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Chapter 1

Introduction

Several aspects of micro-simulation modeling in transportation are covered by this

thesis text. The introductory chapter explains the use of Activity-Based Models

(ActBMs) and lists a set of pitfalls and challenging open problems at a general level

in order to sketch the research context. Two parts will follow.

The first part covers project related research (mainly for the completed DATASIM

project). It reports novel tools that enable to answer research questions by using

the results generated by micro-simulation. Chapter 2 shows how the travel demand

predicted by the FEATHERS Activity-Based Model is used to estimate the power de-

mand generated by Electric Vehicles (EVs) as a function of time and space. Chapters

3 and 4 investigate the feasibility to use Agent-Based Models (AgnBMs) in services

that provide advice to find partners for carpooling. Chapter 5 focuses on the combi-

nation of micro-simulated schedule adaptation and network performance evaluation

by means of aggregated traffic assignment.

The second part focuses on the extraction of information from GPS traces in order

to enhance the route choice component used in micro-simulation tools. This research

was not project related but was triggered by scientific curiosity. Following hypothesis

was formulated and verified using recorded Global Positioning System (GPS) traces:

‘for their utilitarian trips (trips having the purpose to perform an activity at the des-

tination location) people tend to compose their route from a small number of least

cost components’. Trips were extracted from GPS traces and for each of them the

sequence of road network links is determined by the newly developed map matching

tool described in chapter 7. Chapter 8 presents an algorithm that efficiently deter-

mines the minimum number of least cost path components required to reconstruct the

paths extracted from the data and shows statistics about path composition for several

1
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datasets. Finally, chapter 9 provides a polynomial time algorithm to enumerate all

possible ways to split a given path into a minimum set of least cost components. The

results of such enumerations can uncover information about routing preferences con-

tained in the GPS traces; this information in turn can be used to support the route

choice set generation in micro-simulation models.

1.1 Research Context for this Thesis

1.1.1 Agenda Adaptation, Coordination and Integration

Part 1 starts with the description of a research project in which an ActBM is used

in the classical way by aggregating the individual simulation results using specific

selection criteria (segmentation). A different approach is used for the other studies in

the first part. They focus on coordination and schedule adaptation and hence make

use of spatio-temporal schedule details.

The research presented in the first part focuses on the question how spatio-

temporal results produced by ActBMs can be used to solve problems of travel and

energy demand that require coordination and schedule adaptation. The reported

studies provided input to the scalability and electric vehicles related work packages

in the DATASIM project. The use of electric vehicles introduces the requirement

for coordination between the electric energy customer and provider because of the

limited power that can be delivered at a given location at any time. The reported

spatio-temporal power demand research serves as a basis for ongoing work at IMOB

that evaluates agenda adaptation in the context of time dependent electric energy

prices.

Carpooling for commuting was studied because of its practical relevance and be-

cause it represents several aspects focused by DATASIM. Negotiating and coordinat-

ing actors are modeled by an AgnBM. Results predicted by the FEATHERS simulator

were used to estimate the scalability issues that are to be expected in real situations.

The reported work constitutes the basis for ongoing research and implementation of

an Agent-Based Model (AgnBM) at IMOB.

Models for agenda adaptation need to be behaviorally sound and computationally

efficient in order to be useful. A framework to evaluate such models is presented.
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1.1.2 Route Choice Set Generation

As soon as travel demand is determined, it is to be loaded onto the transportation

network. ActBMs provide predictions for individual trips. For each trip a route choice

set is to be determined from which a route is to be chosen. Such set shall contain

plausible alternatives considered by the traveler. A new attribute, quantifying the

structural complexity of a route, is proposed to be used (i) as a criterion to assess

route candidates for inclusion in the choice set and (ii) as an explanatory variable in

the choice model. Analysis of large sets of GPS traces shows that actually used routes

have a fairly simple structure. Based on this observation we propose two algorithms

to extract information useful for both route choice set generation and route selection.

1.2 Activity-Based Models

Aspects of reality can be described by micro-models. Such models describe the entity

to be investigated as a collection of simple components that in some specific way

cooperate to act as a model of the overall entity.

Activity-Based Models (ActBMs) are micro-simulation models in which the simu-

lated entity is a person in the context of a household. For each person in a synthetic

population, the model constructs a schedule. A schedule (agenda) is a non-empty

sequence of episodes for a given period (e.g. one day or one week) and each episode

consists of a trip and an activity performed at the destination location of the trip.

Schedule generation consists of at least (i) planning (i.e. determining a list of activ-

ities to be performed within a given time horizon; such list may already determine

the set of possible locations and the expected duration for one or more activities) and

(ii) scheduling (which fixes all attribute values for a particular activity (start time,

duration, location) or trip (mode)).

The outcome of planning, scheduling and travel related decisions made by the

individual, needs to be predicted by submodels for specific purposes (location choice,

mode choice, etc).

The global spatio-temporal travel demand is determined by aggregating the trips

generated by all individuals in the model to a specific level (e.g. by Traffic Analysis

Zones (TAZs) in the region being modeled, by periods of time, by subgroups of the

simulated population).

Most often, problems described by micro-models can be solved using analytic

methods only if at least all of following conditions are fulfilled: (i) only a single

type of entities does exist, (ii) the behavior of the entities can be described by simple
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equations, (iii) the relation describing interacting entities is sparse and has a regular

structure and (iv) the set of boundary conditions is regular. Specific problems in

physics, engineering, econometry, transportation and other fields belong to this class.

In many cases however, not all conditions are met.

In the field of transportation, several types of actors are involved and, within

the class of human individuals, travel behavior depends on socio-economic and other

attributes. Individuals have their own goals and their specific preferences about the

way to achieve the goals: consider the difference between car captives and car avoiders.

As a consequence, micro-models in transportation research in general can be evaluated

only by micro-simulation i.e. by determining the representation of a given system

state and then applying the rules (functions) that describe the individual behavior

in order to determine the next state. For the problem of schedule generation, the

state is described by the individual’s attributes together with the partially completed

agenda. The rules then specify how to select the next decision to be taken and

how the outcome of that decision depends on the state. In most cases the rules are

non-deterministic.

Travel behavior for individuals is generally described by stochastic models: hence

ActBMs make use of stochastic micro-simulation. They shall be used to produce

expected values (or distributions) for the quantities the analyst is interested in. If

mutually independent entities are considered, parallel processing is easy and model

characteristics are computed by simple aggregation.

1.3 The FEATHERS Activity-Based Model

The FEATHERS tool, the results of which are used in the research described in this

thesis text, integrates both the planning and scheduling stages and delivers a complete

agenda (schedule) for a given day for every member of the synthetic population.

The input data consist of (i) a synthetic population specifying socio-demographic

attributes (ii) land-use data describing numbers of schools, job opportunities, shops

etc (iii) network performance data represented by travel time OD matrices for all

transportation modes (iv) decision trees trained using OVG survey results. Those are

used to model travel decisions taken by each individual.
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1.4 Challenges in Activity-Based Modeling

The focus of current research efforts, some challenges to move the state of the art and

suggestions for future development, emerging from practical experience, are listed

below.

1. Aggregated results, e.g. the number of activities conducted by individuals dur-

ing a specific day averaged over the complete population, do not require a large

number of runs of the stochastic model in order to find an acceptably small

variance. Less aggregated values e.g. traffic flows between specific TAZ can

exhibit large variance over several simulation runs and require lots of runs to

accurately determine expected values (Qiong et al. (2015)).

2. Individuals are considered to be (almost) mutually independent autonomous

actors. This is advantageous at the level of technical implementation since it

makes parallel processing of actors trivial. However, if the effect of a specific

Travel Demand Measure is expected to change travel timing, schedule adap-

tation is to be expected. Several activity start and end times are subject to

constraints some of which follow from joint activity execution or joint traveling.

If coordination between individuals is ignored, the effect of the TDM might be

overestimated by the model.

3. Some ActBM consider the decision process conducted by the individuals to be

a black box. The outcome of the process is predicted from its inputs using data

collected from surveys; the decision process mechanism is not modeled. This

can be a limiting factor for travel demand management sensitivity. It raises

the question whether or not the ActBM is replaying reality recorded at a given

moment in time for a given region. The problem of transparency of sub-models

is related to the question of correlation and causality. One way to introduce

causal relations in the stochastic model for the decision process is by provid-

ing latent variables. This requires the formulation of measurement and model

equations (e.g. the equations governing movement related quantities: position,

speed and time). Often, this complicates parameter estimation. By introducing

the additional equations, part of the correlation is replaced by causality. This

comes down to replace statistical explanation by knowledge based explanation

by decomposing a model into submodels. Statistics is the study of properties

of collections of data; it explains variation and variance for dependent variables

as a function of variation and variance for independent variables without the

need to understand anything else about the universe. In transparent models,
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universally applicable laws can be added. The time dependent state for a road

junction is used as an example: a conservation law which allows to write an equi-

librium equation specifying the relation between a junction capacity, its initial

state and the number of vehicles entering from and exiting to each connected

link during a given period of time can be added to the model of the junction

to describe the evolution of its state over time. In a similar way, simulating the

travel decision making process by itself instead of generating the decision pro-

cess outcome using a statistical model trained by means of data that hold for a

specific context, is expected to be more robust i.e. to deliver correct predictions

in a larger range of situations. Hussain et al. (2015c) provide an example of

this principle. The decision to carpool is not taken as the outcome of a random

sample from a distribution determined by a survey; rather the decision process

itself is modeled. The common knowledge introduced in the model specifies

that a commuter, when evaluating the option of carpooling, allows for limited

schedule adaptations only. This model predicts the share of carpooling among

other transportation modes observed in the travel surveys; in addition it also

provides insight in a possible reason for the outcome and hence contributes to

the understanding of the (lack of) effect of dedicated carpooling incentives.

4. In most cases, the planning horizon is one day and consecutive days are handled

as mutually independent. This is sufficient as far as network load for normal

working or weekend days is to be predicted. Recent models (e.g. Continu-

ous Target-based Activity Planning proposed by Maerki et al. (2014)) separate

activity planning (adding to agenda) and scheduling (deciding about timing).

Scheduling the next activity is done during schedule execution. The model con-

siders a planning horizon in order to take into account deadlines for specific

activities and availability of services (shop opening times). As a consequence,

it is able to handle unusual day types (long weekends).

5. Using a specific time-of-day as a fixed time reference for every individual, turns

out to introduce artificial restrictions that can be harmful to simulations. The

introduction of an individual time reference for every actor is argued by two

cases.

In a city level project, the effect of a large hospital or a dominating employer

factory operating in three shifts on travel demand, requires correct modeling

of night shift work periods. Breaking a running activity over two consecutive

days, introduces technical difficulties.
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A second case is schedule adaptation: this implies compression and expansion

of time periods which induces the concept of time pressure. This time pressure

shall be determined only by the begin and end times of the period at hand and

not by an artificial fixed time reference within such period. The fixed reference

point is harmful in such cases because is creates a technical artifact disturbing

the time pressure value. The problem is explained in chapter 5 and occurs

as soon as rescheduling is involved (either due to unexpected events (Knapen

et al. (2013c)) or deliberately by an individual e.g. in order to optimize Electric

Vehicle (EV) charging (Usman et al. (2014a)).

6. Location choice is problematic in regions described by nearly homogeneous land-

use characteristics while essential heterogeneity is not captured by the data

(e.g. differences in attractiveness induced by marketing efforts). Knapen et al.

(2014c) compares three different location choice models: (i) the distance band

model used in FEATHERS, (ii) a gravity based model and (iii) the radiation

model developed by Simini et al. (2012). This is done by starting from a home-

work commuting matrix directly derived from census data. Individual locations

(at statistical sector level, 1[km2] on average) were aggregated to a somewhat

coarser level (TAZ, 5[km2] on average). Row and columns sums were calculated

and the three models were used to create a new home-work commuting matrix

from the marginals. All three models seem to accurately predict distribution

for the distance driven but the correlation between the original and computed

matrices is low (approx. 0.6). Each of the models is distance and population size

based. The method used by FEATHERS uses additional information after pre-

selection based on a distance-range criterion. The low correlation is explained

by the spatial homogeneity of the data used by the models (population size, job

opportunities) for Flanders.

7. Business trips (i.e. trips executed as a part of the job and by order of the

employer) are ignored and need to be predicted by separate models.

8. Travel behavior models borrow aspects from physics and engineering as well as

from mathematical sociology (Gilbert and Troitzsch (2005)). The number of

input parameters and their variance are much larger in the latter field than in

the former which makes validation of travel behavior micro-simulators difficult.

The aspects mentioned above shall be considered when using ActBM results to feed

other models.
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1.5 Advantages of Activity-based Models

Following advantages of ActBM (compared to traditional four-step models) originate

from the ability to describe the behavior for the constituting entities.

1. The overall behavior of the complete model emerges from the behavior of the

constituents and does not need to be modeled explicitly. Each individual actor

can be constructed from sub-models in an hierarchical manner. Sub-models can

be mutually dependent. As a consequence, specific behavioral details can be

described according to the modeling requirements. This allows to study the

effect of behavior change for particular segments of the population (sensitivity

analysis and travel demand measures (TDM) evaluation).

2. All information for each individual is made available. This allows to report

results for particular subsets of the generated schedules by specifying appropri-

ate selections. Such selections can make use of specific attributes of individuals

but also of schedule properties. Examples of the second category are: selections

based (i) on departure times for trips towards specific activities and (ii) on spe-

cific activity sequences contained in the schedule.

3. Furthermore it is possible to build relations between entities by defining simi-

larity concepts: e.g. in carpooling applications, individuals are combined using

the spatio-temporal similarity of their commuting trips.

1.6 Research Overview

Research reported in part 1 (see Figure 1.1) takes ActBM results as input. Because

predicted trips contain spatio-temporal information for vehicles, it is possible to cal-

culate the energy requirements for each trip in a schedule. This was done for Electric

Vehicles (EVs). Detailed technical characteristics of vehicles have been collected and

several market shares were considered. Four types of EV charging behavior were used

to calculate the energy demand as a function of time and space. The periods during

which the vehicle can be connected to the grid follow from the predicted schedules

and this allows to calculate the power demand for each TAZ as a function of time.

In a second study, predicted schedules are used to investigate carpooling as a

prototypical example of coordination among people in order to cooperate on trip

execution. On one hand, an Agent-Based Model (AgnBM) is designed to evaluate the
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Figure 1.2: Overview part 2: The research consists of the tools represented by shaded

ovals and results represented by shaded rectangles. Arrows represent data flows.
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negotiation process among carpool candidates and in order to simulate the creation

and evolution of the carpools. On the other hand, the back-end engine for a web-based

carpooling advisor was designed and evaluated. Such system needs to keep track of

a collection of advertised trips for carpooling. The appropriate advice is computed

by maximizing the probability for successful negotiation among candidates. The

solution method is based on graph theory and leads to an NP-hard problem. In order

to support the selection of appropriate heuristics, the properties of the graph have

been calculated from schedules predicted for Flanders.

Finally a hybrid framework to evaluate models for schedule adaptation was de-

signed and built. On one hand, schedule adaptation is determined by micro-simulation;

on the other hand, the effect on the road network is evaluated by aggregated traffic

assignment and skimmed interzonal travel times are fed back to the micro-simulator.

This framework supports evaluation for several types of schedule adaptation.

Part 2 (see Figure 1.2) proposes a line of tools aimed at the extraction of route

information from GPS traces. This is done by first splitting the trace into pieces

by trip detection. The resulting GPS sequences for each trip then are converted to

sequences of links in the road network by map matching. The minimum number

of shortest paths required to construct the trip, is determined for each trip that

constitutes a path in the network. This number is used to verify the hypothesis that

people tend to compose their trips by a small number of shortest paths. A distribution

for the size of those minimum decompositions is determined from two sets of GPS

traces and confirms the hypothesis. The resulting distribution can be used to enhance

the quality of the route choice process. Finally, a technique to enumerate all possible

minimum path decompositions in polynomial time, is presented. It is shown how such

enumerations can contribute to automated detection of points that have a special

meaning in route generation (way-points).

1.7 Thesis Outline

Each part of the thesis contains several chapters each of which covers a particular

research topic. In the first part, every chapter starts with a sketch of the research

context for the papers constituting the chapter. In the second part, the shared re-

search context is sketched in an introductory chapter because the topics in that part

constitute an integrated research effort so that the motivation for the first paper (map

matching) can only be understood when the final research goal is known.
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Chapter 2

Spatio-temporal distribution

of electric power demand

caused by EV

This chapter is based on

Knapen et al. (2012b) Using Activity-Based Modeling to Predict Spatial and

Temporal Electrical Vehicle Power demand in Flanders

Knapen et al. (2011) Activity-based models for countrywide electric vehicle

power demand calculation
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Related co-authored papers

D’hulst et al. (2012) Decentralized Coordinated Charging of Electric Vehi-

cles Considering Locational and Temporal Flexibility

Ridder et al. (2013) Applying an Activity based Model to Explore the Po-

tential of Electrical Vehicles in the Smart Grid

De Ridder et al. (2013) Electric Vehicles in the Smart Grid

Alvaro et al. (2014) Vehicle to vehicle energy exchange in smart grid appli-

cations

Gonzales et al. (2014) Determining Electric Vehicle Charging Point Locations

Considering Drivers’ Daily Activities

Alvaro-Hermana et al. (2015) Peer to Peer Energy Trading with Electric Vehicles

Usman et al. (2015) Relationship Between Spatio-temporal Electricity Cost

Variability and E-mobility

2.1 Research Context

Several research projects have been conducted in the last five years. Electric Vehicle

(EV) research focuses on several aspects: car technology, energy conversion and stor-

age, impact of EV charging on the electric grid, estimation of customer preferences

and modeling of influencing effects of early adopters. Main stakeholders in Flanders

are customers, energy providers and grid operators. It should be noted that the EV

market share seems to be far less than was commonly expected in 2011-2012 and

predicted for 2015.

The emergence of EV raises the problem of electric energy distribution but on

the other hand contributes to solve the problem of electric energy storage. From the

distribution grid point of view, production and consumption of electric energy need to

be balanced at every moment in time. The growing amount of solar and wind energy

installations can cause balancing problems due to the unpredictability and variability

of the production power. The EV fleet represents a floating (in space and time) storage

capacity for electric energy that can mitigate the unbalance problem provided that

intelligent management systems are in place and a critical storage capacity is available.

FEATHERS predicts a list of about 9 million episodes each one consisting of a

trip and an activity. The activity is characterized by the activity type (home activity,

work, shopping, etc). Trip attributes are the transportation mode, origin, destination,

trip start time and expected duration. Activity attributes can be used to determine

the feasibility to charge the EV battery at the activity location. Trip attributes are
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used to calculate energy consumption. When the state of charge (SOC) of the battery

is known for a given time of day and location, it can be calculated for the location

where the EV subsequently is connected to the grid. Hence, the amount of energy

that can be charged at a given location during a specific period, can be calculated.

This results in the power demand for the electric grid as a function of time and space.

Since it is difficult (and hence expensive) to store large amount of electric energy,

since the energy transport is bounded by power limitations in the grid and since the

storage capacity is moving around, this leads to complex problems. In the DATASIM

project, scientists in the fields of big data, engineering and transportation cooperated

on smart-grid and EV charging related topics. Activity-based modeling delivers the

input required to estimate the power demand in space and time.

Results predicted by FEATHERS constitute the base for ongoing research on EV

charging schemes under assumptions of time dependent energy cost and taking into

account charging location specific power supply limitations.

The research described in the following sections enabled me to co-author the papers

mentioned above as an active contributor.



16 Chapter 2

2.2 Abstract

Electric power demand for household generated traffic is estimated as a function of

time and space for the region of Flanders. An activity-based model is used to predict

traffic demand. Electric Vehicle (EV) type and charger characteristics are determined

on the basis of car ownership and by assuming that EV categories market shares will

be similar to the current ones for Internal Combustion Engine Vehicles (ICEVs) pub-

lished in government statistics. Charging opportunities at home and work locations

are derived from the predicted schedules and by estimating the possibility to charge

at work. Simulations are run for several EV market penetration levels and for specific

BEV/PHEV (battery-only/pluggable hybrid) ratios. A single car is used to drive

all trips in a daily schedule. Most of the Flemish schedules can be driven entirely

by a BEV even after reducing published range values to account for range anxiety

and for the over-estimated ranges resulting from tests according to standards. The

current low tariff electricity period overnight is found to be sufficiently long to allow

for individual cost optimizing while peak shaving overall power demand.

2.3 Introduction

2.3.1 Electric vehicles use

The economy’s dependency on fossil combustibles is attempted to be decreased for

both environmental and strategic reasons. Resulting effects are an expected increase of

Electric Vehicle (EV) use and use of alternative sources for electric energy production.

Sustainable electric energy sources (wind, solar) deliver power at variable rates that

cannot easily be predicted. Furthermore, storing electric energy is a major problem.

The use of EV generates challenging questions but also opportunities: when EV are

used in a vehicle to grid (V2G) configuration, they can serve as electric energy storage

devices. Designing and operating an electricity grid having lots of small unpredictable

producers combined with relocatable storage capacity that is time dependent, is a

complex problem.

The problem receives more than pure technical attention. White-House-NSTC

(2011) states: President Obama has set a national goal of generating 80% of [the]

electricity from clean energy sources by 2035 and has reiterated his goal of putting

one million electric vehicles on the road by 2015.
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2.3.2 Activity-based models to predict energy demand by elec-

tric vehicles

Activity-based modeling (ActBM) predicts daily schedules for people based on the

behavioral characteristics for each individual. As a result, each individual actor can

be designed to adapt in its own specific way to changes applied in scenarios when

using feedback mechanisms during simulation. Activity-based models therefore allow

for policy evaluation. The schedules generated by ActBM contain information about

the transport modes used and about the activity kind, duration and location. As a

result they provide the tools to investigate the feasibility of goals like the one stated

in White-House-NSTC (2011) both by modeling in a closed loop, individual behavior

change (adaptation) and the effect thereof on the public infrastructure.

This paper explores the case for Flanders. The region counts 6 million inhabitants

on 13000 square kilometers and is part of Belgium (Europe) (11 million inhabitants

on 30000 square kilometers). The area is subdivided in 2368 zones. A synthetic pop-

ulation of actors has been built to mimic each inhabitant of the area to be studied.

Actor behavior is determined by characteristics of the surroundings like road trans-

portation network, distance between locations suited for specific types of activities,

public transport availability, delays induced by congestion. The FEATHERS ActBM

described in Bellemans et al. (2010) has been used. Within FEATHERS, actor behav-

ior is modeled by 26 decision trees, each one of which takes as input attributes of both

the individual actor and the environment as well as the outcome of decisions already

made. The decision trees have been trained by means of the CHAID method using

data from regional time specific travel behavior OVG surveys. A single survey covers

up to 8800 respondents. The decision trees are used to predict (in the order speci-

fied) attributes for work episodes, work locations, work-travel mode, fixed non-work

activities, flexible non-work activities, non-work locations, non-work-travel mode. At

this moment FEATHERS does not adapt actor behavior to car type (ICEV, EV). Car

type is determined after schedule prediction. Resulting schedules are used to predict

time and location for travel related electric energy consumption.

First we explain what hypotheses about EV drivers behavior have been made and

how EV characteristics have been determined from literature and from available sta-

tistical data. Next, calculation details are described. Finally, results for the Flemish

region are presented: area specific energy and power requirements as a function of

time identify critical parts in the electric grid. The fraction of the household trans-

portation market that can be served by EV without range extenders, is calculated.
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2.3.3 Related work

Many research projects are driven by the goals to reduce greenhouse emissions. Re-

cently European research focuses on the problem of matching the supply and demand

of electric energy from sustainable sources (solar, wind). Cui et al. (2011) use a

car selection model, a budget prediction model and an agent-based simulator (stig-

mergy) to predict pluggable hybrid electric vehicle (PHEV) market penetration for

Knox County (190k households). Davies and Kurani (2011) predict the electric power

demand for the PHEV used by 25 households from data recorded in an experiment

and from a PHEV car design game conducted by the households: the effect of work

location charging is simulated. Kang and Recker (2009) and Recker and Kang (2010)

use an activity-based model for California based on statewide travel diaries and sev-

eral charging scenarios to predict the power demand for the whole area as a function

of time. Bliek et al. (2010) describe how PowerMatcher predicts electric energy in a

smartgrid containing small unpredictable solar and wind energy sources and tries to

match supply and demand using an agent-based auction for electric energy. Clement-

Nyns et al. (2009) evaluate coordinated charging strategies for a Belgian case. In such

systems customers need to specify time limits for charging (which can be produced by

ActBM). Waraich and Galus (2009) evaluate energy tariff effects on charging behav-

ior for the city of Berlin by coupling MATSim-T (travel demand simulator framework)

to PMPSS (PHEV Management and Power Systems Simulation). Binding and Sund-

stroem (2011) describe an agent-based simulator for an auction based energy pricing

system aimed at matching sustainable power supply and demand: they plan to inte-

grate the V2G (Vehicle to Grid) concept to temporary store energy in car batteries.

Hadley and Tsvetkova (2008) predefine a charging profile and analyze the effect on

power demand when applying it to 13 US regions at different times of the day.

2.4 Context

2.4.1 Smart grids and transport engineering

Smart grids are required when trying to meet electric energy demand in networks

containing many small production units exposing difficult to predict behavior (solar,

wind energy). Several techniques are used to try smoothing power requirement over

time and to adapting it to uncontrollable time dependent production. With central

coordination based schemes, the energy provider is allowed to turn on/off electric

loads remotely. Other schemes rely on intelligence local to the consumer to determine
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electric demand at any moment in time: auction based configurations try to adapt de-

mand to production by negotiating location specific prices every 15 minutes. Each one

of those schemes requires intelligent components but also a lot of information about

the environment and efficient adequate short time forecasting techniques. ActBM in

transport engineering can contribute to the problem solution by creating adequate

tools to forecast the energy and power demand as a function of time and location

in order to decide when and where energy can be delivered proactively or stored in

batteries for later retrieval. Several papers mentioned under Related Work predict

energy demand: they do so either for a small population or as an aggregated value

for a wide region. Related work on smartgrid design shows that the auction based

pricing system simulators need predictions about when and where electric power is

demanded. Therefor, this paper estimates the electric energy and power requirements

for Flanders using activity-based modeling.

2.4.2 Electric energy demand evolution - Power demand

2.4.2.1 Energy demand

According to several sources (Perujo Mateos Del Parque and Ciuffo (2009), Perujo

and Ciuffo (2010)) the total amount of energy drawn from the grid by electric vehicles

is relatively small: a 30% market share EV would represent 3% of the total annual

electric energy consumption for the region of Milan, Italy.

For a Flemish household, the estimated yearly amount of electric energy required

by the car (0.2 kWh/km, 15000 km) is of the same order of magnitude as the amount of

electric energy consumed by the household for other purposes (current electric energy

consumption value). According to figures published in Oxford University Environ-

mental Change Institute website statistics pages UO ECI (2011) the average yearly

consumption for a Belgian household amounts to 3899 [kWh/year]. A similar figure

(3500 [kWh/year]) for Belgium is mentioned by EABEV (2010). As a consequence,

the relative contribution of transport in the overall demand, will grow significantly

with increasing EV market penetration.

The evolution of electric energy demand per sector for Belgium is given in William

D’haeseleer et al. (2007). Total consumption in 2005 was 80.2 TWh. The transport

sector contribution increases but amounted to only 2.12% in 2005. According to sev-

eral sources (Ramage (2010), Perujo Mateos Del Parque and Ciuffo (2009)) the energy

demand by EV is not expected to cause problems on the electricity grid provided it

is distributed over time.
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2.4.2.2 Power demand

Activity-based models help to assess where and when peak power demand would ex-

ceed limits imposed by the grid. Perujo and Ciuffo Perujo and Ciuffo (2010) studied

power demand for the Milan region using the assumptions that people will not charge

their car batteries every day but only when needed and that charging starts between

16:00h and 19:00h in the evening obeying a uniform distribution over time. Perujo

Mateos Del Parque and Ciuffo (2009) recognize the need for statistical values (esti-

mated distributions) on daily commuter trips for a particular region. Our study uses

ActBM to calculate charging time and location resulting in a prediction of EV power

demand.

2.4.3 The use of activity-based models

Electric energy demand estimates require detailed data about location and timing as

well as trip purpose and activity information for each simulated individual. This paper

investigates following scenarios for charging of both Battery only Electric Vehicles

(BEVs) and Pluggable Hybrid Electric Vehicles (PHEVs) in order to calculate peak

power demand as a function of time and location starting from FEATHERS predicted

schedules:

� Scenario EarlyLowTariff : people start charging as soon as possible during the

low tariff period (night-time, reduced-rate electricity).

� Scenario UniformLowCost: people start charging at a uniformly distributed

moment in time but so that their cost is minimal (maximum use of low tariff

period).

� Scenario LastHome: people start charging batteries as soon as the car gets

parked at the last home arrival of the day irrespective of any low-tariff period.

� Scenario AlwaysAtHome: people charge batteries immediately after each

home arrival.

In all cases, charging period is assumed to be contiguous (uninterrupted) which means

that no auction based dynamic pricing for fifteen minute charging blocks has been

considered. Furthermore we hypothesize

� that everyone recharges batteries every day due to range anxiety

� that all cars are charged at home with additional charging at the work location

in well defined cases only
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2.5 Electric vehicle fleet attributes

Since the EV market is only emerging, predictions cannot be based on extensive

statistics. Assumptions made in the paper have been explained and argued below.

2.5.1 Vehicle categories

Electric cars are subdivided into the categories small, medium, large similar to

what is done in Perujo and Ciuffo (2010). In order to estimate the energy require-

ment, one needs to know the contribution of each category to the complete vehicle

fleet. Belgian government statistics provide the distribution of registered cars along a

classification based on the IICEV cylinder volume. We state the one-to-one mapping

of categories given in table 2.1 that shows market share and technical characteristics

for each category. Vehicle characteristics in the table have been derived from data

in Perujo and Ciuffo (2010) and Nemry et al. (2009). The market share figures have

been taken from the Belgian federal government 2009 PARC010 Transport Indicator

statistics Federal Planning Bureau (2009)

2.5.2 Available Chargers

Locally available 3.3 [kW] and 7.2 [kW] chargers are considered. Our model dis-

tinguishes between home and work location chargers (see table 2.2). Charger type

occurrence probability is given in table 2.1. The power value for home chargers is as-

sumed to depend on the car category: smaller cars are equipped with a less powerful

charger. On the other hand, companies offering car charging facilities are assumed to

provide powerful chargers in order to save time and to extend the distance that can

be bridged during one day. The company investment in a powerful charger is assumed

to be a profitable one.

2.5.3 Company cars in Belgium - Vehicle ownership

Employers are believed to allow Company Car (CC) drivers to charge at the work lo-

cation because that is less expensive than providing fuel cards to employees. However,

for technical reasons, not all companies can provide the required infrastructure. The

fraction of actors who can charge batteries at the work location has been determined

as a fraction of company car drivers. It has been assumed that 50% of the CC drivers

can charge at the work location.
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Vehicle categories

Equivalent engine cylinder volume [cc]

(ICEV category)

V < 1400 1400 ≤ V ≤ 2000 2000 < V

Market share (from Belgian government

statistics)

0.496 0.364 0.140

EV category small medium large

Battery capacity (kWh) 10 20 35

Range (km) 100 130 180

Energy consumption (kWh/km) : lower

limit

0.090 0.138 0.175

Energy consumption (kWh/km) : upper

limit

0.110 0.169 0.214

Charger type at home : prob(3.3[kW]) 0.8 0.4 0.1

Charger type at home : prob(7.2[kW]) 0.2 0.6 0.9

Charger type at work : prob(3.3[kW]) 0.1 0.1 0.1

Charger type at work : prob(7.2[kW]) 0.9 0.9 0.9

Table 2.1: Correspondence between EV and ICEV for categories specified in Belgian

Government statistics

The FEATHERS ActBM predicts trips and provides information about car avail-

ability but not about car ownership (private vs. company owned). In order to estimate

the number of people able to charge batteries at the work location, we need to esti-

mate the fraction of work trips traveled by company car. The COCA (Company Car

analysis) report Cornelis et al. (2007) states that, depending on the context, multiple

definitions of a company car (voiture de société) are in use because both fiscal and

operational aspects are concerned. The COCA definition (A company car is made

available by a company to an employee for both professional and private use) is used

in our study. The same COCA report states that, based on two Belgian reports (OVG

for Flanders and ERMMW for Wallonia), it can be concluded from data up to 2005,

that 6% . . . 7% of the car fleet in use by Belgian households, is company owned (source

Cornelis et al. (2007) page 31/80). The OVG42 report Cools et al. (2011) estimates

the fraction of company cars available to households in 2009 to 10%.

Our model assumes that 10% of the actors driving to work, make use of a company
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Charge location Car category Prob(3.3[kW]) Prob(7.2[kW])

Home small 0.8 0.2

medium 0.4 0.6

large 0.1 0.9

Work small 0.1 0.9

medium 0.1 0.9

large 0.1 0.9

Table 2.2: Charger Type Distribution

car. Cars used in schedules without any work trips, are assumed to be Privately

Owned Car (POC).

2.5.4 Relation between EV ownership and EV type

The portions of EV being PHEV are assumed to differ between privately owned and

company cars. Currently no data about the respective expected market shares are

available. PHEV rates 0.0, 0.5 and 1.0 for both CC and POC have been combined to

run simulations.

PHEV do not have practical range limitations but long All-Electric-Range (AER)

versions are more expensive than BEV. Temporal unavailability of a car induces high

hourly costs for a company: the investment in a more expensive PHEV is assumed

to be a profitable one. Private owners, on the other hand, are assumed to be more

reluctant against large initial investments for private use.

2.6 Simulations

2.6.1 Method overview

The FEATHERS ActBM (Bellemans et al. (2010)) created by the Transportation

Research Institute (IMOB) has been used to generate activity-travel schedules (daily

agenda for each individual of the Flemish population). Each schedule consists of

trips and activities. For each trip, departure time, trip duration, origin and destina-

tion zones are predicted. For each activity, the purpose (work, shop, bring-get, . . . )

is predicted. In this study, only work and non-work activities are distinguished.

FEATHERS results apply to a single 24-hour period. A working day simulation has
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Car Users

WorkTripNoWorkTrip

an harge

at work

POC CC

annot harge

at work

Figure 2.1: Car users partitioning. (1) workTrip based partitioning follows from the

AB-Model-generated schedules. (2) ownership (POC, CC) and canChargeAtWork are

specified by parameters.

been used.

Energy and power demand are computed from FEATHERS results as follows:

� In a first step, schedules having at least one car trip are extracted and data

structures are set up.

� In the second step, car ownership, possibility of work location charging, car

characteristics (range, distance specific energy consumption, battery capacity)

and the types of home and work location charger used, are determined. Both a

BEV and a PHEV belonging to a same category, are assigned to the schedule.

A feasibility indicator is calculated which tells whether or not the schedule can

be executed using the assigned BEV electric car (PHEV always is feasible since

the internal combustion engine (ICE) always is available as a range extender).

Each individual schedule is assumed to be executed using a single car and a

predefined fraction of the company cars can get recharged at the work location.

The set of schedules is partitioned as specified in figure 2.1. For each one of the

leaf node parts, the market share has been specified: the results shown in this

report hold for 10% no-work trip and 10% work trip electrification.

� In the third step, charging scenarios are evaluated. Schedules are sampled from

the partitions set up in the second step and the start time for each charging op-

eration is determined. Energy requirement and power demand are accumulated
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for every minute of the day for each one of the 2368 zones in Flanders.

2.6.2 Vehicle characteristics determination

Vehicle characteristics for each schedule are determined by random selection using

the joint probabilities shown in the Bayesian network in figure 2.2 . Arrows designate

dependencies between probability densities. For example, the EV type depends on the

ownership and on the fact that the schedule can be executed using a BEV (block BEV-

feasibility). The shaded rectangle Electrified represents the probability density from

which EV are sampled. The shaded rectangle EnergyReq represents the probability

density for the electric energy required to complete all trips in the schedule. The ovals

represent change of variable functions. Function f(schedule,consumption) calculates

whether or not the sequence of trips in a given schedule can be driven by a BEV

given the stochastic value for the distance specific consumption of the vehicle and the

charge opportunities in the schedule. Function f(schedule,consumption) corresponds

to the conditions detailed in equations 2.1 and 2.2.

The function g(schedule,consumption) calculates the stochastic value for the en-

ergy required during each minute of the day for the given schedule.

Vehicle characteristics are determined as follows:

� Vehicle category is randomly selected from the distribution specified in table 2.1

� Vehicle range is selected from table 2.1.

� Work location charging is allowed for 0.50 of the company car drivers. Privately

owned cars cannot be recharged at work. The charger power is randomly se-

lected for both home and work location chargers using the distribution specified

in table 2.1.

� Vehicle consumption is randomly selected using a uniform distribution in the

interval specified for the vehicle category (from table 2.1). This is the consump-

tion determined by official US and European standard (FTP, WP.29) test suites

that do not account for cabin clima (heating, airco) nor for frequent acceleration

and deceleration.

� The specific energy consumption as determined by European (UNECE WP.29

R101) and US standard methods is argued to be an underestimation (Elgo-

wainy et al. (2010)). The standardized test conditions differ from operating

conditions: hence, a range reduction coefficient of 0.75 has been applied. The

range reduction coefficient is used to adjust the specific consumption (which is

used in schedule feasibility and energy demand calculations). This is done for
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BEV-feasible

Y,N

Work

Y,N

Ownership

POC,CC

VehileCategory

sml,med,lrg

VehRangeBEV

(ontinuous)

ChargeAtWork

Y,N

VehSpeConsum

(ontinuous)

ChargerType

3.3kW,7.2kW

EnergyReq

(ontinuous)

Eletri�ed

Y,N

EV-Type

BEV,PHEV,None

VehBatteryCap

(ontinuous)

shedule

g(shedule,

onsumption)

f(shedule,

onsumption)

Figure 2.2: Bayesian network showing conditional dependencies for stochastic vari-

ables. Continuous line rectangles designate probability densities. The domain for

the variable is listed between curly braces. Each continuous line arrow designates a

conditional dependency. Ovals designate change of variable functions. Dashed lines

represent regular functional dependencies.

both BEV and PHEV in the same way.

� The battery capacity is derived from range and distance specific consumption

and has been verified with data found in literature (Nemry et al. (2009), Wu

et al. (2010), Kromer and Heywood (2007)).

� PHEV categories PHEV48, PHEV64 and PHEV96 are considered and have

been mapped to the categories small, medium and large respectively in order

to determine the relative market shares (see table 2.1). The number in the

category identifier designates the AER in kilometers.

� Finally, the charger power is randomly selected for both home and work location

chargers using the distribution specified in table 2.1.

2.6.3 BEV-feasibility

In order to be feasible for a BEV, each location in the schedule shall be reachable

when starting with a fully charged battery in the morning: this is expressed by the
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condition (set of #L inequalities)

∀i, j ∈ [1,#L] : Cb − dO,i ∗ cons+

j<i∑
j=1

tj ∗ pj ≥ Cb ∗DCD (2.1)

where i and j are location indexes, Cb is the battery capacity, L is the set of all

locations used in the schedule, tj is the charge-period duration at the j-th location

and pj is corresponding power, dO,i is the total distance from the first origin to the

i-th destination, cons is the distance specific energy consumption and DCD = 0.1 is

the maximal deep charge depletion coefficient. DCD has been applied to specify the

minimal battery level that shall be available at all times; it is used to model range

anxiety and is used in BEV-electrification feasibility calculation only. The condition

that the battery cannot get over-charged is given by following set of inequalities using

the same symbols

∀i, j ∈ [1,#L] : Cb − dO,i ∗ cons+

j≤i∑
j=1

tj ∗ pj ≤ Cb (2.2)

2.6.4 Vehicle sampling

The vehicle type (BEV, PHEV) is determined using the conditional probability values

specified under Relation between EV ownership and EV type above. The probability

for a vehicle to be a PHEV is given following expressions containing given probabilities

in the right hand sides

PEV = P (EV |CC)·PCC + P (EV |POC)·PPOC (2.3)

PPHEV = PCC ·P (EV |CC)·P (PHEV |EV ∧ CC) + (2.4)

PPOC ·P (EV |POC)·P (PHEV |EV ∧ POC) (2.5)

where EV designates Electric Vehicle, CC designates Company Car, POC designates

Privately Owned Car, PHEV designates Pluggable Hybrid Electric Vehicle. It follows

that

PBEV = PEV · (1− P (PHEV |EV )) = PEV · (1− PPHEV /PEV ) = PEV − PPHEV (2.6)

where BEV designates Battery Electric Vehicle. Let Nv be the number of cars. A

set of PBEV ·Nv elements is sampled from the set of schedules that can be executed

by a BEV (the BEV-feasible schedules); then PPHEV ·Nv cars are sampled from all

remaining schedules (BEV-feasible and BEV-infeasible ones).
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2.6.5 Charging parameters - Scenarios

2.6.5.1 Assumptions valid for all scenarios concerned

� Energy cost is assumed to conform to the current tariff scheme used in Belgium:

it consists of one contiguous regular tariff period and one contiguous low tariff

period during the night (from 22:00h to 07:00h).

� The schedules apply to a working day and schedules are assumed to repeat

on successive days. This assumption allows to determine the period of time

available for recharging overnight. Everyone is assumed to recharge batteries

everyday.

� When plugged to the electric grid, charging occurs during a single uninterrupted

period of time.

For each schedule and each charging opportunity, the required charge duration for full

recharge and the available charge period are calculated. The available charge period

is determined from the arrival and departure times at the charge location. If the

available period length is larger than the required charge duration, their difference

is the slack time (otherwise slack time equals zero). A non-zero slack time implies a

degree of freedom for selecting the time to start charging. In many cases, there is an

interval ∆t = [t0, t1] of starting times ts such that ∀ts ∈ ∆t the energy cost is the

same.

2.6.5.2 Scenario specific assumptions

� Scenario EarlyLowTariff : If ∆t is contained in the low tariff period, the actor

starts charging as soon as possible; otherwise (the case where the charge period

contains the low-tariff period), the actor starts charging as late as possible

thereby pushing energy demand to the morning hours. This scenario conforms

to the situation where people are using simple timers to start charging.

� Scenario UniformLowCost: Each actor tries to minimize energy cost by charg-

ing during the low tariff period as much as possible. The charge period start

time ts is chosen from ∆t by random selection using a uniform distribution.

� Scenario LastHome: All actors ignore the existence of a low-tariff period and

start charging immediately when arriving at home after the last trip of the day.

� Scenario AlwaysAtHome: All actors ignore the existence of a low-tariff period

and start charging immediately when arriving at home after each home arrival.

Note that scenarios EarlyLowTariff and UniformLowCost are energy cost minimizing

scenarios at the individual actor level, but the other ones are not.
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Scenario FEATHERS ActBM prediction

All Fraction of actors performing work trips 0.406

All Fraction of actors performing car trips 0.555

All Fraction of car using schedules containing work

activity

0.531

All Average work related car trip distance (km) 19.376

All Fraction of trips that are work trips 0.160

EV Energy demand calculation

CC=0.0 and POC=0.0 Total energy demand 1380[MWh]

CC=0.5 and POC=0.5 Total energy demand 1652[MWh]

CC=1.0 and POC=1.0 Total energy demand 1829[MWh]

Table 2.3: FEATHERS Results Statistics.

2.6.5.3 Aggregation of micro-simulation results

Battery charging opportunities are identified during micro-simulation and inserted in

the schedules according to the applied scenario. For each charge opportunity, the

required power is accumulated and recorded for each minute in the charging period.

This process results in a power requirement time series for each zone. Plots are

generated for the zones having

� maximal energy requirement (power integrated over time)

� maximal power peak value

for the full day, the normal-tariff period and the low-tariff periods respectively.

2.7 Summary of results for Flemish region

� FEATHERS statistics and energy demands have been summarized in table 2.3.

Scenarios are identified by the ratio of the EV fleet being a PHEV for company

cars (CC) and privately owned cars (POC) respectively. Replacing BEV by

PHEV increases power demand since longer distances are driven on electricity.

PHEV can exhaust the full AER while BEV can drive distances strictly smaller

than the anxiety reduced range only.

� Table 2.4 shows the fractions of BEV-feasible schedules determined in the sec-

ond step (accounting for work location recharge). Note that only 10% of the
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Partition Fraction of the car using schedules

When charging after

last home arrival

When charging at

each home arrival

BEV-feasible schedules without work

trips POC (NW)

0.364 0.371

BEV-feasible schedules with work

trips POC (W POC)

0.357 0.371

BEV-feasible schedules with

work trips CC, chargeAtWork

(W CC CAW)

0.020 0.021

BEV-feasible schedules with

work trips CC, no chargeAtWork

(W CC NCAW)

0.024 0.024

BEV-Infeasible 0.235 0.213

Table 2.4: Car-using Schedule Partitions with respect to Feasibility for Electrification

schedules having a work trip have been assigned a company car in the scenarios

considered. Almost 78% of the trips is BEV-feasible when the EV category

coincides with actual ICEV market shares given in table 2.1.

� Figure 2.3 shows the power demand for an area with 5835 inhabitants for sce-

narios UniformLowCost, LastHome and AlwaysAtHome. The power peak for

UniformLowCost (individual actor cost minimizing) is the bigger one and the

peak shifts from about 20:00h to about 02:30 between scenarios. Note that

the power demand shown is to be added to the already existing zone-specific

demand but at the time of writing only countrywide aggregated time depen-

dent electricity consumption data are available; hence data have not yet been

presented geographically to pinpoint problematic areas. The result shows that

it is worth extending the ActBM actor behavior model to make it sensitive to

electricity prices.

� The power peak for scenario EarlyLowTariff at 22:00h amounts to eight times

the UniformLowCost peak value because everyone is assumed to start charging

at the same moment using a timer. This peak is expected to cause problems for

the electric grid and has not been included in the diagram.

� Table 2.5 shows the fraction of charge opportunities used and the daily charge
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Figure 2.3: Power demand for EV charging as a function of time. The red line holds

for UniformLowCost (cost minimizing, random), the green line for AlwaysAtHome

and the blue line for LastHome. Market share EV is 0.1 of total fleet and CC share

is 0.1 , PHEV shares of EV fleet are: 1.0 for CC and 0.5 for POC.

frequency for each usecase partition and scenario. BEV and PHEV owners are

assumed to share the same charging behavior.

� Table 2.6 shows absolute and relative energy demand for the scenario where

10% of the cars are EV and BEV/PHEV ratio is 50/50. Almost 60% of the

energy consumption is by PHEV, almost 94% by privately owned cars.

2.8 Conclusion

Schedules predicted by the FEATHERS ActBM have been used to predict energy

demand and power peaks due to electric vehicle charging as a function of time and

location for several EV market penetration scenarios and PHEV/BEV ratios. For the

Flanders case, 78% of distances traveled daily using a single car on working days, seem

to be BEV-feasible assuming that EV categories deployment conforms to current one

for ICEV. Secondly, replacing BEV by PHEV increases electric energy consumption

because PHEV can exploit their full electric range. Finally, the current reduced rate



32 Chapter 2

Partition Home charging scenario

EarlyLowTariff UniformLowCost LastHome AlwaysAtHome

FracOp NumCh FracOp NumCh FracOp NumCh FracOp NumCh

NW 0.853 1.000 0.850 1.000 0.854 1.000 1.000 1.196

W POC 0.822 1.000 0.822 1.000 0.823 1.000 1.000 1.262

W CC CAW 0.911 2.194 0.914 2.199 0.905 2.203 1.000 2.450

W CC NCAW 0.817 1.000 0.828 1.000 0.821 1.000 1.000 1.260

Table 2.5: Fraction of charge opportunities used (FracOp) and number of charge

operations per day (NumCh) for each scenario and partition (N: No, W: Work, POC:

Privately Owned Car, CC: Company Car, CAW:Can Charge at Work)

Partition Energy [MWh] Relative

BEV PHEV Total

NW 280.346 414.969 695.315 0.421

W POC 363.328 486.132 849.460 0.515

W CC CAW 25.846 31.915 57.761 0.035

W CC NCAW 20.126 28.110 48.236 0.029

Total 689.647 961.126 1650.773

Relative 0.418 0.582 1.000

Table 2.6: Absolute and relative daily energy demand when 10% of cars are EV and

50% of the EV are PHEV both for Privately Owned Car (POC) and Company Car

(CC) for scenario AlwaysAtHome

electricity period is sufficiently long to allow for charging period distribution over time

in order to avoid unwanted power peak demand while allowing people to minimize

cost.

2.9 Future research

Although activity-based models have a firm statistical basis, some aspects of reality

do not yet have been translated to AB-model parameters. Therefore, this study shall

be the base for following research paths.



Spatio-temporal distribution of electric power demand caused by EV 33

On one hand, more accurate technical and market related data need to be de-

termined from literature, surveys and experimentation. Data about distance specific

energy consumption in real situations are based on measurements that use official

standards and are underestimated: they need to be refined (cabin clima effects). The

amount of car users who are able to charge at home has not been considered a limiting

factor for the current study but could be one of the main factors when estimating EV

market share.

The software will be extended to remove the constraint of using a single vehicle

for schedule trips executed by multi-car households. The behavioral model is to be

extended to integrate car selection decisions based on the actor specific charging de-

cision strategy.

Finally, AB-models and smartgrid models need to get integrated in a closed loop.

Since typical activity-based models account for price elasticity and allow for learning,

results feedback allows for evaluation of smartgrid strategies for charging timeslot

allocation. Evaluation of the vehicle to grid (V2G) concept requires integration of

smartgrid controllers with AB-models.
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2.10 Critical Reflection

1. The possible inaccuracy for the location choice is not an issue in this research

because the number of arrivals at each location and the distance driven seem

to be predicted quite well according to the research reported in Knapen et al.

(2014c) (the inaccuracy mentioned in section 1.4 applies to location pairs).

2. According to Qiong et al. (2015) the relative error on the average daily distance

driven is less than 10% with a confidence interval of 95% for 70% of the TAZ

only after averaging the results for about 40 FEATHERS runs using a 10% pop-

ulation fraction. Since in the scenarios considered for EV, most of the charging

is done at the home locations, this figure can be used to estimate the required

computational effort. The paper constituting this chapter, was prepared using

a single prediction run only whereas the results of 40 runs using 10% of the pop-

ulation (or 4 runs using the full population) should have been averaged in order

to achieve accurate results for 70% of the TAZ. For the time dependent power

demand (Figure 2.3), cases having the highest peak demand were considered.

Those correspond to zones having a large population. The figures reported in

Qiong et al. (2015) apply to the distribution for the mean calculated over the

inhabitants in the TAZ. Hence, the cases exposing uncertainty, correspond to

TAZ having a small population.

The results in table 2.6 are aggregated over the full population and the full day

and hence can be assumed to be accurate.

3. The zoning used for connection to grid transformers does not coincide with

the TAZ but no detailed information can be obtained from the grid operators.

Therefore, subsequent papers used a synthetic grid constructed by electrical

engineers using scarce data; this was done in order to account for cases where

local transformers act as limiting factors.

4. It was assumed that everyone using an EV can connect the car to the power grid

for the complete parking duration in each charge opportunity location. This is

realistic because low market shares (10%) were used and charging occurs only

at home and work locations.

(a) The possibility to charge at work was modeled explicitly.

(b) Due to the near complete lack of public charging points in Flanders, all EV

owners are assumed to be able to charge at home. When higher market

shares are considered, the model needs to be extended. People who cannot
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charge at home would not buy an EV: this requires data describing the

proportion of home locations having a private car box equipped with a

suitable power outlet.

5. Business trips have not been accounted for since the simulation was fed by

FEATHERS predictions that cover household travel behavior only.

6. Finally, Usman et al. (2015) investigates the case of time dependent electric en-

ergy cost. The maximal amount of money that can be saved when the agenda

adaptation is limited so that no activity or trip start time is changed more than

15[min] (hence particular activity duration can be compressed or expanded by at

most 30[min]), is at most one euro per day. This was calculated for a hypothet-

ical realistic time dependent variable energy cost derived from (i) the currently

used domestic customer tariffs and (ii) published time dependent wind and so-

lar power production figures. Under the given conditions, no travel behavior

change by rescheduling is expected. As a consequence, the considered scenarios

are plausible. It is to be expected that electric power demand peak shaving

needs to be realized by intelligent car controllers. This is feasible in case suffi-

cient charging stations are available so that electric vehicles can be connected

to the grid most of the time they are parked. Typical parking duration is much

longer than typical charging time which provides the required degrees of freedom

for optimization by centralized control.
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Agent-based Models in
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Applications
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Design Note : Agent-based Carpooling Model

3.1 Research Context

3.1.1 Research focusing on Coordinating Individuals

Coordination and synchronization between schedules of different individuals is largely

ignored in current Activity-Based Models (ActBMs). However, it is possible that they

constitute an influencing factor that cannot be ignored in particular cases of Travel

Demand Measure (TDM) effect evaluation. At the time the paper presented in this

chapter was written, very few research on cooperating actors in ActBMs was going

on. Cooperation and coordination in ActBMs was only emerging as a research object.

Ronald (2012) investigated coordination for joint social activity execution. In the

DATASIM project it was decided to investigate joint trip execution.

One of the objectives of the DATASIM project was to investigate the use of large

scale ActBMs in transportation research. The case of carpooling was chosen because
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on one hand in it basic form it is conceptually simple but on the other hand it generates

challenging research questions that were not answered in ActBM research.

The paper presented in this chapter represents early DATASIM work and describes

the design of an Agent-Based Model (AgnBM).

3.1.2 Synchronization and Coordination Complexity

When introducing cooperation in ActBMs both the creation and adaptation (during

execution simulation) of schedules are required to handle the synchronization problem.

1. Joint execution of both activities and trips heavily depends on space and time

requirements for a set of people. While manipulating the schedules all possible

combinations need to be considered (mandatory and discretionary activities,

fixed and flexible times, shared and disjoint activities to be executed by the

cooperating individuals). Synchronization is required

(a) using immutable moments in time defined by the environment (school begin

and end times, shop opening times, etc); those authority constraints are

handled by current ActBMs

(b) using negotiated moments in time (e.g. to start social activity or to sched-

ule a carpooled trip). This in general can lead to very large networks

consisting of large connected components of involved people whose sched-

ule are mutually dependent. Creating such network constitutes a scientific

challenge and finding computationally feasible ways to handle it is a second

one.

2. Introducing coordination between individuals adds a level of complexity to the

models. However, since this complexity effectively exists for the individual who

is building a schedule, it is assumed to be worth the effort to integrate coordi-

nation and mutual synchronization in the model. This is because of the mental

effort required for scheduling the planned activities. It is yet unknown whether

this complexity is a factor that is as important as other factors taken into ac-

count while evaluating TDMs (like travel cost, public transport service level,

VOT, etc). The higher the schedule independence, the lower the mental effort

required for replanning when something unexpectedly goes wrong in a cooper-

ation. There might be a value of independence which causes a trend to avoid

interconnecting schedules.
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3.1.3 Motivation to focus on Carpooling

Alternatives for solo-driving are focused by research because of environmental con-

siderations and problems of saturated road networks. Furthermore, budgetary con-

straints that apply to time-table based public transportation recently caused new

kinds of collective transportation to receive research focus.

1. Carpooling is a variant of collective transportation that is among the cases that

are simple to be used as an initial research model (at least the case where only

two people are involved in a carpool). In its basic form it requires an exploration

phase, a negotiation phase and a trip execution and evaluation phase. The

structure of the basic model is well understood although data collection to feed

the behavioral models is hard. The basic model also allows for straightforward

extensions raising non-trivial research questions.

Once the carpooling mode is selected as an option, following steps need to be

performed in order to come to a final decision:

(a) participants selection: this implies the need for an exploration phase where

the individual makes use of her/his own social network or consults web-

based tools that advertise requested and supplied (recurrent) trips

(b) trip structure: either a simple trip consisting of chained sub-trips or a tree

structured trip is used.

i. In the chained trip case, the complete trip is driven using a single car.

Determination of the optimal trip consists of driver assignment and

trip start time selection. The driver has the longest trip among all

participants and sequentially picks up and drops passengers.

ii. In the structured trip case, several cars are used (Knapen et al. (2012a)).

Partial trips join at Carpool Parkings (CPPs) and one car is used to

continue the trip. In general such trips consist of a join and a fork

tree (in practice often a join tree only).

(c) driver selection: a driver is to be selected for each car involved (normally

the car owner)

(d) car selection: the participants need to decide which car will be used. Car

ownership, car availability and car capacity play a role.

(e) route selection: In the chained trip case, multiple (very small) vehicle

routing problems need to be solved. In the structured trip case, multiple

cars are involved. For each of them (in general multiple) of such small

VRP need to be solved (see item 1f)

(f) join and fork locations: in the multi-car case people meet each other at a
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Carpool Parking (CPP), join and continue driving part of the trip together.

At another location, which is not the destination for at least some of the

participants, the trip can fork into a set of sub-trips and people continue

their trips in another constellation (some might continue walking, taking

a train etc). The problem of co-routing and CPP selection is discussed

in Knapen et al. (2012a). The problem is to find the optimal use of cars

and carpool parkings for a set of people using similar but not identical

routes. One of cars is used to drive the shared part of the trips. The paper

discusses the join tree: it consists of several trips driven by several cars

joining at several CPP. When joining on a CPP, all but one of the cars

is left at that location and all involved people continue the trip together

in one car. After the last join, all people are on board of the shared car.

A participant can either be picked up at home or join at a CPP. Each of

the participants specifies maximum detour criteria so that a set of feasible

CPPs can be determined for each traveler in advance. Finding a solution

requires combinatorial optimization but the problem size in general is small

because the set of candidates is known in advance and limited in size by

the largest of the available cars.

(g) trip start times: the start time for each part of the trip is to be determined.

The trip start time for each participant then can be derived. For each

participant, the earliest departure times and latest arrival times can be

available as hard constraints. However, in general not every moment in

the feasible time window is equally preferred by the traveler.

(h) required schedule adaptation: in general, trip duration and timing to meet

the constraints will differ from the values that hold for the solo-driving

case. As a consequence, deriving a carpooled schedule from a solo-driven

one, requires adaptation.

The sub-problems mentioned in general are intensely interwoven. Passenger

pick-up order has an impact on the distance driven and on the trip start times.

The locations involved and their mutual distances impact the car (and driver)

selection because of their effect on the total distance to be driven by the car. In

the structured trip case, CPP selection affects car selection as well as the com-

position of the passenger groups in partial trips (e.g. in the join tree). Some of

the problems mentioned require the solution of (moderately sized) combinatorial

optimization problems each one of which is not expected to cause computational

problems. Their interconnection via the constraints in the participants sched-

ules however can raise challenging problems.
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2. On one hand people can largely reduce travel cost and on the other hand the

observed share of carpooling in travel surveys is about 7 to 9% for commuting

despite incentive programs. This raises the research question ‘why is solo-driving

that popular ? ’ The low share of carpooling observed in travel surveys might

be caused by spatio-temporal lack of similarity in travel patterns, by sched-

ule synchronization difficulties, by VOT consideration or by still other factors.

Trasarti et al. (2011) investigated spatio-temporal similarity of recorded trips in

Italy and conclude that up to 32% of the trips can be carpooled provided that

people accept a 2.5[km] walk and a schedule adaptation by one of them of 1[h]

(or to be divided among the participants in a pair of carpoolers).

The low share of carpooling in relation to the achievable cost savings, suggests

that reluctance to schedule adaptation or conservation of independence might

be a determining factors in the carpooling decision and hence in TDM effects

research.

The bachelor thesis project reported in Van Aerschot (2014), conducted a survey

among effective carpoolers. From the 136 respondents, 111 claimed that no

schedule adaptation was required to enable carpooling. This could mean that

carpooling is evaluated as a travel mode option only in case it fits the schedule

people are used to.

3. Several studies investigate factors influencing carpooling. The majority of them

are based on stated preference surveys. None of them focuses on schedule adap-

tation and synchronization problems.

It was concluded that (i) the model is sufficiently well defined to start a research

effort, (ii) coordination is considered a possible determining factor and (iii) the effect

of coordination among agents required for joint traveling, was not investigated before.

3.1.4 Carpooling Projects Context

The context for the work on carpooling is summarized in general terms as follows:

1. Several exploration phase support systems are operational where people can post

their trips (supply and demand). In general, planned or required trips need to

be matched interactively by making use of queries based on time, location and

other attribute values filtering.

2. Matching problems related to carpooling have been researched by the computer

science community but behavioral aspects and the requirement for schedule

adaptation are ignored.

3. Several studies try to determine factors influencing the decision to carpool from
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surveys. None of them was found to focus on coordination and none was found

to deliver behavioral data useful to feed a negotiation simulator.

A notable exception is the work by Kamar and Horvitz (2009) describing a compre-

hensive agent-based model for carpooling which focuses on a fair payment system.

The paper which constitutes this chapter is based on preliminary research reported

in Knapen and Galland (2013) which is an internal report (software design document

focusing more on the behavioral model and data sources to meet the associated data

requirements). This report also served as a design document for the work mentioned in

section 3.1.4.2. Two lines of research emerging from this internal report are described

in the following two subsections: (i) the matching problem in carpooling advisor

systems and (ii) AgnBMs to simulate decision making w.r.t. carpooling.

The last subsection covers projects supporting the carpooling research at IMOB,

all of which I contributed to and most of which I managed.

3.1.4.1 Advisor Service

The case of an advisor service for carpooling is considered: people post their requests

and offers and the automatic service is expected to supply optimal matching advice.

Testing such service and evaluating its behavior during the startup phase are non-

trivial problems. Therefore, an AgnBM is planned to be used as an exerciser for the

advisor service.

This chapter describes both the advisor and the exerciser. The next chapter

focuses on the estimation of the size of the matching problem to be solved by the

exerciser.

Ben-Arroyo Hartman et al. (2014) significantly extends the work presented in

this chapter that only touches the matching problem in bipartite graphs (which is

unrealistic but was done in order to explore the domain).

3.1.4.2 Agent-based Model

An AgnBM is being developed starting from Knapen and Galland (2013). The pur-

pose is to build an operational model containing agents that model decisions to car-

pool in a realistic way so that the model is capable to generate predictions about

the carpooling situation in Flanders and to evaluate TDM measures. The papers

mentioned in the introduction to this chapter show the evolution of the development.

The model starts from TAZ based schedules predicted by FEATHERS. Hussain et al.

(2014, 2015a,c,b,d) describe a model that simulates the exploration, negotiation and

execution phases for a simulated period of several months (current experiments use
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a period of 150 working days). Carpooling for commuting is modeled. In the explo-

ration phase, agents living in the same TAZ and working in the same TAZ (different

from the home-TAZ) can send invitations to carpool to each other. Currently the ne-

gotiation process itself is not modeled: there are no proposals and amendments sent

back and forth between agents in order to evolve to an agreement. Rather, all agents

involved in a negotiation submit information about their timing constraints and sup-

ply a trip start preference function. The outcome of the negotiation process (the final

decision) then is determined by calculating the probability that the negotiation will

succeed. If the probability exceeds a given threshold, a carpool is formed. Carpools

are restricted by the capacity of the car used (not limited to pairs of individuals).

The model assumes that the trips are executed as agreed. Actual trip execution,

unsafe driving and individuals being late to start the trip are not modeled. Hence the

system does not include a reputation evaluator.

The main purpose is to find out under which assumptions about schedule flexibility

the observed carpooling share in the modal split can be reproduced. After this, the

model will be usable for TDM measures evaluation.

Trip start preference functions have been recently added to the model. Details are

described in Khan (2015). The model uses a suitability function similar to the one

described in this chapter. The trip start time for the carpool is the time for which

the product of the preference functions is maximal (which is slightly different from

the method described later in this chapter).

3.1.4.3 Supporting and Related Work

Following theses under my supervision, support the carpooling research and the

project results are expected to contribute to the construction of models being built.

1. van Haperen (2013)) investigates the usability of OpenStreetMap (OSM) in

carpooling research. He integrated all Flemish carpool parkings in OSM starting

from a publicly available data study published by the government.

2. Van Aerschot (2014) conducted a survey among effective carpoolers in order to

find out whether schedule inflexibility is an inhibitor for carpooling.

3. Huijbregts (2015) assigns each Carpool Parking (CPP) to the TAZ it is con-

tained in. Then home-work and work-home trips are extracted from schedules

predicted by FEATHERS. A CPP is inserted in each trip converting home-work

to home-CPP-work. The resulting two-part trips for which the CPP-work parts

are sufficiently similar in time and space are combined in pairs. The gain of

the resulting trip is defined by the cost savings resulting from carpooling (the
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longer the co-driven distance, the better). High gain trips only are retained in

order to maximize overall gain. Specific heuristics are used since the problem

is equivalent to finding a maximum matching in a graph. It is not required

that carpool partners are homed in the same TAZ. The combined trips allow to

calculate the number of cars on each CPP. Results are compared to observed

values. The correlation is low: this can be caused by using TAZ and hence

ignoring local details of CPP accessibility. A greedy algorithm was used by se-

lecting high gain pairs first, hence probably the optimum is not found. Further

research is required to find out whether the use of the greedy algorithm causes

the low correlation.

The currently ongoing ICOMflex project (in which I actively participate) focuses on

the transition of company organization to flexible work time and location. Details

are found at http://www.vim.be/projects/icomflex. In this project, IMOB is re-

sponsible for the collection of diary data and for the estimation of the effect of the

introduction of time and location independent working (Tijd en Plaats-Onafhankelijk

Werken (Time and Place Independent Working, ICOMflex project context) (TPOW))

on travel demand. The technical infrastructure to collect diary data using a prompted

recall survey is operational (but at the time of writing, bulk data collection did not

yet start). GPS traces are recorded using smartphones and uploaded to a server.

Stops are detected automatically and recorded in a database. Each participant an-

notates her/his trips and stops via a web application (http://imobwww.uhasselt.

be/ICOMflex/). For each trip the user specifies the mode and for each stop, some

attributes of the activity need to be entered. For each activity period the participant

is asked to specify for both the start and end times, whether or not the moment in

time could be chosen autonomously by the individual. Autonomous selection of the

moment in time means that the selection was not restricted by coordination with

other people or constrained by any rule. This survey aims to find out to what mea-

sure individual schedules are interconnected because this information is not available

in the Belgian time use survey. The results are expected to be useful for carpooling

research too.

http://www.vim.be/projects/icomflex
http://imobwww.uhasselt.be/ICOMflex/
http://imobwww.uhasselt.be/ICOMflex/
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3.2 Abstract

An automatic service to match commuting trips has been designed. Candidate car-

poolers register their personal profile and a set of periodically recurring trips. The

Global CarPooling Matching Service (GCPMS) shall advise registered candidates how

to combine their commuting trips by carpooling. Planned periodic trips correspond to

nodes in a graph; the edges are labeled with the probability for success while negoti-

ating to merge two planned trips by carpooling. The probability values are calculated

by a learning mechanism using on one hand the registered person and trip character-

istics and on the other hand the negotiation feedback. The probability values vary

over time due to repetitive execution of the learning mechanism. As a consequence,

the matcher needs to cope with a dynamically changing graph both with respect to

topology and edge weights. In order to evaluate the matcher performance before de-

ployment in the real world, it will be exercised using a large scale agent-based model.

This paper describes both the exercising model and the matcher.

3.3 Introduction

An advisory service for carpooling while commuting is to be built. People will register

their periodic commuting trips: the base period typically is one week i.e. a specific

pattern valid for working days is repeated after every seventh day. Considering one

week periods accommodates for most situations (including part-time workers).

People who are able to fulfill all their carpooling needs within their own social

network of acquaintances (local exploration), are assumed not to need the service.

Others will need to explore the set of carpooling candidates yet unknown to them

and managed by a web based Global CarPooling Matching Service (GCPMS): this is

called global exploration. The matching service integrated in the GCPMS shall deter-

mine which trips are best suited to be merged for carpooling and shall provide advice

by suggesting people to start a negotiation with respect to a specific periodically

executed trip.

Testing software that implements a GCPMS is essential because providing inac-

curate or wrong advice initiates negotiations having a large probability to fail, which

can expel customers. Deployment of a GCPMS shall go flawlessly because lost cus-

tomers will be reluctant to return. However, the integrated matching mechanism can

only be verified for operational fitness by testing under real world conditions. This

complicates testing since (i) the GCPMS requires a critical mass of registered users

in order to operate effectively and efficiently, (ii) performance and effectiveness need



Agent-based Models in Carpooling: Components Design 47

to be evaluated on a running system because they are very difficult to predict from

design data only and finally (iii) the behavior of the advisor (with respect to accu-

racy) during the initial phase is difficult to predict and observations made are difficult

to interpret; this phase corresponds the startup transient phenomenon where stable

operation has not yet been reached.

Therefore we propose the use of an agent-based model simulating the customer

community in order to exercise the matching service for testing and system valida-

tion. This paper describes aspects of the combined setup of the Multi Agent System

(MAS) exerciser and the GCPMS under test and focuses on the required matching

component.

The remainder of the paper is organized as follows. Section 3.4 presents related

work. Section 3.5 explains the principle of operation for the GCPMS and shows the

test environment setup using a MAS. Section 3.6 discusses several functions used to

model domain specific concepts and shows how different functions can be required to

implement a particular concept in the GCPMS and the MAS respectively. Section 3.7

explains how the GCPMS determines the probability for the negotiations to succeed.

Section 3.8 describes the problem of matching along with some proposed solutions.

It also presents an early experiment to estimate computational performance. Finally

sections 3.9 and 3.10 present future research directions and conclusions respectively.

3.4 Related Work

In recent years, agent-based simulation has entered the field of transportation science

because of its capability to analyze aggregated consequences of individual specific

behavior changes.

Luetzenberger et al. (2011) investigate the effect of environmental conditions and

plans to incorporate the agent interactions required when carpooling.

Kamar and Horvitz (2009) describe an agent-based model aiming to optimally

combine demand and supply in an advisory system for repeated ride-sharing. The

authors focus on the mechanisms required to model users cooperating on joint plans

and on the economic value of the shared plans; this research focuses on the fairness of

the payment system but does not consider the ride-share demand and supply change

in time.

Agatz et al. (2010) focus on the problem of dynamic non-recurring trips which

is related to commuting carpooling but requires different solution concepts. Both

maximal individual advantage and system wide optimum are considered.
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Chun and Wong (2003) describe a group negotiation protocol for agreement on

agenda schedules. A group can consist of two or more agents. The negotiation

mechanism is based on ideas drawn from the A* shortest path algorithm. Each agent

is assumed to specify its most preferred option first and to specify consecutive new

proposals in non-increasing order of preference. Each one uses a private (i.e. not

published) utility function. The protocol initiator makes use of a proposal evaluation

function that is based on the assumption that agents behave as mentioned before.

Versions using preference feedback by agents and conflict resolution by the initiator are

reported to result in nearly optimal solutions using a quite small number of negotiation

rounds.

Knapen et al. (2012a) study the problem of finding an optimal route for co-

traveling. The origin (home) and destination (work) locations are given for each

individual as well as a set of carpool parkings. Each of those home, work and parking

locations are possible transferia (locations where to change travel mode or to change

vehicle) where one can join or leave a carpool. Each individual declares the maxi-

mal time and/or distance that is acceptable to move from origin to destination. The

combined route (co-route) that solves the problem consists of a join part and a fork

part. In the join tree, carpoolers enter the main driver’s car at several locations and

times. In the fork tree they successively leave the car and, if not at their destination,

continue their trip by other means. The paper proposes an algorithm to find the

optimal solution for the join tree.

Varrentrapp et al. (2002) provide an informal and formal problem statement for

the LTCPP. Then the soundness of the problem formulation is argued and some

properties of the LCPP are proved. Finally the problem is proved to be NP-complete.

This paper assumes that pools are stable in time and that every member in turn acts

as the driver (round robin concept).

Manzini and Pareschi (2012) describe an interactive system to support the mobility

manager (officer) operating on the LTCPP. The proposed methods and models make

use of clustering analysis (CA). The basic hypothesis is that in a group the driver of

the shared car turns among the participants (similar to (Varrentrapp et al., 2002)).

Clustering procedures using methods available in standard Decision Support System

(DSS) are proposed. After clustering, for each driver a Traveling Salesman Problem

(TSP) is to be solved. Similarity measures are used but not discussed in the paper.

The result is a Graphical User Interface (GUI) based interactive system that can be

applied to company employees. A case study for a public service in the city of Bologna

is presented. Experiments show that the overall relative saving in distance and time

increases with the number of participants.
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Iwan and Safar (2010) describe mining algorithms to discover user link and lo-

cation link patterns respectively. User link patterns focus on similarity between the

sequences of locations visited by individuals. Location link patterns apply to se-

quences of locations. Both are relevant when trying to estimate the probability for

people to be able to carpool.

Trasarti et al. (2011) derive travel routine from sets of GPS traces. Similar trips

are extracted (based on space and time-of-day). A routine is defined as a sufficiently

large set of similar traces belonging to an individual. A profile is a set of routines.

Based on the assumption that the passenger walks for a given maximal distance to

(from) a location where (s)he is picked up (dropped off) by a driver, an upper bond

for carpooling is determined using travel profiles.

Person traces can provide more information than car traces. Carpooling induces

mutual dependency and hence additional uncertainty about the drivers and passengers

timeliness. Exchanging location information is used to help solving this problem. This

however requires energy efficient localization techniques and ubiquitous coverage like

the one presented in Papandrea and Giordano (2013).

Xiao et al. (2012) infer social ties between people from Semantic Location His-

tories (SLHs). GPS trajectories first are annotated by assigning a meaning to each

visited location. Then user’s movements are modeled as sequences of semantically an-

notated locations. Finally, similarity between users is calculated by comparing their

semantic location sequences. The method is demonstrated using the public GeoLife

GPS trajectories data set.

Ronald (2012) presents a multi-agent system that models joint social activity

execution. Although not focusing carpooling directly, it is important in this context

because it focuses on cooperative activity execution while simulating daily agendas

which is related to the concept of co-traveling (cooperative trip execution).

Finally, a large body of literature (Nijland et al. (2009), Guo et al. (2012), etc) has

been published about the concept of rescheduling activities in a daily agenda. This

however, considers agenda adaptation to unexpected events as opposed to rescheduling

in the context of negotiation to cooperate. Arentze et al. (2005) present an overview of

the Aurora activity-based model for schedule generation and adaptation. People are

simulated as individual agents. A comprehensive model has been specified describing

the insertion, re positioning, deletion and substitution of activities as well as changing

locations, trip chaining options and transport modes. Models of this level of detail are

required to integrate carpooling concepts in a simulator. The paper describes the use

of Aurora in an experimental setup to study schedules consisting of work activities

and green activities in several scenarios.
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3.5 Carpooling Model

3.5.1 Problem Context

This paper focuses on carpooling for commuting i.e. planned periodic cooperative

traveling, not on ad-hoc ride-sharing where people try to find companions for a single

ride in the very near future (usually within the same day). In order to find car-

pooling companions, people who did not find a suitable partner by exploring their

private network, register themselves with the GCPMS service. Registration implies

first posting some characteristics describing the individual like age, gender, education

level, special interests (like music style preferences), job category, driver license avail-

ability, etc. Those qualifiers are used because it is known that continued successful

cooperation between people requires a minimal level of similarity (McPherson et al.,

2001).

Secondly, people post information about each trip they periodically plan to exe-

cute: those data consist of source and destination locations, earliest and latest depar-

ture and arrival times, the maximal detour distance and delay that are acceptable,

as well as the availability of a car (possibility to drive). Note that a particular driver

license owner can be unavailable for driving on a specific day of the week because the

family car on that day is in use by her/his partner.

Periodic trip executions need to be matched, not people. A periodic trip on

Wednesday from A to B leaving at about 08:30h needs to be matched with another

one having similar characteristics. Of course, the people involved shall be mutually

compatible but they are not the primary subject of matching. A particular individual

can periodically carpool with several people for different trips in the week (on Monday

with colleague A, on Tuesday with neighbor B who differs from A). Periodic trip

execution is abbreviated by periodicTripEx in the remainder of the text.

After having found a good match (details on how to do so will be explained below)

the matcher conveys its advice to the candidates involved (the owners of the matched

periodicTripEx ); they evaluate the proposal, negotiate about carpooling and possibly

agree to cooperate. Note that this negotiation is not guaranteed to succeed. One of

the reasons is that the individuals dispose of more information during the negotiation

process than the service does during the matching process. Therefore, the candidates

convey the negotiation result back to the matcher service. This paper assumes that

sufficient (financial) incentives are in place in order to make this happen. The feedback

is used by a learning mechanism incorporated in the matching service. After receiving

the feedback, the matching service disposes of the periodicTripEx and the individuals
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Figure 3.1: Application context: the right hand side shows the matcher service. Peo-

ple register some descriptive data about themselves and trips to be executed period-

ically (periodicTripEx ). Those constitute a graph : the edges are labeled with the

probability that negotiation will succeed when the trip owners are advised to carpool.

Negotiation result is fed back to train the logit predictor. The left hand side shows

the entities exercising the matcher service in consecutive phases.

characteristics as well as of the negotiation result; those are used to train a predictor.

Please refer to Fig. 3.1 for a high level overview of data flows, relations and method

activation.

It is important to note that the first implementation focuses on pairs of commuters

carpooling. This is essential to the problem of edge weight determination and it allows

the advice to be based on binary matching.

The model used for matching consists of a directed graph; by convention, each edge

points to the periodicTripEx whose owner will be the driver. Each vertex corresponds

to a periodicTripEx. A vertex for which the owner is unable to become the driver,

never can be a target edge (its indegree equals zero). Every edge is labeled with the

estimated probability for the negotiation to succeed. Two vertices are connected by an
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edge if and only if it is worth to advise the periodicTripEx owners to start negotiating:

in general the graph is incomplete. The need to determine the probability threshold

to include an edge in the graph is one of the main reasons to use a MAS to exercise

the GCPMS. Note that

1. the set of vertices evolves over time because people register and withdraw pe-

riodicTripEx as time evolves and because people join and leave the carpooling

candidates society (removing all their periodicTripEx in the latter case).

2. edges emerge as soon as the negotiation success probability exceeds a given

threshold; this can be caused by changes in the periodicTripEx (e.g. by relaxing

the time constraints) and people characteristics respectively (e.g. by reputation

changes (see below)).

3. probability estimates can change over time by re-training the predictor. Note

that this can cause threshold crossing and hence edge creation or deletion.

Finally the problem size can grow large when a nation-wide service is considered.

Large scale deployment probably is a necessary condition for both effective operation

(delivery of advice that has a high success probability) and economic viability. The

matcher needs to cope with large networks whose topology and edge weights evolve

in time. This represents a complex problem and hence thorough evaluation before

deployment.

3.5.2 Basic Concepts - Definitions

Some definitions for concepts in the application domain are required to explain the

functions used to calculate the edge weights for the periodicTripEx graph. Refer to

Fig. 3.2 for an overview of the datasets and relations involved. Fig. 3.3 summarizes

the essential application domain functions.
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Figure 3.2: Overview of sets (individual, periodicTripEx and agreement) used in the

model and relations those sets are involved in.

3.5.2.1 Symbols Used

A : the set of all agreements (see definition 3.5.2)

I : the set of all individuals

P : the set of all pools (see definition 3.5.3)

range(TOD) : 24 ∗ 60 ∗ 60 (time-of-day)

range(TOW ) : 7 ∗ range(TOD) (time-of-week)

T : The set of all periodicTripEx ’s (see definition 3.5.1)

TOD : Time of day ; if expressed in seconds, cardinal ∈ [0, range(TOD)− 1]

TOW : Time of week ; if expressed in seconds, cardinal ∈ [0, range(TOW )−1]

t·,early, t·,late : Earliest resp. latest time

td,·, ta,· : Departure resp. arrival time

3.5.2.2 Definitions

Definition 3.5.1 (periodicTripEx). A periodicTripEx is a tuple

(i, O,D,w, td,early, td,late, ta,early, ta,late) where i ∈ I, O and D denote the origin and
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Figure 3.3: Overview of functions defined on the sets (individual, periodicTripEx and

agreement) used in the model and functions those sets are involved in. Continuous

lines represent references, dashed lines represent functions.

destination locations respectively, t·,· ∈ TOW and w denotes a start-of-week moment

in time so that the first trip execution for the given periodicTripEx starts in w,w+ 1.

Notes:

1. A periodicTripEx denotes the weekly execution of a trip with given character-

istics by a specific individual. Individual i is called the owner of the periodic-

TripEx.

2. Examples:

(a) td,late is: Wednesday at 08:20h

(b) w = 2012-jun-04 00:00:00

(c) Refer to Fig. 3.4 to see intervals overlap.

Definition 3.5.2 (agreement). An agreement specifies operational details about the

collaborative execution of all elements in the list of periodicTripEx to which the agree-

ment applies. An agreement specifies the moment in time at which it starts to hold.

Notes:

1. An agreement has no termination time

2. A periodicTripEx is referred to by (belongs to) at most one agreement

3. Agreement details cover: timing, routing and driver selection.
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t
aA,0

aB,0

aC,0

td,early,C
td,late,C

td,early,B

td,early,A
td,late,A

td,late,B

id,A

id,B

id,C

Figure 3.4: Activities (aA,0, aB,0, aC,0) for individuals A, B and C and the associated

trips. The valid departure intervals id,A, id,B , id,C are shown. Note that B can choose

to co-travel with A or C but A and C cannot co-travel.

Definition 3.5.3 (pool). A pool is a tuple (A, T ) where A denotes a set of agree-

ments negotiated by the cooperating partners and T is a nonempty set of periodic-

TripEx so that (A = ∅ ∧ ‖T‖ = 1) ∨ (‖A‖ = 1 ∧ ‖T‖ > 1)

Notes:

1. The condition states that there is either a single individual without any agree-

ment or multiple cooperating individuals sharing a single agreement.

2. Each individual occurs in at most one periodicTripEx in a specific pool :

∀t0, t1 ∈ T : (t0 6= t1)⇒ (t0.owner 6= t1.owner) (3.1)

where t.owner denotes the individual owning the periodicTripEx.

Definition 3.5.4 (profile similarity). Profile similarity is a value in [0, 1] assigned to

a pair of individuals that indicates to what extent the individuals are compatible for

carpooling (homophily concept described in McPherson et al. (2001)).

Definition 3.5.5 (pooled trip execution). A pooled trip execution (abbreviated by

pooledTripEx) is the cooperative execution of a set of trips using a single car and a

single driver.
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Note: In this context, it is assumed that each pooledTripEx is driven by exactly one

driver. More complex cases are covered by Knapen et al. (2012a).

Definition 3.5.6 (path similarity). Path similarity is a value in [0, 1] assigned to an

ordered pair (pte0, pte1) of periodicTripEx that indicates to what extent the OD (Ori-

gin, Destination) pairs involved in the respective trips, are compatible for carpooling

in case the owner of pte0 is assigned to be the driver.

Notes:

1. Path similarity defines a function of periodicTripEx that is not symmetric in

its arguments. This is easily seen because the distance driven depends on the

driver selection; the driver needs a detour to pick up passengers.

2. When the single driver constraint in pooledTripEx is dropped, paths driven no

longer are strings of path segments but consist of join and fork trees which

requires a more advanced concept of path similarity which has been discussed

in Knapen et al. (2012a).

Definition 3.5.7 (tiSim). Time interval similarity ( tiSim) is a value in the range

[0,1] assigned to a pair of time intervals specified by different people, that indicates

to what measure the intersection of the intervals can be used for a specific act of

cooperation.

Definition 3.5.8 (depArr tiSim). Departure/arrival time interval similarity ( depArr tiSim)

is a value in [0, 1] assigned to an ordered pair (pte0, pte1) of periodicTripEx having

identical origins and identical destinations; it indicates to what extent the time inter-

vals involved are compatible for carpooling.

Notes:

1. Compatibility for car pooling requires a minimal amount of intervals overlap

(see Fig. 3.4).

2. Due to the single driver constraint (see definition 3.5.5, the route for each

passenger’s trip shall be included in the route for the pooledTripEx which is the

route for the driver.

3. Time interval similarity can be calculated only for a pair consisting of the pas-

senger trip and the part of the driver’s trip for which the route coincides with the

passenger trip route (because identical origins and destinations are required).

Definition 3.5.9 (sReputation). Safety reputation is a value in the range [−0.5, 0.5]

assigned to an individual (by the passengers) to qualify the individual as a safe driver.

Notes:
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1. sReputation is a characteristic of an individual because it is assumed that safe

driving does not depend on the periodic trip driven.

2. The initial value for individual i is i.sReputation = 0.0 (which means neutral).

Definition 3.5.10 (tReputation). Timeliness reputation (or accuracy reputation) is

a value in the range [−0.5, 0.5] assigned (by the co-travelers) to a periodicTripEx in

an agreement: it indicates to what measure the owning individual respects the timing

when executing the periodic trip in the agreement.

Notes:

1. tReputation is defined for both drivers and passengers.

2. tReputation has been defined as a characteristic of a tuple (periodicTripEx,agreement)

and not as a characteristic of an individual or of a periodicTripEx because an

individual can behave differently on a specific periodicTripEx pte0 in different

agreement contexts (pools). Example: the interval between a pick-drop activity

to be executed by individual i0 and the start of the periodicTripEx in a given

agreement a0 is too short so that it is difficult for i0 to meet the timing require-

ments of a0. Within a different agreement a1 timing constraints for pte0 can be

less severe so that the owner can meet them easily.

3. The initial value for periodicTripEx pte in a is given by (pte, a).tReputation =

0.0 (which means neutral)

Definition 3.5.11 (cohesion). Cohesion qualifies the strength of an agreement using

a value in [0, 1] that is a function of attributes of the agreement only.

Notes:

1. An agreement with a high cohesion value is less likely to be broken whenever

some of its periodicTripEx get a proposal to set up a new cooperation. Cohesion

determines the resistance to breakdown in case opportunities for recombination

come available.

2. Cohesion does not depend on sReputation since that is an attribute of an indi-

vidual and not of an agreement.

3. The matcher shall derive cohesion from individual’s negotiation feedback since

individuals are assumed not to be prepared to specify and maintain cohesion

values; furthermore, they are unable to do so since no universally valid scale or

method is available.

Note: In order for carpooling (co-traveling) to be suitable, both the collective depar-

ture and arrival time intervals shall be suitable for each participant.
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3.5.3 Exploration/advisory and Negotiation Phases

Matching is applied in both local and global exploration phases. In both cases, match-

ing precedes the negotiation phase where final decisions to carpool are taken. Mech-

anisms used in the exploration/advisory phases shall be consistent with mechanisms

in the negotiation phase. It is not possible to predict the negotiation phase with

certainty; reasons are:

1. Negotiation covers driver selection, co-route determination and re-scheduling

(daily planning adaptation) for the cooperators. Schedule adaptation makes use

of VOT (individual specific Value Of Time). An advisory mechanism does not

have all required data available nor has any knowledge of the private goals (and

in general the Beliefs, Desires, Intentions (BDI)) of the individuals (agents)

involved in a negotiation. Individuals need to adapt their daily agenda because

the decision to carpool introduces mutual dependency and hence additional

constraints. On one hand, those constraints induce computational complexity

at two levels: (i) agenda adaptation for a particular individual which includes

re-timing, re-location, re-sequencing (combinatorial optimization) of activities

along with activity dropping and replacement (Joh, 2002), (Joh, 2004),(Knapen

et al., 2012d),(Arentze et al., 2005) and (ii) networked individuals need to take

care of the agreements they are involved in. On the other hand, constraints

induced by mutual agreements cannot be considered to be fixed; under certain

circumstances they evolve over time. This induces the need for replanning.

Relevant literature has been mentioned in 3.4. Since planning is involved, agents

need to predict the near future. Knapen et al. (2012d) predicts future travel

times using perception filters that actually implement part of the belief of an

agent.

2. The total distance driven cannot be predicted by the matcher when carpool

parkings are involved because in such cases the co-route can be tree structured:

see note 2 for definition 3.5.6. Hence the path similarity function delivers only

an approximation of the one involved in negotiation.

3. People are assumed to be prepared posting a minimal amount of data about the

time intervals that suit them for departure an arrival respectively; candidates

are supposed to specify just the interval boundaries. However, during negoti-

ation, they can make use of preferences to state that one of a set of proposed

intervals suits better than another one. Hence, the trip times interval similarity

function available to the matcher is only an approximation for the one used

during negotiation (see Fig. 3.5).
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4. The Cotravel Refused relation shown in Fig. 3.2 allows individuals to uncondi-

tionally avoid any advise to carpool with specific people. For privacy reasons,

it is not possible for a refused individual to know the refusing party.

3.5.4 Principle of Operation of the Carpooling Model

1. An individual looks for other individuals to cooperate while executing periodic-

TripEx ’s: this is called exploration.

2. Local exploration within the private social network (PrivNet) is applied before

global exploration. If carpool candidates can be found within an individual’s

PrivNet, they will be contacted first (as preferred candidates).

3. Global exploration is applied only in a second stage when no suitable pool was

found in the PrivNet. In the Global exploration phase, the matcher provides

advice about which pools an individual should negotiate with. This corresponds

to the use of an online service by a candidate exploring the set of formerly

unknown carpooling candidates.

4. If an individual joins a pool, (s)he is added to the PrivNet for all other partici-

pants in the pool (if still required) so that if i0 and i1 ever cooperated in a pool,

they belong to each others PrivNet. Because links never are removed from the

PrivNet, if i0 and i1 ever carpooled, (i1) ∈ PrivNet(i0) ∧ (i0) ∈ PrivNet(i1).

5. Candidates register, join and leave pools at random moments in time. As a

consequence the main data structures dynamically change due to events external

to the matching process.

3.6 Functions related to Domain Concepts

A specific concept can be implemented by different functions in MAS and GCPMS

matcher.

3.6.1 Time Interval Based Functions

Table 3.1 contains a summary of the functions presented in this section. Two kinds of

function are used. The tiSim and tiSuitFunc functions apply to a set of two intervals of

the same kind (i.e. both are departure or both are arrival intervals) that correspond to

two individuals considering to cooperate. The depArr tiSim and depArr tiSuitFunc

are defined over 4 time intervals (i.e. both departure and arrival intervals for two

people considering to cooperate).
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Context

Function type MAS (function of time) GCPMS

(constant)

2 time intervals of same kind (either depar-

ture or arrival time intervals for 2 agents)

tiSuitFunc tiSim

2 pairs (departure and arrival) of time in-

tervals for 2 agents are considered

depArr tiSuitFunc depArr tiSim

Table 3.1: Summary of the time interval functions used.

For the reason mentioned in Section 3.5.3 item 3, different time interval simi-

larity functions are used in respectively the agent-based exerciser and the matching

operational service.

Remember that the trips considered shall have identical origins an destinations

respectively (hence the time intervals stated by the participants shall apply to a single

origin-destination pair which implies that the passenger trip embedded in the driver’s

trip is to be considered: see note 2 with definition 3.5.8).

3.6.1.1 Time Interval Based Functions for Negotiation

This section defines the tiSuitFunc (time interval suitability) and depArr tiSuitFunc

(departure/arrival time interval suitability) functions.

1. The departure (arrival) interval for a trip (periodicTripEx ) is the time interval

that suits the traveler to start (end) the trip. Let pte.id() and pte.ia() denote

respectively the departure and arrival intervals of the periodicTripEx pte.

2. Individual p0’s preference for a given moment in time is given by the function

fp0 : R⇒ R : t 7→ fp0(t) ∈ [0, 1]. The function is not required to be differentiable

or continuous but the product of two such functions shall be integrable. For each

moment in time belonging to the departure and arrival intervals, the preference

value needs to be specified.

3. The combined preference function is the product of the preference functions

associated with two periodicTripEx ’s. It is essential to the negotiation process.

4. The time interval suitability is the integral of the combined preference over a

fixed time interval. The length of the interval has a pre-specified constant C

value; a suitable choice is the expected duration of the trip interruption to get

someone on/off board of the vehicle. Let tiX ,0 and tiX ,1 denote the begin and
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end times for a time interval specified by agent X. The time interval suitability

is denoted by S(C, iA, fA, iB , fB), where iA = [tiA,0, tiA,1] and iB = [tiB ,0, tiB ,1]

are intervals specified by individuals A and B; fA and fB are the associated

preference functions. The suitability function is given by

t0 = max(tiA,0, tiB ,0) (3.2)

t1 = min(tiA,1, tiB ,1) (3.3)

S(t;C, iA, iB , fA, fB) = 1
C

∫ t+C
t

fA(x) · fB(x)dx if t ∈ [t0, t1 − C]

0 otherwise
(3.4)

where t denotes the start of the boarding/alighting operation. The dimension

of the time interval suitability value is [prefUnit2]. In this context, preference

is assumed to be dimensionless, hence the suitability is dimensionless. During

negotiation, S(t;C, iA, iB , fA, fB) is used to find a suitable time to board/alight.

5. Piecewise linear functions are used because they are flexible, they can easily be

specified by the user (in charge for the configuration of the agent-based model)

and integration is computationally cheap. An example is shown in Fig. 3.5.

The left hand part shows piecewise linear preference functions, their product

and the associated time interval suitability (proportional to the crosshatched

area under the product function).

6. Time interval suitability is a value in [0, 1].

7. The departure/arrival time interval suitability

depArr tiSuitFunc is defined as

f(t) =Sdep(t;C, iA,dep, iB,dep, fA,dep, fB,dep)·

Sarr(t+ d;C, iA,arr, iB,arr, fA,arr, fB,arr) (3.5)

where d is the expected trip duration.

3.6.2 Time Interval Similarity Evaluation for Matching

1. It is not feasible to ask the individuals to register the piecewise linear preference

function mentioned in Section 3.6.1.1. People are assumed to be prepared to

register simply a time interval only. Hence the preference value is assumed to

be a constant f over the time interval specified.

The right hand part in Fig. 3.5 shows case for the same intervals where the

preference function is assumed to equal one everywhere: this is the assumption
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Figure 3.5: (Left) Time similarity used while negotiating: fA,N (t) and fB,N (t) are

time preference functions for specific intervals. FN (t) is the combined preference and

the size of the cross-hatched area is the resulting time interval suitability function.

(Right) Time similarity used by the matcher: all preference functions equal 1 because

users are expected to only submit feasible time intervals.
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made by the matching service due to lack of information: the user only specifies

the boundaries for the departure and arrival intervals.

2. The negotiation outcome is assumed to be positively correlated with the length

of the intersection of the intervals associated with the periodicTripEx ’s to com-

pare. The value is not compared to the constant C mentioned above because

this comparison would only imply a linear scaling of an independent variable

which has no effect on the logit estimator. The time interval similarity tiSim is

given by

t0 = max(tiA,0, tiB ,0) (3.6)

t1 = min(tiA,1, tiB ,1) (3.7)

tiSim(iA, iB) = t1 − t0 (3.8)

3. For a given pair of periodicTripEx ’s (home-work, work-home), tiSim values are

fed into the logit estimator as two independent variables; combining them into

a single value would cause a loss of information.

3.6.3 Path Similarity

3.6.3.1 Path Similarity in MAS

The first version of the agent-base exerciser does not take carpool parkings into ac-

count. As a consequence, path similarity is calculated in the same way as for the

GCPMS.

3.6.3.2 Path Similarity in GCPMS

1. The GCPMS per hypothesis has no information about carpool parkings poten-

tially being used (because that is not specified by the candidates). Therefore,

it is assumed that people board and alight at home and work locations only.

2. The owner of the first periodicTripEx is the driver.

Table 3.2: Symbols Used (alphabetical order)

Symbol Meaning

Oi, Di denote respectively the origin and destination locations for indi-

vidual i (e.g. home and work locations)

Continued on next page. . .



64 Chapter 3

Table 3.2 – Continued

Symbol Meaning

r(a, b, t) denote the route from a to b when starting at time t that is optimal

with respect to some cost function c(r) based on distance and travel

time

d(r, t) denote the duration to travel the route r starting at time t

l(r, t) denote the length of the route r starting at time t

c(r) denote a cost function based on route length l(r, t) and route travel

duration d(r, t)

pi,solo(Oi, Di, t) denote the optimal path from Oi to Di when individual i drives

alone (solo) and starts at time t

pi,solo(Oi, Di, t) denote the optimal path from Oi to Di when individual i drives

alone (solo) and ends at time t

pi,carpool(Oi, Di, t) denote the optimal path from Oi to Di when individual i drives

the carpool trip via Oj and Dj for i 6= j and starts at time t

pi,carpool(Oi, Di, t) denote the optimal path from Oi to Di when individual i drives

the carpool trip via Oj and Dj for i 6= j and ends at time t

pathSimd() denote the path similarity function for the case where the earliest

departure is given

pathSima() denote the path similarity function for the case where the latest

arrival is given

3. Note that the minimal cost depends on the start moment in time. Also note

that the optimal path can be determined either by fixing the time for the first

departure or by fixing the time for the latest arrival.

4. The ratio between the lengths of the optimal routes for the driver is used as a

path similarity function. For the given earliest departure case (starting at t0)

where A is the driver and the trip is OA → OB → DB → DA, this leads to

t1 = t0 + d(r(OA, OB , t0)) (3.9)

t2 = t1 + d(r(OB , DB , t1)) (3.10)

pathSimd(pteA, pteB , c()) =

c(OA, DA, t0)

c(OA, OB , t0) + c(OB , DB , t1) + c(DB , DA, t2)
(3.11)

Note that t1 denotes the time at which the carpool trip leaves OB and t2 denotes
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the time at which the carpool trip leaves DB . Also note that in general

pathSimd(pteA, pteB , c()) 6=

pathSima(pteA, pteB , c()) (3.12)

since the departure times can differ. Finally note that in general

pathSima(pteA, pteB , c()) 6=

pathSima(pteB , pteA, c()) (3.13)

since the routes differ.

5. The departure time can have a large effect on the trip duration. In the first

GCPMS this dependency is ignored due to lack of data. Because of the availabil-

ity of speed profiles registered using GPS navigators, it will become feasible to

take the time dependency into account (which will lead to more accurate nego-

tiation outcome prediction) in the near future although that will require a large

amount of data pre-processing and data storage. By ignoring time dependency,

the equation 3.11 is reduced to

pathSimd(pteA, pteB , c()) =

c(OA, DA)

c(OA, OB) + c(OB , DB) + c(DB , DA)
(3.14)

3.6.4 Profile Similarity

The candidate carpooler specifies the value for a set of NA attribute values: those

constitute the candidate’s profile.

1. The attributes can be: (a) continuous variables limited to a finite interval (b)

discrete quantities for which a total order relation exists, also limited to a finite

interval and (c) enumerations (discrete quantities without an intrinsic order

relation).

2. Attributes that are ordinal values (cases (a) and (b)) are handled in the same

way; case (a) is expected not to occur in practice. The domain is mapped onto

[0, 1]. The distance between two attribute tuples a0 and a1 having NOA ordinal

attributes, is the Euclidean distance divided by a scale factor to normalize the

distance (map to interval [0, 1]).

d(a0, a1) =

√√√√ ∑
i∈[1,NOA]

(a0[i]− a1[i])2

NOA
(3.15)
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Continuous variables are combined into a single distance value dC and discrete

ordinal values are combined into another one dD. The range of dD is a finite

subset of [0, 1].

3. All attributes have an equal weight.

4. The distance dE between two vectors constituting of enumeration variables, is

the number of differing attributes divided by the total number of attributes for

normalization.

5. Both MAS and GCPMS use the same mechanisms to calculate profile similarity.

However, the MAS can make use of particular attributes that have not been

registered in the GCPMS.

3.6.4.1 Profile Similarity in GCPMS

1. The first model uses the similarity between two profiles as a predictor (one

independent variable) for the logit model. It is to be investigated under what

conditions its is more efficient (in terms of prediction accuracy) to feed NA

variables into the logit independently, each one of which is the difference between

the values for a given attribute in the respective profiles.

2. The similarity values sC = (1− dC) (for continuous attributes), sD = (1− dD)

(for discrete valued attributes) and sE = (1− dE) (for enumerations) are used

as independent variables for the logit estimator.

3.6.5 Reputation

Both sReputation and tReputation are handled in the same way.

3.6.5.1 Reputation in MAS

1. In the agent-based exerciser a gossip based mechanism is modeled. In this

case the social network is considered; the set of carpooling based connections

(links) is a small subset of the social network for each individual. People keep a

qualification for everyone they ever carpooled with. Furthermore, an individual

can keep a qualification for another one that has been derived from gossip; this

is a transitive mechanism. The credibility of the qualification decreases with

each intermediate step involved.

2. Every agent keeps a list containing a perceived safety reputation value for a

limited set of other agents. In the exerciser, a specific agent can be qualified by

zero or more safety reputation values (each one of which is owned by a peer).
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Every agent can determine the reputation of another agent using a method that

is not specified in this section and overriding the value already in place (if any).

Furthermore, everyone can adjust the reputation of peers based on gossip as

follows. At a random moment in time, an emitter agent ae can multicast its

reputation value Re(q) to qualify agent aq to a subset agents directly connected

to it in the social network. The receiver ar

(a) retransmits the reputation message with a given probability pr (hence sim-

ply drops it with probability (1− pr)
(b) adjusts its own perception of aq with a given probability pa (hence simply

ignores it with probability (1− pa)

Consider agents ae, aq, ar, av that are all pairwise different. ae emitted a qual-

ification about aq that reaches ar via its neighbor av. If ar did not yet have

registered an opinion about aq, the value for Rr(q) = 0. Reputation update by

receiver aa is done by

α = 2−d(e,r) (3.16)

βr,v ∈ [0, 1] (3.17)

R′rq ←
Rr(q) + α · βr,v ·Re(q)

1 + α · βr,v
(3.18)

where d(e, r) is the distance between emitter and receiver in the network and

βr,v is the strength of the link between ar and av.

3.6.5.2 Reputation in GCPMS

1. The GCPMS allows for controlled mutual evaluation of individuals with respect

to timeliness and safety. Only individuals cooperating in an agreement can

qualify each other; this means that the reputation mechanism in the matching

service is not transitive.

2. Similar mechanisms are used for sReputation and tReputation. Qualifications re-

ceived are registered in a dedicated qualifications list assigned to the entity they

apply to; for each issuer, only the most recent qualification is kept. sReputation

qualifications are registered with individuals and tReputation qualifications are

registered with periodicTripEx.

3. Each individual has reputation values that evolve over time due to qualification

by cooperators (i.e. individuals who participated in an agreement with the

person being evaluated). Passengers can qualify sReputation for drivers. Every

cooperator can qualify every other cooperator’s periodicTripEx ’s with respect

to tReputation.
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4. The attributes for a qualification are: (i) the generation timestamp q.ts(),

(ii) the issuer q.iss() and (iii) the specified value q.rep().

5. In both cases, the reputation is calculated as a weighted average of the values

posted in the qualification list: the weight decreases with age of the qualification

and increases with the duration of the cooperation (the agreement lifetime)

a.dur(q.ts()) up to the moment of qualification. Note that the cooperation

duration in the case of sReputation is to be summed over a set of agreements.

Let Qi be the qualifications list for individual i. Let aij denote an agreement

in which individuals i and j cooperated. Let axy .dur(t) denote the lifetime of

agreement between the qualified agent x and the qualifying agent y a at time t.

Let Ayx denote the set of all agreements in which individual x and y cooperate.

Let αs and βs be parameter settings (time constants) to be determined. Then

following equations determine the sReputation:

age = now − q.ts() (3.19)

coopDur =
∑

a∈Ai
q.iss()

a.dur(q.ts()) (3.20)

wiq.iss() = exp(−αs · age) · (1− exp(−βs · coopDur)) (3.21)

sReputationi =

∑
n∈Qi

q.sRep() · wiq.iss()∑
n∈Qi

wiq.iss()
(3.22)

3.6.6 Cohesion of an Agreement

1. Cohesion is supposed to be a monotonically decreasing function of the time

t elapsed since the creation of the agreement. Cohesion is a monotonically

decreasing function of pool size s (large pools are more likely to disintegrate).

Note that cohesion does not depend on mutual evaluation of carpoolers; cohesion

and reputation shall be independent concepts because all of them are fed into

a probability estimator. Let αc and βc be parameter settings to be determined.

The cohesion value is given by:

c = eαc·t · eβc·(s−1) (3.23)

2. In the pairwise case, when considering a specific edge, exactly two cohesion

values apply (one for each of the vertices (periodicTripEx ’s)). Each of the co-

hesion values possibly applies to an agreement. For a given periodicTripEx pair

(pte0, pte1), the c0 and c1 can relate to either different agreements or to a single
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one. The meaning of the tuple (c0, c1) depends on the number of agreements

involved. Therefore, cohesion values are combined into a single cohesion based

indicator using the function given in equation 3.26; the second case in equa-

tion 3.26 corresponds to the case where both periodicTripEx are members of

an agreement (but not necessarily to the same one). Let pte0, pte1 ∈ T the

periodicTripEx s involved. Let c0 and c1 denote the respective corresponding

cohesion values and p.T () denote the list of periodicTripEx involved in pool p.

Let pte.a() denote the agreement covering pte when it belongs to a pool. Let

P denote the set of all pools. The cohesion indicator c(pte0, pte1) is a measure

for the cohesion between two periodicTripEx ’s when they already form a pair

and for the feasibility to get them released when they are bound in pairs with

others.

ptex.a() =

 nil if 6 ∃p ∈ P|ptex ∈ p.T ()

p.a() if ∃p ∈ P|ptex ∈ p.T ()
(3.24)

cx =

 0 if ptex.a() = nil

ptex.a().c() else
(3.25)

c =


(1− c0) ∗ (1− c1) if pte0.a() 6= pte1.a()

c0 ∗ c1 if pte0.a() =

pte1.a() 6= nil

(3.26)

In case both periodicTripEx belong to the same agreement, the cohesion values

are taken from that agreement and in fact c0 = c1. In the other case (which

also covers the case where at least one of the periodicTripEx is not covered by

an agreement), the complement of the cohesion values is used. When neither of

the periodicTripEx belongs to an agreement, c = 1.

3.7 Weights Determination

The weights used to label the edges in the graph, are probability values associated

with the success of the negotiation process between individuals. Those probabilities

are calculated by means of logistic regression (logit) fed by results of negotiations who

have been advised by the carpoolMatcher.

Edges are not removed from the graph when one of the involved periodicTripEx ’s

becomes member of a pool (agreement). They are labeled with a weight in exactly

the same way as the edges connecting non-bound periodicTripEx ’s. As soon as the
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Figure 3.6: Dependencies between concepts used to calculated the weight for a edge

connecting two periodicTripEx ’s

weight of an edge e0 linking two periodicTripEx ’s involved in the same agreement,

becomes lower than the weight of other edge e1 sharing a vertex with e0, the carpool

members for which better opportunities occurred will get an advice to negotiate with

non-pool-members to setup a new agreement.

3.7.1 Negotiation Outcome Prediction

Fig. 3.6 summarizes the data dependencies relevant to edge weight determination.

From the point of view of the matcher service, the outcome of a negotiation process is

a discrete variable with values : success (yes) and failure (no). Independent variables

influencing the negotiation are continuous : profSim, pathSim, tiSim, cohesion and

sReputation. A logit model will be used to predict the negotiation outcome. Negoti-

ation results fed back to the Global CarPooling Matching Service (GCPMS) are used

to determine the coefficients for the logit model.

3.7.2 Dynamic Actor and Agreement Attributes

While evaluating the success probability for a pool, exactly one sReputation value

applies since only the sReputation for the driver is relevant.

The tReputation of an individual i0 applies to an existing agreement and only
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exists as long as the agreement holds. It can only be affected by the partners in the

agreement different from i0 (in the pairwise case, there is only one such partner). The

tReputation is an evaluation score assigned by the partners; the default value equals

the neutral value : see definition 3.5.10.

3.8 Matching using dynamically updated Edge Weights

We now show how to apply graph matching techniques to find optimal carpooling

(see also Agatz et al. (2011)). We are also interested in quickly updating the result,

when the weights of the edges (which correspond to the result of negotiation between

the users) slightly change (as opposed to running the entire matching from scratch

whenever such changes occur). We proceed to introduce the graph structure. In this

paper, we deal with the case in which the periodicTripEx ’s belong to either drivers

or non-driving passengers, and we try to optimally match each driver trip with a

passenger trip; in the future we plan to tackle more general problems. Note that this

case requires the set of candidate carpoolers to be partitioned a priori.

We quickly introduce some notations: a graph G consists of a set of nodes, V ,

and a set of edges, E, such that each edge is associated with a pair of nodes. Denote

G = (V,E). A directed graph is the same as above, but where each edge is associated

with an ordered pair of nodes. In a weighted graph, each edge has an associated

non-negative real number with it, defined as its weight.

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent

(disjoint) edges. That is, no two edges share a common node. The weight of a

matching M is the sum of the weights of the edges in M . A maximum (optimal)

matching is a matching such that it obtains the maximum weight of all matchings. It

does not have to be unique.

A special case of the matching problem is when the graph is bipartite, that is,

its nodes can be partitioned into two disjoint sets, L and R, such that all edges

are between a node in L and a node in R. For the carpooling problem, this may

correspond to the case in which the periodicTripEx set is composed of trips owned by

drivers (L) and trips owned by non-drivers (R). For a schematic example, see Fig.

3.7.

In order to solve the carpooling problem when represented by a bipartite graph,

denote the weight of the edge between i ∈ L and j ∈ R by cij , and define variables

xij . To find an optimal matching, solve the following optimization problem: maximize∑
ij

cijxij , subject to the constraints xij ≥ 0, ∀j
∑
i

xij ≤ 1, ∀i
∑
j

xij ≤ 1. According
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Figure 3.7: A schematic example of a graph used for the carpooling problem. c21

stands for the weight of the match between trip owned by driver number 2 and trip

owned by passenger number 1.

to Section 3.7, the cij values are the probabilities for the negotiation to succeed when

i and j are advised to carpool.

To test the algorithm, data was simulated as follows. Weights were chosen as the

absolute values drawn at random from a normal distribution with mean µ = 0 and

given standard deviation σ, and then those smaller than a certain threshold (0.2 for

the experiments reported here) were thresholded to 0. Fig. 3.8 shows run times for

different numbers of nodes and values of σ.

As discussed in the introduction, the input to the carpooling problem is highly

dynamic. This necessitates developing, in addition to the well-studied batch solu-

tion described above, algorithms which are incremental. An incremental algorithm

assumes that the optimal solution of the carpooling for some input was computed al-

ready, and then it attempts to solve (either accurately or approximately) the problem

for the same input but under a small perturbation.

Here we present an analysis which, given a solution to the optimization problem,

allows to determine how far this solution is from the optimal one to the perturbed

problem. Assume that the solution for the original (unperturbed) problem, with

weights cij , is x0
ij , and that x1

ij is the solution for the perturbed weights cij + εij .

Then the following holds: ∑
i,j

(cij + εij)x
1
ij =

∑
i,j

cijx
1
ij +

∑
i,j

εijx
1
ij ≤ (3.27)

∑
i,j

cijx
0
ij +

∑
i,j

εijx
1
ij (3.28)



Agent-based Models in Carpooling: Components Design 73

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40
CPU time   σ=0.3 σ=0.35  σ=0.4

|X| (=|Y|)

C
P

U
 ti

m
e 

(s
ec

)

 

 

σ = 0.3

σ = 0.35

σ = 0.4

Figure 3.8: Running times [sec] for various values of σ and numbers of nodes.



74 Chapter 3

where the inequality follows from the optimality of x0
ij for the unperturbed weights cij .

Hence, the solution for the perturbed weights is better than the old one by an error

term of at most
∑
i,j

εijx
1
ij . Since ∀j

∑
i

x1
ij ≤ 1 and ∀i

∑
j

x1
ij ≤ 1, this term can be

bounded by
∑
i

max
j
|εij |.

3.9 Future Research Directions

3.9.1 Ongoing research

Network characteristics are studied for the graph connecting the trips that have been

posted for carpooling in order to find out how partitioning (number of independent

components) depends on the probability threshold used.

The carpooling problem has been formulated in a general way. A weighted directed

graph is used (in general not a bipartite graph). More than two periodicTripEx can be

part of an agreement. Research now focuses on the complexity of the problem. First

results have been presented in Knapen et al. (2013b). Although a straightforward

formulation as an integer programming problem has been given, graph theoretical

methods are focused in order to find out whether results from graph theory can

provide solutions to mitigate the problem size explosion.

A Janus (Gaud et al., 2009) based experiment using 10000 agents has produced

preliminary results. It includes negotiation and trip execution simulation in order to

generate reputation feedback.

3.9.2 Research for the longer term

Negotiation for agreements involving more than two people (some of who can already

be involved in an existing agreement) requires cooperative adjustment of more than

two schedules and needs additional attention.

Determination of agent profiles needs improvement; in particular semantic-based

models will be evaluated to replace the basic method now used in the model.

The cohesion function used in the MAS needs to account explicitly for private

social network membership of participants in an agreement.

Finally, in order to achieve the ultimate goal of replacing a real testers community

by a community of agents in a MAS, several coefficients used in the behavioral models,

need to be quantified by means of surveys and appropriate statistical methods.
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3.10 Conclusions

In order to evaluate a carpooling advisory service, a MAS is used as an exerciser.

Large scale simulation is required in order to analyze the advisor behavior. Agents

are required to accurately mimic real individuals. Thereto the process has been ana-

lyzed in depth and model components have been proposed. Preliminary experiments

show that computational problems are to be expected due to combinatorial explosion.

Several research paths to explore possible solutions to handle that problem have been

identified.
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Chapter 4

Agent-based Models in

Carpooling: Estimating

Scalability Issues

This chapter consists of paper

Knapen et al. (2013b) Estimating Scalability Issues while Finding an Optimal As-

signment for Carpooling

4.1 Research Context

The previous chapter covered the problem of the edge weight calculation for the

graph used to optimally advise carpooling candidates. The case of a perturbation of

the weights after having found an optimal solution, was considered. If the solution for

the unperturbed case continues to be used, a sub-optimal result is found. An upper

bound for the difference between the sub-optimal solution and the optimal one was

given.

However, the previous chapter considered the problem to find a maximal matching

in a bipartite graph. This problem can be solved in polynomial time but it is not useful

in practice since no information is available to partition the candidates in advance

into sets of drivers and non-drivers.

In this chapter the general problem is formulated again as a MILP and a graph

theoretical equivalent problem is formulated. This turns out to be a star cover prob-

77
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lem. The problem is proved to be NP-hard and hence heuristics will be required to

solve the practical cases.

The aim is to estimate the graph properties for several negotiation success prob-

ability thresholds in order to support the process of designing the matcher. This

research is required since it cannot be determined in advance which kind of graph

(random, small world, . . . ) is to be expected. Neither is it possible to predict how

the structure of the graph evolves as a function of the probability threshold.

FEATHERS predicted schedules for the Flemish population are used in order to

start the investigation from realistic data. Home-work commuting is considered. For

the experiments, it is assumed that the share of carpooling does not affect the required

travel times between Traffic Analysis Zones (TAZs).

In order to determine edge weights, feedback from the negotiation process is re-

quired. This is not available. Therefore, two alternative functions are proposed to

calculate an estimated weight from the time interval similarity and the path similarity

that is calculated for pairs of FEATHERS schedules.

For both cases, properties of the resulting graphs are determined for several prob-

ability thresholds. Results are mutually compared.

It is to be noted that the weights are estimated for pairs of PTE. Those weights

are used also while advising people to negotiate about carpools of size larger than

two.

1. Knapen et al. (2013d) already mention importance of the probability threshold

2. Knapen et al. (2013d) cover the problem of edge weight calculation

3. Knapen et al. (2013b) cover the problem to estimate the size of the resulting

graph used in the matching advisor because the matching problem in general is

NP complete (Ben-Arroyo Hartman et al. (2014))
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4.2 Abstract

Carpooling for commuting can save cost and helps in reducing pollution. An auto-

matic Web based Global CarPooling Matching Service (GCPMS) for matching com-

muting trips has been designed. The service supports carpooling candidates by sup-

plying advice during their exploration for potential partners. Such services collect

data about the candidates, and base their advice for each pair of trips to be combined,

on an estimate of the probability for successful negotiation between the candidates

to carpool. The probability values are calculated by a learning mechanism using,

on one hand, the registered person and trip characteristics, and on the other hand,

the negotiation feedback. The problem of maximizing the expected value of carpool-

ing negotiation success was formulated and was proved to be NP-hard. In addition,

the network characteristics for a realistic case have been analyzed. The carpool-

ing network was established using results predicted by the operational FEATHERS

activity-based model for Flanders (Belgium).

4.3 Introduction - Problem Context

We describe an advisory service for carpooling while commuting. People register

their periodic commuting trips: the base period typically is one week i.e. a specific

pattern valid for working days is repeated after every seventh day. Considering one

week periods accommodates for most situations (including part-time workers). People

who are able to fulfill all their carpooling needs within their own social network (local

exploration) of acquaintances, are assumed not to need the advisor service. Others will

need to explore the set of yet unknown carpooling candidates (global exploration). The

matching service determines which trips are best suited to be combined for carpooling

and provides advice by suggesting candidates to start a negotiation with respect to a

specific periodically executed trip.

After negotiation candidates feed the resulting decision about the proposed carpool

back to the automated advisor so that it can learn values for parameters used to

prepare the advice. Candidates register periodic commuting trips with the advisor

service. Some of the trips can be combined for carpooling. We show how to estimate

the probability that a given pair of trips will lead to successful negotiation. The

advisor service keeps track of promising pairs (i.e. the ones having sufficiently high

probability). The information available to the advisor software can be represented

as a digraph in which each vertex represents a periodic trip and where the edges are

labeled using the negotiation success probability estimated from the feedback supplied
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by the customers. The strategy used by the advisor is to maximize the expected value

for the number of successful negotiations (carpool formations).

Advisory systems that make use of feedback from their customers need to solve

the cold start problem. In the carpooling case successful cold start involving only real

commuters, is expected to be infeasible. Therefore, an Agent-Based Model (AgnBM)

of commuters in Flanders is being built. This model will take data generated by

the FEATHERS Activity-Based Model (ActBM) as input. The FEATHERS model

predicts the daily schedule for each member in a synthetic population that mimics the

Flemish one with respect to several statistical distributions. The main type of agent

in the AgnBM is the commuter who is able to negotiate about plans to carpool. The

agent model is similar to the model described in Kamar and Horvitz (2009). This

AgnBM will interact with the advisor for initial training of the logit based predictor

as well as for studying the transient phenomena during the startup process. It is to

be emphasized that the information supplied by the agent simulating the commuter,

to the advisory system, is only a subset of the information used in the negotiation

process. This is due to privacy reasons and to the limited effort people are prepared

to spend to maintain their profile on a website; e.g. candidates supply time windows

for trip departure but not a preference value for each moment in such time window.

The remainder of the paper is structured as follows: Section 4.4 gives a literature

overview of similar related research. Section 4.5 explains the principle of operation

of the advisor. In section 4.6 we give a precise mathematical formulation of the

optimization problem. We also prove that the problem is NP-hard. Section 4.7

describes how a synthetic carpooling network has been built using the daily agendas

predicted by the FEATHERS activity-based model Bellemans et al. (2010). Finally,

in section 4.8 we demonstrate some of the network characteristics.

4.4 Related Work

In order to be effective, the carpooling advisor requires a critical mass of users. Sys-

tems of this kind need thorough testing and evaluation before being exposed to the

general public. In Kamar and Horvitz (2009) the authors discuss the analysis for

constructing collaborative plans for ride-sharing, including the acquisition of chang-

ing costs and preferences for ridesharing, the solution of the associated optimization

problem and the use of VCG (Vickrey-Groves-Clarke) based payment systems in a

dynamic setting. An agent-based model prototype consisting of self-interested indi-

viduals is considered. Rideshare plans are generated from GPS traces. The prototype



Agent-based Models in Carpooling: Estimating Scalability Issues 81

creates personalized rideshare plans while minimizing the cumulative cost of trans-

portation. The user-modeling component captures preferences about trips and passes

those to the optimization and payment components. The model takes as input time

of day, day of week and attributes about the agent’s commitments from an online

appointment book. From those data, the system constructs a time cost function for

a trip based on the nearest deadlines drawn from the agent’s calendar. The net value

for each participant in a pool is calculated from the sum of the costs for trip dura-

tion increase, departure and arrival time shifts and from the fuel and cognitive cost

savings. The shared transportation plan generating the highest cumulative value is

searched for. An optimal set cover is to be found and a greedy algorithm is used.

Agatz et al. (2010) focus on dynamic ride-sharing which is characterized by non-

recurring trips that can be established on short-notice but are pre-arranged and make

use of independent drivers. This problem is related to long-term planned commut-

ing carpooling. Participants (both drivers and passengers) aim to minimize the cost

for travel. Part of the cost saving is paid to the operator of the matching service.

Maximizing the benefit of all parties involved is greatly in line with the societal ob-

jectives to minimize congestion and pollution. The authors show by example that

the system-wide and user optima not necessarily coincide. Discrete time is used and

a space-time network is considered. An edge in the network joining two vertices

having identical spatial value, represents a waiting period at a given location; the

remaining edges represent movements between locations. The use of each specific

edge in the space-time network by a specific participant (driver or rider) is modeled

by a Boolean variable. The proposed formulation thus calculates the optimal route

(pick-up/drop-off sequence). Constraints ensuring that all required movements are

accomplished, are formulated and the objective function to minimize the total system-

wide travel time is formulated. Single-driver-single-rider, single-driver-multiple-rider

and multiple-driver-single-rider arrangements are briefly discussed. It is shown that

scheduled public transportation can be described using the space-time network too

and the authors show how integration leads to a model for multi-modal ridesharing.

The paper concludes by listing challenges (i) with respect to acceptance of the ser-

vice by customers, (ii) with respect to the application design (determination of the

optimization frequency under dynamic arrival of requests) and (iii) with respect to

the computational effort required to solve the integer linear programming problem. It

suggests that integer programming optimizers can turn out to be insufficiently perfor-

mant to solve practical problems. Agatz et al. (2012) extend this work by providing

a literature overview for the problem of dynamic arrival of riders and drivers. One

of the concluding remarks is that ”it may be the case realistic-size instances of the
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model cannot be solved fast enough to be of use in a matching engine of an actual,

sustainable ride-share system”.

In Trasarti et al. (2011) the authors derive travel routine for individual travelers

from sets of GPS traces. A routine consists of both a spatial (sequence of locations)

and a timing (time windows to visit the locations) component. Two routes are com-

bined by assuming that the common partial route is driven by carpooling. The part of

the passenger trip not covered by the carpool trip, is assumed to be covered by walk-

ing. An upper bound for possible carpooling in the study area under the assumption

of a maximum walking distance, is found by matching the routines.

Buliung et al. (2009) investigate the driving factors behind carpooling in the re-

gion of Toronto-Hamilton (Canada): age, gender and income category are the only

relevant factors. Recent carpool advisors (like http://www.zimride.com/) take addi-

tional factors into account for matching candidates (interests, music tastes) and allow

for feedback to be posted.

A comprehensive survey is given in Furuhata et al. (2013) that provides basic

definitions and a classification of current matching agencies in terms of the matching

search method and the target demand segment. Definitions are given for (i) spatial

characteristics by means of which routes for driver and rider are compared, (ii) tempo-

ral elements and (iii) the strategic consolidations performed by the matching agency

to combine incoming offers and requests. The survey covers 39 matching agencies and

classifies them into 6 categories based on (i) the primary search criteria and (ii) the

target markets. The problem dealt with in this paper falls into category 2. The pric-

ing (payment) problem is discussed extensively because according to the authors it

got less attention than the matching problem. The availability of information about

complementary travel modes is discussed and relates to the multi-modal ride-sharing

concept mentioned in Agatz et al. (2010).

4.5 Advisor Model

4.5.1 Principle of Operation

In order to find carpooling companions, people who did not find a suitable partner

by exploring their private network, register themselves with the GCPMS. Registra-

tion implies first posting some descriptive characteristics like age, gender, education

level, special interests (like music style preferences), job category, driver license avail-

ability, etc. Those qualifiers are used because it is known that continued successful

cooperation between people requires a minimal level of similarity.
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Secondly, people post information about each trip they periodically plan to ex-

ecute: those data consist of origin and destination locations, earliest and latest de-

parture and arrival times, the maximal detour distance that is acceptable, and the

availability of a car (possibility to drive). Note that a particular driver license owner

can be unavailable for driving on a specific day of the week because the family car on

that day is in use by her/his partner.

Periodic Trip Execution (PTE) need to be matched, not people. For example, a

periodic trip on Wednesday from A to B leaving at about 08:30h needs to be matched

with another one having similar characteristics. Of course, the people involved shall be

mutually compatible but they are not the primary subject of matching. A particular

individual can periodically carpool with several people for different trips in the week

(on Monday with colleague A, on Tuesday with neighbor B who differs from A). In

the remainder of the text, Periodic trip execution will be abbreviated by PTE.

A pooled trip execution is the cooperative execution of a set of trips using a single

car and a single driver. As a consequence, the route for each passenger shall be

embedded in the route of the driver (single driver constraint).

After having found a good match (details on how to do so will be explained in

Section 4.5.4) the matcher conveys its advice to the candidates involved (the owners

of the matched PTE); they evaluate the proposal, negotiate about carpooling, and

possibly agree to cooperate. Note that this negotiation is not guaranteed to succeed.

One of the reasons is that the individuals share more information between them during

the negotiation process than they share with the automated service to support the

matching process. Therefore, the candidates convey the negotiation result back to the

matcher service. This paper assumes that sufficient (financial) incentives are in place

in order to make this feedback happen.

After trip execution, users can evaluate each other. The GCPMS (Global Car-

Pooling Matching Service) allows for mutual evaluation of individuals, with respect to

timeliness and safety. Only individuals cooperating in an agreement can qualify each

other. The negotiation and qualification feedback is used by the learning mechanism

incorporated in the matching service. After receiving the feedback, the matching ser-

vice disposes of (i) data describing the PTE and their owners (individuals) as well as

of (ii) the negotiation result and (iii) the mutual evaluations. All those data are used

to train a logistic regression based predictor. Please refer to fig. 4.1 for an high level

overview of data flows, relations and method activation. The relation that qualifies

the PTE as suitable for negotiation constitutes a graph (shown in the rightmost part

of the diagram). The leftmost part represents the community of carpooling candi-

dates: during cold start and quality assessment of the advisor service (Phase 1) this
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Figure 4.1: Application context: the right hand side shows the matcher service.

People register some descriptive data (lower part) about themselves and their trips

to be executed periodically (PTE). Those constitute a graph (upper part): the edges

are labeled with the probability that negotiation will succeed when the trip owners

are advised to carpool. Negotiation result is fed back to train the logit predictor. The

left hand side shows the entities exercising the matcher service in consecutive phases.

community consists of an agent-based model. After deployment of the advisor (Phase

2), the community consists of real world commuters.

4.5.2 Graph-theoretical model

The model used for matching consists of a directed graph G = (V,E) (see Figure 4.2).

Each vertex in V corresponds to a PTE. A directed edge (u, v) corresponds to the

feasibility to combine the PTE; the presence of an edge indicates that it is worth to

advise the owners to start a negotiation. The weight of an edge, denoted by w, is the

estimated probability for the negotiation to succeed for the particular pair of PTE.

A loop (u, u) indicates that the owner of PTE u owns a car and can take his/her

own car. Note that a vertex for which the owner is unable to become the driver, can

never be a target vertex (its indegree equals zero). Vertices drawn using a shaded

circle represent a PTE whose owner is prepared to drive. In addition, every vertex

is labeled by capacity, which indicates the capacity of the car (including the driver)

owned by the PTE owner.



Agent-based Models in Carpooling: Estimating Scalability Issues 85

G

A
E

D

C
B

F
wEG

wGE

wCD

wDD

wBB

Figure 4.2: The diagram shows the graph where vertices correspond to PTE (periodic

trip execution) and edges are labeled with the success probability for the negotiation

(if that is sufficiently large). Grey vertices correspond to PTE where the owner is

prepared to drive; this is also indicated by the loops. Each loop has zero weight.

Some, but not all of the edges, have been labeled with their weights.

Note that

1. The set of vertices evolves over time since (i) people register and withdraw PTE

as time evolves and since (ii) people join and leave the carpooling candidates

society(removing all their PTE’s in the latter case).

2. Edges emerge as soon as the estimated negotiation success probability w(u, v),

exceeds a given threshold; this can be caused by changes in the PTE (e.g. by

relaxing the time constraints) or changes in characteristics of people (e.g. by

reputation changes (see below)).

3. Probability estimates can change over time by re-training the predictor. Note

that this can cause threshold crossing and hence edge creation or deletion.

4. Multiple vertices can be associated to a single car because the corresponding

PTE are executed at different times. Vertices associated to a unique car cannot

be linked, of course, by an edge.

Finally, the problem size can grow large when a nation-wide service and a one week

period are considered. Large scale deployment probably is a necessary condition for

both effective operation (delivery of advice that has a high success probability) and

economic viability. The matcher needs to cope with large networks whose topology

and edge weights evolve in time.
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This represents a complex problem and hence a thorough evaluation before deploy-

ment. An agent-based model simulating the actual population behavior, will be used

to exercise the matching service for several reasons. First, performance and effective-

ness need to be evaluated on a running system since they are very difficult to predict

from design data only. Second, deploying such system should go flawlessly because

lost customers will be reluctant to return. Finally, the system transient behavior

during the start up when only few customers are registered, is difficult to predict and

hence observations made are difficult to interpret; simulation can support learning

about the overall system behavior.

4.5.3 Similarity and Reputation

In this section we explore the functions used to determine the input variables for

the logit based negotiation success probability estimator. Note that the functions

specified for path and time interval similarity apply to carpools of arbitrary size,

although in this paper they are applied to pairs of PTE’s.

4.5.3.1 Path Similarity

Given a pair of PTE and the selected driver, path similarity indicates to what measure

the travel duration for the solo-driving path for the driver differs from the one for

the carpooling-path. Hence it is a measure for the time loss induced by the detour

imposed to the driver. Path similarity pathSim(pte0,pte1) is a value in the range

[0, 1] assigned to an ordered pair (pte0, pte1) of PTE in which the owner of pte1 is the

driver. Path similarity is specified by equation (4.1)

pathSim(B,A) =
d(OA, DA)

d(OA, OB) + d(OB , DB) + d(DB , DA)
(4.1)

where Ox and Dx denote respectively the origin and destination for individual x and

d(O,D) denotes the duration to travel from O to D.

The function is not symmetric in its arguments. This is easily seen because the

trips driven depend on the driver selection; the driver needs a detour to pick up

passengers. Equation (4.1) applies to the driver: the numerator corresponds to the

solo-trip, the denominator corresponds to the carpooled trip. The solo-driving paths

for driver (OA, DA) and passenger (OB , DB) in the road network do not need to be

identical to deliver maximal similarity. The case where the solo-path for the passenger

is embedded in the solo-path for the driver, leads to the maximal similarity value of

one (when the time required to stop and pick up a passenger is ignored).
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Note that the travel duration for a given origin-destination pair depends on the

departure time due to time dependent congestion. The additional model complication

is limited since time dependent travel times need to be computed anyway in order to

evaluate time interval similarity (see Section 4.5.3.2 item 2).

4.5.3.2 Time Interval Similarity

Time interval similarity tis() is a value in [0, 1] assigned to an ordered pair 〈pte0, pte1〉
of PTE. It is a measure for the appropriateness to start/stop a cooperative trip at a

given location. More specifically, it measures the probability that the time interval,

during which all carpool members can be simultaneously present at a specific loca-

tion, is sufficiently long to comfortably start or stop a trip. A low tis value means

that the available time for people to synchronize, does incur high time pressure for

at least one of the carpool members. Time interval similarity applies to the period

in time required to start/stop an activity (but not to perform a cooperative action).

Passengers shall get on/off board of the vehicle at an agreed location and moment

in time; there shall be a tolerance period that applies to the agreed moment in time.

The length of the period available to synchronize, defines the time interval similarity.

Time interval similarity is calculated for locations on the shared part of the route

driven by the carpool. Let W (i, L) denote the time window available to individual i

at location L. W (i, L1) is calculated from W (i, L0) using the expected duration to

travel from L0 to L1.

1. Time windows are used to calculate time interval similarity. Let tb(W ) and

te(W ) denote respectively the begin and end of a time window W . Each indi-

vidual supplies the time window for the trip start to the GCPMS. The expected

travel duration is used to calculate the time window for each visited location.

2. For every pair of PTE’s, we consider every candidate driver. Stops in the

considered routes are origin and destination locations for participants in the

carpool. Each individual visits a subsequence of the sequence of stops on the

route. For a given individual i, the time window for trip departure W d
i applies

to the first stop that belongs to the individual’s subsequence. The expected

duration for each trip (part of the route between consecutive stops) needs to

be determined. In general, accurate prediction of travel duration for a specific

trip is not possible. The notion of traffic analysis zone (TAZ) is used. Travel

times between TAZ centers are registered or calculated for several times of the

day and taking normal congestion into account. The results are kept in (time

dependent, non-symmetric) impedance matrices: each element in such matrix
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specifies the travel duration between two TAZ. The global advisor is assumed

to have the required impedance matrices available. Impedance matrix entries

are used to calculate, for each individual, a feasible time window at each stop.

3. In order to calculate time interval similarity between two periodic trips TA and

TB , consider a stop S0 and the associated time windows at that stop WS0

A =

〈tb,S0

A , te,S0

B 〉 and WS0

B = 〈tb,S0

B , te,S0

B 〉 respectively. Time similarity is calculated

as follows:

tb = max(tb,S0

A , tb,S0

B ) (4.2)

te = min(te,S0

A , te,S0

B ) (4.3)

tis(TA, TB) = 1− exp(−βTS ·max(0, te − tb)) (4.4)

Equations (4.2) and (4.3) specify the earliest and latest departure time at S0

respectively.

4. It is assumed that a period lasting for ∆tf suffices in fraction f of the cases to

ergonomically start cooperation. This assumption is used to determine βTS . A

fixed value for ∆tf = 15[min] for f = 0.95 has been used in the experiment

described below.

f = 1− exp(−βTS ·∆tf )⇒ βTS = − ln(1− f)

∆tf
(4.5)

5. Note that the travel duration between stops depends on time. In this context,

the travel time to move from stop S0 to stop S1 is the one for the earliest

moment in time that belongs to the time windows for both trips (if any). If no

such moment exists, tis(TA, TB) = 0. Using this convention, travel time from

a stop to the next one is identical for both trips considered and hence time

interval similarity calculation delivers the same value in each stop that belongs

to both trips: it can be calculated for the first stop that is contained in both

trips.

4.5.3.3 Profile Similarity

Profile similarity profSim() is a value in [0, 1] assigned to a pair of individuals that

indicates to what extent the individuals are compatible for carpooling (homophily

concept). The profile of a participant is specified by a vector of socio-economic and

preference attributes like age, gender, income category, job type, music preference etc.

Most of the attributes take discrete values; some are enumerations, for others a total

order is defined over the attribute range. The distance between two values a0, a1 ∈ A
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of an attribute, is defined by equation (4.6) for the enumeration case, and by (4.7)

for the ordinal case. For the ordinal case rA denotes the range of the value.

d(a0, a1) =

 1 if a0 6= a1

0 if a0 = a1

(4.6)

d(a0, a1) = a1 − a0 (4.7)

In a former design Knapen et al. (2013d), profile similarity profSim() has been

defined by the Euclidean distance between two attribute vectors by

profsim(A0,A1) = 1−

√√√√ 1

NA

∑
i∈[1,NA]

(
d(A0[i],A1[i])

rAi
)2 (4.8)

This method is problematic since a value change for an attribute having a small

value range such as gender, has a large effect on the similarity level. This effect has

been observed in early experiments where profile similarity was included based on

unweighted ageCategory, incomeCategory and gender attributes. Suppose that only

three attributes are used, one of which is gender (having a range of 1). The similarity

between two attribute vectors that differ in the gender attribute only, is given by the

evaluation of equation (4.8): the value 1−
√

1
3 = 0.42 is less than the threshold (0.75)

used to determine whether or not to insert an edge in the graph (see Section 4.5.4).

Hence, it causes the PTE graph to breakdown into two giant components, one for

each gender. An appropriate weight needs to be assigned to each attribute but there

is no way to determine it. Therefore, the distance value for each attribute is used as

an independent variable for the negotiation success predictor. The weight coefficient

then is determined by training the predictor.

4.5.3.4 Reputation

1. Safety reputation sRep() of a driver is a value in [0, 1]. Each individual has

a safety reputation value that evolves over time due to evaluation by passen-

gers (i.e. individuals who participated in an agreement where the person being

evaluated was the driver). Evaluations received are registered in a personal

evaluations list with the individual they apply to; for each issuer, only the most

recent evaluation is kept. The safety reputation is calculated as a weighted av-

erage of the values posted in the evaluation list: the weight decreases with the

age of the evaluation and increases with the duration of the cooperation.

2. Timeliness reputation tRep() (or accuracy reputation) is a value in the range

[−0.5, 0.5] assigned (by the co-travelers) to a PTE in an agreement : it indi-
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Figure 4.3: Data dependencies related to the negotiation success probability estima-

tion. Each arrow denotes a dependency. Ovals denote functions and rectangles denote

data (attributes). A logit predictor is fed with similarity and reputation values that

act as statistical explanatory variables. Previous negotiation results are fed back and

used in the training phase to determine the logit parameters (β vector).

cates to what measure the owner of the PTE respects the time schedule when

executing the periodic trip in the agreement. Timeliness reputation is defined

for both drivers and passengers. Note that it is defined as a characteristic of

a tuple 〈PTE, agreement〉 and not as a characteristic of an individual or of a

PTE because an individual may behave differently on a specific PTE in different

agreement contexts (pools).

4.5.4 Weights Determination - Learning Mechanism

The edge weights (negotiation success probabilities) are determined by means of lo-

gistic regression (logit). Figure 4.1 shows where the logit fits in the loop. Logistic

regression is a generalized linear model (GLM) Wood (2012), Tsai and Gill (2013)

using the logistic function ex

1+ex as the mean function (inverse of the link function).

Logistic regression predicts a vector of expected values for dependent variables Y. It
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is notes as

E(Y) = µ = g−1(XTβ) (4.9)

where X denotes the observed values for the independent variables, β is a vector

of unknown parameters to be estimated, g−1 is the mean function (in this case the

logistic function). The parameters vector β is determined by maximum likelihood

estimation.

When new negotiation result values are fed back to the advisor, a new set of

parameters β can be determined (learned) by maximum likelihood estimation. New

values will be processed in batches in order to limit resource usage. The batch size

still needs to be defined. As soon as weights have been recalculated, an additional

optimal matching involving all candidates who are not yet carpool members, needs to

be calculated. The recalculation scheduling strategy is related to the optimal batch

size selection and is out of the scope of this paper.

The dependent variable (a scalar in this case) is the probability for successful ne-

gotiation between two candidates. The explanatory variables are

simpath : Path similarity

simtime : Time interval similarity

simtime ∗ simpath : Product, used to model interaction

simprof,gender : Profile similarity: gender

simprof,age : Profile similarity: age

simprof,SEC : Profile similarity: socio-economic category

repusafety : Safety reputation

reputimeliness : Timeliness reputation

Figure 4.3 shows the data used for logistic regression. Arrows denote dependencies.

Example: tRep i depends on prdTripEx i (the periodic trip) and on indiv i (the

individual); tRep in turn is the minimum of the timeliness reputation of the individuals

involved in the negotiation. The logit estimator needs the tRep value to produce

the weight.

A data set that applies to previous negotiations (for which feedback is available)

is used in the training phase to determine the logit parameters (β vector). Profile

similarity attributes are fed into the logit as separate explanatory variables so that

their relative weight is determined by the maximum likelihood estimation of the logit

parameters (see also Section 4.7).

The product explanatory variable (simtime ∗ simpath) is used because the nego-
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tiation success probability is expected to be high only when both path and time

similarity values are sufficiently large and low when either one of them is small. In

Yi = g−1(XT
i · β) the predictor is a linear combination of the input variables. If the

product variable is not included, the model does not reflect reality. This can be seen

as follows. Assume that path similarity corresponds to index value 1 and time simi-

larity corresponds to index value 2: consider two vectors Xi and Xj of independent

variables values so that

Xi[1] = 0 ∧Xj [1] > 0 (4.10)

Xi[2] > 0 ∧Xj [2] = 0 (4.11)

Then consider XT
i , XT

j and their convex combinations c · XT
i + (1 − c) · XT

j where

c ∈ [0, 1]. The scalar products of those vectors with the β parameters are the inputs

for the logistic function. For the scalar products either (4.12) or (4.13) holds

XT
i · β ≤ c ·XT

i · β + (1− c) ·XT
j · β ≤ XT

j · β (4.12)

XT
i · β ≥ c ·XT

i · β + (1− c) ·XT
j · β ≥ XT

j · β (4.13)

Since the logistic function is monotonically increasing either (4.14) or (4.15) holds for

the corresponding probabilities, which is not what is wanted.

p(XT
i · β) ≤ p(c ·XT

i · β + (1− c) ·XT
j · β) ≤ p(XT

j · β) (4.14)

p(XT
i · β) ≥ p(c ·XT

i · β + (1− c) ·XT
j · β) ≥ p(XT

j · β) (4.15)

4.6 Optimization problem

The GCPMS aim is to maximize the effectiveness of the advice with respect to car-

pooling negotiation. Hence, the advice is based on maximizing the expected value for

the negotiation outcomes.

4.6.1 Formulation as linear programming problem

The carpooling problem can be described by an integer linear programming problem.

Let V = {1, 2, . . . , N} be the set of vertices, which correspond to PTE’s. See Sec-

tion 4.5.2. We remind that a directed edge (i, j) ∈ E of weight wi,j indicates the

compatibility of the owner of PTE i to get a ride with the owner of PTE j (in the

latter’s vehicle). Note that wi,i = 0. Each vertex j also has maximum capacity cj of

people that he/she can take in the vehicle (including the driver). In the LP we have
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a variable xi,j for each pair of vertices i and j, which has value one if i has a ride in

j’s vehicle, and zero otherwise. Variable xi,i exists only if i has a vehicle that he/she

can drive, and xi,i = 1 if and only if i will take his/her vehicle in the carpool solution.

The LP problem is stated below:

maximize
∑

i,j∈[1,N ]

wi,j · xi,j (4.16)

subject to

∀i ∈ [1, N ] :
∑

j∈[1,N ]

xi,j = 1 (4.17)

∀j ∈ [1, N ] :
∑

i∈[1,N ]

xi,j ≤ cj (4.18)

∀i, j ∈ [1, N ] : xi,j ≤ xj,j (4.19)

∀i, j ∈ [1, N ] : xi,j ∈ {0, 1} (4.20)

Constraint (4.17) requires that each PTE shall be assigned to exactly one vehicle (i.e.

the trip shall be executed). Constraint (4.18) bounds the number of people (including

the driver) in each vehicle. Constraint (4.19) makes sure that j is marked as a driver

if there exists any passenger i who gets a ride with him. Constraint (4.20) limits the

range of the (Boolean) variables, it is the integrality constraint.

4.6.2 Graph theory formulation

Consider a weighted directed graph G(V,E) where each vertex corresponds to a PTE

(periodic trip execution). There is a directed edge (u, v) if and only if the probability

of negotiation success between the owners of u and v is above a certain threshold,

where the owner of u will ride in the vehicle of the owner of v. The weight w of an

edge (u, v) is the probability for a successful negotiation between the owners of u and

v, respectively. If the owner of a PTE v has a car, then the corresponding vertex has

a loop (v, v) of weight zero. Each vertex v ∈ V has a capacity c(v) which denotes the

maximum number of people the vehicle of v can contain, including the driver. If the

owner of PTE v does not have a car, then c(v) = 0.

A star is a graph K1,t consisting of a center vertex called root and vertices con-

nected to it called leaves. A directed star is a star whose edges are all directed towards

the root of the star. A directed star partition is a collection of vertex disjoint directed

stars that cover V (G). A directed star partition is feasible if every root r in the star

partition has a loop, and its star in-degree (not including the loop) is at most c(r)−1.
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The weight of a directed star partition is the total weight of the edges of the stars in

the star partition. The LP in Section 4.6.1 is equivalent to the following problem:

Problem 4.6.1. Let G = (V,E) be a directed graph with edge weights w : E → R,

and let c : V → N. Find a feasible star partition of maximum weight.

Solution to problem 4.6.1 guarantees maximum compatibility between people and

their priorities for “taking rides.” It does not guarantee, however, that the number of

vehicles used is as small as possible. However, when wij = 0 or 1 these problems are

equivalent, as is seen in the claim below:

Claim 4.6.2. If the edge weight function wij is either 0 or 1, then Problem 4.6.1 is

equivalent to the problem of finding a star partition with minimum number of stars

(i.e. a minimum number of vehicles).

Proof 4.6.3. If the weight function wij is either 0 or 1 then an optimal solution to

Problem 4.6.1 (or the LP above) finds the maximum number of edges in a feasible

star partition of G. For any covering of V (G) with d disjoint directed stars, the total

number of edges in the stars is |V | − d, since each star contains one less edge than

the number of vertices covered by it. This implies that the minimum number of stars

covering the graph equals |V | - Max
∑
ij wijxij. Hence, an optimal solution to the

LP corresponds to a minimum feasible star partition, and vice versa.

From the claim above, it follows that when wij is either 0 or 1 then Problem 4.6.1

is equivalent to the following problem:

Problem 4.6.4. Let G = (V,E) be a directed graph, and let c : V → N. Find a

feasible star partition Γ = {Sr : r ∈ R} containing a minimum number of stars.

We will show that Problem 4.6.4 is NP-hard. This implies that Problem 4.6.1 is

also NP-hard since Problem 4.6.4 is a special case of it. We will reduce the Minimum

Dominating Set Problem (MDSP) to Problem 4.6.4. A dominating set for a graph

G = (V,E) is a subset S of V such that every vertex not in S is adjacent to at

least one member of S. The domination number γ(G) is the number of vertices in a

smallest dominating set for G. The dominating set problem concerns testing whether

γ(G) ≤ K for a given graph G and input K. It was shown to be NP-complete in

Garey and Johnson (1979).

Theorem 4.6.5. Problem 4.6.4 is NP-hard.

Proof 4.6.6. Given an instance of MDSP consisting of a graph G and input K,

we transform it to an instance of Problem 4.6.4. We create from G a symmetric
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directed graph G′ where for each (u, v) ∈ E(G) we have (u, v) and (v, u) in E(G′).

Let c : V → N be defined by c(v) = Maxdeg + 1 where Maxdeg is the maximum degree

in G. It is not difficult to see that every dominating set S for G corresponds to a star

cover in G′ where the centers of the stars are in S. By removing some edges of the

stars it is possible to get a star partition which is feasible by the choice of the function

c. Conversely, every feasible star partition in G′ corresponds to a dominating set S

in G, where S corresponds to the centers of the stars. Hence γ(G) ≤ K if and only if

G′ has a feasible star partition with at most K stars.

In the proof above we transformed the Minimum Dominating Set Problem to a

special case of Problem 4.6.4 where the capacity function c is, c(v) = Maxdeg for all

v ∈ V , meaning that, in fact, there is no bound on the degrees of the stars. We can

show that even if the degree of every star is at most two (i.e. every vehicle can hold

at most two passengers, not including the driver), the problem is still NP-hard. This

can be done by reduction from the 3-dimensional matching problem (see Garey and

Johnson (1979)). We omit the details of the proof.

4.7 Data characteristics - Problem size estimation

Since the problem is NP-hard as was shown above, even in the simplified cases where

all weights are equal to one, it is important to find heuristic solutions and to gain

insight into the structure of the data. Therefore, simulated carpooling candidate net-

works have been built; their characteristics have been analyzed. Since no negotiation

feedback data are available yet, the β coefficients for the logistic regression cannot be

determined by a maximum likelihood procedure. This section describes some exper-

iments conducted. Several models to determine the negotiation success probability

have been investigated. All experiments have been carried out using a single set of

predicted schedules in order to make them comparable; this is required because the

FEATHERS simulator constitutes a stochastic model (see Section 4.7.1). Results for

two of the experiments have been reported in detail below.

In Section 4.5.3.3 it has been shown that multiple giant components occur when the

weights for specific attributes used in the profile similarity, are too large. Furthermore,

there is no evidence to determine the weight coefficients for those attributes without

measuring the negotiation feedback. Therefore, it has been decided not to include

profile similarity in the simulation. This is equivalent to assuming that the weight for

profile similarity equals zero.
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4.7.1 Data used

Daily schedules (agendas) were generated by the FEATHERS operational activity-

based model for the region of Flanders (Belgium). The model input consists of

(i) a synthetic population for the study area, (ii) an area subdivision into TAZ,

(iii) land-use data for each TAZ and (iv) a set of impedance matrices specifying the

travel time and distance between TAZ for off-peak, morning-peak and evening-peak

periods and for several transportation modes (i.e. car, slow, public transport).

Decision trees trained on survey data, are applied in a predefined fixed order

that models the decision making process. The schedule (agenda) is constructed using

several stages; these results in a chained decision process where each stage further

completes the partially constructed agenda. FEATHERS output consists of a travel

schedule for each member of the synthetic population.

The set of all schedules (agendas) allows to calculate expected mode-specific traffic

flows in time and space; those flows have been validated using traffic counts made

available by public traffic management services. FEATHERS is a Monte Carlo micro-

simulator; the outcome for each decision is sampled using the probabilities correspond-

ing to the decision tree leaves. Hence, sets of agendas for the synthetic population

generated by different runs in general differ. The Flemish model is characterized by

Synthetic population size : 6 million people

Number of TAZ : 2368

TAZ area (average value) : approximately 5 km2

Number of diaries in survey : approximately 8000

A simulation for a Monday was used. Agendas containing at least one work activity

have been considered (since the problem of commuting is investigated). People per-

forming a HOME-WORK trip starting between 06:00h and 09:00h are considered. It

was assumed that 20% percent of them are interested to start a negotiation to carpool

but cannot find a partner in their local network; hence they decide to register with

the global advisor. From this set of commuters, people were selected only if their first

HOME-WORK trip could be combined with a corresponding WORK-HOME trip.

Note that, as a consequence, people who perform another activity immediately after

each work activity (e.g. those having a WORK-SHOP trip instead of a WORK-HOME

trip) are considered not to be interested in carpooling.

4.7.2 Similarity values used

Following similarity values have been calculated:
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1. Path similarity for the HOME-WORK spHW trip which is assumed to equal the

value for the return trip. Note that the equality holds in case the distances are

considered but that differences can occur in case travel time is used; this is due

to the time dependency of travel duration (even on the same route both the

forward and return trips can require a different amount of time).

2. Schedule time similarity is determined by two time interval similarity values

stHW and stWH for the HOME-WORK (HW) and the WORK-HOME (WH)

commuting trips respectively. Both values do not necessarily have equal effect

on the negotiation success probability. This is accounted for only in the agent-

based simulator. Some of the information used during negotiation is available

exclusively to the participants in the negotiation (e.g. particular details of the

schedule).

Time similarity between two pairs of PTE (for two individuals both the HW

and WH trips are considered) is assumed to be given by st = stHW · stWH . This

means that both have equal weight in the probability estimation. This reflects

the fact that the advisor service needs to predict the negotiation outcome using

less information than is available to the negotiators.

Finally, the logit model makes use of predictors spHW and st as well as of the product

spHW · st for the reason mentioned in Section 4.5.4.

4.7.3 Experiment 1 : Estimate probability as product of sim-

ilarity values.

Negotiation success probabilities have been estimated by the product P (sp, st) = st ·sp

of the similarity values. The resulting function is shown in Figure 4.4. Contour lines

have been drawn on the horizontal plane.

4.7.4 Experiment 2 : Estimate probability using a logistic

function

Approximating the probability with the product of the similarities is suspected to

over-estimate the probability for low similarity values because ∂P (sp,st)
∂sp and ∂P (sp,st)

∂st

are constants. Therefore, a second experiment has been conducted where the proba-

bility (sp, st) is given by a logit estimator. Since no feedback data are available yet,

it was assumed that P (sp, st) = sp · st in a discrete set of 4 points. This results in 4
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Figure 4.4: Negotiation success probability as a function of path and time similarity:

P (sp, st) = sp · st.
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equations like

P (spi , sti) =
exp(z(ti))

1 + exp(z(pi))
(4.21)

with

zi = β0 + βt · sti + βp · spi + βt,p · sti · spi (4.22)

The chosen (ti, pi) points were : (0.1, 0.1), (0.5, 0.9), (0.9. 0.5) and (0.99, 0.99).

The resulting function is shown in Figure 4.5. Contour lines have been drawn on the

horizontal plane.

4.8 Discussion

Experiments have been executed for several participation levels (the fraction of com-

muters who make use of the advisor system while exploring for partners).

Results are presented in pairs. For each trait or metric both the product and

logit cases are compared. In the product case the negotiation success probability

was estimated by the product of the time and path similarity values. In the logit case

a logistic predictor was used for which the parameters were determined by requiring

the logit function value to equal the product function value in 4 specific points (see

Section 4.7.4).

Tables 4.1 and 4.2 summarize the network traits for the probability thresholds

(see 4.5.2 item 2) considered in the analysis. As was expected from the difference

between the functions shown in Figures 4.4 and 4.5, the logit case retains more

large components for higher probability values. However, the absolute numbers in

the tables are relevant. Clearly, even for a probability threshold of 90%, connected

components can contain 150k vertices. This figure together with the number of edges,

is relevant as a problem size estimation. Note also that for both the product and

logit cases, the edge density (actual number of edges divided by the maximum

number of edges in the undirected graph having the same amount of vertices) has

the same order of magnitude for all networks having a probability threshold up to

90%. The number of components is to be considered in conjunction with the size of

the eight largest components shown in tables 4.3 and 4.4. It turns out that one giant

component occurs and that all other components are small.

Figure 4.6 shows the number of non-trivial connected components (i.e. compo-

nents having more than one vertex) as a function of the probability threshold. Note
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Figure 4.6: Number of non-trivial connected components as function of the prob-

ability threshold. Singletons are trivial components and hence are excluded. For

high probability values the number of dropped singletons grows. Top: product case.

Bottom: logit case.
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Figure 4.7: Number of vertices in the largest connected component as a function of

the probability threshold. Top: product case. Bottom: logit case.
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tom: logit case.
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probab nVertices nEdges nEdges
nV ertices edgeDensity nComponents

0.750 153407 3162041 20.612 1.343E-4 494

0.775 146532 2254394 15.384 1.049E-4 565

0.800 136012 1511902 11.115 8.172E-5 651

0.825 120373 928590 7.714 6.408E-5 827

0.850 97917 496709 5.072 5.180E-5 1010

0.875 67569 210328 3.112 4.606E-5 1154

0.900 31485 57974 1.841 5.848E-5 1135

0.925 5944 6127 1.030 1.734E-4 763

0.950 20 11 0.550 2.894E-2 9

0.975 0 0

Table 4.1: Network characteristics for the product case, participation level 20%

probab nVertices nEdges nEdges
nV ertices edgeDensity nComponents

0.750 166394 11093195 66.668 4.006E-4 221

0.775 165677 9757662 58.895 3.554E-4 241

0.800 164688 8415148 51.097 3.102E-4 268

0.825 163343 7062333 43.236 2.646E-4 315

0.850 161257 5691034 35.291 2.188E-4 354

0.875 157886 4310196 27.299 1.729E-4 423

0.900 151493 2929452 19.337 1.276E-4 493

0.925 136675 1594380 11.665 8.535E-5 677

0.950 93740 449311 4.793 5.113E-5 1035

0.975 39 24 0.615 1.619E-2 15

Table 4.2: Network characteristics for the logit case, participation level 20%
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Prob. Threshold Size1 Size2 Size3 Size4 Size5 Size6 Size7 Size8

0.750 152000 23 22 18 15 14 12 11

0.775 144923 44 23 18 17 14 13 11

0.800 134080 22 20 17 14 14 13 13

0.825 117912 26 21 15 15 14 13 12

0.850 94653 33 28 27 26 23 23 20

0.875 63235 76 56 39 39 39 39 37

0.900 26004 187 139 85 70 69 65 63

0.925 1294 709 173 87 60 56 55 51

0.950 3 3 2 2 2 2 2 2

0.975 0

Table 4.3: Sizes for the eight largest connected components as a function of the

probability threshold. Case: product, participation level 20%

Prob. Threshold Size1 Size2 Size3 Size4 Size5 Size6 Size7 Size8

0.750 165772 18 13 9 8 8 8 8

0.775 165026 10 10 8 8 8 7 7

0.800 163953 14 10 9 9 8 8 8

0.825 162432 19 17 17 14 13 10 10

0.850 160300 12 11 11 11 11 10 10

0.875 156716 36 24 12 10 10 10 9

0.900 150043 40 29 21 16 16 16 13

0.925 134686 40 18 17 16 16 14 14

0.950 90506 30 22 19 19 17 16 16

0.975 6 4 3 3 3 2 2 2

Table 4.4: Sizes for the eight largest connected components as a function of the

probability threshold. Case: logit, participation level 20%
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probab nVertices nEdges nEdges
nV ertices edgeDensity nComponents

0.750 124329 6222163 50.045 4.025E-4 210

0.775 123622 5469193 44.241 3.578E-4 222

0.800 122683 4712628 38.413 3.131E-4 234

0.825 121395 3950660 32.543 2.680E-4 294

0.850 119465 3180767 26.625 2.228E-4 328

0.875 116236 2403988 20.681 1.779E-4 363

0.900 110659 1630452 14.734 1.331E-4 460

0.925 98329 882112 8.971 9.123E-5 651

0.950 64392 242630 3.768 5.851E-5 924

0.975 14 7 0.500 3.846E-2 7

Table 4.5: Network characteristics for the logit case, participation level 15%

probab nVertices nEdges nEdges
nV ertices edgeDensity nComponents

0.750 81629 2758538 33.793 4.139E-4 210

0.775 81000 2426100 29.951 3.697E-4 230

0.800 80191 2092183 26.089 3.253E-4 255

0.825 79096 1754861 22.186 2.805E-4 293

0.850 77501 1412608 18.226 2.351E-4 328

0.875 74969 1069807 14.269 1.903E-4 375

0.900 70300 726894 10.339 1.470E-4 462

0.925 60805 394135 6.481 1.066E-4 568

0.950 37650 109725 2.914 7.740E-5 821

0.975 0 0

Table 4.6: Network characteristics for the logit case, participation level 10%
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Prob. Threshold Size1 Size2 Size3 Size4 Size5 Size6 Size7 Size8

0.750 123779 16 13 8 8 7 7 7

0.775 123000 34 19 13 10 7 7 7

0.800 122005 19 18 17 13 10 9 8

0.825 120557 19 16 15 15 11 10 10

0.850 118525 18 15 12 12 12 11 11

0.875 115208 23 19 15 12 11 11 11

0.900 109353 25 12 11 11 11 10 9

0.925 96328 37 30 25 25 19 16 16

0.950 61090 73 37 36 35 33 32 32

0.975 2 2 2 2 2 2 2

Table 4.7: Sizes for the eight largest connected components as a function of the

probability threshold. Case: logit, participation level 15%

Prob. Threshold Size1 Size2 Size3 Size4 Size5 Size6 Size7 Size8

0.750 81009 14 13 13 12 12 11 8

0.775 80318 17 13 13 12 11 11 11

0.800 79453 14 14 14 13 13 12 11

0.825 78308 13 11 11 9 8 8 8

0.850 76622 11 11 10 10 9 9 8

0.875 73896 32 20 14 12 11 10 10

0.900 68877 43 26 21 20 18 14 12

0.925 59059 36 22 14 14 14 13 12

0.950 34491 64 54 41 36 32 30 28

0.975 0

Table 4.8: Sizes for the eight largest connected components as a function of the

probability threshold. Case: logit, participation level 10%
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that the number drops to zero since trivial components consisting of a single individual

are not considered (they cannot carpool).

Figure 4.7 is more relevant since it shows the size of the largest (number of vertices)

connected component as a function of the probability threshold. As can be expected

from the functions shown in Figures 4.4 and 4.5, large components continue to exist

for large probability thresholds in the logit case.

Figure 4.8 shows that in both cases the large majority of connected components

is quite small. However, the distributions are fat tailed and in both cases very large

components occur. Tables 4.3 and 4.4 show the size for the largest eight components.

All networks (both cases for all probability threshold values) consist of exactly one

giant component. It is not known whether or not the introduction of profile similarity

attributes will disintegrate the giant component. No evidence for this has been found

in the literature but the phenomenon cannot be excluded either. Also note the narrow

range for the sizes of the second, third and fourth largest components.

Figure 4.9 shows that the inDegree does not largely differ between the product

and logit cases. The same observation is made for the outDegree in Figure 4.10.

Note however the difference between the distributions for inDegree and outDegree in

both the product and logit cases. Clearly, the outDegree can grow to very large

values for a small number of vertices.

The experiment described in 4.7.4, first was executed for the case where 20% of

the commuters make use of the GCPMS (see Section 4.7.1). It has been repeated

for the cases where 15% and 10% participation levels also. Network characteristics

results have been summarized in tables 4.5 and 4.6 respectively. Those tables shall

be compared to table 4.2 that applies to the 20% participation level. Note that the

size of the largest component and the average vertex degree drop with decreasing

participation level; note also that the edge density seems to remain more or less

unchanged. From tables 4.7 and 4.8 follows that the networks still constitute of

a single giant component and hence do not yet disintegrate at the 10% and 15%

assumed participation levels investigated.

4.9 Conclusion

Giving optimal advice in a global carpooling advisor requires the solution of an NP-

hard optimization problem. In order to support the search for feasible solutions,

we estimated the characteristic features of the carpooling candidates network. Daily

agendas for a synthetic population were predicted and the resulting network was
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constructed. It was assumed that both time and path (route) similarity are rele-

vant factors for negotiation success. No feedback data about negotiations is already

available. Therefore, β parameters for a logistic regression have been estimated by

assuming that the resulting probability is known for specific time and path similarity

values. The resulting logit predictor has been applied to the commuting trips found

in the agendas. The carpooling candidates network was built and analyzed. It turns

out to consist of a single giant component and a large number of small ones. The size

of the giant component and inDegree/outDegree distributions have been calculated.

Even for fairly small level of carpooling interest, the size of the giant component grows

large. When the carpooling participation level drops, the average vertex degree drops

but the size of the giant component hardly does.

For various algorithms and heuristics for the carpooling advisor see Ben-Arroyo Hart-

man et al. (2014).
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4.10 Conclusion to Chapters on Carpooling

The main limitations and challenges for the models described in chapters 3 and 4

are listed below. Those lead to open interesting research paths. Extensions to the

ongoing carpooling research are suggested. In the remainder of the section n denotes

the size of the largest group of candidates considered for carpooling together and c

denotes the maximal car capacity (driver included) registered with the advisor. Let

nP ≤ n denote the number of candidate participants for a carpool.

4.10.1 Agent-based Models

The Agent-Based Models (AgnBMs) described in Hussain et al. (2014, 2015a,b,d,c)

decently handle groups having 2 < n ≤ c for time interval similarity calculation.

The reported models however consider carpooling for commuting and assume that all

cooperating individuals share the home and work locations respectively. Neither do

those models consider the use of Carpool Parkings (CPPs). Hence the path similarity

requirement is fulfilled automatically. At the time of writing this thesis, the first

model supporting multiple home locations, is ready for testing. In this model we do

not (yet) consider carpool parkings and everyone is picked up at home. This is done

by considering every permutation of the nP participants, hence nP ! cases for which

to calculate distances and evaluate time windows.

4.10.2 Co-routing Problem Size

Huijbregts (2015) handles the co-routing problem in a realistic scale (Flanders region)

but for the case n = 2 only.

The required computational effort for the co-routing problem analyzed in Knapen

et al. (2012a) is estimated as follows.

1. The number of candidate participants in each case to evaluate for the co-routing

problem, is restricted to the car size (nP ≤ c).

2. Let nC denote the number of carpool parkings feasible for at least two of the

candidates in the considered set.

3. The number of layers in the proposed algorithm, equals nP . The size of the

transferium set nT = nC + nP . The number of partitions of the layer set

is given by the Bell number B(nP ). For a partition of size x the number of

possible assignments of transferia is
(
nT
x

)
. An upper bound for the number of
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possible assignments N then is given by

N ≤ B(nP ) · max
x∈[1,nP ]

(
nT
x

)
(4.23)

N ≤ B(nP ) ·
(
nT
nT /2

)
(4.24)

4. The number of times to execute the route determination algorithm in an AgnBM

is the same in cases with and without the use of carpool parkings. The algorithm

is executed every time an exploring agent contacts another one with a request

to build or join a carpool. The required computational effort is compared to

the one for the currently used model (section 4.10.2) by the ratio R:

R =
N

nP !
≤ B(nP ) ·

(
nT
nT /2

)
· 1

nP !
(4.25)

5. nC is expected to be small because of the maximal detour factors considered:

e.g. between 2 and 5. For nP = 4, nC = 3 one has N ≤ 15 ·
(

7
3

)
= 525 cases

and R ≤ 21.9. It can be provisionally concluded that for realistic numbers, the

upper bound N can be estimated to be two orders of magnitude larger than np!.

More research is required to find a smaller upper bound.

4.10.3 Global CarPooling Matching Service (GCPMS)

The Global CarPooling Matching Service (GCPMS) needs more attention.

4.10.3.1 Objective Function

It can be argued that the objective function in the optimization problem shall contain

the logarithm of the weights. The probability to find a particular constellation of

carpoolers is given by

maximize
∏

i,j∈[1,N ]

w
xi,j
i,j (4.26)

which leads to

maximize
∑

i,j∈[1,N ]

ln(wi,j) · xi,j (4.27)

because ln(x) is monotonically increasing.
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4.10.3.2 Probability Estimation for Larger Carpools

The case described in chapter 4 estimates the negotiation success probability values

for pairs of carpooling candidates (n = 2). An operational GCPMS shall be equipped

with multiple logit estimators to capture the negotiation feedback for candidate sets of

size 2 ≤ n ≤ c. This is estimated not to be problematic since n is small (typically n =

5). However, estimating the β coefficients for the cases having (near) full cars could

be problematic due to their infrequent occurrence and hence the lack of negotiation

result feedback for such cases.

4.10.3.3 Path Similarity

The effect of the location choice problem mentioned in section 1.4 on the average

value for path similarity used in this chapter, is yet unknown and shall be covered by

future research.

4.10.3.4 Cohesion

The cohesion concept is not adequate: it shall not apply to an agreement but to a

pair 〈agreement,PTE〉 because the set of participants in a pool can evolve and not

every participant belongs to the pool for the same period of time. Definitions for

agreement and cohesion need to be revised.

4.10.3.5 Star Cover Model and Carpools of size > 2

The MILP and equivalent star cover problem formulations make use of the probability

values for pairs only. They assume that the probability estimated for the negotiation

success between individuals iA and iB is a constant irrespective of the fact that

either of them already belongs to a carpool. This design decision was motivated by

practical concerns. Apart from the difficulties to estimate the required probabilities,

brief analysis of the problem suggests that, taking into account the estimated success

probability for negotiation in groups larger than two, might lead to an intractable

problem.

Suppose that sufficient negotiation result feedback data are available. Note that

again no carpool parkings are used. The method then can be extended as follows.

1. For path similarity, the method used in (4.1) can easily be extended but requires

the passenger pick-up order to be known. Hence, for each possible driver, a

Vehicle Routing Problem (VRP) needs to be solved. This is expensive but not

problematic since the number of pool members is limited by n.



114 Chapter 4

2. The time interval similarity function (4.4) can be used. Time intervals follow

from the selected path and hence also depend on the selected driver.

3. Then for a given set of candidate PTEs, the time and path similarities can be

calculated for each potential driver. Those are used by the logit estimator that

is applicable for the size of the candidates group to predict the negotiation re-

sult. The case delivering the maximum value is retained and determines the

driver. The corresponding probability is assigned to the group as a weight. In

practical cases a probability threshold pmin shall be used so that individuals

corresponding to a set of PTE shall be advised to negotiate only if the probabil-

ity for success is sufficiently large (strictly larger than pmin : the reason is given

in item 5). If the calculated probability is below or equal to the threshold, the

set of PTEs is considered not to be useful and it gets zero-weight.

4. A graph G similar to the one mentioned in 4.5.2 is build. The same weights for

PTE pairs are considered to decide which PTEs shall be connected by an edge.

Let Prob(s) denote the negotiation success probability for a set s of individuals.

Then Prob(s0) ≥ Prob(s0 ∪ s1). Hence by using the probability for pairwise

negotiation success as a criterion to add an edge, we will not exclude any pair

that is member of a larger successfully negotiated group. Note that no weight

is assigned to the edges in this graph.

5. The GCPMS then needs to find a maximum weight clique cover of the graph

G, subject to the car capacity constraint. Instead of assigning a weight to each

edge, a weight is assigned to each clique. Cliques having size > n get zero weight

which will exclude them from the solution since each such clique can be split into

smaller cliques having a weight that is larger; in the ultimate case, the clique

is split into a collection of singletons. Cliques having insufficient negotiation

success probability also get zero weight (see item 3). Each singleton is assigned

a non-zero weight ws such that ws < w/n where w denotes the smallest among

the strictly positive non-singleton clique weights. This is done to avoid a trend

to generate solutions consisting of singletons. Then w = pmin and the weight

for a singleton is pmin/n.

6. The star cover for G is no longer a suitable model because of the additional

requirement that every star shall consist of vertices constituting a clique. In

the algebraic formulation this results in an additional set of non-linear equations
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(the notation of section 4.6.1 is used: j denotes the driver)

∀j∀i∀k : xi,j · xk,j ≤ xi,k (4.28)

Equation (4.28) is equivalent to an implication.

7. The solution is re-formulated as follows:

(a) determine all cliques in G for which the size is not larger than the maximal

car capacity

(b) create a graph GC(V C , EC) where each clique found in the previous step

corresponds to a vertex and vertices are connected by an edge if and only

if the corresponding cliques are not disjoint (GC is a subgraph of the clique

intersection graph for G because the clique size is limited by the car ca-

pacity).

(c) observe that overlapping cliques CA and CB cannot both be part of the

solution since each clique represents a potential carpool

(d) each clique has a weight (calculated by the appropriate logit estimator)

and hence each vertex in GC is weighted

(e) then find a maximum weight independent set in graph GC

This is an NP hard problem.

8. At this moment the only numerical evidence available is the frequency distribu-

tion for the size of the carpools that emerge in our agent based model (Hussain

et al. (2015d))

Size Share Symbol

2 0.70 α2

3 0.22 α3

4 0.08 α4

One can expect that the number of cliques of size 3 in the graph G that represent

potential co-travelers, would be s3 ≈ α3

α2
·NE = 0.22

0.70 ·NE where NE is the number

of edges found in graph G. The expression for s3 holds because (i) an edge in G

corresponds to a clique of size 2 and because (ii) the cliques are based on (nearly)

the same similarity conditions as the ones used in the agent based model. This

gives an idea about the number of logit predictions to compute. However, all

those 3-cliques consist of PTE that are mutually compatible in pairs (otherwise

they would not constitute a clique); hence they are all embedded in the graph
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used in the study and therefore the size of the connected components will not

change. Note that the number of vertices in GC is given by

NV C = NV +NE ·
( i=maxCarCap∑

i=2

αi
α2

)
(4.29)

where NV is the number of vertices in the original PTE graph (since those are

trivial cliques). For the number of edges

NEC ≥ NE · 2 (4.30)

since each pair in G induces at least two edges in GC because two singleton

cliques are contained in the pair-clique. The weights can be assumed to equal

one (since sufficient negotiation success probability is required); this reduces

the problem to a maximum (cardinality) independent set problem which is NP

hard.

Because the problem is intractable and the required data collection cannot be expected

to be successful, this solution is not considered to be feasible in practice.

4.10.3.6 Evolution

The size of the problem found in this chapter, is an upper bound because incoming

requests arrive at a specific rate and not all at once. Furthermore, carpools disin-

tegrate after some time, possibly leading to new requests and possibly triggered by

new proposals being posted. Hence, the set of requests to handle evolves over time.

The number of unfulfilled proposals at any time is expected to be smaller than in the

case considered in this chapter and hence the average negotiation success probability

will be lower. On the other hand, some effective carpoolers might consider to look

for new opportunities. The set of available candidates depends on time and on be-

havioral phenomena. A difficult question is when to answer a request and to provide

an advice; the longer the customer is prepared to wait, the higher the probability to

find opportunities having a high negotiation success probability. To solve the men-

tioned time dependency, a new business model is to be designed. The problem size is

expected to decrease but this could render the system operationally infeasible due to

lack of pairs that can be combined.



Chapter 5

Within Day Rescheduling

This chapter consists of

Knapen et al. (2013c) Within Day Rescheduling Micro-simulation combined with

Macrosimulated Traffic

which is based on

Knapen et al. (2012d) Framework to Evaluate Rescheduling due to Unexpected

Events in an Activity-Based Model

5.1 Research Context

In section 1.4 the difference between planning (building a list of activities to be

executed) and scheduling (completing all activity and trip attributes, included timing)

for a given period, was explained. In this chapter, rescheduling is studied. The need

for rescheduling models is argued as follows.

In the activity-based modeling context, travel demand is predicted by generating

daily agendas for all members in a population and aggregating the demand from the

individual schedules. Schedule predictors are based on data acquired by surveys which

collect travel demand and in some cases time-use information. The resulting data and

model predictions apply to the situation for which they were collected.

In many cases it is important to know how the demand changes when the context

changes. The context for each individual consists of the environment, the personal

attributes and objectives as well as the current behavior. Knowledge about changing

demand is relevant to evaluate the effect of (i) unexpected incidents (environment

changes) and of (ii) Travel Demand Measure (TDM) measures (changes in environ-

117
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ment or in personal attributes).

TDM measures aim to optimize the use of the transportation infrastructure and

services e.g. at the level of efficiency (congestion reduction), energy consumption.

The intended change in travel demand is to be realized by change in travel behavior.

When the current and the expected situations are known, it generally is very

difficult to find out how to control the evolution to the expected situation. The set

of parameters and the required changes cannot be observed directly because, due to

the complexity of the problem, it is in general not possible to identify a case having

sufficiently similar initial en final situations respectively for which the evolution can

be analyzed.

The analyst might be interested in the final situation only (e.g. congestion decrease

in peak periods, electric power demand peak shaving, increasing the share of public

or other collective transportation in the total set of trips driven). However, in any

case the new situation is to be reached from the current one and hence requires

particular changes. This suggests the importance of modeling change and hence

schedule adaptation.

Some objectives for research on schedule adaptation due to TDM measures, are:

(i) to evaluate the effect of stimuli (ii) to find out whether or not the expected final

state can be realized, (iii) to study the evolution of the travel demand over time.

Micro-models are useful tools to solve the questions raised. They allow to take

into account both the individual’s socio-demographic properties and the schedule that

is currently used by the individual. This is important since adaptation to unexpected

environment changes and to TDM measures, requires modeling the change of the

schedule relative to the current situation.

When collecting survey data, it is essential to record data about both the initial

and final (either revealed or stated preference) states as well as data about factors

triggering the change. In the state change prediction model, data about the initial

state and the change need to be kept together since they essentially constitute a single

piece of information. This requirement is based on the assumption that the scheduling

and rescheduling behavior of an individual are closely related.

Micro-simulation allows to relate the scheduling and rescheduling behavior for

a given individual. For this reason we argue that using micro-simulation for both

scheduling and rescheduling constitutes a solution that is expected to generate more

accurate predictions than tools operating at an aggregated level. The latter methods

would first predict the current behavior at an aggregated level and then predict either

the changed behavior or the changes relative to the current behavior.

The framework described in this chapter is aimed at evaluation of rescheduling
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without replanning. Actors can change trip and activity attributes but not drop or

add activities. Without re-planning, a schedule can be adapted by (i) re-timing of

trips and activities, (ii) re-location of activities and (iii) changing the selected mode.

Individuals are assumed to act independently. No individual can be made aware

of the schedule of another one. Constraints resulting from coordination need to be

introduced by deriving them from the socio-demographic properties and from the

schedule. For example, sampling based on survey results can be used (i) to determine

the allowed change in the start time of a social activity (which is by definition a

cooperation) and (ii) to find out whether a bring-get (pick-drop) activity induces a

hard time constraint (e.g. bring someone to the train station or pick up a child from

school).

The proposed framework is a hybrid model because it combines microscopic sched-

ule adaptation with aggregated traffic assignment based on the use of Traffic Analysis

Zones (TAZs). The model keeps track of a schedule for each individual. Rescheduling

decisions are micro-modeled at the individual level; the resulting travel demand is

aggregated for a period of one hour and loaded onto the network; this is done for

every time-of-day that is an integer multiple of 15[min] by using a sliding window to

determine the demand for a one hour period. The resulting interzonal travel times

are skimmed from the result of the traffic assignment and made available to the in-

dividuals. Hence, the framework supports rescheduling models that do not require

feedback of detailed route information. Advantages and drawbacks of technique are

discussed in section 5.12.

Following components of the rescheduling behavior model are covered by the re-

search reported in this chapter:

1. the mechanism of schedule adaptation

2. the degrees of freedom in a schedule

3. the method to evaluate (marginal) utility

4. the criteria used to compare the result with the original schedule that is used

as the reference. The original schedule is assumed to be optimal.

5. the effect of the (delayed) perception of changes in the environment on the

rescheduling decisions. What does the individual perceive ? How is the obser-

vation interpreted ?

6. the beliefs of the individual that constitute the base for the prediction of the

near future (e.g. expected travel times)

7. time constraints in schedules



120 Chapter 5

At the technical level, special attention was paid to the adjustment of the initial

schedules and initial travel time matrices in the hybrid system. This is a non-trivial

and critical problem. It is required because the schedule predictor (FEATHERS) uses

off-peak and peak period travel time matrices while the schedule adapter (WIDRS)

requires a travel time matrix for every 15[min] in order to create a feedback loop.

The initial adjustment is critical because it essentially involves schedule adaptation

for technical reasons. The schedules resulting from the adjustment stage are used as

a reference when evaluating adaptations induced by the phenomenon being studied.

The rescheduling model used as a first research case and described in this chapter,

allows for re-timing only. As a consequence, the total demand for every OD pair for

the simulated period does not change; only the distribution of trips over time changes.

Therefore, the application domain for the implemented case is restricted to one-time

short-term rescheduling i.e. cases where no replanning is required and locations as

well as mode changes are not possible. This covers unexpected event occurrence which

leaves the goals for every individual unchanged (emergency or evacuation situations

are excluded because they change the short term objectives of people and hence

require replanning).

Research questions covered in this chapter are:

1. How to model schedule adaptation for the cases where the planning remains

unchanged ? How can the rescheduling decision model be decomposed into

submodels ? How to determine Degrees of Freedom (DOFs) in the schedule ?

2. Can aggregated Traffic Assignment (TA) be used to evaluate rescheduling be-

havior models ?
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5.2 Abstract

The concept of rescheduling is essential to activity-based modeling in order to calcu-

late effects of both unexpected incidents and adaptation of individuals to traffic de-

mand management measures. When collaboration between individuals is involved or

timetable based public transportation modes are chosen, rescheduling becomes com-

plex. This paper describes a new framework to investigate algorithms for reschedul-

ing at a large scale. The framework allows to explicitly model the information flow

between traffic information services and travelers. It combines macroscopic traffic as-

signment with microscopic simulation of agents adapting their schedules. Perception

filtering is introduced to allow for traveler specific interpretation of perceived macro-

scopic data and for information going unnoticed; perception filters feed person specific

short term predictions about the environment required for schedule adaptation. In-

dividuals are assumed to maximize schedule utility. Initial agendas are created by

the FEATHERS activity-based schedule generator for mutually independent individ-

uals using an undisturbed loaded transportation network. The new framework allows

both actor behavior and external phenomena to influence the transportation network

state; individuals interpret the state changes via perception filtering and start adapt-

ing their schedules, again affecting the network via updated traffic demand. The first

rescheduling mechanism that has been investigated uses marginal utility that mono-

tonically decreases with activity duration and a monotonically converging relaxation

algorithm to efficiently determine the new activity timing. The current framework

implementation is aimed to support re-timing, re-location and activity re-sequencing;

re-routing at the level of the individual however, requires microscopic travel simula-

tion.

5.3 Introduction

Nowadays, activity-based models are used to generate daily schedules for members

of synthetic populations in order to estimate time dependent travel demand. Micro-

simulation allows to take into account specific traits for each individual so that sen-

sitivity to travel demand management (TDM) measures can be modeled at the level

of the individual actors. The overall effect of those measures then emerges from the

simulation. Many models assume that daily planning decisions are taken one day

ahead and predict schedules that are assumed to be immutable (i.e. executed exactly

according to the plan). In actual practice, most people adjust their daily sched-

ule during execution, either because of unexpected event occurrence or because the
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individual discovers new opportunities or acquires more complete information. Ac-

counting for this phenomenon, requires schedule (daily agenda) execution simulation.

While executing the predicted schedule, individuals make use of the shared trans-

portation network facilities. Each individual has incomplete or biased knowledge of

the environment; this phenomenon is modeled via perception filters. The environment

can change due to exogenous phenomena that affect the shared resources (e.g. a traf-

fic incident or adverse weather conditions can decrease the network capacity in some

region). As a consequence, some individuals adapt their planning which affects the

load on the network which in turn affects the available capacity as a function of time

and space. In the WithIn Day Re-Scheduling (WIDRS) model, information about

the environment is fed back to the individual. Actor behavior is determined by the

perceived state of the network and by expectations about its short term evolution.

The schedule execution simulator does not strive to an equilibrium state because that

would require information about the future; the system never is assumed to be in a

steady state.

5.3.1 Aim of the paper

Both the basic concepts and model details for the WIDRS project are described. The

first part of the text discusses related research and shows the principle of operation;

it gives an overview of building blocks involved and highlights their interactions. The

second part starting at section 5.6 explains details of several essential components.

Section 5.7 discusses the results for an experiment involving the evaluation of the

effect of a large scale road capacity reduction. Sections 5.9 and 5.8 present conclusions

drawn from the experiment and plans for the future.

5.3.2 Project Objectives

The WIDRS framework is a software tool to evaluate schedule adaptation by individu-

als as a response to changed conditions in the environment. This project is part of our

research efforts concerning dynamic activity-based simulation. Mutual dependency of

individuals only is caused by sharing limited capacity resources. Direct interactions

between individuals are not considered. The WIDRS project is aimed at large scale

simulations used to investigate traffic demand management (TDM) measures. The

experiment described here aims at quantifying the effect of an unexpected incident

on both the schedules and on the time-dependent road network conditions. The in-

cident (traffic accident, non-predicted meteo condition) is modeled by local capacity

reduction on the road network.
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5.4 Related Work - Context

5.4.1 Research on Schedule Adaptation

In a first category of research efforts, mechanisms underlying the schedule construction

and schedule adaptation processes are investigated. The Aurora model developed in

Joh (2004) provides for schedule generation and dynamic activity-travel rescheduling

decisions. Aurora is based on S-shaped utility functions. The maximal utility value

attainable for an activity, is given by the product of functions modeling the attenua-

tion by start time, location, position in agenda and time gap since last execution of the

activity. Bounded rationality individuals are assumed. Arentze et al. (2005) present

a comprehensive description of Aurora. People are simulated as individual agents. A

comprehensive model has been specified describing the insertion, re-positioning, dele-

tion and substitution of activities as well as changing locations, trip chaining options

and transport modes. Models of this level of detail are required to integrate coopera-

tion concepts in a simulator (e.g. joint activity execution or carpooling). The paper

describes the use of Aurora in an experimental setup to study schedules consisting of

work activities and green recreation activities in several scenarios.

Recker (1994) and Gan and Recker (2008) present a mixed integer programming

formulation of the HARP problem (Household Activity Rescheduling Problem). Both

papers report on an extensively elaborated rescheduling model that has been applied

to a small amount of individuals suffering from a pre-specified loss of time. The idea

is that, while planning, people solve a Mixed Integer Linear Program (MILP). The

examples given show that realistic schedules are produced. However, the number of

constraints required in the model is large. The level of detail does not allow for large

scale deployment.

Jang and Chiu (2010) describe a model that uses a quadratic utility function and

integrates the scheduler with a dynamic traffic assignment tool DynusT. A similar

approach has been taken by Bekhor et al. (2011) who integrated an activity-based

model for Tel-Aviv with the MATSim toolkit allowing for re-timing and re-routing.

Jenelius et al. (2011) analytically derive the optimal timing in a schedule com-

posed of three activities and two trips. The authors analyze a model using marginal

utility functions that are linear combinations of time-of-day based and duration based

components.

Pendyala et al. (2012a) present the integration of the open source travel demand

model OpenAMOS with the traffic micro-simulator MALTA (Multi Resolution As-

signment and Loading of Traffic Activities) in SimTRAVEL. That is used to de-
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termine the effect of unexpected network disruption. The impact of the disruption

and the network congestion dissipation dynamics are calculated for several informa-

tion provision scenarios. For each minute of the day, the demand model simulates

activity-travel engagement decisions for all individuals. The results are fed into the

traffic assignment model that routes the trips from origin to destination and simu-

lates car movements. Network skims by time of day are used to feed back expected

travel times to the activity-based model. Unfortunately, the paper does not explain

the schedule adaptation model. Three simulations were conducted: (i) no informa-

tion provision to the travelers, (ii) notification of people who are about to embark on

a trip without en-route route switching by travelers and (iii) information diversion

combined with en-route route adaptation. Pendyala et al. (2012b) discuss the same

framework. In this case several iterations are run over a single day mimicking the

fact that travelers learn from experience (like in MATSim). This however shall not be

done while simulating unexpected events. Konduri et al. (2014) show how the same

framework is used to evaluate the effect of road pricing. Value of time (VOT) and

household income are used to calculate an extra virtual trip delay from the trip cost.

This required time expansion reduces the area covered by the time-space prisms and

hence reduces the activity location choice sets.

Zhao and Sadek (2014) describe the creation process of the TRANSIMS based

agent-based regional model for Buffalo-Niagara area. The model is calibrated for

both normal and inclement weather situations. For the latter, probe vehicles were

used on several routes. The model is used to simulate effects of incidents, inclement

weather and the combination of those.

In a second category of research, factors influencing rescheduling characteristics

under given circumstances and for specific activities, are being determined from sur-

veys. Nijland et al. (2009) estimate parameters for the Aurora model. Flexible

activities only are covered. The authors conclude that activity relocation and mode

change rarely occur; they report that 55% of rescheduling is by duration reduction

and 35% by activity dropping.

van Bladel et al. (2006) point out the difficulties to estimate the utility function

parameters and show the S-shaped dependency of the utility on the time gap since

the preceding execution of a same activity (needs based model). Roorda and Andre

(2007) use an Multinomial Logit (MNL) model to uncover the factors that determine

the choice between several rescheduling options after a well-defined unexpected de-

lay has been presented to the respondent. van Bladel et al. (2009) use mixed logit

models with random effects to estimate the effect of several factors on rescheduling.

Guo et al. (2012) state that econometric models are not suited to model within-day
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rescheduling. The authors list the main characteristics of Computational Process

Models (CPM) and their assumed shortcomings (dichotomous classification of activ-

ities: fixed/flexible, dichotomous classification of decision making process: pre-day-

planning/on-day-rescheduling, plan completion and certainty (as opposed to partial

activity attribute planning)). They describe a data collection method to acquire data

to uncover the (re)planning process. It consists of (i) schedule data entry (ii) GPS

recording (iii) comparison of planned and recorded activities including arguments for

rescheduling (iv) automatically (artificial intelligence) generated ’what-if’ questions

about hypothetical rescheduling if some of the planned activities would have been

delayed/canceled (stated adaptation survey). The method used is similar to the one

described in Weis et al. (2010) who report the frequency of activity compression (due

to increased travel duration) but not the amount of compression for several activity

types.

5.4.2 Positioning and context for the WIDRS project

This paper belongs to the first category mentioned above; similar to Joh (2004), it

explicitly models a set of hypothesized mechanisms. The overall structure of the

simulation setup is similar to the one reported in Pendyala et al. (2012a). In this

paper however, the network state perception and schedule adaptation models have

been elaborated in detail because our main goal is to provide a framework to evaluate

travel decision adaptation models. Also, the work described in this paper currently

uses SUE (stochastic user equilibrium) traffic assignment. Microscopic routing can

be integrated but was not used for computational efficiency reasons. Making use of

SUE means that individuals who experience increased travel times, possibly change

their route. However, no route information can be extracted from the SUE process

to be fed back to the schedule adapter. Since our model does not support en-route

route adaptation, it is less suited to investigate dynamic effects on the road network

near to the location of disruption.

WIDRS compares to the model described by Konduri et al. (2014) as follows:

(i) OpenAMOS feeds the network state back to the activity scheduler for every minute

while WIDRS uses a 15[min] period, (ii) WIDRS uses perception filtering so that

each individual has a personal interpretation of expected excess travel time after

an incident, (iii) WIDRS keeps a fixed activity sequence and maximizes utility by

activity duration adaptation whereas OpenAMOS can drop and relocate activities,

(iv) WIDRS as well as the SimTRAVEL model without single day iteration (learning)

can handle unexpected events and (v) running WIDRS using a 50% fraction of the
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population is computationally feasible for regions having 6 million inhabitants such

as Flanders.

5.5 Principle of Operation

5.5.1 General Overview

The initial schedule (agenda) for every inhabitant of Flanders (Belgium) is generated

by the FEATHERS activity-based model described in Bellemans et al. (2010). In the

FEATHERS context a schedule is a sequence of episodes for a period of 24 hours.

Each episode consists of a journey (trip) and an activity.

〈schedule〉 := 〈episode〉∗ (5.1)

〈episode〉 := [〈trip〉]〈activity〉 (5.2)

The trip is characterized by a tuple (origin, destination, startTime, duration, mode).

The activity is characterized by a tuple (activityType, location, duration). All trip

attributes except for the mode can be derived from the consecutive activities in be-

tween which it is enclosed. For each member of the synthetic population (also called

an actor), a schedule is predicted.

WIDRS consists of two main interwoven components: schedule adaptation (re-

scheduling) and schedule execution. During schedule execution, an individual can de-

tect that the time to travel a specific non-finished trip no longer equals the originally

planned trip duration; in such case, the individual estimates the new trip duration

and adapts her/his schedule. In general, rescheduling can be done by (i) adapting ac-

tivity execution start time and/or duration (re-timing, time period (de-)compression),

(ii) by choosing an alternative location (relocation), (iii) by selecting a new activity

order (re-sequencing), (iv) by trip mode change and finally (v) by dropping or insert-

ing activities. This paper documents the first completed stage in the ongoing WIDRS

project. It describes the framework built and the utility-based (de-)compressor type

rescheduler used in the first experiments.

The research described in this paper focuses on modeling the rescheduling process,

making it feasible for large scale application and integrating it with macroscopic

traffic assignment in order to investigate the mutual influence of rescheduling and

network performance; this focus is shared with the research reported by Pendyala

et al. (2012b) (OpenAMOS, MALTA based), Zhao and Sadek (2014) (TRANSIMS

based) and Bekhor et al. (2011) (MATSim based). The latter two focus on the effect of

unexpected events. This is the focus of the first application of the WIDRS framework.
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5.5.2 Routing and Travel Time Estimation

The WIDRS approach differs from the other projects in that it makes use of macro-

scopic traffic assignment. Rerouting is an essential feature in all MATSim based

research. MATSim agents evaluate the executed agenda at the end of each iteration

by calculating a score; a fraction of the agents then selects new travel times and routes

attempting to find a better solution. The system essentially assumes the existence of

an equilibrium state.

In contrast, WIDRS simulates schedule execution whereby each individual inter-

prets the available data in its own specific way and needs to predict the future travel

times i.e. the evolution of the transient traffic network state after incident occurrence.

WIDRS does not assume an equilibrium to exist. Instead, it explicitly models the

rescheduling mechanism for each individual without the need for microscopic rerout-

ing. During schedule execution simulation, for each 15[min] period of time, WIDRS

computes the actual network load and the associated expected travel times between

TAZ. Those results are fed back to the (candidate) travelers who individually es-

timate the near future travel times and adapt their schedules. Modified expected

trip durations result in new estimations for the arrival times for ongoing trips and in

reconsideration of departure and arrival times for planned trips.

5.5.3 Network state perception

Individuals can perceive the network state changes at discrete moments in time

only. Network State Evaluation by individuals is limited to those moments (called

NSE moments). The interval between them (15[min] in the current experiments) is

called the NSE period. NSE moments define the time resolution for individuals to

experience modified congestion effects. This makes it possible to integrate macro-

scopic network state modeling with microscopic actor behavior modeling. Note that

other time related phenomena (activity/trip start times, duration values, notification

times) all are modeled by WIDRS using a finer grained time resolution (as continuous

variables). Individual actors can decide to reschedule at any moment in time e.g. at

the end of a trip or when notified about an incident via a traffic information service

(TIS).

5.5.4 Operation

WIDRS operation consists of three steps. The data flow is shown in Figure 5.1, the

control flow chart in 5.2. Details can be found in 5.10.
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Figure 5.1: WIDRS data flow diagram. Ovals represent algorithms, rectangles rep-

resent datasets. Step1 creates an impedance matrix for every quarter of an hour

period p under normal network conditions. Step2 iteration i is run for each 15[min]

period p of the day. It adapts the travel times in the schedules to the travel times

for period p resulting in Scheds p, calculates new flows (Flow15[p]) and impedance

matrices IMP Nrl[p,i+1]) until the flow matrices IM Nrl[p,i] and IM Nrl[p,i+1] are

sufficiently close to each other. At the end of this step, Scheds p are consistent with

IM Nrl[p]. Step3 calculates the flows for period p using trip durations estimated by

each individual and assigns those to the actual network (having normal or reduced

capacity). This results in the impedance matrix for the next quarter of an hour which,

as a consequence, is based on the individual traveler’s expectations and plans.
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Figure 5.2: Flowchart presenting an overview of the WIDRS procedure. STEP1

prepares initial schedules and creates an OD (origin-destination) travel time matrix

for every 15[min] period, STEP2 adapts the travel times in the schedules to make them

compatible with the OD-duration matrices calculated by traffic assignment. STEP3

is the schedule execution simulation. The networkSelector() determines whether

the normal or the reduced capacity network applies for the specific NSE period.
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� STEP1 calculates the initial impedance matrix for each NSE period under nor-

mal network conditions from the schedules generated by FEATHERS using SUE

traffic assignment.

� STEP2 repeatedly adjusts the travel times in the schedules and recalculates the

OD-travel-time matrices until they are mutually consistent for each NSE period.

This is required since the time resolution used by FEATHERS and TransCAD is

one hour whereas WIDRS uses 15[min] periods. The travel times in the sched-

ules are weighted averages of travel times for NSE periods where the overlap

between the trip period and the respective NSE period is used as a weight.

� STEP3 is the actual schedule execution simulator. STEP3 starts from mutually

consistent schedules and impedance matrices for the normal case. The network

characteristics are assumed to suddenly change due to an incident. The capacity

for a given set of links is reduced to a pre-specified level for a given RCP (Re-

duced Capacity Period) representing incident conditions. Schedule execution

then is simulated over a single day. Some travelers will get stuck in congestions

additional to the normally expected ones, others will know about the reduced

network performance before starting trip execution (see section 5.5.7). All of

them need to revise their schedule and to adapt to modified travel times.

5.5.5 Environment Model

The framework is based on traffic flows between traffic analysis zones (TAZ). Macro-

scopic SUE (Stochastic User Equilibrium) traffic assignment is used to apply the

traffic demand derived from the micro-simulated schedules to the transportation net-

work; to that end we run TransCAD as a sub-process of WIDRS and calculate the

SUE by means of the Method of Successive Averages (MSA). Microscopic routing is

not supported (hence no microscopic re-routing). This decision is motivated by the

desire to limit the simulation runtime. Travel times between TAZ centroids are calcu-

lated using the minimal duration path tree and made available in impedance matrices

(travel duration matrices).

WIDRS uses a specific impedance matrix for each NSE period of 15[min] while

FEATHERS only distinguishes between off-peak, morning-peak and evening-peak

travel duration values. Therefore, impedance matrices for the normal road network

situation need to be calculated as reference values from the FEATHERS predicted

schedules for each NSE period. Furthermore, the OD-flow matrices derived from the

schedules shall be consistent with the impedance matrices. STEP2 in the algorithm
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fulfills this requirement. If this step were omitted, we would find schedule adapta-

tions originating not only from network incidents but also from the difference in time

resolution used in FEATHERS and in WIDRS respectively.

5.5.6 Actor Model - Behavioral Characteristics

Individuals are assumed to behave in a rational way and to try to maximize their

utility by executing activities. As a consequence, in case of modified predicted travel

times, they will adapt their schedules. In the first implementation, actors decide

about rescheduling in a mutually independent way using information about the net-

work state and their private agenda only: the model does not keep track of direct

mutual rescheduling effects since actors are not cooperating. The only mutual influ-

ence stems from the use of the shared road network having limited capacity. Future

implementations will cover rescheduling caused by negotiation (e.g. for carpooling).

5.5.7 Network State Perception

The model is aimed at simulation of large areas and large sets of individuals (complete

populations). Hence, for computational reasons, the resolutions in both time and

space are limited.

1. Activity locations are specified to the TAZ (Traffic Analysis Zone) level only; no

detailed street addresses are used. Hence, all travel times can be summarized in

OD travel duration matrices (impedance matrices) for several moments in time;

they represent the network state. During the simulation, impedance matrices are

derived for the NSE moments using the traffic demand generated by adapted

schedules and the network that applies (either the normal one or a reduced

capacity version defined for the incident situation).

2. Time resolution is defined by the length of the NSE period.

3. Individual behavior is modeled by perception filtering : this accounts for (i) lack

of information (incomplete knowledge of the network state) and for (ii) personal

interpretation of the information that becomes available from TIS. Travel dura-

tion matrices (impedance matrices) are calculated for both the normal and the

incident situation. The impedance matrices for the normal situation are con-

sidered to represent common knowledge about the expected travel times. The

excess travel time calculated for the incident situation is considered to be the ex-

pected delay made available by the traffic information service. It is interpreted

(biased) by each individual in a specific way.
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5.5.8 Incidents - Notification

1. In order to apply an incident, the capacity on a given set of network links is

reduced by a given factor for a given period of time: this is called network

disturbance.

2. A reduced capacity road network (RCN) inherits the topology from the network

it is derived from while the capacity for each element of a given subset of links

has been reduced with a given link-specific value. An incident is modeled by its

local effect on link capacities: e.g. a traffic incident can reduce the capacity of

some links near to the place of the accident, a meteo phenomenon can reduce

the link capacities in a large region.

3. In WIDRS, the local effects of an incident are modeled by a given set of tuples

T = {(RCNi, pi)} where RCN is a reduced capacity network and pi is a period

of time. Each NSE period is assigned either the normal network or a specific

RCN. During the simulation, a new impedance matrix is calculated using the

actual traffic load at each NSE moment taking the time dependent network link

capacities into account.

4. Actors can get notified at any moment in time after the incident start time.

As a consequence, an actor can get warned before starting a trip for which the

duration is affected by the incident: such individual is called a notified indi-

vidual. Those persons become aware of the network travel times disturbance

in time in order to reschedule affected trips. Others only become aware after

having suffered from unexpected delay (too late to avoid the resulting conges-

tion). Those are called experiencing individuals. Each individual can decide to

adapt her/his schedule immediately after becoming aware of additional delay

(either by notification or by experiencing). Finally, for a given incident, every

individual using affected OD-pairs, becomes experiencing unless (s)he manages

to adapt her/his schedule so as to avoid the extra delay induced.

5. Experiencing travelers become aware of being delayed, at NSE moments only.

At those moments in time, the affected individuals estimate the actual distance

driven and the remaining distance and duration to drive. A new estimate for the

total travel time is calculated using data from the impedance matrix holding

for the NSE moment at which the evaluation takes place: at this point, the

modeled actors compare the most recent estimate of the effective travel duration

to the previous one. This is where the modeled experiencing individual senses
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the positive or negative difference in travel duration and, where appropriate,

decides to reschedule.

5.5.9 Schedule Execution Simulation

Schedule execution is simulated by recalculating the travel duration for all non-

finished trips for each actor at each NSE moment. There is no iteration towards

some equilibrium over a single day because no information about the future shall

be made available to the individual as a source for learning. Each individual makes

her/his own prediction (interpretation) about the network state in the near future.

Schedule execution simulation consists of 96 time-steps (15[min] periods). At the end

of every NSE period, the new traffic state on the network is calculated. Persons are

processed as follows:

1. people traveling at that moment, become aware of congestion by experience,

estimate new travel time as described in section 5.6.1.6 and decide to reschedule

if the travel time is adapted by more than a specified threshold

2. people who are not traveling but receive a notification during the next NSE-

period, re-evaluate the travel time for their future trips using the estimates

described in 5.6.1.5. If the new estimate differs more than a given threshold

from the previous one, they decide to reschedule.

Rescheduling consists of calculating new activity start times by optimizing the total

utility. Note that for notified individuals, rescheduling occurs during activity execu-

tion; in some cases the individual shall stop the running activity immediately in order

to move to the next activity location.

5.6 Component Details

This section explains in more detail some modeling mechanisms and algorithm design

decisions that are of fundamental importance to (i) the WIDRS framework and (ii) the

first application that simulates the effect of an unexpected situation on the both daily

agendas and on the network status. Delay estimation constitutes the major part of

this section. Then the actor behavioral model is explained (section 5.6.2); this followed

by a section on the compatibility between schedules and impedance matrices (section

5.6.3) and a note on network load calculation (section 5.6.4).
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Figure 5.3: Gamma probability densities for delay values estimated by individuals

when traffic information service predicts an expected value of 10[min] . . . 70[min] for

congestion duration. The rate factor β = 1.0 (scale factor θ = 1
β = 1.0) for each case.

5.6.1 Delay Estimation

Activity duration selection and expected travel time estimation are essential compo-

nents for agenda adaptation. First we present the selected distribution for stochastic

durations; then several fundamental durations and delays are explained.

5.6.1.1 Modeling Delays

Gamma distributions using scale factor β = 1.0 are used to model delays and dura-

tions. Both the expected value (mean) and variance are given by α.

f(x;α, β) =


βα

Γ(α)x
α−1e−βx x > 0;α > 0;β > 0

0 x ≤ 0
(5.3)

Sample density functions are shown in Figure 5.3. Gamma distributions have been

chosen because of the reproductive property (the sum of independent gamma dis-

tributed variables with α1, β and α2, β is gamma distributed with (α1 +α2), β which

is useful when processing accumulating delays).
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5.6.1.2 Incident awareness offset

Both the information dissemination mechanism (traffic information service) and the

probability for assimilation by the individuals are essential model components.

1. Two dissemination models can be considered. The first is the broadcast model

which is a volatile push mechanism which means that the information sender

is the initiator and the message can get lost; radio broadcast information is

an example. The second is the publish model where the information consumer

either subscribes and receives a non-volatile message or decides to consult a

(web)service; in this case the information can be consulted multiple times at

arbitrary moments in time. Both the time at which an individual gets notified

and the levels of information loss and distortion, depend on the mechanism used.

2. No evidence about individual behavior in this respect was available while im-

plementing the initial model. Hence for the experiments, the broadcast model

is assumed and assimilation probability equals one for each individual noti-

fied in time and zero for everyone else. The delay between incident occur-

rence and broadcast (notification delay) is assumed to be gamma distributed

ωnot ∼ gamma(αωnot , β) with an expected value of αωnot = 30[min] (delivery-

Delay in 5.11). A single gamma density function is used to sample the value

for the notification delay. As a consequence, every individual gets informed but

many of them too late (those are not informed in time to be able to use the

information).

5.6.1.3 Expected incident local effect duration

Early notifications (both by broadcast or publish mechanisms) can come available be-

fore the capacity reduction at the incident location ends. Hence, the Reduced Capacity

Period (RCP) length is not necessarily known by the receiving actor at notification

time and each individual needs to estimate it along with the level and duration of its

effect on travel times. It is assumed that the TIS provides in a direct or indirect way

some data about the kind of the incident which is used by the individual to estimate

the RCP duration. In the current model, the duration of the specified network dis-

turbance is used as the expected value for a gamma distributed stochastic from which

each individual samples to estimate the RCP duration.
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Figure 5.4: Incident occurrence, normal and adapted trip durations as perceived by

a specific individual. NSE moments correspond to vertical dash-dot lines. Schedule

execution is simulated for the NSE period starting at the black triangle. Normal

duration is known for all NSE periods, duration during incident and duration excess

are known only up to the simulated NSE period. The duration extension for an

ongoing trip is the one for the NSE period being simulated (A). For a later trip,

exponential decay is applied (B).
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5.6.1.4 Travel time adaptation for non-completed trips

Figure 5.4 shows the timing related phenomena for a single individual at a given

NSE moment. Let

t0 be start of simulated time

tinc be the incident start time

tnot be the time at which the individual gets notified about the incident occurrence

tNSE be an NSE moment

δnot be the duration of the local reduced capacity period (RCP) associated with

the incident estimated by the traveler who got notified by the TIS

ωnot be the delay between the incident start time and the notification of the indi-

vidual

∆NSE be the length of an NSE period

We assume that the person knows the incident start time as soon as (s)he gets in-

formed: in reality, the incident occurrence time is not always contained in the traffic

info conveyed but the estimate for the end of the local capacity reducing effects can

have been mentioned. The diagram shows the travel time expansion as a consequence

of the incident; note that for some OD-pairs travel time can decrease due to an in-

cident because of some part of the transportation network no longer being fed with

traffic flows as usual.

The diagram applies to the NSE period starting at tNSE . The effect of the inci-

dent during this NSE period is calculated; beyond this period, travel time excess is

unknown and hence has not been calculated using the TransCAD traffic assignment

procedure. Point estimates for excess travel time are used. Those values are indicated

in part Duration excess in the diagram; the graph shows the value for the additional

travel time as a consequence of the incident; a scale factor of 2 has been applied to

increase readability of the diagram.

5.6.1.5 Travel time estimation by notified individuals

People becoming notified of an incident need to determine the expected value for the

duration of non-finished trips. Perception of (the effect of) incidents by individuals

is influenced by (see also Figure 5.4)

1. the time lag ωnot between the incident occurrence and the individual becoming

aware of it by traffic information

2. the duration δnot for the period of capacity reduction (RCP) near the incident
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location as expected by the individual. It is modeled by a gamma distributed

stochastic δnot ∼ gamma(αδnot , 1) with αδnot equals the duration of the incident

(see section 5.5.8 item 3). The delay δnot models the RCP duration expected by

each individual aware of the incident and is based on the individual’s personal

conviction: as a consequence, a new value is sampled for each individual (who

is aware of the incident by notification)1

3. the re-normalization function that specifies how the travel time approaches (de-

creasing or increasing) the normal value again: this is a decay function specifying

how the (positive or negative) travel delay difference evolves back to zero af-

ter the RCP ends. Exponential decay is used. The effect is assumed to have

attenuated to the relative reference level lr after a reference time gap gr.

e−α·g(t) = l(t) (5.4)

(g(t) = gr)⇒ (l(t) = lr) (5.5)

α =
− ln(lr)

gr
(5.6)

Values for lr and gr are given as configuration parameters (tisInfo level and

tisInfo refGap respectively in 5.11).

The individual gets informed before experiencing the incident effect. The excess trip

duration is estimated by assuming that the trip will start at the planned moment in

time. The excess travel time is determined for the moment of evaluation tNSE . It is

assumed that this travel time will still apply at the end of the RCP and that traffic

re-normalization causes the excess duration to go to zero by exponential decay. The

expected travel time is calculated as follows: let, for a given trip

tNSE be the moment at which evaluation is performed

tinc be the incident effect start time

tend be the incident’s effect end time (end of the reduced capacity period

RCP: tend = tinc + dur(RCP ) = tinc + δnot) as estimated by the

individual. Note that tend < tnot is possible (i.e. the person gets

informed after the local incident effect is expected (by this person) to

have terminated).

tpts be the planned trip start moment; this can be an already revised ver-

sion. Note that tpts > tNSE

1The current implementation uses δnot = αδnot .
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Dnorm,tNSE be the trip travel time for normal conditions valid at the moment of

estimation tNSE (available from impedance matrix)

Dnorm,tpts be the trip travel time for normal conditions valid at tpts (available

from impedance matrix)

Dinc,tNSE be the trip travel time for incident conditions valid at tNSE (avail-

able from impedance matrix that gives the actual traffic state during

simulation)

Dinc,tpts be the trip travel time for incident conditions valid at tpts (not available

from any impedance matrix). This duration is to be estimated by the

individual after having been notified about the incident start time and

RCP duration

dRCP be the most recent known excess trip duration during the incident

RCP period: dRCP = Dinc,tNSE −Dnorm,tNSE

gamma(x, y) be a value sampled from a gamma distributed stochastic with param-

eters x and y. The excess travel time estimation is modeled by a

stochastic because it is unknown and each actor uses a private esti-

mate.

g(t) be the time gap between the end of the incident induced RCP period

and time t > tend for which one wants to determine the travel time

Then the trip travel time for a moment t in the re-normalization period is given by

dRCP = Dinc,tNSE −Dnorm,tNSE (5.7)

Dinc,t = Dnorm,t + gamma(dRCP , 1) · e−α·g(t) (5.8)

Dinc,t = Dnorm,t + gamma((Dinc,tNSE −Dnorm,tNSE ), 1) · exp(
ln(lr)

gr
· g(t)) (5.9)

5.6.1.6 Travel time estimation by experiencing individuals

The traveling person becomes aware of a new value for the delay at equidistant discrete

times (NSE moments) because only at those moments the network state is recalcu-

lated. The new trip duration estimate is calculated at tNSE

tNSE = t0 + k ·∆NSE , k ∈ N (5.10)

The individual believes that the remainder of the trip will be driven at congested speed

because that is, at that moment, the best estimate for the duration to travel from

origin to destination. Note that the same belief holds at the next NSE moment and

can result in revised remaining travel time. The congested speed is taken from the ac-

tual state impedance matrix for tNSE (the last one calculated). The distance already
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Figure 5.5: Travel time determination by experiencing individuals: symbols used.

The gray block represents the travel period (t0 is the departure time, t1 is the arrival

time).

driven between the trip start moment t0 and the NSE moment tNSE is calculated

by considering the NSE periods identified by the indices f (first) and l (last) respec-

tively (refer to Figure 5.5). NSE period p[f ] contains t0 and p[l] ends at tNSE . The

length of the part of the interval [t0, tNSE ] overlapped by NSE period p[i] is denoted

by o(p[i], [t0, tNSE ]). Note that

i > f ⇒ o(p[i], [t0, tNSE ]) = durNSE (5.11)

The expected travel duration from origin to destination during period p[i] is denoted

by d(i) and taken from the impedance matrix Act[i] specifying the actual travel du-

ration values. The distance from origin to destination is denoted by s(O,D) and the

average speed in period p[i] is s(O,D)
d(i) . Then the distance driven up to time tNSE is

given by

dNSE =

i=l∑
i=f

s(O,D)

d(i)
· o(p[i], [t0, tNSE ]) (5.12)

The expected value for the remaining travel duration δrem is given by

δrem =
s(O,D)− dNSE

dAct(i)
(5.13)

5.6.2 Actor Behavior

The first experiment makes use of a simple activity duration (de-)compressor to model

rescheduling which means that the individual adapts activity start/end times in the

agenda but does not modify it in any other way (by relocation, activity dropping



Within Day Rescheduling 141

etc). The individual actor is assumed to maximize the agenda utility. Hence, there

is a need to distribute lost or gained time over the non-completed activities. This

section explains the requirements for utility functions in general and discusses schedule

optimality. Concrete functions selected for the first experiments are presented. The

method used to derive the required coefficients for the selected functions from the

given FEATHERS schedules, is shown.

5.6.2.1 Utility Functions

1. Marginal utility (the amount of utility produced per time unit) is denoted by

v(d) where d is the activity duration. v(d) assumed to be continuous and inte-

grable. The corresponding utility is denoted by u(d). Utility u(d) is determined

by integration of v(d) and by requiring zero utility for zero duration.

2. A Maximal Activity Sequence WithOut Internal Constraints (MASWOIC) is a

largest subset of consecutive activities in a schedule so that only the first (last)

one starts (ends) at an externally stated time limit (e.g. shop closing time, time

specified in public transportation timetable).

3. In a MASWOIC in an optimal schedule, the marginal utility is the same for

each activity period. This can be seen as follows. Let tmin and tmax be the

times delimiting the interval available for activity a0 execution. Let t0 denote

the activity start time. Let V : R+ ⇒ R+ : d 7→ v(d) denote the marginal utility

(utility generated per time unit) at t = t0 + d, then the utility generated up to

t is given by

u(t) =

∫ min(t,tmax)

max(t0,tmin)

v(t)dt (5.14)

With explicitly stated constraints, this is written as

tmin ≤ t0 ≤ t1 ≤ tmax (5.15)

d ≥ 0 =⇒ v(d) > 0 (5.16)

u(t0, t1) =

∫ t1

t0

v(t− t0)dt (5.17)

Now consider two consecutive activities aa (predecessor) and ab (successor) with

start/stop times respectively (t0, t1) and (t1, t2) and with marginal utility func-

tions va(d) and vb(d) respectively in a schedule that maximizes utility; then the
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value for t1 is determined by

∂

∂t1

(∫ t1

t0

va(t− t0)dt+

∫ t2

t1

vb(t− t1)dt

)
= 0 (5.18)

hence

va(t1 − t0)− vb(t2 − t1) = 0 (5.19)

4. The first experiment assumes marginal utility v(d) to monotonically decrease

exponentially with activity duration d and to be independent of absolute time. It

is positive everywhere, hence utility u(d) is monotonically increasing. Subscript

i identifies the activity.

vi(d) = ki · e−αi·d (5.20)

ui(d) = (1− e−αi·d) ki
αi

(5.21)

5.6.2.2 α-Value Determination from the Initial Schedule

1. Consider a time interval with given duration D =
i=N∑
i=1

di that contains N

episodes having duration di = ti − ti−1. The values t0 and tN are fixed. Then

∀k ∈ [1, N − 1] :
∂

∂dk
[

i=N∑
i=1

ui(di)] = 0 (5.22)

∀k ∈ [1, N − 1] :
∂

∂tk
[uk(tk − tk−1) + uk+1(tk+1 − tk)] = 0 (5.23)

which leads to N − 1 equations from which N − 1 of the α values can be

determined.

2. One of the αi in a MASWOIC shall be determined by other means. Per hy-

pothesis, the activity of longest duration in each MASWOIC reaches a given

relative utility saturation level fU . In the experiments fU = 0.95 was used. Let

aL be the activity of longest duration. Then

1− e−αL·dL = fU ⇒ αL =
− ln(1− fU )

dL
(5.24)

3. The equality of all marginal utility values in the MASWOIC then leads to

expressions giving αi as a function of αL, known durations and the ratio between

k values (which reduces to a ratio between d values)

ki · e−αi·di = kL · e−αL·dL ⇒ αi =
αL · dL − ln(kLki )

di
(5.25)
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5.6.2.3 K-Value Determination from the Initial Schedule

1. The k value for activity i is calculated using the given relationship

ki =
C

dmi
(5.26)

where C and m are constants and di is the activity duration (expressed in

minutes). The k values depend on the specific activity and not on the activity

type.

2. Calculation of new activity durations when the total amount of available time

changed, is based on the equality of the marginal utility values for the activities

involved. Consider two consecutive activities in a MASWOIC a0 and a1 for

which the new total duration is given by D = d0 + d1 + δT where δT is the

duration of the trip that separates the activities.

k0 · e−α0·d0 = k1 · e−α1·(D−d0−δT ) ⇒ d0 =
α1 · (D − δT ) ln(k1k0 )

α0 + α1
(5.27)

After substituting the k values using equation ((5.26)) we find

d0 =
α1 · (D − δT )−m · ln(d0d1 )

α0 + α1
=
α1 · (D − δT )−m · ln( d0

D−δT−d0 )

α0 + α1
(5.28)

Note that the constant C has no effect on the di values since C does not occur in

equation ((5.28)). Therefore, C can be chosen freely. The C value is determined

for each MASWOIC by stating that the total utility of the optimal original

schedule equals 1 (which comes down to actually make use of relative utility

values) within a MASWOIC. In the current project, utility values are compared

only when they belong to the same MASWOIC: hence, arbitrarily selecting the

value for C does not induce an additional assumption or constraint.

3. In the first experiments m = 1 is used.

5.6.2.4 Schedule (De)Compression

The case of a single MASWOIC in a 24-hour schedule is considered to explain the

schedule (de-)compression concept. At specific moments during schedule execution,

new travel duration estimates for the current and/or planned trips come available.

The amount of time to be spent to the (partial) activities and trips that have not yet

finished at time t0, will change due to modified travel duration predicted from the

network state. As a result, the total schedule duration no longer equals 24 hours and
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(de)compression of the non-finished part of the schedule is required. This is done by

solving the set of equations derived from (5.28). Note that in the derivation of (5.28),

the travel duration δT is assumed not to depend on the trip start time. This of course

is an approximation. In general, trip duration is a yet unknown non-linear function

of the trip start-time. Activity start-times are calculated by an iterative relaxation

solver.

The compressible schedule part (CSP) (see Figure 5.6) is initialized to contain each

activity that has not yet completed (at most one activity can be partially completed).

Let tbase be the start of the first activity in CSP. If tbase < t0

1. the optimal activity duration for the CSP is calculated by (de-) compression and

relaxation of all activities in [tbase, tend] where tend is the end of the schedule.

After (de)compression tend = 1440[min].

2. if the end of the first activity in the CSP comes before t0 then, in the optimal

schedule, the running activity should have been stopped before the time of

notification (t0). It is stopped immediately and removed from the CSP. The

CSP now starts at t0: the marginal utility values for the future differ from those

for the past because the future activities are subject to more time pressure than

the ones in the past.

(De)Compression is done by a relaxation algorithm based solving the set of equa-

tions derived from (5.28). This relaxation can be proven analytically to converge

monotonically when a monotonically decreasing marginal utility is used.

5.6.3 Initial Schedule Adaptation

For reasons mentioned in 5.5.5, the schedules predicted by FEATHERS are used to

calculate an impedance matrix for each NSE moment. The schedules and impedance

matrices need to be made mutually consistent before the start of the schedule execu-

tion simulation. Following symbols are used:
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Figure 5.6: Time runs from left to right. The individual is notified at time t0. Gray

blocks represent travel periods. Dark gray blocks represent activities in a Compress-

ible Schedule Part (CSP). The CSP0 contains the running activity A0. Optimization

over CSP0 shows that A0 already should have terminated at t0 so it is terminated

immediately and the compressible schedule part is reduced to CSP1. Optimization

over CSP1 results in the final schedule. tbase,0 and tbase,1 are start times for the

respective schedule parts CSP0 and CSP1.
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P denotes the set of all NSE periods

pathCost(netw, odF low) determines the minimal travel duration for all OD-pairs af-

ter loading netw with the travel demand specified by the

odFlow matrix.

flow(episodes, p) determines from a set of episodes a flow matrix giving

the number of trips for each OD-pair going on during

NSE period p

epi(S) delivers the set of episodes for a set of schedules S

update(S, IM) modifies the travel times in each schedule s ∈ S according

to the values specified in impedance matrix IM

Assignments (5.29) to (5.31) all are equivalent and show how an impedance matrix

IMi+1[p] for period p ∈ P is derived from its predecessor IMi[p].

IMi+1[p]← pathCost(netw, odF lowi+1[p])) (5.29)

← pathCost(netw, flow(epi(Si+1), p)) (5.30)

← pathCost(netw, flow(epi(update(Si, IMi[p])), p)) (5.31)

Then consistency between schedules Si+1 and impedance matrices IMi+1 is defined

by

consistent(IMi+1, Si+1)⇔ (∀p ∈ P :
2 · ‖IMi+1[p]− IMi[p]‖2
‖IMi+1[p]‖2 + ‖IMi[p]‖2

< M) (5.32)

where M is allowed relative difference upper bound.

5.6.3.1 Travel Time Updating in Schedules

The travel time for each trip is derived as a weighted average of the travel times for

the OD pair in question during the NSE periods overlapped by the trip period (see

section 5.6.1.6). The value found in the schedule does not necessarily equal a value

found in any of the impedance matrices.

5.6.3.2 Time Reference Problem

Travel time adaptation by means of schedule (de)compression makes use of a partic-

ular point in time as a reference. When optimizing during schedule execution, the

reference point is the time at which the individual determines a new schedule. The

reference time is the boundary between the past (immutable) and the future (muta-

ble). When trip travel times initially are adapted to the impedance matrices, nothing

of the schedule already has been executed and the reference point is the conventional
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start of the day. FEATHERS predicted schedules all start at the arbitrarily chosen

03:00h which has no physical meaning and hence shall not have any effect on the

results.

The value of the reference time determines the schedule because it fixes one specific

arbitrarily chosen moment in absolute time: if the conventional start of the day

is chosen as a reference, the rescheduling period lasts for 24 hours but the chosen

conventional start is immutable. This is unrealistic since any other schedule that is

shifted over some time interval, is an optimal schedule too because the optimality

depends on the relative lengths of activity durations (at least if no exogenous time

limits apply). Hence, while adapting schedules to the impedance matrices, no such

absolute reference point determined a priori, does exist. As a result, the reference

point is a Degree Of Freedom (DOF).

The value for the DOF is determined by shifting the schedule in time so that

some criterion about the difference between the original and the adapted schedule,

is optimized. Since the FEATHERS output has been validated using traffic counts,

the criterion is to approximate the total car flow as a function of time, as good as

possible.

Multiple criteria can be conceived (all minimizing the sum of the squared differ-

ences between corresponding quantities selected from the original predicted schedule

and the adapted schedule respectively). WIDRS uses weighted trip period begin/end

times using parameters specified in the configuration as follows:

1. deviations for the trip end time for non-home destinations and the trip begin

time for home destinations are considered

2. the weights are derived from the activity durations (shorter activities have a

higher weight). The weight function is : w(a) = k/(k + a.dur()) where k is

a constant defined in the configuration (see k schedAdaptDOF in 5.11) and

a.dur() denotes the activity duration. Large k values result in nearly identical

weights for all activities.

5.6.4 Network Load Calculation

The TransCAD tool used for traffic assignment requires hourly trip amounts as input.

WIDRS operates on a NSE period basis; an integral number k of NSE periods are

contained in each hour. A one-hour period p1h(tiNSE), consisting of k consecutive

NSE periods, is associated with each NSE moment tiNSE in order to calculate the

traffic flows for tiNSE . Let MNSE denote the set of NSE moments and t0 ∈ MNSE
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denote the start of the one-hour associated period and dNSE denote the duration of

an NSE period. Then t0 ∈MNSE is determined so that t0 + k
2 · dNSE − t

i
NSE is non-

negative and minimal. Note that in order to calculate the traffic flows for the k − 1

one-hour periods that contain the boundary between consecutive days, we assume

that history is periodic.

For each NSE moment tiNSE the set of trips whose execution period overlaps with

p1h(tiNSE) is determined. The set is used to calculate the traffic flows for tiNSE . The

flows are used to calculate a SUE traffic assignment by means of TransCAD. Travel

times between TAZ then are calculated for the loaded network (skim). For k = 4 this

results in a set of 96 impedance matrices for the traffic situation considered (normal

or incident).

5.7 Implementation - First Results

An OSGi framework has been used because it allows for clean structuring of services

specified by their interfaces and easy runtime management that allows to activate

different implementations for such services. This allows to achieve the main objective

of building a flexible framework to evaluate rescheduling strategies.

Configuration parameters have been summarized in 5.11.

5.7.1 Case Study

The study area covers Flanders (Belgium). It is modeled by 2386 traffic analysis zones

(TAZ) with an average area of about 5[km2]. TAZ are bundled into 319 municipalities.

The population consists of 5.8 million individuals.

� Schedules for half of the population (2.9 million individuals, 9 million activities)

are processed. The resulting values OD-flow matrices then are doubled to get the

travel demand for the full population. This technique is used on 4GB machines

due to memory requirements. The code is sufficiently efficient so that processing

time is not a bottle-neck for problems of the dimension of the case study.

� Two simulations have been run for a large scale incident during the morning

and evening peaks respectively. The reduced capacity network used in both

cases is shown in Figure 5.7. Capacity for all marked links was reduced to

50% of the normal one. The respective incident periods are [07:30h,09:30h] and

[16:00h,19:00h]. Due to lack of space, morning peak incident results only are

presented.
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Figure 5.7: Reduced capacity network: road segments drawn using thick lines are

parts of highways. Their capacity has been reduced to 50% of the normal value to

simulate unforeseen events affecting network level of service.

5.7.2 Travel and Activity Duration Distributions

Figure 5.8 shows the densities for the total amount of travel duration in a schedule.

Values larger than 6[hours] have not been shown in order to make the graph sufficiently

readable. A very small amount of people experience larger delays.

Figure 5.9 shows the probability density and cumulative distribution for the total

difference in daily travel time for each schedule (person), caused by the road incident.

Figure 5.10 shows two frequency distributions for the schedules: the first one classifies

the schedules according to the type of the activity for which the duration compression

was maximal. The second one classifies the schedules based on the type of the activity

that suffered from maximal time shift.
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5.7.3 Performance

1. WIDRS has been run on two machines having following specifications:

M1 M2

Processor Type Intel Xeon X5670 i5-2410M

Num. processors 2 1

Cores/processor 6 2

Threads/processor 12 4

Clock frequency 2.95 GHz 2.3 GHz

Memory 48 GB 4 GB

TransCAD 6.0 4.7

2. Characteristic values for a run:

Item Value

Population size (= number of schedules) 2395513

Number of affected schedules (schedules for which at least one

trip duration changed with more than one minute)

171632

Number of episodes 9139002

3. Performance characteristics have been summarized by the upper bounds men-

tioned in following table:

Item Duration on M1 Duration on M2

WIDRS STEP 2 16[hours] 26[hours]

WIDRS STEP 3 (similar to STEP 2)

MAX duration of schedules adaptation

for complete population in STEP 2

49.4[sec] 89.1[sec]

MAX duration of schedules adapta-

tion for complete population for one

NSE period

5.8[sec] 34.2[sec]

4. The relaxation algorithm to find new optimal schedules when timing constraints

changed, handles 21000 schedules per second.

5. Since individuals act independently while rescheduling, parts of the WIDRS

code have been written for multi-threading. TransCAD6.0 code also uses all

available threads to execute the MSA algorithm. TransCAD4.7 uses at most
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a single thread. It turns out that both TransCAD6.0 and WIDRS code are

efficient but that most time is lost exchanging data between both tools because

that is done via ASCII files.

6. STEP 2 never requires more than 4 passes when a tolerance of 0.01 is used.

About 20% of the time is spent executing WIDRS Java code. The remainder of

the time is spent in data transfer and TransCAD runs. An alternative solution

to calculate the traffic assignment is to be found in order to make the framework

more efficient.

5.8 Conclusions

A framework to investigate rescheduling daily activities with feedback from traffic

network loading in a large area has been built by combining microscopic schedule

execution simulation with macroscopic time dependent traffic network performance

modeling. The microscopic component covers large amounts of actors re-optimizing

their daily agenda making use of network information via perception filtering as

time evolves. Both the framework and a rescheduler using monotonically decreas-

ing marginal utility have been evaluated. The framework proved to be able to eval-

uate agenda adaptation by the complete Flemish population taking traffic network

load feedback into account, within a feasible runtime. Initial consistency between the

schedules and the travel time matrices is crucial because the unbalance shall be much

smaller than the effect of schedule adaptation decisions. The inconsistency results

from the difference in time resolution used in the schedule predictor on one hand

and the schedule adapter/executor on the other hand. Resolving this inconsistency

proved to constitute a non-trivial problem. The framework now is ready for evalua-

tion of alternative (marginal) utility functions, traffic information conveying models

and perception filters.

5.9 Future Work - Required Extensions

1. In the short term, the framework will first be extended with intermediate dead-

lines induced by bring/get activities. Utility optimization then applies to peri-

ods of the day delimited by those deadlines. In a second step, the trip estimated

duration will be made depending on the trip start time. The travel duration

available in impedance matrices, is a piece-wise constant function of start time.

It will be approximated by a spline which is assumed to be sufficiently accurate
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and is continuous and differentiable which is important for the optimization

algorithm. Unfortunately, the relaxation process no longer will converge mono-

tonically.

2. Parameters used in (marginal) utility functions shall be estimated from survey

data. A daily schedule can have intermediate hard constraints for specific ac-

tivities (e.g. bringing someone to a railway station to catch a train, picking up

small children at school etc). Such constraints introduce periods with different

time pressure values. First, such intermediate constraints shall be introduced

in the model and secondly, they will affect the values for the parameters used

in the utility functions. The model extension is planned and intermediate dead-

lines shall be derived from the available recorded diaries and time use survey

responses.

3. Bell-shaped marginal utility functions (leading to S-shaped utility functions)

will be introduced. Joh (2004) has shown that they provide a more realistic

model of reality.

4. More elaborated models for the traffic information conveying model (broadcast,

publish) need to be incorporated; the framework now is ready to do so. The

sensitivity of the simulator to the notification model used, is to be investigated.

5. The incident effect duration estimation can be made dependent on the drivers

history (experience) which in turn can be assumed to grow with age.

6. Activity dropping and insertion, activity re-sequencing and activity relocation

will lead to challenging combinatorial optimization problems. Cooperation be-

tween individuals will add another magnitude of complexity as is suggested by

preliminary investigations in Knapen et al. (2012a).

7. Currently the framework is also used to simulate electric vehicle battery charging

when energy rates are time dependent due to expected availability of wind and

solar power.

5.10 Appendix A: WIDRS main algorithm details

The algorithm shows an overview of the main steps in the WIDRS software operation.

It is equivalent with the flowchart in Figure 5.2. Symbols used in the algorithm have

been defined in the table below.
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FM [p] : OD flow matrix for NSE period p

IMF : OD impedance (travel duration) matrix used by FEATHERS

IMNSE [p] : OD impedance (travel duration) matrix used for NSE period p

NNSE : Number of NSE periods in day

NWincident : Network to evaluate traffic under incident conditions

NWnormal : Network to evaluate traffic under normal conditions

scheds : Set of schedules, one for each individual (synPop member)

synPop : Synthetic population

� Lines 1-6 specify the function to calculate an impedance matrix for NSE period

p from a set of schedules for which the trips are applied to the given network.

� STEP1 (lines 8-11) calculates the initial impedance matrix for each NSE period

under normal network conditions. FEATHERS is used to predict a schedule

(daily agenda) for each individual in the synthetic population. WIDRS assumes

that the generated schedule for each individual is the optimal one.

� In STEP2 (lines 13-24) the schedules are used to determine origin-destination

traffic flows (OD-flows) between TAZ. The OD-flows for car mode are applied to

the road network that is assumed to operate under normal conditions: this traf-

fic assignment results in expected car flow and travel duration values for each

link in the road network. From those link results, new travel times between TAZ

are calculated and summarized in an OD impedance (travel duration) matrix.

Since on one hand, OD impedance matrices are used to predict schedules and on

the other hand schedules produce OD impedance matrices, it is easily seen that

schedules and impedances need to be mutually consistent. This consistency is

not a trivial concept since its definition depends on the purpose for which sched-

ules and impedances are calculated; this is explained in section 5.6.3. STEP2

makes the impedance matrices consistent with the list of schedules. The inner

loop in lines 16-23 makes the impedance matrices consistent with the schedules.

The limit value maxRelDiffAllowed has been specified in the configuration (see

5.11).

� STEP3 (lines 26-32) starts from mutually consistent schedules and impedance

matrices for the normal case. The network characteristics are assumed to sud-

denly change due to an incident for a given RCP (Reduced Capacity Period)

representing incident conditions. STEP3 is the actual schedule execution sim-

ulator. Line 27 determines which network to use. All networks share the same
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Algorithm 5.10.1 WIDRS algorithm overview.

1: function impedMtx(scheds, p, network)

2: FM [p]← flowFromSchedules(scheds, p)

3: netwState← trafficAssignment(FM [p], network)

4: IM ← impedMatrix(netwState)

5: return IM

6: end function

7: . STEP 1: Initial impedance matrices for normal network

8: scheds← FEATHERS(landUse, synPop, IMF , dTrees,NWnormal)

9: for all i ∈ NNSE do

10: IMNSE [i]← impedMtx(scheds, i,NWnormal)

11: end for

12: . STEP 2: Reference impedance matrices for normal network

13: repeat

14: largestRelDiff ← 0

15: scheds← makeSchedsConsistWithImped(scheds, IMNSE)

16: for all p ∈ NNSE do

17: IMprev
NSE ← IMNSE [p]

18: IMNSE [p]← impedMtx(scheds, p,NWnormal)

19: n0 ← ‖IMprev
NSE [p]‖2

20: n1 ← ‖IMNSE [p]‖2
21: nd ← ‖IMNSE [p]− IMprev

NSE [p]‖2
22: largestRelDiff ← max(largestRelDiff, nd

(n0+n1)/2 )

23: end for

24: until largestRelDiff ≤ maxRelDiffAllowed
25: . STEP 3: Schedule execution

26: for all p ∈ NNSE do

27: actualNetwork ← networkSelector(nsePeriod(p))

28: IMNSE [p]← impedMtx(scheds, p,NWact)

29: for all indiv ∈ synPop do

30: indiv.reschedule(IMNSE [p])

31: end for

32: end for
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topology but differ in link capacity values that model the local time dependent

effect of the incident (see section 5.5.7).

5.11 Appendix B: Configuration

The table below summarizes parameter values that apply to the results presented in

the paper.

Item Value Unit Description

deliveryDelay 30 min Notification delay

fU 0.95 - Utility saturation level for the activity having the

longest duration in a MASWOIC

k schedAdaptDOF 1 - Factor determining weight used to derive the value

for the schedule adaptation time-shift DOF

maxRelDiffAllowed 0.01 - Maximum relative error between the impedance

matrix used to determine travel duration in sched-

ules and the one resulting by applying the travel

demand of same the schedules to the network

tisInfo level 0.05 - Reference level for travel time re-normalization

tisInfo refGap 60 min Reference gap for travel time re-normalization

In order to determine whether or not an activity is affected by re-scheduling, its

start time is compared with the activity type specific threshold given in the following

table. Please note that those values are used only to produce statistics.

Activity Type Start time shift threshold [min]

Home 30

Work 10

Bring/Get 2

DailyShopping 10

Services 3

SocialVisit 15

Leisure 2

Touring 15

Other 10
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5.12 Critical Reflection

5.12.1 Discussion

1. The calculation of α and k values differs between the papers Knapen et al.

(2012d) and Knapen et al. (2013c). In the former the k values were assumed

to be activity type specific constants. In the latter, ki = C
di

is taken (i.e. the k

value for the i-th activity is proportional to the inverse of the duration which

renders the k values individual specific (which is assumed to be more realistic).

In both cases, all but one of the α values can be determined from the optimality

criterion and needs to be chosen as a reference value. In the former paper, the

first activity of the schedule was used as a reference, in the latter paper the

activity having the longest duration is chosen. Since for the reference activity

a utility saturation level is specified, the latter option is more realistic.

2. The C constant in equation (5.26) is not required when only a single Maximal

Activity Sequence WithOut Internal Constraints (MASWOIC) is considered.

This is explained in section 5.6.2.3 item 2. In the cases described in both papers,

the value for C is chosen arbitrarily. However, in a case consisting of several

MASWOICs, activity re-sequencing can move activities between MASWOICs.

In order to compare the utility values between different MASWOICs, a C value

for each of them is required. This corresponds to the introduction of a time

pressure concept.

3. The time reference problem solved in section 5.6.3.2 disappears when at least

one activity or trip start is assigned a fixed time-of-day (e.g. by fixing bring-get

activities in time assuming that they are the result of a negotiated appointment).

As soon as more than one moment gets fixed in time, multiple MASWOICs

occur.

5.12.2 Rescheduling with Travel Time Recalculation

1. The current version of WIDRS considers a single user class with respect to TA.

As a consequence, in the network loading stage, no information about individual

preferences is available. In order to make WIDRS applicable to problems like

congestion charging, it shall be extended to transfer user class information to

the TA software.

Aggregated Traffic Assignment (TA) causes a lot of information to be lost. On

the other hand, the use of TAZ level travel time OD matrices to model com-
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mon knowledge, makes sense. WIDRS is suited to (i) evaluate computational

performance and to (ii) evaluate rescheduling models and build applications for

cases where the rescheduling component does not need any information about

the chosen route and the routing can be performed without any information

about the individual.

2. Traffic is not modeled completely correctly since the TA tool assumes that the

route for each trip can be freely chosen (the trip is assumed to start in the

1-hour period for which TA is computed) which is not true for all trips (some

are already going on). On one hand, route information or link loads are not fed

back to the rescheduler; on the other hand, the effect via travel time feedback

is limited. This technical phenomenon has no effect on notified individuals

(i.e. the ones who become aware of adjusted travel times) because they are not

traveling. The experiencing individuals (i.e. the ones suffering from unexpected

congestion) recalculate the travel time for the unfinished part of the trip; hence,

only that part suffers from the phenomenon.

3. WIDRS runtimes are long (almost 24[h] to simulate a single day). Long runtimes

stem from data transfer between WIDRS code and TA tool TransCAD (see items

5 and 6 in section 5.7.3). The integration of both tools needs to be enhanced.

5.12.3 Rescheduling without Travel Time Recalculation

In some cases, the effect of rescheduling has a minor effect on the global interzonal

travel times which constitute the only feedback from Traffic Assignment (TA). In such

cases, travel duration matrices can be pre-computed (see section 5.12.5.3 item 3 for

details). When using the pre-computed trip duration, evaluation of the rescheduling

models still is done with time dependent travel time. This allows for efficient evalua-

tion of activity re-sequencing, adaptation of schedules with internal deadlines (multi-

ple MASWOIC), alternative travel mode selection, etc. Such rescheduling models can

be evaluated without travel time recalculation and the travel demand generated by

the final schedules can be assigned to the network to verify the hypothesis of minor

effect on travel time was correct. If the hypothesis holds, the rescheduling model

evaluation is correct.

5.12.4 Provided Facilities

WIDRS keeps track of the schedules for the complete population and can adapt them

very fast. It provides facilities to analyze and report differences between the original
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and adapted version of a schedule. It can present results as distributions for several

schedule properties e.g. time spent in activities, difference in travel time, etc. Hence

it provides a test-bed to analyze the effects of schedule adaptation at the population

(segment) level. Since WIDRS can produce frequency distributions as well as provide

every detail for outlier analysis, it is an efficient tool to evaluate rescheduling models.

5.12.5 Possible Extensions

Topics related to (i) the individual behavioral model and (ii) the framework are han-

dled separately. The original aim was to provide a framework to evaluate schedule

adaptation models before integrating them into research projects. This idea remains

valid although WIDRS can be used as a stand-alone tool to answer research questions

as indicated in section 5.12.3.

5.12.5.1 Behavioral Model Extensions

The behavioral model definitely needs to be extended. Each extension needs two

evaluation steps: (i) assessment of the extended rescheduling model quality using the

WIDRS framework and (ii) assessment of feasibility to use the extended WIDRS as

a stand-alone tool to solve a practical problem. If stand-alone deployment turns out

not to be useful, the evaluated rescheduling model needs to be integrated in another

framework in order to solve specific concrete problems.

Suggestions for extensions are:

1. Implementation of internal deadlines: This includes reporting of missed dead-

lines. Appropriate reaction to missed deadlines in general is not possible due

to lack of information about the missed deadline consequences and the possible

corrective actions.

2. Although the utility only depends on activity duration and not on the abso-

lute time-of-day, activity re-sequencing within a given MASWOIC makes sense

because travel time depends on the time-of-day. Activity re-sequencing might

affect required travel time and hence total utility for the MASWOIC, even be-

fore implementing internal deadlines.

Note however that this can break the hypothesis that the original schedule was

optimal. If re-sequencing activities increases the utility of the schedule beyond

its original value, one shall decide that the method to calculate utility differs

among the schedule generator and the schedule adapter. The ability to increase

the utility of the original schedule implies that the schedule generator, while de-
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ciding optimality, used information that cannot be retrieved from the predicted

schedule.

3. Extension of the utility concept: Utility shall be made time-of-day dependent

and not only depend on activity duration. A concept similar to the effectiveness

function defined for C-TAP can be used (Maerki et al. (2014)). Utility can turn

out to be a complicated function of (i) activity type, (ii) activity duration,

(iii) time-of-day i.e. the amount of overlap between the activity period and

given globally defined (as opposed to emerging from coordination) other periods

(iv) length of the period since the end of the last execution of a similar activity

(defined by a needs based model)

4. Introduction of the VOT concept: In some applications the concept of Value

Of Time (VOT) needs to be integrated. Examples are: evaluation of conges-

tion charging or the currently considered proposal for price reduction offered to

clients shopping in calm periods of the day. Monetary value for utility needs to

be defined (this is equivalent to the VOT problem) for each activity.

5. Support for uncertainty: Some applications require the introduction of facilities

for which the availability is not deterministic. This is the case for Electric Ve-

hicle (EV) related applications where some tours cannot be completed without

intermediate charging. The minimum required charging period at each location

can be calculated but the available amount of electric energy during a given

period at a specific location is stochastic, even if the maximum power supply

is deterministic (this is because the demand is stochastic). Handling such cases

requires the development of new behavior models able to cope with uncertainty.

6. Mode change to evaluate multi-modal tours (carpooling excluded because that

requires coordination among actors).

5.12.5.2 Use of the Behavioral Model in other Frameworks

The individual behavioral model extensions discussed in section 5.12.5.1 can be used

in WIDRS as well as in other frameworks. For example, the behavioral model can

be integrated in the carpooling Agent-Based Model (AgnBM) discussed in previous

chapters to enhance the negotiation components. This requires the integration of a

predictor module for time dependent travel time in the carpooling model but that

is technically less complex than introducing a generic cooperation concept (and the

inevitable computational complexity) in WIDRS.
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A similar reasoning holds for EV related applications which also require some form

of coordination.

The individual behavioral model can be integrated in MATSim as a replanning

module. Note that the concept of internal deadlines needs to be integrated in the

WIDRS behavioral model first since MATSim makes use of authority constraints (shop

opening times).

5.12.5.3 Framework Extensions

Following framework upgrades are useful when the use of aggregated TA is continued:

1. Addition of a facility to transfer user class information from WIDRS to the TA

software tool.

2. Finding a technique to speed up the data transfer between WIDRS code and

TA code, possibly by choosing an other TA tool to solve the data transfer (see

items 5 and 6 in section 5.7.3).

3. Using approximated travel times: in some cases the rescheduling decisions may

be assumed to have little or no effect on aggregated travel times (which is

the only information fed back from the TA tool). In such cases, travel times

can be computed in advance. Currently 96 travel time matrices (one for each

15[min] period) each containing about 6 million cells (for nearly 2400 TAZ) are

required. By using an appropriate family of polynomials, travel duration can be

modeled as a continuous function of trip start time. It is expected that the set

of coefficients to represent 6 million such approximations can be kept in memory

in current servers. This allows for very fast travel time evaluation that replaces

the current look-up in travel time matrices which requires repeated data loading

from disk storage. However, the use is limited to the cases described in section

5.12.3.

Extensions involving actor cooperation are discouraged because they introduce com-

putational complexity that is very hard to cope with in a general way. A better

solution is to handle cooperation and coordination in frameworks that provide heuris-

tics tuned to the specific problem.
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Chapter 6

Introduction to Route

Decomposition

6.1 Research Objective and Relevance

The research started from the hypothesis that for their utilitarian trips (trips having

the purpose to perform an activity at a particular location) people tend to compose

their routes from a small number of least cost components.

If this hypothesis turns out to hold, the goal is to collect quantitative data about

route composition from big data. The objective is to use the resulting information to

enhance the choice set used in the route selection problem either by integrating it in a

constructive procedure or by using it to filter improbable candidates from the choice

set in the filtering stage. The minimum number of least cost paths required to recon-

struct a proposed route can be used in the elimination by aspects stage mentioned in

Bovy (2009) where a candidate is accepted or rejected for inclusion in the considera-

tion set, based on the values for a set of attributes. To the best of our knowledge, the

proposed structural path attribute was not used for route quality assessment before.

Each path in a network leads from an origin to a destination. Non-least-cost paths

can be split into parts using intermediate destinations so that the traveler moves to

each (intermediate) destination along a least cost path. The minimum number of

intermediate destinations, required to construct the path, determines the structural

complexity of the path. The lower this number, the simpler the structure is.

Analysis of GPS traces allows to determine the structural complexity of paths

used in practice; it seems that actually used routes have a fairly simple structure. In

165
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S A B C D T

(S,A)

(A,C)

(B,D)

(D, T )

s(S,B) s(A,D) s(C,T)

Figure 6.1: Someone moves from S to T via A,B,C,D. The longest least cost sub-

paths are (S → A), (A → C), (B → D) and (D → T ). Examples of non-least-

cost subpaths are: (S → B) and (C → T ). The resulting splitVertexSuites are:

{A}, {B,C}, {D}. The lines labeled s(S,B), s(A,D) and s(C, T ) represent shortcuts

(not used by the traveler who moved along the red line).

order to be realistic, the generated choice sets shall reflect the structural properties

revealed by observed trips.

When the selected path in the network is revealed by the traveler (by enumera-

tion of all links and nodes), not all information concerning the route choice decision

is known to the analyst neither is the complete information about the path structure,

that could be relevant for the decision, uncovered. The reason for this is explained by

following observations. The minimum number of least cost components in a revealed

route can be determined but in general there are multiple different minimum decom-

positions of a given path into least cost subpaths: the minimum decompositions are

not unique. Hence, the analyst can derive how many components the traveler had in

mind but does not know which ones. An example is shown in Figure 6.1. Someone

moving from a source S to a destination T passing via nodes A,B,C and D could have

taken either the least cost paths sequence (S → A), (A → B), (B → D), (D → T ) or

the sequence (S → A), (A → C), (C → D), (D → T ) both of which result in exactly

the same revealed sequence of nodes in the network. This happens when A,B,C,D

all are on the revealed route, the minimum decomposition consists of four components

and there are two different ways to split the path (using either of the combinations

〈A,B,D〉 or 〈A,C,D〉). In such case, the analyst cannot decide what the traveler had

in mind. Several possible decompositions are concealed in the revealed route. This is

important to know while looking for the motivation for the route selection.

The revealed route can be described by a vector of splitVertices. A splitVertex is
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a vertex that belongs to two consecutive components in a minimum path splitting. In

the example given, A,B,C and D are splitVertices. The size of the vector is known

because the size of the minimum decomposition can be determined unambiguously.

However, for a single path, several such vectors do exist. Each element in the vector

is to be chosen from a specific subset of the vertices in the path: i.e. the i-th element

is to be chosen from the i-th set. In the example given

1. the size of the minimum decompositions is four so that three splitVertices are

required

2. the sets from which to select are {A}, {B,C} and {D}

3. and two vectors generating valid splittings were identified : 〈A,B,D〉 and

〈A,C,D〉
In chapter 8 an efficient way to determine the size of the minimum decomposition

and the sets from which to select split vertices, is presented. The sets turn out to be

disjoint but not every combination of vertices selected from them, constitutes a valid

decomposition.

This is a fortunate observation since it means that the data contain additional

information. Chapter 9 defines vertex importance relative to a set of paths S as the

occurrence frequency of the vertex in the set of splitVertex vectors for all possible

minimum decompositions for the paths in S. A method is provided to enumerate all

possible decompositions for each path found in the set of GPS traces for a given region,

in polynomial time. Hence vertex importance calculation is feasible. Furthermore,

it can be interpreted as a measure for the probability of a network node (junction)

to be used as an intermediate destination. This in turn supports route candidate

construction.

The usefulness of an efficient trip decomposer is shown as follows. Specific sets of

recorded routes can be analyzed (e.g. (i) all routes for a specific person, (ii) the routes

starting in a specific time period, (iii) routes linking given areas or (iv) routes using a

given vehicle type). After determining all possible minimum decompositions for each

route, the occurrence frequency of each vertex as a splitVertex can be determined

and reveals information that is useful for route choice set generation and for trip

annotation.

The following examples illustrate some applications of vertex importance and of

path complexity (the size of minimum path decomposition):

1. route choice set generation: (i) trips can be analyzed with respect to road cate-

gory use in order to find out whether splitVertices correspond to road category

changes (e.g. local road to motorway) aiming to find out to what measure
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people use hierarchical routing and (ii) a splitVertex can identify way points

corresponding to a safe junction crossing or can reflect the effect of specific road

signalization.

2. trip annotation: stop and trip detection algorithms typically make use of time

and distance thresholds (e.g. 180[sec] and 100[m] were found to be optimal

settings to reproduce the trips in a set of diaries from the set of associated

GPS traces in a study reported in Cich et al. (2015)). The detection algorithm

detects a stop as soon as the traveler stays within a small area for sufficiently

long time. This technique can conceal short stops on purpose (e.g. pick-drop

activities). Such stops are expected to generate a splitVertex.

3. mode detection: particular sequences of split vertices might correspond to se-

quences of mode transfer locations in multi-modal trips (train stations, bus

stops, carpool parkings, etc).

4. travel behavior properties might be revealed by the distribution for the size of

the minimum path decompositions for the trips in particular segments: e.g. it

is worth to find out whether traces for electric vehicles differ from traces for

combustion engine vehicles due to range anxiety

All aspects mentioned in the examples are relevant for travel demand prediction and

network loading in activity-based micro-simulators.

6.2 Components of the Research

Trips are extracted from GPS traces. The resulting sequences of recordings are trans-

formed to walks in the road network graph by means of map matching. Walks that

constitute a path (i.e. in which no vertices are visited more than once) are considered

to represent utilitarian trips and the size of the minimum decomposition into least

cost paths is determined for each of them. Finally, all minimum decompositions are

enumerated. Those components are briefly introduced in the following subsections.

The chapters covering route splitting derive properties of the observed route exclu-

sively by applying graph theoretical results, not requiring any tuning nor any operator

judgment or interaction.

6.2.1 Trip Detection

A trip detector software was written to partition a sequence of GPS recordings into

contiguous subsequences each of which constitutes a trip. This work was not reported
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in a paper but is mentioned in Cich et al. (2015) where trip detection is compared to

stop detection in GPS traces.

In stop detection, the individual is assumed to reside at a location when all record-

ings for a period longer that ∆t are within a circle having radius R. All recordings

between stops are assumed to constitute trips.

In trip detection, the longest possible subsequence for which (i) the moved distance

is sufficiently large (similar condition as for stop detection), (ii) the speed values start

from near zero, grow and drop again to near zero, and (iii) which does not have

large gaps caused by missed recordings, is considered to constitute a trip. Sequences

without gaps and consisting of recordings having almost zero speed are considered to

be stops and the remainder of the recordings is considered to be junk.

The trip detector scans the GPS records and maintains a variable size sliding

window containing the last records seen. Those records have not yet been finally

qualified as stop, trip or junk. Each time a record is read, several quantities are

evaluated: instantaneous and smoothed speed and acceleration, window size and

period etc. Specific changes in the evaluated quantities lead to event firing. The

events are fed to the state machine shown in Figure 6.2 that controls the qualification

of the subsequence contained in the window. Definitely qualified records are dropped

from the window.

The speed condition is required because part of the processed traces were recorded

using devices that can be turned on/off by the user while driving. Plausible evolution

of speed and lack of large gaps caused by missed recordings, were required to assure

the extraction of complete trips (as opposed to junk parts).

6.2.2 Map Matching

Chapter 7 describes a new method for offline map matching (i.e. batch processing

of GPS traces). It is as efficient as the state of the art methods that keep track

of a limited set of candidate solutions; those methods need to make crucial decisions

about link use and about dropping solution candidates, for every GPS recording being

processed. As a consequence the decisions are based on information about the point

being processed and its predecessors. On the other hand the new method is a global

one in the sense that all recordings in the GPS trace are involved in all link selection

decisions but it is faster than other published global methods.

While processing the GPS recordings sequentially, a graph is built that contains

all topological and temporal information that is available from (i) the road network,

(ii) chronology of the recorded coordinates and (iii) the distance between each GPS
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Figure 6.2: Finite State Machine (FSM) controlling the trip detector software while

scanning a stream of GPS recordings.
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point and each network link geometry which results is a weight for each link touching

(matching). After processing the complete sequence of GPS recordings, the maximal

weight path in the graph generates the most likely walk in the road network.

The current implementation of the map matcher requires that each link on the

route used by the traveler is touched by at least one GPS recording. The reason for this

decision is that, in order to verify the hypothesis formulated in section 6.1, sequences

of effectively used network links are required. Many map matching tools close detected

gaps by inserting shortest paths. This is unwanted in the route decomposition research

context.

6.2.3 Minimum Path Decomposition Size

The paths in the network resulting from map matching are analyzed. Chapter 8

describes an efficient algorithm to determine the size of the minimum splitting of a

given path into least cost components. The algorithm is applied to process two sets

of GPS traces.

GPS traces owned by IMOB (Bellemans et al. (2008)) were processed using the

map matching tool described in chapter 7. A second, much larger, dataset was map

matched using a tool written by Fraunhofer IAIS, Bonn (IAIS). The reason for this

decision is data ownership. For the latter dataset, the raw GPS traces could not be

disclosed; instead, link sequences generated by the IAIS map matching tool along with

link lengths but without vertex coordinates were made available. Chapter 8 compares

distributions for the size of the minimum decompositions for both datasets and map

matching tools.

A third dataset recorded for Electric Vehicles (EVs) was acquired but it turned

out to be unusable for the planned research because of problems during GPS record-

ing. The distribution for the trip length was unrealistic and the technical recording

problem was confirmed by the people who collected and cleaned the data.

The procedure to determine the minimum path decomposition ignores trivial nodes

(pass-through nodes). Trivial nodes are introduced in maps to describe changes in

road characteristics or administrative borders. The traveler does not have to make a

link selection decision in trivial nodes. They are excluded from the analysis so that a

normalized network is used.

6.2.4 Enumeration of all Minimum Path Decompositions

Chapter 9 specifies a five-stage procedure to enumerate all minimum decompositions

for a given path in a graph. Graph theory is used to prove the correctness of the
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procedure. It is also shown that the procedure can be executed in polynomial time

which makes it suitable for practical use.

Finally the notion of vertex importance with respect to a given set of paths, is

defined. The chapter suggests to correlate vertex importance with network attributes

of the vertex in order to predict importance values for vertices that were not visited

by the revealed paths. Those values might uncover (i) the use of road hierarchy while

routing and (ii) the transportation relevance of particular nodes or their incident links.

Implementation of the proposed five-stage procedure is not part of this thesis.

6.3 Kind of Reported Results

In this research, several new methods were developed and each of them is described

in a separate chapter. At the time of writing, chapters 7, 8 and 9 each correspond

to a paper submitted for peer review. The methods described in chapters 7 and

8 have been implemented and the reported results consist of algorithm explanation,

algorithm proof (for chapter 8) as well as application results. For chapter 9 algorithms

and mathematical proofs are given but implementation and application results are not

yet available.
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Map Matching

This chapter consists of

Knapen et al. (2015a) Efficient Offline Map Matching of GPS Recordings Using

Global Trace Information

Related co-authored papers

Cich et al. (2015) TRIP/STOP Detection in GPS Traces to Feed Prompted

Recall Survey
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7.1 Abstract

A new procedure for map matching of GPS recordings by batch processing is pre-

sented. Such methods are used in transportation science in order to extract patterns

from large datasets. The proposed technique is said to be global because it processes

the complete sequence of GPS recordings before making any decision about the se-

quence of links used by the traveler. Most recent offline map matching techniques

keep track of a limited set of candidate sequences while sequentially processing GPS

recordings. Since in general, more candidates are produced than can be kept in the

candidate set, non-promising candidates need to be discarded. This is done based

on the information contained in the partial GPS recordings stream processed up to

the moment the pruning decision is taken and hence the decision is said to be based

on local information. In order to make use of all information contained in the trace,

the proposed method makes use of link-use-period assumptions. They assign a weight

(likelihood) to the assumption that a given road network link is used during a given

period of time. At the conceptual level two processing stages are distinguished (al-

though both are executed in a single pass over the data). In the first stage, links

matched by GPS recordings are identified, the GPS trace is partitioned in contiguous

sub-traces so that recordings in each part touch the same set of links. Link use period

assumptions are extracted from the partitioned GPS trace and organized in a graph

based on the chronological and topological relations among them. The vertices in

the graph represent link-use-periods. Each of them gets assigned a weight based on

the distance between the GPS points and the geometry of the touched (matched)

road network link. In the second stage, this graph is used to find the sequence of

link-use-periods for which the corresponding walk in the road network has the high-

est likelihood to have generated the trace of GPS recordings observed. The proposed

technique is computationally as efficient as the current methods based on candidate

sets of limited size but it takes all GPS points in the trace into account for each link

selection decision.

7.2 Introduction

Map matching combines a road transport network description consisting of nodes and

directed links with a time series of coordinate tuples that describes the movement of

a traveler. The purpose is to reconstruct the sequence of links crossed by the traveler

in chronological order. In this section a short overview of existing map matching

techniques and their respective fields of application is given in order to sketch the
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state of the art. The technique proposed in this paper is aimed at offline (batch) map

matching of GPS traces. Two main classes of map matchers are distinguished.

7.2.1 Online Map Matching

Online near real time map matching processes coordinate pairs as soon as they come

available and aim to determine the network link that is actually being traveled. Map

matchers in this class are deployed in navigation aids. Their software operates on

dedicated microprocessors and typically data sampling is in the order of 1 to 100 Hz.

In many cases data from several sensors (odometer, gyroscope, accelerometer, etc) are

available for data fusing along with GPS coordinates. Quddus et al. (2007) provide

a comprehensive overview of online map matchers. Greenfeld (2002), Ochieng et al.

(2010), Li et al. (2013), Abdallah et al. (2011) discuss the data fusion techniques and

inference methods. The aim of online map matching is to determine the link on which

the vehicle is moving and to calculate the position of the vehicle on the link as accu-

rately as possible (e.g. for traffic signal influencing by buses (Quddus et al. (2007))).

The latter is essential in Intelligent Transportation Systems (ITS) applications and

in Advanced Driver Assistance Systems. Nowadays map matchers are based on the

Multi-Hypothesis Technique (MHT) about the position of the vehicle. Such methods

are called Multi-Hypothesis Map Matching (MHMM) in Bonnifait et al. (2009). In

many cases, MHT and sensor data fusing feed maximum likelihood Bayesian infer-

ence engines and often Kalman filtering is used. Most of current online map matchers,

starting with Greenfeld (2002), incorporate topology constraints.

7.2.2 Offline Map Matching

Offline or batch map matchers aim to process previously recorded sequences of coor-

dinate pairs in order to extract travel behavior information either for a single moving

object (either person or vehicle) over a long period or for a large set of moving objects.

GPS recordings are either vehicle traces produced by dedicated devices mounted in a

vehicle or person traces recorded by smartphones carried by individuals. The aim is to

determine the sequence of links used by the moving object. Schüssler and Axhausen

(2009) state that map matching of person traces requires high resolution network in-

formation. Available data consist of time series of GPS recordings and in some cases

from other sources (Bluetooth, Wifi and mobile phone related events). Large datasets

are available and need to be processed efficiently. In Quddus et al. (2007), Schüssler

and Axhausen (2009), map matching techniques (both online and offline) are classi-

fied as (i) pure geometry based methods, (ii) topological methods, (iii) probabilistic
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methods and (iv) advanced procedures. Pure geometric methods are further classified

by Quddus et al. (2007) as point to point matching (finding the nearest node or shape

point), point to curve matching (finding the polyline to which the distance is minimal)

and curve to curve matching (matching the vehicle trajectory against known roads).

Those methods can deliver link sequences that represent non-connected walks in the

network.

The technique proposed by Marchal et al. (2005) solves the latter problem by

adding topological constraints. It starts by determining which links are identified by

the first few GPS recordings. Each of those constitutes the first link in a candidate

path. When the next GPS coordinate pair is processed, for each route candidate

being built, only the last link in the sequence and the links that can be reached

from that link (forward star) are investigated when looking for links matched by

the new coordinate pair. Since each candidate shall consist of a linear sequence of

links, candidates are cloned and each clone is extended by exactly one member of the

forward star. The candidates then are assigned a score and in order to avoid huge

sets of candidates, only the N candidates having the best scores are kept (N = 30).

Scoring is done as follows. Each GPS point can match at most one link in each

candidate. The distance between the point and the link is a measure for the quality

of the selection (the lower the better). The score for a candidate takes the sum over

all points of the distance between the point and its corresponding matched link. If

there are too many candidates, the ones having the highest scores are discarded. The

computational effort and memory requirements grow with N . Making N too small,

can cause promising candidates to be removed prematurely and hence can decrease

the average quality of the final candidates. Schüssler and Axhausen (2009) evaluate

this technique by comparing the quality (score) of the best solutions found and the

corresponding computational effort for several values for the maximal candidate set

size N . The paper concludes that the value reported in Marchal et al. (2005) is a

valid one; the average score per GPS point does not significantly decrease with the

candidate set size for N > 30. It also reports that the processing time per point is

between 10[ms] (for N = 20) and 75[ms] (for N = 100).

Zhou and Golledge (2006) use a similar procedure implemented in ArcGIS. GPS

recordings are processed sequentially and a pool of candidate solutions is kept. In

a preprocessing stage, they first replace clusters of GPS points by their centroid

(cluster reduction) but also add interpolated GPS points when the distance between

two consecutive points is larger than half of the minimum length for the links in

the buffer defined by the two GPS points. Then a 2-norm (distance) and a rotation

measure are used to determine the weight for each point in the preprocessed dataset.
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A set of candidate partial paths is kept and extended so that a connected walk results

from the method. In the link selection phase, a Dempster belief function is used to

determine the plausibility of the selected link. However, the authors do not explain

what criteria were used.

Feng and Timmermans (2013) use a Bayesian Belief Network (BBN) to replace

the ad hoc rules used in map matchers not making use of the Multi-Hypothesis Tech-

nique (MHT), to select the next road segment in a route. The input for the method

consists of (i) Positional Dilution Of Precision (PDOP) (ii) the difference in direction

between the road segment and the line segment defined by the last two GPS points,

(iii) the distance from the GPS point to the line segment, (iv) the connectivity be-

tween road segments and (v) azimuth information. For a set of routes the effectively

used line segments have been recorded by the traveler. This dataset serves as the

truth value which is used for training the BBN. While processing a new sequence of

GPS recordings, the BBN is used to determine the probability for a candidate link to

become the next one in the route. The link having the highest probability is selected.

In this procedure, the topological constraint is not forced. Connectivity information

is used as an input variable and the resulting sequence of selected road segments is

not necessarily a connected one.

Chen et al. (2011) propose a probabilistic method to simultaneously detect the

road segment sequence and the transportation modes used. The likelihood that a

given multi-modal path in a network generates the observed sequence of smartphone

data is estimated. The measurement equations establish the probability that a given

path generates a given time series of measurements. The travel model consists of

frequency distributions for the speed estimated for six different modes. The phone

measurement model involves GPS coordinates, speed, acceleration and Bluetooth

events.

Bierlaire et al. (2013) further elaborate the proposed probabilistic measurement

model introduced by Chen et al. (2011) and show how to compute the integrals. The

path is decomposed into arcs and integrals are evaluated over each arc and summed.

The concept of Domain of Data Relevance (DDR) is used to limit the computational

requirements; e.g. the difference between the arc direction and the reported heading

(in points where the speed is sufficiently high) are used to discard candidate links. The

procedure explicitly takes the map inaccuracy into account and rigorously elaborates

the measurement equations and the traffic model. Network topology is taken into

account during the path generation phase which is similar to the one used in Marchal

et al. (2005) and in Schüssler and Axhausen (2009) but allows to look ahead over

multiple links in order to relax the requirement that each link needs to be matched
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by at least one GPS recording.

The methods mentioned above process the GPS points in chronological order. For

each point, they decide whether or not to accept a link as the next one in a candidate

sequence based on scoring or rigorous stochastic likelihood calculations respectively.

Each procedure keeps track of a limited set of candidate paths.

Brakatsoulas et al. (2005) propose three algorithms: (i) a greedy algorithm pro-

cessing one point at a time using a distance and an angular criterion to select the next

edge, (ii) a recursive local look-ahead method (inspecting up to 4 network links and

GPS points ahead) and (iii) a global method that minimizes the Fréchet distance be-

tween curves. An overview of the global method is given in order to allow comparison

with the method proposed in this paper. First the concept of free space is introduced.

This is the set of points on two curves for which the distance is less than a given ε.

The curves of finite length are defined by [0, 1]→ R2 so that the free space is a subset

of [0, 1]2. Then it is observed that if and only if a (monotone) continuous curve from

(0,0) to (1,1) does exist in the free space, the (strong) Fréchet distance between the

curves is less than ε. The free space concept then is extended to free space surface

in order to compare a curve C to a graph (each edge combined with C generates a

free space and those are combined into a free space surface). The sequence of GPS

coordinates constitutes a piecewise linear curve. For a given ε, the free space surface

for such curve and each path in the graph is computed. Finally the minimum value

for ε for which a (monotonic) curve can be found in the free space surface, is deter-

mined by parametric search. This results in the globally optimal sequence of links (i.e.

the one that delivers the minimum ε value). This method delivers topologically valid

sequences and does not require each traversed link to be matched by a GPS point.

The complexity of the method using weak Fréchet distance is O(mn · log(mn)) where

m is the number of vertices and edges and n is the number of GPS points. Processing

time is not given: the paper only states that the runtime for the global methods was

much longer than the one for the incremental methods.

The method proposed in this paper takes topological constraints into account in

order to deliver valid paths and in order to limit the computational effort by reducing

the search space where to apply geometric verification. Furthermore, it constitutes a

global procedure similar to the one described in Brakatsoulas et al. (2005) in the sense

that the decision to select a given path is postponed until all GPS recordings have

been processed. The evaluation method however is not global because the weights of

individual GPS points (point to curve distance) are accumulated as opposed to the

global Fréchet distance method for curve to curve comparison. The performance of

the proposed method is similar to the one reported in Schüssler and Axhausen (2009).
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7.3 Application Domain - Design Decisions

This section briefly discusses the intended use of the map matcher and some of the

design decisions emerging from the related requirements.

1. The map matcher is used in a research context. Its results serve as input to

multiple research efforts each of which has specific objectives. Hence, the as-

sumptions underlying the map matcher algorithms need to be made clear and

the software shall not make any assumptions other than the explicitly formu-

lated requirements about the input data.

2. The purpose of the research projects using the map matching results is the

analysis of revealed travel behavior. In particular, researchers aim to extract

properties of routes revealed by GPS traces in order to support route choice

set generation (i.e. the same purpose as the one mentioned in Bierlaire et al.

(2013)). This leads to the requirement to efficiently derive the walk in the road

network that has the highest probability to have generated the time series of

GPS recordings.

3. The map matcher is aimed at processing large sets of GPS recordings and hence

shall be efficient.

4. Trace analysis requires the use of high resolution road network maps (as opposed

to the coarser networks mostly used in traffic assignment procedures fed by zone

based origin destination demand matrices).

5. The map matcher requires high frequency recording which means that each link

in the path used by the traveler is touched by at least one GPS point. Although

it is technically feasible to extend the proposed algorithm using a look-ahead

technique similar to the one used in Brakatsoulas et al. (2005) or using a method

that determines the look-ahead horizon from the speed in the last processed GPS

point, it was deliberately decided not to do so. The proposed look-ahead aims

to skip links not touched by any GPS recording. This requires the introduction

of an hypothesis with respect to gap filling. In the current implementation this

was unwanted because of the route splitting research reported in Knapen et al.

(2015c). This research investigates how revealed routes can be decomposed into

a minimum set of least cost sub-routes. The size of such minimum decomposi-

tions is expected to deliver relevant information to support the route choice set

generation. For this reason gap filling by means of shortest route segments in

the case of missing recordings, is not allowed. This motivates the requirement
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that each link is touched by at least one GPS point. This behavior is identical

with the one reported by Marchal et al. (2005) and by Schüssler and Axhausen

(2009).

6. Trip detection and map matching are separated. Sequences of GPS points have

been broken down into subsequences each of which corresponds to a particular

trip. Several procedures (e.g. Marchal et al. (2005)) perform trip detection

and map matching in one step. In our case trip detection has been performed

using acceleration and speed criteria. The reason for this decision was that

the resulting map matched sequences served as input for a study described in

Knapen et al. (2015c) that verifies properties of complete utilitarian trips. GPS

sequences in which people switched the device on or off during the trip had to

be excluded.

7.4 Principle of Operation

In a first step, links touched (matched) by GPS recordings are selected for processing.

A distance threshold is used and no weighting is applied yet. This is similar to what

is done on other methods described in the literature. It corresponds to what is called

Domain of Data Relevance (DDR) by Bierlaire et al. (2013). The chronologically

ordered sequence of GPS recordings is partitioned into contiguous subsequences so

that each recording in a part touches the same set of links (see Figure 7.1). Each

such part corresponds to a period in time p, defined by the first and last recordings in

the part. Using the information contained in this partition, a graph G is constructed

in which each vertex represents the assumption that a specific link l is used during a

specific period p. Hence, each vertex can be identified by a link-use-period pair 〈l, p〉.
In a second step a weight is calculated for each (link, GPS-recording) pair. The

weight value decreases with the distance between the location specified by the GPS

recording and the link geometry. If the GPS coordinate is exactly on the link, the

weight equals one. For each link l, the weight values are accumulated over the link-

use-period p and the sum is assigned to the vertex in G that is identified by 〈l, p〉.
Finally a maximal weight path in the graph G is found. This allows to reconstruct

the walk in transportation network that accumulated the largest link touch weight

and hence is assumed to have the largest probability to have produced the observed

sequence of GPS recordings.

Note that the touching and weighting steps are conceptually distinguished in order

to describe the method. However, both are integrated in the implementation and the
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data stream is scanned only once. Details are described in the following subsections.

7.4.1 Link Touching - Sub-network to Search

A link in the road network is touched (matched, selected) by a GPS recording (x, y, t)

if and only if the minimum distance between the point (x, y) and the link geometry

is not larger than the accuracy threshold d. This is the positional error that is not

exceeded with a probability p.

Given the accuracy threshold d and the associated probability p, we derive that

the probability to find Nr consecutive erroneous recordings is given by (1− p)Nr . Let

pa denote the acceptable probability to experience a matching failure (i.e. a missed

matching) due to GPS errors causing outlier recordings. The minimum value for Nr

to avoid trouble caused by consecutive erroneous recordings is given by Nr ≥ ln(pa)
ln(1−p) .

Several values for Nr were used to produce the results reported in Table 7.3. The Nr

is used in the algorithm in places where at least one good recording is required to be

able to proceed.

For each trip (GPS sequence to be map matched) the complete road network is

searched for links touched by the first Nr GPS recordings. At least one correct link

match is required to start the algorithm (hence Nr points are used). This is a very

heavy operation. The required time per GPS point is two orders of magnitude larger

than the time required for all remaining operations.

The map matcher keeps track of a sub-network to search (SNTS) for each trip

being processed. Only this network is searched in order to find touched links for each

GPS point. The SNTS is not necessarily a connected network. The initial version of

every specific SNTS is a sub-network G0 of the road network GR(VR, ER) constituted

by the links touched by the first Nr GPS points. In order to find the links touched by

the i-th recording (i > Nr) the SNTS Gi(Vi, Ei) is derived as follows. The set of edges

in SNTS Gi−1(Vi−1, Ei−1) touched by the Nr most recent GPS recordings E ⊆ Ei−1

is extended with all edges e ∈ ER that have at least one vertex in common with end

edge in E. The result is Gi. This incremental procedure shows the importance of

the Nr value. It is determined by the quality of the dataset to be processed. The

probability to have Nr consecutive outliers (i.e. no good measurement among the last

Nr recordings) shall be near to zero.

7.4.2 Touched Link Sets and GPS Trace Partitioning

Similar to other authors, we assume that the timestamp in the GPS records is correct.

GPS recordings are processed in chronological order. For each recording, the touched
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GPS Points → (TLS ,Period)

(1,2) → ({a} ,P1 )

(3,4) → ({a,b,c} ,P2 )

(5) → ({c} ,P3 )

(6) → ({c,d,e} ,P4 )

(7) → ({d,e,f,g},P5 )

(8) → ({e,f,g} ,P6 )

(9) → ({g} ,P7 )

(10,11) → ({g,h} ,P8 )

(12,13) → ({g,h,i,j} ,P9 )

(14,15,16,17)→ ({i} ,P10 )

Figure 7.1: Mapping chronologically contiguous GPS subsequences to (Touched Links

Set (TLS),Period) pairs. Each subsequence is a CTLS-MP (Complete Touched Link

Set for Maximal Period).

links set (TLS) is determined.

Chronologically consecutive recordings can share the TLS. This allows to parti-

tion the sequence of recordings into contiguous subsets such that two consecutive

recordings belong to the same part if and only if they share the TLS. Since the GPS

sequence is chronologically ordered, each part corresponds with a time period and

the time periods are disjoint. The partitioning is illustrated by Figure 7.1. The left

side shows a part of the road network along with some locations determined by GPS

recordings. The right side shows contiguous subsequences of the GPS trace and their

mapping onto tuples consisting of a TLS and a period. Each such subsequence is a

complete touched link set for a maximal period (CTLS-MP). It is called complete since

the link set contains all links touched by each GPS point in the subsequence. It is

maximal since it cannot be extended in the time dimension (due to the construction

rule). The CTLS-MP is described by a tuple 〈〈tf , tl〉, L ⊆ ER〉 where L is the touched

link set and tf and tl are the timestamps for the first and last GPS recording (the

tuple 〈tf , tl〉 constitutes the period identifier shown in Figure 7.1).

Note that an outlier GPS recording creates a part containing the outlier recording

as the only element. Assume three consecutive parts pi−1, pi, pi+1 in the GPS trace

where pi is generated by an erroneous (outlier) recording. Then it is possible that the
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Figure 7.2: Sample ChronoLinkTouchGraph: Pi indicate periods, lj denote used

links, V LI = {A,B,C,D} and V LT = {D,E, F,G,H, I, J} denote the sets of initial

and terminal vertices respectively. Vertex D represents a spatial outlier, the other

vertices for P4 (green) have zero-weight because they are inherited. It is possible that

the route was a tour since l0 and l1 appear in the first and last periods.

TLS associated with pi−1 contains some links that have a node in common with links

in the TLS for pi+1 while none of the links in the TLS for pi has any node in common

with links in the TLS for i−1 and pi+1 respectively. This phenomenon is shown in

Figure 7.2 (which does not apply to the example given in Figure 7.1).

7.4.3 Chronologically and Topologically Consistent Link Touch

Graph

While generating the CTLS-MP for period Pi, a tuple 〈lj , Pi, w(lj , Pi)〉 is created for

each link in the link set associated with period Pi. Here lj ∈ TLS(Pi) denotes the

link and w(lj , Pi) denotes the weight accumulated by lj during Pi. Details about the

weight calculation are given in section 7.4.6 since they are not relevant here. Consider

each period Pi and the corresponding touched links set TLS(Pi). In case Pi contains

less than Nr recordings, the minimum number of preceding periods Pi−1, . . . , Pi−m
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are considered so that ⋃
x∈[i−m,i]

|Px| ≥ Nr (7.1)

(if sufficient recordings do exist). |Px| denotes the number of recordings in period Px.

The inherited links set consists of all links contained in the selected predecessors link

sets that are not contained in TLS(Pi). The inherited link set is specified by

ILS(Pi) =
( ⋃
x∈[i−m,i−1]

TLS(Px)
)
\ TLS(Pi) (7.2)

Then a zero-weight 〈lj , Pi, 0〉 tuple is created for each lj ∈ ILS(Pi). The 〈lj , Pi, w(Pi)〉
tuples for the touched and inherited links are used as vertices in a newly constructed

graph. Vertices va = 〈lja , Pia , w(lja , Pia)〉 and vb = 〈ljb , Pib , w(ljb , Pib)〉 are connected

by an edge if Pib = Pia+1 (chronological constraint) and either lja = ljb or lja and

ljb share a node (topological constraint). The resulting graph G(V, E) is called the

ChronoLinkTouchGraph (CLTG). Note that Pia+1 denotes the immediate successor

period of Pia . The resulting graph G(V, E) is a acyclic digraph because ∀〈va, vb〉 ∈ E :

Pib = Pia+1 while the periods are disjoint and hence ordered by a total order relation.

A vertex in the ChronoLinkTouchGraph is called initial (terminal) if and only if

it has no predecessors (successors). The sets of initial and terminal vertices in the

LinkTouchGraph are denoted by V LI and V LT respectively.

A sample ChronoLinkTouchGraph is shown in Figure 7.2. The figure shows inherited

zero-weight links only for period P4 which is generated by an outlier GPS recording

touching only l5. Inherited links appear in all periods that contain less than Nr GPS

recordings and not only in periods generated by outliers. This illustrates the problem

described at the end of section 7.4.2.

In order to avoid confusion between graphs in the remainder of the text, symbols

denoting vertices and edges in the ChronoLinkTouchGraph will bear a superscript L;

for the transportation network a superscript T is used.

7.4.4 Uninterrupted Link Use Periods - Chronologically Com-

patible Neighbors

As soon as the ChronoLinkTouchGraph CLTG is built, it is possible to identify un-

interrupted periods of use for each road network link. This is done as follows. Let v

be a vertex in the CLTG, then l(v) denotes the associated road network link. Each

vertex in the CLTG is inspected and each vertex v0 having no predecessor v in the
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TLSi

ILSi

v0

PiPi−1

vN+1vNvL+1vLv

PL PL+1 PN PN+1

l(v0)

TLSL

ILSL

l(v0)

TLSL+1

ILSL+1

l(v0)

TLSN

ILSN

l(v0)

TLSN+1

ILSN+1

TLSi−1

ILSi−1

vj

Figure 7.3: ((v, v0, . . . , vL, vL+1, . . . , vN , vN+1) represents a path in the ChronoLink-

TouchGraph. Pi−1, . . . , PN+1 represent parts in the GPS trace. Each 〈TLSx, ILSx〉
pair represents the touched and inherited link sets respectively for period Px. Green

cells do not have l(v0) in either link set. For blue cells l(v0) ∈ ILS. For red cells

l(v0) ∈ TLS. Red/blue cells represent vertices for which l(v0) ∈ TLS ∪ ILS. Red and

partially red cells together constitute an uninterrupted link-use-period.

CLTG for which l(v) = l(v0) holds, is used as a start vertex to find the longest path

(v0, . . . , vN ) such that ∀v ∈ {v0, . . . , vN} : l(v) = l(v0). Please refer to Figure 7.3.

If v0 applies to period Pi, then the vertex is effectively touched by the first record-

ing in Pi since (i) all GPS recordings in Pi share the link set TLSi and (ii) a link that

is not touched in Pi can only have been inherited from predecessors of v0 but v0 has

no predecessor v so that l(v0) = l(v) which is equivalent to l(v0) 6∈ TLS(v) ∪ ILS(v).

On the other hand, l(vN ) can be inherited. Let vL ∈ {v0, . . . , vN} denote the last

vertex for which l(vL) was effectively touched i.e. for which l(vL) ∈ TLS(vL). Vertices

vL+1, . . . , vN (if any) inherited l(vL) as a zero-weight link (i.e. vL is in their ILS not

in their TLS). Then vL determines the last GPS recording in the uninterrupted

link-use-period (ULUP) for l(v0).

As soon as is known that a link was used it is important to know in which direction

it was crossed. This cannot be determined with certainty by looking at the GPS

recordings for a single ULUP. Therefore we determine the sets of probable entry and
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exit nodes for the link. This is done by inspecting the first and last GPS recordings

in the uninterrupted period. Their respective distances to the nodes connected to the

link are compared to the Euclidean distance between those nodes. If the sets delivered

by equations (7.7) and (7.8) are singleton sets, the link crossing direction is assumed

to be sufficiently certain. The confidence is quantified by the parameter 0 < F < 0.5.

Let d(a, b) denote the Euclidean distance between a and b. The link entry and

exit vertices for lv are derived from the ULUP as follows:

F =
1

3
(7.3)

pf = firstGpsRecInULUP (7.4)

pl = lastGpsRecInULUP (7.5)

(7.6)

entryNodes =
{n0} if

(
d(pf , n0) ≤ F · d(n0, n1)

)
∧
(
d(pl, n1) ≤ F · d(n0, n1)

)
{n1} if

(
d(pf , n1) ≤ F · d(n0, n1)

)
∧
(
d(pl, n0) ≤ F · d(n0, n1)

)
{n0, n1} else

(7.7)

exitNodes =
{n0} if

(
d(pl, n0) ≤ F · d(n0, n1)

)
∧
(
d(pf , n1) ≤ F · d(n0, n1)

)
{n1} if

(
d(pl, n1) ≤ F · d(n0, n1)

)
∧
(
d(pf , n0) ≤ F · d(n0, n1)

)
{n0, n1} else

(7.8)

Link crossing direction is determined in order to eliminate U-turns in cases where

those are improbable. This is required because the weight maximization technique

we used tends to introduce U-turns. The value for F is not critical since in most

cases the link direction crossing is clear from topological constraints only. A lower

value for F results in more {n0, n1} cases and hence in lower uncertainty about the

link crossing direction; it also results in more edges in the ChronoLinkTouchGraph.

Since the first and last recordings for the complete uninterrupted period of link use

are considered, the result can be assumed to be more reliable than methods that use

information up to a given point in time only.
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Finally, consider a CLTG vertex v0 for Pi and a vertex v1 for Pi+1. Vertices v0

and v1 are said to be chronologically compatible neighbors (CCN) if and only if

exitNodes(l(v0,ULUP(Pi)) ∩ entryNodes(l(v1),ULUP(Pi+1)) 6= ∅ (7.9)

Chronologically compatible neighborhood of la and lb for periods Pi and Pi+1 is

denoted by CCN(la, lb, i). It specifies that the assumption of moving on la in period

Pi, then crossing exactly one node in the road graph GR to continue moving on lb in

period Pi+1 is compatible with the GPS trace.

7.4.5 ChronoLinkTouchGraph Pruning

While building the CLTG, vertices for consecutive periods were linked by an edge

if they are associated with a single transport road network link or have at least

one shared node. No timing or link traveling direction information was used. The

CLTG was then used to determine the first and last GPS recording for uninterrupted

periods of link use. This information leads to the notion of chronologically compatible

neighbors which now is used to prune redundant edges from the CLTG.

Consider an edge connecting va (for Pi) and vb (for Pi+1) in the CLTG. The edge

is kept if and only if l(va) = l(vb) or

(i) l(va) and l(vb) share at least one node nTa,b in the transportation network digraph

and

(ii) it is topologically possible to move from l(va) to l(vb) by crossing the shared

node nTa,b in the road digraph and

(iii) CCN(l(va), l(vb), i) which means that movement from l(va) to l(vb) can have

generated the observed GPS recordings sequence for periods Pi and Pi+ 1.

7.4.6 Link Touch Weight

The error for the GPS device is assumed to have a normal distribution with zero

mean and given standard deviation σ for both longitude and latitude: elon = elat ∼
Normal(0, σ). It is assumed that the error does not exceed a given value e with

probability p. Then the standard deviation follows from the inverse of the cumulative

distribution function for the normal distribution : 1

σ =
e√

2 · erf−1(2 · p− 1)
(7.10)

1expressions for the cumulative distribution function for the normal distribution are found in

Weisstein (1999), Spiegel (1968) and others
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The distance d between the true position and the measured one then is given by

d =
√
e2
lon + e2

lat and has a Rayleigh distribution: d ∼ Rayleigh(σ). The probability

that the error is larger than the observed distance between the GPS point and the

network link, is used as a weight. The CDF (cumulative distribution function) for

the Rayleigh distribution is given by

FR(x) = 1− exp(− x2

2 · σ2
) (7.11)

and hence for observed distance d the weight is given by

w(d) = exp(− d2

2 · σ2
) (7.12)

The scoring function only makes use of the weights discussed above. Schüssler and

Axhausen (2009) add a penalty term proportional to the square of the difference

between the actual speed and the free-flow speed in the scoring function. We delib-

erately refrain from doing this because part of the traces are produced by vehicles

in congested traffic. The mentioned speed difference is not related to the positional

measurement error. In general, we aimed at only combining positional and chrono-

logical information with the network topology. Incorporating the minimum number

of assumptions in the map matching process allows the results to be used for several

purposes (e.g. to compare the speed distribution on a link with the speed limit).

7.4.7 Weighted Walk Generation

The ChronoLinkTouchGraph is used to find the route that delivers the highest weight

W . Since the ChronoLinkTouchGraph is a cycle-free digraph, there is an efficient

procedure to achieve this. Once this route is found, it can be used to deliver routes

delivering an sufficient weight f · W with f ∈ [0, 1]. The map matcher performs

following steps.

1. Each vertex vL ∈ V corresponds to a link l(vL) in the road network. A

path (vL0 , . . . , v
L
l ) in the ChronoLinkTouchGraph G(V, E) determines a walk

(l(vL0 ), . . . , l(vLl )) in the transportation graph.

2. The weight for a given path P = (v0, . . . , vl) in the ChronoLinkTouchGraph is

the sum of the weights associated with the vertices on the path: w(P ) =
∑
v∈P

w(v).

3. First we determine the maximum achievable weight w for each initial vertex

(which is trivial in a acyclic digraph). The overall maximal achievable weight
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then is given by W = max
v∈V LI

w(v) and the path delivering the maximum weight

then is easily identified. The procedure determines at the same time the max-

imum achievable weight for each vertex using a variant of the Dijkstra (1959)

algorithm.

4. We provide a facility to enumerate a set of paths connecting an initial vertex

to a terminal vertex having a weight that exceeds a given value expressed as a

fraction f ∈ [0, 1] of the maximal achievable weight W . The user specifies the

maximum number of solutions to be reported and the maximal number of paths

to check.

The weight for a specific path (v0, . . . , vN ) in the ChronoLinkTouchGraph G is

given by the sum of the vertex weights:

p = (v0, . . . , vN ) (7.13)

w(p) =
∑

v∈{v0,...,vN}

w(v) (7.14)

The achievable weight aW2 for a specific vertex pair 〈va, vb〉 is the maximum

weight that can be reached by considering every path between the vertices. Let

P(va, vb) denote the set of all possible paths between va and vb, then

aW2(va, vb) = max
p∈P(va,vb)

w(p) (7.15)

The achievable weight aWv for a specific vertex v is the maximum weight that

can be achieved by considering every path starting in an initial vertex and

ending in v.

aWv(v) = max
vi∈V LI

aW2(vi, v) (7.16)

The required weight rW2 for a specific vertex pair 〈va, vb〉 is the minimum weight

required in va so that there is a path p(va, vb) having a given weight W .

rW2(W, va, vb) = W − max
p∈P(va,vb)

aW2(succ(va), vb) (7.17)

The required weight rWv for a specific vertex v is the minimum weight required

in v so that there is at least one path having weight W that starts in v and ends

in a terminal vertex vt.

rWv(W, v) = min
vt∈V LT

rW2(W, v, vt) (7.18)
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number of links in the network (Belgium) = 1136101

number of nodes in the network (Belgium) = 841810

number of GPS recordings = 10635372

number of movingObject-trip pairs (number of unique trips) = 10672

largest number of trips for a single moving object = 96

number of moving objects = 744

maximum number of sufficient weight walks to deliver = 8

maximum number of trials allowed to find sufficient weight walk = 16384

required weight fraction f for sufficient weight walks = 0.97

Table 7.1: Properties of the dataset used to generate the performance figures and

sample diagrams.

The overall maximum achievable weight is computed as W = max
v∈V LT

aWv(v).

The sufficient weight then is given by f ·W . This value is registered with each

terminal vertex as the required weight and the required weight rWv(v) for every

other vertex v is calculated recursively.

Enumerating the paths delivering sufficient weight, is done by successively start-

ing in each initial vertex vi ∈ V LI , recursively extending the path with a vertex

v and calculating the achievable vertex pair weight aW2(vi, v). If for a given

vertex v the achievable weight is sufficient (i.e. aW2(vi, v) ≥ rWv(W, v)) then

v is used to extend the path in the ChronoLinkTouchGraph. Every time the

recursive procedure reaches a terminal vertex, a sufficient weight walk in the

transportation network is found and given as output.

7.5 Experimental Results

7.5.1 Data

The properties of the dataset used and the configuration setting have been summarized

in Table 7.1. The recorded traces are described in Bellemans et al. (2008).

The algorithm needs the GPS accuracy specification as an input. The GPS ac-

curacy value used in the map matching process, was determined as follows. Map

accuracy has been discussed in Ochieng et al. (2010) and in Bierlaire et al. (2013).
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Here we assume (similar to what is done by Marchal et al. (2005) and Brakatsoulas

et al. (2005)) that the map is correct. However, our algorithm accounts for the posi-

tional error for roads in the map by using an increased expected error value for the

GPS measurements. This is done because (i) the errors in the map cannot be ignored

and (ii) the errors for points on a single polyline cannot be expected to be mutually

independent.

OpenStreetMap (OSM) was used in our experiments. Haklay et al. (2010) investi-

gated the positional accuracy for OpenStreetMap roads in the Greater London area.

109 different roads having a total length of 328[km] were compared to their counter-

part in Integrated Transport Network (ITN) maps for which it can be assumed that

the error is below 1[m]. It is concluded that if 15 contributors are active in an area,

the positional error for the road is well below 6[m]. In complete areas the average

error is 9.57[m] with a standard deviation is 6.51[m]. In incomplete areas the average

error is 11.72[m] and the standard deviation is 7.73[m]. Completeness is defined as ‘a

measure of the lack of data’ and examined for specific areas by Haklay (2010) using

visual inspection of maps and by comparing (by means of GIS) the total road length

found in OSM and in reference maps respectively.

For the practical calculations we assume that Belgium constitutes a complete area.

From several non-authoritative website sources we derived that the accuracy thresh-

old d at 95% can be assumed to be 20[m]. However we observed several cases where

the distance between the recordings and the map turns out to be larger. An ex-

ample is shown in Figure 7.4. This can be explained by following facts: (i) the GPS

traces were recorded in the period 2006-2008 using a Personal Digital Assistant (PDA)

(pre-smartphone-era hand-held device) and the accuracy can be assumed to be less

than for current devices (ii) the OSM map was downloaded on 2014-Dec-05: hence

the network can have changed since the position recording. Several experiments have

been carried out to estimate the effect of accuracy threshold d and the expected max-

imum for consecutive erroneous recordings Nr. Results are reported in Table 7.3.

The cases are in the header of Table 7.3 by ’C_’<NR>’_A’<d> where NR stands for

the expected maximum for consecutive erroneous recordings Nr and d stands for the

accuracy threshold value d expressed in meters. The performance figures reported in

section 7.5.3 apply to a dataset characterized by the figures in Table 7.1

Two machines were used: (i) an Intel(R) Xeon(R) CPU E5-2620 v2 at 2.10GHz

24 core 64GB memory machine (slightly loaded by other processes) where the Java

map matching software was allowed to use at most 22 threads and (ii) an Intel(R)

XEON(R) E5440 at 2.83 GHz 8 core 32GB memory machine not used for other work
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(A)

Figure 7.4: Trace for which no walk was found. The length of the segment indicated

by the arrow between the point labeled (A) and the road is 77[m], well beyond the

assumed accuracy of 20+10[m] at 95%.

where the Java software was allowed to use at most 6 threads.

7.5.2 Software Libraries Used

postgis 1.5.3-2 library functions on PostgreSQL 9.1 are used to determine the

distance between a GPS point and the link geometry. The map matcher is written in

Java 7. The experiments ran on Debian GNU-Linux version 7.8

7.5.3 Results Overview

The map matching application consists of two stages: (i) searching the complete road

network for the links touched by the first vertices in the GPS sequence for each trip

and (ii) processing all GPS recordings (including the first Nr + 1) using the relevant

sub-network determined in the first stage

The first step is performed by calling postgis functions in psql queries issued

from a bash script and is not (yet) multi-threaded. The Java implementation of the

second stage is multi-threaded and is allowed to use the number of threads specified

in the table that summarizes all results. Results have been summarized in Table 7.3.
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CPU Identifies the machine used

maxThreads The maximum number of threads that the Java program oper-

ating on the ChronoLinkTouchGraph was allowed to use

real Wall clock time used for the first stage

user Time spent in user mode

sys Time spent in system mode

nLinks Number of links touched

movingObjects s Number of moving objects for which at least one link was

touched

movingObject-trip Number of unique movingObject-trip pairs

mmRunTime Run time for the second stage of the map matcher (wall clock

time, determined from log)

nTrips Number of trips successfully map matched

nFullCover Number of trips for which the map matched sequence contains all

recorded GPS recordings (i.e. the maximum weight path in the

ChronoLinkTouchGraph generates a walk in the transportation

graph that contains the links touched in respectively the first

and the last link use period)

ratio nFullCover
nTrips

Table 7.2: Definitions for the row labels used in Table 7.3.

The column headers identify the 〈Nr, d〉 experiment settings. The table is subdivided

in parts: (i) the first part identifies the machine used; (ii) the second part specifies

values for the processing stage in which the complete network is searched for links

touched by the first Nr + 1 GPS recordings in each trip; (iii) the third part shows

performance results for the processing stage that constructs and exploits the Chrono-

LinkTouchGraph and (iv) the fourth part specifies the meaning of row labels used in

the preceding parts.
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A striking phenomenon observed in the table is that the runtime for the first

stage depends only slightly on the number of points for which touched links need

to be found. This is probably caused by a combination of disk caching and the use

of R-trees in postgis. The number of recordings to process is the first stage is

(Nr + 1) · nTrips. The ratio between the number of points processed for the C11-*

and C19-* cases is 12
20 = 0.6 whereas the processing times on a given machine seem

to be nearly constant. A second observation is that the allowed number of threads

has no large influence which means that memory contention probably is the limiting

factor.

The total processing time is in the range of 14000 to 17000 seconds for 10 mil-

lion points or about 15 [msec/point] which is in the same order as the one reported

in Schüssler and Axhausen (2009) i.e. 10[msec/point] for a 20 candidates set and

75[msec/point] for 100 candidates using single-threaded code. This is explained by

the fact that the part of time spent in single threaded software is in [0.59, 0.69] in

our case. The runtimes include the generation of sufficient weight walks mentioned

in section 7.4.7 item 4.

7.5.4 Cover - Completeness

The map matcher determines the heaviest weight path between an initial and a ter-

minal vertex in the LinkTouchGraph but does not force them to correspond to the

first and last link-use-periods respectively. Some of those can be ignored because

they are not associated with a maximum or sufficient weight path in the Chrono-

LinkTouchGraph. This occurs because the topological constraint is not met. In order

to evaluate the results, we consider two periods: (i) the recording period (duration

dR) determined by the first and the last GPS recording and (ii) the matched period

(duration dM ) determined by the first and last recording in the link-use-periods as-

sociated with the maximal weight path in the ChronoLinkTouchGraph. The ratio

c = dm/dr is called the coverage: it is a measure of the completeness of the matching

process. Table 7.3 shows that coverage is about 0.51 for the C*_A30 cases and about

0.77 for the C*_A55 cases. From this result we conclude that the initial estimate for

the accuracy threshold d = 20 + 10[m] = 30[m] was too low.

Figure 7.5 shows the frequency distribution for the coverage value. Since the

coverage equals one for the majority of the trips, the topmost diagram which contains

all cases shows a sharp peak near the abscissa value of one. In the diagram at the

bottom, only the cases having coverage < 1 are included. It shows the distribution of

the coverage value for the non-complete cases only.
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Figure 7.5: Frequency distribution for the fraction of the recording period that is

covered by the map matched path. The diagrams hold for case C11 A55 where ratio =

0.7785. The top diagram is built using time cover values ∈ [0, 1] hence the sharp

peak at value 1. The bottom diagram holds for time cover values ∈ [0, 1) (the open

interval) hence (1− 0.7785 = 0.2215) of the cases. (pdf: probability density function,

cdf: cumulative distribution function, csff: cumulative sample frequency function).
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0 1 2 3 4 5 6 7 8

C07 A30 4 1131 2087 1857 1215 816 497 408 1930

C11 A30 5 1127 2112 1897 1221 830 496 405 1950

C15 A30 9 1150 2147 1915 1231 841 500 403 1974

C19 A30 7 1152 2159 1914 1236 844 500 407 1977

C07 A55 0 706 2592 2034 1157 830 541 370 2035

C11 A55 4 719 2604 2039 1195 807 540 381 2033

C15 A55 3 726 2599 2058 1192 813 554 377 2035

C19 A55 1 727 2610 2063 1181 811 552 373 2034

Table 7.4: Frequency table for the number of heavy-weight paths found for the re-

spective Nr, d combinations.

7.5.5 Heavy-weight Paths

Table 7.4 shows the frequency distribution for the number of heavy-weight walks

found in the trip. In the reported experiment, a walk is a heavy-weight walk if and

only if its weight is not less than f = 0.97 times the maximum weight. The cases

where no maximum weight path was found, correspond to traces that go off-road. The

traces have been recorded in 2006-2008, the OSM map is the version of 2014-Dec-05.

An example of this phenomenon is shown in Figure 7.4. Note that the software was

configured to stop searching after eight heavy-weight walks were found. Due to the

algorithm properties, the maximum weight walk always is found. The other reported

walks are walks having sufficient weight but they do not necessarily constitute the set

of heaviest-weight walks.

7.5.6 Details

The maximum weight walk determined for trip 20 of individual HH10037GL23916, is

shown in Figure 7.6. Since the data were recorded using a PDA as indicated in section

7.5.1, they constitute person traces (as opposed to car traces). As a consequence, each

trip can be multi-modal and go off-road. However, neither the recording process nor

the trip detection process identified the mode used. Hence, this information is not

available to select a subset of the road network links in advance. Raw GPS points

are not shown in order to avoid diagram clutter. This example shows that the overall

matching is plausible. Figure 7.7 shows a cycle path problem which is a part of
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Figure 7.6: Complete walk for individual HH10037GL23916 trip 20.

the same trip for the same individual. The maximum weight walk includes some

road segments that are cycle paths. This can only be avoided by performing mode

detection in the trip detection stage (before map matching), provided that the road

segments are correctly encoded in the map database. Additional direction or azimuth

verification might help to avoid such cases. Figure 7.8 shows a map-trip discrepancy

near the location labeled (A). This is caused by the long time period between data

recording and map updates (see also section7.5.5).

7.6 Discussion - Comparison to other Methods

7.6.1 No Need to maintain a Candidates Set - Global evalua-

tion

This section compares the proposed method to other procedures for batch processing

of large sets of GPS recordings. The chronoLinkTouchGraph replaces the candidate

sets maintained in the methods proposed by Marchal et al. (2005), Schüssler and

Axhausen (2009) and Bierlaire et al. (2013). The chronoLinkTouchGraph contains all

information required to enumerate all possible candidates. Furthermore, that data
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(A)

Figure 7.7: Cycle path problem for individual HH10037GL23916 in trip 20. Some links

of a cycle path are included in a walk because this maximizes the matching weight.

Such cases can be avoided by adding travel mode detection or direction/azimuth

verification.
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(A)

Figure 7.8: Map-trace discrepancy problem for individual HH10037GL23916 in

trip 24. Clearly a link is missing in the map which causes the detour via (A). This

example shows the need for selecting appropriate accuracy settings compatible with

the map and the recording devices used.
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structure allows for easy evaluation of the score of the complete walk for every possible

path without regeneration of any data. The evaluation of the total score of the path

can be compared to the evaluation of the Fréchet distance for each possible path in

Brakatsoulas et al. (2005). In both cases all information contained in the complete

sequence of GPS points is used in the selection of each link transition in the walk.

This technique avoids premature dropping of promising walks.

7.6.2 Other aspects

The U-turn problem mentioned in Schüssler and Axhausen (2009) is solved by de-

termining which of the nodes delimiting a link can have been used as the exit node.

This is made possible because it only requires one additional edge in the LinkTouch-

Graph. The selection of the exit node is postponed until the maximal weight path

determination as explained in section 7.4.4.

In the same way as Marchal et al. (2005) and Schüssler and Axhausen (2009),

weights are used and the methods lacks the rigorous statistical foundation of the

probabilistic method proposed by Bierlaire et al. (2013). On the other hand, the

chronoLinkTouchGraph can be considered as DDR (Domain of Data Relevance) and

the weighting using the Rayleigh CDF can easily be replaced by combination of prob-

abilistic models (both measurement and traffic models).

7.7 Conclusion

A new map matching software for offline processing of large batches of recorded GPS

traces, is presented. Topological, geometric an chronological constraints are used.

Apart from the LON,LAT coordinates no other information is required. The complete

information available in the GPS trace is used to evaluate every candidate route.

No route can be prematurely dropped because a graph is built that contains every

candidate. The technique shows similar computational performance as state-of-the

art map matching tools, based on the Multi-Hypothesis Technique (MHT), that keep

track of a limited number of candidate routes. The proposed tool builds a cycle-free

digraph G containing the chronological and topological information for the complete

period of recording. This graph embeds all possible candidates so that no candidates

need to be dropped while processing the GPS trace. After processing the complete

trace, the walk assumed to have produced the GPS trace, is produced by finding a

maximum weight path in G.
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8.1 Abstract

It is well known that people often do not use the least cost path through the trans-

portation network while making trips. This leads to the question which structural

path characteristics can be derived from GPS traces and be used to construct realistic

route choice sets for use in traffic simulation models. In this paper, we investigate the

hypothesis that, for utilitarian trips, the route between origin and destination con-

sists of a small number of concatenated least cost paths. This hypothesis is verified

by analyzing routes extracted from large sets of recorded GPS traces which constitute

revealed preference information. Trips have been extracted from the traces and for

each trip the path in the transportation network is determined by map matching.

This is followed by a path decomposition phase. There are multiple ways to split a

given path in a directed graph into a minimal number of subpaths of minimal cost.

By calculating two specific path splittings, it is possible to identify subsets of the ver-

tices (splitVertexSuites) that can be used to generate every possible minimum path

splitting by taking one vertex from each such subset. The first result of this study is

a frequency distribution for the minimal size of the least cost path decompositions.

This constitutes input to evaluate candidates during the route choice set construction.

A second result consists of the sets of vertices that can act as boundary vertices sepa-

rating consecutive route parts; those vertices can be considered as way points having

a particular meaning to their user. This allows for statistical analysis of structural

route characteristics which in turn can support constrained enumeration methods for

route choice set building. The paper explains theoretical aspects of route splitting

as well as the process to extract splitVertexSuites from big data. It also reports sta-

tistical distributions extracted from sets of GPS traces for both multimodal person

movements and unimodal car trips.

8.2 Introduction - Context

Travel demand prediction by means of micro-simulation in activity-based models re-

sults in an agenda for each individual for the simulated period of time. Such agenda

consists of a sequence of episodes each one of which is defined by a period of time, an

activity type, a location and the modes used to reach the location. As soon as the

locations are known, the traffic demand needs to be assigned to the transportation

network. Thereto route selection procedures are required.

Such procedures are based on utility maximization where the utility depends on

person and route characteristics (trip duration, route length, number of left turns
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etc). In this paper it is proposed to integrate an additional (to the ones currently

used) route feature in the choice process. In this paper it is proposed to integrate

in the choice process an additional route feature (to extend the currently used set).

The additional feature is the minimum number of intermediate destinations that is

required to reconstruct the path from least cost components. The idea is that the

traveler might have mentally constructed the path as a sequence of such intermediates

(which can be landmarks) and then tries to reach each one of them as efficiently as

possible.

Availability of big data sets of GPS traces allows for statistical analysis of the

structural characteristics of large sets of routes. The minimal size of the decomposition

into least cost paths was determined for routes derived from two sets of GPS traces.

For both of them the traces for each participant were recorded for at least one week.

No user interaction with the recording device was required. Hence this data collection

can be interpreted as accurate revealed preference. The traces reflect what actually

happened.

In order to extract the minimal decomposition size for each path, the recorded

data are processed using the following steps:

1. Trip detection: the sequences of GPS recordings for each traveler are bro-

ken down into subsequences. Each such subsequence corresponds to either a

trip (movement) or a stop (stay at a particular location having a non-zero fi-

nite area). Stops are not relevant in this study and hence are ignored in the

remainder of the paper.

2. Map matching: the GPS sequence for each trip is matched to a network

consisting of links (road segments) and nodes (junctions). Map matching is

applied to each individual trip. It associates a sequence of visited links to the

trip (in general a walk in a graph). From the set of walks, the subset constituting

simple paths is kept. The other walks are ignored since they are assumed not

to correspond to a trip for which the user aims at maximal utility (minimal

generalized cost) since those walks contain at least one node that is visited

multiple times without an intermediate stop to perform an activity.

3. Route Splitting: the map-matched route corresponds to a path in a graph

in which each link is labeled with the link travel cost. The path is split into a

minimal number of Basic Path Components (BPCs) each one of which is either

a least cost path or a non-least-cost-edge (i.e. a single edge which is not the

least cost connection between its vertices). Every two consecutive BPC’s are
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separated by a splitVertex.

4. Statistical analysis of route structural characteristics.

This paper focuses on the third and fourth steps in the process. First, the prob-

lem of route choice is sketched in order to show how the size of the minimum path

decomposition can be integrated in the existing models. After this motivation, the

concept of splitting routes into basic path components is introduced in section 8.5.

Definitions are given, the concept is elaborated in a mathematical way, theorems on

route splitting are proved and the used algorithm is explained. Section 8.6 is devoted

to the interpretation of the detailed route splitting results and their relevancy in travel

behavior research. It also formulates research questions that can be solved using the

results generated by the algorithm.

Finally, the paper reports the results extracted from the available datasets. A

conclusion is presented in section 8.9.

8.3 Route Selection Context

Route selection induces a complex discrete choice problem and in general consists

of two parts: a route choice set generator and a route choice model. Prato (2009)

provides a comprehensive overview of solutions to the route choice problem. The

traveler is assumed to select an optimal route according to personal preferences while

having limited information and limited processing capacity. When predicting routes

for network loading simulation, either collective of individual choice sets need to be

generated for each origin-destination pair. The set of possible routes is huge and

the traveler never has a mental representation of the complete set. Furthermore, the

choice sets considered by the traveler and the researcher are not necessarily identical.

Hence, in the route choice problem, multiple route sets are considered. Several similar

schemes have been proposed to classify those sets and the one given in Kaplan and

Prato (2010) is shown below: each set is derived from the one mentioned immediately

above it.
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Traveler view Researcher view

Set of all possible routes for OD-pair Universal set Universal set

Set of routes feasible based on a given

criterion

Master set Awareness set

Set of routes from which the individual

would select

Consideration set Viable set

For both model estimation and route prediction purposes, the consideration set is

constructed algorithmically, in general by making use of non-compensatory techniques

Bovy (2009). The consideration set is used in route choice models most of which are

derived from MNL (multinomial logit).

Several studies investigate the quality of the choice set generators and of the overall

process as well as the mutual influence of choice set generation and choice model

estimation. However the effect of including or excluding a given path characteristic

is not documented.

Bekhor et al. (2006) evaluate sixteen label minimization/maximization algorithms

along with K-shortest path selection, link elimination, link penalty and stochastic link

impedance based methods. Choice sets are generated for data collected from MIT

researchers and choice models are estimated. The models are based on distance, free-

flow travel time, some landmarks, income indicators and time spent on government

numbered routes.

The relevancy of the composition of the choice set is investigated by Prato and

Bekhor (2007). The authors investigate the effect of the choice set generation tech-

nique on the choice model parameter estimates and on the generated predictions. The

study creates two choice sets (one generated by the branch-and-bound technique and

one that merges results from labeling, link elimination, link penalty and stochastic

link trait adaptations). Six choice models are estimated using each choice set. All

models use ten explanatory variables. The effect of combining choice set generation

techniques and choice models is investigated. The branch-and-bound generator uses

fixed settings for the criteria used. The effect of the criteria is not investigated, proba-

bly because the branch-and-bound technique already outperforms the other ones with

respect to coverage.

Prato (2012) performs a meta analysis of the effect of the choice set generation

technique on the accuracy of the choice model estimates and on the link flow predic-

tions. Deterministic (K-shortest path, link penalties, branch-and-bound) and stochas-

tic (link impedance, combination of link impedance and travel taste, random walk

biased to search for the shortest path) are considered. The choice model used is the
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path size correction (PSC) model. The same techniques are used to generate synthetic

data and to generate objective choice sets and choice models. This is done for several

parameter sets and in pairwise combinations. The choice models are restricted to

account for route length, number of speed bumps, number of turns and the path size

correction. The only investigated route generator that can include path attributes, is

the branch-and-bound technique. Several settings for thresholds are investigated.

Since the consideration set is not observable, it can be argued that the parameters

of the consideration set construction model and the choice model shall be estimated

together. This is done by Kaplan and Prato (2010). The consideration set Cn for trav-

eler n is derived from the master set using a conjunctive heuristic semi-compensatory

model : the probability to find consideration set Cn is given by the probability than

respondent n uses a specific set of thresholds for the independent values. If an in-

dependent variable is out of range w.r.t. a threshold, the corresponding route is not

considered. The thresholds are unknown in advance and they are estimated using

a maximum likelihood method. The authors only consider the route length and the

number of turns.

Consideration set construction is the point where the research presented in this

paper fits. The feasibility of a route for inclusion in the consideration set is assessed

using several attributes (detour factor, number of left turns and others): we propose

to additionally include the size of the minimum path decomposition in the assess-

ment. The idea applies to both choice set generation an choice models (explanatory

variables). It allows (i) to avoid overly circuitous routes and (ii) to avoid introducing

unrealistic bias towards the shortest paths.

Quality assessment using the minimum path decomposition size can be used (i) in

the consideration set construction stage (ii) or as a posterior assessment of the gen-

erated set. In both cases distributions for the minimum decomposition size extracted

from recorded routes are used. They can be collective or individual; the latter applies

to the case where sufficient longitudinal data for each participant are available.

Consideration set construction is discussed by several researchers. For the purpose

of this paper the reported research efforts are subdivided in two categories according

to how the proposed assessment can be integrated.

8.3.1 Assessment in Choice Set Construction Stage.

The research reported in the following papers allows to use additional route attributes

in the consideration set construction stage.
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Zijpp and Catalano (2005) present the Constrained K-Shortest Paths (CKSP)

technique based on Lawler’s algorithm. In case a constraint can be evaluated on

the first part of a partially generated path only, a part of the search space can be

discarded if the constraint is not met. The CKSP method is based on consecutive least

cost path evaluations and the new minimum path decomposition size algorithm can be

integrated with limited effort. If an upper bound for the minimum decomposition size

is specified in advance, the CKSP method can discard subspaces that would deliver

overly complicated paths.

Prato and Bekhor (2006) present a deterministic path generator using a branch-

and-bound (breadth-first-search) technique that constructs a connection tree of can-

didate paths between a given origin and destination. Each time a link is to be added

several constraints are verified. Given constant factors are used for partial path as-

sessment: (i) a distance factor filters partial trips moving back to the origin, (ii) a

time factor filters partial paths taking too long, (iii) a detour factor limiting the

length of partial paths relative to the minimal distance between their endpoints and

(iv) a similarity constraint that limits overlap between candidates. The generator is

applied to a network for the city of Torino, Italy. Commuting trips were recorded

using a web-tool. The branching rules account for behavioral constraints. The au-

thors evaluate the quality of the choice set using the concept of coverage. The authors

compare several generation techniques and reports that coverage levels attained by

branch-and-bound techniques are much higher than for other techniques. Finally,

several choice models are estimated using the generated choice sets. The results of

our research can be used in branch-and-bound rules. The size of the minimum decom-

position can be calculated for the head part each path being built; the complexity is

of the same order as the evaluation of the loop constraint mentioned by the authors.

The distribution for the minimum decomposition size extracted from GPS traces can

be used to determine threshold values.

Schüssler et al. (2010) mention the difficulty of avoiding bias when establishing

route choice sets for high resolution networks: either behaviorally advanced choice

set generation procedures are required or large sets of routes need to be explored and

reduced by considering attractivity, plausibility and similarity between routes. The

authors present the Breadth First Search - Link Elimination (BFS-LE) algorithm

suitable for route set generation in high density networks. The minimum decomposi-

tion size of the path can be used as a selection criterion in the mentioned reduction

phase.

Finally, Pillat et al. (2011) investigate how path assessment can be based on

thresholds acquired from GPS recordings. The authors describe an experiment where
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a route choice set is generated and compared with trips recorded from GPS traces.

Preferred routes were collected using a survey and saved in a database by identifying

consecutive junctions on a map. From those data, the maximum detour factor as a

function of the travel time is derived. In the choice set generation phase, the detour

factor changes as the duration of the partially generated path grows. The resulting

generated paths are compared to trips derived map-matched GPS traces.

In this paper we propose to use the information extracted from the GPS data

to define the selection criteria for use during route generation instead of using it for

verification only.

8.3.2 Posterior Assessment of the Generated Choice Set.

In some cases it is not possible to include minimum decomposition size verification

in the route generation stage. In such cases, posterior assessment of consideration

sets can be applied to the generated results. E.g. the distribution for the minimum

decomposition size found in MATSim generated routes can be validated with the one

found in GPS traces.

MATSim finds the optimal route for each traveler by micro-simulation. The move-

ments of cars crossing links on the road network are simulated. The time to cross

each link depends on the link characteristics and on the link occupation by other cars.

Travelers execute their daily plan and derive the time to travel from the network. The

plan gets an evaluation score at the end of the day and, under certain conditions, a

new one is generated. The basic assumption is that individuals always try to mini-

mize their travel cost (Balmer et al. (2009)) by finding new routes and by changing

their departure times. No route choice set is to be determined a priori but built and

maintained by the genetic algorithm as an integral part of the plan (agenda).

8.4 Research Objective

Each path can be split into least cost subpaths in several ways. Each path has one

or more minimum decompositions i.e. decompositions consisting of the smallest set

of least cost paths from which the path can be reconstructed by concatenation. In

other words, each path clearly has a smallest set of intermediate destinations which

were visited by the traveler and each subpath connecting two consecutive intermediate

destinations, is a least cost path. The traveler is assumed to have some intermediate

destinations in mind and to hop from one to the other using least cost paths. The

traveler does not stop in the intermediate locations but merely uses them as anchor
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points to construct a route.

The size of the minimum decomposition is a structural qualifier for the path that

can be used in the consideration set generation as mentioned in section 8.3.

The research described in this paper focuses on splitting of routes into basic com-

ponents (BPC’s), i.e. partitioning a route into subpaths, each of which is of minimal

cost. We investigate the following:

Hypothesis 8.4.1. In utilitarian trips, individuals tend to construct their route as a

concatenation of a small number of minimal cost routes i.e. basic path components

(BPC).

In a utilitarian trip, the destination differs from the origin and the traveler moves

in order to perform a planned activity at the destination location. Utilitarian trips

represent travel for a given purpose.

The individual is thought to make use of a small set of preferential locations be-

tween the origin and destination and to travel in the most efficient way between those

intermediate locations. In order for route choice sets to be realistic, the distribution

of the minimum decomposition size shall reflect the one found in recorded traces.

Generalized path traversal cost is approximated by considering individual link

travel cost only. Node traversal cost (e.g. left turn cost) is associated with a pairs of

links and is not covered by the algorithms presented in this research.

We aim to investigate the characteristics of a large set of GPS-recorded and map

matched routes. We are interested in the distribution of the minimal number of BPC’s

in each route. Furthermore, it is not known in advance why particular intermediate

locations in non-least-cost paths are chosen. Therefore, we want to analyze the use

frequency of nodes as split nodes in the routes in order to verify the hypothesis that

some nodes are preferential trip splitters due to traffic related characteristics of the

network (like availability of traffic lights).

The research reported in this paper focuses on (i) the minimal BPC’s that consti-

tute the path chosen and (ii) the resulting sets of splitVertex candidates. In section

8.5.2 it is shown that these sets are subpaths of the given path: they are called

splitVertexSuites.
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8.5 The main graph-theoretical Algorithms and Proofs

8.5.1 Minimal Splitting of Routes into Basic Path Compo-

nents

We begin with some definitions from graph-theory. Let G = (V,E) be a directed

graph with vertex set V and edge set E. The vertices correspond to nodes in a

road network, and the edges correspond to links in the network. Each edge e has a

nonnegative cost c(e) which is the effort (e.g. time or money) required to traverse the

link in the network. For a subgraph H ⊆ G, V (H)(E(H)) denote the set of vertices

(edges) of H.

Definition 8.5.1 (walk, initial, terminal, internal vertices, internally-disjoint). A

walk is a sequence of vertices P = (v0, v1, . . . , vl), not necessarily distinct, where

(vi, vi+1) ∈ E(G) for all i = 0, 1, . . . , l − 1. Vertices v0 and vl are called initial

and terminal vertices, respectively, of P , and vertices v1, . . . , vl−1 are called internal

vertices of P . The walk P is said to be connecting v0 and vl, and it is also denoted

by P (v0, vl). A walk Q(v0, vl), is internally-disjoint from P if all the internal vertices

of Q, are distinct from the vertices in P .

Definition 8.5.2 (path, subpath, size, cost, least cost distance ). A path is a walk

where all its vertices are distinct. For a path P = (v0, v1, . . . , vl), any subsequence of

vertices vi, vi+1, . . . , vj, where 0 ≤ i,≤ j ≤ l is a subpath of P , and is denoted by

P (vi, vj). The size of a path, denoted by |P |, is the number of edges in it (i.e. l),

and the cost of a path, denoted by c(P ) is the sum of the costs of its edges. The least

cost distance between u and v, denoted by lc(u, v) is the cost of the least cost path

connecting u and v.

We remark that if c(e) = 1 for all e ∈ E then the cost of a path coincides with its

size and that vertex traversal cost is assumed to be zero.

The following lemma is easy to prove:

Lemma 8.5.3. If P = (v0, v1, . . . , vl) is a least cost path, then any subpath of P is

also a least cost path.

Proof 8.5.1. Assume, by contradiction, that P (vi, vj) is not a least cost path between

vi and vj, for some 0 ≤ i < j ≤ l. Let Q(vi, vj) be a path of smaller cost. Then by

replacing P (vi, vj) by Q(vi, vj) we get a walk connecting between v0 and vl of smaller

cost than P . This walk contains a path connecting v0 and vl of smaller cost than P ,

since we assumed that the cost function is non-negative. This contradicts the fact that

P is a least cost path.



Determining Structural Route Components from GPS Traces 213

P

Q

vi

vj

Q′

Figure 8.1: A path P with a P (vi, vj)-shortcut. vi is a fork vertex and vj is a join

vertex

The converse of Lemma 8.5.3 is false since it is possible that all the subpaths of

P (v0, . . . , vl) (except P itself) are least cost paths, but P is not a least cost path

connecting v0 and vl and there is another least cost path Q connecting v0 and vl.

This fact motivates the following definition:

Definition 8.5.4 ( P - shortcut, fork and join vertices). Let P = (v0, v1, . . . , vl)

be a given path. A P (vi, vj)-shortcut (or for brevity, P - shortcut, or shortcut),

is a path Q(vi, vj), internally- disjoint from P , where vi, vj ∈ V (P ), such that

c(Q(vi, vj)) < c(P (vi, vj)). The vertices vi and vj are called fork and join of the

shortcut, respectively. (See Figure 9.1).

By Lemma 8.5.3 a least cost path cannot have any shortcuts.

Assume e = (u, v) is an edge in P whose cost is larger than the least cost path

connecting u and v. Then e is called a non-shortest-edge .

Definition 8.5.5 ( Basic Path Component (BPC)). Given a path P , a subpath of

P is called a Basic Path Component, or for short, a BPC, if it is either a least cost

path connecting its endpoints, or P consists of a single non-shortest-edge.

Claim 8.5.6 (path splitting). Let P = (v0, v1, . . . , vl) be any path connecting v0 and

vl. Then E(P ) can be partitioned into BPC’s.

Proof 8.5.2. The trivial partition into edges (v0, v1), (v1, v2), . . . , (vl−1, vl) is an ex-

ample of such a partition.

There are many ways to do path splitting, the trivial partition is among them.

We are interested in finding a path splitting with a minimum number of basic path
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components. Such a path splitting is called minimum path splitting. Each non-

shortest-edge is a part in each minimum path splitting since it constitutes a BPC. If

we remove the set of non-shortest edges in a path (each of which is a BPC), we are

left with a set of disjoint paths, each of which contains no non-shortest-edges.

From now on we will assume that P does not contain any non-shortest-edges.

We will address the following problem:

Problem 8.5.7 (minimum path splitting). Given a path P = (v0, v1, . . . , vl) with

origin v0 and destination vl, and assume P does not contain any non-shortest-edges.

Find efficiently a minimum path splitting of P .

A vertex separating two consecutive BPC’s is called a splitVertex. To solve problem

8.5.7 we note that a minimum path splitting will contain a minimum number of

splitVertices (since, by definition, any two consecutive basic path components are

separated by a splitVertex). Hence, an equivalent formulation of Problem 8.5.7 would

be to find a minimum number of splitVertices in P , denoted by vsi1 , v
s
i2
, . . . vsik , such

that any subpath connecting consecutive splitVertices will be least cost.

Lemma 8.5.8. Let P = (v0, v1, . . . , vl) be a path connecting v0 and vl. Assume P is

not least cost, and let Q(vi, vj) be a shortcut in P . Then any path splitting of P will

contain at least one internal vertex in the path segment P (vi, vj).

Proof 8.5.3. By contradiction. If no internal vertex in P (vi, vj) is a splitVertex,

then P (vi, vj) is a least cost path, contrary to the fact that Q(vi, vj) is a shortcut in

P .

We are now ready to describe an efficient algorithm for partitioning a given path

P into a minimum number of basic path components. The algorithm begins with the

initial vertex of P , v0, and finds a maximal least cost path beginning with it. This is

done using Dijkstra’s least cost path algorithm (Dijkstra (1959)). Assume vj1 is the

first vertex on P for which P (v0, vj1) is not least cost, then the algorithm marks vj1

as a join vertex and continues with the subpath of P beginning from the vertex prior

to vj1 on P , looking for the next join vertex in P (vj1−1, vl). We continue until no

more join vertices are found. The pseudo code is given below. See also Figure 8.2.

Theorem 8.5.9. Algorithm 8.5.1 finds a partition of path P into a minimum number

of BPC’s.

Proof 8.5.4. Given the output of the algorithm, we will partition the given path

P into exactly k subpaths . Define the splitVertices to be the vertices preceding the
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Algorithm 8.5.1 Algorithm for finding a partition of a path into BPC’s

Input Graph G, edge costs c, P = (v0, v1, . . . , vl) containing no non-shortest edges

start← 0;

k ← 1

while (P (vstart, vl) is not a least cost path) do

Find the first vertex vjk in P (vstart, vl) such that lc(vstart, vjk) < c(P (vstart, vjk))

start← jk − 1

k ← k + 1

end while

return join vertices vj1 , vj2 , . . . , vjk−1

13
js

vv 

31
fs

vv 

4
f

v

0
v

l
v

2
j

v

2
f

v

3
j

v

4
j

v
4

s
v

3
s

v

2
s

v

1
f

v

4
s

v

2
s

v

1
s

v

SplitVertex

Fork vertex

Join vertex

Edges of P

Shortcuts to P

Figure 8.2: A path P with join and fork vertices and basic path components.

join vertices on P , i.e. vsi = vji−1 for 1 ≤ i ≤ k − 1. Each subpath begins in a

splitVertex and ends in the next splitVertex, except for the first subpath which be-

gins in v0 and the last subpath which ends in vl. In other words, the subpaths are:

P (v0, vs1), P (vs1 , vs2), P (vs2 , vs3) . . . , P (vsk−1
, vl). By the algorithm, it is clear that

each of these subpaths are minimum cost, and hence are BPC’s. We are now left to

prove that no other partition exists with fewer than k BPC’s. Assume, by contradic-

tion, that such a partition exists, with k − 1 BPC named P1, P2, . . . , Pk−1. Then, by

the pigeon hole principle, at least one BPC, say Pi contains at least one splitVertex

of P , say vst as an internal vertex of Pi and vst−1 (or v0 when t = 1) is also included

in Pi . This implies that the join vertex vjt is included in Pi, and hence Pi is not a

least cost path, which is a contradiction.

We have described an algorithm of splitting a path into a minimum number of
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BPC’s, and finding splitVertices that separate between these basic path components.

The algorithm is efficient since it uses Dijkstra’s algorithm no more than k times,

where k is the minimum number of BPC’s used to partition P . Two natural questions

arise here; is the partition into a minimum number of BPC’s unique, and are the

splitVertices unique? Since the splitVertices may denote some point of interest for the

traveler (otherwise a minimum cost path would have been chosen), we are interested

to find efficiently other splitVertices and partitions into BPC’s.

We use Algorithm 8.5.2 to find another partition of P into BPC’s, starting from

the end of the path, and a collection of fork vertices in the given path P . This is done

by ’going backwards’ from vl to vl−1 etc. and finding the first vertex vf1 such that

the subpath P (vf1 , vl) is not a least cost path, but P (vf1+1, vl) is a least cost path.

The algorithm to produce fork vertices is similar to Algorithm 8.5.1 , except that we

run it on the “reverse graph” of G, obtained by reversing all the edges in G. Note

that when all the edges in G are reversed, the first vertex v0 of the “ reversed path ”
←−
P corresponds to the last vertex vl of the original path P . We include the algorithm

for completeness.

Algorithm 8.5.2 Algorithm for finding a partition of a path into BPC’s and fork

vertices.
Input Graph G, edge costs c, P containing no non-shortest edges

Reverse the edges in G; Assume the reversed path is
←−
P = (vl, vl−1, . . . , v0)

start← l;

k ← 1

while (
←−
P (vstart, v0) is not a least cost path) do

Find the first vertex vfk in
←−
P (vstart, v0) such that lc(vstart, vfk) < c(

←−
P (vstart, vfk))

start← fk + 1

k ← k + 1

end while

return fork vertices vf1 , vf2 , . . . , vfk−1

Now define another set of splitVertices vsi = vfi+1 for 1 ≤ i ≤ k−1, which are the

vertices following the fork vertices on P found in Algorithm 8.5.2. It is easy to see, as in

the proof of Theorem 8.5.9, that the k subpaths P (v0, vsk−1
), P (vsk−1

, vsk−2
), . . . , P (vs1 , vl)

are all BPC’s, and hence are a minimum partition into BPC’s. (See Figure 8.2).
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8.5.2 Selecting SplitVertices for minimum Path Splitting

We have seen in section 8.5.1 that there are at least two sets of splitVertices which

break up the given path P into k BPC’s. One set was obtained by looking for

maximal shortest paths starting from the beginning of P , these vertices were labeled

by vs1 , vs2 . . . , vsk−1
, and the other was obtained by looking at maximal shortest

paths starting from the end vertex of P . These were labeled as vs1 , vs2 , . . . , vsk−1
.

Each such set breaks up P into exactly k BPC’s. Denote by Si the sequence of

consecutive vertices on P in which vsk−i is the first one and vsi is the last one, for

each 1 ≤ i ≤ k − 1. We call each such sequence splitVertexSuite (SVS). Then any

partition of P into a minimum number of BPC’s is obtained by choosing a unique

splitVertex from each splitVertexSuite Si. Hence the number of ways of splitting a

path into a minimum number of BPC’s, NP is bounded above by

NP ≤
∏

1≤i≤k−1

|Si| (8.1)

The following example (see figure 8.3 ) shows why in some cases, this is a strict up-

per bound, i.e. the actual number of partitioning P into a minimum number of BPC’s

is smaller than this bound. In figure 8.3 our algorithms discover the join vertices v7

and v10 and fork vertices v6 and v1. The SVS’s are S1 = {vs2 = v2, . . . , vs1 = v6}
and S2 = {vs1 = v7, . . . , vs2 = v9}. However, if for example, we choose the split

vertices v3 and v9 then we do not break up P into 3 BPC’s since the middle subpath,

P (v3, . . . , v9) contains a shortcut between v5 and v8, which was not discovered by our

algorithm, and hence is not a BPC. In fact, in this example any splitting of P into 3

BPC’s must not avoid the vertices v6 or v7 . We conclude that formula 8.1 is an upper

bound for the number of ways to split a path into a minimum number of BPC’s. In

the sequel paper we will show how to avoid this problem of an “invisible shortcut”

and compute precisely the number of ways to split a path into a minimum number of

Basic Path Components.

8.6 Interpretation of Route Decomposition

When splitting traveled routes, the splitVertexSuites can easily be determined. How-

ever it is not known which of the possible splits the user had in mind while trav-

eling: i.e. the researcher cannot derive solely from the decomposition which of the

splitVertices were relevant to the traveler. It is reasonable to assume that at least

one splitVertex in each splitVertexSuite or one of its incident edges belonging to the
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Figure 8.3: A path P and an “invisible” shortcut (v5 → v8) to P .

path, has a special meaning to the traveler; otherwise, there would be no reason for

a rational traveler to visit the subpath determined by the splitVertexSuite. On the

other hand, the splitVertexSuites deliver the sets of route nodes to be investigated for

verification of transportation related characteristics.

Extracting information from large sets of recorded traces by route splitting, de-

livers input for the route selection models used in the network loading phase of travel

demand simulators. The analyst is interested in probability distributions for (i) the

minimum number of BPC’s, (ii) the number of possible splittings and (iii) the visit

frequency for splitVertices

8.6.1 SplitVertexSuites and Traveler Intentions.

The path P chosen by the traveler can be expressed as a minimal concatenation of

BPC’s but the minimum decomposition in general is not unique. The chosen path

has been recorded, so the path as well as the splitVertexSuites constitute revealed

evidence. However, the actual decomposition (i.e. the sequence of specifically chosen

splitVertices) is not revealed by the traveler.
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Figure 8.4: Examples of trivial and non-trivial nodes having exactly two neighbors in

the road network.

8.6.1.1 SplitVertexSuite Size as Uncertainty Measure

For a given path P , each vertex in a splitVertexSuite or the edges they belong to,

could have been the motivation for the selection of the path. If a splitVertexSuite

has cardinality larger than one, we need to assume that each of its splitVertices

can be the boundary between two BPC that constitute a least cost path. Hence,

the splitVertices belonging to a given splitVertexSuite cannot be distinguished with

respect to their meaning to the traveler. The size of a splitVertexSuite is a measure

for the uncertainty about the motivation of the traveler for the detour represented by

that splitVertexSuite.

The number of possible splittings of a path reflects the inherent lack of information

uncovered by the recorded trace about the traveler’s intentions. For this reason we

say that the value of NP given by inequality (8.1) is a measure for the uncertainty

about the set of road network nodes motivating the selected route.

Note that a non-least-cost-edge BPC always results in two singleton splitVertex-

Suites and hence does not induce any uncertainty.

8.6.1.2 Need for Network Normalization

In order to calculate the uncertainty value, an additional network normalization step

is required. In road networks, both directed (one-way) and undirected (bidirectional)

links co-exist. Therefore, each road network is modeled by a digraph. The digraph is

verified in advance not to contain any sources or sinks (to assess data quality). Parallel

edges (i.e. two different edges sharing a single ordered pair 〈va, vb〉 of vertices) are

allowed in graphs representing road networks.

Some vertices have exactly two neighbors. If each of the two neighbors for vertex

v is connected to v by at most one edge in each direction and if indegree(v) =
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outdegree(v), then v is called a trivial vertex (see Figure 8.4 for examples). Formally,

let E(a, b) denote the set of edges associated with the vertex pair 〈a, b〉 and let N(v)

denote the set of neighbors for v. Then v is a trivial vertex if and only if(
|N(v)| = 2

)
∧(

∀w ∈ N(v) : |E(v, w)| ≤ 1 ∧ |E(w, v)| ≤ 1 ∧ indegree(v) = outdegree(v)
)

(8.2)

In digital maps, trivial vertices (nodes) are used to subdivide road segments into

parts at locations where a road segment attribute value changes (e.g. speed limit,

number of lanes, municipality name, road owner, pavement type . . . ). Those changes

by themselves are assumed to be irrelevant to the traveler while selecting a route. It

is however obvious that an aggregated measure (e.g. the fraction of the road length

having good quality pavement) can be a reason to select a particular link.

In a chain of trivial vertices, either all of which belong to the same splitVertexSuite

or none is a splitVertex since none of them can be a fork or a join vertex. This obser-

vation allows for network normalization by link contraction which removes all trivial

vertices. Network normalization does not change the number of splitVertexSuites nei-

ther affects the set of splitVertices since trivial vertices cannot be splitVertices. It

leads to an unambiguous value for the uncertainty about the splitVertex selection.

The need for normalization is made clear by Figure 8.5.

As a consequence, we add the process of network normalization after map matching

and before route splitting.

8.6.2 Frequency Distributions to feed Simulators

We will extract the following distributions for various quantities used in route choice

set generation:

1. Distributions of the minimum number of basic path components are essential

to route generation. The distribution derived from the complete set of traces

uncovers characteristics for the complete observed population. Similar distribu-

tions derived for specific individuals may reveal the existence of several behav-

ioral categories when sufficient longitudinal data are available.

2. The use frequency of a vertex as a splitVertex at the population level is a mea-

sure for the attractiveness of the vertex or its incident edges. This provides

additional input to the route generator when applied to the region where the

traces have been captured. It allows to automatically identify specific spots on

the network that serve as way points for route generation methods. Analyzing
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Figure 8.5: The largest part of the route (from Herk-de-Stad (right) to Kraainem

(left)) makes use of the E314 and E40 highways. SplitVertices (represented by green

star symbols) were determined using the raw (non-normalized) OSM network. The

diagram shows the need for network normalization.
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the use frequency of road network nodes as splitVertex and the links they de-

limit, will elicit network characteristics (as opposed to the minimum size of a

decomposition which is a trip characteristic). Frequently used splitVertices are

interpreted as route attractors. The question is whether they can be associated

with specific elements in the road network (highway entry/exit ramps, traffic

lights, tunnel) or with specific (types of) POI (point of interest) like a school,

public transportation station, carpool parking etc. This analysis requires a

much larger data set than the one that was available for research reported here.

3. The use frequency of a vertex as a splitVertex at the level of an individual

may uncover short intentional stops (bring/get, pick/drop activities) that are

not discovered by the trip detector because of their short duration. Current

trajectory annotation literature (e.g. Giannotti et al. (2007), Zheng et al. (2009),

Kuijpers et al. (2009), Spinsanti et al. (2010), Alvares et al. (2007), Andrienko

et al. (2011), Furletti et al. (2013)) focuses on stops found in GPS traces. From

mobility science point of view, it is also relevant to annotate (i.e. to attach a

meaning to) splitVertexSuites. Annotating splitVertices is expected to be more

complex than annotating stop locations because of the uncertainty mentioned

above.

8.7 Data Preparation Steps

In order to investigate Hypothesis 8.4.1, a large set of GPS trajectories has been

analyzed.

8.7.1 Belgian Person Traces

A set of 999 GPS traces recorded during the period 2006-2008 using a PDA have

been analyzed. People took the PDA with them: the result is a set of person traces

as opposed to car traces often used. Person traces contain more information but are

more expensive to collect over a long period and are sensitive to omissions because

people can forget to take the device with them. GPS recording frequency was 1[Hz].

8.7.1.1 Processing Method 1 : IMOB tools + OpenStreetMap Network

1. Trip detection was performed by finding recording gaps and by analyzing speed

variations in sequences of GPS recordings. The detected trips can have several
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modes (e.g. car-train-walk) but mode detection was not performed (although

walking and biking are quite easily identified).

2. Some trips have been detected to start/end at a petrol station located near a

highway as a result of the threshold values used for stop detection. Those were

not altered because refueling can be considered to be a shopping activity.

3. OpenStreetMap (http://www.osm.org/) was used to extract a road network for

Flanders (Belgium). The network has 479920 links and 372608 nodes. Trips

have been map-matched onto that network. The map matching step is crucial.

Some map matchers try to fill (small) gaps in the recording by assuming that

the traveler moved along a least cost path (according to some criterion). This

shall not be done in this research because the hypothesis to be tested shall

not be influenced by hypotheses used while map matching. Because of the

high recording frequency, it can be expected that every road segment used by

the traveler is selected by at least one GPS point. Traces of this kind are

called high density recordings. Use of high density recording was essential to

the reported research. Furthermore, map matching high density recordings can

benefit from topological information available from the network. Making use of

that information makes the matching process efficient. The map matcher for

high density recording described by Knapen et al. (2015a) was used.

Trip detection and successive map matching resulted in 13098 cases.

8.7.1.2 Processing Method 2 : Fraunhofer Tools + Navteq Network

The set of recordings used in section 8.7.1.1 has been map-patched to the Navteq

network which was not normalized. This network consists of 903.217 links and 748.705

nodes for Belgium. The software used to perform the map-matching was written by

Fraunhofer IAIS. In general the process used within this map matching software

consists of two steps.

In the first step a data preparation is done. This includes the detection of outliers

and standstills. GPS points falling in at least one of both categories were excluded

from the map matching. In addition the time gaps M [min] between two consecutively

logged GPS points, were calculated.

In the second step the map matching process is conducted. The goal is to con-

nect each GPS point to exactly one Navteq street segment. Here the software uses

a combination of a geometrical and topological map matching. This means that the

software uses both, the spatial distance of the GPS points to the Navteq street net-

http://www.osm.org/
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work, and the information of the topological connections in combination with driving

restrictions, to assign a GPS point to a street segment.

In addition small gaps within the GPS traces were closed by a shortest path rout-

ing. Here we worked with three different time gaps (M = 1.0, 2.5 and 5.0[min]).

When M grows, the number of detected trips decreases and their average size (dis-

tance, number of road network links used) grows. Furthermore, the probability that

a reported trip is not a simple path but a walk, grows because small movements are

combined to a single trip.

8.7.2 Italian Car Traces

A set of car trajectories recorded in the region of Milano, Italy was processed us-

ing the Fraunhofer IAIS map matcher software and the Navteq network (Processing

Method 2). The numbers of nodes and links for Italy are nearly ten times larger

than the corresponding values for Belgium.

8.8 Analysis Results

In all experiments described below, distance along the road (as opposed to travel time)

was used as the generalized cost value to travel a road segment.

8.8.1 Examples of Discovered splitVertexSuites

Sample routes extracted from the recorded datasets are shown in following figures

in order to grasp the idea of the observed splitVertexSuites. All diagrams have been

generated using the Navteq network.

Figure 8.6 shows a long trip (about 80[km]) consisting of a single least cost path

(i.e. without any splitVertexSuite).

Figure 8.7 shows a trip of about 16[km] consisting of three basic components. The

large splitVertexSuite near Sint-Truiden coincides with a segment of an arterial express

road which runs parallel to the straight line north-west to it. Higher speed is allowed

on the arterial road but the distance is longer. The large size of the splitVertexSuite

again shows the need for network normalization.

Figure 8.8 shows part of a route starting at the right hand side, visiting the center

of the city of Geel, then moving around the city in clockwise direction, heading to the

north and finally arriving near the center of the city of Mol. The partial route shows

11 splitVertexSuites and Figure 8.9 shows the lower-left part of the same route. The
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Figure 8.6: Route consisting of a single basic component (no splitVertexSuites).

lower-right splitVertexSuite in Figure 8.9 suggests that a particular street in the city

center was an intermediate destination. The lower-left splitVertexSuite suggests the

intentional use of the ring way and/or a specific junction.

Figure 8.10 shows a route of about 4 kilometers having 7 splitVertexSuites first

visiting something special at the first splitVertexSuite and then avoiding the narrow

streets in a residential area up to the 4-th splitVertexSuite which represents a location

equipped with traffic lights. The arterial road is used up to the 5-th splitVertexSuite

which also contains a junction equipped with traffic lights. The trip ends near the

parking of a shopping center. The 7-th splitVertexSuite is the upper-right one in

Figure 8.11. It is an artifact caused by the fact that the street labeled Van Groes-

beekstraat (south of the splitVertexSuite) constructed in 2012-2013 did not exist at

the time of trajectory recording (between 2006 and 2008).

8.8.2 Distributions for the Size of the Splits

Figure 8.12 shows the absolute and relative distributions for the number of basicCom-

ponents per trip for all cases.
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Figure 8.7: Route consisting of three basic components and showing the need for

network normalization.
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Figure 8.8: Part of a larger route showing a large number of splitVertexSuites.

1. The relative frequency distributions suggest that Hypothesis 8.4.1 holds. The

distributions depend on the methods used for trip detection and map matching.

The distributions labeled Belgium Navteq x.y[min], differ only in the value for

delay threshold parameter used in stop-detection. The smaller the threshold

value, the more stops are detected and hence the smaller the size of the trips

(expressed as the number of links they contain). For a given sequence of GPS

recordings, the more subsequences are flagged as stops, the lower the number

of detected basicPathComponents; this occurs because some briefly visited lo-

cations will be flagged as a stop when using a small delay threshold parameter

value whereas they are detected to be a splitVertexSuite in the opposite case.

This is reflected in the relative frequency distribution diagram. The probabil-

ity (relative frequency) to find routes having 1 basicPathComponent, decreases

with increasing value of the delay parameter (1.0 , 2.5 , 5.0). For the case of

2 basicPathComponents the phenomenon is largely attenuated. Starting at 3

basicPathComponents per trip, the effect is reversed as expected.

2. For Belgium, the OSM and Navteq cases seem to slightly differ. This can
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Figure 8.9: Detail view of Figure 8.8 showing splitVertexSuites in and near the city

center.
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Figure 8.10: Route showing splitVertexSuites that correspond to traffic lights.

Figure 8.11: Detail of Figure 8.10 (rightmost part of the route).
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Absolute frequency distribution for the number of basicPathComponents.

Relative frequency distribution for the number of basicPathComponents.

Figure 8.12: Frequency distributions (top:absolute, bottom:relative) for the number

of basicComponents per trip. The number of trips in each set depends on the map

matcher used.
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have been caused by the use of different map matching software tools, based

on different methods and concepts. The Fraunhofer IAIS map matcher closes

small gaps by assuming that the traveler used the shortest path. The IMOB

map matcher does not use this procedure. This conclusion is not final because

the cases differ both in the network and the map matcher used.

3. The difference between the Belgian and Italian cases, however, is much larger.

The relative frequency for trips consisting of a single basicPathComponent is

much larger than for the trajectories registered in Belgium. For routes having

more than one component, the relative frequency is lower than in any Belgian

case. Detail analysis is required to find out whether this phenomenon occurs be-

cause in the Italian data set, the pre- and post-car-trip components are missing

(Italian traces are car traces).

8.8.3 Algorithm Execution Run Times

Table 8.1 summarizes characteristics of the runs. The results for the computed cases

differ as a result of:

1. the difference in map matching methods and parameters used and

2. the difference between the networks (it is suspected but not yet verified) that

the number of links between two junctions that are each others neighbors in the

road network, is larger for the Navteq network than for the OSM network (due

to the presence of trivial nodes mentioned in section 8.6.1).

8.9 Conclusions and future Research

A given path in a graph can be split in Basic Path Components (BPCs) that are either

least-cost paths or non-least-cost edges. We developed an algorithm that computes the

size of the minimum path splitting in an efficient way. A graph-theoretical correctness

proof for the algorithm is given. This analysis sheds a light on the characteristics of

splitVertexSuites (subpaths consisting of potential splitVertices) and their relationship

to specific minimal shortcuts. It results in a set of splitVertexSuites from which

minimum path splittings can be generated and an upper bound for the number of

possible minimum path splittings.

This algorithm is used to verify the hypothesis that for utilitarian trips, people

tend to compose their route from a small number of least cost paths. Both car

and person GPS traces have been recorded. Individual trips have been identified in



232 Chapter 8

Region Belgium Belgium Belgium Belgium Italy

Case OSM Navteq Navteq Navteq Navteq

1.0[min] 2.5[min] 5.0[min] 1.0[min]

Runtime[sec] 5191 17058 25822 36424 498850

Machine calc2 calc2 lucp2364 linux1 calc4

OS Linux Linux Linux Linux Windows

Debian Debian Debian Debian Server

wheezy wheezy wheezy wheezy 2008

CPU Xeon Xeon i5 Core2 Xeon X5670

Memory 3[GB] 3[GB] 4[GB] 2[GB] 48[GB]

ClockFreq 2.8[GHz] 2.8[GHz] 2.4[Ghz] 2.4[GHz] 2.93[GHz]

Cores used 7 7 3 2 20

Trips scanned 6632 12429 9408 8020 34308

Trips dropped 694 2066 2426 2508 3427

Net number of trips 5938 10363 6982 5512 30881

Number of basic components 12687 22921 17429 14412 56346

Number of basic components

per trip

2.14 2.21 2.50 2.61 1.82

Average number of nodes per

trip

21.68 82.47 75.43 62.20 55.37

Number of least cost path

calculations

128736 854637 526652 342846 1772569

Least cost calculations per

second

24.8 50.10 20.40 9.41 3.55

Number of trips per second 1.14 0.61 0.27 0.15 0.06

Table 8.1: Run characteristics overview.
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the traces. Trips have been converted into paths in a graph by map-matching the

traces to Open Streetmap and Navteq networks. The minimum number of least cost

components in each path was computed and frequency distributions are presented.

The paper shows the feasibility to analyze the structure of each route for large sets of

collected traces. The results achieved are useful to statistically analyze factors that

influence route choice for both individuals and population segments. As such they

provide a foundation to generate realistic routes in transportation simulation models.

The following questions need to be addressed in future research:

1. Determine an exact computation of the number of possible ways to partition a

path into a minimum number of BPC’s.

2. Investigate more rigorously how the distribution for the minimum number of

BPC’s in a path depends on the level of detail (coarseness) of the network and

the map matcher used.

3. Design an efficient algorithm that generates routes from a given origin to a

given destination for which the travel distance and the number of basic path

components are values sampled from distributions determined from recorded

trajectories.

4. Generate routes using a method such as the one described in Frejinger et al.

(2009) in order to compare the resulting splitVertexSuite size distribution with

the one extracted from GPS traces.
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9.1 Abstract

A novel method is proposed to extract structural information about the routes re-

vealed by GPS traces. This information is not available by any currently used method

and is synthesized to feed the route choice set generation process.

Recorded GPS traces are converted to routes in a transportation network by map-

matching. This results in large sets of paths in a graph. Each path can be decomposed

into a sequence of least cost subpaths. The boundary between two successive com-

ponents is a split vertex. Such split vertices constitute intermediate destinations for

the traveler. We are interested in the minimum decompositions because travelers

are assumed to compose their trips as simple as possible. The size of the minimum

decompositions characterizes the structure of the path.

In general, multiple minimum decompositions do exist for every revealed path.

Furthermore, not every vertex in the path can act as a split vertex in a decomposi-

tion. We propose an efficient method to enumerate all minimum decompositions of a

path. This is used to reveal the importance of every vertex as a split vertex possibly

considered by the traveler. The more possible splits contain a given vertex, the more

important that vertex is.

This paper uses graph theoretical concepts to propose and prove an efficient algo-

rithm to enumerate all possible minimum path decompositions. The method is based

on the set of minimum shortcuts to the path used by the traveler. This set can be

identified in polynomial time. As soon as it is available, the problem is reduced to

enumerating all minimum clique covers in an indifference graph (a proper interval

graph) which also can be done in polynomial time.

9.2 Introduction

Information about both the structure of the routes and about the network nodes

(junctions), is extracted from map-matched GPS traces describing revealed routes

recorded by travelers, and is made available to support route choice set generation.

When travel demand is generated using micro-simulation (e.g. by activity-based

modeling), the individual trips need to be loaded on the network. Often this is done

by aggregating the predicted demand into time dependent origin-destination (OD)

matrices. This procedure causes information about the individual traveler to be lost.

In case individual trips are handled, a plausible route connecting a given origin to

a given destination needs to be found. This constitutes a discrete choice problem

and a route choice set needs to be built. This set shall be populated by realistic
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choice alternatives. While populating the choice set, the quality of the candidates

can be assessed by means of the number of problematic left turns in the route, by the

number of signalized crossings or by excess cost factors (e.g. detour factor or extra

travel time factor when compared to the respective least cost routes). We propose to

enhance automated quality assessment by taking into account additional information

reflecting the structural complexity of the path for which an indicator can be acquired

from paths revealed by GPS recording.

Each given path in a graph can be split into basic path components (BPC). Such

BPC is either a least cost subpath or a subpath consisting of a single non-least-cost

edge (i.e. a single edge that does not constitute the lowest cost path between the ver-

tices it connects). Two consecutive BPC’s in a path share a split vertex (the boundary

separating the BPC’s). Consecutive split vertices can be seen as intermediate des-

tinations connected by least-cost subpaths. Those can be any location having some

meaning to the traveler (a school where to drop a child, a location to pick up a col-

league, a safe crossing, a signalized junction providing easy left-turn, a junction where

to access/leave the motorway, etc). (Formal definitions of BPC and split vertices will

be given in section 9.5).

The following hypothesis was formulated and verified in Knapen et al. (2015c):

people tend to construct the routes for their utilitarian trips by concatenating a small

set of basic path components (BPC). Utilitarian trips are trips having the purpose to

achieve a specific activity at a given location (i.e. touring trips constituting a cycle are

excluded). In order to verify the hypothesis, routes were decomposed into the smallest

possible number of BPC’s (called minimum path decompositions). The Minimum Path

Decomposition Size (MPDS) is a measure for the structural complexity of the path.

Frequency distributions for the MPDS were reported and sets of possible splitVertices

were identified but no actual path splittings were generated in Knapen et al. (2015c).

In general, there are several ways to split a path into a minimum number of

BPC’s. This leads to uncertainty for the analyst about which of the split vertices

were considered by the traveler as intermediate destinations. On the other hand it

turns out that if N is the size of the minimum decompositions of path P , there are

N − 1 mutually disjoint sets of splitVertices, called splitVertexSuites, corresponding

to subpaths in P so that every minimum decomposition for P is generated by taking

exactly one vertex from each splitVertexSuite. However, not every combination of

vertices selected from the splitVertexSuites, generates a valid decomposition.

The enumeration of all possible decompositions provides additional information

because splitVertex candidates are not all equally probable since (i) not all splitVer-

texSuites have the same size and (ii) not every selection from the splitVertexSuites
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generates a valid decomposition.

This paper presents an efficient technique to enumerate all possible minimum de-

compositions for a given route in a network. Section 9.3 sketches work in route choice

set generation and determines the research objectives that motivated the development

of the method described in this paper. Section 9.4 introduces the concept of splitVer-

tex importance. Section 9.5 lists definitions and lemmas required for the development

of the path splitting procedure. The developed decomposition technique then is de-

scribed in detail in section 9.6. Finally section 9.7 summarizes the proposed solution

and suggests follow-up research topics. Algorithms are presented in the appendices.

9.3 Context

9.3.1 Research Related to the Route Choice Problem

The choice set generation procedure and the influence of the choice set on the esti-

mation of route choice models, are the subject of intensive research. Many choice set

generators found in the literature are derivatives of or related to shortest path based

methods. Link labeling finds least cost paths using several criteria. Link elimination

techniques Zijpp and Catalano (2005), Schüssler et al. (2010) modify the topology.

Link impedance adjustment is used in both deterministic (update link impedance on

the shortest path) and stochastic methods. Doubly stochastic techniques integrate

stochastic user preferences and stochastic link attributes. The constrained random

walk generator proposed by Frejinger and Bierlaire (2007) also is based on path length

since the link use probabilities are derived using a shortest path measure only.

Branch-and-bound techniques take more information into account. Hoogendoorn-

Lanser (2006) proposes a rule based branch-and-bound algorithm to generate multi-

modal route choice sets. The embedded constrained path enumeration includes the

number of transfers in the public transportation network as a route-factor (a struc-

tural path property).

The branch-and-bound technique specified by Prato and Bekhor (2006) introduces

additional route quality constraints in the choice set generation phase. It is reported

to generate choice sets showing high coverage and consistency values which indicates

that it successfully reproduces routes collected by surveys. The constraints used in the

non-compensatory decision to include a route in the choice set are: (i) a directional

constraint excluding links that bring the traveler farther from the destination, (ii) a

temporal constraint excluding links for which the travel time to the endpoint along the

constructed path is much longer than the minimum travel time, (iii) a loop constraint
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excluding paths that contain a subpath for which the distance detour factor is larger

than the given threshold, (iv) a similarity constraint rejecting highly overlapping

paths and (v) a movement constraint based on the number of left turns on the route.

The values for the constraint thresholds are given constants in Prato and Bekhor

(2006), Prato and Bekhor (2007) and Prato et al. (2012). Five predefined parameter

sets are used in the meta-analysis reported in Prato (2012).

A similar technique is proposed by Pillat et al. (2011) who use a detour threshold

that is a function of the duration of the first part of the route being constructed. The

function was derived from routes collected by a survey.

Kaplan and Prato (2010) describes a branch-and-bound generator using thresholds

for the detour (based on travel time) and the number of left turns. The thresholds

are not pre-defined. The author constructs a conjunctive heuristic which integrates

the decisions in the choice set generation phase and the choice model. The thresholds

for the route generator and the choice model parameters are jointly estimated.

Based on this overview, one needs to conclude that route characteristics other

than overall length or travel time, were demonstrated only by the branch-and-bound

methods. However, it is possible to integrate them in the algorithms proposed by

Zijpp and Catalano (2005) and Schüssler et al. (2010). Finally they can be used in

a route filtering phase when deriving the consideration set from the master set Bovy

(2009).

9.3.2 Structure of Chosen Routes

The hypothesis mentioned in the introduction was verified in Knapen et al. (2015c) by

analyzing two sets of GPS recorded traces. Trips were extracted and map-matched

which results in a set of walks (sequences of connected links) in the road network

graph. Each walk that is a path (i.e. which visits every node at most once) is

assumed to constitute the route for a utilitarian trip. Frequency distributions for the

size of the minimum decompositions into BPC have been determined for 47134 trips

in the Milano (Italy) region and 5876 trips in Flanders (Belgium). The results show

that the hypothesis holds. In Knapen et al. (2015c) it is proposed to use Minimum

Path Decomposition Size (MPDS) as an additional criterion for path plausibility

assessment in route choice. The distribution for the MPDS can be used in the choice

set generation stage in route choice modeling.
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9.3.3 Contribution of this Paper

Route choice procedures can use information about the network other than the at-

tributes of the paths evaluated for inclusion in the consideration set. This can be

done by means of landmark information by including boolean explanatory variable

(dummies) in the choice model (e.g. Prato and Bekhor (2007)). The landmarks are

predefined by the analyst for use in a survey.

Kazagli and Bierlaire (2014) propose to replace paths by abstract geo-marked items

denoted by Mental Representation Items (MRIs). An MRI is not necessarily a specific

location or landmark. An area like a city center can act as an MRI. MRIs are used in

the choice set generation phase and not only in the choice set model as an explanatory

variable. However, practical problems can arise when MRIs need to be derived from

recorded data.

The results presented in this paper might help to support this problem. A method

is proposed that enumerates all possible decompositions of a given path in a graph,

in polynomial time. This allows to easily calculate for every vertex the occurrence

frequency as a splitVertex in a minimum path decomposition. This is a measure for

the probability that the vertex was used as an intermediate destination by travelers.

It contains information about the network (topology, path travel cost) and about

the revealed routes. This information can be derived from big data (GPS traces).

It quantifies the appropriateness of a vertex to act as a landmark useful for route

construction. The level of abstraction is much lower than the one associated with the

MRI in Kazagli and Bierlaire (2014) but the information can be derived automatically.

9.4 The Use of Route Structure Information

First, the notion of vertex importance is explained. It is a measure for the probability

that the vertex is considered to be the endpoint of a least-cost subpath by the traveler.

Then we propose a method to integrate Minimum Path Decomposition Size (MPDS)

and vertex importance in the route choice procedure.

9.4.1 Vertex Importance

Let N denote the size of the minimum decompositions of path P into BPC. The

algorithm specified in Knapen et al. (2015c) delivers N − 1 mutually disjoint sets

of splitVertices corresponding to subpaths in P called splitVertexSuites, so that ev-

ery minimum decomposition for P is generated by taking exactly one vertex from
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each splitVertexSuite. However, not every combination of vertices selected from the

splitVertexSuites, generates a valid decomposition.

A splitVertexSuite SA is independent of SB if and only if the selection of a splitVer-

tex from SA is not constrained by the prior selection made from SB . If SA is mutually

independent of every other splitVertexSuite, then the splitVertex from SA can be freely

chosen in each minimum decomposition. Every splitVertex in SA then has the same

probability to be the one that was considered by the traveler as an intermediate

destination.

It is improbable that the decomposition of all paths in a large collection, leads

to mutually independent splitVertexSuites for each of the paths. For this reason

one shall be careful when creating statistics using information about properties of

splitVertexSuites only.

We assume that the probability that a vertex carries a meaning relevant to the

traveler (but yet unknown to the analyst), increases with its use frequency as a

splitVertex in a decomposition. This assumption is similar to what is done in the

trajectory annotation process (i.e. the process that tries to assign a meaning to each

stop detected in a GPS trace). In that process, the visit frequency and the total time

spent at a given location are quantities used while trying to discover the intention of

a stop. In the case of route splitting, we try to find the probability for a vertex in a

splitVertexSuite to be the splitVertex that the user had in mind.

Definition 9.4.1. The importance i(v,P) of a vertex v in a set of paths P is the

relative occurrence frequency of v as a splitVertex in the set of all possible minimum

decompositions of all P ∈ P.

Let D(P ) denote the set of all minimum decompositions of P . Let S(d) denote

the set of splitVertices constituting the decomposition d. Let Dv(P ) denote the set

of all minimum decompositions of path P making use of splitVertex v i.e.: Dv(P ) =

{d ∈ D(P )|v ∈ S(d)}. Then

i(v,P) =

∑
P∈P
|Dv(P )|∑

P∈P
|D(P )|

(9.1)

Specific importance values can be calculated by restricting the set P of paths con-

sidered (e.g. only the paths for a given individual, only the paths having a given

destination etc). If a particular path P is considered and if in addition the splitVer-

texSuites for P are mutually independent, the importance for a specific vertex v is
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given by

i(v, {P}) =
|Dv(P )|
|D(P )|

=

∏
s∈SVS(P )\SVS(v)

|s|∏
s∈SVS(P )

|s|
=

1

|SVS(v)|
(9.2)

where SVS(P ) is the set of splitVertexSuites that determine the minimum decompo-

sitions of path P and SVS(v) is the splitVertexSuite containing vertex v.

We assume that the mentioned probability equals the vertex importance (or that

the importance is a sufficiently accurate approximation). Note that for the singleton

P = {P}, the importance values for the vertices in a given splitVertexSuite sum up

to one as should be; this is because every minimum splitting contains exactly one

splitVertex from each splitVertexSuite.

The computation of importance in general requires the enumeration of all possible

decompositions of a path.

9.4.2 Choice Set Filtering

We briefly indicate how the results of the proposed method support the route choice

problem. Following steps need to be performed.

1. Using a set of GPS recordings, the distribution for the MPDS and the overall

importance i(v,P) of each vertex v used in a path, are determined.

2. For vertices having a sufficiently high importance to be an intended splitVertex,

additional attributes are retrieved from a GIS. Examples are: availability of

traffic lights, change in road category, train station or school neighborhood,

carpool parking, etc. A model is formulated and estimated to predict the vertex

importance from those attributes. The intention is to predict importance values

for vertices that are not used in the recorded trips.

3. The predicted importance i for the vertices is used to evaluate and compare

route candidates. Thereto, the set D(P ) of minimum decompositions for the

proposed path P is determined (by the technique proposed in this paper). For

each decomposition d, the likelihood is determined as the sum of the impor-

tance values for the splitVertices in the set S(d) constituting the decomposition:

L(P ) =
∑

v∈S(d)

i(v).

4. A choice set generator algorithm A (of type B&B, BFS-LE or other) is designed

to propose routes and to prune infeasible candidates using a filter that is based
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on the size of the minimum decomposition of the candidate and the likelihood

defined in 3.

5. In the model estimation phase, a choice set PCS is built. It is initialized using

the set PGPS of paths derived from the recorded traces. After initialization it

is extended by adding paths generated by means of the algorithm A. A logit

based route selection model M is specified that takes the size of the minimum

decomposition and the likelihood defined in item 3 as independent variables

along with the variables that are currently used (maximal detour factor, num-

ber of left turns, path size correction factor etc). The model parameters are

estimated using PCS and PGPS .

6. In the prediction phase, the algorithm A is used to generate the choice set and

the model M is used to sample a route.

9.5 Definitions and Basics

First some definitions from graph-theory are presented. Let G = (V,E) be a directed

graph with vertex set V and edge set E. The vertices correspond to nodes in a road

network, and the edges correspond to links in the network. Each edge e has a non-

negative cost c(e) which is the effort (e.g. time or money) required to traverse the

link in the network. For a subgraph H ⊆ G, V (H)(E(H)) denote the set of vertices

(edges) of H.

Definition 9.5.1 (walk, initial, terminal, internal vertices, internally-disjoint). A

walk is a sequence of vertices P = (v0, v1, . . . , vl), not necessarily distinct, where

(vi, vi+1) ∈ E(G) for all i = 0, 1, . . . , l − 1. Vertices v0 and vl are called initial

and terminal vertices, respectively, of P , and vertices v1, . . . , vl−1 are called internal

vertices of P . The walk P is said to be connecting v0 and vl, and it is also denoted

by P (v0, vl). A walk Q(v0, vl), is internally-disjoint from P if all the internal vertices

of Q, are distinct from the vertices in P .

Definition 9.5.2 (path, subpath, size, cost, least cost path). A path is a walk where

all its vertices are distinct. For a path P = (v0, v1, . . . , vl), any subsequence of vertices

vi, vi+1, . . . , vj, where 0 ≤ i ≤ j ≤ l is a subpath of P , and is denoted by P (vi, vj).

The size of a path, denoted by |P |, is the number of edges in it (i.e. l), and the cost

of a path, denoted by c(P ) is the sum of the costs of its edges. A path P (v0, vl) is a

least cost path between v0 and vl, if there exists no other path connecting v0 and vl

of lower cost.
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Note that if c(e) = 1 for all e ∈ E then the cost of a path coincides with its size.

We assume that the vertex traversal cost is zero. A single edge (u, v), being a path

connecting between u and v, may be least cost, or not. If it is not a least cost path

connecting between u and v, then it is called a non-least-cost-edge.

It is easy to see that if P is a least cost path, then any subpath of P is also a least

cost path (see proof in Knapen et al. (2015c)).

The converse of this statement is false since it is possible that all the subpaths

of P (v0, . . . , vl) (except P itself) are least cost paths, but P is not a least cost path

connecting v0 and vl and there is another least cost path Q connecting v0 and vl.

This fact motivated the following definition, as in Knapen et al. (2015c).

Definition 9.5.3 ( P - shortcut, minimal shortcut, fork and join vertices, bypassed

vertex set). Let P = (v0, v1, . . . , vl) be a given path. A P (vi, vj)-shortcut (or for

brevity, P - shortcut, or shortcut), is a path Q(vi, vj), internally- disjoint from P ,

where vi, vj ∈ V (P ), such that c(Q(vi, vj)) < c(P (vi, vj)). The vertices vi and vj

are called fork and join of the shortcut, respectively, and the internal vertices of P

between the fork and the join (i.e. vi+1, . . . , vj−1 ) are called Q-bypassed vertex set,

or bypassed vertex set and denoted by B(Q). A shortcut Q is minimal if B(Q) does

not contain B(Q′) where Q′ is another shortcut to P . (See Figure 9.1).

We emphasize that B(Q) contains consecutive vertices on P . Therefore, it can be

marked by the fork and join of a shortcut Q, which are the vertices preceding, and

following the set B(Q), respectively.

Clearly, a least cost path cannot have any shortcuts.

Definition 9.5.4 ( Basic Path Component (BPC), path splitting, splitVertex). Given

a path P , a subpath of P is called a Basic Path Component, or for short, a BPC, if

it is either a least cost path connecting its endpoints, or P is a single non-least-cost-

edge. A path splitting of P is a partition of P into subpaths each of which is a basic

path component. A splitVertex is a vertex separating two consecutive BPC in a path

splitting, and is denoted by vsi .

Note that there may be many ways to split a path, for example, the trivial par-

tition into edges (v0, v1), (v1, v2), . . . , (vl−1, vl) is an example of such a partition. We

are interested in finding a path splitting with the minimum number of basic path

components. Such a path splitting is called minimum path splitting. Each non-

shortest-edge is a part in each minimum path splitting since it constitutes a BPC. If

we remove the set of non-shortest edges in a path (each of which is a BPC), we are

left with a set of disjoint paths, each of which contains no non-shortest-edges.
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P

Q

vi

vj

Q′

Figure 9.1: A path P with a minimal P (vi, vj)-shortcut Q. Q′ is a non-minimal

shortcut. Vertices vi and vj are fork and join vertices of Q, respectively and the

marked vertices are the bypassed vertex set B(Q).

From now on we will assume that P does not contain any non-shortest-edges.

In Knapen et al. (2015c) we addressed the problem of finding efficiently a minimum

path splitting of a given path.

Since a minimum path splitting will contain a minimum number of splitVertices,

an equivalent formulation of the problem above is to find a minimum number of

splitVertices in the path, such that any subpath connecting consecutive splitVertices

will be least cost.

Lemma 9.5.5. Let P = (v0, v1, . . . , vl) be a path connecting v0 and vl. Assume P is

not least cost, and let Q(vi, vj) be a shortcut in P . Then any path splitting of P will

contain at least one vertex in B(Q), the Q-bypassed vertex set, as a splitVertex.

Proof 9.5.1. By contradiction. If no vertex in B(Q) is a splitVertex, then P (vi, vj)

is a least cost path, contrary to the fact that Q(vi, vj) is a shortcut in P .

Corollary 9.5.6. A minimum path splitting of P is obtained by a minimum set of

splitVertices which meets B(Q) for all minimal shortcuts Q to P .

Proof 9.5.2. Since every two consecutive BPC are separated by a splitVertex, it is

sufficient to minimize the number of splitVertices. By Lemma 9.5.5 it is necessary to

meet each B(Q), where Q is a shortcut. However, since every B(Q′) contains a B(Q)

where Q is a minimal shortcut, it is sufficient to meet all bypassed sets of minimal

shortcuts. The converse also holds - a minimum set of vertices which meets the B(Q)

of all minimal shortcuts Q, defines a minimum path splitting of P .



246 Chapter 9

The algorithm described in Knapen et al. (2015c) begins with the initial vertex

of P , v0, and finds a maximal least cost path beginning with it. This is done using

Dijkstra’s least cost path algorithm (Dijkstra (1959)). Assume vj1 is the first vertex

on P for which P (v0, vj1) is not least cost, then the algorithm marks vj1 as a join

vertex and continues with the subpath of P beginning from the vertex prior to vj1

on P , looking for the next join vertex in P (vj1−1, vl). The algorithm continues until

no more join vertices are found. It was proved that the vertices preceding the join

vertices found on P are splitVertices, and their number is minimal.

In a similar way, a backward pass on P is done, beginning with the end vertex vl

and going backwards, to find a minimum set of fork vertices, whose successors on P

are also splitVertices in a minimum path splitting. The algorithm is efficient since it

uses Dijkstra’s algorithm no more than N times, where N is the minimum number of

BPC’s used to partition P .

Since the bypassed vertex sets may contain points of interest for the traveler (other-

wise a minimum cost path would have been chosen), we are interested in enumerating

all splitVertices and all minimum partitions into BPC’s.

Note that the algorithm in Knapen et al. (2015c), is highly efficient, but it does

not find all the shortcuts to P . This fact does not allow us to enumerate all possible

minimum path splittings, as was demonstrated in the example in Knapen et al. (2015c)

Figure 3.

9.6 Path Decomposition Enumeration Technique

Assume that a path in a graph is given. In the context of this paper, the path is

derived by applying trip detection and map matching on a GPS trace. The resulting

path is broken down into a set of non-least-cost edges and subpaths that are free

of non-least-cost edges. The latter subpaths are considered for decomposition into a

minimum number of BPC that are least cost paths.

The enumeration of all minimum partitions of the path into BPC’s is done in five

stages:

1. Finding all minimal shortcuts to P .

2. Defining the intervals and the proper interval graph GI derived from the short-

cuts to P .

3. Enumerating all cliques in GI

4. Constructing the directed-clique-graph GC

5. Enumerating all shortest source-sink paths in GC
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Figure 9.2: Overview of graphs used to enumerate minimum path decompositions.
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9.6.1 Stage 1: Finding all minimal shortcuts to P

In this stage we find all minimal shortcuts to P . We do not need the shortcut paths

to P , but rather their endpoints, the fork and join vertices of each shortcut. The

output is a list of pairs < vf , vj > corresponding to the fork and join vertices of all

minimal shortcuts.

Assume a traveler moves from point v0 to point vl along a path P = (v0, v1, . . . , vl).

If this path is the least-cost path between v0 to vl then it has no shortcuts, it is a

BPC, and nothing needs to be done. Otherwise, Dijkstra’s shortest path algorithm is

used to find the first vertex on P , say vj for which P (v0, vj) is not the shortest path

connecting v0 and vj . We mark vj as a join vertex, and continue by finding the last

vertex in the subpath P (v0, vj), say vf for which P (vf , vj) is not a least-cost path.

We output the shortcut < vf , vj > and continue with the subpath of P beginning

with vf+1 . The pseudo code is given in the Algorithm 9.8.1.

9.6.2 Stage 2: Defining the intervals and the proper interval

graph GI

Once all minimal shortcuts to P are known, the corresponding bypassed vertex sets

are considered. By Corollary 9.5.6, a minimum path splitting will contain a smallest

set of splitVertices which meets all bypassed vertex sets. To find sets of splitVertices

we construct a set of intervals corresponding to all bypassed vertex sets in the following

way: If B(Q) = {vi, vi+1, . . . , vj}, then it is represented by the closed interval [i, j]

on the real line. (see Figure 9.2-Stage 2). Note that the integral points on the

interval [i, j] (i.e. the points i, i + 1, . . . , j correspond to the vertices vi, vi+1, . . . , vj

on P ). Since the shortcuts found in Stage 1 are minimal shortcuts, no two intervals

contain each other. The intersection graph of this set of intervals, is by definition, a

proper interval graph (see Looges and Olariu (1993) for definition). We denote it by

GI = (V I , EI), where each v ∈ V I corresponds to B(Q) of some shortcut Q, and two

vertices are adjacent if and only if the corresponding bypassed vertex sets intersect.

Note that if we order all the intervals representing V I by their left hand endpoint,

in increasing order, then, being a proper interval graph, their right hand endpoints

will also be in increasing order (otherwise one interval will contain another). We label

the ordered set of intervals as I1, I2, . . . In or, when more convenient, as a, b, c, . . . (see

Figure 9.2-Stage 2).
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9.6.3 Stage 3: Enumerating relevant cliques in GI

In Stage 2 we have defined a set of intervals on the real line whose intersection graph

is a proper interval graph GI . Each point on the real line meets a subset of these

intervals which correspond to some clique in GI . Conversely, for every set of intervals

which mutually pairwise intersect, by the Helly property, there exists a point on the

real line which meets all the intersecting intervals. Moreover, since the intervals begin

and end in integral points, we may assume that every clique of mutually intersecting

intervals is met by some integral point, i.e. a vertex on P . There are at most 2|V I |
endpoints of all the intervals (some right hand endpoint may coincide with a left

hand endpoint). They define at most 2|V I | − 1 possible non-empty intersections of

the intervals, ordered linearly in increasing order of the intersecting points (see Figure

9.2-Stage 3). Each interval intersection is some clique in GI . Since the graph is a

proper interval graph, all cliques can be ordered so that each interval belongs to

consecutive cliques (Booth and Lueker (1975), Fulkerson and Gross (1965), Gardi

(2007)). This is the characteristic linear clique order for the proper interval graph.

For interval graphs in general, a similar property holds for the maximal cliques.

See Algorithm 9.9.1 for the pseudo code for enumerating all relevant cliques in

GI , denoted by C(GI).

9.6.4 Stage 4: Constructing the directed-clique-graph GC

Given the clique family found in Stage 3, C(GI), we are interested in finding all

possible minimum coverings of V I by cliques from the set C(GI). In order to find

those coverings, we construct a directed graph GC = (V C , EC), where the vertex set

corresponds to the cliques Ci ∈ C(GI). To distinguish between the vertices in V C and

the vertices in other graphs we call these vertices c-vertices. There is a directed edge

from a c−vertex Ci to a c−vertex Cj according to the following rule: Assume clique

Ci contains the consecutive set of intervals labeled Ii, Ii+1, . . . , Ii+k and clique Cj

contains the consecutive set of intervals labeled Ij , Ij+1, . . . , Ij+t. There is a directed

edge from Ci to Cj if and only if

i < j ≤ i+ k + 1 and i+ k < j + t (9.3)

See example in Figure 9.2- Stage 4. By the definition above, GC is acyclic i.e. it

contains no directed cycles. All the source vertices (i.e. vertices with indegree zero) are

the vertices in GC whose label contains I1 (or a as in Figure 9.2-Stage 4) and the sink

vertices (i.e. vertices with outdegree zero) are the vertices whose label contains In (or g

as in Figure 9.2-Stage 4). The source and sink vertices are marked in Figure 9.2-Stage
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Figure 9.3: The graph GC constructed in stage 4: diagram (a): before pruning,

diagram (b) after pruning lower layer sinks and deleting edges not on a shortest

source-sink path. The numbers beside each vertex represent the number of shortest

paths from the vertex to a sink vertex.

4 as dark vertices. The condition in equation (9.3) guarantees that any directed path

from a source vertex to a sink vertex will cover all the intervals {Ii; i = 1, 2, . . . , n}.
The first part of the condition means that Ci ∪ Cj contains all intervals Ii, . . . , Ij+t;

the second part implies that Ci 6⊃ Cj . As a consequence, Ci and Cj can be members

of the same minimum clique cover of GI .

9.6.5 Stage 5: Enumerating all shortest source-sink paths in

GC

We look for all minimum length paths in GC which connect some source vertex to

some sink vertex. The easiest, most efficient way to find shortest paths is to perform

a breadth-first search (BFS) on GC starting with the source vertices. Recall that BFS

search divides a graph into layers, starting with the source vertices, in which all the

nodes in layer d have distance d from the source vertices. We say that layer d is above

layer d′ if d < d′. Since we are looking for the shortest paths from sources to sinks,

we consider only the closest sink vertices, i.e. sink vertices with the highest layers;

other sink vertices we can ignore, as well as their incoming edges. We also ignore

edges which connect two vertices at the same layer of the BFS tree, and edges which

do not lead to any highest-level sinks. (See Figure 9.3 ).

To count the number of shortest source-sink paths, we begin with the sinks in the

highest layers, and label them 1. (since there is a unique shortest path beginning at
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them and ending at them - the trivial path consisting of one vertex). As we move up

through the BFS layers, we see that the number of shortest paths to sinks from each

node is the sum of the number of shortest paths from all nodes directly below it to

sinks in the BFS search. Working upwards through the layers, we get the number of

shortest paths from each source vertex to sink vertices. It is quite easy to construct

these paths layer-by-layer.

9.6.6 Enumerating minimum path splittings

In Section 9.6.5 we have found all shortest source-sink paths in the clique graph GC

of the interval graph GI . We recall that each vertex in such a path corresponds to a

clique in the interval graph, in other words, to a set of vertices in the original path P

traveled by the user, which are bypassed by a unique set of shortcuts.

Let Ci,j denote the clique containing intervals Ii, Ii+1, . . . , Ij .

Definition 9.6.1 (Core of a clique). The core K(Ci,j) of a clique Ci,j is the set of

bypassed vertices on P specified by K(Ci,j) =
⋂

k∈[i,j]

B(Qk) \
⋃

k 6∈[i,j]

B(Qk) i.e. the core

is the set of vertices belonging to exactly the intersection of the bypassed vertex sets

for Ci,j and not to any other bypassed vertex set.

For example, in Figure 9.2 the clique ef contains the bypassed vertex vw, the

clique efg contains bypassed vertex vx and clique fg contains vy, vz. Each one of

these bypassed vertices is a potential splitVertex and its choice is independent of

the selection of bypassed vertices corresponding to the other cliques on the same

source-sink path. (see Figure 9.2-Stage 3). The number of possible path splittings is

therefore

∑
pC∈PC

 ∏
C∈pC

|K(C)|

 (9.4)

where PC is the set of shortest source-sink paths in GC and each C ∈ pC represents

the clique in GI corresponding to a vertex on pC .

Theorem 9.6.2. Stages 1-5 allow us to enumerate all minimum decompositions into

BPC’s of a path, and Equation (9.4) counts the total number of such decompositions.

Proof 9.6.1. By Corollary 9.5.6 every minimum path splitting of P is obtained by a

minimum set of splitVertices which meets every B(Q), for all minimal shortcuts Q to

P . We have found in Stage 1 all bypassed vertex sets B(Q) of minimal shortcuts, and
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represented them in Stage 2 by intervals on the real line, no two of which contain each

other, and who’s endpoints are integer points. In Stage 3 we have found all integer

points which meet all possible cliques - these correspond to all possible splitVertices.

In Stage 4 we constructed the directed clique graph GC and in Stage 5 we found all

shortest source-sink path in GC .

Each shortest source-sink path in GC has L vertices. We argue that L = N − 1,

where N is the size of the minimum decomposition of the path into BPC’s. Each

shortest source-sink path in GC corresponds to a collection of sets Si of splitVertices

with i ∈ [1, L] so that every tuple T ∈ S1 × . . .× SL partitions the given path P into

a minimum path decomposition, and vice versa - every minimum path decomposition

is found in Stage 5. An outline of the proof is given below: details have been omitted

for brevity.

(a) Each considered source-sink path pC is minimal (by construction, Stage 5).

(b) Each vertex on the path in GC corresponds to a clique in GI (i.e. to a set

of intervals). No two vertices in GC correspond to the same clique in GI (by

construction, Stage 4).

(c) If two cliques are different, their cores are different : Ci 6= Cj ⇒ K(Ci) 6= K(Cj)

(by definition 9.6.1). Furthermore, their cores are disjoint Ci 6= Cj ⇒ K(Ci) ∩
K(Cj) = ∅ (follows from Definition 9.6.1).

(d) From (b) and (c) follows that the cores for any pair of vertices in GC are disjoint.

(e) The union of the cliques on each source-sink pair in GC is the set of all intervals

V I (i.e. no interval is missing) (by construction, Stage 4: see expression (9.3),

second condition).

(f) If (Ci, Cj) ∈ EC then Ci precedes Cj in the characteristic linear clique order

for the proper interval graph. Furthermore (Ci, Cj) ∈ EC ⇒ (Cj , Ci) 6∈ EC (by

construction of the clique enumerator and due to the GC construction procedure

(see expression (9.3), first condition))

(g) Two different paths in GC cannot correspond to the same set of cliques because

all considered paths have equal length (see (a)) and because of (f) they cannot

be built using the same set of vertices.

(h) From (c) and (g) follows that two different paths have different sets of cores.

(i) The splittings enumeration procedure is: for each source-sink path in GC exactly

one vertex in path P is selected from each core.

(j) Because all vertices in the core of a clique belong to exactly the same set of by-

passed vertex sets (follows from Definition 9.6.1) and because selecting a vertex
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corresponds to meeting a bypassed vertex set, all vertices in the core are equiv-

alent. They are indistinguishable with respect to the set of bypassed vertex sets

they meet. Hence while selecting vertices from cores in order to meet all by-

passed vertex sets, selection of a vertex in a core is independent of the selection

made for any other core.

(k) Creation of a tuple T ∈ S1× . . .×SL by selecting one vertex from each core for

a source-sink path in GC has the following properties

(a) selection from each core can be done independently (follows from (j))

(b) the tuple of selected vertices defines a minimal decomposition (it is minimal

because the number of cliques on the path is minimal according to (j) and

it is a decomposition because it delivers a vertex in each bypassed vertex

set (see (e))

(c) no two paths deliver the same selection sets (because of (h))

hence, selecting all possible combinations for each shortest source-sink path pC ,

delivers different solutions since no two paths deliver the same selection set

(because of (h)).

(l) Finally, all possible decompositions are enumerated because the cores for all

cliques in GI were used (guaranteed by the clique enumerator).

(m) From (k) and (l) follows that Equation (9.4) counts the total number of minimum

path splittings.

This concludes the proof of the theorem.

9.7 Summary, Discussion and Future Research

Decomposition of recorded routes into a minimum number of basic path components

(BPC) delivers information that is useful for route choice set formation. Knapen

et al. (2015c) provide an efficient algorithm to determine for a given path the size of

minimum route splittings and a set of splitVertexSuites. Minimum path decomposi-

tions are generated by taking a single vertex from each splitVertexSuite. However,

not every combination generates a valid solution. As a consequence not all vertices

in a splitVertexSuite do occur in the same number of decompositions. Therefore, the

concept of importance is introduced. It allows to quantify the probability that a given

vertex (or a small ordered set (e.g. 2-tuple)) was selected as a splitVertex (set) by the

traveler. Importance is useful to automatically identify way-points or landmarks from

big data.
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Determination of importance requires the enumeration of all minimum path de-

compositions. Efficient enumeration is performed by the following steps: (i) determi-

nation of minimal shortcuts to the given path thereby considering bypassed vertex sets

as intervals (ii) constructing the interval graph (iii) enumerating all possible minimum

clique covers (since the interval graph turns out to be an indifference graph, this can

be done in polynomial time) and finally (iv) enumerating the path decompositions

generated by each minimum clique cover.

Subsequent research will apply the reported technique to sets of GPS traces for

which the number of basic path components was determined using the algorithm

described in Knapen et al. (2015c). The resulting importance values will be correlated

with road network and land-use data available in a GIS. The aim is to create a

predictor for vertex importance in order to reduce interactive work.

The final goal is to create an extended branch-and-bound (Prato and Bekhor

(2007)) or BFS-LE (Rieser-Schüssler et al. (2012)) route generator algorithm that,

besides the currently used route attributes, also takes the number of BPC in the min-

imal path decomposition into account while making use of vertex tuples of sufficient

importance.

9.8 Minimum Shortcut and Non-least-cost Edge Finder

Line 27 in algorithm 9.8.1 is used to minimize the work. At that point it is known

that no minimum shortcut forks in a vertex v ∈ [dsucc(start), vj ].

9.9 Clique Enumerator.

The interval tuple 〈n, lhe, rhe〉 contains the interval identifier (n) and the integers

(lhe, rhe) identifying the left and right hand endpoints of the interval on P .

The algorithm requires as input a sorted list of intervals constituting a proper interval

graph. The list is sorted so that the left hand endpoints (lhe) appear in increasing

order.

The algorithm does not keep track of a set of intervals. The next clique to be output

is identified by a reference to the first interval in the clique and a reference to the first

interval not in the clique.
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Algorithm 9.8.1 Minimum shortcut finder.

Require: graph G, path P in G

1: function findFirstJoin(P, from) . Search first join following vertex from

2: join← succ(P, from)

3: while (join 6= nil) ∧ (shortPath(P, from, join)) do

4: join← succ(P, join)

5: end while

6: return join

7: end function

8: function findlastFork(P, from) . Search first fork preceding vertex from

9: fork← pred(P, from)

10: while (fork 6= nil) ∧ (shortPath(P, fork, from)) do

11: fork← pred(P, fork)

12: end while

13: return fork

14: end function

15: start← v0

16: while start 6= nil do

17: vj ← findFirstJoin(P, start)

18: if vj = nil then

19: start← nil . Path exhausted

20: else if vj = succ(P, start) then . Non-least-cost edge detected

21: output(′nonShortestEdge′, 〈start, vj〉)
22: start← vj . Skip over non-least-cost edge

23: else

24: vf ← findLastFork(P, vj) . Regular shortest

25: if vf = pred(P, vj) then . Non-least-cost edge detected

26: output(′nonShortestEdge′, 〈vf , vj〉)
27: start← vj . Skip over non-least-cost edge

28: else

29: output(′minShortCut′, 〈vf , vj〉)
30: start← succ(P, vf ) . start 6= vj

31: end if

32: end if

33: end while
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Algorithm 9.9.1 Clique Enumerator.

Require: List of Interval L where Interval is tuple 〈n, lhe, rhe〉
function outputClique(List Of Interval L, Interval firstIn, Interval firstBehind)

clique← ∅
c← firstIn

while c 6= firstBehind do

clique← clique ∪ {c}
c← succ(L, c) . Successor of c in list L

end while

output(clique)

end function

fIn← head(L) . First interval in clique

fNotIn← succ(L, fIn) . First interval not in clique

while fIn 6= nil do

outputClique(L, fIn, fNotIn)

if fNotIn = nil then

fIn← nil . Done

else

if fIn.rhe() < fNotIn.lhe() then

fIn← succ(L, fIn) . End of first in clique before begin of first behind

clique

else

fNotIn← succ(L, fNotIn) . Contains the single vertex overlap case

end if

end if

end while
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Discussion and Future

Research

10.1 The Use of Activity-based Models

Activity-Based Models (ActBMs) are powerful tools and the fact that they generate

detailed microscopic results is tempting. The results are useful to feed other models

but this shall be done with care, especially in cases where they feed models including

coordination. This is not a qualification of the results of ActBM but a warning about

model compatibility. Coupling models via data requires careful thought. It is always

required to keep in mind for which goal the results were generated. Results can fulfill

all the accuracy requirements with respect to the goal for which they were produced

and at the same time not fulfill the requirements of another model using those results

as an input. Arguments to investigate potential issues by simply connecting models,

are given below.

10.1.1 Aggregating Applications

The Electric Vehicle (EV) related research shows how spatio-temporal information in

schedules predicted by Activity-Based Models (ActBMs) can feed research to evalu-

ate the electric power demand generated by EV. It shows the flexibility that results

from the availability of individual schedules that can be aggregated in different ways

according to the scenarios defined for several hypotheses. However, such aggregated

result shall be used with care.

257
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Location choice prediction seems to be difficult because of the homogeneity in

land-use data (which in some cases reflects reality and in some cases is caused by

the data ignoring relevant aspects of heterogeneity). As a consequence, for a given

person at a given location, multiple opportunities having similar attraction to perform

a given activity do exist. The effect is that the distributions for the predicted travel

time and distance can accurately reflect the distributions extracted from surveys while

the distribution of trips over OD pairs might deviate from reality.

The effect on the predicted spatio-temporal energy demand is estimated to be

limited because the number of trips leaving origin locations and arriving at destination

locations respectively, as well as the distance distribution, seem to be accurate. In

the carpooling research however, the effect of the location choice inaccuracy is less

obvious.

10.1.2 Applications involving Coordination

The probability for carpooling negotiation success depends on the trip similarity and

this in turn depends on the OD pairs involved (as opposed to aggregated incoming

and outgoing trips in the EV case). Current research at IMOB aims to determine the

number of required FEATHERS runs to find sufficiently low standard deviation for

the average over the runs, for particular aggregated quantities (number of activities

in a TAZ, etc). This research is carried out for mutually independent individuals.

In the short term, a sensitivity analysis shall be set up in order to find out how sets

of trips feasible for carpooling change over several FEATHERS runs. This is not a

simple variable but a value that depends on similarity relationship between particular

attributes in the schedules for two individuals.

For each location, the number of both outgoing and incoming trips feasible for

carpooling (based on trip and time interval similarity) can be computed. This results

in two vectors. It is to be found out how the variability of those vectors relates to the

variability found for the aggregated quantities for mutually independent individuals

mentioned above.

Current research on the Agent-Based Model (AgnBM) for carpooling uses travel

time estimates taken from a TAZ based OD distance matrix used by the ActBM that

produce the schedules. This is a simplification because carpooling research considers

pairs of individuals for which the travel distances (times) might differ. The accuracy

can be improved by using street addresses and computing the route length from the

network. However, this comes at a large cost because in addition it requires the

solution of a mini-VRP for each candidate driver in the carpool to pick-up all the
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passengers. A cost-benefit analysis is to be performed. A first step to estimate the

possible error is by determining, for a particular OD pair, the distribution of the travel

distance (time) in a set where origin and destination locations are sampled from the

sets of street addresses for the respective origin and destination zones. The variance

could turn out to be large due to local accessibility features. The same considerations

hold for the use of carpool parkings.

10.1.3 Behavioral Models

The WithIn Day Re-Scheduling (WIDRS) framework is aimed at evaluation of reschedul-

ing behavior models. Those models are application specific. Examples are: (i) sched-

ule adaptation caused by a one-off incident (used as test case in WIDRS), (ii) schedule

adaptation using learning in MATSim, (iii) schedule adaptation due to carpooling ne-

gotiation and (iv) schedule adaptation due to changing environment parameters (e.g.

cost optimization in EV and congestion charging context). Some but not all models

can be evaluated by means of WIDRS because that is hybrid model.

The major challenge however, is the determination of context based marginal util-

ity i.e. depending on time-of-week, location, available resources, internal deadlines

etc. This requires the concept of (perceived) time pressure. For particular applications

(carpooling, EV charging) monetary value of time is required as well. This is chal-

lenging since a lot of detailed time recording is required to collect data. In an ongoing

project focusing on flexible working (time and place) a GPS trace based prompted

recall tool, requiring a minimum of input, has been deployed. However, it seems to

be particularly challenging to find sufficient participants prepared to cooperate.

10.2 Route Properties Research

Following hypothesis was formulated and verified: people tend to compose their routes

for utilitarian trips, as a small concatenation of least-cost paths in the network. Ver-

ification of the hypothesis required the creation of several tools.

Analyzing the structure of a route in a network might look like an obvious idea.

However, to the best of our knowledge, it was not published before neither in trans-

portation science nor in mathematics (graph theory). Possible reasons are: (i) the

required datasets are becoming available only recently and (ii) a non-trivial (amount

of) software is required for this research. For example, a map matching tool with

known properties (as opposed to black box software) and fulfilling specific require-

ments was needed. This need resulted in a tool using a new map matching technique.
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Both path splitting methods developed in this doctoral thesis research, contribute

to enhancement of the route choice model. The method to determine the minimum

path decomposition size allows to enhance route choice models by adding a route

quality assessment based on the path structure. The method to enumerate all min-

imum path splittings, contributes to automatic way-point identification; this avoids

interactive work and the need for operator judgment.

For several cases, the distribution for the size of the minimum path decomposition

was determined. In one case, synthetic routes were created by sampling an origin, a

direction and a trip distance. Trips were constructed by selecting at each junction the

network link for which the direction approximates best the direction to the given one

(while avoiding cycles). Real routes derived from both car traces (in Milano, Italy)

and person traces (in Flanders, Belgium) were analyzed. In all cases the distribution

for the minimum path decomposition size was determined. The Milano car traces

show higher probabilities for smaller decompositions than the Flemish person traces.

This can be caused by the fact that the car traces are subtraces of person traces;

this however cannot be stated with certainty because of the different context of trip

recording.

The distributions for the synthetic and real traces seem to heavily differ whereas

the distributions for the real routes are mutually similar. This is particularly interest-

ing because of the different properties (car traces in a large city vs. person traces in a

lower density region). For the real data, less than five percent of the routes consist of

more than five least-cost paths. The difference between the distributions for the syn-

thetic and the real routes shows that the final result is not a technical-mathematical

artifact of the method. Therefore, it can be concluded that the formulated hypothesis

holds.

As soon as the size of the minimal decompositions is known, it is interesting to

find out how to determine the minimal route splittings. In general, there are multiple

minimal decompositions for a given path. However, it seems to be impossible to

generate complete classes of decompositions at once. It is only possible to determine

the size N of the minimum decomposition and to identify N − 1 mutually disjoint

sets of vertices. Exactly one vertex is to be chosen from each of the N − 1 sets in

order to find a vector of N − 1 split vertices that constitute the boundaries between

successive least-cost path components. Not every combination is a valid one. This

means that the dataset contains information that can be useful. A method is designed

to enumerate all possible minimum decompositions for a given path, in polynomial

time.

The occurrence frequency of a vertex as a split vertex in the minimum decompo-
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sitions for a given set of paths, is used to define the importance of the vertex. The

concept of importance of a vertex for use as a split vertex in a given set of paths, was

defined. Importance is defined as the relative occurrence frequency of a vertex as a

split vertex in all minimum decompositions of all paths in the set.

Future research is required to find out whether correlations can be found between

the vertex GIS attributes and its importance in a particular set of paths. It would be

interesting when a predictor for importance can be built making use of GIS attributes.

The reason is that this constitutes an automatic method for way-point identification.

Note that if the correlations seem to be region specific, they are still interesting. In-

deed, even a large set of GPS traces constitutes only a small sample in the context

of importance determination. This is explained using numerical data. The Open-

StreetMap (OSM) network for Flanders has about 6 · 105 links and about 4.5 · 105

nodes. Assume that only 10% of the links are used as origin and/or destination (hence

6 · 104 of them). Then there are 36 · 108 OD pairs. If 3 possible routes are assumed

(which definitely is an under-estimation) for each OD pair, about 1 ·1010 routes could

be found in an infinitely large dataset of recorded trips for the region.

Now assume a dataset for one month for the Flemish population: 6·106 individuals

making 3 trips per day for 31 days results in 5.4 · 108 trips. This only represents 5%

of the 1 · 1010 possible routes.

If a dataset containing one million (1 · 106) trips is available, it only represents

1 · 10−4 of the possible routes.

From route splitting results, it is derived that it is reasonable to assume 50 vertices

per trip. Hence 5 ·107 vertex uses will be in the one million trips dataset. The average

vertex use frequency in the dataset is 5·107/4.5·105 which is in the order of magnitude

of 100. Due to clustering of routes, it is not certain that each vertex will be used at

least once. On the other hand, the ratio is large enough to expect feasibility to

determine correlations suitable for prediction of the importance for the vertices not

used in the dataset.

Finally, importance is a route-set specific concept. This can be interesting and

challenging. It allows to investigate importance for the sets of a given traveler, a given

transportation mode, specific OD pairs, period of trip start time and other sets.
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Samenvatting

Onderzoek in mobiliteit bestudeert onder meer het verplaatsingsgedrag van groepen

van personen. Daartoe worden verschillende soorten modellen gebruikt.

Macroscopische modellen beschrijven het gedrag van de groep door middel van

een stel vergelijkingen waarin de variabelen overeenkomen met kenmerken van de

groep als geheel. Micro-modellen beschrijven het gedrag van elk individu en leiden

het gedrag van de groep af door aggregatie van de beslissingen die door de individuen

werden genomen. Ze laten toe om het gedrag van een entiteit te bepalen door het

modelleren van de samenstellende onderdelen. Dat is enerzijds handig omdat het toe-

laat effecten van diversiteit te evalueren maar anderzijds zijn de resultaten moeilijk

te valideren omdat van elkaar verschillende modellen op elkaar gelijkende resultaten

kunnen leveren die overeenstemmen met de werkelijkheid. Micro-modellen in mobi-

liteit zijn over het algemeen stochastisch. Omwille van de complexiteit worden de

resultaten van micro-modellen meestal bepaald door micro-simulatie en niet d.m.v.

analytische methodes.

In mobiliteitsonderzoek wordt de techniek van activiteits-gebaseerde modellen

(ActBM) gebruikt; die voorspellen de dagindeling van individuen. Zodra de locatie

en periode van alle activiteiten voor de complete populatie gekend zijn, kan de vraag

naar verplaatsingen bepaald worden door aggregatie. De meeste huidige ActBMs

beschouwen individuen als onderling onafhankelijk.

Agent-gebaseerde modellen (AgnBM) zijn software-mathematische technieken om

(optimisatie-)problemen op te lossen d.m.v. autonome entiteiten van allerlei aard,

meestal door samenwerking. Deze techniek is op verscheidene manieren bruikbaar in

ActBM.

Dit doctoraat onderzoekt enkele concrete problemen in de context van micro-

modellering. Het bestaat uit twee delen. In het eerste deel worden resultaten van

het FEATHERS ActBM gebruikt om concrete in projecten gestelde vragen te beant-

woorden. Het tweede deel levert een methode om het route-keuze model te verfijnen.
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Samenvatting Deel 1

Elektrische Voertuigen

Productie van elektrische energie evolueert van een systeem met weinig grote cen-

trale eenheden met een groot, vrij stabiel en beperkt regelbaar vermogen naar veel

verspreide producenten met kleiner, variabel en moeilijk voorspelbaar vermogen (con-

versie van zonne-energie en wind-energie). Omdat elektrische energie zeer moeilijk kan

worden opgeslaan, moeten productie en consumptie steeds in evenwicht zijn op het

distributienet. Dat schept problemen voor het beheer. De beschikbaarheid van de

grote gezamenlijke opslagcapaciteit van batterijen in elektrische voertuigen (EV) kan

bijdragen tot een oplossing. Hier spelen modellen voor mobiliteit een rol: ze leveren

de gegevens om voor verschillende locaties en periodes te bepalen wat de minimale

en maximale vraag naar elektrische energie is vanwege EV (m.a.w. waar en wanneer

opslagcapaciteit beschikbaar is). Uit het gevoerde onderzoek blijkt dat voor bijna

80% van de Vlaamse populatie de dagelijks afgelegde afstand overbrugd kan worden

d.m.v. een uitsluitend elektrisch aangedreven voertuig. Op jaarbasis verbruikt een

EV ongeveer evenveel als een gemiddeld gezin voor huishoudelijk gebruik. De produc-

tie van elektrische energie is niet problematisch, wel de verdeling van laadbeurten in

tijd en ruimte. Verschillende hypothesen voor laadgedrag (overdag, ’s nachts, op het

werk, etc) zijn doorgerekend en de vraag naar elektrisch vermogen in tijd en ruimte

werden berekend.

Coordinatie in Modellen voor Verplaatsingsgedrag

Carpooling voor woon-werk-verkeer is een type-voorbeeld van coördinatie tussen acto-

ren waarbij de eigenschappen op niveau van de gemeenschap afgeleid kunnen worden

door het modelleren van gecoördineerd gedrag van individuen. In dit doctoraats-

onderzoek is een ontwerp gemaakt voor een Agent-Based Model (AgnBM) voor het

simuleren van carpooling voor woon-werk-verplaatsingen in een populatie.

Ook is onderzoek verricht naar de structuur van een web-service die aanbiedin-

gen voor woon-werk-trips accepteert en verzamelt in een netwerkstructuur. Voor elk

paar aanbiedingen wordt de kans op succesvolle afloop van de onderhandeling voor

carpooling bepaald. Twee aanbiedingen worden in het netwerk met elkaar verbonden

als de succeskans voldoende groot is. De kans wordt dan bij de verbinding als een

gewichtsfactor geregistreerd. Elke aanbieder van trips vermeldt ook de capaciteit van

de beschikbare wagen. De software voor adviesverlening moet in het opgebouwde

netwerk een stel verbindingen kiezen die aangeven welke trips samengevoegd moeten
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worden. Daarbij mag voor geen enkel voertuig de capaciteit worden overschreden

en moet de som van de gewichten van de gekozen verbindingen maximaal zijn. Dit

probleem is NP-hard en voor de oplossing is een heuristische methode vereist. Om

de keuze van dergelijke methode te ondersteunen zijn kenmerken van het netwerk be-

paald op basis van agenda’s voorspeld door FEATHERS voor de Vlaamse populatie.

De ordegrootte voor het aantal knopen in het netwerk voor Vlaanderen is honderd-

duizend. Elke knoop heeft meerdere tientallen verbindingen met andere knopen. Het

netwerk bestaat uit één zeer grote component (giant component) en meerdere veel

kleinere.

Aanpassing van Agenda’s

Activiteits-gebaseerde modellen voorspellen agenda’s voor een dag of een week. In re-

aliteit worden agenda’s aangepast tijdens de uitvoering. Aanpassingen zijn het gevolg

van onverwachte gebeurtenissen of naderhand geplande activiteiten. In dit doctoraat

is een software framework ontwikkeld voor het evalueren van gedragsmodellen voor

aanpassing van agenda’s. Het gaat om een hybride simulator: voor het gedrag van

de individuen wordt micro-simulatie gebruikt en de toedeling van het verkeer op het

wegennet gebeurt macroscopisch. In een simulatie werd de capaciteit van hoofdwegen

in Vlaanderen verlaagd n.a.v. een incident. Voor elk kwartier wordt de toestand

herberekend. Het resultaat van de macroscopische toedeling wordt gebruikt om de

perceptie van elk individu te bepalen en diens inschatting van de drukte op het we-

gennet in de komende uren. Met die gegevens past elk individu de eigen agenda aan.

Het effect van die aanpassing wordt weer doorgerekend in de verkeerstoedeling voor

het volgende kwartier.

Samenvatting Deel 2

Het micro-model voor een individu is samengesteld uit meerdere sub-modellen. Veel

daarvan zijn discrete-keuze modellen: die voorspellen de uitkomst van de keuzes die

het individu moet maken in verschillende situaties. Voorbeelden van keuze-modellen

zijn: kiezen van de locatie voor het uitvoeren van een welbepaalde activiteit, kiezen

van een volgende activiteit, kiezen van een vervoersmiddel (fiets, trein, wagen, etc).

De keuzeverzameling (de verzameling waaruit men moet kiezen) is meestal niet groot

en in sommige gevallen voorafbepaald.

Echter, keuze van de route om van een oorsprong naar een bestemming (OB) te

gaan leidt tot moeilijk handelbare discrete keuzemodellen (i) omdat de keuzeverza-
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meling zó groot is dat het individu die meestal niet geheel kan vatten, (ii) omdat de

opties door overlapping van routes niet onderling onafhankelijk zijn en (iii) omwille

van het rekentechnisch probleem dat de keuzeverzameling voor elk OB-paar afzon-

derlijk moet worden bepaald (het courant gebruikte model voor Vlaanderen verdeelt

de ruimte in ongeveer 2500 zones wat tot 6.250.000 OB-paren leidt). Om een rea-

listisch model voor route-keuze te creëren, moet een realistische keuzeververzameling

worden opgesteld. Enerzijds moet de keuzeset beperkt blijven om praktische redenen

en moeten onrealistische opties worden geweerd, anderzijds moet die set voldoende

groot zijn om geen realistische opties uit te sluiten. Er bestaan meerdere technie-

ken om dergelijke sets op te stellen op basis van een gegeven netwerk (bijvoorbeeld

OpenStreetMap). Kandidaat-routes worden gekozen op basis van meerdere criteria

(maximale omweg t.o.v. kortste-afstand pad, maximale extra duur t.o.v. kortste-

tijd pad, vermijden van kruisingen waar links afdraaien problematisch is, afkeer of

voorkeur voor verkeerslichten, etc).

In dit doctoraat wordt voorgesteld hieraan een criterium toe te voegen dat ver-

band houdt met de structuur van de gekozen route in het netwerk. Hiertoe is volgende

hypothese geformuleerd en geverifiëerd: voor trips met een doel kiest men een route

die bestaat uit een klein aantal goedkoopste paden in het netwerk. De qualificatie goed-

koopste kan betrekking hebben op afstand, tijd of een andere kost die aan het pad

wordt toegekend. Het toe te voegen criterium vereist dat de kansverdeling voor het

minimum aantal goedkoopste componenten, waaruit de paden in de keuzeverzameling

zijn samengesteld, overeenstemt met de realiteit. Het nieuwe criterium wordt voorge-

steld omdat er routes bestaan waarvoor de omweg-factor voldoende klein is maar die

een onwaarschijnlijke structuur hebben. Die moeten uit de keuzeverzameling worden

geweerd.

Het uitgevoerde onderzoek start van een netwerk van wegen en een verzameling

GPS traces. Die traces bevatten informatie over de routekeuze gemaakt voor duizen-

den verplaatsingen. Elke GPS registratie bestaat uit een tijdsaanduiding en een stel

coördinaten. De toegepaste methode omvat volgende stappen:

1. trip-detectie

2. map-matching

3. bepaling van het minimale aantal goedkoopste paden waarin een gegeven pad in

een netwerk kan gesplitst worden. Die goedkoopste deel-paden worden basis-

componenten genoemd.

4. opsomming van alle minimale decomposities van een gegeven pad in een netwerk.
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Trip-detectie en Map-matching

Bij trip-detectie wordt een sequentie van geregistreerde GPS punten opgedeeld zodat

elke deel-sequentie overeenkomt met juist één trip.

Map-matching verwerkt de GPS registraties per trip. Uit een sequentie van regi-

straties wordt een sequentie van verbindingen in het wegennet afgeleid. Hiertoe werd

een nieuwe techniek ontwikkeld die even snel werkt als de bestaande methoden maar

die rekening houdt met alle gegevens in de GPS trace bij het bepalen van de vermoede-

lijke reeks van netwerk verbindingen gebruikt in de trip, Efficiënte gekende methoden

verwerpen, om technische redenen, weinig beloftevolle kandidaat-sequenties wanneer

nog slechts een gedeelte van de trace is verwerkt, waardoor informatie ongebruikt

blijft.

Decompositie van Routes

Zodra de gevolgde paden in het wegennet gekend zijn door map-matching, wordt

voor elk pad bepaald wat het kleinste aantal basiscomponenten is waaruit het is sa-

mengesteld. Denk aan hiërarchische routering waarbij iemand de kortste of snelste

weg vanuit het vertrekpunt naar een oprit van een snelweg volgt en vanaf de uit-

rit opnieuw het kortste of snelste weg naar de bestemming. Dit doctoraat stelt een

efficiënt algorithme voor om het minimum aantal basiscomponenten in een pad te

bepalen. Hiermee zijn duizenden trips verwerkt en de kansverdeling voor het aantal

componenten in minimale decomposities werd bepaald. Die kansverdeling bevestigt

de geformuleerde hypothese. Paden met meer dan vijf componenten vertegenwoordi-

gen ongeveer vijf procent van het totaal, zowel in een dataset voor Vlaanderen als in

een dataset voor Milaan.

Een pad kan in het algemeen op meer dan één manier opgedeeld worden in een

minimum aantal basiscomponenten. Elke decompositie wordt bepaald door splits-

punten: dit zijn de knopen in het pad die de grens vormen tussen basiscomponenten.

Het hoger vermelde algorithme dat het minimum aantal basiscomponenten bepaalt,

levert tevens een collectie van elkaar niet overlappende verzamelingen van knopen in

het pad. Uit elk van die verzamelingen moet exact één knoop worden gekozen om een

minimale decompositie te vinden, maar niet elke combinatie is geldig. Dat is interes-

sant want het betekent dat de datasets informatie bevatten die mogelijk bruikbaar

is.

De laatste bijdrage van dit doctoraat is een methode bestaande uit vijf stappen

en gebaseerd op grafentheorie, om alle mogelijke minimale decomposities van een

pad op te sommen in polynomiale tijd. Mede omdat de verzamelingen waaruit men
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splitsknopen moet kiezen niet allemaal even groot zijn, komt niet elke kandidaat-

splitsknoop even dikwijls voor in de opsomming van alle minimale splitsingen. Het

belang van een knoop wordt bepaald door het aantal decomposities waarin de knoop

als splitsknoop voorkomt. Die frequentie van voorkomen is in de praktijk eenvoudig

bepaalbaar omdat de opsomming van de minimale splitsingen in polynomiale tijd kan

worden uitgevoerd. Dat maakt het mogelijk om grote hoeveelheden routes uit GPS

te analyseren.

Dit resultaat kan nieuw onderzoek voeden waarin het belang van elke knoop wordt

gecorreleerd met de attributen van de knoop in het netwerk (aanwezigheid van signali-

satie etc). Het doel daarvan is om, door uitsluitend gebruik te maken van wiskundige

technieken en informatie uit GPS traces, knopen in het netwerk te identificeren die

interessant zijn voor het voorspellen van gebruikte routes.
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