi-projector immersive displays, multi-touch interfaces, and audio processing.
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Figure 8.2: The Office Of The Future as envisioned in a conceptual sketch by Raskar et al. [1998]. The
inset helps to differentiate between projected images and real objects.

8.1 Related Work

Cruz-Neira et al. [1993] introduced the concept of an environment that completely immerses
the user in a virtual world and responds to his movement. Their CAVE (Cave Automatic Vir-
tual Environment) was build as a projection-based surround-screen with six walls in the form
of a cube. It was conceived as a virtual reality tool for scientific visualization and therefore
had a sole focus on being a spatially immersive display without support for collaboration at a
distance. Interaction between the installation and the virtual world was supported via wired
head and hand trackers, while stereo glasses provided passive stereoscopic 3D.

Later, Green and Whites [2000] identified the components of the CAVE design that rep-
resent the major costs and redesigned them with the aim of reducing cost for the end-user as
much as possible, while preserving most of the CAVE’s functionality. Named the CAVE-let,
they imagined a wide range of applications in areas such as tele-health, visualization, educa-
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tion and collaboration. By purposing the CryEngine2 video game engine, Juarez et al. [2010]
also implement a low-cost CAVE-like environment and give it the moniker CryVE.

Acknowledging that CAVE-like environments had played a minor role so far in advancing
the sense of immersion for video conferencing systems, Childers et al. [2000] explored their
use as the basis for building immersive visualization and collaboration environments. In
their Access Grid project, they learned that a strong sense of immersion and the provision of
natural sight and audio cues is important to facilitate collaboration between users at remote
sites. They make passing mention of, but do not offer any tangible solution to, the specific
problem of supporting eye contact.

The Blue-C project [Gross et al., 2003] is another pioneer of CAVE-like environments,
intended for virtual design and collaboration. It consists of three glass panels (front, left
and right) that contain liquid crystal layers. By varying electric current, these layers can
be switched from a whitish opaque state (for projection) to a transparent state (for acquisi-
tion). The opaque state allows the panels to be projected on by two projectors in an active
stereo configuration, while the transparent state allows the video cameras to look through the
panels and capture the user. From the captured user video streams, a 3D model is recon-
structed and integrated into a networked virtual environment at the remote site. Eye contact
is implicitly approximated by cameras positioned directly behind the transparent screens.
However, switching between opaque and transparent states demands precise synchronization
by special-purpose micro-controller hardware. Additional hard- and software components
accomplish head tracking, spatial audio, voice communication and user interaction.

Moving away from fully encapsulating CAVE-like environments, the most common ap-
proach to realize immersive collaboration is through the concept of a shared virtual table
environment (SVTE). The physical and virtual environment is set up in such a way that all
users have the impression of sitting around a shared table and being part of an extended space,
thereby enabling a higher degree of natural interaction and collaboration.

Early implementations of the SVTE resulted in tele-cubicles, where all users are seated
symmetrically around the virtual table and each user appears on his own dedicated window-
like screen [Aoki et al., 1999; Gibbs et al., 1999; Chen et al., 2000]. This specific arrangement
of single-user terminals restricts the sense of physical presence, is only suited for a fixed
number of users and does not scale well.

A lot of research regarding STVEs has been performed in the VIRTUE (virtual team
user environment) and 3DPresence projects of Schreer and Sheppard [2000] and Feldmann
et al. [2009b]. Their goal was to offer multiple users a seamless transition between the real
conference table in front of the display and the virtual table on the screen by rendering the
remote users under correct perspective view into the conference scene [Schreer et al., 2001,
2008b; Kauff and Schreer, 2002; Feldmann et al., 2010]. Just like our prototypes, their system
consists of an extensive processing chain that integrates rectification and lens distortion cor-
rection, audio processing, networking, segmentation, scene depth reconstruction (by stereo
matching), visual hull modeling of the users and subsequent novel view synthesis to correct
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eye gaze, head tracking, and composition into the shared scene. Nevertheless, their shared
conference scene remains virtual and not real, thus offering little spatial context and prevent-
ing the local users from receiving any information on the remote users’ actual environment.

Commercially available but expensive CAVE-like systems include Barco’s range of im-
mersive displays, 3D video walls and dome displays [Barco NV] and Holovis’ MotionDome
for theme park entertainment (e.g. interactive rides) [Holovis, 2013]. Commercially available
and equally expensive video conferencing systems include Cisco’s telepresence solutions
[Cisco Systems, 2009] and Polycom’s RealPresence Immersive Studio [Polycom, 2009].
They do not actively correct eye gaze but rather rely on a sufficiently large user-to-screen
distance.

Otto et al. [2006] and Wolff et al. [2007] state that current tools for computer-supported
cooperative work (CSCW) [Schmidt and Bannon, 1992] suffer from two major deficiencies.
First, they do not allow to observe the body language, facial expressions and spatial context
of the collaborators. Second, they miss the ability to naturally and synchronously manipulate
objects in a shared environment. To solve these issues, they suggest that only through an im-
mersive collaborative virtual environment (CVE) can we achieve the seamless collaboration
that so naturally exists in a conventional face to face meeting. Furthermore, Divorra et al.
[2010] also observe that telepresence spaces need more immersive and intuitive interaction
with documents and applications for more natural telecollaboration and task sharing.

In all the aforementioned systems, however, the focus still lies primarily on providing
eye gaze correction and not on collaboration. We will develop an immersive collaboration
environment that combines our view interpolation for eye gaze correction with a spatially im-
mersive multi-projector display and a multi-touch surface that allows cooperation through a
networked shared interface. Our environment implements and extends the technical require-
ments identified by Raskar et al. [1998]: dynamic image-based modeling, rendering and a
spatially immersive display. Similar to our needs, Isgro et al. [2004] also identify calibration,
multiple view analysis, tracking and view synthesis as the fundamental image processing
modules.

8.2 Fundamental Components

We implement the three fundamental components previously defined in the introduction as
follows. A sea of cameras and projectors lies at the base of our reconstruction and rendering
algorithm that (1) dynamically models and (2) renders the environment, i.e. both the users
and their background scene. Furthermore, we have created (3) a spatially immersive display
on which a multi-projector setup projects an augmented reality to form a virtual extension
of the physical office. Going beyond the original concept, we add (4) cooperative surface
computing and (5) audio processing for realistic communication. We integrate these five
components into one prototype setup, represented in Figure 8.3. We will now elaborate in
detail on each of the components.
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Figure 8.3: Our immersive collaboration environment exists of five fundamental components: the
ability to both (1) model the local environment and (2) render the remote environment, (3) an immersive
multi-projector display, (4) cooperative surface computing and (5) aural communication.

8.2.1 Model Local Environment

To capture and dynamically model the local user, we make use of a sea of cameras that are
placed behind the panoramic screen. Small holes are cut in the screen that allow the lenses to
peek through, while at the same time being spaced far enough apart so as to not interfere with
the user experience of being immersed in the environment. Consequently, this calls again
for the application of view interpolation to correct the user’s eye gaze and we now have a
choice between either rectified stereo from chapters 5 & 6 or plane sweeping from chapter 7.
The curved nature of the panoramic screen, however, implies that the cameras’ centers of
projection do not lie in the same plane and thus are certainly not rectified with respect to one
another. This makes it less feasible to opt for stereo interpolation and all the more feasible
to opt for the plane sweeping algorithm, which inherently takes into account a more arbitrary
camera configuration anyway. In fact, our plane sweeping approach from chapter 7 can be
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carried over in its entirety and applied with minimal modifications, which in itself is great
proof of its flexibility.

In practice, the cameras are laid out similarly to the configuration used in chapter 7, which
means we limit their number to six pieces. However, because they are now spaced further
apart and because of a larger user-to-cameras distance, we are able to reconstruct a much
wider view of the user. That is to say, we can include the user’s torso and arms and offer
him a larger freedom of movement (e.g. he can move his arms, can sidestep, etc.), without
impeding on the resulting interpolation quality.

One limitation of applying plane sweeping as developed in chapter 7, is the fact that it
completely discards the background of the user; take a look back at Figure 7.15, p. 151, for
example. This was originally welcomed as a means to enhance the quality of the generated
virtual imagery, but it now poses a problem if our goal is to fully immerse the users in each
other’s environment. Our solution is to capture the local user’s panoramic background using
a separate omnidirectional camera positioned behind him and subsequently project it on the
panoramic screen of the remote user. Specifically, we use the Point Grey Ladybug3 omnidi-
rectional camera shown in Figure 8.4(b). Optionally, a stereo rig could even be brought into
play, together with view interpolation algorithms, to enable parallax effects at the rendering
side. Omnidirectional cameras that directly capture stereoscopic panoramas for display on a
cylindrical screen are also available [Peleg et al., 2001; Weissig et al., 2012].

Another limitation that requires our attention is the fact that the spatial nature of our
system (large panoramic screen, lots of space to move around) could easily support multiple
users together, occupying the same immersive environment. However, the complexity control
module as developed for the plane sweeping algorithm in section 7.2.5, p. 142, supports only
one user at the same time, two at the most if side-by-side (as in Figure 7.18, p. 155). We will
tackle this problem in section 8.3.

Lastly, in an environment as complex and highly dynamic as this one, it can be a challenge
to effectively calibrate the cameras and even more so to keep them calibrated afterward. These
challenges can be met perfectly well using the recalibration procedures presented in chapter 3.

8.2.2 Render Remote Environment

After the remote user and his background scene have been captured separately as described in
section 8.2.1, they should now both be rendered correctly according to the viewing position
and orientation of the local user.

As a first step, the background scene that has been captured at the remote site is displayed
locally, after it has been geometrically corrected for projection on the panoramic screen, as
will be explained in section 8.2.3. By exchanging these background scenes between users,
the environments are augmented with a truly immersive dynamic scene, which allows the
users to gain information about the remote environment and (ideally) infer from each other
what they are gazing at. In contrast, in their original conception of The Office Of The Future,
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Raskar et al. [1998] scan the surrounding background environment off-line (using a laser
range finder) and render it as a static scene.

On top of the background layer, the remote user is rendered from the correct virtual
viewpoint, so that eye contact between both collaborators is restored. To achieve this, we
must track the local user’s eyes, so that the coordinates can be sent over the network to
the remote site, where they can guide the plane sweeping algorithm that models the user to
only reconstruct the required point of view. In essence, this is completely analogous to the
system flow described in section 7.2.6, p. 145, and the same eye tracking module can be
employed. However, because the user-cameras distance is now much larger, less pixels are
available to capture the eyes and hence the tracking will be more error-prone. We counter
this by introducing a two-step hierarchical algorithm, where first the visible body of the user
is tracked and only then the coordinates of his eyes inside his head are estimated [Maesen,
2016].

In case the background scene has been captured by a stereo rig in section 8.2.1, the same
eye coordinates can guide the interpolation between the left and right stereo viewpoint (han-
dled by the algorithms of chapters 5 & 6) and thereby introduce the correct motion parallax
when the user moves his head side to side.

Although all of this combined already results in an undeniably high sense of immersivity,
it can be even further improved by optionally rendering both the background and remote user
stereoscopically for natural 3D perception [Dumont et al., 2009a; Rogmans et al., 2010a].
However, as this would require either an autostereoscopic panoramic screen (something that
would at best be financially unavailable to all but a select few users) or the inconvenience of
wearing active shutter glasses to perceive the 3D effect (which would destroy eye contact),
we resort to exploiting only monocular depth cues (e.g. a user that is further away is rendered
smaller) while still perceiving good 3D [Held et al., 2010; Rogmans et al., 2010b].

8.2.3 Immersive Multi-Projector Display

The third fundamental requisite of a futuristic office is a spatially immersive display that at
least engulfs the user’s peripheral vision. We designed an easy to build and very affordable
180-degree panoramic screen by spanning a durable white vinyl cloth over a truss constructed
of lightweight aluminum bars. To suppress the overall cost, the cloth is matte white with
reflection less than 5%, instead of the cinematic pearlescent screens with a reflection of about
15%. It is shown in Figure 8.4(a). The full extent of the screen is projected on by multiple
synchronized projectors that are placed above and behind the user, projecting over his head
at a slightly downward angle.

The multi-projector setup must be calibrated to be able to seamlessly stitch the multiple
projections together. More specifically, the projected image must be geometrically aligned
to compensate for the irregular shape of the screen and the intensity of overlapping projec-
tor pixels must be adjusted. While various methods exist [Li and Chen, 1999; Raskar et al.,
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(a) Panoramic screen. (b) Omnidirectional camera.

Figure 8.4: (a) Our panoramic screen displaying a stage performance by Kaiser Chiefs, (b) recorded
using the Point Grey Ladybug3 omnidirectional camera.

1999; Fiala, 2005; Weissig et al., 2005; Harville et al., 2006; Griesser and Van Gool, 2006;
Sajadi and Majumder, 2010], our internally developed multi-projector calibration procedure
is based on perceptible structured light Bekaert [2008–2012]. The same omnidirectional cam-
era that captures the user’s background (shown in Figure 8.4(b)) is temporarily placed in the
sweet spot of the environment, i.e. the location for which a perfect perspective view is created
regardless of the actual shape of the screen. Consequently, instead of stitching multiple cam-
eras from multiple viewpoints together, we need only to perform only one omnidirectional
capture of the structured light pattern. Finally, the capture is synchronized temporally for
varying structured light patterns and requires only mere seconds to complete. The method
produces visually seamless images, even on screens that are not perfectly cylindrical or spher-
ical. The calibration is fully automatic and requires no user intervention, which makes it ideal
for casual setups such as immersive home video conferencing systems.

8.2.4 Cooperative Surface Computing

Beyond the three hitherto defined fundamental components to build an office of the future,
we also provide collaboration through networked multi-touch surface computing [Dietz and
Leigh, 2001; Wobbrock et al., 2009]. Although this is not a direct criterion in the original
draft of The Office Of The Future [Raskar et al., 1998], it greatly contributes to the collabo-
rative characteristics and we deem it to be an essential part of our immersive collaboration
environment. Internally built, our solution consists of both a hardware system [Cuypers et al.,
2008; TinkerTouch, 2010] and accompanying software framework [Cuypers et al., 2009].
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(a) Development sketch. (b) Networked cooperative jigsaw puzzle.

Figure 8.5: (a) Sketch of our internally built multi-touch surface, based on frustrated total internal
reflection of infrared light [Han, 2005]. (b) A cooperative jigsaw puzzle game running on two networked
multi-touch surfaces. A yellow border indicates that a puzzle piece is being manipulated by the local
user, while a red border marks a piece that is concurrently being manipulated by the remote collaborator.

The hardware is based on work by Han [2005], who makes use of frustrated total internal
reflection (FTIR) of infrared light. The screen consists of an acrylic plate in which infrared
light is injected. On top of the acrylic is a compliant surface film and a rear-projection film.
Touching the projection film will cause optical contact between the compliant surface and the
acrylic, resulting in local scattering of the infrared light. An infrared camera placed below
the surface (together with a projector) is able to detect the scattered light and hence locate
multiple touch points, which in turn allows an (theoretically) unlimited amount of users to
interact on the screen at the same time. A development sketch is shown in Figure 8.5(a).

On the software side, a framework is provided that allows files to be shared over the
network and consequently be viewed, controlled, manipulated and annotated by both sides
simultaneously, as if all users were actually working at the same surface. Applications that
were available at the time of development of the prototype include a photo and video browser,
a (pdf) document browser and a cooperative jigsaw puzzle game. The latter can be observed
in action in Figure 8.5(b). Note the yellow border around puzzle pieces that are being manip-
ulated by the local user and the red border around pieces that are concurrently being manip-
ulated by the remote collaborator.

8.2.5 Aural Communication

Finally, we include advanced audio processing to further facilitate and complete the com-
munication between the users. For now, we only offer support for monaural sound that is
captured with a single high-fidelity microphone and subsequently sent to the remote site for
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processing. Upon arrival, the audio stream is first registered and synchronized before being
amplified and outputted through the speakers.

The Larsen effect, i.e. the audio feedback that is generated through the loop between
both audio systems, is canceled on-the-fly using the network transfer delay determined at
registration. The required audio processing is implemented in Pure Data (Pd) [Puckette,
1996], an open source visual programming language that allows to create and implement
processing chains to not only generate audio, but also video, graphics, interface sensors, input
devices and MIDI. For echo cancellation we use the normalized least mean square (NLMS)
adaptive algorithm to update the filter coefficients iteratively to minimize the error between
the output and desired signal [Holzmann and Strobl, 2005].

The synchronization and echo cancellation contribute to a natural way of communicating,
giving the users the feeling of talking to each other in the same room. Although not yet imple-
mented, the system design lends itself perfectly for localized 3D audio by using a minimum
of two microphones and reconstructing the 3D sound for playback by a surround speaker
setup. This also provides the users the direction of the speaker, which is particularly useful
during many-to-many collaboration scenarios. However, the sound must remain consistent
with the augmented reality.

8.3 Complexity Control:
Adaptive Non-Uniform Plane Distribution

Our prototype of chapter 7 employed a plane sweeping algorithm that places M ≥ 2 planes
at uniformly distributed depths {z1, . . . ,z j, . . . ,zM} between a nearest and farthest depth zmin

and zmax. Each depth z j is determined as:

z j = zmin +σ j(zmax− zmin) (8.1)

where σ j ∈ [0,1] is a normalized depth value that uniformly distributes the planes as:

σ j =
j−1

M−1
(8.2)

so that z1 = zmin and zM = zmax (cf. Equation 7.4, p. 135).
Uniformly distributed planes, however, may be positioned at depths where no objects

are actually present in the scene. The chance of this happening is especially high in scenes
that are only sparsely populated with objects, as demonstrated in Figure 8.6(left). This not
only wastes a lot of computational resources, but also increases the risk at artifacts caused by
mismatches.

In section 7.2.5, p. 142, our solution was to dynamically adjust the nearest and farthest
plane depths, guided by a Gaussian fit on the histogram of the depth map. As explained
in Figure 7.10, p. 144, this effectively kept the depth range focused around the user at all
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Figure 8.6: (left) Uniformly distributed planes may be positioned at depths where no objects are ac-
tually present in the scene. (center) Peaks in the histogram of the depth map indicate at what depth
objects are located in the scene. (right) Guided by the histogram, the planes can be rearranged into a
non-uniform distribution that provides less planes in ranges with less objects and more planes in ranges
with more objects.

times. Although this approach proved very powerful for one-to-one video conferencing, it
quickly shows its limitations when multiple users are present at too differing depths in front
of the cameras. As this could exactly be the case in our immersive collaboration environment,
we here develop a method to adapt the distribution of the planes to the actual scene content
[Goorts et al., 2013b; Goorts, 2014; Goorts et al., 2014b; Dumont et al., 2014a].

To redistribute the planes according to the scene content, we must again appeal to the
depth map histogram. As shown in Figure 8.6(center), peaks in the histogram indicate at
what depth objects are located in the scene. We can interpret this histogram as a probability
density function that describes the likelihood that a plane should be positioned at a particular
depth in the scene. In other words, the planes are rearranged to provide less planes in ranges
with less objects and more planes in ranges with more objects. This results in the non-uniform
plane distribution shown in Figure 8.6(right). We can express this non-uniform distribution
mathematically as:

z j = zmin +ζ j(zmax− zmin) (8.3)

where the purpose of ζ j is to map a plane number 1 ≤ j ≤M to a non-uniform distribution
in the normalized depth range [0,1], similar to how σ j of Equation 8.2 generates a uniform
distribution. Our goal now becomes to define ζ j for each plane number j.

We begin by constructing the histogram H( j) of the depth map of the current frame,
represented in Figure 8.7(left). Because the current depth map may itself be the result of a
non-uniform plane distribution ζ j coming from the previous temporal frame, depth values z j

in the histogram H( j) are binned according to plane number j rather than depth value z j di-
rectly. Doing so facilitates implementation by ensuring that the bin centers remain uniformly
distributed. Next, we convert the histogram to its cumulative version H̄( j). Here, each bin



172 Immersive Collaboration Environment

Figure 8.7: (left) The histogram H( j) of the depth map. (right) Its corresponding cumulative histogram
H̄( j), rescaled and interpreted as a continuous monotonically increasing function h(x) = y. For values
of x with lots of corresponding depth values in the depth map, h(x) will be steep. For values of x with
few corresponding depth values, h(x) will be flat. We can use this observation to rearrange the planes
from a uniform distribution of σ j on the Y-axis to a non-uniform distribution of ζ′j on the X-axis.

not only counts the number of occurrences of the specific depth value it collects, but also
includes the count of all previous bins.

Following the construction of the cumulative histogram H̄( j), we rescale both its axes to
the normalized range [0,1]. The bin centers j on the X-axis are converted to their normalized
depth value ζ j, while the Y-axis is scaled by dividing every cumulative bin count by the total
number of depth values that have been binned. This provides us with M samples (x j,y j):

x j = ζ j (8.4)

y j = H̄( j)/H̄(M) (8.5)

The result can be interpreted as a continuous monotonically increasing function h(x) = y,
shown in Figure 8.7(right). Its domain x = [0,1] represents normalized depth, while its image
y = [0,1] is the normalized cumulative count of depth values. We can determine the function
h(x) by fitting a (M−1)th-degree polynomial on the M samples (x j,y j):

h(x) = p1 · xM−1 + p2 · xM−2 + . . .+ pM−1 · x+ pM (8.6)

with p j its M coefficients.
If we now divide the Y-axis in M cross sections σ j ∈ [0,1], always uniformly distributed

according to Equation 8.2, then we arrive at the desired definition of ζ j as:

ζ
′
j = h−1(σ j) (8.7)

where the notation ζ′j indicates that this non-uniform distribution will be used in the next
temporal frame.
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Figure 8.8: Detail of the rescaled cumulative histogram of Figure 8.7(right), with discrete values
(x j,y j). The non-uniformly distributed and normalized plane depth ζ′j is linearly interpolated between
the histogram bin centers xσ j and xσ j+1, where the latter are determined so that H̄(xσ j) ≤ σ j and
H̄(xσ j+1)> σ j

This definition provides a transformation from plane numbers j to a uniform distribution
of (what can be regarded as normalized plane numbers) σ j on the Y-axis and from there to
a non-uniform distribution of normalized depth values ζ′j on the X-axis. As can be verified
visually by tracing the dotted lines in Figure 8.7(right), planes will be densely distributed
where the cumulative histogram is steep, whereas a sparse distribution emerges where the
cumulative histogram is flat.

One way to determine h−1(y) is to fit a (M− 1)th-degree polynomial on the samples
(y j,x j). Much more efficient and still sufficiently accurate, however, is to use piecewise linear
interpolation. This is explained in Figure 8.8, which zooms in on some of the discrete samples
(x j,y j). First we determine the normalized depth value (i.e. histogram bin) xσ j for which
H̄(xσ j)≤ σ j and H̄(xσ j+1)> σ j. Once xσ j is determined, ζ′j can be linearly interpolated:

φ =
σ j− H̄(xσ j)

H̄(xσ j+1)− H̄(xσ j)
(8.8)

ζ
′
j = φxσ j+1 +(1−φ)xσ j (8.9)

which can then be plugged into the plane sweeping algorithm to redistribute the planes for
the next temporal frame by equating ζ j = ζ′j in Equation 8.3.
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It is desirable to include some planes in the empty space between objects to allow the
(re-)appearance of objects in dynamic scenes. To achieve this, a fixed value, proportional the
number of pixels, is added to all bins in the histogram. This way, the cumulative histogram
will be less flat in less interesting regions, resulting in some planes being assigned there. In
our tests, adding 0.1% of the total amount of pixels reached the desired effect. Furthermore,
for stability and to prevent collapse of the depth range, care should be taken to ensure that
z1 = zmin and zM = zmax never change.

Evaluation First, to validate the reasoning behind the use of the cumulative histogram,
Figure 8.9(a) shows an input image of a video sequence shot with a single immersive envi-
ronment user in view. The presence of only one dominant depth in the scene (i.e. the single
user) causes only one steep section in the cumulative histogram of the depth map, shown in
Figure 8.9(b). By Equation 8.7, this steep part is transformed to a flat value of ζ′j, which can
be understood from its graph in Figure 8.9(d). Conversely, flat sections of the cumulative
histogram correspond to steep values in the same graph of ζ′j. The resulting non-uniform
plane distribution is visually represented in Figure 8.9(c), with an appropriately increased or
decreased density of planes in the corresponding regions of the depth range.

In Figure 8.9(e) a second user joins the party, so that now the scene contains multiple
dominant depths. In turn, the cumulative histogram in Figure 8.9(f) also contains multiple
steep sections. This ultimately results in multiple dense regions in the plane distribution, as
reflected by the values of ζ′j in Figure 8.9(h) and their visual representation in Figure 8.9(g).

For one more scene with multiple users in Figure 8.10, we compute the depth map with
a varying amount of both uniformly and non-uniformly distributed planes. Figure 8.10(b)
shows the result for a uniform distribution of a low number of planes (50). The depth map
clearly contains artifacts, caused by the inherently sparse plane distribution. After non-
uniformly redistributing the planes, the depth map in Figure 8.10(d) shows less noise and
outliers. Furthermore, the silhouettes are delineated more finely and the features of the users
are more discernible. The artifacts are effectively filtered out by the non-uniform plane dis-
tribution, as the planes that generate them are excluded from contributing to the depth map.
For comparison, Figure 8.10(c) shows the result for a high number of uniformly distributed
planes (256). Here, some noise and vague edges are still present. As the non-uniform plane
distribution generates an improved depth map by still using the same low number of planes,
the overall system performance increases significantly.

Figure 8.9 (facing page): Non-uniform plane distribution for (a)–(d) one and (e)–(h) two users. (a),(e)
An input image of the scene. (b),(f) The cumulative histogram H̄( j) of the depth map, rescaled to the
continuous fuction h(x) = y of Equation 8.6. (d),(h) The corresponding ζ′j for each given normalized
plane number σ j, as determined by the inverse function h−1 of Equation 8.7. (c),(g) A visual represen-
tation of the resulting non-uniform plane distribution.



8.3 Complexity Control: Adaptive Non-Uniform Plane Distribution 175



176 Immersive Collaboration Environment

(a) Input image. (b) Uniform distribution of
a low number of planes (50).

(c) Uniform distribution of
a high number of planes (256).

(d) Non-uniform distribution of
a low number of planes (50).

Figure 8.10: Comparison of depth maps computed with a uniform versus a non-uniform plane distri-
bution and a low versus a high number of planes. (a) Input image of a scene with two users. (d) The
depth map generated by a non-uniform plane distribution, based on the histogram of (b) the depth map
generated by a uniform plane distribution, contains less noise and outliers in its depth values. Nonethe-
less, the non-uniform plane distribution still uses the same low number of planes, which improves the
overall system performance significantly. (c) In comparison, simply increasing the number of planes of
the uniform distribution does not improve the quality as much.

So far we have always used the depth map of the previous temporal frame to determine
the plane distribution for the next temporal frame. This may affect the quality of the depth
map in highly dynamic scenes in particular, as the plane distribution for the next iteration is
determined only at the end of the current iteration. One way to counteract this is to ensure
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Figure 8.11: Non-uniform plane distribution guided by an active depth camera, in this case the Mi-
crosoft Kinect [Zhang, 2012]. The depth map that the Kinect captures is of lower quality and does not
suffice for view interpolation, but can still provide a cumulative histogram that is sufficiently accurate
to guide the redistribution of the planes. (a) The depth map and color image (inset), both captured by
the Kinect. (b)–(d) As in Figure 8.9.

(a) Uniform distribution. (b) Kinect-guided non-uniform distribution.

Figure 8.12: Comparison of the depth maps computed with (a) a uniform versus (b) a non-uniform
plane distribution. The non-uniform distribution of the planes has been guided by the depth map cap-
tured by a Kinect. Consequently, only a low number of planes (10) is required.



178 Immersive Collaboration Environment

high system responsiveness, i.e. a high processing frame rate, as we did for the shifting depth
range in section 7.2.5, p. 142. Another solution is to rely on active depth cameras to capture
an initial coarser depth map of the scene. Our final experiment demonstrates the use of a
Microsoft Kinect [Zhang, 2012] to obtain an initial depth map and subsequent histogram, with
the aid of which the planes are then redistributed in the current frame. The depth map that
the Kinect captures is of lower quality and therefore does not suffice for view interpolation,
as can be observed in Figure 8.11(a). The Kinect depth map can, however, still provide a
cumulative histogram (Figure 8.11(b)) that is sufficiently accurate to guide the redistribution
of the planes. As an added advantage, less planes are required in empty spaces to compensate
for moving objects, because an actively captured depth map will inherently contain those
objects anyway. The resulting non-uniform plane distribution is visualized in Figure 8.11(c)–
(d). Next, Figure 8.12(a) shows the result for a uniform distribution of a low number of planes
(10). The depth map contains lots of errors, noise and artifacts, and many parts are missing
or incorrect. In contrast, Figure 8.12(b) shows the result for a non-uniform distribution of the
same low number of planes, where the distribution is based on the depth map provided by
the Kinect. This depth map is much more complete. Noise and artifacts are greatly reduced,
while high performance is still maintained. This demonstrates the benefits of combining a
lower quality depth camera with our method for redistributing the planes. Unfortunately, the
limited range of the Kinect limits its usefulness to only small scale scenes.

8.4 Results

Our immersive collaboration environment has been demonstrated as a fully functional pro-
totype in real-world scenarios at several local conventions [Dumont et al., 2010, 2011]. An
impression is given in Figure 8.13, which shows two networked immersive environments at
the ServiceWave 2010 convention in Ghent, Belgium. User feedback from convention vis-
itors was very positive overall. Many confirmed that eye contact was convincing and that
the panoramic projection screen provided a true sense of immersion in the environment of
the remote user. Furthemore, most visitors were able to intuitively operate the multi-touch
surface, without any assistance whatsoever. The combination of all components into one im-
mersive environment was judged to really facilitate collaboration at a distance and to give the
sensation of a true office of the future.

At the time of development, the implementation of one immersive collaboration environ-
ment required at least two computers. One computer took care of the acquisition and ren-
dering, while the other one performed the image stitching and deformation for the immersive
projection. Both computers had an Intel Core 2 Quad CPU and an NVIDIA GTX 280 graph-
ics board with 1 GB GDDR3 memory. The cameras were a mix of bus-synchronized Point
Grey Grasshopper and Flea cameras with FireWire connections. The panoramic screen was
projected on by three Optoma TX1080 DLP projectors. The multi-touch surface has its own
embedded processor for interpreting multi-touch gestures and displaying media. The audio
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Figure 8.13: Our immersive environment enables collaboration between two locations.

processing and echo cancellation was also performed on a dedicated Mac mini. Everything
combined, our system still achieved real-time performance at over 26 FPS.
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8.5 Requirements Evaluation

This is our last solution to eye gaze correction, in this chapter expanded to full immersive
collaboration at a distance. As always, the evaluation is carried out on the requirements
defined in section 1.1, p. 3. The chart in Figure 8.14 is finally completed and now allows us
to quickly get a feel of the strengths and weaknesses of each solution and how they relate to
one another.

Eye Contact Eye gaze is corrected in the exact same way as in – and thus completely on
par with – our plane sweeping prototype (chapter 7). However, we still score it one
point lower, because the much larger user-to-screen distance causes the eyes to be less
clearly visible. On the other hand, we could confirm that humans are very well adapted
to pick up on eye contact at even the farthest of distances. 6/76/76/7 (very good)

Spatial Context The missing background limitation of our plane sweeping prototype (chap-
ter 7) is overcome by capturing the user’s background with an omnidirectional camera
and projecting it on a panoramic screen. This large panoramic screen engulfs the user’s
peripheral vision and provides him with the most extensive spatial context. Our other
prototypes are no match for this. 7/77/77/7 (excellent)

Freedom of Movement The user’s freedom to move is only held back by the size of the
panoramic screen and the area that is covered by the capturing cameras. 6/76/76/7 (very
good)

Visual Quality Our plane sweeping algorithm from chapter 7 is used to correct eye gaze.
Consequently, there is virtually no change in visual quality, though the larger user-
screen distance implies that occlusions are less severe and artifacts are less discernible.
The addition of a panoramic background also helps to mask artifacts. 6/76/76/7 (very good)

Algorithmic Performance Again, the same plane sweeping algorithm from chapter 7 is
used, with little change in performance. The system is extended with panoramic
background rendering, surface computing and audio processing. This increases the
complexity, as all of these components must operate synchronously. Especially the
panoramic rendering does require extra processing, but in our current implementation
each of the components run on their own dedicated hardware and thus function inde-
pendently of one another. 5/75/75/7 (good)

Physical Complexity The combination of multi-touch surfaces and immersive video con-
ferencing turns out to be especially suitable for the purpose of communication and
collaboration at a distance. However, the whole setup takes a lot of space, has the po-
tential to be very expensive, and consists of many separate modules that each need to
be set up and maintained carefully. All properties that no doubt pose a challenge for
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Figure 8.14: Requirements evaluation of our immersive collaboration environment. The scores corre-
spond to the scale defined in section 1.1, p. 3. All other solutions have been evaluated at the end of their
respective chapters. The completed chart now allows us to compare them all at a glance.

the average user, yet are more than conceivable in a professional office environment.
3/73/73/7 (reasonable)

Communication Modes Developed with a focus on one-to-one communication, but the
large working space could support many-to-many communication with little problem.
6/76/76/7 (very good)

8.6 Conclusion

We took our plane sweeping prototype for one-to-one eye gaze corrected video conferencing
from chapter 7 and extended it to an immersive environment for collaboration at a distance.
We implemented the fundamental criteria of The Office Of The Future as originally proposed
by Raskar et al. [1998] and went beyond by adding multi-touch surface computing and ad-
vanced audio processing. Many of the limitations of the one-to-one prototype of the previous
chapter have thereby been tackled. Mainly, our environment offers the users very detailed
spatial context and more freedom of movement. Everything combined, we still easily achieve
real-time performance.

We proposed an adaptation of the plane sweeping algorithm to more efficiently interpo-
late a scene that contains multiple dominant depths, e.g. when multiple users are present in
our immersive environment. When the content of the scene is not distributed evenly, the
plane sweeping algorithm may be searching for matches in depth ranges where no objects are
actually present. Doing so not only reduces computational efficiency, but also increases the
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likelihood of mismatches and thus noise. Our method employs the cumulative histogram of
the depth map reconstructed in the previous temporal frame (or actively captured by a lower
resolution depth camera) to determine a more suitable non-uniform plane distribution that is
denser in regions with objects and sparser in regions without objects. We tested our method
on various input sequences with multiple users in view. We succeeded to reconstruct high
quality depth maps while only requiring a low number of planes.

The combination of multi-touch surfaces and immersive video conferencing is remark-
ably well-suited for the purpose of collaboration at a distance. The networked multi-touch
surfaces allow multiple users to interact with the same application simultaneously, while
directly manipulating their own private physical interface. Unlike with co-located collabo-
ration, the users don’t have to stand in front of the same table or screen and thereby risk
getting in each other’s way, while at the same time the immersive environment brings a very
convincing sense of telepresence to the – pun intended – proverbial table.

8.6.1 Future Work

We developed our immersive environment with support for one-to-one communication and
collaboration in mind. The system’s spatial (large panoramic screen, lots of space to move
around) and algorithmic (many virtual viewpoints can be reconstructed) nature has big po-
tential to seamlessly support multiple users together, but a couple of main issues will need to
be addressed.

Users should be discerned and tracked, so that each can be offered their own viewpoint
based on the position and orientation of their eyes. The tracker developed by Maesen et al.
[2013] looks very applicable. It determines the six degrees of freedom of the head pose by
passively tracking (infrared) LED strips mounted to the ceiling. It is independent of the size
of the working area and puts no restriction on the number of users to track [Maesen, 2016].

Most challenging is showing a perspectively correct image to each user separately, from
his own point of view, on the same panoramic screen. A good place to start looking for solu-
tions is the work of Nashel [2010], who trades off stereoscopic viewing in autostereoscopic
parallax displays to provide unique monoscopic images to multiple viewers in different posi-
tions.
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Figure 9.1: This chapter performs a sociability study on the users of eye gaze corrected video confer-
encing in the overview in Figure 1.1, p. 2.
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Do users really need eye contact to communicate? How can direct eye contact enhance social
interaction? Does eye contact play an important role in providing a feeling of telepresence?
What other factors contribute to telepresence?

Preece [2001] states that sociability is concerned with developing software, policies and
practices to support social interaction online. Although sociability is closely related to us-
ability, it differs from it in the sense that usability is mainly geared at how users interact
with certain technologies, whereas sociability is concerned with how users interact with each
other using that technology. In other words, usability focuses on the interaction across the
human computer interface, while sociability is concerned with interaction between humans
supported by technology.

We borrow from the studies carried out in collaboration with CUO and MICT/SMIT
on the sociability of several video conferencing technologies developed in the context of the
IBBT ISBO VIN project [2005–2008] [Mechant et al., 2008; van Nimwegen, 2008]. CUO or-
ganized hands-on sessions and presented the participants with questionnaires to fill out after-
ward, while MICT/SMIT concurrently conducted a focus group conversation. An overview
of both procedures is given in section 9.2 and section 9.3 respectively, but not before the eval-
uated technologies are first presented in section 9.1. Finally, we summarize relevant results
of both studies in section 9.4 and we conclude in section 9.5.

9.1 Evaluated Technologies

Mainly because of their readily availability as functioning demonstrators at the time, it was
decided to focus on the two technologies presented here. Notice the interesting juxtaposition
between our image-based solution in section 9.1.1 on the one hand and ETRO’s model-based
solution in section 9.1.2 on the other.

9.1.1 Our Face-To-Face Prototype

This is our end-to-end prototype for close-up one-to-one eye gaze corrected video conferenc-
ing as we developed it in chapter 7. We acquire live images from six cameras placed closely
around the screen and use plane sweeping to reconstruct the eye gaze corrected image of a
virtual camera that is positioned by an eye tracker [Dumont et al., 2008, 2009b]. Figure 9.2
shows our prototype as it existed at the time of evaluation.

While it is true that continuous eye contact is provided, this comes at the expense of re-
alism. The algorithm reconstructs an image that is in a sense a blend of all the surrounding
cameras and could thereby be perceived as less sharp – less crisp – than the image that would
be captured by a single camera only. Visual artifacts do occur, and more than that, no con-
text information on the user’s environment is available as a result of background subtraction
(recall Figure 7.15, p. 151), though this is more a limitation of the prototype than the system
concept as a whole.
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(a) Unnamed test participant. (b) Conversation leader Sophie.

Figure 9.2: (a) An unnamed test participant is conversing on site using our face-to-face prototype
(UC2) with corrected eye gaze. (b) A close-up shows the conversation leader Sophie and the single
webcam (UC1) in the top right corner.

9.1.2 ETRO’s Facial Communication

ETRO’s solution employs a 3D vector-based representation of 2D video images. From the
original 2D video in Figure 9.3(a), they analyze a sequence and reconstruct a 3D model of the
user by identifying the 28 characteristic points marked in Figure 9.3(b). These 28 points are
then tracked by a camera and their displacements are applied to a real-life resembling model
of the user, resulting in the enhanced reality video stream in Figure 9.3(c). Alternatively, they
animate an artificial avatar to represent the user, as shown in Figure 9.3(d).

This technology is particularly interesting in mobile contexts or other situations where
only low bandwidth is available, since the vector-based representation allows the complexity
of the model to be adjusted according to the available bandwidth. However, the face one
communicates with is no longer an exact photorealistic representation. It is a reconstructed
3D model and not an image-based rendered assembly of multiple frames.

9.2 Hands-On Sessions

After hands-on experience with the technology prototypes, CUO asked the participants to fill
out questionnaires [van Nimwegen, 2008].

We begin with deducing four use cases in section 9.2.1. They are evaluated according
to the experimental design described in section 9.2.2. Through each use case, two users (the
experimenter and a test participant) hold a conversation that is designed to be as natural as
possible, as described in section 9.2.3. Finally, how and what data is measured is explained
in section 9.2.4.
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(a) Original video. (b) 3D modeling with
motion estimation.

(c) Enhanced reality. (d) Animated avatar.

Figure 9.3: Steps to the enhanced reality (UC3) and animated avatar (UC4) facial communication
prototypes, developed by ETRO.

9.2.1 Four Use Cases

From the video conferencing technologies presented in section 9.1 and in combination with
an extra control use case, four use cases emerge to evaluate and compare:

(UC1) Single Webcam: This is the control use case that serves as a baseline reference. A
conventional video conferencing situation is set up, where two participants are com-
municating with each other, each behind their own terminal with a single webcam
that consequently cannot provide eye contact. No special processing (e.g. compres-
sion, overlay rendering or avatar representations) are applied. In essence this is the
video chat situation that people are most familiar with at home or at work, as intro-
duced in this dissertation’s problem statement in Figure 1.2, p. 3. The webcam can
be noticed in the top right corner in Figure 9.2(b).

(UC2) Our Face-To-Face Prototype: Our prototype provides close-up face-to-face com-
munication for two users. The six cameras around the screen and the applied render-
ing allows for continuous and real-time eye contact. This is our video conferencing
prototype exactly as developed in chapter 7. Figure 9.2(a) shows an unnamed partic-
ipant testing this setup.

(UC3) ETRO’s Enhanced Reality: This is ETRO’s solution from Figure 9.3(c), where 28
characteristic points are detected and tracked by a camera and their displacements
are applied to a reconstructed 3D model of the user’s face.

(UC4) ETRO’s Animated Avatar: Similar to (UC3), this is ETRO’s solution from Fig-
ure 9.3(d), but instead of using a model of the user’s face, the animations are applied
to an avatar representation.

At the moment of evaluation, ETRO’s facial communication technology, both with real
face model (UC3) and animated avatar (UC4), was not available for use in real-time, because
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of the intensive processing involved. Nevertheless, by processing prerecorded audiovisual
data, the technology became feasible for use in the experiments in such a manner that users
were hardly, if at all, aware that the act was not happening live.

9.2.2 Experimental Design

To the extent possible, the four use cases should be evaluated on equal dimensions and in
a social setting. A within subjects experimental design was opted for, meaning that all test
participants will experience all four setups.

A professional (henceforth referred to as Sophie) was contracted to act as the conversation
partner in all user sessions and in all four use cases. The risk of influencing the results by
having another conversation partner each time is thereby minimized.

As test subjects, 43 persons were recruited via a recruitment agency. Most of them lived
in Hasselt or somewhere in the province of Flemish Limburg; 24 were male, 19 were fe-
male, with ages ranging between 19 and 69 years. All were financially compensated for their
participation.

For each use case, two terminals were set up in two separate rooms. Sophie constantly
manned one terminal in one room, while each test subject was one by one invited into the
other room. Sophie then proceeded to lead a conversation with the test subject, so that the
latter could experience and evaluate the use case in question.

It should be noted that due to practical circumstances the ETRO material was delivered
later than planned, when the lab was already set up and arranged. As a consequence, all 43
subjects could use the single webcam (UC1) and our face-to-face (UC2) setups, but only 13
could test ETRO’s enhanced reality (UC3) and 37 could test ETRO’s animated avatar (UC4)
technologies. This is corrected for when scoring the questionnaire results.

9.2.3 The Conversations

For each of the four use cases from section 9.2.1, a conversation between Sophie and a test
participant is conducted via the technology of that particular use case. The conversation
itself in turn consists of four parts during each use case, with some parts differing from use
case to use case. From Sophie’s side, the content of the conversation is practically identical
time after time, whereas the answers given and stories told by the participants obviously
vary. All conversations were carefully prepared and practiced to guarantee that they would
go smoothly, without answers from participants swinging off, and to ensure they were suitable
for the general research goal. The four parts of the conversation are as follows.

9.2.3.1 Listening

Sophie introduces herself and tells an everyday story that the participant listens to. These
stories differ in each use case and are meant to be easy to relate to by the listener. They are:
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(UC1) Single Webcam: How she got there this morning (get up, take bus, walk, etc.).

(UC2) Our Face-To-Face Prototype: What her day was like yesterday (activities, work, din-
ner, etc.).

(UC3) ETRO’s Enhanced Reality: Describes her house, where she lives.

(UC4) ETRO’s Animated Avatar: Her last vacation / trip.

9.2.3.2 Speaking

After her particular story above has been told, Sophie now asks the participant to tell her their
story on the same subject, i.e. how they got there, their day yesterday, their house or their
vacation. Again, the conversation topics were chosen so that they could easily be answered
by all participants.

9.2.3.3 Short Conversation

The previous two parts of the conversation (respectively listening and speaking) were unidi-
rectional, that is to say an uninterrupted flow from Sophie to the participant or vice versa.
In contrast, the short conversation presented here goes back and forth and is formulated by
Sophie in such a way that it is easy to provoke interaction from the participant. It deals with:

(UC1) Single Webcam: About the pros and cons of toll roads in Belgium. Sophie asks
simple questions to inquire about the participant’s opinion. What about other coun-
tries where this happens? Do you like the idea? Would you consider taking public
transport instead?

(UC2) Our Face-To-Face Prototype: About a Belgian TV show that everybody knows:
F.C. De Kampioenen. Why is this show so popular? What else do you like to watch?
Do you know this other new series?

(UC3) ETRO’s Enhanced Reality: About a (non-existing) newspaper article about people
escaping from prison. Did you read it? Do you know how prisoners most commonly
escape? What measures can you think of to prevent escape?

(UC4) ETRO’s Animated Avatar: About plane tickets. Where to find a cheap ticket to New
York? Is it advantageous to book the flight and accommodation separately? Where
would you go if you would be offered a free flight to anywhere right now?

This short conversation could also be performed with ETRO’s prerecorded audiovisual
fragments (see section 9.2.1), because questions were posed in such a manner that answers
were always short and to the point, and Sophie’s reply – although prerecorded instead of live
– fitted in as if it was real and natural.
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9.2.3.4 Long Conversation

This conversation is most realistic, in the sense that the course of the conversation is truly
free. For this reason, this part is only possible in the live setups, namely the single webcam
(UC1) and our face-to-face (UC2) use cases. It was decided to casually discuss railway strikes
and global warming, both subjects on which people usually have an opinion or are at least
familiar with.

9.2.4 Measures

Data was collected and measured by the following means.

Questionnaires After running through each of the four use cases, the participant fills out
a questionnaire on which they have to score several aspects of the tested system on
several dimensions. The questionnaire is included in Appendix A, Table A.1, p. 211.

Informal Remarks Although the conversations from section 9.2.3 are fairly structured, they
are still allowed to flow naturally to the extent possible. As such, the conversations
are sometimes steered so that certain relevant issues are informally mentioned by the
participants.

Eye Tracking A Tobii Technology eye tracker is placed below the screen. It measures
where, for how long and how often the participant looks at the screen. It would have
been interesting to compare this across the different use cases, but in practice the eye
tracker turned out to be less accurate than hoped for. Very few differences could be
determined between the use cases, which rendered it rather difficult to interpret and
infer any meaningful results.

9.3 Focus Group

A focus group on video conferencing was conducted by MICT/SMIT [Mechant et al., 2008].
Focus groups are a convenient way to collect qualitative and focused research data. In essence
they exist of controlled group interviews, whereby a moderator leads the interview that allows
a small group to discuss the subjects that are brought forward. They are more flexible, open
and less standardized than surveys and thereby allow for easy exploration, insight into context
and depth of the subject, and creation of an interpretative framework [Morgan and Krueger,
1997].

9.3.1 Discussion Topics

The focus group was guided by a moderator who kept to a semi-structured topic list:
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• Exploratory Part: The participants were asked about their vision and opinions regard-
ing communication via video conferencing. It was explored how the participants have
integrated video conferencing into their home or professional environment, which tools
they use, the number and duration of video conferencing sessions and associated grat-
ifications.

• In-Depth Part: Details that were discussed during the exploratory part were delved
into. Questions arose such as: What is the role of video conferencing in communities?
Does the visibility benefit the group dynamic? Is video conferencing mainly used (in
private) between two people or in (a public) group? Why or why not?

• Hands-On Session: A short break during which the participants could experience our
face-to-face prototype (UC2) firsthand.

• Analysis Part: After the hands-on session, the participants were asked to systemat-
ically identify values, bottlenecks, issues and wishes related to our prototype, using
post-its to make the session (inter-)active. Values refer to the added value that partici-
pants see in communicating using video conferencing instead of other communication
channels. Bottlenecks refer to things that may hinder or impede the communication.
Issues are points that the participants consider important for efficient online audiovi-
sual communication. Wishes express what the user would ultimately like if he would
have unlimited resources.

Two extra observers were present, the whole conversation was recorded on a digital audio
recorder and finally transcribed.

9.3.2 Group Composition

With the help of an external recruitment agency, a purposive and convenient sample of par-
ticipants was composed. In a purposive sampling, the participants are chosen in function of
the goal of the study. In this case, it means only people who have been active online and have
used video conferencing in one way or another were selected. Convenient sampling entails
that the sample is only to a limited extent attempted to be made an accurate representation of
a larger group or population.

Unfortunately, due to significant problems experienced by the recruitment agency, only
four of the eight promised recruits showed up to participate in the focus group: three men and
one woman, born between 1948 and 1988. All participants received financial compensation
for their time.

Due to the limited size of the sample, it is difficult to generalize the results from the focus
group to the entire population. The methodological and practical requirements of a focus
group in the strict sense of the word were arguably not met. However, it was decided to go
ahead with the session anyway. Even though the results should therefore be considered to be
purely exploratory, some interesting and striking findings emerged nevertheless.
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9.4 Results

For a detailed analysis of the answers given on the questionnaires after the hands-on sessions,
refer to Table A.1, p. 211, and Table A.2, p. 213, in Appendix A. We continue to make some
key observations, integrating relevant results of both the hands-on sessions (section 9.2) and
focus group (section 9.3).

Looking at the raw numbers, and perhaps somewhat against our hopes and expectations,
we must note that the single webcam (UC1) system appears to emerge as the participants’
preferred video conferencing solution. Our face-to-face (UC2) and ETRO’s enhanced real-
ity (UC3) systems, although both not without their quality flaws, were often judged similar,
but also judged slightly lower than the single webcam (UC1) system. However, when GLM
(generalized linear model) shows the scores to differ significantly, our face-to-face proto-
type (UC2) consistently scores a close second, with ETRO’s enhanced reality (UC3) system
coming in third and their animated avatar (UC4) solution closing the ranks. Even more so,
post-hoc comparison often reveals our face-to-face prototype (UC2) to not differ significantly
from the single webcam (UC1) setup (cf. Questions 1 and 4–8).

The majority of participants do confirm the provision of eye contact to be pleasant, when
presented with the question in Figure 9.4(a). Also during the focus group discussions, the par-
ticipants judged eye contact to render the communication more intense, personal and direct.
In spite of this, eye contact was not overwhelmingly judged to be absolutely indispensable,
but rather more of a technological gimmick. One reason that was heard – simple yet easily
overlooked – is that most people cannot type blindly and are therefore used to losing eye
contact anyway when looking at the keyboard (if audio for voice communication is not used
or not available). We did observe that the eye tracker in our face-to-face prototype (UC2) at
least made the restoration of eye contact feel natural after looking away.

An interesting point to look at is the influence of image quality on communication quality.
Although all view interpolation algorithms, including our own, strive to synthesize an image
that is as free of artifacts as possible, one would be hard-pressed to deny that the absolute
perfect algorithm does not (yet?) exist. To this end, Questions 7–10 (pleasantness and effec-
tiveness) combined with Question 11 (image quality) indicate that image quality is a deciding
factor in the appraisal of a video conferencing system. In contrast, our test subjects indicate
in Figure 9.4(b) that having the image appear at a true-to-life size is less important. Others
stated they would prefer a high-definition image over one that is free of artifacts. Clearly,
room is left for research on having eye contact at the expense of image quality in social con-
texts. In one instance, Yang et al. [2006c] do report that low image resolution makes it more
difficult to seek eye contact in their immersive environment for collaborative dancing.

The participants often expressed their concern about some technical characteristics of the
demonstrators themselves. It was heard that the physical size of the demonstrator (e.g. many
cameras, heavy workstation pc) makes it impossible to carry it around to show the environ-
ment, as people often do with a smaller laptop or phone. A valid point was also made in that
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(a) Is having continuous eye contact
pleasant or rather troublesome?

(b) How important is it that the rendered image
of the conversation partner is at true size?

Figure 9.4: Participants’ remarks on our face-to-face prototype (UC2).

eye contact is often broken purposefully to direct one’s attention to what’s happening in the
environment and thus continuous – unbroken – eye contact might not be an unconditional
requirement. On a similar note, participants expressed a desire for more environmental con-
text in order to gain a more natural feeling of presence and receive more social cues. We
must keep in mind, however, that the participants often struggled to imagine the demonstra-
tors as a first step toward a finished marketable product, free of the technical complexities
that can plague a prototype. Nevertheless, these issues prove relevant to our research, as
they essentially describe the spatial context, freedom of movement and physical complex-
ity requirements (defined in section 1.1, p. 3) that we so often returned to throughout this
dissertation.

The focus groups also brought forward that audio contributes quite significantly to the
overall experience. Moreover, regarding performance, it was stated multiple times that delays
in audio are much more detrimental to efficient communication than delays in video.

Throughout this dissertation, we have intentionally chosen to correct eye gaze using
image-based rendering techniques (environment remapping, rectified stereo and plane sweep-
ing). We assumed that they would produce a more true-to-life image than methods that per-
form model-based reconstruction, thereby especially avoiding the uncanny valley effect that
artificial reconstructions of human faces so often suffer from [Mori et al., 2012]. Our choice
now appears to be warranted by our face-to-face prototype (UC2) that has consistently scored
higher than ETRO’s enhanced reality (UC3) and animated avatar (UC4) solutions. Although
all measured differences are significant, the difference is not terribly outspoken for ETRO’s
enhanced reality (UC3) system, which also processes live captured imagery and textures it
on a 3D reconstructed model. However, for ETRO’s animated avatar system, which does not
output any live captured imagery at all, the difference is very apparent. In particular take a
look at Questions 1 (engagement), 2 (physical presence), 5 (lifelikeness) and 13 (intimacy),
indicating that a lifelike representation of the conversation partner contributes significantly to
experiencing the video conferencing technology as natural and engaging. This is definitely
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(a) The avatar representation
impacts the conversation.

(b) Does the avatar representation
of Sophie resemble the real person?

(c) Other various remarks on
ETRO’s animated avatar system.

Figure 9.5: Participants’ remarks on ETRO’s animated avatar (UC4) system.

also reflected in the informal remarks in Figure 9.5, with the majority of the participants
agreeing that the avatar representation impacts the conversation and that it does not mimic
the real-life appearance of Sophie well. Most participants also find the avatar unnatural and
aggravating to talk to.

9.5 Conclusion
In collaboration with CUO and MICT/SMIT, a concise study was performed on the socia-
bility of several video conferencing technologies. The study consisted of hands-on sessions
and a focus group discussion. We summarized their modus operandi and collected the re-
sults that are most relevant to the eye gaze correction problem treated in this dissertation.
For a more extensive discussion and analysis, including on the contribution of 3D audio to
immersive video conferencing, please consult the originating reports [Mechant et al., 2008;
van Nimwegen, 2008].

What was brought forward most by the participants is that, although eye contact is defi-
nitely appreciated, it is not the only property that is looked for in a video conferencing system.
It was suggested that factors such as image quality, spatial context, freedom of movement and
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physical complexity, which are in fact the requirements that already emerged naturally from
our prototypes throughout this dissertation (defined in section 1.1, p. 3), also contribute to
establishing a social telepresence.

Our prototype using plane sweeping (as developed in chapter 7) was consistently scored
higher than solutions employing a model-based reconstruction or an avatar-based represen-
tation of the conversation partner. We pose that an image-based approach produces a more
lifelike representation of the conversation partner, avoiding the uncanny valley and contribut-
ing to a more natural and engaging video conferencing experience. This warrants our choice
for image-based rendering algorithms (environment remapping, rectified stereo, plane sweep-
ing) throughout this dissertation.

We end on a final thought about not observing a too outspoken difference in the appraisal
of having eye contact. It might be that people tend to simply accept technology as it is,
meaning that a real face-to-face meeting is experienced as a wholly other thing and that we
are happy with video chat just as it is. After all, this is technology that until not too long ago
belonged to the realm of science fiction and perhaps, for example, Skype video in its current
state makes us happy enough already.

9.5.1 Future Work

The evaluated prototypes were challenging in a technical respect. It would be interesting
to work with technologies that have matured to get rid of imperfections outweighing for
example the presence of eye contact. Furthermore, the systems might have been judged more
differently in situations where people that actually know each other use them, and in situations
such as distance education or business meetings/negotiations where eye contact and trust is
more fundamental. Finally, to arrivate at the ideal video conferencing solution, we require
more insight into the concept of presence, what it means to experience a virtual telepresence
and exactly what factors enable this experience. Is this eye contact, context information, or
are other social elements decisive?
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Figure 10.1: We developed real-time image-based rendering algorithms to correct eye gaze in video
conferencing. We implemented our solutions in four different prototypes (cf. Figure 1.1, p. 2) and
evaluated them on seven requirements (cf. section 1.1, p. 3). This chapter concludes by discussing and
comparing all prototypes and their underlying image-based rendering algorithms one final time.
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In this dissertation, we identified the central problem of missing eye contact in video confer-
encing. Eye contact is lost because the user cannot simultaneously look at the screen and into
the camera that is commonly located in the vicinity of the screen. Furthermore, due to the
narrow field of view of a single camera, only very limited context information on the user’s
environment is available. This lack of eye contact and context information severely impedes
communication and collaboration.

10.1 An Image-Based Approach

We set out to correct eye gaze by purposefully taking an image-based approach, meaning
that we synthesized a novel eye gaze corrected image from images that are (live) captured by
cameras.

In chapter 2, we gave an overview of image-based rendering algorithms and situated our
work in a spectrum with a (accuracy of) geometry versus (number of) images trade-off. In the
same chapter, we also explained how to exploit the GPU for general-purpose computations
(GPGPU) and thereby take advantage of its massive parallel processing capabilities. By
designing and implementing all our view synthesis algorithms for and on the GPU, their
real-time performance and future-proof scalability is guaranteed.

In a concise sociability study in chapter 9, we compared (in cooperation with CUO and
MICT/SMIT) one of our own image-based solutions with technologies that rely on geometric
modeling and on avatar representations (developed by ETRO). The study showed that users
prefer the inherent realism offered by image-based approaches over the more artificial looking
geometric and avatar reconstructions. This warrants our choice for image-based rendering,
as it avoids the uncanny valley effect that artificial reconstructions of human faces so often
suffer from [Mori et al., 2012].

10.2 Four Prototypes and Seven Requirements

We developed four different video conferencing prototypes, with each prototype taking its
own specific image-based rendering approach to correcting eye gaze.

As each image-based rendering algorithm requires a different physical configuration of
cameras, we were able to arrange our prototypes according to increasing complexity of their
camera setup. This arrangement – first depicted in Figure 1.1, p. 2 – formed the leading thread
throughout this dissertation. The conceptual drawings of the four prototypes are repeated in
the four corners of Figure 10.1.

From experience with our prototypes, the same seven requirements that any ideal solution
should fulfill kept naturally emerging. They have been defined in the problem statement
in section 1.1, p. 3, and are: eye contact (and the related gaze awareness), spatial context,
freedom of movement, visual quality, algorithmic performance, physical complexity, and
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communication modes. The participants of the sociability study in chapter 9 also pointed
toward the importance of these requirements, although further research is desired to gain
insight into the concept of presence, what it means to experience a virtual telepresence and
exactly what factors enable this experience.

We evaluated all prototypes on the requirements at the end of their dedicated chapters.
The final score chart is shown in Figure 10.1(middle) and acts as a summary of the whole
dissertation. The colored bars correspond to a score with a 7-point scale that we informally
defined in section 1.1, p. 3: (1) terrible, (2) bad, (3) reasonable, (4) average, (5) good, (6)
very good, (7) excellent.

Guided by the identified requirements, we will now discuss and compare all prototypes
and their underlying image-based rendering algorithms one final time. However, note that lots
of requirements are interdependent and many trade-offs exist. Keep in mind, also, that their
evaluation is an informal one and we should be careful not to compare apples and oranges too
much. Nevertheless, they allow us to quickly get an idea of each prototype’s strengths and
weaknesses in a consistent manner. Moreover, the seven requirements provide a reference
framework around the experience gained in this dissertation on which to design, develop and
evaluate any future solution to eye gaze corrected video conferencing.

10.2.1 Environment Remapping (One Camera)

In chapter 4, our first prototype implemented a somewhat unconventional solution that re-
quires only a single camera and that is based on the concept of environment mapping. We
captured omnidirectional video (in other words, the environment) by filming a spherical mir-
ror (the northern hemisphere) and combined this – after a remap of the captured image –
with projection on an identically-shaped spherical screen (the southern hemisphere). Both
capture and display hemispheres are pasted together into a single sphere, forming the single
communication device depicted in Figure 10.1(top-left). The unconventional novelty lies in
the observation that we do not perform image interpolation in the traditional sense, but rather
compose an eye gaze corrected image by remapping the captured environment pixel-to-pixel.
This image transformation is completely independent of the scene structure and does not re-
quire the recovery of the depth of scene. Instead, it relies on the mathematical equations
that map the captured input to the projected output, both interpreted as parallel rays of light.
Because unfolding the environmental reflection captured on a (small, relative to the environ-
ment) specular sphere yields omnidirectional imagery with a projection center located at the
center of that sphere, the user looks directly into the camera when looking at the center of the
sphere and eye contact is inherently guaranteed.

The pixel-to-pixel image transformation has to be computed only once, resulting in a
very fast and lightweight implementation (algorithmic performance: 7/7, excellent). Image
quality, however, suffers severely due to the use of off-the-shelf hardware components (im-
perfect store surveillance mirrors) and limitations of the mathematical model (visual quality:
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1/7, terrible). Nevertheless, when pixel resolution was high enough to see the eyes of the
remote user, we have witnessed eye gaze to be accurate (eye contact: 3/7, reasonable). A
more rigorously built system with quality mirrors, high-definition cameras and a precise cal-
ibration should be able to improve the visual quality and confirm the provision of eye contact
empirically.

The omnidirectional nature of the device allows many users to communicate simultane-
ously (communication modes: 5/7, good), while the spherical screen unveils their environ-
ment to the full extent (spatial context: 6/7, very good). The users also possess an unprece-
dented freedom of movement in the entire space around the device (freedom of movement:
7/7, excellent). However, the physical size of the whole setup is not the most convenient,
requiring a rather large camera/projector to sphere distance (physical complexity: 2/7, bad).

The image remapping equations are governed by an affine camera model. Using perspec-
tive cameras might complicate calculations to some extent, but it should be able to alleviate
the vanishing point artifacts to some degree. Any missing image information at the vanishing
point coordinates can then be interpolated. We also assumed a known external calibration of
the camera-sphere-projector configuration. Achieving this alignment proved to be an elabo-
rate manual process. An automatic calibration would decrease the setup time and at the same
time would remove image distortions originating from misalignment. The work of Svoboda
[2000], Pajdla et al. [2001] and Francken et al. [2007] is a good place to start.

10.2.2 Stereo Interpolation (Two Cameras)

We developed our second prototype in chapter 6, this time focusing on close-up one-to-one
communication. We set up a camera to the left and to the right of a conventional com-
puter screen, as depicted in Figure 10.1(top-right), captured the user that was seated in the
horizontal middle and employed rectified stereo interpolation to reconstruct the eye gaze cor-
rected viewpoint. We followed the depth-image-based rendering pipeline as formalized by
Scharstein [1996] and Rogmans et al. [2009c], which essentially consists of a disparity esti-
mation and view synthesis stage.

The view synthesis is extremely lightweight, but relies heavily on accurate disparity esti-
mation for the input images to be warped correctly to the intermediate viewpoint. In chapter 5,
we therefore first developed a novel edge-sensitive local stereo matching algorithm with iter-
ative disparity refinement. We also introduced the idea of hierarchically limiting the disparity
search range to increase the matching quality while at the same time decreasing algorithmic
complexity. We will discuss both in more detail in section 10.4 and section 10.5 respectively.

The final eye gaze corrected image is virtually indistinguishable from the image interpo-
lated by the (industry standard but not real-time) MPEG reference software. It is very sharp
and contains few disturbing artifacts (visual quality: 7/7, excellent). A substantial amount
of the user’s environment is also interpolated, in spite of most information that is not visible
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in both cameras being lost. Nevertheless, it is difficult for stereo interpolation to offer more
context than an ordinary webcam can (spatial context: 4/7, average).

The entire processing pipeline, in particular including our stereo matching algorithm, has
been designed for efficient GPU implementation in CUDA. However, our stereo matching
algorithm – although at the level of many other state-of-the-art stereo matching algorithms
– still has an impact on the overall performance that is not to be underestimated. In fact, it
causes our stereo interpolation prototype to be the least performant compared with our envi-
ronment remapping and plane sweeping approaches (algorithmic performance: 4/7, average).

The user’s freedom to move is restricted to the horizontal baseline between the left and
right capturing cameras (freedom of movement: 2/7, bad). Although the eyes are clearly dis-
cernible, this causes eye contact to be difficult to maintain, as it depends on the user remaining
stationary in the sweet spot of the reconstructed viewpoint (eye contact: 5/7, good). It also
means that only one user can be active in front of the screen at the same time (communication
modes: 3/7, reasonable). Of course, the potential to offer convincing parallax effects if the
user does move (and the reconstructed viewpoint follows) is an advantage over an ordinary
webcam that contributes to immersivity. Moreover, modern cameras are small and cheap, can
easily be integrated into the bezel of any display and can be factory-calibrated to be in perfect
rectified stereo (physical complexity: 7/7, excellent).

The biggest limitation that we encounter is that dense stereo matching is geared toward
small-baseline camera configurations and therefore is not optimally suited for wider-baseline
applications such as ours. In principle we wish to interpolate cameras that are spaced rela-
tively far apart, i.e. to the left and right of a wider computer screen. Additionally, for our
application there is always a screen-to-user distance trade-off, as the closer the user is to the
screen, the larger the occlusions that arise will be. To alleviate this small-baseline limitation,
more advanced occlusion handling algorithms could be looked at. Among them are (mostly
global) methods based on segmentation [Bleyer and Gelautz, 2005; Wang and Zheng, 2008],
graph cuts [Kang et al., 2001; Deng et al., 2007], belief propagation [Sun et al., 2005; Yang
et al., 2009] and dynamic programming [Wang et al., 2006b].

In spite of all its limitations, we assess stereo interpolation to still be very suitable for
other situations where eye gaze needs to be corrected. We imagine scenarios with a larger
relative screen-to-user distance, e.g. video conferencing in a meeting room, or where the in-
put cameras can be put closer together, e.g. integrated in the bezel of a smartphone or tablet.
Applications outside of eye gaze correction are of course also conceivable, e.g. content gener-
ation to drive autostereoscopic 3D displays or scene interpretation for autonomous robotics.

10.2.3 Plane Sweeping (Multiple Cameras)

In chapter 7, we mounted multiple cameras around the screen, as depicted in Figure 10.1
(bottom-left), and turned to plane sweeping to overcome the limitations of rectified stereo
interpolation. We specifically developed the prototype to efficiently support close-up one-
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to-one communication. However, the dense camera configuration could also support limited
many-to-many communication, given a large enough (autostereoscopic) screen (communica-
tion modes: 4/7, average).

Plane sweeping can be regarded as a more generalized form of rectified stereo interpo-
lation. It can handle cameras in a more general configuration with wider baselines. Instead
of being restricted to the narrow horizontal stereo baseline, it allows us to synthesize high-
quality images from any freely selectable viewpoint, without the need of image extrapolation.
A concurrently running eye tracker positions the desired viewpoint and ensures that eye con-
tact is maintained at all times (eye contact: 7/7, excellent).

Plane sweeping and rectified stereo are both image-based rendering methods that implic-
itly determine the depth of scene from their input images. For plane sweeping, however, the
recovery of the scene depth is not essential, but rather a by-product of a rendering process
that is based on color consistency. Even so, the whole processing pipeline exhibits a structure
similar to the one of our stereo interpolation prototype. The view interpolation mainly con-
sists of a depth reconstruction, refinement and recoloring stage. The refinement stage takes
the reconstructed depth map and efficiently detects and removes outliers (i.e. artifacts) in the
depth map using an efficient iterative spatial filter kernel. The recoloring stage subsequently
repaints the refined depth map using one of two recoloring schemes. The N-camera recoloring
scheme averages all input colors, thereby slightly blurring the result. The confident-camera
recoloring scheme avoids occlusions by using the reconstructed depth map as a geometry
proxy. It picks the best color based on angular distance to the input cameras, resulting in a far
sharper image, but at the risk of making variations in illumination and photometric calibration
stand out (visual quality: 5/7, good).

During the depth reconstruction, the overall algorithmic complexity is kept in check by a
complexity control module that condenses the planes around the user’s head and torso (dis-
cussed further in section 10.5). Combined with the eye tracker to position the virtual camera,
this allows the user to move around much more freely in front of his screen, especially com-
pared with our stereo interpolation prototype (freedom of movement: 5/7, good).

To overcome artifacts caused by occlusions that arise from the very small user-to-screen
distance, we segment the input images into foreground and background and interpolate only
the foreground (i.e. the face). This improves visual quality, but prevents us from reconstruct-
ing the user’s environment (spatial context: 2/7, bad). However, we later corrected this in our
immersive collaboration environment.

A number of design and implementation choices result in a very performant system (al-
gorithmic performance: 6/7, very good). First, plane sweeping can match multiple cameras
simultaneously by design. Rectifying the input images happens inherently during their pro-
jection on the planes. This significantly increases the reliability of pixel-to-pixel matches and
diminishes the need for expensive aggregation of matching confidence scores. This is in stark
contrast to our stereo matching algorithm, where the aggregation demands nearly all of the
total processing time.
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Furthermore, our implementation harnesses the computational resources of the graphics
hardware to achieve comfortable real-time performance. This time, we configured the tradi-
tional graphics rendering pipeline through OpenGL and reprogrammed it for general-purpose
computations by defining custom shaders for the vertex and fragment stages. Compared with
stereo matching in CUDA, this approach lends itself better to the inherent structure and scat-
tered memory access patterns of plane sweeping.

We further improved the end-to-end performance by maximizing arithmetic intensity and
by introducing granular optimization schemes that map well to the polygon-based process-
ing of the traditional graphics pipeline, without noticeable loss of visual quality. We also
determined a fine-tuned set of parameters that are user-independent and that thus grant the
system a general applicability. Lastly, network communication is brought to a minimum by
sending the local user’s eye coordinates to the remote user. This eliminates the need to send
the captured images themselves over the network. Instead, they can be processed locally to
interpolate the eye gaze corrected image from the correct viewpoint.

We designed and constructed a lightweight metal frame on which multiple (six, in our pro-
totype) cameras can be mounted closely around the screen. As with our stereo interpolation
prototype, integrating the cameras into the monitor bezel would introduce a fixed one-time
calibration and thus remove the need for complicated offline calibration that requires user
intervention. On the other hand, we would still have to integrate multiple instead of only two
cameras. Being watched from nearby by multiple cameras might deter some privacy-sensitive
users (physical complexity: 6/7, very good).

Future work should focus on improving the geometric accuracy of the depth map. One
course of action worth investigating is to compute depth maps for each reference viewpoint
(i.e. capturing camera), taking into account spatial and temporal constraints as explored by
Kang et al. [2001]. The depth maps could then be combined into one depth map for the
eye gaze corrected viewpoint, following the fusion principles of Merrell et al. [2007]. The
confident-camera recoloring scheme could be improved by incorporating visibility and res-
olution constraints in a camera blending field, similar to the one used by unstructured lu-
migraph rendering [Buehler et al., 2001]. Alternatively, techniques from floating textures to
color the geometry proxy could be investigated [Eisemann et al., 2008]. In the largest extent,
the background could be interpolated with correct motion parallax. This would complete the
immersive effect of a virtual window into the remote user’s world.

Our prototype is a fully functional end-to-end system for close-up one-to-one eye gaze
corrected video conferencing. It has a minimal amount of constraints, is intuitive to use and
is very convincing as a proof-of-concept.

10.2.4 Immersive Collaboration Environment (Many Cameras)

Current tools for computer-supported cooperative work (CSCW) suffer from two major de-
ficiencies [Otto et al., 2006; Wolff et al., 2007]. First, they do not allow to observe the body



10.2 Four Prototypes and Seven Requirements 205

language, facial expressions and spatial context of the collaborators. Second, they miss the
ability to naturally and synchronously manipulate objects in a shared environment.

In chapter 8, we solved these issues by integrating our view interpolation for eye gaze
correction into an immersive environment that supports collaboration at a distance. We im-
plemented the fundamental technical requirements of The Office Of The Future identified by
Raskar et al. [1998], i.e. dynamic image-based modeling, rendering and a spatially immer-
sive display, and extended them with cooperative surface computing and aural communica-
tion. Our final prototype, depicted in Figure 10.1(bottom-right), brings together many key
research areas that have been the focus of our research group as a whole over the past years:
view interpolation for free viewpoint video, calibration of camera networks, tracking, om-
nidirectional cameras, multi-projector immersive displays, multi-touch interfaces, and audio
processing.

A good spatially immersive display must at least engulf the user’s peripheral vision. We
designed an easy to build and very affordable 180-degree surround display by spanning a
matte white vinyl cloth over a truss constructed of lightweight aluminum bars. It is projected
on by multiple calibrated and synchronized projectors that perform overlap intensity blending
to seamlessly stitch the individual projections together. The projected image is geometrically
corrected to compensate for the shape and any irregularities of the screen.

The user himself is captured by a sea of cameras that peek through cuts in the panoramic
screen, but that are spaced far enough apart to not destroy the immersive experience. The
curved nature of the panoramic screen implies that the cameras’ centers of projection do not
lie in the same plane and thus are not (stereo) rectified with respect to one another. Therefore,
we opted for the same approach as our plane sweeping prototype to reconstruct the eye gaze
corrected image. In fact, our plane sweeping algorithm can be carried over in its entirety and
applied with minimal modifications, which in itself is great proof of its flexibility. Moreover,
there is virtually no change in visual quality, though the larger user-to-screen distance implies
that occlusions are less severe and artifacts are less noticeable (visual quality: 6/7, very good).
The same larger distance also causes the eyes to be less clearly discernible, but nevertheless
we could confirm that humans are very well adapted to picking up eye contact at even the
farthest of distances (eye contact: 6/7, very good).

As convincing as our plane sweeping prototype is though, its main drawback is its lack of
spatial context. This was originally welcomed as a means to avoid mismatches and thereby
enhance the quality of the generated virtual imagery, but it poses a problem if our goal is to
fully immerse the users in each other’s environment. We tackled this by capturing the user’s
panoramic background using a Point Grey Ladybug3 omnidirectional camera. The result is
an immersive environment that offers a wide and detailed view on the environment of the
remote user, while being just as flexible in restoring and maintaining eye contact (spatial
context: 7/7, excellent). At the same time, the local user’s freedom to move in his own
environment is restricted only by the size of the panoramic screen and the area that is covered
by the capturing cameras (freedom of movement: 6/7, very good).
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Arguably the largest drawback to our system is that it takes a lot of space, has the potential
to be very expensive, and consists of many separate components that each need to be set up
and maintained carefully. All properties that no doubt pose a challenge for the average user,
yet are still more than conceivable in a professional office environment (physical complexity:
3/7, reasonable). Furthermore, making sure that all of the components operate synchronously
does increase the system’s processing complexity. However, in our current implementation
each of them run on their own dedicated hardware and thus function independently of one
another (algorithmic performance: 5/7, good).

We support collaboration through networked multi-touch surface computing. Our inter-
nally built hardware makes use of frustrated total internal reflection of infrared light to detect
multiple touch points. On the software side, a framework is provided that allows files to be
shared over the network and consequently be viewed, controlled, manipulated and annotated
by both sides simultaneously, as if the users were actually working at the same surface. We
discovered that the combination of multi-touch surfaces and immersive video conferencing is
remarkably well-suited for the purpose of collaboration at a distance. The networked multi-
touch surfaces allow multiple users to interact with the same application simultaneously,
while directly manipulating their own private physical interface. Unlike with co-located col-
laboration, the users don’t have to stand in front of the same table or screen and thereby risk
getting in each other’s way, while at the same time the immersive environment provides a
very convincing sense of telepresence.

We currently developed our immersive environment with support for one-to-one com-
munication and collaboration in mind. The system’s spatial (large panoramic screen, lots of
space to move around) and algorithmic (many virtual viewpoints can be reconstructed) na-
ture has big potential to seamlessly support multiple users together, but a couple of issues
will need to be addressed (communication modes: 6/7, very good).

First, we need the means to capture and model multiple users. To this end, we already
proposed an adaptation of the plane sweeping algorithm (discussed further in section 10.5)
to efficiently interpolate a complex scene that contains multiple dominant depths, e.g. when
multiple users are present in our immersive environment. Second, individual users must be
discerned and tracked, so that each can be offered their own viewpoint based on the position
and orientation of their eyes. The tracker developed by Maesen et al. [2013] looks very
applicable. It determines the six degrees of freedom of the head pose by passively tracking
(infrared) LED strips mounted to the ceiling. It is independent of the size of the working
area and puts no restriction on the number of users to track [Maesen, 2016]. Lastly, and most
challenging, is showing a perspectively correct image to each user separately, from his own
point of view, on the same panoramic screen. This is a problem that was well beyond the
scope of this dissertation. A good place to start looking for solutions is the work of Nashel
[2010], who trades off stereoscopic viewing in autostereoscopic parallax displays to provide
unique monoscopic images to multiple viewers in different positions.
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10.3 Maintaining Camera Calibration

As all of our prototypes capture images from live cameras, maintaining their calibration in
a setting that is subject to a lot of dynamic user activity poses a challenge. Therefore, in
chapter 3, we developed a novel algorithm to robustly restore the calibration of a camera
network after the event of an (un-)intended camera displacement, without the need for a full
system recalibration.

The algorithm works in two phases. In the first phase, displacement of a camera is de-
tected by means of hotspots. Descriptive features in the background scene are chosen to be
tracked in a temporal sequence of frames. A camera is deemed to have moved if a sufficient
amount of its features no longer match. In the second phase, a moved camera is reinserted
into the calibrated network by recomputing its geometric calibration from information pro-
vided by its calibrated neighbors. Recalibration is efficiently achieved using only image
point correspondences with its neighbors, without the need to compute the 3D structure of
the scene.

Currently, the main limitation of our algorithm is that it is unable to discern between a
change in extrinsic and intrinsic camera parameters. If a change is detected, it automatically
assumes that it has physically moved (i.e. its extrinsic parameters have changed), even though
a change in intrinsic parameters might have occurred instead, e.g. a change in the zoom level.

10.4 Edge-Sensitive Disparity Estimation
with Iterative Refinement

In chapter 5, we developed a novel disparity estimation algorithm that was then relied upon
by our stereo interpolation prototype of chapter 6 to synthesize an eye gaze corrected image.

First, we presented a matching cost aggregation method that uses two edge-sensitive
shape-adaptive support windows per pixel neighborhood; one following the horizontal edges
in the image, the other the vertical edges. Together they form the final aggregation window
shape that closely follows all object edges and thereby achieves increased disparity hypothe-
sis confidence.

Second, we formalized a four-stage iterative disparity refinement process that relies on
the same support windows covering image patches of similar color. By assuming that color
discontinuity boundaries in the image are also depth discontinuity boundaries in the scene,
the refinement is able to efficiently detect and fill in occlusions. As the only prior knowledge
it needs are the input color images, it can be applied to any initially estimated disparity map.
Furthermore, the iterative process quickly converges to a final solution.

We designed our stereo matching algorithm for efficient implementation in CUDA, which
exposes the GPU as a directly operable massive pool of parallel threads. Rectified stereo
matching processes pixels scanline by scanline, which maps perfectly to the coalesced global
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memory access requirements of CUDA and avoids lots of memory transfer overhead. As a
result, our algorithm executes in real-time, is easy to understand and implement and generates
smooth disparity maps with sharp object edges and little to no artifacts. It is very competitive
with the current state-of-the-art of real-time local stereo matching algorithms.

We currently consider the weakest link to be the rather rudimentary pixel-wise color con-
sistency check to determine the extent of the support windows. Relying on more precise
color-based image segmentation has the potential to increase the matching quality consider-
ably. Accurate segmentation to consider is mean-shift segmentation [Comaniciu and Meer,
2002; Gerrits and Bekaert, 2006] and superpixels [Zitnick and Kang, 2007]. In the context
of video conferencing, it is also especially worth considering incorporating temporal infor-
mation [Davis et al., 2005]. By extending our shape-adaptive planar windows to volumetric
grids in the temporal domain, we would be able to process over successive video frames.

10.5 Controlling Algorithmic Complexity

Throughout this dissertation, we have developed several dynamic control mechanisms that
decrease the algorithmic complexity of stereo matching and plane sweeping, while increasing
view synthesis quality. The control mechanisms are all based on a histogram analysis of
the concerning disparity map or depth map. They were developed for stereo matching by
hierarchically restricting the disparity range (in section 6.2, p. 105), for single object-of-
interest plane sweeping by redistributing the planes uniformly in a dynamically shifting depth
range (in section 7.2.5, p. 142) and for full-scene plane sweeping by redistributing the planes
non-uniformly in a fixed depth range (in section 8.3, p. 170).

For stereo matching, instead of trying to improve the cost aggregation or disparity re-
finement stages, as most of the literature focuses on, we introduced the idea of limiting the
disparity range itself. In a two-pass process, the images are first matched over the full dis-
parity search range, but at a reduced (downsampled) resolution. Peaks in the disparity map’s
histogram then indicate where objects are located in the scene, since many pixels will possess
that peak’s disparity in question. By excluding all histogram bins (i.e. disparity hypotheses)
that are below a given threshold (proportional to the image resolution or the histogram en-
tropy), the disparity search range is effectively restricted during a second pass over the full
image resolution. The complexity of the histogram computation is relatively low and in turn
the potential to accelerate the local stereo matching algorithm becomes very high.

For plane sweeping of scenes with a single dominant depth (e.g. the user’s head and torso),
we devised a method to efficiently keep a uniform distribution of planes focused around a sin-
gle object-of-interest. After fitting a Gaussian distribution on the histogram of the depth map,
its mean and standard deviation will indicate the depth and extent of the object. When the
object moves, the mean and standard deviation will change and we can use this to retroac-
tively adapt the effective depth range by updating the minimum and maximum plane depths
accordingly. The result is a uniform plane distribution, narrowly focused around the object-
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of-interest, that responds to movements of the object in the scene by dynamically shifting
back and forth.

For plane sweeping of complex scenes with multiple dominant depths (e.g. multiple users
and a background), we devised a method to non-uniformly distribute the planes according to
the scene content. This time, we interpret the cumulative histogram of the depth map as a
probability density function that describes the likelihood that a plane should be placed at a
particular depth in the scene. In other words, the planes are rearranged to be more densely
packed in regions with many objects and to be more sparsely present in regions with few
to no objects. The result is an adaptive non-uniform plane distribution that responds to a
redistribution of any and all content in the scene.

All of these approaches decrease computational complexity, while increasing the quality
by implicitly reducing the chance at mismatches. Although developed in the context of video
conferencing, they are generally applicable to all kinds of scenes and scenarios.

One key observation points in the direction of future work. On the one hand, the minimum
and maximum plane depths of the dynamic uniform plane distribution move back and forth,
with planes uniformly distributed in between, to leverage the dynamic range. On the other
hand, the minimum and maximum plane depths of the adaptive non-uniform plane distribu-
tion remain fixed, with planes non-uniformly distributed and moving in between, to keep the
range from collapsing while adapting to changing scene content. A dynamic adaptive non-
uniform distribution would combine the best of both worlds, leveraging the dynamic range
while adapting to the entire scene.





Appendix A

Questionnaires

Table A.1 and Table A.2 below relate to the evaluation of several video conferencing tech-
nologies carried out in chapter 9.

Table A.1 contains the questionnaire that was filled out by the participants after testing
each of the four technology use cases from section 9.2.1, p. 187. Originally drafted in Dutch,
it has here been translated verbatim to English for convenience.

Table A.1: Questionnaire filled out after using a video conferencing setup.

A number of claims about the system that you have just worked with will now follow.
Underneath them it says completely disagree to the left, and completely agree to the right.
In between there are 7 circles. By checking one of these circles, you indicate to what
degree you agree with the claim:

Completely disagree # ⊗ # # # # # Completely agree

1. This system invites to engage in a conversation spontaneously.
Completely disagree # # # # # # # Completely agree

2. During the use of this system, it felt as if the other person was physically
present.
Completely disagree # # # # # # # Completely agree
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Table A.1: Questionnaire filled out after using a video conferencing setup. (continued)

3. This system is fitting for communication in a social context, e.g. with friends,
acquaintances or family.
Completely disagree # # # # # # # Completely agree

4. This system is fitting for communication in a professional context, e.g. in com-
panies.
Completely disagree # # # # # # # Completely agree

5. I thought that my conversation partner came across lifelike.
Completely disagree # # # # # # # Completely agree

6. Speaking in turns went well.
Completely disagree # # # # # # # Completely agree

7. It’s pleasant to use this system to talk to someone.
Completely disagree # # # # # # # Completely agree

8. It’s pleasant to use this system to listen to someone.
Completely disagree # # # # # # # Completely agree

9. It’s pleasant to use this system to see someone.
Completely disagree # # # # # # # Completely agree

10. I had the feeling there was good and effective communication.
Completely disagree # # # # # # # Completely agree

11. Try to indicate the image quality of this system (1 = low, 10 = high).
1 2 3 4 5 6 7 8 9 10

12. Try to indicate the life-likeness of this system (1 = low, 10 = high).
1 2 3 4 5 6 7 8 9 10

13. Try to indicate how intimate this system feels (1 = low, 10 = high).
1 2 3 4 5 6 7 8 9 10

14. Try to indicate how pleasant you’ve found this form of communication (1 =
low, 10 = high).
1 2 3 4 5 6 7 8 9 10
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The filled out questionnaires were analyzed by fitting a GLM (generalized linear model).
In Table A.2, the results are reproduced verbatim from the original report. For each question
the point scale (e.g. 7-point) and resulting mean (M) and standard deviation (SD) are reported.
The UCx headings respectively refer to the single webcam (UC1), our face-to-face prototype
(UC2), ETRO’s enhanced reality (UC3) and ETRO’s animated avatar (UC4) use cases as
described in section 9.2.1, p. 187. For reasons explained in section 9.2.2, p. 188, only a
limited number of participants were able to evaluate ETRO’s enhanced reality (UC3) setup.
Consequently, to be able to apply meaningful statistics, the other three use cases are first
reported on. The scores of UC3 are still printed in gray font, but not included in the main
analysis, since this is a within subjects design and it would considerably bring down the
number of participants that used all four systems. For the detailed data and GLM analysis,
please refer to the work by CUO [van Nimwegen, 2008].

Table A.2: Questionnaires scores.

Scores
UC1 UC2 UC3 UC4

Question 1 (7-point scale) M = 5.33 M = 5.02 M = 3.92 M = 2.79
This system invites to engage in a
conversation spontaneously.

SD = 1.20 SD = 1.35 SD = .5 SD = 1.43

GLM showed that there was a significant overall difference F(2,82) = 93.94, p < .001
between the systems. Post-hoc comparisons showed that the difference between setups
1-2 did not differ, but cores on system 4 were significantly lower than on 1 and 2, p <
.001.
When the enhanced reality system was included, post-hoc comparison shows that the
scores differ significantly with all the other systems (p < .05).
Question 2 (7-point scale) M = 4.62 M = 4.12 M = 4.33 M = 2.29
During the use of this system, it felt
as if the other person was physically
present.

SD = 1.46 SD = 1.52 SD = 1.76 SD = 1.37

GLM showed that there was a significant overall difference F(2,82) = 27.98, p < .001
between the systems. Post-hoc comparisons showed all the three systems differed signifi-
cantly (p < .05).
When the enhanced reality system was included, post-hoc comparison shows that the
scores differ significantly only with system 4 (p < .001).
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Table A.2: Questionnaires scores. (continued)

Scores
UC1 UC2 UC3 UC4

Question 3 (7-point scale) M = 5.57 M = 5.17 M = 4.25 M = 2.36
This system is fitting for communi-
cation in a social context, e.g. with
friends, acquaintances or family.

SD = 1.5 SD = 1.68 SD = 2.05 SD = 1.45

GLM showed that there was a significant overall difference F(2,82) = 115.71, p < .001
between the systems. Post-hoc comparisons showed all the three systems differed signifi-
cantly (p < .05).
When the enhanced reality system was included, post-hoc comparison shows that the
scores differ significantly with system 1 and 4 (p < .05).
Question 4 (7-point scale) M = 5.31 M = 5.00 M = 4.76 M = 2.19
This system is fitting for commu-
nication in a professional context,
e.g. in companies.

SD = 1.42 SD = 1.67 SD = 1.78 SD = 1.50

GLM showed that there was a significant overall difference F(2,82) = 70.65, p < .001
between the systems. Post-hoc comparisons showed that system 1-2 did not differ, but
that 4 differed from both 1-2 (p < .001).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with system 1 and 4 (p < .05).
Question 5 (7-point scale) M = 5.29 M = 4.93 M = 4.50 M = 1.76
I thought that my conversation part-
ner came across lifelike.

SD = 1.35 SD = 1.61 SD = 1.88 SD = .93

GLM showed that there was a significant overall difference F(2,82) = 125.41, p < .001
between the systems. Post-hoc comparisons showed that again, system 1-2 did not differ,
but that 4 differed from both 1-2 (p < .001).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly only with the score of 4 (p < .001).
Question 6 (7-point scale) M = 6.00 M = 5.93 M = 5.00 M = 4.40
Speaking in turns went well. SD = .76 SD = .89 SD = 1.35 SD = 1.2
GLM showed that there was a significant overall difference F(2,82) = 50.12, p < .001
between the systems. Post-hoc comparisons showed that again, system 1-2 did not differ,
but that 4 differed from both 1-2 (p < .001).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with the scores of 1 and 2 (p < .05).
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Table A.2: Questionnaires scores. (continued)

Scores
UC1 UC2 UC3 UC4

Question 7 (7-point scale) M = 5.17 M = 4.88 M = 4.17 M = 2.36
It’s pleasant to use this system to
talk to someone.

SD = 1.32 SD = 1.64 SD = 2.04 SD = 1.28

GLM showed that there was a significant overall difference F(2,82) = 84.73, p < .001
between the systems. Post-hoc comparisons showed that again, system 1-2 did not differ,
but that 4 differed from both 1-2 (p < .001).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with only the score on system 4 (p < .05).
Question 8 (7-point scale) M = 5.33 M = 5.14 M = 4.58 M = 3.38
It’s pleasant to use this system to lis-
ten to someone.

SD = 1.14 SD = 1.48 SD = 1.51 SD = 1.56

GLM showed that there was a significant overall difference F(2,82) = 40.17, p < .001
between the systems. Post-hoc comparisons showed that again, system 1-2 did not differ,
but that 4 differed from both 1-2 (p < .001).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with only the score on system 4 (p < .05).
Question 9 (7-point scale) M = 5.55 M = 4.76 M = 4.17 M = 1.67
It’s pleasant to use this system to see
someone.

SD = 1.09 SD = 1.76 SD = 2.13 SD = .90

GLM showed that there was a significant overall difference F(2,82) = 121.81, p < .001
between the systems. Post-hoc comparisons showed that all the measured differences
were significant (p < .05).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with the score on systems 1 and 4 (p < .05).
Question 10 (7-point scale) M = 5.64 M = 5.31 M = 4.92 M = 3.90
I had the feeling there was good and
effective communication.

SD = .91 SD = 1.22 SD = 1.24 SD = 1.36

GLM showed that there was a significant overall difference F(2,82) = 42.35, p < .001
between the systems. Post-hoc comparisons showed that all the measured differences
were significant (p < .05).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with only the score on system 4 (p < .05).
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Table A.2: Questionnaires scores. (continued)

Scores
UC1 UC2 UC3 UC4

Question 11 (10-point scale) M = 7.50 M = 6.19 M = 5.42 M = 3.40
Try to indicate the image quality of
this system.

SD = 1.74 SD = 2.05 SD = 2.64 SD = 1.99

GLM showed that there was a significant overall difference F(2,82) = 83.13, p < .001
between the systems. Post-hoc comparisons showed that all the measured differences
were significant (p < .05).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with the score on systems 1 and 4 (p < .05).
Question 12 (10-point scale) M = 7.17 M = 6.26 M = 5.75 M = 2.38
Try to indicate the life-likeness of
this system.

SD = 1.53 SD = 2.13 SD = 2.70 SD = 1.53

GLM showed that there was a significant overall difference F(2,82) = 139.40, p < .001
between the systems. Post-hoc comparisons showed that all the measured differences
were significant (p < .05).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with the score on systems 1 and 4 (p < .05).
Question 13 (10-point scale) M = 7.29 M = 6.43 M = 6.33 M = 3.07
Try to indicate how intimate this
system feels.

SD = 1.60 SD = 2.19 SD = 2.35 SD = 1.72

GLM showed that there was a significant overall difference F(2,82) = 108.17, p < .001
between the systems. Post-hoc comparisons showed that all the measured differences
were significant (p < .05).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with the score on systems 1 and 4 (p < .05).
Question 14 (10-point scale) M = 7.61 M = 6.44 M = 6.33 M = 2.93
Try to indicate how pleasant you’ve
found this form of communication.

SD = 1.50 SD = 2.34 SD = 2.61 SD = 1.96

GLM showed that there was a significant overall difference F(2,82) = 113.93, p < .001
between the systems. Post-hoc comparisons showed that all the measured differences
were significant (p < .05).
When the enhanced reality system was included, post-hoc comparison shows that the
scores of system 3 differ significantly with the score on systems 1 and 4 (p < .05).
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De gebruikelijke videoconferentie-opstelling (denk bijvoorbeeld aan Skype met een webcam)
vertoont een aantal fundamentele gebreken die het emuleren van een waar gesprek in persoon
in de weg staan; het ontbeert als het ware een gevoel van samenzijn met en onderdompeling
in de wereld van de gesprekspartner. Een prominent probleem is het gebrek aan direct oog-
contact tussen de gesprekspartners. De webcam van de gebruiker is immers opgesteld naast
het scherm of in het beste geval geïntegreerd in de rand ervan. Hierdoor is de gebruiker ge-
noodzaakt zijn blik te wisselen tussen het observeren van zijn gesprekspartner op het scherm
en het staren in zijn eigen webcam. Het is dat conflict tussen beide kijkrichtingen dat het
maken van oogcontact belemmert. Deze kwestie van ontbrekend oogcontact is het centraal
op te lossen probleem in dit proefschrift.

Een Beeldgebaseerde Aanpak Voor het oplossen van ons probleem kiezen we voor
een beeldgebaseerde aanpak, waarmee we bedoelen dat we een nieuw beeld synthetiseren uit
beelden die (live) door camera’s opgenomen worden. In het nieuw berekende beeld zal de blik
van de gebruiker gecorrigeerd zijn en het conflict tussen de kijkrichtingen bijgevolg niet meer
bestaan. Door te werken met live opgenomen beelden vermijden we de kunstmatige uitstra-
ling van veel eerdere oplossingen die trachten de gebruiker geometrisch te reconstrueren of te
belichamen met een avatar. Voornamelijk onderzoeken we drie verschillende beeldsynthese-
algoritmen om ons doel te bereiken, wat resulteert in concrete bijdragen aan omnidirectionele
omgevingsopname (environment mapping), aan dispariteitsschatting uit gerectificeerde ste-
reobeelden (stereo matching) en aan vlakvegen (plane sweeping).

Al onze algoritmen ontwerpen en implementeren we uitsluitend voor en op de grafische
kaart. We buiten met andere woorden de grafische kaart uit voor algemene – niet-grafische –
berekeningen, waardoor we profiteren van haar enorme geparallelliseerde rekenkracht en we
ons verzekeren van een ogenblikkelijke verwerking en toekomstbestendige schaalbaarheid.

Hoewel we ze aanwenden voor blikcorrectie, zijn onze algoritmen algemeen toepasbaar
op een grotere verscheidenheid aan scènes en gebruiksscenario’s.
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Vier Prototypes We ontwerpen vier verschillende prototypes die elk de blik van de
gebruiker op hun eigen manier corrigeren. Elk prototype doet beroep op een specifiek
beeldsynthese-algoritme (of een combinatie van algoritmen) en elk beeldsynthese-algoritme
steunt op zijn beurt op een specifieke configuratie van camera’s voor het aanleveren van zijn
invoerbeelden. Bijgevolg kunnen we de prototypes consistent rangschikken volgens toene-
mende fysieke complexiteit van de cameraopstelling.

Handhaven van Camerakalibratie We bouwen onze prototypes met het oog op daad-
werkelijk gebruik in de praktijk. Dat vergemakkelijkt het handhaven van de kalibratie van
hun camera’s zeker niet, aangezien een camera – al dan niet onbedoeld – al snel wordt be-
wogen. Daarom bedenken we eerst een efficiënt algoritme om de beweging van een camera
te detecteren en vervolgens de bewogen camera te re-integreren in het netwerk van reeds
gekalibreerde camera’s.

Als we veronderstellen dat de intrinsieke kalibratie van de bewogen camera niet verlo-
ren is gegaan (beweging speelt zich immers af in de extrinsieke parameters), dan kunnen
we haar nieuwe extrinsieke kalibratie als volgt bepalen. Eerst berekenen we een essentiële
matrix tussen de bewogen camera en elk van haar naburige camera’s aan de hand van punt-
correspondenties in de beelden. Dat geeft ons een schatting van een lokaal coördinatenstelsel
voor elk camerapaar, waarbij elk lokaal coördinatenstelsel gerelateerd is aan het gemeen-
schappelijke wereldcoördinatenstelsel volgens een gelijkvormigheidstransformatie. Uit alle
lokale schattingen leiden we tenslotte een (gemiddelde) rotatie en (intersecterende) translatie
af die samen de nieuwe extrinsieke kalibratie vormen in het wereldcoördinatenstelsel van het
voorheen volledig gekalibreerde systeem.

In tegenstelling tot andere herkalibratietechnieken herconstrueren we niet expliciet de
3D structuur van de scène, maar hebben we enkel nood aan puntcorrespondenties in het
beelddomein. We behalen accurate resultaten met een herprojecteringsfout van minder dan
een pixel. Ons algoritme is dan ook competitief met de actuele stand van de technologie
inzake herkalibratie van ge(-de-)centraliseerde cameranetwerken.

Prototype 1: Herschikken van Omnidirectionele Omgevingsopname Ons eerste
prototype is ook meteen onze meest buiten-de-lijntjes-kleurende oplossing. Het vereist
slechts één enkel camerabeeld als invoer, tezamen met een projector voor de weergave van
het gecorrigeerde beeld. We nemen een omnidirectioneel beeld (met andere woorden, de
omgeving) op door een (noordelijk) halfronde spiegel te filmen en combineren dit – na her-
structurering van het gefilmde beeld – met projectie op een (zuidelijk) halfrond mat scherm.
Beide halfronden vormen samen één enkele complete bol, als het ware één enkel communi-
catieapparaat met een opnamefunctie bovenaan en een weergavefunctie onderaan.

De onconventionele nieuwigheid zit hem in het feit dat we geen beeldinterpolatie uitvoe-
ren in de strikte zin van het woord, maar in plaats daarvan een gecorrigeerd beeld syntheti-
seren door de omgevingsopname pixel-per-pixel te herschikken. We gaan uit van parallelle
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lichtstralen onder een affien cameramodel en ontwikkelen zo de wiskundige vergelijkingen
die uitdrukken welke pixel in het invoerbeeld moet worden afgebeeld op welke pixel in het
uitvoerbeeld. De resulterende vergelijkingen zijn volledig onafhankelijk van de structuur van
de scène en maken diepteschatting overbodig. Bijgevolg hoeven ze slechts eenmaal vooraf
worden uitgewerkt, waarna de beeldtransformatie kan ondergebracht worden in een opzoe-
kingstabel. Dat maakt het algoritme niet alleen uitermate geschikt voor implementatie op de
grafische kaart, maar laat zelfs een zeer efficiënte executie door de CPU (centrale verwer-
kingseenheid) toe.

Het ontvouwen van de omgevingsreflectie op een (relatief kleine) spiegelende bol, levert
omnidirectionele beelden op met een projectiecentrum in het midden van die bol. Bijgevolg
staart de gebruiker rechtstreeks in de camera wanneer hij kijkt naar het middelpunt van de
bol en is oogcontact inherent gewaarborgd. Bovendien ondersteunt het concept moeiteloos
vele gebruikers tegelijkertijd, onthult het hun volledige ruimtelijke context en biedt het hen
een ongekende vrijheid van beweging. Het grootste nadeel is echter de beeldkwaliteit. Deze
wordt ernstig beperkt door het mathematische model en de ruwe hardwarecomponenten.

Randgevoelige Dispariteitsschatting met Iteratieve Verfijning Aan de basis van ons
tweede prototype, dat we zo meteen zullen voorstellen, ligt ons inventief lokaal dispariteits-
schattingsalgoritme. We leveren drie voorname bijdragen.

Ten eerste presenteren we een nieuwe methode voor vergelijkingskostaggregatie die twee
randgevoelige aggregatievensters per pixelbuurt gebruikt. De vensters zijn zo gedefinieerd
dat ze gebieden met gelijkaardige kleur in het beeld bedekken. Het ene venster past zich
aan aan de horizontale randen in het beeld, het andere aan de verticale. Samen vormen ze
het finale aggregatievenster dat nauwgezet de randen van een object in de scène traceert, wat
resulteert in een nauwkeurigere vergelijkingskost (en dus dispariteitsschatting).

Ten tweede ontwerpen we een iteratief proces om het berekende dispariteitsbeeld te ver-
fijnen. Het proces bestaat uit vier strikt geformaliseerde fasen (kruis-controle, bitgewijs stem-
men, ongeldige dispariteiten afhandelen, mediaanfilteren) en steunt voornamelijk op dezelfde
horizontale en verticale vensters. Door te veronderstellen dat de kleurranden in het beeld ook
de dieptediscontinuïteiten van objecten in de scène zijn, is het verfijningsproces in staat om
efficiënt occlusies op te sporen en in te vullen. Het proces vereist enkel de kleurbeelden als
voorkennis, kan worden toegepast op elk initieel geschat dispariteitsbeeld en convergeert snel
naar een eindoplossing.

Naast het verbeteren van de kostaggregatie en dispariteitsverfijning, introduceren we ten-
slotte het idee om het zoekbereik van dispariteitshypothesen zelf te beperken. We merken
eerst op dat pieken in het histogram van het dispariteitsbeeld aangeven op welke diepte ob-
jecten zich bevinden in de scène (elke kolom in het histogram komt overeen met een bepaalde
dispariteitshypothese). Daarentegen wordt ruis in het histogram met hoge waarschijnlijkheid
veroorzaakt door foutieve dispariteitsschattingen. Hieruit leiden we de volgende hiërarchi-
sche procedure af. Eerst berekenen we het dispariteitsbeeld en zijn histogram op een lagere
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resolutie van de invoerbeelden. Vervolgens worden alle dispariteitshypothesen waarvoor de
kolomwaarde onder een dynamisch bepaalde drempelwaarde (evenredig aan de beeldreso-
lutie of de histogram-entropie) blijft, uitgesloten uit het zoekbereik voor de oorspronkelijke
(hogere) resolutie. Het opstellen van het lageresolutie histogram is relatief goedkoop, wat
ons de kans biedt om in één klap de kwaliteit van het dispariteitsbeeld te verhogen en de ver-
werkingscomplexiteit van het algoritme te verlagen. Bovendien is deze strategie toepasbaar
op elk lokaal dispariteitsschattingsalgoritme.

Voor de implementatie kiezen we voor de moderne programmeertaal CUDA van NVI-
DIA. CUDA legt de hardware paradigmatisch bloot als een enorme verzameling van direct
aanspreekbare parallelle threads (verwerkingsdraden), wat zeer goed aansluit bij de algorit-
mische structuur van beeldlijn-gerectificeerde pixelgewijze dispariteitsschatting. Op heden-
daagse hardware kunnen we een verwerkingssnelheid van ongeveer 12 FPS bereiken voor de
standaardresolutie (450×375) van de Middlebury databank.

Ons algoritme is eenvoudig te begrijpen en te implementeren. Het genereert egale dispa-
riteitsbeelden met scherpe randen en weinig tot geen storende artefacten. Het is zeer concur-
rentieel met de actuele ontwikkelingen inzake lokale dispariteitsschattingsalgoritmen.

Prototype 2: Stereo Interpolatie Voor ons tweede prototype doen we een beroep op
gerectificeerde stereo interpolatie. We monteren een camera links en rechts van het scherm
en laten de gebruiker in het horizontale midden plaatsnemen. We interpoleren vervolgens
het tussenliggende (en dus blikgecorrigeerde) camerastandpunt, waarbij we het stappenplan
voor depth-image-based rendering (DIBR, dieptebeeldgebaseerde beeldsynthese) volgen en
uitbreiden. Dat stappenplan bestaat in wezen uit een dispariteitsschattingsfase en een beeld-
synthesefase. De beeldsynthesefase is vrij eenvoudig en zeer efficiënt, maar leunt sterk op
accurate dispariteitsschatting om de pixels van de invoerbeelden correct te kunnen verplaat-
sen naar het tussenliggende standpunt.

Enerzijds is het tweede prototype dankzij ons accuraat dispariteitsschattingsalgoritme in
staat om een beeld te synthetiseren waarin de gecorrigeerde blik van de gebruiker zeer scherp
en duidelijk waarneembaar is. Anderzijds is deze afhankelijkheid ook de grootste handicap,
omwille van twee redenen. Ten eerste wordt de bewegingsvrijheid van de gebruiker gelimi-
teerd tot de horizontale basislijn tussen de linker- en rechtercamera. Bijgevolg valt oogcontact
moeilijk te handhaven. Ten tweede geven algoritmen voor de schatting van dichte dispari-
teitsbeelden de voorkeur aan camera’s in een opstelling met een kleine basis. Ze trachten zo
occlusies te minimaliseren en een optimaal resultaat te bekomen. In de praktijk dwingt dat
ons echter ofwel de camera’s rond een kleiner scherm te plaatsen, ofwel een grotere afstand
tussen de gebruiker en het scherm te verplichten.

Prototype 3: Vlakvegen Met ons derde prototype streven we ernaar de tekortkomingen
van stereo interpolatie te overwinnen door zes camera’s nauw rond het scherm te monteren
op een op maat gemaakt lichtgewicht metalen kader. Deze algemenere cameraopstelling
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vermijdt al te grote occlusies, maar aangezien gerectificeerde stereo niet overweg kan met
een dergelijke opstelling, moeten we ons wenden tot vlakvegen om de blik van de gebruiker
te corrigeren. Het flexibelere vlakvegen biedt ons meer vrijheid in het kiezen van het te
reconstrueren standpunt, zonder dat we daarbij noodzakelijk aan beeldextrapolatie hoeven
te doen. In combinatie met gelijktijdige oogtracering om het gezichtspunt van de gebruiker
te bepalen, zorgt dat ervoor dat oogcontact ten allen tijde en vanaf elke positie en hoek kan
behouden blijven.

Een aantal weldoordachte ontwerp- en implementatiekeuzes resulteren in een optimaal
presterend systeem. Ze laten ons toe een verwerkingssnelheid van meer dan 40 FPS voor
de SVGA-resolutie (800×600) te bereiken zonder merkbaar verlies van de visuele kwaliteit,
zelfs op grafische kaarten uit het lagere marktsegment.

Onze eerste optimalisatie vertrekt vanuit onze strategie om het zoekbereik bij dispari-
teitsschatting te beperken. We deduceren een gelijkaardige manier om op efficiënte wijze
een uniforme verdeling van vlakken gegroepeerd te houden rond één enkel dominant object –
m.a.w. het hoofd en de torso van de gebruiker – dat zich door de scène beweegt. Een Gauss-
verdeling, gefit over het histogram van het dieptebeeld, zal de diepte (gemiddelde) en de
omvang (standaardafwijking) van het object in kwestie aangeven. We kunnen dit gebruiken
om met terugwerkende kracht te reageren op bewegingen van het object door een compactere
set van vlakken heen en weer te schuiven, in plaats van voortdurend de volledige werkruimte
af te tasten met een schaarsere distributie. Deze strategie verlaagt niet alleen de algoritmische
complexiteit van vlakvegen, maar verhoogt impliciet ook de nauwkeurigheid ervan door de
kans op ongeldige diepteschattingen aanzienlijk te verminderen.

Ten tweede presenteren we een iteratieve spatiale filter die fotometrische artefacten uit
het geïnterpoleerde kleurenbeeld verwijdert door geometrische uitschieters in het bijhorende
dieptebeeld – dat verondersteld wordt lokaal lineair te zijn – te detecteren en te corrigeren.

Ten derde kiezen we deze keer voor een implementatie in OpenGL en Cg om de vertex-
en fragmentverwerking van de traditionele weergaveprocedure van de grafische kaart te her-
programmeren. Deze werkwijze komt beter overeen met de algoritmische structuur en de
inherent willekeurige geheugentoegang van vlakvegen. Bovendien berust de traditionele
weergaveprocedure op verwerking van polygonen, wat ons toelaat om granulaire optimali-
satiestrategiën te introduceren en daardoor de prestaties nog verder te verbeteren.

Tenslotte stellen we een goed gedefinieerde set van parameters samen die het systeem een
gebruikersonafhankelijke toepasbaarheid verleent. Het resultaat is een overtuigend en volle-
dig functioneel prototype dat videoconferenties tussen twee gesprekspartners van dichtbij
ondersteunt, dat een minimaal aantal beperkingen heeft en dat intuïtief is in gebruik.

Prototype 4: Immersieve Samenwerkingsomgeving Voor de realisatie van ons vierde
en laatste prototype vertrekken we vanuit de erkenning dat de huidige instrumenten voor
computer-gemedieerd coöperatief werken (CSCW, computer-supported cooperative work) op
twee belangrijke punten tekortschieten. Ten eerste laten ze niet toe de lichaamstaal, gezichts-
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uitdrukkingen en ruimtelijke context van de medewerkers (op afstand) waar te nemen. Ten
tweede missen ze de mogelijkheid om op een natuurlijke en synchrone manier objecten te
manipuleren in een gedeelde omgeving.

We lossen deze problemen op door ons vlakveegalgoritme te integreren in een immersieve
omgeving die samenwerking op afstand ondersteunt. We identificeren en implementeren
daarbij vijf fundamentele technische vereisten voor de ultieme samenwerkingsomgeving, na-
melijk dynamische beeldgebaseerde modellering, daaropvolgende reconstructie en correctie
voor weergave, een immersief beeldscherm, een coöperatief multi-aanraakscherm, en audi-
tieve communicatie.

We introduceren ook een laatste aanpassing aan het vlakveegalgoritme, ditmaal om com-
plexe scènes met meerdere dominante objecten – m.a.w. wanneer meerdere gebruikers in de
immersieve omgeving aanwezig zijn – efficiënt te interpoleren. Daartoe interpreteren we het
cumulatieve histogram van het dieptebeeld als een kansdichtheidsfunctie die de kans uitdrukt
dat een vlak op een bepaalde diepte in de scène moet geplaatst worden. Zo bekomen we een
niet-uniforme verdeling van de vlakken die reageert op een herverdeling van alle inhoud van
de scène.

Ons laatste prototype brengt vele kerndomeinen waar ons onderzoeksinstituut zich de
afgelopen jaren op gericht heeft werkelijk samen: beeldinterpolatie, kalibratie van camera-
netwerken, tracking, omnidirectionele camera’s, multi-projector immersieve beeldschermen,
multi-aanraak interfaces, en audioverwerking.

Zeven Geëvalueerde Vereisten Praktijkervaring met onze prototypes brengt aan het
licht dat er naast oogcontact nog andere factoren bijdragen aan het beleven van een waar
gevoel van samenzijn en immersie in de wereld van de gesprekspartner. We zien zeven ver-
eisten voortdurend terugkeren en identificeren ze als: een gecorrigeerde blik (en het daaruit
voortkomend oogcontact), het kunnen observeren van de ruimtelijke context van de gespreks-
partner, zich vrij kunnen bewegen in de eigen ruimte, de beeldkwaliteit, de algoritmische
prestaties, de fysieke complexiteit van de opstelling, en de ondersteunde communicatiemodi
(één-op-één, veel-op-veel, meerdere partijen). We stellen empirisch vast dat deze vereisten
onderworpen zijn aan vele afwegingen en onderlinge afhankelijkheden, naargelang we onze
prototypes vergelijken en ze (informeel) evalueren in functie ervan.

Tenslotte wijst een beknopte gebruikersstudie niet alleen op het belang van de zeven ver-
eisten, maar bekrachtigt ze ook onze initiële keuze voor beeldgebaseerde methoden. Om
echter te komen tot de ideale videoconferentie-oplossing, zou er meer inzicht moeten ver-
kregen worden in wat het betekent om virtueel samenzijn te ervaren en welke factoren deze
ervaring precies mogelijk maken. Toch zijn wij van mening dat de zeven vereisten een re-
ferentiekader voorzien rond de ervaring die is opgedaan in dit proefschrift en dat ze kunnen
dienen om toekomstige oplossingen voor videoconferentie met gecorrigeerde blik te ontwer-
pen, ontwikkelen en evalueren.
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