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Abstract. Mass spectrometry enables the study of increasingly larger biomolecules
with increasingly higher resolution, which is able to distinguish between fine isotopic
variants having the same additional nucleon count, but slightly different masses.
Therefore, the analysis of the fine isotopic distribution becomes an interesting re-
search topic with important practical applications. In this paper, we propose the
comprehensive methodology for studying the basic characteristics of the fine isotopic
distribution. Our approach uses a broad spectrum of methods ranging from generat-
ing functions—that allow us to estimate the variance and the information theory
entropy of the distribution—to the theory of thermal energy fluctuations. Having

characterized the variance, spread, shape, and size of the fine isotopic distribution,
we are able to indicate limitations to high resolution mass spectrometry. Moreover, the analysis of
“thermorelativistic” effects (i.e., mass uncertainty attributable to relativistic effects coupled with the statistical
mechanical uncertainty of the energy of an isolated ion), in turn, gives us an estimate of impassable limits of
isotopic resolution (understood as the ability to distinguish fine structure peaks), which can be moved further only
by cooling the ions. The presented approach highlights the potential of theoretical analysis of the fine isotopic
distribution, which allows modeling the data more accurately, aiming to support the successful experimental

measurements.
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Introduction

An important challenge in mass spectrometry (MS) is to
extend the technology to enable detection of large organic
particles, biomolecules, and nano-particles. Several solutions
have already been proposed to analyze very large particles,
such as modified quadrupole TOF (QTOF) tandem mass
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spectrometer or charge detection mass spectrometry (CD-MS)
[1]. These two main approaches compete with each other in
respect of MS analysis: multiple charging followed by an
appropriate charge detection phase and trapping system that
can be used to sample singly charged massive ions. Wang et al.
[2] state that at least for the latter approach, there is now
essentially no mass limit. In the CD-MS technology, the mass
resolution depends strongly on the quality of the charge mea-
surement, but we are not aware of any fundamental obstacle
standing in the way to improve mass resolution.

In this paper, we argue that in fact there exist the impassable
limits to mass resolution; however, our main goal is to provide
the theoretical framework to investigate these constraints. Al-
though very theoretical in its nature, the developed


http://dx.doi.org/10.1007/s13361-015-1180-4

P. Dittwald et al.: On the Fine Isotopic Distribution

methodology could be useful in experimental practice. There
are already examples of successful assays of very heavy bio-
molecules (e.g., viral assemblies in megadalton (MDa) mass
range [1, 3, 4]). Therefore, the investigation of theoretical limits
for the applicability of the isotopic distribution, especially for
heavy particles, can be useful to the mass spectrometry com-
munity for improving experimental design and data processing.
This could help to avoid planning experiments that will be
unable to succeed because of these limits, or to plan experi-
ments with the purpose of overcoming these limits [5].

The evolution of isotopic distribution calculations based
upon the molecular formula and elemental isotopic distri-
bution (c.f. Supplementary Table 1) in terms of accuracy
and speed harmonizes with the increasing resolution of
mass spectrometers. However, how an isotope profile is
displayed by mass spectrometry depends to a large extent
on the effective resolution of the instrument to resolve the
isotope variants. In this sense, Fourier transform MS (FT-
MS) differs from lower resolution instruments like ion
traps, time-of-flight MS, etc.

In the latter case, the resolving power is usually large
enough to baseline separate the isotope profile of intact
and multiple charged molecules such that distinct peaks
with 1 Da mass differences are observed, whereas in low
resolution mass spectrometry the isotope profile of a large
molecule is presented as a Gaussian shaped peak profile.
For example, the isotope distribution of bovine serum
albumin (C2934H4615N7810897S39) is depicted in Figure
1 at different levels of resolution. Figure la presents the
aggregated isotope distribution at a resolution of 49,600
FWHM. It can be noted that the baseline-resolved peaks
start to fuse into a Gaussian-like shape.

On the other hand, Figure 1b displays the baseline resolved
isotope profile of Figure la, but at a resolution of 248,000
FWHM, where peaks appear with a mass difference of approx-
imately 1 Da. It should be noted that these peaks assemble
various isotope variants with the same nucleon count, yet
slightly different masses. Therefore, we denote these peaks as
aggregated isotope variants. In order to disassemble an aggre-
gated isotope variant into its fine isotope structure, high resolv-
ing power is required (e.g., FT-MS). A theoretical illustration
of the isotope fine structure at infinite resolution is depicted in
Figure 1d for the aggregated isotope variant denoted by the
arrow in Figure 1b. The distribution in Figure 1c looks similar
as the one in Figure la, however, should not be confused.
Where Figure la illustrates the low resolution profile of an
aggregated isotope distribution, the peak in Figure 1c is a single
aggregated isotope variant at a higher resolution, such that
abundant fine structure variants appear as shoulders on the
peak shape. It is also worth noting that in Figure lc, even a
resolution of >300,000,000 FWHM is not sufficient to
baseline-resolve the isotope structure of the aggregated isotope
variant denoted by the arrow on Figure 1b.

In this manuscript, we focus on some properties of the
isotope fine structure such as shape, spread, and variance as
displayed in Figure 2. The methods we use to infer these
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properties vary from extending moment generating functions [9,
10] to using concepts rooted in information theory (entropy), and
investigating “thermorelativistic” effects, i.e., mass uncertainty
attributable to relativistic effects coupled with the statistical me-
chanical uncertainty of the energy of an isolated ion (please note,
we will from here on use the word “thermorelativistic”” without
quotation marks). While discussing our methodology, we consid-
er two applications where the developed theory could be helpful,
namely, modeling the fine structure distribution, and investigating
the limits of molecular fine structure in real experiments.

Methods

This section briefly introduces the various tools developed for
characterizing the aggregated isotope distribution and isotope
fine structure. “Polynomial generating function” introduces the
polynomial function as used in the BRAIN algorithm [10, 11].
“Variance of the fine isotopic distribution of an aggregated
isotopic variant” describes how this polynomial can be extended
to calculate the second moment, (i.e., the variance). “Informa-
tion theory entropy of the fine structure of an aggregated isotopic
variant” explains the calculation of information theory entropy
based on the polynomial generating function. Finally, “Maxi-
mum spread of the fine structure of an aggregated isotopic
variant” and “Number of fine peaks of an aggregated isotopic
variant” present predictive models to estimate the spread and the
number of fine peaks of a given aggregated variant, respectively.

Polynomial Generating Function

In this article, we consider only substances with a chemical
formula of C,, H,, N, O, S.. Note that extending this approach to
more elements is straightforward.

First, we introduce the polynomial used, e.g., by Claesen
et al. [10] to explicitly identify isotopic peaks with the same
nucleon number:

Q(17 v,w, X, ), Z) = Z q/I/ (1)
J

where g; is a probability of j-th aggregated isotopic variant of
the considered molecule C,H,,N,0,S. (i.e., variant with j addi-
tional neutrons in comparison with the “monoisotopic” variant,
taken in this paper to mean the isotopic peak composed of all-
light elemental isotopes, or alternatively refering to the aggre-
gated isotopic variant as the isotopic fine structure cluster), and
1 is an indicator variable.

Recall that the center-mass (i.e., expectation value for mass)
for the j-th isotopic variant, m;, is defined as:

E(m;) = L:an:ﬁ%jk (2)

where m;; and pj; are, respectively, masses and probabilities of
the k-th isotopic fine variant contributing to the j-th isotopic
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Figure 1. (a)Isotopic distribution of the bovine serum albumin (Cogz4H4615N7810897539) With low resolution. (b) The same distribution
as in (a), but with higher resolution that reveals the individual aggregated variants. Green arrow indicates the most abundant
aggregated variant (42 additional neutrons wrt the monoisotopic variant). (c) Profile of the fine structure of the most abundant
aggregated variant with high resolution. Data for (a)—(c) use calculations performed with mercury [6, 7] with increasing resolutions
49,600 and 248,000 and 305,000,000 FWHM, respectively. These plots are normalized such that the area under the curve sums up
to 1. (d) Stick representation of the fine structure of the most abundant aggregated peak of bovine serum albumin obtained using
isoDalton [8] software with parameters set to 1,000,000 most abundant fine peaks. The dotted blue line marks the center mass (i.e.,
the mean of the fine structure) as extracted from data. The red arrows show the interval that is +¢ (continuous line) or +2¢ from the
center mass (center mass and g are calculated using the moment generating function approach - see the Methods section)

aggregated variant (as defined above). Equation (2) calculates
the expected center-mass value as the weighted sum of masses
of fine variants (the denominator normalizes an aggregated
variant to the unit area). Hence, we are taking a localized view
on this single aggregated variant, considered as a distinct
probability distribution, rather than being part of the full iso-
tope distribution.

Variance of the Fine Isotopic Distribution of an
Aggregated Isotopic Variant

We study here the second moment of the center mass
variable, which illustrates the variability of the fine struc-
ture relative to the center mass values. Combined with
the first moment (i.e., the mean of the center mass
values) the variance provides substantial information on
the distribution of the fine isotope structures, without the
requirement of explicitly calculating the fine isotope var-
iants. The variance can be calculated as follows:

Var(m;) = E () ~E(m;)’ 3)

E(m; )* can be easily calculated from Equation (2) (see also
e.g., [10, 12] for the algorithms to obtain this value effectively).
Analogously, E(mjz) can be calculated using the second order
derivative polynomial generating functions with the use of the
second derivative (see Appendix for details).

Besides the variance of the single aggregated variants, we
can also consider the total variance of the isotopic distribution
that includes the fine structure (for more details see Appendix):

Var, = ijkm?k —m? = Z q;Var(m;) + Var(m)
Ik J &

@

4)
where the average mass of the total isotopic distribution is
denoted by 7. This result corresponds to the well-known
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Figure 2. Overview of the results presented in the paper: the-
oretical methods to investigate the fine structure distribution
(left) and how they illustrate the limitations of MS data analysis
with respect to the mass resolution (right). Arrows indicate the
related concepts, dotted line shows the relationship for further
investigation (see the end of “How would thermorelativistic
effects influence isotope resolution?”)

statistical method analysis of variance (ANOVA), which distin-
guishes between within-group and between-group variability.
However, it should be underlined that the total variance of the
distribution is composed of weighted within-variant variance
(©), and the variance of the aggregated isotopic distribution ().

Information Theory Entropy of the Fine Structure
of an Aggregated Isotopic Variant

The information theory entropy can be used as a measure for
the complexity of an isotopic fine structure cluster (i.e., isotopic
aggregated variant). If an isotopic peak is composed of only a
single fine structure peak, the information theory entropy is
zero. Otherwise it is a positive number, rising as the complexity
of the isotopic fine structure cluster increases. The information
theory entropy for the j-th isotopic aggregated variant can be
computed from the formula (see Appendix for details):

_ _Z L jklog (P_/k)

H(j)
Z Pk

+log (Z p,-k>~ (%)
k

Note that Equation (5) consists of a fractional and logarith-
mic component. Under the logarithm, we have probabilities of
an aggregated variant, so they can be calculated using e.g., the
original BRAIN algorithm. Moreover, the structure of the
fractional component in Equation (5) is analogous to Equation
(2) ("my.” is replaced by “— log p;”). We can simply use the
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algorithms to calculate the center-masses (e.g., [10, 12]), but
replace the masses of the elements by the negative logarithm of
their probabilities followed by adding the logarithm of proba-
bilities for each aggregated variant.

Additionally, it should be noted that one can also consider
the information theory entropy H of the full isotopic distribu-
tion, including the fine isotopic structure (detailed calculations
in Appendix):

(6)
H= - ijk log(pji) = Z ¢ H(j) — qu log(g;) -
Ik J J

L) L

Of note, the total information theory entropy H that includes
the fine structure can therefore be split into two parts: the
weighted sum of the information theory entropies of the fine
distributions within aggregated variants (%), and information
theory entropy of the total aggregated isotopic distribution (4)
(fine structure excluded).

Maximum Spread of the Fine Structure of an
Aggregated Isotopic Variant

Here, the main interest is to identify the minimal and maximal
mass value in the fine isotopic distribution of a given aggre-
gated isotopic variant. In order to identify these two values, we
calculate the mass-per-additional-neutron ratio for isotopic var-
iants with at least one extra neutron (Supplementary Table 1).
The lower and upper limit for mass increase per neutron is
found for '° N and *H, respectively. We will denote these values
as Wogand p;sy. The lightest fine isotopic variant only contains
additional neutrons from nitrogen, whereas for the heaviest
variant only additional neutrons from hydrogen can be found.
Hence, the theoretical fine isotopic structure spread for an
aggregated isotopic variant with 7 additional neutrons of mol-
ecule C,H,,N,O,S. can be calculated:

Spread = i X (piop~f15y)- (7)

It should be noted here that in theory it is possible that the
maximum observable spread will be smaller than the theoreti-
cal maximum spread because of a lower number of available
hydrogens and nitrogens (i.c., when i > min(w, x)). As such,
Equation (7) can be considered to be an upper bound of the
theoretical maximum spread.

Number of Fine Peaks of an Aggregated Isotopic
Variant

In order to estimate the size of the isotopic fine structure
for a given aggregated variant, we count the number of
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fine peaks in its mass spectrum. We distinguish between
two fine isotopic peaks if and only if the number of
isotopes for any chemical element of a given molecule is
different. For example, the aggregated isotopic variant of
molecule C,H,N,0,S., which has one additional neutron
compared with the monoisotopic variant, consists of five
fine isotopic peaks (for simplicity in this subsection we
assume that min(v, w, x, y, z) > 2), i.e.,

¢, B le14le60y325z,
IZCVIHW-12H114Nx160y32527
2CVH AN, 151\,1160y32527
IZCVIHWMNmey_l 170]325Z7

12 1 14 16 32 33
C,'H,“N,'"°0,25. ,3s;.

The second aggregated peak has two additional neutrons
from one of the 17 following combinations of isotopes (the
remaining atoms occur as their lightest isotope): %0, **S,
BB 2 2H, 5NN, 0170, Bs33s, BC?H, BN,
Bl Beg 2yisy, 270, 23S, BNV 0, 15N 33,
70°3S. We observe that the number of fine peaks increases
drastically with the number of additional nucleons.

To solve the problem, we formulate this as a variant of the
classic Money Exchange Problem (i.e., for a given set of coins
with different denominations, find all possible combinations of
these coins that sum up to a given value). In the setting of the
fine isotopic peaks of an aggregated variant, the denominations
correspond to the number of additional neutrons in stable
isotope, 1.c.

{B¢,2H,5N ,70,"%0,%5,35,%68} = {1,1,1,1,2,1,2,4}

and the sum corresponds to the total number of additional
neutrons in the aggregated variant. The Money Exchange
Problem can be solved (e.g., using a naive and inefficient
implementation which enumerates all variants). Alternatively,
one might consider dynamic programming approaches or the
extended-round-robin-algorithm in conjunction with the “ex-
tended residue” table as implemented in decomp software [13].
Supplementary Figure 1 shows that the number of fine peaks
for four atoms (C, H, N, O) increases faster than linearly.
However, we should emphasize that many fine isotopic peaks
will be too small to be distinguishable from noise peaks.

Results

As already mentioned, we illustrate how the above methodol-
ogy could be used in two applications. First, a predictive model
to compute distributional characteristics is introduced. Second,
a thorough analysis of the fine isotope distribution is conducted
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in view of their statistical properties (e.g., normality, etc.). This
section contains also the visual exploration of the isotope
distribution for selected peptides and proteins. We calculate
theoretical characteristics of their fine isotopic distributions
(variance and entropy), see also Supplementary Figures 5 and
6. Other interesting features such as the spread and the number
of fine peaks are estimated as well. Finally, we investigate the
discrepancy between the studied fine structures and the normal
distribution.

To visualize and to validate the presented methodology, we
applied mercury, a tool to calculate with ultrahigh resolution
the fine isotopic distribution of an aggregated variant (see [7]
and Appendix “Brief overview of ultrahigh resolution using the
mercury Program™).

Can we Estimate Peak’s Fine Structure Variability
Based on its Center-Mass?

We investigated whether the variance of the isotope fine struc-
ture varies over the mass. Therefore, we processed around
58,000 proteins (each chemical formula is used only once)
from the UniProt [14] database and calculated the variance of
the most abundant aggregated isotope peak.

Note that Figure 3a illustrates the variance as a function of
Am (i.e., difference between the mass of the most abundant
peak and the mass of the monoisotopic peak). However, given
the fact that the most abundant peak is a nearly linear function
of the molecular weight (especially at high molecular weight) a
qualitatively similar linear relationship is obtained for the de-
pendence of variance on the molecular weight of the protein.
Having this linear relationship observed, we built a simple
linear regression model linking the variance of the most abun-
dant aggregated isotope peak, denoted by Var(m,), to its center-
mass (m,,):

Var(m,) = 1.503 x 10°° + 3.077 x 107° x m,,. (8)

Additionally, we checked in the UniProt database the max-
imum theoretic spread of the fine structure as introduced in
“Maximum spread of the fine structure of an aggregated isoto-
pic variant”. This spread can be larger than 1 Da for some
biomolecules (cf. Figure 3). However, the variance of the fine
isotopic distribution is small, suggesting a large number of fine
isotopic peaks with a high probability close to the center mass
of the aggregated isotope variant.

When do Isotopic Fine Structures Overlap?

Next, we identified the approximate size (in Daltons) of a
molecule for which the overlap between consecutive aggre-
gated peaks may happen. More precisely, we wanted to
predict the center mass of the most abundant aggregated
variant for which the standard deviation within this variant
reaches 0.5 Da. We assumed that the distribution of isoto-
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Figure 3. The relationship between variance (a) and spread (b) of the most abundant peak versus Am (the mass difference between
this variant and the monoisotopic one) for the proteins from Uniprot database. In addition, the regression lines were plotted. On (b)
we use a conservative estimate that looks at mass difference of additional neutron between nitrogen and hydrogen (for proteins with
most abundant peak with 10 additional neutrons we can assume we have at least 10 hydrogens and 10 nitrogens). Note that the
spread covers also very tiny peaks of the fine structure, as plotted in Figure 1. Therefore the variance-based estimate (e.g., 60) is a
much more realistic approach to capture the actual fine structure width

pic fine clusters have a Gaussian shape. As a consequence
of this assumption, a substantial part of their distribution
will not be part of the interval m 4 o, where 71 and ¢ are
its mean and standard deviation of the normal distribution,
respectively. Based upon this assumption, we checked for
which most abundant center mass (Equation (8)), the stan-
dard deviation is equal to or larger than 0.5 Da (cf.
Supplementary Material). The predicted mass, where the
overlap between adjacent isotopic fine structure clusters
starts is ~ 81.25 MDa.

However, despite the fact that 81.25 MDa is much larger
than the proteins in the Uniprot database, this molecular weight
range is not as hypothetical as it might seem. Nearly two
decades ago, Chen et al. [15] demonstrated the trapping and
detection of coliphage T4 DNA ions with a molecular weight
of 110 MDa. With a method similar to that used to estimate the
variances of isotopic peaks of peptides, the variance of a base
peak of large DNA molecules can be estimated from an equa-
tion analogous to Equation (8) with the molecular weight
multiplied by 1.68 x 10~° Da. This corresponds to a standard
deviation of 0.43 Da for the coliphage DNA observed in [15].
Consecutive fine isotopic peaks with such a wide spread will be
overlapping heavily and, as such, difficult to resolve, as illus-
trated in Supplementary Figure 3A.

By comparison, the aggregated isotopic envelope (in-
cluding all isotopic peaks) of a DNA molecule of
110 MDa would have a standard deviation of ~249 Da
or a FWHM of approximately 586 Da (see Supplementary
Figure 5). A mass spectrometer with a resolution of ~5 x
10° FWHM would be sufficient to resolve the overall
isotopic envelope and, as a practical matter, a mass spec-
trometer of this resolution would reveal most of the infor-
mation available.

A more recent paper [2] demonstrated the trapping of singly
charged urea particles of molecular weights as high as 3 GDa.
This work was presented as a major step toward high resolution
mass analysis of RNA, DNA, and viruses. [f we assume that the
variance of an isotopic peak of an intact virus particle would
scale as 2.4 x 10~ times the molecular weight (approximately
the average of the scaling factors for proteins and DNA), the
isotopic peaks of a virus particle in this molecular weight range
would have a standard deviation of ~2.7 Da and, therefore, it is
difficult to resolve the isotopic structure (both fine structure and
aggregated structure).

Also CD-MS technology is able to analyze molecules as
heavy as P22 pro-capsid [1] with molecular weight above
20 MDa. The viral capsids are good examples to illustrate the
usefulness of our methodology, as these particles, consisting of
building blocks called protomers, have atomic composition
with proportions similar to those of averagine [16]. Hence,
the linear model build for peptides can be used to estimate
the variance of the most abundant peak of capsid fine isotope
distribution.

For illustrative purpose, consider the HIV1 capsid
(~34 MDa). The structure of the particle has recently been
resolved by cryo-electron tomography at sub-nanometer reso-
lution [17]. Although with current MS technologies the isotope
pattern of HIV1 capsid particle is still not attainable, the MS
analysis of intact particles is perfectly feasible. Therefore,
especially for researchers who strive for ever higher mass
resolution, it is important to know that the standard deviation
for fine isotope structure distribution of the most abundant peak
(containing about 0.25% of the full isotopic distribution and
shifted by 22,018 from monoisotopic one) is ~0.32 Da, which
implies significant overlap between consecutive aggregated
isotope variants that will distort the isotope profile. See further
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discussion in Supplementary Material on the issue of complete
overlap of the fine structure envelope between consecutive
peaks.

How Far from the Normality is the Fine Isotopic
Distribution?

Having computed mean, variance, entropy, spread, and size of
the fine isotopic distribution of an aggregated isotopic variant,
we investigate if the fine isotopic distribution can be approxi-
mated by a normal distribution. We focus here on the fine
structure of the most abundant peak of the tested poly-
averagines [16] (Supplementary Table 2), which can be con-
sidered as approximations of several peptides and protomers,
which are building blocks of viral capsids. It should be noted
that for heavier molecules, the theoretical probabilities of the
most abundant isotopic variants decrease, e.g., for molecule
C19754H31033V5431 059095167 its most abundant aggregated var-
iant with 277 additional neutrons has probability of 0.023. Of
course, the fine peaks within this cluster are smaller by several
orders of magnitude. For example the fine peak composed of
213 atoms of 13C, 3 atoms of 2H, 21 atoms of 15N, 2 atoms of
170, 12 atoms of '*0, 1 atom of **S, and 7 atoms of **S (other
atoms in monoisotopic variants) has, according to the multino-
mial distribution (see [9]) a probability of approximately 8 x
1077 which is relatively high within this aggregated variant. As
a consequence, a huge number of ions should be analyzed to
have a reasonable chance to observe these fine peaks.

To assess the difference between the fine structure distribu-
tion of the most abundant isotopic peak, say P and the normal
distribution, say O, we calculate the relative entropy (also
known as the Kullback—Leibler divergence):

Di.(P||Q) = Z In (%) P(i).

The relative entropy, closely related to the information
theoretic entropy H(P) discussed in “Information theory entro-
py of the fine structure of an aggregated isotopic variant,”
measures the loss of information when the model distribution
Q is used to approximate real distribution P. The notion of
cross-entropy between P and Q, i.e., H(P, Q), ties together the
information theory entropy and the Kullback—Leibler diver-
gence measure:

H(P,Q) = H(P) + DxL(P[|Q).

The standard definition of relative entropy assumes that
both distributions are of the same type (i.e., discrete or contin-
uous). As a consequence of this assumption, we discretized the
normal distribution Q, because the fine isotopic distribution
obtained with mercury (cf. Supplementary Figure 6) is discrete.
The mean and variance for the normal distribution were calcu-
lated using moment generating functions as described in the
Methods section.
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Figure 4 illustrates the asymptotic behavior of relative en-
tropy and cross-entropy for averagines of increasing size. The
cross-entropy between P and Q tends to be similar to the
entropy of distribution P (Figure 4a), whereas the relative
entropy becomes small (Figure 4b). Similar behavior can be
seen for the QQ-plot (Supplementary Figure 7). Moreover, we
performed the Kolmogorov—Smirnov normality test, the
Hartigans’ dip test for unimodality [18], and tests for skewness
and kurtosis (see Supplementary Table 2).

As the molecular weight increases, the isotopic fine struc-
ture becomes more complex (i.e., the number of fine isotopic
peaks increases). Due to this complexity, it is difficult to
calculate the exact fine structure of the isotopic variants with
high number of the additional neutrons (please, note that mer-
cury does not produce exact fine peaks, but interpolates the fine
structure on the dense grid). Comparing the relative abundance
of the (interpolated) fine isotopic distribution with the normal
distribution identified several important factors. First, as could
be expected, as the molecular weight of the isotopic variant
increases, the overall envelope of the isotopic fine structure
cluster becomes wider. Moreover, as the molecular weight
increases, the number of fine structure peaks within a certain
mass interval becomes so large that the fine structure peaks
become unresolved, even at a FWHM of 4.412 x 10 Da.
Finally, as the molecular weight increases, the isotopic fine
structure cluster becomes more symmetrical and the visual
aspect of the isotopic fine structure cluster appears to become
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Figure 4. (a) Entropy of fine structure, and cross-entropy be-
tween fine structure of nine averagines and normal distribution;
dots represent average over 10 runs; (b) Kullback—Leibler dis-
tance between fine structure and normal distribution (note the
logarithmic y-axis); dots, ‘A’, and ‘v’ represent average, maxi-
mum and minimum over 10 runs, respectively. We used fine
structures generated by mercury and corresponding normal
distribution with mean and SD calculated using generating
functions. To calculate these measures, we discretized both
samples and placed them into 1,000 bins. To avoid infinite
values, we added single pseudo-counts to each bin
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more Gaussian. Based on this last observation, we claim that at
least for the most abundant peaks of large poly-averagines, the
normal distribution is a good approximation of the fine isotopic
distribution. Although formal testing of the normality assump-
tion is advisable, we point out that statistical tests for normality
generally reject the normality hypothesis for distributions with
a large number of data values (N) attributable to the statistical
power, which increases if N is large.

How Would Thermorelativistic Effects Influence
Isotope Resolution?

It turns out that parameters characterizing the fine isotopic
distributions estimated using our methodology give insight into
potential limitations of the concept of the isotopic resolution
(i.e., the limits for distinguishing individual peaks or the
distinguishing of fine structure components). Moreover, in this
section we discuss the phenomena related to thermorelativistic
effect of mass uncertainty, which also leads to the fundamental
limit that can only be mitigated by cooling the ions.

The relativistic limit to resolution in mass spectrometry
arises from thermal energy fluctuations. One can investigate
this effect using fluctuation theory from thermal physics. In the
present context, we address the question of whether this may
limit the ability to resolve the isotopic fine structure.

Using the abovementioned methods for an averagine pro-
tein ion with a chemical formula of C9877H1 5517N271502955583
the energy uncertainty is equivalent to a mass uncertainty of
Am = 9.98 x 10°° kg or Am = 6.00 x 10~ Da; (detailed
calculations can be found in Supplementary Material). Thus,
any two fine structure components that are separated by less
than 6.00 x 10~? Da will not be resolved when the masses of an
ensemble of ions are measured, even with a hypothetical infi-
nite resolution mass spectrometer. This limit is a fundamental
limit that can only be mitigated by cooling the ions.

Ion cooling has been shown to improve both resolution and
signal levels [19]. Various methods of ion cooling have been
employed, and extensive discussions being given in references
[20, 21]. Most methods involve translational cooling. Howev-
er, translational cooling can only lead to cooling of the internal
modes of motion if there is a coupling mechanism between
translational energy and internal energy of the ions.

With regard to the thermorelativistic effect, cooling of the
internal modes of motion is of primary importance. It is
beyond the scope of this paper to discuss these in detail,
but cooling ions while within the mass analyzer is possible
for some trapping-type mass analyzers, such as ion cyclotron
resonance, and cooling prior to injecting ions into the mass
analyzer is required for certain other mass analyzers, such as
time-of-flight. There are two ways that internal motion can be
cooled while ions are in the mass analyzer. One is via
collisions with background gas (vibrational to translational
energy exchange), and the second is via radiative cooling
(primarily via infrared emission by the ions and absorption
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by the walls of the instrument). One might expect neither
process to be very efficient, and thermodynamics requires
that in both cases the body receiving the energy must be
colder than the ions being cooled. For instruments that would
require cooling prior to injection of ions into the analyzer,
cooling of internal modes of motion via entrainment of ions
in a supersonic beam is a possibility. Also, related to cooling,
one would need to avoid anything that would reverse the
cooling process. These undesirable processes would poten-
tially include high energy collisions and infrared energy
transfer from the walls of the apparatus to the ions. In
general, cooling of ions sufficiently to overcome the
thermorelativistic effect is likely to be a very considerable
technical challenge. We also note that based on the used
equations, the thermorelativistic mass uncertainty, Am, will
be proportional to the square root of the molecular weight of
the protein.

Next, we estimate the average separation between fine
structure peaks in the most abundant aggregated variant of this
molecule (cf. Supplementary Material for calculations). Based
on an extremely conservative estimate, an average peak spac-
ing occurs to be of 7.69 x 10! Da per fine structure peak. This
is almost two orders of magnitude smaller than the estimated
thermorelativistic mass spread (6.00 x 10~ Da, as calculated
earlier). We can therefore expect that a large number of the fine
structure peaks are unresolvable because of the
thermorelativistic effect.

An alternative calculation that is still conservative, but less
conservative than the one just concluded, estimates a peak
spacing of 1.88 x 10" Da, which is over two orders of magni-
tude less than the thermorelativistic peak width. This is based on
an estimate of peak width of + two standard deviations from the
mean of the isotopic fine structure cluster (¢ = 0.026 Da).

Interpreting this result requires taking several aspects into
consideration. This result does not take into account the relative
abundance of the fine structure peaks. It seems likely that the
abundance of most of the fine structure peaks will be very low,
leaving much of the abundance to be concentrated into fewer
peaks of higher abundance. In that case, it may be possible for
the most abundant features to be resolved, or at least as a
distinct feature rising above the background of less abundant
and unresolved isotopic fine structure peaks, even though most
of the fine structure features would be unresolved. This is a
topic best reserved for future investigation. Other estimates and
assumptions are discussed in Supplementary Material.

Note also that the information theory entropy gives a
measure of the degree of complexity of an isotopic fine
structure cluster. Although we do not propose a specific
mathematical relationship in this paper, it seems clear
that an increase in information theory entropy is corre-
lated with the onset of the significance of the
thermorelativistic effect in limiting resolution. This rela-
tionship is a topic for future investigation.
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General Comments and Limitations of this Study

In this section, we discuss the scope of limitations on the fine
isotopic distribution measurements and the influence of other
factors contributing to the limit of the fine isotopic distribution.

Notice that this paper makes an assumption that we are
dealing with an ideal instrument i.e., one in which the ob-
served spectrum corresponds to a theoretically calculable iso-
topic distribution convoluted with a peak shape function char-
acteristic of the instrument but independent of other factors,
such as the number of ions loaded into the instrument. It also
assumes that the resolution of the instrument can be varied at
will and without limitation. In addition, part of the paper
assumes that one can measure an effectively infinite number
of ions, which in practical terms means enough ions so that
counting statistics do not limit the accuracy to which isotopic
peak profiles can be determined. These assumptions can be
considered as establishing a baseline to which future discus-
sions of these issues can be referred.

Let us briefly discuss in qualitative terms the implication of
the breakdown of some of these assumptions. Given the large
universe of possible experimental conditions, it is not possible
to give an exhaustive discussion of all possible cases, but
discussion of a few may be enlightening.

Counting Ions Consider first the fact that in any real experi-
ment it is only possible to detect a finite number of ions. If we
assume the ions in any given experiment are randomly distrib-
uted according to the theoretically calculated distribution, the
experimentally acquired mass spectrum will contain noise due
to ion counting statistics. The amount of noise can be predicted
by simple statistical considerations, and the effect is to obscure
features in the mass spectrum that may otherwise be apparent in
the spectrum. This is discussed in more detail in an earlier
section and in the Supplementary Material. In addition to the
example discussed in the Supplementary Material, this issue
applies generally to the problem of characterizing isotopic
distributions, including but not limited to discussions of the
thermorelativistic effect and nearly all other aspects of isotope
studies, such as the theoretical calculations illustrated in
Figure 1.

Considering this idea further and using the example
discussed earlier with a molecular formula of
C9877H15517N271502955S83, the most abundant iSOtOpiC peak
would contain 2 x 10" theoretical fine structure peaks (the
estimated number of fine peaks with 142 neutrons more than
the monoisotopic peak, composed of any number of carbons,
hydrogens, nitrogens, oxygens, and at most 83 sulphur atoms).
The majority of these fine structure components will contain
relatively negligible abundance. For sake of discussion, let us
arbitrarily assume that most of the theoretical abundance is
concentrated into only 0.01% of the fine structure peaks,

P. Dittwald et al.: On the Fine Isotopic Distribution

leaving 2 million fine structure peaks to account for most of
the total abundance in the isotopic fine structure cluster. Let us
further suppose that these major fine structure peaks are of
roughly equal theoretical abundance. If one were to experimen-
tally detect 200,000 ions in this isotopic fine structure cluster,
each of the major fine structure components would contain, on
average, 0.1 ions. In other words, only a relatively small
minority of the major fine structure peaks would be populated
with any ions, and the most likely occupancy of a fine structure
peak that is populated is just one ion. This is clearly not enough
ions to give a good experimental characterization of the fine
structure pattern, even in an infinite resolution mass spectrom-
eter. Although the correct numbers for the relative fine struc-
ture abundances used for this feasibility calculation are pres-
ently unknown, it nevertheless seems clear that this line of
thought is conceptually correct in the sense that once the
isotopic fine structure pattern reaches a certain level of com-
plexity, it would become impractical to determine the isotopic
fine structure cluster profile to even a relatively crude level. Ion
counting statistics can therefore represent a formidable practi-
cal limit to the usefulness of high resolution mass spectrometry,
even in a hypothetical mass spectrometer of infinite resolution.
More detailed consideration of these effects remains a topic for
future study.

Interactions of lons Consider next the fact that ions in a
real mass spectrometer may undergo various non-ideal in-
teractions. For example, ions interact with each other via
the Coulomb interaction. In mass spectrometers in which
ions are bunched in space and time, this can lead to
perturbations of ion trajectories. This can perturb the isoto-
pic peak profiles. Instruments that rely on ion trapping are
particularly susceptible to this sort of thing. For example,
in ion cyclotron resonance mass spectrometry, the phenom-
enon of phase- or frequency-locking has been studied by
several research groups [22, 23] and it is known that this
can lead to significant distortions of spectra, including the
locking of ions of closely spaced frequencies into a single
peak. In general, this is of particular concern when the
frequency splitting of real peaks is very small, which of
course makes isotopic fine structure peaks particularly sus-
ceptible to distortion. When this happens, the isotopic fine
structure becomes unresolved, which represents an addition-
al limit to resolution not covered by the earlier discussion
in this paper.

Fourier Transform Mass Spectrometry — An additional form of
distortion can occur during peak processing from Fourier trans-
form mass spectrometers [24]. For example, the closely spaced
frequency components of an isotopic fine structure cluster,
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when combined with apodization and Fourier transform signal
processing, can result in severe distortions of the isotopic
peaks, potentially including both abundance distortions and
peak shape distortions relative to the expected peak shapes
and abundances. In general, these distortions are most severe
when the instrument is not quite able to resolve the fine struc-
ture components. This limits the usefulness of high resolution
measurements if the isotopic fine structure is not fully resolved.
The effect is not necessarily a small one, and based on the
trends discussed earlier in the present paper, this will happen
with increasing molecular weight for proteins or other com-
pound classes with a rich isotopic fine structure.

Also worth noting is that the resolution of Fourier transform
depends on the acquisition time of the transient: higher resolu-
tion requires a longer transient and, furthermore, in order to
achieve full resolution it requires that the transient not decay
away significantly during signal acquisition. This ultimately
imposes limits, not on the analysis above, but rather on the
practical utility of performing the experiments since the time
for the experiment may become impractically long. Analogous-
ly, in a time-of-flight instrument the path length required to
achieve high resolution may become impractically long.

Field Inhomogeneities In Fourier transform ion cyclotron
resonance mass spectrometers inhomogeneity of the electric
and/or magnetic fields can lead to loss of resolution [25]. The
magnitude of these effects depend on the specific instrumenta-
tion and operating parameters. One would need to estimate
these on a case by case basis before concluding whether they
would limit resolution before the principal effects discussed in
this paper would become dominant. Field inhomogeneities
could also affect resolution in several other mass spectrometer
types, including but not limited to orbitrap and time-of-flight
mass spectrometers.

lon/Neutral Collisions are Another Non-Ideal Effect In Fou-
rier transform mass spectrometers, collisions can cause a pre-
mature decay of the transient, leading to lower resolution,
which would exacerbate the problems discussed earlier in this
paper. Furthermore, most other forms of mass analyzers are
subject to degradation of performance because of collisions
with background gas. For example, in time of flight mass
spectrometry collisions may alter the flight time or even scatter
ions to the extent that they do not strike the detector.

Resistive Signal Dampening ~ Similarly, if the transient length
were to become long enough, the signal detection process itself
would begin to limit the transient length via coupling of ion
motion to the electrical resistance of the signal detection cir-
cuitry. This will cause a decay of ion motion, hence a decay of
the signal and a loss of resolution. Under normal conditions,
this is not likely to be a limitation, but for a protein or other
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molecule of high molecular weight, the isotopic fine structure
may be so densely packed that it would require an excessively
long transient in order to resolve, and then signal attenuation
due to resistive loads could become an issue. The general
strategy to estimate this effect is presented in Supplementary
Material.

The Thermorelativistic Effect May Be Especially Difficult to
Overcome As mentioned earlier, this can only be overcome
by cooling of the ions, but the ultimate limits to this tech-
nique are hard to estimate. Nevertheless, it is possible to state
that cooling may ultimately be limited by the temperature of
the instrument walls. Owing to radiative heat transfer be-
tween the wall and the ion, it would seem to be practically
impossible to cool ions below a few degrees Kelvin, and
given that the isotopic fine structure undergoes a combinato-
rial explosion as molecular weight increases, even extensive
cooling is not likely to extend the thermorelativistic limit to
much higher molecular weight than it would be at room
temperature. Most of the limitations discussed in the present
section imply that the calculations presented in this paper are
optimistic and therefore represent ultimate limitations under
ideal conditions. Under more practical conditions, the limits
to isotopic resolution are likely to occur even sooner than
those discussed in this paper.

Finally, it is extremely difficult to appropriately quantify the
effects that limit resolution in such a theoretical study. Based
on our experience, we propose the following (very rough) order
for some of these effects, starting from the most limiting: FT-
ICR transient length > ion-neutral collisions > ion counting
statistics > ion—ion interactions > field inhomogeneities >
dephasing/apodization in FT signal processing > resistive sig-
nal dampening > thermorelativistic effects.

However, it must be realized that these effects might
best be thought of in terms of a multidimensional matrix
rather than a simple linear series, and the ordering of the
importance of the various effects could change drastically,
depending on the details of the instrumentation used, the
experimental conditions, the signal processing schemes
used, and the specific chemical species being studied.
Furthermore, the ways in which these factors interact be-
tween each other and with the isotopic structure and fine
structure are likely to be very complex and therefore diffi-
cult to predict using simple concepts.

Conclusions

In this study, we proposed methods for both modeling the fine
structure distribution and investigating some limits of molecu-
lar fine structure in real experiments. To this aim, we analyzed:
(1) moment generating functions for calculating the variance
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and information theory entropy; (2) theoretical spread and
number of peaks of the center-mass within the most abundant
aggregated peaks; (3) the normality of the fine structure distri-
bution for the most abundant aggregated variants; (4)
thermorelativistic effects corresponding to the high-resolution
measurements.

Calculated parameters, such as the first two moments of
nominal isotopic peaks, provide an estimate of the width of the
peaks. Empirical relationships between the molecular weights
of'two classes of biopolymers (proteins and nucleic acids) were
given and used to estimate the molecular weight ranges for
which adjacent fine isotopic clusters begin to overlap as well as
for which overlap is essentially complete.

The striking aspect of this work is that it uncovers at
least two rather fundamental limits to resolution for large
molecules and one relative limit that depends on the number
of fine structure peaks within a certain mass interval and the
available resolution of an instrument. One is when the
isotopic fine structure clusters become so broad that adjacent
isotope peaks (peaks with different nucleon number) over-
lap, either partially or fully. Once full overlap occurs, there
is no practical hope of resolving the isotopic peaks, even at
the 1 Da level. Even if an infinite-resolution mass spectrom-
eter would be available, the tangling of the isotopic fine
structure between adjacent isotopic peaks would make the
interpretation of the mass spectra virtually impossible. The
second limitation arises from the thermorelativistic effect. As
discussed earlier, this is a rather fundamental limit to the
usefulness of ultrahigh resolution measurements of extreme-
ly large biomolecules that can only be mitigated by cooling
the ions. Despite the uncertainties and approximations in the
calculations based on thermal energy fluctuations, the esti-
mates for resolution limits can serve as a warning that
thermorelativistic effects cannot be ruled out a priori, even
for ions as light as a few hundred thousand Da, and due to
the combinatorial explosion in the number of fine
structure peaks with increasing molecular weight, the
thermorelativistic effect will rapidly become more important
as molecular weight increases.

With today’s technology, instrumental and operational fac-
tors will limit resolution before one reaches the
thermorelativistic limit. However, when considering this limit,
one must keep in mind that improvements of instrumentation
cannot overcome it. Even an infinite-resolution mass spectrom-
eter cannot overcome the thermorelativistic limit. The only way
to avoid the thermorelativistic limit is by either cooling the ions
prior to mass analysis or by dealing only with ions with little or
no isotopic fine structure, such as carbon clusters or Csl
clusters.

The relative limit referred to previously in this section
is implicit in Figure 1 and relates to the number of fine
structure peaks within a certain mass interval in the iso-
topic fine structure cluster. When this “density of states”
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becomes too large, the spacing between the fine structure
peaks becomes too small to resolve. This limit will de-
pend on the resolution available on a given instrument as
well as the compound and peak observed, but in the
example illustrated in Figure 1 (bovine serum albumin),
the average spacing between the fine structure peaks
would already be too fine to fully resolve, even for an
instrument of resolution 300,000,000. At a resolution of
76,000,000, the isotopic fine structure is washed out near-
ly completely (data not shown), and at any resolution
much less than ~76,000,000, there would not even be a
hint of isotopic fine structure evident in the fine structure
cluster, other than an unresolved overall broadening of the
peak. Clearly, even for compounds well within the mo-
lecular weight range easily accessible to current instru-
mentation, the resolution of isotopic fine structure would
be extremely challenging for some compounds.

Moreover, we observed that for large molecules, the
analyzed distributions are distorted by a great number of
extremely small fine peaks (which can be indistinguishable
from the noise). This problem may be handled by truncat-
ing the isotopic fine structure distribution according to an
appropriately defined signal-to-noise ratio, but truncation
comes at a cost of distortion of the distribution, and dis-
tortions attributable to truncation tend to increase as isoto-
pic complexity increases, or roughly speaking as molecular
weight increases.

It should be noted that although we investigate a family of
poly-averagines as approximation of peptides and proteins, the
methodology presented in this manuscript can be easily extended
for a more general set of molecules. Moreover, besides the limits
discussed in this paper, there may be also additional impassable
limits to mass resolution. We do hope that further research and
discussion on this topic will be inspired by our study.
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Appendix

Variance of the Fine Isotopic Distribution of an
Aggregated Isotopic Variant

E(m_,-z) may be written explicitly using the following formula:

£(m) = ZZ% 9)

Notice that the denominator corresponds to an aggregated
isotopic distribution and, therefore, can be calculated using
already existing methods [9].

To calculate the numerator of Equation (9) we consider the
following polynomial:

- Z Xk: mypl’ =
J

T(I;v,w,x,,2) > al (10)
j

which coefficients (in standard form), i.e., g; L=y m 1 pjk, are
the objects of our interest

Moreover, for chemical compound Y we define the polyno-
mial:
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and

1) = Zp/l‘,jmi,j[j (13)
J

Finally, let us consider the polynomial:

=Re(I,J,K)" x Ry(I, J,K)" x Ry(I, J,K)*x

L .
Q (17 JyKa v, W, X, ), Z) x Ro(l, J,K)'V X RS(L J,K)z

(14)

which can be alternatively written in its standard form:

QL(L J.K; v, w, x, p, Z):Z (ijkJmikaM>lj (15)
k

J

Differentiating polynomial O*(, J,K; v,w, x, y, z) over J and
K we obtain:

J

62 mjp— mjr— /
WQ (I, J,K; v,w, x, y, z) = Z (2}{: m?kpjk‘] il g 1)1/
(16)

(1, J,K) Z Pa; J YK (11)  and by setting J = K = 1 we have the following identity:
C o 1, J,K; =T(I;
6J6KQ (7 SV, W, X, Y, Z)|J:K:1_ (7V7W7 X, ¥, Z)
We introduce also polynomials: (17)
D= pymal’ (12)
J On the other hand, we have:
52
8J8KQL(I7 J7K;U7w7m7y7z)|J:K:1 =

0 (0 1) % QUi — 2wy, 2) x PolI)+

+oxwxQ;v—1,w—1z9,2) x Po(I) x Py(I)+ (18)

+oxrxQ(Lv—1wx—1 y, z) x Po(I) x Py(I)+

+oxyxQv—1wxy—1,2)x Po(I) x Po(I)+

+oxyxQUiv—1lwxy z—1)x Po(l) x Ps(I)+

+oux Qv

—1Lw,z,y,2) x P5(I) + *
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where * states for a sum of 24 other polynomial products.
Hence the problem of calculating coefficients ¢, is reduced to
the calculation of polynomials that appear in Equation (18).
Finally, the variance of centered masses may now be obtained
from Equations (3) and (9).

To compute the variance of the center mass for a given
aggregated isotopic variant, we should calculate sums of prod-
ucts of polynomials. Here, we apply two approaches: FFT -
using explicitly fast Fourier transform; fft function in R, and a
library for multiplying polynomials; PolynomF library in R
[26] (which is more accurate than FFT, but also significantly
slower).

To calculate the total variance of the isotopic distribution
that includes the fine structure, we start from its definition:

2 2
Varo = pumym =Y pumiy | pym; + Y pymy
I I I I
2
= Z P/k’”?k‘z a,m; + Z Py
2
,qupjk 51( q,ijerjkm -m
J
2( i, )z m
J
= Z qJVar m; +Z qjm m = Z gq;Var (m;) + Var(m)
J
(19)

where we use that ¢;=3" ;p;, and the average of the total isotopic
distribution is denoted by m.

Information Theory Entropy of Fine Structure
for Aggregated Variant

The information theory entropy for j-th isotopic aggregated
variant (considered as a local probability distribution) can be
defined as:

Pk

Z WPk

Hj) = -y (20

log
PPN

After applying the following transformation:

S (S) = (S (50

(21

to the previous formula, we finally obtain the Equation (5).

The formula for the information theory entropy H of the full
isotopic distribution (fine structure included) can be derived
starting from its definition
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J j k é!
= Z qu M<l gﬂ> 72 4;log (%)Z b
7 w9 j 4

Z qH Z q,log( )Z
Z a;H (i)~ Z q,log(q,)

*Z q,H(j) Zq,log( )

(22)

where we use that ¢;=) ;pj.

Validation of the Proposed Methods for the Selected
Molecules

Aiming to validate our algebraic approach to calculate theoretic
variance of the fine structures, we calculated several distribu-
tions for center mass variance for selected biomolecules using
polynomial method and FFT (Supplementary Figure 3A—C).
Both methods are comparably accurate; however, FFT is com-
putationally more efficient. Moreover, to validate our results,
we ran isoDalton [8] and calculated exact masses for bovine
serum albumin or BSA with the 100,000 and 1,000,000 most
probable exact masses. We observed (Supplementary
Figure 3D) that when the number of simulated peaks is big
enough, the variances obtained from algebraic formulae are
consistent with those simulated by isoDalton. However,
selecting a limited number of most abundant peaks, the “true”
shape of the fine isotopic distribution cannot be obtained. Our
theoretical calculations can be used as a tool to determine the
appropriate parameters (such as the number of peaks) for
algorithms such as isoDalton, especially when one is interested
in a particular aggregated isotopic variant.

The calculations of information theory entropy are present-
ed in Supplementary Figure 2, which shows the entropy for
isotopic clusters of selected biomolecules. As expected, for the
first aggregated isotopic variants, the entropy increases, as the
fine isotopic distribution becomes more and more complex.

Brief Overview of Ultrahigh Resolution Using
the Mercury Program

The ultrahigh resolution fast Fourier transform (FFT) method
[7] is included as an option in the mercury computer program.
Briefly, mercury relies on the convolution theorem to transform
a convolution problem (the calculation of molecular isotopic
distributions from the atomic isotopic distributions) into a
problem that can be solved using the FFT. The ultrahigh
resolution option does a zoom calculation over a user selectable
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limited mass region and uses digital filtering to prevent aliasing
from nearby isotopic peaks. The result is an ultrahigh resolu-
tion simulated profile-mode spectrum of an isotopic cluster
over a limited mass range, typically 0.2 Da.
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