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Chapter 1

Introduction

1.1 Integrated Analysis of Multi-source Drug Discovery

Data

Early drug discovery research and development process involves a range of technologies for

measuring the chemical and biological effects of compounds at the molecular level in order

to make a decision about the development of a new drug. Consequently, this process gen-

erates multiple sources of high-dimensional data which include high-throughput screening

(HTS), chemical structures, gene expression, image-based high-content screening (HCS),

among others. An integrated analysis of these data sources is the central theme of this

thesis. High-dimensional data are characterized as having an enormous number of fea-

tures (variables) and relatively few compounds (samples). This leads us to the problem of

data integration and opens up a challenging venue for methodological development and

application to extract vital information from the intersection of biology and chemistry. An

integrative method that allows to detect the relationship of all these features can be very

relevant to evaluate compound efficacy and safety as lead compounds progress through

lead optimization.

In drug discovery, scientists work together and start to identify a potential biomolecular

“target" which is usually a single molecule, typically a protein, that is involved in a

particular disease. This target should be drugable, that is, it can interact with and be

affected by a molecule. Upon the identification and validation of the target follows the

process of discovering promising compounds which could ultimately turn into a medicine

for a particular disease. The discovery, therefore, starts on either creating a new molecule

or repurposing an existing molecule. At this point, thousands of candidate molecules

1



2 Chapter 1. Introduction

could be screened against the target for activity using HTS assays and then optimize it

by modifying its structure for better activity.

Over several decades, Quantitative Structure-Activity Relationship (QSAR) model-

ing techniques (Nantasenamat et al., 2009) have been extensively used to quantify the

relationship between chemical structure and activity to gain understanding on how the

chemical substructures affect the biological activity of a compound and then use this un-

derstanding to design compounds with improved activity either relating to greater efficacy

or lesser toxicity (Dearden, 2003, Martin et al., 2002, Bruce et al., 2008). The fundamen-

tal principle underlying the QSAR approach is based on the observation that chemicals of

similar structures frequently share similar physiochemical properties and biological activi-

ties (Johnson and Maggiora, 1990, Verma et al., 2010).

The Quantitative Structure-Transcriptional-Assay Relationship (QSTAR, Ravin-

dranath and Perualila-Tan et al., 2015, Verbist et al., 2015, Perualila-Tan et al., 2016)

modeling framework is an extension of the QSAR approach (Figure 1.1). Here, transcrip-

tional data are integrated with structural compound information as well as experimental

bioactivity data in order to analyze compound effects in biological systems from different

angles to elucidate the mechanism of action of compounds (MoA). This could provide an

insight into inadvertent phenotypic effects which can greatly help in early-stage pharma-

ceutical decision-making.

Figure 1.1: The QSTAR framework. The integration of 3 high-dimensional datatypes;
gene-expression, fingerprints features (FFs representing the chemical structures) and bioas-
say data (phenotype).
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Although the bioactivity data which is typically measured per target assay is key in

the optimization process of chemically designing compounds, it does not provide much

valuable insight information on the underlying biological mechanisms. In contrast to

the bioassay data that captures single biological effects, the gene expression data, as a

multi-dimensional assay, measures a wide diversity of biological effects of a compound

on a whole genome transcriptional level, and thereby gives an information-rich snapshot

of the biological state of a cell (Göhlmann and Talloen, 2009, Amaratunga et al., 2014).

Transcriptomic changes following compound administration can also be measured in high

throughput, allowing screening of many compounds in multiple cell lines at low cost. It

has also been observed that transcriptomic data mostly detect biologically relevant signals

and are often able to help prioritizing compounds beyond conventional target-based assays

(Verbist et al., 2015). Applications using gene expression profiles to observe several genes

and signalling pathways concurrently enrich the understanding of underlying mechanisms.

Moreover, this enables us to investigate downstream effects of candidate drugs through

pathway-associated gene signatures. This offers the chance of finding a biological basis for

the disease and biomarkers involved in the disease pathway. Within the QSTAR framework,

mRNA biomarkers may be discovered by compounds that cause disease-related variation of

the gene expression. Analysis of the transcription profiles allows identifying new biomarkers

related to certain biological effects induced by these compounds. With this approach, a

significant amount of resources can be saved with identification of undesired compound

effects avoiding failures in the late-stage pharmaceutical drug development.

Due to the advances in the genome studies, there is a wealth of microarray data

that has been deposited in public databases such as Expression Atlas, which is a sub-

set of ArrayExpress (Kapushesky et al., 2011, Brazma et al., 2003). In recent years, the

new transcriptomics databases “Connectivity Map (CMap)" and “Library of Integrated

Network-Based Cellular Signatures (LINCS Consortium (2013))" become publicly available

and allow researchers to explore and characterize biological effects of small molecules in a

large scale. Several applications ranging from pathway elucidation (Bai et al., 2013), toxi-

city models (van der Veen et al., 2013, Magkoufopoulou et al., 2012) and toxicogenomics

classifications (Jiang et al., 2007), to tool discovery and drug repurposing (Iorio et al.,

2010, Dudley et al., 2011, Sirota et al., 2011, Pacini et al., 2013), have been developed

based on drug-induced gene expression profiling (Bol and Ebner, 2006). Verbist et al.

(2015) demonstrated the utility of transcriptomics to guide lead optimization in various

QSTAR drug discovery projects.

The data analysis approach of QSTAR provides the opportunity to explore the appli-

cation or development of methods for data integration which is the main topic that we

discuss in this thesis. Our aim is to build a knowledge platform to assist decision-making
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in drug discovery and early development projects, i.e. prioritizing of chemotypes during

hit to lead, lead optimization and identifying analog structures.

This thesis constitutes several analysis workflows to integrate three high-dimensional

datatypes; gene-expression, fingerprint features (FFs representing the chemical structures)

and bioassay data (phenotype). The methodologies presented in this thesis are divided

into three types: the QSTAR modeling framework, semi-supervised methods, from clus-

tering to biclustering analysis, and unsupervised multivariate methods for data exploration

and integration. The last part of the thesis discusses the statistical software developed

alongside with the methodologies.

The first part of the thesis is devoted to statistical models that are suitable for the

QSTAR setting. Chapter 2 covers the joint modeling framework which allows to (1)

identify gene signatures of activity for directing chemistry, (2) determine chemical sub-

structures (also termed as fingerprint features, FF) of compounds that are related with

effects on the bioassay data for target(s) of interest and (3) know whether this effect can

also be confirmed by the gene expression changes (either on- or off- target related). Chap-

ter 3 covers the relationship of joint modeling to path analysis modeling and conditional

modeling.

The second part of the thesis includes sequential integration of datasets in order to

explain the mechanism of action of a subset of compounds using clustering and biclus-

tering techniques (Kasim et al., 2016). Clustering algorithms use the similarity data in

order to group objects and are typically performed on one data source. In Chapter 4,

a clustering solution that handles multiple data sources is presented in the context of

drug discovery. A typical strategy in compound selection involves the clustering of com-

pounds based upon their chemical structure. This idea is extended wherein an integrative

clustering approach that makes use of both data sources for the purpose of discover-

ing a subset of compounds with aligned structural and biological properties is presented.

This method combines bioactivity-based and chemical structure-based similarity matrices,

assigned with complementary weights, producing a weighted similarity matrix, which is

the generic input in any clustering algorithm. A secondary analysis is performed wherein

each biologically and structurally driven compound cluster is further linked to a set of

transcriptomic features. A new subset of compounds that are structurally and biologically

similar to the reference compounds are discovered using the proposed clustering approach.

Chapter 5 deals with integrating gene expression profiles with certain proteins to improve

our understanding of the fundamental mechanisms in protein-ligand binding. This chapter

spotlights the integration of gene expression data and in silico target prediction scores,

providing insight into Mechanism of Action (MoA). Compounds are clustered based upon

the similarity of their predicted protein targets and each cluster is linked to gene sets using
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Linear Models for Microarray Data. Pathway analysis is used to identify gene sets based

upon their biological processes and a qualitative search is performed on the homogeneous

target-based compound clusters to identify pathways. Chapter 6 presents a workflow on

ranking gene expression data-based biclusters using another source of information, in this

case, the chemical structure.

The third part of the thesis is comprised of three chapters starting with Chapter 7

that introduces the use of Multiple Factor Analysis (MFA) for datasets normalization and

integration. Here, the three QSTAR datasets are used as input in the analysis. Chapter

8 illustrates the use of MFA as a gene-module enrichment technique. In Chapter 9, two

variants of MFA are presented, SMFA and biMFA. In this chapter, the gene expression

(GE) data is integrated with high content screening (HCS) data to relate the compounds’

transcriptional effects with image-based bio-activity measures in a cell following adminis-

tration. Identifying phenotypic subclasses (genes and HCS) that are co-regulated across

a subset of compounds can be used as a "biology" screening tool to assess compounds’

potential for efficacy/toxicity. This is in line with the basic concept of biclustering but

accounting for multiple data sources. Hence, for this purpose, sparse Multiple Factor

Analysis (SMFA) and biclustering with MFA (biMFA) are developed to simultaneously

search for features-compounds association. These integrative methods combine the ideas

of MFA and penalized singular value decomposition techniques. The results highlight a

group of potentially geno-toxic lead compounds, a Tubulin-linked compound set along

with respective HCS features indicators.

The last two chapters of the thesis present the R products which were developed for

methodologies presented in the thesis. The first R package biclustRank is presented in

Chapter 10 while Chapter 11 discusses the R package biMFA developed for methodolo-

gies in the third part of the thesis.

1.2 Case Studies and Datasets

In this section we discuss the structure of the three types of dataset, transcriptomic,

bioassay and chemical structure data. The QSTAR framework presented in Figure 1.1

can be translated into the data structure presented in Figure 1.2. Note that compounds

are the common dimension and form the link between the three different data sources. To

be able to link these data sources, a standard way to encode the molecular information in

a textual identifier was needed, and to this end InChiKey’s were generated for all datasets

as unique identifiers (McNaught, 2006). Additionally, the target prediction data can be

calculated with the bioactivity and chemical structure data as input. In what follows we

describe each dataset in more details.
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Figure 1.2: The QSTAR data structure.

1.2.1 Transcriptomic Data

For microarray data, pre-processing steps attempt to remove the technical sources of

variation originating from different levels during the process, from manufacturing of the

microarrays to the biological and the microarray experiment. Gene expression raw in-

tensities were log-transformed, quantile normalized and subsequently summarized using

Factor Analysis for Robust Microarray Summarization (FARMS) using Entrez gene cus-

tomCDF annotations (Hochreiter et al., 2006). Probe sets were filtered using I/NI filtering

(Talloen et al., 2007, Kasim et al., 2010, Amaratunga et al., 2014).

FARMS is a model based approach for summarizing microarray data (Hochreiter et al.,

2006). The main idea of the FARMS algorithm for expression arrays is to detect a

common hidden cause of the observed measurements that cannot arise from noise which

is uncorrelated for different measurements. The hidden cause is the true but unobserved

mRNA concentration in the tissue sample which leads to a simultaneous decrease or

increase in probe intensities measuring this mRNA. The hidden cause is called “signal”

since it indicates the mRNA concentration. The core of the FARMS algorithm is a factor

analysis – a multivariate technique to detect a common structure in the data of multiple

probes that measure the same target. The informative/non-informative (I/NI) calls were

proposed as an extension of the FARMS algorithm (Talloen et al., 2007, 2010) for gene

filtering.

The pre-processed gene expression matrix is given by X where the element xji denotes
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the expression level of the jth gene for the ith compound, j = 1, . . . , m and i = 1, . . . , n,

Xm×n =























x11 x12 · · · x1n

x21 x22 · · · x2n

. . . .

. . . .

. . . .

xm1 xm2 · · · xmn























.

1.2.2 Bioassay Data

The experimental bioactivity data are part of an internal database at Janssen Pharmaceu-

tica which covers both on- and off-target effects. However, these data are rather sparse

since only the most promising compounds are screened to a broader number of assays to

assess potential efficacy and safety issues. Per target stimulated assay, compounds were

tested related to the inhibition using several doses. From the dose-response experiment,

the IC50 (Lin et al., 2012), half-maximal inhibitory concentration, is extracted as the

compound’s measurement of efficacy (Figure 1.3). In all analysis, the pIC50 scale (-log

IC50) is used, in which higher values indicate exponentially greater potency.

Figure 1.3: The IC50 (vertical dashed line) is the concentration of an inhibitor where
the response (or binding) is reduced by half.
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The bioactivity matrix, YB×n, with element ybi representing the activity value of the

ith compound measured on the bth assay is given by

YB×n =






















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. . . .

. . . .

. . . .

yB1 yB2 · · · yBn























.

1.2.3 Chemistry Data (Chemical Encoding)

The whole molecule can be described as a list of local substructure patterns (fin-

gerprint features). The structural information of the compounds is encoded using a

jCompoundMapper-based pipeline (Hinselmann et al., 2011). The Extended-Connectivity

Fingerprints (Bender et al., 2004) with a search depth of 6 (ECFP6) algorithm for calculat-

ing fingerprint features (FFs) for compounds is implemented. The ECFPs were developed

specifically for structure-activity modeling. This is characterized by a vector of binary val-

ues, also termed as fingerprint feature (FF), denoting the presence/absence of a certain

chemical substructure in a compound.

Figure 1.4: The ECFPx generation process of a molecule starts at a single atom and
expands iteratively to the next topological level of connected atoms till a maximum thresh-
old x is reached.The fingerprint of a whole molecule is a combination of all FFs executing
this method from every single atom. Note that these are all the substructures (fingerprint
features) present in this molecule.
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Figure 1.4 illustrates the encoding process. The ECFP fingerprint algorithm starts

from a single atom and expands in circles (topological in the 2D graph) to the next level

of connected atoms. It captures the bond orders of the bonds between atoms and ensures

substructures are normalized, which assigns each substructure a unique number. The

expansion of the spheres stops by default after six expansion steps, so we are calculating

ECFP6 FFs. This process is then started from every single atom in the compound. A

detailed description of the algorithm can be found in Rogers and Hahn (2010).

For the analysis presented in this thesis we use the FF matrix. Let ZK×n be the

chemical structure or fingerprint feature matrix in which the kith element, zki = 0 rep-

resenting absence or zki = 1 denoting presence of the kth fingerprint feature in the ith

compound. The kth row vector refers to the kth fingerprint feature profile while the ith

column vector refers to the ith molecule’s fingerprint.

ZK×n =






















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











.

1.2.4 Target Prediction Data

Although a compound is designed to hit a single target, compound molecules often inter-

act with multiple targets, coined as polypharmacology (Reddy and Zhang, 2013). This

unintended compound-target interactions may give rise to undesired side-effects. Exper-

iments using phenotypic based assays can be performed to quantify the activity of every

molecule against a biological molecular target. However, this process is often time- and

resource-intensive, making it unfeasible to test all possible compound-target interactions,

especially when little or no previous knowledge of potential molecular targets is available

(Terstappen et al., 2007). Thus, in silico target prediction data was developed to describe

the likelihood of compounds to be active on a certain target. In this section we describe

the target prediction algorithm developed by Koutsoukas et al. (2013). This is a proba-

bilistic machine learning algorithm for predicting protein targets of bioactive molecules,

which employs the Laplacian-modified Naive Bayes classifier (NB). Chemical similarity is

the underlying principle of the method which is built on the approach that, if compounds

are similar in structural space they trigger similar targets. Compounds structural features

(Extended Connectivity Fingerprints 4) are used as molecular descriptors.

The target prediction algorithm was employed to predict probable protein targets
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for compounds without target information (Klabunde, 2007, Koutsoukas et al., 2011).

The resulting prediction provides each test compound with probable protein targets and

their respective scores, representing the likelihood of binding to 477 protein targets

(Koutsoukas et al., 2011, 2013). Figure 1.5 visualizes the target prediction process.

Figure 1.5: Target prediction overview. The orphan compound fingerprint information
is fed into the algorithm, which predicts the likelihood (score) of binding to proteins
based upon prior knowledge. This method establishes the link between the compound
and protein targets, further linking it to the MoA.

The NB classifier is defined using the following equation (Koutsoukas et al., 2013),

P (C = ω|D = f) =
P (D = f |C = ω)P (C = ω)

P (D = f)
.

Here, the probability of a compound, C, belonging to feature class ω given the chemical

feature f is calculated. P (C = ω) is the priori probability of C belonging to feature class

ω and P (D = f) is a priori probability of the features, f . P (D = f |C = ω), is the

key value in this equation, which is the likelihood of the feature f given the class ω.

This probability is estimated by the NB classifier from a training set, which assumes

that the features are independent of each other for a given class. It has been observed

before that the NB classifier is still an effective classifier in cases where features are

correlated. In machine learning practices, a training set is employed for the classifier

to learn from the examples and make predictions for the unseen dataset; the test set.

The classifier is trained on a large benchmark dataset of bioactive compounds retrieved

from the publicly available ChEMBL database, which is a repository of small bio-active

molecules extracted from scientific literature. The training dataset covers 477 human

protein targets with around 190,000 protein-ligand associations, based upon the reported

bioactivities (Ki/Kd/IC50/EC50) being equal or better than 10 µM with a confidence
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score of 8 or 9. These rules for extracting compounds ensured reliable compound-target

associations for training the model. The target prediction algorithm performance was

evaluated by 5-fold cross validation (Koutsoukas et al., 2013).

At the end of the process, for each compound, the posterior probability to bind to

a target (target prediction score) in the target list is calculated. In the next step, the

target prediction score matrix is dichotomized using target-specific confidence score cut-

offs calculated internally, in order to increase the prediction accuracy (Paolini et al., 2006).

The target prediction score matrix is given by

TM×n =






















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t21 t22 . . . t2n

. . . .

. . . .

. . . .

tM1 tM2 . . . tMn























,

with entries,

tmi =

{

1 compund i is predicted to hit target m, i = 1, . . . , n and m = 1, . . . , M,

0 otherwise.

1.2.5 High Content Imaging Data

For high content image analysis, 661 features per compound were extracted using DCILabs

and Phaedra images (Figure 1.6). The features provides measurements on the granularity,

shape, intensity, texture, etc. from three genomic loci LaminB1 (nuclear pore), TUBA1B

(microtubules) and ACTB (actin filament) labelled with respectively blue, green and red

fluorescent protein genes.

We define the high content imaging matrix, HS×n, for which the sith entry is the

sth image feature measurement of the ith compound where i = 1, ..., n compounds and

s = 1, ..., S HCS features given by,

HS×n =




















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. . . .
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
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









.
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Figure 1.6: High content imaging picture of flourescently labeled cell culture cells that
have been analyzed to identify the cell boundaries and the cell nuclei.

1.3 QSTAR Drug Discovery Projects

The datasets mentioned in Section 1.1 were collected for several drug development

projects. Each project is focused on a different compound family and contains different

number of compounds. In this section we present the overview of the different projects

used for the analysis presented in the thesis. Table 1.1 presents the number of compounds,

genes after I/NI, fold change and variance filtering, bioassays and unique fingerprint fea-

tures per development project and a short description of the projects is given below.

Table 1.1: Overview of QSTAR datasets.

Project Compounds Genes
Primary Unique

Targets
Therapeutic

Chapters
Bioassay FF area

mGluR2PAM 62 566 4 300 NA neuroscience 6,8
ROS1 89 1289 1 312 NA oncology 2,3
EGFR 35 3595 4 138 NA oncology 2,3,4,7
PDE10 16 75 661(HCS) NA NA neuroscience 9
CMap 176 2434 NA NA 477 oncology 5,8

1.3.1 mGluR2PAM

Glutamate is the major excitatory neurotransmitter in the human brain and differ-

ent metabotropic glutamate receptors (mGluR) function to regulate glutamate release.

mGluR2 is an overspill-receptor: if too much glutamate is present, it will bind to mGluR2

and this will decrease further glutamate-release. In several anxiety and stress disorders (eg.

schizophrenia, anxiety, mood disorders and epilepsy) an excess of glutamate is present,
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leading to an over-excitement of the neurons. Targeting the mGluR2 with positive al-

losteric modulators (PAM) will reduce glutamate release in the presence of glutamate,

which binds to the orthosteric site PAM (Soudijn et al., 2004). These mGluR2 PAMs

could be interesting compounds for the treatment of anxiety disorders. In this project,

gene expression profiling was done for 62 compounds and 566 differentially expressed

genes remained after the filtering steps. There were 300 unique fingerprint features for

this compound set.

1.3.2 ROS1

ROS1 (reactive oxygen species) is a proto-oncogene which is highly-expressed in a vari-

ety of tumor cell lines and belongs to the sevenless subfamily of tyrosine kinase insulin

receptor genes. Aberrant expression and oncogenic fusions resulting from chromosomal

rearrangement occur in lung cancer, cholangiocarcinoma and glioblastoma. Aberrant ex-

pression is also detected in a variety of other cancer types. ROS1 inhibition is expected

to have anti-tumoral effects in cells where ROS1 is activated (Acquaviva et al., 2009,

Charest et al., 2006). Note that currently, the endogenous ligand is still unknown.

This project sought to develop compounds that inhibit ROS1. The ROS1 dataset

consists of eight-nine (89) compounds tested for target inhibition. A total of 1289 differ-

entially expressed genes were retained after the pre-processing steps. For this project, a

total of 312 unique profiles of fingerprint features was generated from the 89 compounds.

1.3.3 EGFR

The EGFR project focuses on inhibition of the epidermal growth factor receptor

(Woodburn, 1999). Thirty-five compounds with a macrocycle structure were profiled

in order to identify compounds with similar biological effects as the current EGFR in-

hibitors, Gefitinib and Erlotinib, serving as the reference compounds. Gene expression

profiles are available for 3595 genes after all the filtering steps. Moreover, a total of 138

unique profiles of chemical substructures were identified for this compound set.

1.3.4 PDE10

PDE10A (phosphodiesterase 10) is an intracellular enzyme that is present in the brain.

The high level of expression of PDE10A in the brain suggests that inhibition of this enzyme

will result in changes in behaviors. PDE10A inhibitors may represent a novel approach to

the treatment of behavioral disorders like psychosis (Menniti et al., 2006). In this project,

the efficacy of the investigated compounds was high and the focus is on adverse effects
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(Verbist et al., 2015). Therefore, a follow-up experiment was performed wherein sixteen

(16) compounds targeting PDE10 were subjected to microarray experiment and high con-

tent imaging to explore potential unwarranted toxic effects. Only 75 genes were retained

after pre-processing. A total of 661 HCS features are measured for each compound image.

1.4 The Connectivity Map (CMap)

In addition to the datasets mentioned in Section 1.3, the Connectivity Map (CMap,

Lamb et al. (2006)) dataset is used for the analyses presented in this thesis as well. The

CMap dataset contains information about 2434 differentialy expressed genes after the

filtering steps measured for 1309 compounds and is available online. The CMap study aims

to construct large libraries of drug and gene signatures and provides a pattern-matching

tool that detects signature similarities in order to establish a relationship between disease

and therapeutic MoA. The libraries were used to design the method that compares gene

signatures to diseases in the database and predict the connection; the MoA. Due to the

ability of finding connections and similarities between the genes, disease and drugs, the

results are termed connectivity maps. The database consists of 1309 diverse bioactive

compounds on four different cell lines, where nearly 800 of the compounds are currently

available in the market (Lamb et al., 2006, Lamb, 2007).

The CMap dataset was extracted from the Connectivity Map server and consisted

of 1309 drug-like compounds with their respective genome-wide expression profiles. For

the analyses presented in this thesis we used data from MCF7 (breast cancer epithelial

cell) and PC3 (human prostate cancer) cell lines, containing 75 and 101 compounds,

respectively. The compounds were retained after filtering for compounds administered for

a duration of 6 hours and a maximum concentration of 10µM. When multiple instances

of compounds were found, the average gene expression level was used.

For this data, target prediction scores of compounds from the 2 cell lines (MCF7 and

PC3) were generated for the 477 Chembl protein targets.
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Chapter 2

A Joint Modeling Approach to

Guide Lead Selection and

Genomic Biomarker

Development

2.1 Introduction

In this chapter, we present the joint modeling of transcriptomic and phenotypic data,

conditioned on the chemical structure as a fundamental modeling tool for data integration

within this QSTAR modeling framework. This modeling approach can be used to uncover,

for a given set of compounds, the association between gene expression and biological

activity taking into account the influence of the chemical structure of the compound on

both variables. The model allows to detect genes that are associated to the bioactivity

data facilitating the identification of potential genomic biomarkers for compounds efficacy.

In addition, the effect of every structural feature on both genes and pIC50 and their

associations can be simultaneously investigated.

Biomarker identification is a major application of microarrays in early drug development

which often parallels and facilitates compound selection. Many studies have been devoted

to identify genes that are correlated to a biological activity of interest, for instance, the

inhibition of a certain enzyme. It is also equally important to detect toxicity at the early

stages of development. Reliable biomarker for toxicity can be very helpful in this respect

17
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as it allows cost-effective testing of other drug candidates and leads in compound series

under investigation. For example, Lin et al. (2010) and Tilahun et al. (2010) identified

gene-specific biomarkers for continuous outcomes (the distance traveled by the rats under

treatment and the HAMD scores for psychiatric patients). Van Sanden et al. (2012)

identified gene specific biomarkers for toxicity data presented as a binary response.

In this chapter we follow the modeling approach proposed by Lin et al. (2010) and

Tilahun et al. (2010) and use a joint model for the QSTAR framework. The joint modeling

framework allows us to: (1) identify gene signatures of activity for directing chemistry, (2)

determine chemical substructures (also termed as fingerprint features, FF) of compounds

that are associated with the bioassay data from a biological target(s) of interest and

(3) investigate whether the association between the compounds and the bioassay can be

confirmed by the gene expression changes (either on- or off- target related).

Identifying relevant genes that are associated with biological response is already a valu-

able information, but showing that this association is caused by the presence or absence

of a particular chemical substructure(s) provides additional information that is particularly

useful in drug design to improve or prioritize compounds.

2.2 Method

2.2.1 The Joint Modeling Framework

Xj

Y

Zk

jth Gene

Bioactivity

kth FF ρj

αj

β

Figure 2.1: Gene-specific and fingerprint-specific joint model for the QSTAR data.

Let X be the gene expression matrix and xji be the jth gene expression of the

ith compound, wherej = 1, . . . , m and i = 1, . . . , n. Let yi denote the corresponding

bioassay data for the ith compound. Both gene expression and bioassay read-outs are

assumed to be normally distributed. Let ZK×n be the binary chemical structure or

fingerprint feature matrix in which the kith element takes a value of one (zki = 1) or

zero (zki = 0), if the kth fingerprint feature is respectively present or absent in the ith
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compound. Schematically, the gene-by-gene, fingerprint-by-fingerprint joint model is

given in Figure 2.1. Note that the three data sources are connected by compounds. For a

given fingerprint feature, the gene-specific joint model that allows testing for which gene

is also differentially expressed and which gene is predictive of the response irrespective of

the effect of the fingerprint feature is given as follows:

Xji = µj + αjZi + εij ,

Yi = µY + βZi + εi,
(2.1)

or equivalently formulated as

(

Xji

Yi

)

∼ N

[(

µj + αjZi

µY + βZi

)

, Σj

]

, (2.2)

where the error terms have a joint zero-mean normal distribution with gene-specific

covariance matrix, Σj .

Σj =

(

σjj σjY

σjY σY Y

)

. (2.3)

The parameters αj and β represent fingerprint feature effects for the jth gene and

the bioassay data, respectively, and µj and µY are gene-specific and the response-related

intercepts, respectively.

Thus, the gene-specific association with the response can be obtained using adjusted

association (Buyse and Molenberghs, 1998), a coefficient that is derived from the covari-

ance matrix, Σj ,

ρj =

σ
jY√

σ
jj

σ
Y Y

. (2.4)

Indeed, ρj = 1 indicates a deterministic relationship between the gene expression and the

response after adjusting for fingerprint feature.

2.2.2 Inference

As mentioned in section 2.2.1, the model tests for differentially expressed genes based on

the hypotheses,

H0j : αj = 0,

H1j : αj 6= 0.
(2.5)

For a microarray with m genes, there are m null hypotheses to be tested, which re-

quires multiple testing correction. Throughout this chapter, we apply the FDR approach

proposed by Benjamini and Hochberg (1995).



20 Chapter 2. Joint Modeling of QSTAR Data

Moreover, in order to make inference about ρj , there is a need to test whether the

expression level of a gene and the bioassay read-out are correlated, specifically, whether

the expression level of a gene can predict the bioassay read-out. Thus, in addition to the

hypotheses in (2.5), one needs to test the hypotheses

H0j : ρj = 0,
H1j : ρj 6= 0.

or equivalently
H0j : σjY = 0,
H1j : σjY 6= 0.

(2.6)

Under the null hypothesis, the joint model in (3.2) is reduced to

(

Xji

Yi

)

∼ N

[(

µj + αjZi

µY + βZi

)

, Σj =

(

σjj 0

0 σY Y

)]

. (2.7)

Consequently, the inference for the adjusted association was based on a likelihood ratio

test by comparing models (2.2) and (2.7). Asymptotically, the likelihood ratio statistic

follows a χ2 distribution with one degree of freedom. Benjamini and Hochberg (1995)

procedure is used to adjust for false discovery rate when testing for the null hypotheses

of H0j : ρj = 0 for all the genes simultaneously per fingerprint feature.

2.3 Graphical Interpretation of Association Between a

Gene and Bioactivity Accounting for the Effect of

a Fingerprint Feature

Several interesting associations between genes and a response accounting for the effect

of a fingerprint feature can be discovered by using the joint model. The different types

of association are presented in Figure 2.2 using hypothetical data. Each point in the plot

represents a compound and the solid ones are compounds having the fingerprint feature.

For this application, the interest lies only on the fingerprint feature that shows differ-

ential effects on the bioactivity, the response in this case; thus the four possible scenarios

between the gene and response presented in the upper panels of Figure 2.2 (a-d). The

lower panels (e-h) display the same data with their respective upper panels adjusted for

fingerprint feature effect for both the response and the gene expression.

In panel (a) the gene is not differentially expressed and has a linear association with

the response irrespective of the presence or absence of the fingerprint feature. Note that

the linear pattern remains after adjusting for the fingerprint feature as shown in panel (e).

Panel (b) shows an example in which the gene is differentially expressed, the clouds of

points are clearly separated in both dimensions. Moreover, it can be observed that within
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the group, the association between the gene expression and the response does not have a

linear pattern, which is evident in panel (f) after the adjustment.
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Figure 2.2: Hypothetical illustrations of associations between a response variable, gene
expression levels and fingerprint features. Each point represents a compound. Solid
blue points and black points represent the presence/absence of a fingerprint feature,
respectively. Upper row panels: scatterplots for the response versus the gene expression.
Lower row panels: scatterplots for the residuals after adjusting for fingerprint effects.

Panel (c) shows a combination of the previous two patterns. Both the gene expression

and the response are differentially expressed, that is compounds having the fingerprint

feature induce higher activity than those that don’t have the fingerprint feature. In this

setting, the association between the gene expression and the response can be summarized

by a straight line, this can be clearly seen from panel (g) which shows the same example

after adjusting for fingerprint feature.

Lastly, most genes are expected to be uncorrelated with the bioassay data as depicted

by panel (d). Within each group of compounds (with and without the fingerprint fea-

ture), linear pattern is not evident; thus, adjusting for this effect also provides a random

scattering of points (panel (h)).

The joint modeling framework is useful for identifying genes that can predict com-

pound activity, measured by pIC50, and can therefore serve as genetic biomarkers for

compounds’ efficacy. On top of this, the effect of a particular chemical substructure on
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the expression level of each gene and/or its influence on the observed transcriptomic-

phenotypic association can be estimated. Consequently, as shown in Table 2.1, genes can

be classified into subgroups according to the results obtained from the hypothesis testing

in (2.5) and (2.6).

Table 2.1: Subclasses of genes using a hypothetical example. If both α and β are signif-
icantly different from zero, the correlation between the gene expression and bioactivity is
present but in contrast with scenario (a), the gene expression in scenario (b) is correlated
with the bioactivity variable only due to the effect of the fingerprint feature, hence its
adjusted association is zero, ρj = 0. From the point of view of the structural optimization
in the early drug development, the association observed in (b) is desirable while the one
observed in (a) is an ideal genetic biomarker for bioactivity.
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(a) X and Y are correlated, the
gene is differentially expressed.

(b) X and Y are correlated but are
conditionally independent.
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(c) X and Y are correlated,
the gene is not differentially ex-
pressed.

(d) X and Y are uncorrelated.

For the first group of genes, the association between the gene expression and pIC50

exists regardless of the effect of a chemical substructure of the compound while the

association from the second group of genes is driven by the fingerprint feature. This

association can also further expand our knowledge about the biological mechanisms of
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compounds to guide decision-making in lead selection. Ideally, results from the joint

modeling of every fingerprint feature, gene and activity data are generated. In this chapter,

we only present the results of applying the joint model using a fingerprint feature that is

mostly associated with the variation in compound activity.

2.4 Analysis of the EGFR and the ROS1 projects

2.4.1 Application to the EGFR Project

This oncology project focuses on the inhibition of the epidermal growth factor receptor

(EGFR) which has been identified in many human epithelial cancers, colorectal, breast,

pancreatic, non-small cell lung and brain cancer (Shaib et al., 2013).
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Figure 2.3: FF -442307337 for the EGFR project.

For this project, of the 55 FFs that demonstrated differential effects on the primary

bioassay, FF-442307337 came out first based on a feature-by-feature two-sample t-test of

bioactivity data (Figure 2.3a). This substructure is prominent on less potent compounds,

i.e. those with pIC50 values less than 6.5 (Figure 2.3b).

Several genes correlate with the inhibitory activity against the target. Figure 2.4

highlights the linear association between pIC50 from the anti-proliferation assay and gene

expression changes of two on-target cancer-related genes: FGFBP1 and KRAS.
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Figure 2.4: Two on-target genes that correlate with EGFR-inhibition: FGFBP1 and
KRAS. Each point is a compound with the two reference compounds highlighted in red
circle. The solid blue points indicate the presence of FF -442307337.
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The gene FGFBP1 encodes for the fibroblast growth factor carrier protein (FGF-

BP1) whose overexpression is noted in cell lines, from lung (Brattström et al., 2002,

Pardo et al., 2003), prostate (Tassi et al., 2006), pancreas (Kuwahara et al., 2003), and

colon cancer (Hauptmann et al., 2003). By using the joint model, it has been shown that

the expression is down regulated via the MAPK/ERK pathways after EGF-stimulated in-

hibition of EGFR (Harris et al., 2000). Figure 2.4a shows that more potent compounds

down-regulate FGFBP1 but upregulate KRAS.

KRAS protein has a pivotal role in the transduction of EGFR signaling (Shaib et al.,

2013), it encodes a small GTP binding protein that transmits the original signal from

EGFR downstream to activate important cell functions, in particular, proliferation and

survival (van Krieken et al., 2008). Upregulation of the KRAS gene in response to EGFR

inhibition could be a negative feedback mechanism of the cell to trigger cell survival.

Several authors have indicated KRAS as part of a potential mechanism of resistance to

EGFR inhibition which makes KRAS a key target oncogene (Zimmermann et al., 2013,

Collins and di Magliano, 2014). This gene participates in a large number of signaling

pathways including MAPK, ErbB, VEGF and a number of biological processes.

On the structure-activity side, the chemical feature, FF-442307337, is also linked with

differential expression of numerous genes. In addition, some of the correlations observed

between the pIC50 and gene expression can be attributed to this substructure as the

correlation changes after adjusting for this chemical feature (Figure 2.5).
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Figure 2.5: Unadjusted vs. Adjusted Correlations. Each point is a gene. Genes that have
high correlation but very low adjusted correlation indicates that the fingeprint feature is
creating the association.
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Next, genes are classified into subgroups based on whether their expression changes

are linked with the structure and/or the association remains linear after adjustments for

the chemical structure. The number of genes for each subgroups are presented in Table

2.2.

Table 2.2: Results for FF -442307337 (EGFR) at 5% FDR.

ρ
6= 0 0

α
6= 0 396 61

0 1099 2039

KRAS and FGFBP1 seem to belong to different gene classes. Figure 2.6 shows the

5 most differentially expressed genes with the adjusted association remaining high after

adjusting for the chemical structure including the gene FGFBP1 while the estimates for

the top 10 genes are given in Table 2.3. The association observed between the gene

FGFBP1 and pIC50 is still evident after adjusting for chemical structure (Figure 2.4b).

Most of these genes are known to participate in biological processes involving cell prolif-

eration (positive and negative), survival and differentiation. Another set of differentially

expressed genes following similar pattern to gene KRAS is presented in Table 2.4 with the

visualisation of the top 5 genes in Figure 2.7. For this group, the joint model resulted in

very low adjusted correlation (p-adj(ρ)>0.05) between the genes and the activity. Unlike

for FGFBP1, the adjustment has a considerable effect in the observed association (from

unadjusted correlation, r=0.62 to adjusted correlation, ρ =0.34, see Figure 2.4b).

Table 2.3: List of top 10 differentially expressed genes with high adjusted association
(adj-p < 0.05) after adjusting for FF -442307337 (EGFR).

Genes Effect p-adj(Effect) r ρ p-adj(ρ)
FOSL1 1.19 0.01 -0.84 -0.76 0.00
FGFBP1 0.79 0.01 -0.84 -0.78 0.00
SEPP1 -0.64 0.01 0.81 0.73 0.00
SCGB2A1 -0.61 0.01 0.83 0.76 0.00
SH2B3 0.61 0.01 -0.79 -0.69 0.00
SLCO4A1 0.60 0.01 -0.79 -0.70 0.00
PHLDA1 0.58 0.01 -0.85 -0.77 0.00
RRM2 0.56 0.02 -0.77 -0.70 0.00
TXNIP -0.53 0.00 0.75 0.58 0.00
CDC6 0.52 0.01 -0.80 -0.73 0.00

The substructure FF-442307337 is present on majority of the compounds that inhibit

cell growth to a lesser extent and FGFBP1. Figure 2.8a shows the chemical structure of
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Figure 2.6: Top 5 differentially expressed genes with high adjusted correlation. The
correlation between the gene expression and the inhibitory activity against EGFR, given
by the pIC50, of the compounds (represented by points in the plots) can be explained by
the substructure FF -442307337.

Table 2.4: List of top 10 differentially expressed genes with low adjusted association
(adj-p > 0.05) after adjusting for FF -442307337 (EGFR).

Genes Effect p-adj(Effect) r ρ p-adj(ρ)
KRAS -0.30 0.00 0.62 0.34 0.07
MAP9 -0.13 0.00 0.62 0.29 0.13
SMG1 -0.10 0.00 0.62 0.35 0.06
PTER -0.10 0.00 0.61 0.35 0.06
ODZ3 -0.14 0.01 0.59 0.35 0.06
SCAF11 -0.16 0.00 0.59 0.30 0.12
PCYOX1 -0.23 0.00 0.58 0.30 0.12
PHACTR2 -0.13 0.01 0.58 0.35 0.06
USP3 -0.07 0.01 0.57 0.35 0.06
FBXO21 -0.12 0.00 0.57 0.27 0.16
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Figure 2.7: Top 5 differentially expressed genes with low adjusted correlation. The
correlation between the gene expression and the inhibitory activity against EGFR, given
by the pIC50, of the compounds (represented by points in the plots) can be explained by
the substructure FF -442307337.



2.4. Analysis of the EGFR and the ROS1 projects 29

FF-442307337, an oxygen in ortho position of the aniline (highlighted in red). The next

compound is very similar to the less potent compound but without FF-442307337 and it

is one of the highly potent compounds in this experiment (Figure 2.8b) along with the two

reference compounds gefitinib and erlotinib (Figure 2.8c-d). However, other less potent

compounds do not have this feature, this substructure is probably not the sole reason for

compounds’ lower activity.

Figure 2.8: Chemical structures of (a) identified less potent compound; (b) highly potent
compound in the EGFR project; and the two reference compounds in this experiment (c)
erlotinib and (d) gefitinib.

2.4.2 Application to the ROS1 Project

This project sought to develop compounds that inhibit ROS1 (reactive oxygen species),

known to be overexpressed in several cancer types. Excessive quantities of ROS1 causes

oxidative stress that is generally detrimental to cells (Gorrini et al., 2013). Cellular as-

say for target inhibition showed several compounds with high inhibitory activity. FF

-2086493472 came out to be the top fingerprint feature that can well separate the bio-

activity of the compounds (Figure 2.9b). Here, the feature can be linked with lower

potency since all compounds having the fingerprint feature have lower pIC50 values than

those compounds not having the feature.
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The joint modeling resulted in identification of genes that are associated with the

pIC50. A number of genes showed positive correlation like FNIP1 while TXNRD1 along

with other genes showed negative correlation (Figure 2.10a).
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(b) Top chemical substructure for the ROS1
project: FF-2086493472.

Figure 2.9: Plots highlighting the most relevant FF for the ROS1 project.

Interestingly, TXNRD1, a key player in oxidative stress control, is also evaluated as

a cancer drug target associated with aggressive tumor growth (Powis and Kirkpatrick,

2007, Eriksson et al., 2009). Elevated levels of this gene in many human cancers con-

tributes to increased proliferation, resistance to cell death and increased angiogenesis.

Dai et al. (2013) shows that simultaneous inhibition of TXNRD1 and AKT pathways (ac-

tivated by ROS1) induced robust ROS1 production. Discovering potential inhibitors of

this gene could contribute to cancer therapy (Urig and Becker, 2006). In this experiment,

compounds with high ROS1 inhibitory activity also shows inhibition of TXNRD1.

The joint model furthermore revealed that potent compounds with lower gene ex-

pression effects on TXNRD1 lack FF-2086493472. Moreover, the association between the

pIC50 and the expression of gene TXRND1 can be fully explained by the absence/presence

of this feature (Figure 2.10b). Table 2.5 shows a set of differentially expressed genes with

the same type of association observed between TXNRD1 and pIC50 that disappears af-

ter adjusting for FF-2086493472 (Figure 2.12). Figure 2.11 shows how the correlation

between the pIC50 and all genes changes after accounting for FF-2086493472.

Little is known about the biology of FNIP1 gene, particularly relating to cancer.
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Figure 2.10: Two cancer-related genes that correlate with ROS1-inhibition: FNIP1 and
TXNRD1. The solid blue points indicate the presence of FF -2086493472.
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Table 2.5: List of top 10 differentially expressed genes with low adjusted association
(adj-p > 0.05) after adjusting for FF -2086493472 (ROS1).

Genes Effect p-adj(Effect) r ρ p-adj(ρ)
TXNRD1 0.39 0.00 -0.65 -0.08 0.54
PFKFB3 0.57 0.00 -0.61 0.00 0.97
SNORD52 0.23 0.00 -0.65 -0.12 0.33
GDF15 -1.09 0.00 0.67 0.21 0.07
ZNF292 -0.30 0.00 0.59 0.01 0.95
CTPS 0.30 0.00 -0.63 -0.16 0.19
KIRREL 0.34 0.00 -0.64 -0.19 0.11
HMGCS1 0.77 0.00 -0.58 -0.04 0.77
TFPI -0.46 0.00 0.60 0.11 0.37
HIST1H1A 0.49 0.00 -0.52 0.09 0.49
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Figure 2.11: Unadjusted vs. Adjusted Correlations. Each point is a gene. Genes that
have high correlation but very low adjusted correlation indicates that the fingeprint feature
is creating the association.
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Hasumi et al. (2008) indicated that FNIP1 mRNA was significantly higher in renal cell

carcinoma compared to normal kidney. Unlike TXNRD1, the correlation between the

bioassay and the gene remains moderately strong after adjusting for fingerprint feature.

This implies that FNIP1 remains to be linearly associated with the efficacy data indepen-

dent of this structural feature. Table 2.6 presents other 9 genes showing the same type

of asocciation with pIC50 as FNIP1 (Figure 2.13). The number of genes in each subclass

is given in Table 2.7.
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Figure 2.12: Top 5 differentially expressed genes with low adjusted correlation. The
correlation between the gene expression and the inhibitory activity against ROS1, given
by the pIC50, of the compounds (represented by points in the plots) can be explained by
the substructure FF -2086493472.
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Figure 2.13: Top 5 significantly differentially expressed genes with significant adjusted
correlation.

Table 2.6: List of top 10 differentially expressed genes with high adjusted association
(adj-p < 0.05) after adjusting for FF -2086493472 (ROS1).

Genes Effect p-adj(Effect) r ρ p-adj(ρ)
FNIP1 -0.16 0.00 0.75 0.51 0.00
GRAMD3 0.20 0.00 -0.72 -0.27 0.02
SLC2A12 -0.37 0.00 0.66 0.41 0.00
MYC 0.52 0.00 -0.66 -0.33 0.00
BHLHE40 0.55 0.00 -0.66 -0.36 0.00
TGFB2 0.57 0.00 -0.66 -0.33 0.00
TMEM177 0.13 0.00 -0.65 -0.27 0.02
SNORD4B 0.25 0.00 -0.65 -0.49 0.00
TNFRSF12A 0.82 0.00 -0.65 -0.34 0.00
SNORD44 0.19 0.00 -0.65 -0.36 0.00
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Table 2.7: Results for FF -2086493472 (ROS) at 5% FDR.

ρ
6= 0 0

α
6= 0 139 239

0 382 529

2.5 Discussion

The joint modeling framework facilitates an integration of multi-source data in early drug

development phase, particularly, the associations between chemical structures, biological

activity and gene expressions in order to identify potential leads in early phase of drug dis-

covery alongside with the development of genomic biomarkers for efficacy of compounds.

Selecting and evaluating biomarkers in drug discovery and early drug development can

substantially shorten development time or the time to reach a critical decision point, such

as candidate selection, in exploratory drug development.

The joint modeling approach, although implemented using only one feature at a time

for every data source, facilitates the extraction of valuable insights into the associations

between chemical structures and mechanism of actions. Although, we focused in this

chapter on one fingerprint feature and on-target assay per project, this method can easily

be run in loops. In a pharmaceutical pipeline implementation, this model can be applied

to all or a defined set of interesting chemical substructures, genes and biological assays

(efficacy or toxicity related). The large amount of output can then be collated and filtered

for vital information that can help the research team, especially, the medicinal chemist

and biologist in taking the next step.

The joint model presented in this chapter is not restricted to normal distribution.

In many applications, linear models are frequently used for microarray data analysis

with the convenience of model parameters interpretability despite its parametric assump-

tions (Scholtens and von Heydebreck, 2005). It has been observed that the use of log-

transformed and normalized gene expression data are fairly robust to violations of normality

assumption (Trabzuni and Thomson, 2014, Smyth, 2004, Smyth et al., 2005). The top

genes ranked by their resulting p-values from the test for differential expression should

be cautiously interpreted. It is recommended to plot the top genes versus the bioassay

per subclass to further evaluate whether differential expression is only due to outlying

observations.

If the interest is on identifying a set of multiple genes that could best predict the

response, other linear modeling techniques such as lasso and elastic net among others may

be considered. Further, each group of genes identified by the model can be summarized
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following the techniques presented by Tilahun et al. (2010) to come up with a gene

signature that can predict efficacy of compounds to inhibit cancer signaling pathway.

Possible extensions within the joint modeling framework accounting for the dependency

among genes will be outlined in the next chapter. It incorporates the idea of penalized

likelihood in the selection of genes and estimation of model parameters. Accounting,

however, for the dependency among the fingerprint features is not meaningful. The binary

representation of the chemical structure is a very simplified representation of the molecules

and interpretation is very challenging for medicinal chemists. Chemical modification of

compounds for improved activity may involve only adjustment of one substructure.

The joint modeling of bioactivity and gene expression data not only confirms the un-

derlying biological mechanisms of candidate compounds but also models the association

existing between the responses when accounting for the effect of a chemical substructure.

It would be interesting from a lead optimization angle if a structure is actually responsible

for driving the association. The effect of a promising fingerprint feature could be exper-

imentally validated to determine whether chemical modification of compounds involving

this substructure may improve compounds’ activity. Also, the datasets in early drug de-

velopment experiments are typically of high dimension and a multivariate approach that

integrates all these datasets could be performed. Even then, the joint model could still be

very helpful in extracting relevant information from the high dimensional and complex mi-

croarray and chemical data with the hope of providing an answer to the relevant research

questions posed by pharmaceutical companies.

In conclusion, the gene-specific joint model is a simple approach that is easy to inter-

pret and to integrate within a drug development pipeline.



Chapter 3

From Joint Modeling to Path

Analysis and Conditional

Modeling

3.1 Introduction

The modeling approach behind the joint model presented in Chapter 2 is focused on

modeling the correlation between gene expression and bioactivity data accounting for the

effect of the chemical structure using gene-specific models. In this chapter, we discuss

related models within the QSTAR modeling framework that can be used to reveal the

relationship between the three data sources. Here, we formulate the gene-specific QSTAR

setting in the context of path analysis and conditional models. The modeling approaches

discussed in this chapter is new within the drug discovery framework. The aim of this

chapter is to provide a new set of modeling tools that facilitates better understanding

of the mechanism of action of a candidate compound(s). Our aim in this chapter is to

establish the relationship between the chemical and the biological dimensions taking into

account that the biological dimension is measured by two components: bioactivity data

and gene expression data. In Section 3.2 we present the path analysis model followed by a

discussion on its relationship with the joint model in Section 3.3. In Section 3.4, we apply

the path analysis model using the same datasets presented in Chapter 2. The discussion

then follows in Section 3.6.

37
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3.2 The Path Analysis Model

The structural equations modeling (SEM) technique involves multiple-equation models

that represent a putative causal relationship among various variables. The path analysis

model corresponds to the aspect of SEM that concerns the relations among independent

(exogenous) and dependent (endogenous) variables, either observed or latent. In this

chapter we include only observed data in the model. In the joint model, we model the

adjusted covariances or correlations between the gene expression and bioactivity which

represent relationships without an explicitly defined causal direction. The SEM approach

allows to test the researcher’s hypotheses of causality within a system. Two important

aspects of the procedures involved are: (1) that the causal processes under study are rep-

resented by a series of structural (i.e. regression) equations, and (2) that these structural

relations can be modelled pictorially and tested statistically (Byrne, 1994). In contrast

with multiple regressions, ANOVA or MANOVA, the model may include directional re-

lations among dependent variables. However, SEM cannot test the directionality of the

relationships. The directions of arrows in a structural equation model represent the re-

searcher’s choice of variables and pathways which may not always represent the patterns

that have been observed in nature.

Xj

ε1ij

Y

ε2i

Z ϑXY j

ϑZX
j

ϑ
ZY j

Figure 3.1: The QSTAR path diagram.

The path diagram in Figure 3.1 corresponds to the QSTAR setting which shows the

structural relations of the triplet (X, Y, Z) denoting gene expression, bioassay read-out

and chemical structure, respectively. These structural relations formulated as a set of two
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equations given by

Xji = ϑZXjZi + ε1ij ,

Yi = ϑXY jXji + ϑZY jZi + ε2ij .
(3.1)

Here, i is the index for the compound i = 1, . . . , n and Xji is the expression level of

the jth gene for the ith compound, j = 1, . . . , m. An important property of the model

specified in (3.1) is that all paths are estimated and evaluated simultaneously (Hoyle,

1995). Given that all these relations are significant, then it states that the observed

variable Y is causally determined by Xj and Z but Y is not perfectly explained by Xj

and Z, as reflected by the error ε2j. Similarly, Xj is causally determined by the observed

variable Z with an error of ε1j. Note that, in contrast with the joint model specified

in (2.1), the error terms in (3.1) are assumed to be uncorrelated since the association

between Xj and Y is modeled via the parameter ϑXY j . Note that the path analysis

model in (3.1) and the joint model specified in (2.1) are closely related, this point is

further discussed in Section 3.3. In SEM terminology, we say that Z has a direct effect

on Y quantified by the parameter ϑZY j and also has an indirect causal relationship on Y

through Xj which can be estimated by ϑZXj × ϑXY j . The sum of the direct and indirect

effects gives the total effect of Z on Y .

The statistical theory underlying SEM is grounded in covariance structure analysis,

and the study of covariance matrices is preferred when using this technique (Cudeck,

1989). Three key requirements for SEM are as follows: thorough knowledge of the theory;

adequate assessment of statistical criteria; and parsimony (ability to predict the greatest

amount of variance in the outcome variable or variables using the smallest number of

predictor variables).

Estimation involves finding estimates of the parameters in the model that generate

an estimated covariance matrix Σ (model-based covariance matrix) that is as close as

possible to the sample (observed) covariance matrix S. Various methods can be used to

generate Σ. Jöreskog (1973) proposed the use of ML to test structural equation models

and this estimator, which assumes multivariate normality and thus normally distributed

errors, remains the most widely used (Bollen, 1989, Chou and Bentler, 1995). A Monte

Carlo simulation study suggests that the ML estimator is not biased when small samples

are considered, provided that distributions are multivariate normal (Curan et al., 1996).

3.3 Path Analysis and Joint Modeling

The model formulated in (3.1) can be fitted per gene for a given fingerprint feature and

bioactivity variable. However, not all genes have the same structural relationship with the

bioactivity and fingerprint feature. Similar to the joint model, where the genes can be
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classified into 4 types based on inference for ρ and α, the path analysis model allows to

test the significance of each of the paths link between the triplets (X, Y, Z). However,

in contrast to the joint model that treats the association as symmetric, the path analysis

model assumes a direction in causality.

While the joint model provides the association between genes and bioactivity account-

ing for the chemical structure, the path analysis model can provide extra information by

decomposing the total effect of Z on Y into direct and indirect effects. The direct effect,

ϑZY j , measures the direct impact of the FF on the bioactivity when not mediated through

a gene. The effect is said to be indirect when the FF has an effect on gene expression and

this consequently affects bioactivity. This effect can be estimated using the parameters

ϑZXj and ϑXY j . Different structural relationships are visualized in Table 3.1. Within

the context of the QSTAR framework, the last two structural relationships, d and e, are

not of interest in drug discovery studies since they represent a scenario in which the gene

expression is correlated with the bioactivity variable regardless of the chemical structure

(scenario d) or is not correlated with the bioactivity variable (scenario e). Note that both

scenarios can be considered as relevant if the QSAR framework is used since under both

scenarios the FF has an influence on the bioactivity variable. The first three scenarios

are of primary interest in drug discovery studies since all three can be used to estab-

lished the relationship between chemical and biological dimensions. The first scenario

illustrates a structural relationship in which both direct and indirect effects are present.

Under scenario b, the direct effect is absorbed completely by the indirect effect due to the

high correlation between the gene expression and the bioactivity variable. The conditional

independence relationship, illustrated in scenario c, represents a scenario in which the

association between the gene expression and the bioactivity variables is only due to the

chemical structure and conditioned on the FF level, the association disappears.

Of course, the patterns mentioned above are closely related to the association patterns

discussed in Chapter 2. In Table 3.2 we presented several hypothetical numerical examples

to compare between the two models. Notice that the column of ϑZXj is identical to the

column of αj of the joint model since they both estimate the fingerprint feature effect

on the jth gene, Xj . Hence, in terms of differentially expressed genes, the two models

provide the same results. The total effect is the sum of the direct effect (ϑZY j) and

indirect effect (ϑZXY j = ϑZXj × ϑXY j) of Z on Y . The indirect effect is insignificant

whenever one of its components, ϑXY j or ϑZXj is not significant. Here, using path

analysis, we decompose the total effect of Z on Y to take into account the effect of gene

as an intervening factor.

The adjusted association and the indirect effect can be used to identify genes that are

associated to the bioactivity. A high indirect effect implies a high adjusted association but
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Table 3.1: The QSTAR path diagram.

Type Path Diagram Gene Profile

(a) The total effect of Z on
Y can be estimated via its
direct and indirect effects.

Xj

ε1j

Y

ε2j

Z ϑXY j

ϑZX
j

ϑ
ZY j

gene expression (X)
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oa
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ity
 (

Y
)

(b) Z is indirectly
related to Y via X.

Xj

ε1j

Y

ε2j

Z ϑXY j

ϑZX
j

gene expression (X)

bi
oa
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iv

ity
 (

Y
)

(c) Conditional indepen-
dence. Z has direct effects
on X and Y. X is not di-
rectly related to Y given Z.
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(d) Z is directly related
to Y but not to X.
X and Y are directly re-
lated.
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(e) Z is directly related
to Y.
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Table 3.2: Table of path analysis model and joint model standardised parameter estimates
with their corresponding standard error inside the parenthesis. ns means not significant
path link at 0.05 level of significance.

Gene Profile
Path Analysis Model Joint Model

ϑZY j ϑZXj ϑXY j ϑZXY j totalj αj ρj rj

(a)

gene expression (X)

bi
oa

ct
iv

ity
 (

Y
)

0.513
(0.021)

0.825
(0.073)

0.529
(0.021)

0.436
(0.042)

0.950
(0.042)

0.825
(0.073)

0.955 0.953

(b)

gene expression (X)

bi
oa

ct
iv

ity
 (

Y
)

-0.037ns

(0.041)
0.886
(0.060)

1.021
(0.041)

0.905
(0.071)

0.869
(0.064)

0.886
(0.060)

0.954 0.989

(c)

gene expression (X)

bi
oa

ct
iv

ity
 (

Y
)

0.966
(0.088)

0.984
(0.023)

0.019ns

(0.088)
0.018ns

(0.085)
0.966
(0.034)

0.984
(0.023)

0.0272 0.952

(d)

gene expression (X)

bi
oa

ct
iv

ity
 (

Y
)

0.877
(0.043)

0.105ns

(0.128)
0.271
(0.043)

0.028ns

(0.035)
0.906
(0.055)

0.105ns

(0.128)
0.636 0.363

(e)

gene expression (X)

bi
oa

ct
iv

ity
 (

Y
)

0.982
(0.021)

0.105ns

(0.128)
-0.039ns

(0.021)
0.001ns

(0.002)
0.984
(0.023)

0.105ns

(0.131)
0.023 0.108
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the reverse does not hold. A gene with high adjusted association may have low indirect

effect. Since the indirect effect, ϑZXY j = ϑZXj ∗ϑXY j , is composed of two components,

it will only be maximised if both ϑZXj and ϑXY j are high. The gene in Table 3.2d is not

differentially expressed having αj ≃ 0 and ϑZXj ≃ 0 thus getting a low indirect effect

estimate yet a high adjusted association.

3.3.1 Relationship Between Path Analysis and Joint Model

As mentioned previously, within the context of the QSTAR framework, the first three

structural relationships presented in Table 3.1 are of interest in drug discovery. Note that

all three of them show the following patterns: (1) X and Y are linearly associated; and

(2) Z has an effect on both X and Y . In this section, we focus on these three scenarios

by illustrating their differences when varying the effect of Z on X holding the effect of Z

on Y constant as shown in Figure 3.2. In addition, Figure 3.3 shows the settings when

we fix the effect of Z on X and changing the effect of Z on Y . There are a total of 20

settings (represented by 20 letters in Figures 3.2 and 3.3). For each of these settings,

we obtain the parameter estimates for the joint model and the path analysis model given

in Table 3.3 with their corresponding standard errors in Table A1. The slopes of the lines

represent their respective relative effects (Buyse and Molenberghs, 1998) given by β/α.

Inspecting, Table 3.3, it can be readily seen that for all settings the columns of the

total effect is equal to the column of β. This is expected since they both quantify the

full effect of the chemical structure upon the bioactivity data. The same holds for the

estimates of α and ϑZX since they both quantify the full effect of the chemical structure

upon the gene expression. Moreover, for every group of 5 settings (as divided by the

horizonal line), the columns ϑXY and ρ are constant. This is because within each group,

the same conditional relationship exists between X and Y given Z. A non-significant ϑXY

would imply conditional independence of X and Y and a very low adjusted association

(ρ ≈ 0) whether or not the gene/bioassay is differentially expressed (settings F-O).

Although settings C, D, and E have all significant estimates for the joint model, setting

D has a non-significant direct effect ϑZY . This is because the total effect of Z on Y

is fully captured by X (ϑZXY ≈ total effect). In setting D, we have an indirect effect,

ϑZXY = 4.48, and the total effect= 4.08. Recall that the total effect is simply the sum

of the direct and indirect effect. Thus, in this case, we get a very low and non-significant

direct effect. The same relationship holds for setting R. Note that, settings C, D and E

will be classified in the same group by the joint model which are all differentially expressed

genes having high adjusted association, setting D will be highlighted by the path analysis

model to be the most desirable one. Using the joint model parameters, D, I, M and R

are the settings where α and β are roughly equal, thereby giving a relative effect close to
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Figure 3.2: Illustrative example I. Gene expression versus a response. The genes (indi-
cated by a letter in the plot) have varying levels of FF effect.
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Figure 3.3: Illustrative example II. Gene expression versus a response. The bioassays
(indicated by a letter in the plot) have varying level of fingerprint feature effect.
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Table 3.3: Parameter estimates for the illustrative example presented in Figures 3.2 and
3.3. Standard errors are presented in Table A1 in the appendix. ns means not significant
path link at 0.05 level of significance.

Setting α β ρ r ϑZY ϑZX ϑXY ϑZXY Total
A -2.11 4.08 0.91 -0.80 6.32 -2.11 1.06 -2.24 4.08
B 0.00ns 4.08 0.91 0.23 4.08 0.00ns 1.06 0.00ns 4.08
C 2.11 4.08 0.91 0.98 1.84 2.11 1.06 2.24 4.08
D 4.23 4.08 0.91 0.99 -0.39ns 4.22 1.06 4.48 4.08
E 6.34 4.08 0.91 0.99 -2.63 6.34 1.06 6.71 4.08
F -2.11 4.08 0.12 -0.91 4.18 -2.11 0.05ns -0.10ns 4.08
G -0.00ns 4.08 0.12 0.01 4.08 0.00ns 0.05ns 0.00ns 4.08
H 2.11 4.08 0.12 0.92 3.98 2.11 0.05ns 0.10ns 4.08
I 4.23 4.08 0.12 0.98 3.88 4.22 0.05ns 0.20ns 4.08
J 6.34 4.08 0.12 0.99 3.77 6.34 0.05ns 0.30ns 4.08

K 4.08 -4.92 0.12 -0.91 -5.34 4.08 0.10ns 0.42ns -4.92
L 4.08 -0.00ns 0.12 0.04 -0.42ns 4.08 0.10ns 0.42ns -0.00ns

M 4.08 4.92 0.12 0.93 4.49 4.08 0.10ns 0.42ns 4.92
N 4.08 9.83 0.12 0.94 9.41 4.08 0.10ns 0.42ns 9.83
O 4.08 14.75 0.12 0.94 14.33 4.08 0.10ns 0.42ns 14.75
P 4.08 -4.99 0.76 -0.77 -9.55 4.08 1.12 4.57 -4.99
Q 4.08 0.00ns 0.76 0.25 -4.57 4.08 1.12 4.57 0.00ns

R 4.08 4.99 0.76 0.97 0.42ns 4.08 1.12 4.57 4.99
S 4.08 9.97 0.76 0.97 5.41 4.08 1.12 4.57 9.97
T 4.08 14.96 0.76 0.97 10.39 4.08 1.12 4.57 14.96

one, that is : RE = β/α = 1.

For the last 10 settings (K-T), within the group of 5, they only vary with respect to

the total effect (or β) and the direct effect since the effect of Z on X and the conditional

association between X and Y are fixed to be the same within the group, hence, a constant

indirect effect.

3.4 Application to the Data

3.4.1 The EGFR Project

As mentioned in Section 2.4.1, two genes were identified based on inference for ρ and the

FF effect on the gene, α. The two genes are highlighted in Figures 3.4a and 3.4b showing

that they belong to different gene classes.

Although, the joint model and path analysis model are specified differently and are

used in different context, their parameter estimates are expected to be related. In fact,

the models would give the same set of differentially expressed genes since the estimates of
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α and ϑZX are equal (Figure 3.5a). In this project, many of the genes with high adjusted

association has also high indirect effect (Figure 3.5b). Figure 3.6 highlights one gene per

group along with the path parameter estimates. The top 10 genes for each group are

given in Table 3.4.

Table 3.4: The EGFR Project. Classification of genes based on the significance of
path(s).

(a) Top genes having all paths significant.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

FOSL1 -0.42 1.19 -0.43 -0.52 -0.94

FGFBP1 -0.44 0.79 -0.64 -0.50 -0.94

SEPP1 -0.48 -0.64 0.73 -0.46 -0.94

SCGB2A1 -0.46 -0.61 0.79 -0.48 -0.94

SH2B3 -0.47 0.61 -0.77 -0.47 -0.94

SLCO4A1 -0.50 0.60 -0.73 -0.44 -0.94

PHLDA1 -0.40 0.57 -0.94 -0.54 -0.94

RRM2 -0.55 0.56 -0.68 -0.39 -0.94

TXNIP -0.49 -0.53 0.85 -0.45 -0.94

CDC6 -0.50 0.52 -0.84 -0.44 -0.94

(b) Top genes with high indirect effects.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

LIMS1 -0.14 -0.18 4.34 -0.80 -0.94

LOC1005 -0.15 -0.38 2.09 -0.79 -0.94

PNISR -0.15 -0.24 3.32 -0.79 -0.94

NAA35 -0.19 -0.32 2.30 -0.74 -0.94

OXR1 -0.20 -0.16 4.58 -0.74 -0.94

BPTF -0.21 -0.18 4.03 -0.73 -0.94

WSB1 -0.23 -0.29 2.44 -0.70 -0.94

MYO6 -0.24 -0.14 5.03 -0.70 -0.94

CEP68 -0.25 -0.13 5.30 -0.69 -0.94

KCNN4 -0.27 0.29 -2.31 -0.67 -0.94

(c) Top differentially expressed genes with di-
rect effect only.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

KRAS -0.64 -0.30 1.00 -0.30 -0.94

ANKRD11 -0.76 -0.23 0.80 -0.18 -0.94

PCYOX1 -0.70 -0.23 1.05 -0.24 -0.94

BRD2 -0.74 -0.22 0.89 -0.20 -0.94

EIF3A -0.81 -0.22 0.61 -0.13 -0.94

CUEDC1 -0.72 -0.20 1.12 -0.22 -0.94

SCAF11 -0.70 -0.16 1.48 -0.24 -0.94

SPIN1 -0.76 -0.15 1.15 -0.18 -0.94

COL4A3BP -0.68 -0.15 1.72 -0.26 -0.94

PDP1 -0.60 -0.15 2.25 -0.34 -0.94

(d) Genes with high direct effect and related
to bioactivity.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

FLRT3 -0.95 -0.01 -0.83 0.01 -0.94

KIAA0754 -0.93 0.00 -4.05 -0.01 -0.94

CKAP2 -0.92 0.00 -4.17 -0.02 -0.94

TFAM -0.92 0.00 -3.69 -0.02 -0.94

PLK2 -0.92 0.01 -2.48 -0.02 -0.94

EIF4G1 -0.91 0.01 -2.35 -0.03 -0.94

TMEM38B -0.91 0.01 -4.66 -0.03 -0.94

NUDT1 -0.91 0.01 -3.67 -0.03 -0.94

LRRC16A -0.90 -0.01 4.46 -0.04 -0.94

DHRS2 -0.90 0.02 -1.58 -0.04 -0.94

(e) Genes with high direct effect and not related to bioactivity.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

PSMD1 -1.08 -0.05 -2.84 0.14 -0.94

HNRNPL -1.03 -0.02 -4.89 0.09 -0.94

MFHAS1 -1.03 -0.05 -1.78 0.09 -0.94

UBE2G2 -1.03 -0.06 -1.55 0.09 -0.94

ABHD2 -1.01 -0.02 -3.16 0.07 -0.94

NAA15 -1.01 -0.22 -0.33 0.07 -0.94

ZNF835 -1.01 0.02 3.31 0.07 -0.94

TOP2A -1.01 -0.11 -0.65 0.07 -0.94

RSRC1 -1.01 -0.08 -0.83 0.07 -0.94

MAP3K7 -1.01 -0.02 -2.91 0.07 -0.94
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Figure 3.4: Plots highlighting the most relevant genes for the EGFR project as discussed
in Chapter 2.
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Figure 3.5: The EGFR project. Parameter estimates of the joint model and path analysis
model.
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Type Path Diagram EGFR genes Estimates

(a) The effect of Z on
Y can be estimated via
its direct and indirect ef-
fects.
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Figure 3.6: The EGFR Project. Genes discovered from testing path links and classified
according to the the corresponding diagram.
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3.4.2 The ROS1 Project

Recall that in Chapter 2, the genes TXNRD1 and FNIP1 from the ROS1 project are

highlighted to be exhibiting different types of association with the response when adjusting

for chemical structure. Both genes are differentially expressed and correlated to bioactivity

having a high unadjusted association, rj (Figures 3.7a and 3.7b). However adjusting for

the effect of a fingerprint feature, only FNIP1 remains to be correlated with the bioactivity.

In contrast with the EGFR project, for the ROS1 project we see that many genes with

high adjusted association have low indirect effect (Figure 3.8b). The results of the path

analysis for this project reveals gene classes depending on which path is significant. Figure

3.9 highlights one gene per group along with the path parameter estimates. The top 10

genes for each group are given in Table 3.5.

Table 3.5: The ROS1 project: Classification of genes based on the significance of path(s).

(a) Top genes having all paths significant.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

FNIP1 -1.39 -0.16 2.70 -0.45 -1.84

MRPL17 -1.42 0.10 -4.34 -0.41 -1.84

AP1S3 -1.47 0.15 -2.38 -0.37 -1.84

LANCL1 -2.17 0.18 1.86 0.34 -1.84

GULP1 -1.53 -0.20 1.52 -0.30 -1.84

C1orf38 -1.53 -0.17 1.82 -0.30 -1.84

SNORD4B -1.54 0.25 -1.19 -0.30 -1.84

CLK3 -2.13 -0.64 -0.46 0.29 -1.84

SLC2A12 -1.54 -0.37 0.79 -0.29 -1.84

SREK1 -1.54 0.10 -2.96 -0.29 -1.84

(b) Top differentially expressed genes with di-
rect effect only.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

GDF15 -1.63 -1.09 0.19 -0.20 -1.84

HMGCS1 -1.80 0.77 -0.04 -0.03 -1.84

ID1 -1.92 0.76 0.11 0.08 -1.84

DHRS9 -1.86 0.60 0.04 0.02 -1.84

SQLE -1.84 0.57 0.00 0.00 -1.84

PFKFB3 -1.84 0.57 0.01 0.00 -1.84

INSIG1 -1.83 0.52 -0.02 -0.01 -1.84

HMOX1 -1.99 0.52 0.29 0.15 -1.84

MSMO1 -1.76 0.50 -0.15 -0.07 -1.84

HIST1H1A -1.91 0.49 0.15 0.07 -1.84

(c) Genes with high direct effect and related
to bioactivity.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

CDC42EP3 -1.66 0.16 -1.06 -0.17 -1.84

GAK -2.00 0.06 2.83 0.16 -1.84

TARS2 -1.99 0.13 1.19 0.16 -1.84

UBA3 -1.99 0.08 1.99 0.15 -1.84

DOCK7 -1.99 0.08 1.94 0.15 -1.84

YWHAG -1.68 0.05 -3.23 -0.15 -1.84

PNO1 -1.69 0.07 -2.14 -0.15 -1.84

SRSF5 -1.99 0.13 1.16 0.15 -1.84

RUFY1 -1.98 0.08 1.75 0.15 -1.84

GAB2 -1.69 -0.09 1.68 -0.15 -1.84

(d) Genes with high direct effect and not re-
lated to bioactivity.

Genes ϑZY j ϑZXj ϑXY j ϑZXY j Total

FAM113A -1.93 -0.07 -1.32 0.10 -1.84

TMED10 -1.93 -0.10 -0.93 0.10 -1.84

NEB -1.93 -0.08 -1.14 0.09 -1.84

FKBP7 -1.93 -0.08 -1.22 0.09 -1.84

ATP13A1 -1.93 -0.04 -2.10 0.09 -1.84

MAPK14 -1.93 0.06 1.56 0.09 -1.84

AP1G1 -1.93 0.06 1.69 0.09 -1.84

LRRC4 -1.93 0.05 1.96 0.09 -1.84

GNE -1.93 0.08 1.12 0.09 -1.84

PI4KB -1.93 -0.03 -3.09 0.09 -1.84
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Figure 3.7: Plots highlighting the most relevant genes for the ROS1 project as discussed
in Chapter 2.
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Figure 3.8: The ROS1 project. Parameter estimates of the joint model and path analysis
model.
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Type Path Diagram ROS genes Estimates

(a) The effect of Z on
Y can be estimated via
its direct and indirect ef-
fects.
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Figure 3.9: The ROS1 Project. Genes discovered from testing path links and classified
according to the the corresponding diagram.
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3.5 The Conditional Model

Recall that a gene-by-gene joint model is given by

(

Xji

Yi

)

∼ N

[(

µj + αjZi

µY + βZi

)

, Σj

]

, (3.2)

where the error terms follow a bivariate normal distribution with zero mean and

gene-specific covariance matrix, Σj , given by

Σj =

(

σjj σjY

σjY σY Y

)

. (3.3)

Using the joint model, we were able to identify potential genetic biomarkers for com-

pound efficacy as measured by pIC50 on the basis of the adjusted association. In this

case with normally distributed bivariate responses, the joint model implies the following

conditional distribution of Y given X and Z (Burzykowski et al., 2005),

Yi|Xji, Zi = γ0j + γ1jZi + γ2jXji + ǫ3ij , (3.4)

or

Yi|Zi, Xji ∼ N
(

γ0j + γ1jZi + γ2jXji, σ2
j

)

,

with the following relationships:

γ0j = µY − σjY

(

σjj
−1µj

)

,

γ1j = β − σjY

(

σjj
−1
)

αj ,

γ2j = σjY

(

σjj
−1
)

, and

σ2
j = σY Y − σjY

(

σjj
−1
)

.

Moreover, using the information theory approach (Alonso and Molenberghs, 2006),

we can compare the following linear models to determine whether the variation in the

bioactivity data can be better explained when the gene is known:

E(Yi|Zi) = δ0 + δ1Zi, (3.5)

E(Yi|Zi, Xji) = γ0j + γ1jZi + γ2jXji. (3.6)

Model (3.5) relates the expected value of the bioactivity read-out to the fingerprint
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feature only while (3.6) is the conditional distribution in (3.4) that relates the bioactiv-

ity read-out to the gene expression as well. Upon fitting models (3.5) and (3.6), the

association can be measured by:

R2
hj = 1 − exp

(−G2

n

)

, (3.7)

where G2 denotes the likelihood ratio statistics to compare models (3.5) and (3.6), and

n is the sample size. Note that for continuous outcomes, R2
hj and the squared adjusted

association R2
hj = ρj

2 give identical results.

We can extend model (3.4) to account for an interaction term between X and Z

or to account for multiple genes in the model. That is, we use the ‘gene combination’

consisting of g genes,
g
∑

j=1

γ2jXj , instead of a gene X .

3.6 Discussion

In this chapter, we discussed the relationship between the joint model and path analysis

model in relation to the QSTAR paradigm. Also, we presented the implied conditional

distribution of the joint model which can be extended to account for gene dependencies.

With the conditional approach, it is possible to test whether a gene or group of genes can

Table 3.6: The QSTAR modeling framework.

Model Specification

Joint model
Xji = µj + αjZi + εij ,
Yi = µY + βZi + εi.

Path analysis
Xji = ϑZXjZi + ε1ij ,
Yi = ϑXY jXji + ϑZY jZi + ε2ij .

Conditional model
Yi = δ0 + δ1Zi + ε1i,
Yi = γ0j + γ1jZi + γ2jXji + ε2ij .

further explain the variability of the bioactivity read-outs given the effect of the fingerprint

feature. With this model specification, we can move from a gene-by-gene approach to
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accounting for all genes in the model and simultaneously provide a gene combination that

is related to the bioactivity given a fingerprint feature. This topic is further discussed in

Chapter 12. We cannot however identify differentially expressed genes using this model

in contrast to the joint model and path analysis model.

The ability of path analysis modelling to test models with multiple dependent variables

amongst the predictors makes it ideal for the QSTAR setting. Here, the interest is on

the total effect of the chemical substructure on the bioactivity, but a portion (or all) of

this effect is maybe due to the effect of the structure via a gene. This decomposition of

the effect can only be estimated using this model. However, it is important to note that

exploration of relationships among variables without a priori specification may result in

statistical significance but has little biological significance.
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Chapter 4

Weighted Similarity-based

Clustering of Chemical

Structures and Bioactivity Data

4.1 Introduction

During the lead selection phase of the early drug discovery process, two key pieces of

information about the compounds’ property are gathered: structural and phenotypic pro-

files. Following the structure-based virtual screening and hit identification using single-

dose screening, the resulting chemically diverse molecules can be classified into structural

classes via cluster analysis (Olah et al., 2004). Note that chemical diversity and novelty

are subsequently verified in biological assays. Typically, the efficacy of the candidate com-

pounds can be measured via the dose-response experiments wherein a range of compound

concentrations is tested in a target-based assay to assess the dose dependence of the

assay’s readout. This is usually expressed as an IC50 in enzyme-, protein-, antibody-, or

cell-based assays.

Several statistical approaches have been proposed to quantify structure-activity rela-

tionships. Harrison (1968) applied cluster analysis in drug discovery asserting that clusters

exist within the chemical space which favor biological activity. In practice, however, struc-

turally similar compounds are not necessarily biologically similar (Drakakaki et al., 2011).

One of the few attempts to cluster compounds on joint information of chemistry and

biology is presented in Drakakaki et al. (2011) who used both structural and phenotypic

61
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information of compounds. However, they started with independent hierarchical cluster-

ing of each data source. They concluded that diverse structures could result in similar

phenotypes and that a simple structure-based analysis resulted in very weak co-clustering

of related phenotypic profiles.

In line with this context, we present two approaches of drug discovery clustering in

this chapter. The first strategy is compound clustering based on either chemical similarity

to obtain representative chemically diverse compounds or based on potency information

to identify compound clusters with desirable activity. Note that clustering algorithms use

similarity data in order to group objects and are typically performed on one data source.

Compounds that are consistently clustered together on separate clustering results are of

great interest. However, separately clustering multi-source data does not allow instant

inference about compound clusters that are jointly supported or consistent with the dif-

ferent data sources. In this regard, the second strategy involves a clustering technique

that can group compounds according to the similarity of both the biological and chemical

profiles can be a very relevant exploratory tool for the discovery or prioritization of lead

compounds. In general, the more information is used for grouping a set of objects, the

more defined and meaningful the derived clusters are. Here, the biological and chemical

information is integrated at the level of the similarity measures. In addition to clustering,

a secondary analysis is performed wherein each biologically and structurally driven com-

pound cluster is further linked to a set of transcriptomic features to better understand

their mechanism of action. Compounds that are structurally and biologically similar to

the reference compounds are discovered using the proposed clustering approach.

4.2 Cluster Analysis Based on Single Data Source

Cluster analysis relies on partitioning cases into a number of meaningful subgroups (clus-

ters) on the basis of a set of measured features. Clusters should exhibit high intra-cluster

homogeneity and high inter-cluster heterogeneity (Hartigan, 1975). Liu and Johnson

(2009) discussed in details the three main steps for compound clustering based on chemi-

cal structures: the computation of structural features, the selection of a difference metric,

and the application of the clustering algorithm.

Let ZJXN be the chemical structure or fingerprint feature matrix in which the jith

element, zji is a binary indicator representing absence or presence of the jth fingerprint

feature in the ith compound. For each pair of compounds i and i′, the structural similarity

0 ≤ si,i′ ≤ 1 can be quantified based on a set of J fingerprint features using the Tanimoto

statistic (Willett et al., 1998). Using the similarity matrix, SZ
N in which the ii′ entry is

equal to si,i′ , as input to Ward’s linkage-based agglomerative hierarchical clustering, each
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compound is absorbed into increasingly large clusters until the dataset can be expressed

as a single cluster composed of all compounds. The structure-based clustering solution,

denoted by C(Z, k), that allows for the grouping of compounds into k clusters, can be

represented by the so-called dendrogram to visualize which compounds are joined together

at each step. The number of clusters, k, is chosen using the gap statistic proposed by

Tibshirani et al. (2001).

Another meaningful way to group compounds is based upon their bioactivity profiles,

YBXN with elements ybi representing the activity value of the ith compound measured

on the bth assay. The activity data are standardized and the Euclidean distance is used

to obtain the similarity matrix of N compounds based on B assays, SY
N . This bioac-

tivity similarity data can be used to hierarchically cluster compounds to provide another

clustering solution denoted by C(Y, k).

Clustering in drug discovery is mostly based either on chemical similarity, (e.g. Li et al.

(2011)) or on similarity of bioactivity data (e.g. Cheng et al. (2010)). One of the few

attempts to cluster compounds on joint information of chemistry and biology is presented

in Drakakaki et al. (2011) who used both structural and phenotypic information of a set

of compounds. However, they started with separate hierarchical clustering of each data

source. They concluded that diverse structures could result in similar phenotypes and that

a simple structure-based analysis resulted in very weak co-clustering of related phenotypic

profiles.

4.3 Weighted Similarity-based Clustering

When structure-activity relation principle holds, the individual clustering results based on

chemical structure and biological activity are expected to be similar. If not, it is difficult to

identify a set of compounds with aligned structural and biological properties. A clustering

method that combines both data sources can help to gain instant access to structurally

and biologically similar compounds and will be presented in the next section.

Our proposed approach is an adaptation of the clustering technique based on

combining multiple data sources at the similarity-level (Xu et al., 2012, Hu, 2011,

Lange and Buhmann, 2005, Liu et al., 2013). This technique allows the combination

of multiple similarity matrices via a weighting scheme. In general, for M data sources,

the weighted similarity matrix, SW
N is given by

SW
N =

M
∑

m=1

ωm · Sm
N , 0 ≤ ωm ≤ 1,

M
∑

m=1

ωm = 1. (4.1)
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Figure 4.1: Diagram summarizing the steps involved in the compound clustering for
k clusters. A weighted similarity matrix is derived from two initial compound similar-
ity matrices from two data sets, bioactivity and chemical structure of a compound set.
J [C(W, k), C(·, k)] similarity index represents the similarity of the clustering structure
between the weighted- and single-source clusterings, for pre-determined k clusters. The
clusters can be explored in greater detail by looking at common and distinctive properties
in chemistry, phenotype or other information such as gene expression.

Here, Sm
N is the similarity matrix for the mth data source and ωm is the weight

associated with the mth source. The possibility to assign a weight on each similarity matrix

provides flexibility on the respective influence from each data source in the combined

clustering solution. For the case of two data sources, i.e. m = 2, a weight of 0 assigned

to the first data source, implies that the clustering will be based on the second data source

alone and 1 means the first data source alone.

The weighted similarity matrix, SW
N presented in (4.1), will be used as input for the

agglomerative hierarchical clustering producing the weighted clustering solution, denoted

by C(W, k). Note that, compound pairs with the same similarity scores on both chemical

and bioactivity spaces will be clustered together regardless of the weights imposed on both

similarity matrices. Analogously, no similarity in any of the data sources will result to low

summarized similarity. The weights will, however, affect the clustering of compound pairs

having high similarity score in one space and low to moderate in the other. The choice of

weights can bias the merging of similarity information towards a particular data source.

An overview of the proposed weighted similarity clustering approach integrating bioac-

tivity and chemical structure data sources is presented in Figure 4.1. In this chapter, the
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following weighting scheme is considered. The impact of the weights on the clustering

results is based on the method of co-membership proposed by Tibshirani and Walther

(2005). The co-membership is defined as compound pairs that are clustered together,

ci,i′ =

{

1 compounds i and i′ are clusterd together,

0 otherwise.
(4.2)

For any clustering solution with k clusters, C(·, k), each compound pair (i, i′, i =

1, . . . , N) is evaluated whether they are co-members or not, thereby producing a binary

vector with
(

N

2

)

possible compound pairs. For two independent clustering solutions,

denoted by C(Z, k) and C(Y, k), we can determine whether compounds that are co-

members in structure-based clustering are also co-members in bioactivity-based clustering,

i.e., for any two compounds, i and i′, ci,i′ [C(Z, k)] = 1 and ci,i′ [C(Y, k)] = 1. Eventually,

the similarity of the two clustering solutions based on compounds’ co-membership can be

measured using the Jaccard statistic given by

J [C(Z, k), C(Y, k)] =
N1,1c(i, i′)

N1,0c(i, i′) + N0,1c(i, i′) + N1,1c(i, i′)
. (4.3)

Here, N1,1c(i, i′) is the number of compound pairs that are co-members in both

clustering solution; N1,0c(i, i′) and N0,1c(i, i′) is the number of compound pairs that are

only co-members in the first and second clustering solutions, respectively.

A Jaccard index of 1 means that the clustering based on structure and activity are

identical. A high Jaccard index would mean an ideal structure-activity relationship setting.

A low Jaccard index however, would benefit from the combination of the data sources to

recluster the compounds by leveraging the effects of both data sources via the weighted-

based similarity clustering approach.

The weighted similarity matrix of bioactivity and chemical structure data is given by,

SW
N = ωZSZ

N + ωY SY
N , ωZ = 1 − ωY . (4.4)

Starting from ωY = 0 and increasing its value up to 1 gradually integrates the bioac-

tivity data to the structure-based clustering solution. Using different set of weights may

result in a different integrated clustering solution, C(W (ωY ), k). The Jaccard similarity

index for comparing two clustering solutions based on co-membership scores of com-

pounds will be used to guide the choice of a fair ωY , given by ω∗

Y , reflecting a balanced

contribution of the two data sources to the integrative solution.

Let J [C(W (ωY ), k), C(Y , k)] be the Jaccard index representing the clustering simi-

larity solution of the weighted clustering and the bioactivity-based clustering. Similarly,
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J [C(W (ωY ), k), C(Z, k)] is the similarity between the weighted clustering and the chem-

ical structure-based clustering. A value of J [C(W (ωY ), k), C(·, k)] equal to 1 indicates

a matching of weighted similarity and single source clustering approaches, while a value

of 0 signals the complete randomness of the two clustering solutions. The desirable set

of weights (ω∗

Y , ω∗

Z) to be used in integrative clustering is one with equal contributions of

the various single source solutions. Therefore, a clustering commonality index, R, given

by the ratio of the two similarity indices,

R =
J [C(W (ω∗

Y ), k), C(Z, k)]

J [C(W (ω∗

Y ), k), C(Y , k)]
≃ 1,

is proposed to guide the choice of weights.

4.3.1 Cluster-related Genes and Structural Features

Once the weighed clustering solution is obtained, we follow the data analysis approach

proposed by Ravindranath et al. (2015) and identified genes and structural features that

could be linked to a specific cluster of compounds. This is done by employing Fisher’s

exact test (Fisher, 1922) on each fingerprint feature and by running LIMMA (Smyth et al.,

2005, Smyth, 2004) on the gene expression set with the chosen compound cluster as one

group and all other compounds forming another group.

4.4 Application to the EGFR Project

Based on chemical structure, seven compound clusters were identified by hierarchical

clustering using the gap statistic (Figure 4.2a). The two reference compounds, Erlotinib

and Gefitinib, representing the third (green) cluster are, as anticipated, structurally very

similar. The first two structural clusters are similar to EGFR-inhibitors, as denoted by the

black rectangle in Figure 4.2a. The analysis based on bioactivity similarity matrix, shown

in Figure 4.2b, results in a different cluster structure.

For example, compounds marked in yellow in Figure 4.2a are grouped with compounds

from different structural clusters in Figure 4.2b. This implies that similarity on chemical

space does not always translate to similarity in biological space. Note, however, that the

reference compounds are still clustered together along with a subset of compounds marked

in red and yellow. This indicates that these four compounds are similar, with respect to

both structure and activity, to the reference compounds.

In practice, however, when reference compounds are absent or when many compounds

of interest are available, inspecting the two separate clustering results to find compounds

sharing similar structures as well as inducing similar activities is not straightforward. To
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Figure 4.2: Two clustering solutions: (a) chemical-structure based and (b) bioactivity-
based. The color of the compounds indicates the chemical-structural cluster where they
belong.

this end, we implemented the weighted similarity clustering combining both similarities

to yield integrated clusters. This approach generates compound clusters with similar

chemistry and similar bioactivity.

Figure 4.3 shows how the membership of the compounds under investigation changes

from the chemical structure-based clustering when the weights of the bioactivity data are

gradually increased by 0.05. Interestingly, the two reference compounds remain together

in the same cluster in all weighted clustering solutions. This is because both compounds

are highly similar in both structure and bioactivity so that the weighted average remains

high regardless of the set of weights used. In this case study, the bioactivity similarity

information starts to influence the clustering at ωY ≈ 0.1. Assigning equal weight of 0.5 to

both data sources yields a clustering solution that is slightly more influenced by chemical

structure similarity (J [C(W, 7), C(Y , 7)] = 0.23 versus J [C(W, 7), C(Z, 7)] = 0.38).

The set of candidate weights, starting from ωY = 0, that gradually integrates bioactiv-

ity information in the chemical structure-based clustering and their corresponding similarity

indices are presented Table 4.2.

Figure 4.4 shows that the weight combination ωY = 0.55 and ωZ = 0.45 leads to

R = 0.85. This set of weights is therefore selected to obtain the weighted clustering
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tivity similarity data in the weighted similarity clustering approach. The colors denote the
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Table 4.1: Table of Similarity Indices when varying weight sets by 0.01.

ωY J [C(W, 7), C(Y , 7)] J [C(W, 7), C(Z, 7)] R
0.00 0.11 1.00 0.11
0.01 0.11 1.00 0.11
0.02 0.11 1.00 0.11
0.03 0.11 1.00 0.11
0.04 0.11 1.00 0.11
0.05 0.11 1.00 0.11
0.06 0.11 1.00 0.11
0.07 0.11 1.00 0.11
0.08 0.11 1.00 0.11
0.09 0.15 0.63 0.24
0.10 0.15 0.63 0.24
0.11 0.15 0.63 0.24
0.12 0.15 0.63 0.24
0.13 0.15 0.63 0.24
0.14 0.15 0.63 0.24
0.15 0.15 0.63 0.24
0.16 0.15 0.63 0.24
0.17 0.15 0.63 0.24
0.18 0.15 0.63 0.24
0.19 0.15 0.63 0.24
0.20 0.15 0.63 0.24
0.21 0.15 0.63 0.24
0.22 0.15 0.63 0.24
0.23 0.15 0.63 0.24
0.24 0.15 0.63 0.24
0.25 0.15 0.63 0.24
0.26 0.14 0.56 0.25
0.27 0.15 0.63 0.24
0.28 0.15 0.63 0.24
0.29 0.15 0.63 0.24
0.30 0.15 0.63 0.24
0.31 0.15 0.63 0.24
0.32 0.15 0.63 0.24
0.33 0.15 0.63 0.24
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Table 4.2: (cont.) Table of Similarity Indices when varying weight sets by 0.01.

ωY J [C(W, 7), C(Y , 7)] J [C(W, 7), C(Z, 7)] R
0.34 0.15 0.63 0.24
0.35 0.15 0.63 0.24
0.36 0.15 0.63 0.24
0.37 0.18 0.56 0.31
0.38 0.18 0.56 0.31
0.39 0.18 0.56 0.31
0.40 0.19 0.39 0.49
0.41 0.19 0.39 0.49
0.42 0.19 0.39 0.49
0.43 0.23 0.38 0.61
0.44 0.23 0.38 0.61
0.45 0.23 0.38 0.61
0.46 0.23 0.38 0.61
0.47 0.23 0.38 0.61
0.48 0.23 0.38 0.61
0.49 0.23 0.38 0.61
0.50 0.23 0.38 0.61
0.51 0.23 0.38 0.61
0.52 0.23 0.38 0.61
0.53 0.23 0.38 0.61
0.54 0.23 0.38 0.61
0.55 0.28 0.33 0.85
0.56 0.28 0.33 0.85
0.57 0.28 0.33 0.85
0.58 0.28 0.33 0.85
0.59 0.28 0.33 0.85
0.60 0.28 0.33 0.85
0.61 0.35 0.18 1.93
0.62 0.36 0.23 1.57
0.63 0.40 0.20 2.00
0.64 0.40 0.20 2.00
0.65 0.40 0.20 2.00
0.66 0.40 0.20 2.00
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solution presented in Figure 4.5. The impact of the bioactivity data in the structural

clusters is mostly observed in clusters marked in red and yellow where less compounds are

clustered with the reference compounds. The other structural classes seem to be stable

despite the contribution of the bioactivity data in the clustering. This indicates that these

compounds are similar in terms of bioactivity profiles hence, there is not much regrouping.

Furthermore, this shows that these compounds are not inducing the same activity level as

the reference EGFR-inhibitors. The weighted-similarity based clustering solution presented

in Figure 4.5 identified a subset of 6 compounds similar to the EGFR-inhibitors (see the

outer box in Figure 4.5). These compounds are not just structurally similar but are also
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Figure 4.5: Weighted-similarity based clustering solution with weights ωY = 0.55 and
ωZ = 0.45.

potentially potent EGFR-inhibitors. In the analysis based on bioactivity alone, two of

these six compounds (inner black box in Figure 4.5) would have been missed (see Figure

4.2b). These two compounds may not be as highly potent as the reference and the four

other compounds, but given their similar chemical structure, these compounds can still

be interesting and warrant further investigation together with the other compounds in the

cluster.

4.4.1 Lead Compound Cluster

As illustrated in Ravindranath and Perualila-Tan et al. (2015), based on the weighted

similarity clustering, compound clusters could be further linked to transcriptomics data

to gain more biological insight. The compound cluster containing the two reference

compounds along with the 6 candidate compounds discussed above was selected for further

investigation (Figure 4.5). The set of structural features that makes these compounds
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a chemical cluster is shown in Figure 4.6. Notice that this set of fingerprint features
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Figure 4.6: A subset of structural features that characterizes the chosen compound
cluster in Figure 4.5. It is clear that the absence of almost all of these identified features
drives the formation of this cluster.
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are absent in this compound cluster and are mostly present on the other compounds

except for the first compound (JNJ-1) and some yellow compounds, which were dropped

from the initial structural class when integrating activity similarity. The gene expression

analysis for this compound cluster shows that all compounds, except one (JNJ-24), have

inhibitory activity on multiple cancer-related genes like FGFBP1 and FOSL1 similar to the

two EGFR-inhibitors, Gefitinib and Erlotinib (Figure 4.7). The gene FGFBP1 encodes for

the fibroblast growth factor carrier protein (FGF-BP1) whose overexpression is noted in

cell lines, from lung (Brattström et al., 2002, Pardo et al., 2003), prostate(Tassi et al.,

2006), pancreas (Kuwahara et al., 2003), and colon cancer (Hauptmann et al., 2003).

Most of these differentially expressed genes are known to participate in biological processes

involving cell proliferation (positive and negative), survival and differentiation. Here, the

gene expression results support that the cluster of compounds discovered with weighted

similarity based clustering seem to combine compounds with similar mechanism of action.

4.5 Discussion

In pharmaceutical drug development process, the availability of multiple data sources that

can be used to jointly describe a compound set requires adjustment of classical approaches

to cluster compounds. This is typically based solely on chemical-structure. In this chap-

ter, we proposed a weighted similarity clustering approach, that assigns complementary

weights to the similarity matrices and can be used to integrate information from both

chemical structure and bioactivity data. We have shown that the weighted similarity clus-

tering approach led to the identification of a subset of compounds which share similar

structural and biological profiles.

We have shown that the weighted similarity-based clustering approach was able to

identify more compounds that are structurally and biologically similar to the reference

EGFR-inhibitors, a finding that is further supported by the gene expression analysis. In the

absence of reference compounds, a subset of compounds belonging to the same structural

class and yet are still discovered to be clustered together in weighted-similarity based

clustering indicates that either the structure-based similarity scores are extremely high

complemented by very weak bioactivity similarity profiles or both structure and bioactivity

similarity scores have the same level,i.e., both low or both high.

Cluster analysis is an exploratory tool from both statistical and pharmaceutical point

of view. However, we have shown that its output can be used to generate hypotheses and

can contribute to enhance the discovering process of a subset of candidate compounds

with highly desired properties, both structurally and biologically.

The integration step presented in this chapter makes use of the similarity matrix
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from each data source. Although, the Tanimoto coefficient (which is also equivalent to

Jaccard coefficient in the case of binary data) has been commonly used for calculating

chemical similarity (Willett et al., 1998), other (dis)similarity measures maybe also used.

The Euclidean distance is most popular for continuous data and the Hamming distance

which is equivalent to the squared Euclidean distance for binary data is also advocated.

Assessing the effect of different(dis)similarity measures by the extent to which the results

differ would be an interesting extension of the work presented in this chapter. Moreover,

aside from the Jaccard index that is presented in this chapter as a “measure" of similarity

between the two clustering solutions, other indices like the Rand index (Rand, 1971),

Fowles-Mallows Index (Fowlkes and Mallows, 1983), etc. could be also used. Assessing

the sensitivity of these measures on the number of clusters and cluster sizes should be

also investigated since the index is derived for a specified number of clusters.

In this chapter, the utility of this unsupervised technique to discover multi-source-

driven clusters is illustrated in early drug discovery setting but this can be also applied

in other research areas where different types of high dimensional data are being collected

on the same samples. Moreover, following this work, within the QSTAR setting, other

integrative clustering methodologies have been explored and investigated. An R package

IntClust was developed to serve this purpose (Van Moerbeke, 2015).



Chapter 5

Biclustering Methods in

Chemoinformatics and

Molecular Modelling in Drug

Discovery Experiments:

Connecting Gene Expression

and Target Prediction Data

5.1 Introduction

In this chapter, we discuss two approaches for the analysis of multi-source drug discovery

data in order to gain insights into the compounds mechanism-of-action (MoA). The first

approach is based on a two-step integrative analysis and the second is a biclustering

analysis based on FABIA. In contrast to biclustering methods that find a subset of genes

with similar expression profiles across a subset of compounds, the first approach first finds

subsets of compounds that share similar predicted protein targets (via clustering) and then

link them to a subset of genes by testing differential expression. This analysis workflow

is similar to the previous chapter. However, instead of combining the information on

the bioactivity and chemical structure of compounds via clustering, the bioactivity and

75
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chemical structure are used as input in calculating in silico target prediction data. Hence,

we have another type of data coming from the two data sources. The first approach is

discussed in Ravindranath et al. (2015).

5.1.1 Connecting Target Prediction and Gene Expression Data

Integrating gene expression profiles with certain proteins can improve our insight of the

fundamental mechanisms in protein-ligand binding. Understanding protein target and off-

target effects of bioactive compounds is a critical challenge in the field of drug discovery.

These effects are of great importance as bioactive compounds that indicate a certain ther-

apeutic effect could cause inadvertent phenotypic effects by binding to unexpected protein

targets, thus resulting in disruption of compound efficacy (MacDonald et al., 2006). Pub-

lic chemogenomics databases such as ChEMBL and PubChem contain large amounts of

bioactivity data that aid using machine learning techniques to classify new and orphan

ligands for potential protein targets, or off-targets, based upon the similarity of the chem-

ical structures. The target prediction algorithm was employed to predict probable protein

targets for compounds without target information (Klabunde, 2007, Koutsoukas et al.,

2011). Target prediction approaches have been recently applied in a variety of areas

(Chen et al., 2011), such as the elucidation of MoA of compounds used in traditional

medicine (including ayurvedic and Chinese medicine (Mohd Fauzi et al., 2013)) and are

also used in examining ADR (Takarabe et al., 2012).

The use of drug-induced gene expression profiles to observe several co-regulated genes

and signalling pathways concurrently enriches the understanding of underlying mecha-

nisms. Due to the advances in the genome studies, large amount of microarray data has

been deposited in public databases such as Connectivity Map (CMap) that was introduced

in Chapter 1. The CMap dataset consists of drug-like compounds tested for gene expres-

sion in four cell lines. However, it is largely unknown how a compound exactly modulates

gene expression and only a few data analysis approaches exist.

In addition, protein targets do not influence gene expression changes directly; they work

through signalling cascades. Pathway databases provide information for linking genes and

protein targets. Databases such as KEGG (Ogata et al., 1999) and GO (Consortium,

2004) have been used in the study to rationalise the findings. The repositories KEGG

and GO, combine information across all organisms which makes it flexible to integrate the

information from different databases and thus to study functionality of recently discovered

genes (du Plessis et al., 2011). As shown in Figure 5.1, the links between a compound

of interest and gene expression could be established by microarray data, the link between

compound and protein target was established by employing a target prediction algorithm

(see Section 1.2.4) while the link between protein target and gene expression (CMap) was
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Figure 5.1: Mechanism of Action of compound. The compound to protein target infor-
mation is derived from the target prediction algorithm and the phenotypic gene expression
information is curated from experimental annotated data. To complete the triangle KEGG
and GO pathways information is annotated for the genes and proteins and were overlapped
to find similar pathways.

achieved by information on the pathways.

The analysis presented in this chapter consists of two input datasets: gene expres-

sion and target prediction data. Both datasets were introduced in Chapter 1. In this

chapter, the analysis is focused on the 35 compounds of MCF7 (breast cancer epithelial

cell) treated for duration of 6 hours with concentration of 10µM. For compounds having

multiple instances, the average gene expression level was used. The target prediction

algorithm provides each test compound with probable protein targets and their respective

scores, representing the likelihood of binding to ChEMBL protein targets. With this data,

the target prediction matrix scores of the 35 MCF7 compounds were extracted across

all 477 available protein targets. For the analysis presented in this chapter, the target

prediction score matrix was dichotomized using target-specific confidence score cut-offs

(Paolini et al., 2006).

The target prediction score matrix is given by

T =























T11 T12 . . . T1m

T21 T22 . . . T2m

. . . .

. . . .

. . . .

Tn1 Tn2 . . . Tnm























, (5.1)
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with entries,

Tij =

{

1 compound i hit target j, i = 1, . . . , n and j = 1, . . . , m,

0 otherwise.

5.2 Integrative Data Analysis Steps

The data analysis process consists of two main steps. In the first step, we cluster the

compounds based on similarity in target prediction. Once the clustering is completed,

feature selection (for both genes and target predictions) is performed. In the second

step of the analysis, based on both genes and targets that were selected in the first step,

pathway analysis was conducted in order to find biological pathways related to a cluster(s)

of interest.

5.2.1 Clustering of Compounds

Similarity Matrix

We calculate a score for each pair of compounds which represents the degree of similarity

based on their target prediction profiles. The distance between each pair of compounds

is based on the Tanimoto coefficient (T c) (Willett et al., 1998), given by

T cab =
Nba

Na + Nb − Nab
. (5.2)

Here, Na is the number of targets with score 1 in compound a, Nb hit by compound b

and Nab is the number of targets common for both compounds. This gives us a similarity

matrix, denoted by Sn, containing pairwise Tanimoto similarity scores of n compounds.

Target Prediction-Based Clustering of Compounds

Compounds are clustered into groups that exhibit a high degree of both intra-cluster

similarity and inter-cluster dissimilarity according to the similarity of their predicted tar-

gets. There are several existing clustering algorithms. The clustering procedure was based

on agglomerative hierarchical clustering approach (Sokal and Michener, 1958), which be-

gins with assumption that each entity in the similarity or distance matrix is a cluster.

Thereafter, each compound is absorbed into larger and larger clusters until the dataset is

expressed as a single cluster containing all compounds.

The hierarchical clustering of compounds according to the similarity of their target

prediction profiles based on the 477 ChEMBL targets is presented in Figure 5.2 for the
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Figure 5.2: Target prediction-based clustering.

MCF7 cell line. From here, any compound cluster of interest can be linked to a set

of features (both targets and differentially expressed genes). In the next sections, the

feature selection is illustrated using the first target-driven cluster composed of 6 antipsy-

chotic drugs (clozapine, thioridazine, chlorpromazine, trifluoperazine, prochlorperazine

and fluphenazine). Other clusters can be analyzed in the same way.

5.2.2 Feature Selection

For every cluster-target combination, a 2x2 frequency table of compounds is formed. For

example, in Table 5.1 we have the tabulated compound frequency for target Cytochrome

P450 2D6 and cluster 1 membership.

Table 5.1: Frequency table for cluster - target combination.

Cluster 1
CytochromeP2D6
Active Inactive

In 5 1
Out 0 29
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The Fisher’s exact test is used to determine whether the proportions of compounds

that predicts Cytochrome P450 2D6 are the same inside and outside of cluster 1. This

test is done for every target. Consequently, the top ranked targets based on p-value were

identified. Benjamini-Hochberg false discovery rate (BH-FDR) method was used to adjust

for multiplicity. Protein targets and genes were ranked based on their adjusted p-values

(Benjamini and Hochberg, 1995). The top predicted protein targets of antipsychotic drugs

are muscarinic, histamine, dopamine and adrenergic receptors , and cytochrome P450 2D6

whose profiles are displayed in Figure 5.3a.

In order to identify genes with differential expression in a cluster of compounds, we

use the Linear Models for Microarray Data (Limma) method (Smyth et al., 2005, Smyth,

2004). The top 8 differentially expressed genes by the antipsychotic drugs includes IDI1,

INSIG1, MSMO1, LPIN1, SQLE, HMGCS1, NPC2, and BHLHE40. From Figure 5.3b,

we can see that majority of the six compounds in the cluster induce a relatively higher

expression than the other compounds for these 8 genes.

5.2.3 Pathway Analysis

In this stage, a group of genes and protein targets were linked to a group of compounds.

Pathway analysis is performed to facilitate more intuitive interpretation of the biological

function of the selected subset of genes/protein targets. In what follows, we present two

different approaches, the first is based on pathway search based on both genes and protein

targets and the second is based only on gene expression data. The latter should be seen

as a biological enrichment of the gene set that was identified in the previous section.

Overlapping Pathway Search Using KEGG and GO Databases

Pathway information was extracted from the KEGG and GO databases for the gene sets

and protein targets involved in this study. Each gene and target protein could be linked

to several biological pathways. In this pathway-oriented approach, we get two sets of

pathways, one for the top genes and another for the top protein targets. We then look for

the intersection of these two sets of pathways and identify which of the input genes and

targets are involved in each of the identified common pathways. This qualitative search

of common pathways between targets and genes is dependent upon the completeness of

the KEGG and GO pathway databases.

A search for overlapping pathway was executed on the antipsychotic cluster, where

genes INSIG-1, LDLR and protein target CYP2D6 were observed to overlap with

“steroid metabolic process pathway". This observation complies with the study by

Polymeropoulos et al. (2009), in which it was shown that genes INSIG-1 and LDLR were
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(a) Identification of protein targets for cluster 1. Blue (gray) cell indicates that the compound
is predicted to hit (not hit) the target.
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(b) Profiles plot of 8 differentially expressed genes linked to the 6 compounds (marked in red)
in cluster 1.

Figure 5.3: Features linked to cluster 1 compounds.
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up-regulated by antipsychotic drugs that also influenced the steroid biosynthesis.

Gene Set Analysis Using Mean Log P-value (MLP) Analysis

MLP analysis (Amaratunga et al., 2014), in contrast to the pathway-oriented approach,

does not involve pre-selection of genes prior to the analysis. Genes are categorized into

gene sets according to their functional relationship. A gene set is most likely significant

if many of the genes comprising that set have small p-values.

For the antipsychotic cluster, MLP indicated that the “steroid metabolic process" path-

way was significantly enriched. Enrichment was also observed for the related pathways

“cholesterol biosynthesis process", “sterol biosynthesis process", “cholesterol metabolic

process", “sterol metabolic process" and “steroid biosynthesis process" with their inter-

connections visualized by using the GO graph in Figure 5.4a. The gene Dhcr24, as shown

in Figure 5.4b, is predicted to be highly significant on the ”cholesterol biosynthetic pro-

cess” and is known to code for the protein cholesterol-synthesizing enzyme seladin-1, which

agrees with the study by Crameri et al. (2006), Wechsler et al. (2003). Another gene in

the list, G6PD, was also known to regulate the pathway through protein sterol regulatory

element-binding proteins (SREBP) (Horton et al., 2002). Studies by Iskar et al. (2013)

have shown that the genes LDLR, INSIG1, IDI1, SQLE and HMGCS1 are responsible for

the “cholesterol metabolic process", which is in accordance with our results. As stated by

Polymeropoulos et al. (2009), “activation of antipsychotics by genes associated with lipid

homeostasis is not just a common off-target effect of these drugs but rather the common

central mechanism by which they achieve their antipsychotic activity."

5.3 Biclustering with FABIA

The data analysis process, discussed in the previous section, was based on cluster analysis

of the compounds of interest according to target prediction profiles and then identification

of differentially expressed genes for a cluster(s) of interest. This means that we identified

a subset of genes for which a similar expression profiles were detected across a subset of

compounds. In other words, we identified a bicluster in the expression matrix X, although,

we did not use it so far in this chapter.

In this section, we apply the FABIA method to the expression matrix and show the

similarity and the difference between the results obtained from the biclustering and the

integrative approach in the previous section. Let X be the expression matrix given by
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Figure 5.4: MLP analysis for cluster 1.
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X =























X11 X12 . . . X1n

X21 X22 . . . X2n

. . . .

. . . .

. . . .

XG1 XG2 . . . XGn























. (5.3)

Here, the number of genes G = 2434 and the number of compounds n = 35. The

FABIA model assumes that the expression matrix can be expressed as

X =

p
∑

i=1

λiγi
T + Υ,

where p is the number of biclusters, the additive noise is Υ, λi and γi is a sparse vector

of factor loadings and factor scores, respectively, for the ith bicluster.

From the FABIA output, we search for the bicluster that contains compounds similar

to cluster 1 in the previous section. The plot of compound scores and gene loadings of

FABIA bicluster 1 are presented in Figure 5.5. In addition to the 6 antipsychotic drugs

marked in red in Figure 5.5a, 3 more compounds (marked in blue) are part of bicluster 1.

Moreover, all cluster 1-related genes (marked in red in Figure 5.5b) along with 6

additional genes (marked in blue) belong to the first bicluster discovered by FABIA. The

expression profiles of all these genes are presented in Figure 5.5c where the additional 6

genes are indicated by the blue line. The compounds that are part of cluster 1 are marked

in red while the 3 additional compounds are marked in blue. These 3 extra compounds

are part of other clusters indicating that they have different target prediction profiles than

cluster 1. While FABIA provides a simultaneous local search of a subset of compounds

defined by a subset of genes, the integrated approach in the previous section provides

a subset of genes that are linked to an independently derived compound cluster using

another source of information, in this case, the similarity of their target profiles.

5.4 Integrated Analysis Results for the Other Clusters

The two previous sections illustrated the similarities of the results of the two approaches. In

this section, we present more results using the integrated workflow for gene expression and

target prediction data. Here, we included more compounds in the analysis by considering

other doses around 10 µM. The MoA for 6 of the 8 MCF7 clusters and 6 of the 11 PC3

clusters, are established using this integrated approach.
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(c) Profiles plot of the genes belonging to the first bicluster discovered by FABIA. Eight genes
(red lines) and six compounds (red text) that are members of this bicluster are also identified to
be linked in the integrated approach.

Figure 5.5: FABIA bicluster 1.
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The hierarchical clustering of compounds according to the similarity of their target

prediction profiles, based upon the 477 ChEMBL targets, is presented in Figure 5.6 for

the MCF7 and PC3 cell lines. Several interesting target-based compound clusters (with

Tanimoto coefficient > 0.5) are identified in each cell line; 8 from MCF7 and 11 from

PC3 (numbered in their respective heatmaps). The target prediction data depends upon

the structural make-up of the compounds; hence a compound cluster observed in one cell

line will also hold for another cell line, given that all member compounds are present in

both cell lines. This is the case for a cluster common to MCF7 and PC3, which contains

compounds estradiol, alpha-estradiol and fulvestraat.

5.4.1 Benzoquinone Antineoplastic Antibiotic

One compound cluster consists of the compounds geldanamycin and tanespimycin from

cluster 7 of the MCF7 cell line. Both compounds are benzoquinone antineoplastic antibi-

otics, which are used to inhibit the function of heat shock protein 90 (HSP90) (Modi et al.,

2011, Taldone et al., 2008). In Figure 5.7 the top differentially expressed genes between

these 2 compounds and other compounds in the set are displayed. Gene HSPA1B shows

a perturbation of an above 2-fold change in both the compounds and also shows a -log(p-

value) greater than 50 in the volcano plot (Figure 5.7). The HSP90AB1 gene shows a

fold change above 1.2 in both the compounds and was found to be statistically significant.

Other genes such as HSPA6, HSPA4L, DNAJB4, HSPH1 were all found to be statistically

significant with a fold change above 1. Literature shows that protein HSP90 is encoded

by the HSP90AB1 gene (Chen et al., 2005). The compounds are seen to perturb similar

type of genes, thus showing that clustering compounds based upon targets is useful in

bringing compounds of similar therapeutic class together.

Clustering of compounds based on protein target similarity is presented in Figure 5.8a,

highlighting the cluster of geldanamycin and tanespimycin. This clustering is identical to

that presented in Figure 5.6a, with geldanamycin and tanespimycin as cluster 7. Figure

5.8b represents the set of protein targets that are likely to bind to these two compounds,

based upon the results from protein-target prediction. The expression profile plot for

the top differentially expressed genes of this compound cluster clearly shows these two

compounds induce a relatively higher expression than the rest (Figure 5.8c). The ordering

of compounds in the x-axis is the same for all plots. The top 5 protein targets are

Transcription factor AP-1 (AP-1), Transient receptor potential cation channel subfamily

V member 1 (TPCC), Tyrosine protein kinase BTK (BTK), Heat shock protein HSP90

alpha (HSP90), Protein kinase C zeta type (PKCZ) and G-protein coupled receptor 55

(GPCR).

In the studied cluster, the pathway “response to the unfolded protein" (GO:006986)
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(a) MCF7 cell line (75 compounds).

(b) PC3 cell line (101 compounds).

Figure 5.6: Heatmaps with dendrograms showing compound similarity scores based upon
protein target prediction data for the (a) MCF7 and (b) PC3 cell lines. The colour
is scaled such that darker colours represent increased similarity among the compounds,
while similarities below the 90th percentile are represented in white. Compound clusters
with high Tanimoto coefficient (> 0.5) are identified and numbered in the heatmaps,
leading to 8 subclusters for MCF7 and 11 clusters for PC3. Subcluster 3 of MCF7 and
subcluster 4 of PC3 cell line represent the same set of 22 compounds present in both the
datasets. Given that these compounds share similar predicted protein targets, they form
defined therapeutic type sub-clusters.
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Figure 5.7: Volcano plot. -log(p-value) vs. fold change. Every gene is represented by
a dot in the graph. Genes HSPA6, HSPA4L, DNAJB4 and HSPH1 at the top have the
smallest P-values (i.e. the highest evidence for statistical significance) when testing for
differentially expressed genes between the cluster of interest and other compounds in the
set. Genes at the left and right-hand sides of the graph have the largest effect size (fold-
change). The HSP-related genes for sub-cluster containing benzoquinone antineoplastic
antibiotic compounds in the plot are seen to be highly significant, thus suggesting their
role in the MoA of these compounds.

was found to be an overlapping pathway involving the predicted protein target heat shock

protein HSP90 alpha and the genes HSP90AB1, HSPA6, HSPA4L, DNAJB4, HSPA1B

and DNAJB1. Literature has also shown that HSP90 inhibition is associated with the ac-

tivation of unfolded protein response. Moreover, the compound geldanamycin is a known

inhibitor of HSP90, thus modulating the unfolded protein response (Davenport et al.,

2007).

Similarly, the overlap between HSP protein and the genes HSP90B1, HSPA1B,

HSPA1A and HSP90AA1 shows response to the KEGG pathway “antigen processing and

presentation". The genes and proteins in the overlap are known to be involved in these

pathways as shown in Table 5.2. A study carried out by Albert (2004) also supports

our finding that HSP plays a role in antigen processing and presentation, where these

proteins are released during cell death in order to bind to cell surface receptors of the

antigen-presenting cells.

The top 5 set of significant GO terms according to their structure in the ontology

are displayed in Figure 5.9a. The MLP results agree with those from the pathway search

and literature on the pathway “response to unfolded protein", which is on the top gene
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Figure 5.8: Genes and Protein targets regulated by compounds geldenamycin and tane-
spimycin. (a) Protein-target similarity-based hierarchical clustering of compounds; (b)
heatmap of the proteins target (rows) and compounds(columns) coloured according to
activation/inactivation of protein targets; (c) the profile plot of the top differentially ex-
pressed genes with compounds ordered according to (a) in the x-axis and fold-change in
the y-axis. The selected compound sub-cluster contains the only compounds that pre-
dicted the targets represented in blue. Thus, some genes (HSP90AB1, HSPA6, HSPA4L,
DNAJB4, HSPH1, HSPA1B, ADCY7 and AHSA1) are particularly perturbed with respect
to the sub cluster selected.
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Table 5.2: Overlapping Pathways. Pathway Search involving the top protein targets and
genes regulated by the compounds geldenamycin and tanespimycin.

Pathway Target Genes

HSP90B1
Heat shock HSPA6

response to protein 90 alpha HSPA4L
unfolded protein DNAJB4

HSPA1B

HSP90B1
antigen processing Heat shock HSPA1B
and presentation protein 90 alpha HSPA1A

HSP90AA1

set in the analysis (Davenport et al., 2007). The pathway search provides information

on known existing gene-pathway links, whereas MLP analysis shows statistically enriched

pathways that are significant (with or without available literature evidence). While the

pathway search makes use of top differentially expressed genes, providing 5 genes linked

to this pathway, the MLP analysis can provide an enriched set of genes biologically linked

through the “response to unfolded protein" pathway. Using the LIMMA p-values as the

input, the HSP and DNAJ-related genes are shown to dominate this gene set (Figure

5.9b).

The MLP method therefore provides statistically significant genes and also the sig-

nificance of each gene in the pathway of interest. The gene set enrichment analysis is

a good start when there is limited pathway information, in understanding the MoA of

compounds.

5.4.2 Antidiabetic and Anti-inflammatory Drugs

A PC3 cell line cluster (Table 5.4) comprising of thiazolidinediones (rosiglitazone

and troglitazone drugs) was found to have both antidiabetic and anti-inflammatory

effects(Mahindroo et al., 2005, Fryer et al., 2002). In silico target prediction algorithm

indicated that these compounds were likely to bind to the peroxisome proliferator acti-

vated receptor gamma (PPAR-gamma), peroxisome proliferator activated receptor alpha

(PPAR-alpha) and acyl CoA desaturase. Spiegelman (1998) has shown the MoA of

antidiabetic thiazolidinediones to induce activation of PPAR gamma and thus regulate

genes involved in glucose and lipid metabolism. Gene expression profiles of genes FABP4

and ANGPTL4 have fold changes of 3 and 1 respectively. Studies have shown that an-

tidiabetic thiazolidinediones are ligands for the nuclear receptor PPAR, which exert their

anti-hyperglycaemic effects by regulation of the PPAR responsive genes and also that gene

FABP4 is rapidly up-regulated upon PPAR gamma ligand administration; this confirms our
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(a) GO pathways containing the top 5 gene sets. Every ellipse represents a gene set. The colour
indicates the significance: the darker, the more significant. The connectors indicate that the
gene sets are related. The lower the GO term is in the graph, the more specific is the gene set.

(b) Significance plot of top functionally related genes contributing in the pathways “response to
unfolded proteins". The plot represents the top 15 genes contributing with the level of significance
in the bar for the respective pathways in the MLP analysis for geldanamycin and tanespimycin
compound cluster.

Figure 5.9: MLP analysis for benzoquinone antineoplastic antibiotic compounds.
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finding of this gene showing high fold change (Kapushesky et al., 2011, Szatmari et al.,

2006). A study by Pal et al. (2011) showed that gene ANGPTL4 is responsible for epi-

dermal differentiation mediated via the PPAR protein.

During overlap pathway analysis, genes FABP4 and ANGPTL4 were found to share

pathway “PPAR signalling" with proteins PPAR-gamma, PPAR-alpha and acyl CoA desat-

urase. Confirming our observation, antidiabetic thiazolidinediones in pathway hsa03320

of the KEGG database induce “PPAR signaling pathway" by perturbing genes FABP4 and

ANGPTL4 and PPAR proteins. This indicates that the MoA of antidiabetic thiazolidine-

diones involves PPAR signalling.

There was overlap of the pathway “induction of apoptosis" with gene PRKCD and

protein target PPAR-gamma. In the study by Elrod and Sun (2008), thiazolidinediones

were shown to have potential for inducing apoptosis in cancer cells by binding to protein

PPAR-gamma. In our study on thiazolidinediones, we also observed that gene PRKCD is

down-regulated substantially when compared to other compounds in the dataset showing

selectivity for this particular gene. Hence suggesting gene PRKCD to be involved in

the MoA for thiazolidinediones. Some of the links (compound-genes, compound-target

and genes-pathway-target), however, lacked literature support (Table 5.3 for MCF7 and

Table5.4 for PC3). The target prediction similarity data also produces many singletons,

which are compounds that do not share any targets with remaining compounds in the set,

thus providing a limited number of clusters to be investigated.

5.5 Discussion

Combining target-based compound similarity with corresponding gene expression informa-

tion provides a better understanding of compound cluster behavior, both on the bioactivity

level and on the transcriptional level. In this chapter, we present an integrated statistical

framework to link two data sources: the gene expression data and target prediction data

of a set of compounds. Strictly speaking, the analysis presented in Section 5.2 is not a

biclustering analysis but a two-stage analysis in which, the first stage consists of cluster

analysis and the second stage consists of identification of differentially expressed genes

(for a given cluster). However, the output of the analysis in Section 5.2 consists of a

subset of compounds (which form the cluster of interest) and a subset of genes (which

were found to be differentially expressed). Using the terminology of this book, the two

subsets of genes and compounds form a bicluster in the expression matrix. In Section

5.3, we have shown that we can use FABIA, as an alternative approach, to identify the

bicluster.

The extra information provided by the target prediction data in clustering compounds
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restricts the overlapping of compounds that is observed in the biclustering approach.

That is, compounds inducing the same level of expression in a set of genes but predicting

different targets cannot be part of the target-driven ‘bicluster’. This is the case for the 3

extra compounds obtained in FABIA that are not clustered with the antipsychotic drugs.

Haloperidol, one of the three compounds, however, is clustered next to the antipsychotic

drugs, indicating that they still share some targets.
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Table 5.3: Overlapping Pathways for MCF7 cell line. Pathway Search involving the top
protein targets and genes regulated by distinct compound set. MoA of the compound
cluster is comprehended through pathway overlap between the significant genes and pre-
dicted protein targets, as shown in the table. The compound clustering based upon similar
targets lead to sub-clustering of compounds with similar therapeutic classes. Cluster 1
containing antipsychotic drugs and cluster 7 containing compounds geldanamycin and
tanespimycin, were studied in detail. As an example, in cluster 1 our method suggests
genes INSIG1 and LDLR and target CYP450, share pathway ”steroid metabolic process”
for the listed antipsychotic compounds. This study was also supported by the findings of
Polymeropoulos et al. (2009)

No. Compounds Pathway Target Genes

1

amitriptyline

Steroid metabolic process Cytochrome P450 2D6 INSIG1

clozapine

thioridazine

chlorpromazine

LDLR
trifluoperazine

prochlorperazine

fluphenazine

2
verapamil

MAPK signaling pathway
Voltage gated T type

DUSP9
dexverapamil calcium channel alpha 1G subunit

3

estradiol

no overlapping pathways foundalphaestradiol

fulvestrant

4

dexamethasone

no overlapping pathways foundprednisolone

fludrocortisone

5

nifedipine

Aging
Induced myeloid leukemia

IFIT1nitrendipine

felodipine cell differentiation protein Mcl.1

6
15-delta

prostaglandin

J2

Arachidonic acid metabolism Thromboxane A synthase AKR1C3

arachidonic acid

7 Tanespimycin

Response to Unfolded Protein Heat shock protein HSP 90 alpha

HSP90AB1

HSPA6

HSPA4L

DNAJB4

HSPA1B

DNAJB1

geldanamycin DNAJA1

HSP90AA1

Antigen processing and presentationHeat shock protein HSP 90 alpha

HSP90AB1

HSPA1B

HSPA1A

HSP90AA1

8
tacrolimus

Activation of cysteine-type en-

dopeptidase
Proteinase activated receptor 1 MOAP1

activity involved in apoptotic

process

Negative regulation of cell pro-

liferation

Proteinase activated receptor 1 S100A11

sirolimus Regulation of actin cytoskeleton Proteinase activated receptor 1 PFN1

Prostate cancer Heat shock protein HSP 90 alpha GSK3B
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Table 5.4: Overlapping Pathways for PC3 cell line. Pathway Search involving the top
protein targets and genes regulated by compound set. MoA of the compound cluster
is comprehended through pathway overlap between the significant genes and predicted
protein targets as mentioned. The compounds clustering based on similar targets lead to
sub-clustering of compounds with similar therapeutic class. For example in cluster 10, our
method suggests genes FABP4 and ANGPTL4 and targets PPAR-gamma, PPAR-alpha
and acyl CoA desaturase, share pathway ”PPAR signalling” for the listed thiazolidinediones
and findings confirmed by KEGG database pathway(hsa03320).

No. Compounds Pathways Target Genes

1

thioridazine

Protein modification process Muscarinic acetylcholine receptor M3HERPUD1
amoxapine

cyproheptadine

perphenazine

2
loperamide

no overlapping pathways found
haloperidol

3
bromocriptine

no overlapping pathways found
lisuride

4

estradiol

no overlapping pathways foundalpha-estradiol

fulvestrant

5

prednisone Neuroactive ligand-receptor in-

teraction

Glucocorticoid receptor GHR

lynestrenol Focal adhesion Protein kinase C alpha BIRC3

danazol MAPK signaling pathway Protein kinase C alpha IL1R2

6
sulfathiazole

Small cell lung cancer Cyclin dependent kinase2 LAMB3
sulfaguanidine

7
hydrochlorothiazide

no overlapping pathways found
metolazone

8
erythromycin

no overlapping pathways found
oleandomycin

9
mercaptopurine

Cytokine-cytokine receptor in-

teraction

Vascular endothelial growth fac-

tor receptor2

IL17RA

ErbB signaling pathway

Glycogen synthase kinase.3 beta MYC
Wnt signaling pathway

Colorectal Cancer

azathioprine Endometrial Cancer

p53 signaling pathway Cyclin dependent kinase 1 THBS1

Focal Adhesion
Glycogen synthase kinase.3 beta

THBS1
Vascular endothelial growth fac-

tor receptor2

10

rosiglitazone

Induction of apoptosis Peroxisome prolifera-

tor.activated receptor gamma

PRKCD

Positive regulation of transcrip-

tion from RNA polymerase II

promoter

Peroxisome proliferator.activated receptor gammaTNFRSF1A

troglitazone

PPAR signaling pathway

Peroxisome prolifera-

tor.activated receptor gamma

FABP4

Peroxisome prolifera-

tor.activated receptor alpha

ANGPTL4

Acyl.CoA desaturase

Adipocytokine signaling path-

way

Peroxisome prolifera-

tor.activated receptor alpha

TNFRSF1A

11
Wnt signaling pathway Glycogen synthase kinase.3 beta

VANGL1

fisetin DKK1

genistein Axon guidance Glycogen synthase kinase.3 beta EPHA2





Chapter 6

Ranking of Biclusters in Drug

Discovery Experiments

6.1 Introduction

In Chapter 5, the biclustering of gene expression data was introduced. Ideally, we would

like to examine all biclusters that were discovered by an algorithm. However, in many

cases, a large number of biclusters are reported in a bicluster solution. This implies

that a procedure to prioritize biclusters, irrespective of biclustering algorithm is needed.

Clearly, one open question is how to determine which biclusters are most informative and

rank them on the basis of their importance. In many studies, biclusters are empirically

evaluated based on different statistical measures (Koyuturk et al., 2004) or biologically

validated based on gene ontology annotations or other literature-based enrichment analysis

(Bagyamani et al., 2013). In FABIA, for example, biclusters are ranked according to the

information they contain. Pio et al. (2013) proposed to rank biclusters based on the p-

values of a statistical test, which compares functional similarity within and outside the

bicluster using a similarity measure computed according to the genes’ annotations in GO.

Kidane et al. (2013), on the other hand, computed bicluster enrichment score in drug

targets in order to prioritize biclusters.

In early drug discovery studies, biclustering of gene expression data can be routinely

applied to guide compound prioritization and gene module detection. Typically, early drug

discovery data involves not only gene expression data but also other information related

to the chemical structures and bioactivities properties of the set of compounds under

development. These data can be combined and mined in order to prioritize biclusters.

97
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Biclustering Solution

Data Matrix

...BC2BC1 BCK

Ranking

Ranking based
on information

content

Ranking based
on chemical
structures

Figure 6.1: Ranking of biclusters.

In this chapter, we present two approaches to evaluate and prioritize biclusters as

illustrated in Figure 6.1. In the first approach, presented in Section 6.2, we rank bi-

clusters based on information content. In Section 6.3 we discuss a second ranking ap-

proach in which the biclusters are ranked based on chemical structure. The R package

biclustRank, discussed in Chapter 10, is used to rank the biclusters and to visualize the

results.

6.2 The Information Content of Biclusters

6.2.1 Theoretical Background

We consider a FABIA model (for a solution with K biclusters) of the form

X =
K
∑

k=1

λk γT
k + ǫ = Λ Γ + ǫ , (6.1)
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where ǫ ∈ R
N×M is additive noise; λk ∈ R

N is the vector of feature memberships to the

k-th bicluster and γk ∈ R
M is the vector of sample memberships to the k-th bicluster

(Hochreiter et al., 2006).

According to Eq. 6.1, the j-th sample xj , i.e., the j-th column of X , is

xj =
K
∑

k=1

λk γkj + ǫj = Λ γ̃j + ǫj , (6.2)

where ǫj is the j-th column of the error matrix ǫ and γ̃j = (γ1j , . . . , γKj)T denotes the

j-th column of the matrix Γ. In this model, ǫ is N(0, Ψ)-distributed, γ̃j ∼ N(0, Ξj) where

the covariance matrix Ξj is diagonal, xj ∼ N(0, Ψ + ΛΞjΛT ) and xj

∣

∣γ̃j ∼ N(Λ γ̃j , Ψ).

FABIA allows to rank the extracted biclusters analogously to principal components

which are ranked according to the data variance they explain. Biclusters are ranked

according to the information they contain about the data. As shown in (Hochreiter et al.,

2006), the information content of γ̃j for the j-th observation xj is the mutual information

between γ̃j and xj as

I(xj ; γ̃j) = H(γ̃j) − H(γ̃j | xj) = 1
2 ln

∣

∣IK + Ξj ΛT Ψ−1 Λ
∣

∣ , (6.3)

where H is the entropy. The independence of xj and γ̃j across j gives

I(X ; γ) = 1
2

M
∑

j=1

ln
∣

∣IK + Ξj ΛT Ψ−1 Λ
∣

∣ . (6.4)

To assess the information content of one factor, factor γ̃k is removed from the final

model and, consequently, the explained covariance ξkj λk λT
k , where ξkj is the jth column

in the covariance matrix Ξj , must be considered as noise:

xj | (γ̃j \ γkj) ∼ N
(

Λ γ̃j |γkj=0 , Ψ + ξkj λk λT
k

)

(6.5)

The information of γkj given the other factors is

I
(

xj ; γkj | (γ̃j \ γkj)
)

= H(γkj | (γ̃j \ γkj)) − H(γkj | (γ̃j \ γkj), xj) (6.6)

= 1
2 ln

(

1 + ξkj λT
k Ψ−1λk

)

. (6.7)
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Again independence across j gives

I
(

X ; γT
k | (γ \ γT

k )
)

= 1
2

M
∑

j=1

ln
(

1 + ξkj λT
k Ψ−1λk

)

. (6.8)

This information content gives that part of the information in x that γT
k conveys across

all examples. Note that the information content grows with the number of nonzero λk’s

(size of the bicluster).

6.2.2 Application to mGluR2PAM Project

For illustration, we use the mGluR2PAM dataset. The gene expression matrix X consists

of J = 566 genes and n = 62 compounds,

X =























X1,1 X1,2 . . . X1,62

X2,1 X2,2 . . . X2,62

. . . .

. . . .

. . . .

X566,1 X566,2 . . . X566,62























.

Using the mGluR2PAM data matrix as input, we analyze the data using the fabia

package with p=10 biclusters. For example, the first panel in Fig. 6.2 shows the informa-

tion content of 10 biclusters. We notice that the information content of the first bicluster

in the solution (361.15) is bigger than the information content of the other biclusters.

6.3 Ranking of Biclusters Based on their Chemical

Structures

6.3.1 Incorporating Information about Chemical Structures

Similarity

In the previous section, we ranked the biclusters according to their information content.

In this section, we further evaluate how homogeneous are the biclusters according to the

chemical structure similarity scores of the compounds belonging to the biclusters. Hence,

a bicluster in which the compounds are similar in terms of their chemical structure receives

a higher rank than those with low chemical similarity.

Let Z be the chemical structure matrix containing F binary features, representing
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Figure 6.2: Top left: the information content of biclusters. Top right: the information
content of samples. Lower left: the loadings of biclusters. Lower right: the factors of
biclusters.
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the chemical structure of n compounds. We can calculate a similarity score, Sij for pair

compounds i and j, for all (i, j) ≤ n using the Tanimoto statistic based on all F binary

features. The similarity matrix, Sn, is given by

ZF ×n =























Z11 Z12 . . . Z1n

Z21 Z22 . . . Z2n

. . . .

. . . .

. . . .

ZF 1 ZF 2 . . . ZF n























, Sn =























S11 S12 . . . S1n

S21 S22 . . . S2n

. . . .

. . . .

. . . .

Sn1 Sn2 . . . Snn























.

For each bicluster, we can derive from Sn a submatrix of similarity scores (Sk) of the

compounds belonging to the kth bicluster. In the next step, we compare the distribution

of the compound’s similarity scores between the biclusters. Biclusters of interest are

characterized by homogeneous and relatively high similarity scores. Note that biclusters

with either 1 gene or sample are excluded from the analysis.

Table 6.1: Summary statistics of the structural similarity scores by bicluster. Here, the
biclusters are ordered according to the coefficient of variation (CV). The higher the CV,
the greater the dispersion in the bicluster. Biclusters with 1 sample or gene are excluded.

BC mean median SD CV MAD Range IQR
BC8 0.39 0.37 0.05 12.31 0.02 0.09 0.04
BC7 0.49 0.48 0.16 33.23 0.06 0.51 0.07
BC6 0.44 0.43 0.15 33.25 0.16 0.49 0.22
BC4 0.38 0.33 0.14 35.31 0.12 0.43 0.15
BC3 0.22 0.19 0.11 50.48 0.10 0.48 0.17

BC10 0.28 0.23 0.15 52.66 0.14 0.53 0.26
BC2 0.20 0.17 0.11 57.19 0.08 0.66 0.12
BC9 0.18 0.14 0.13 70.96 0.08 0.65 0.15

Table 6.1 presents the summary statistics of the similarity scores by bicluster. Bi-

clusters with less variability is preferred. For those with comparable level of variability,

biclusters with higher mean/median are of interest. The coefficient of variation which

describes the amount of variability relative to the mean is used to rank the biclusters as

presented in Table 6.1. Biclusters 8,7,6 and 4 have similarity scores that are less dis-

persed. Although compounds in biclusters 2,3,9 and 10 are regulating similar subset of

genes, their structural similarity scores are less homogeneous compare to the other bi-

clusters. Biclusters 1 and 5 are ignored since they contain only 1 compound and 1 gene,

respectively.
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6.3.2 Similarity Scores Plot
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(a) Boxplot of similarity scores by
bicluster.
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(b) Biclusters are ordered according to the me-
dian value.

Figure 6.3: Priority will be given to biclusters showing consistently high similarity scores.

Several visualisation tools can be used to aid in prioritizing biclusters according to

other sources of information. This is highly beneficial when there are a large number of

biclusters to investigate.

Figures 6.3 (left panel) shows the distribution of the structural similarity scores of

compounds by bicluster. From the perspective of early drug discovery, a group of com-

pounds that are found to be biologically and structurally similar are of primary interest for

further development. Therefore, biclusters with less variability within the group and with

relatively high similarity scores (for example, BC7) will prioritized over other biclusters.

For direct visualization of the ordering of biclusters, the boxplots can be reordered

according to the median similarity score as displayed in Figure 6.3b. Using the median

similarity score to rank biclusters, biclusters 7,6,8 and 4 consist of the most similar subset

of compounds.

Figures 6.4 shows the cumulative distribution of the similarity scores within the bi-

clusters of interest. The distribution in biclusters 7,6,4 and 8 are shifted to the right

compared to the other biclusters indicating higher similarity scores in these biclusters.
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Figure 6.4: Cumulative distribution plot of the similarity scores by Bicluster. Interesting
biclusters have curves that are consistently shifted to the right, i.e, with high scores.
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(a) Gene expression similarities of compounds.
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(b) Structural similarities of compounds.

Figure 6.5: Similarity matrix of compounds from biclusters 6 and 7.

6.3.2.1 Heatmap of Similarity Scores

In Figure 6.5a, the blocks of compounds based on gene expresssion similarity for bicluster

6 (marked in red) and 7 (marked in green) are clearly reflected as well on the heatmap

of the similarity scores based on chemical structure (Figure 6.5b). These two biclusters

have no overlapping compounds and are interesting biclusters taking into account both

data sources.



6.3. Ranking of Biclusters Based on their Chemical Structures 105

6.3.3 Profiles Plot of Genes and Heatmap of Chemical Structures

for a Given Bicluster

We can visualize the transcriptional profiles and the chemical structures that differentiates

compounds in a bicluster from the rest (see Figure 6.6 for bicluster 6 and Figure 6.7 for

bicluster 7).
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(b) Heatmap of chemical structures.

Figure 6.6: Profiles plot of genes and heatmap of chemical structures associated to
bicluster 6.
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(b) Heatmap of chemical structures.

Figure 6.7: Profiles plot of genes and heatmap of chemical structures associated to
bicluster 7.
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Figure 6.8: FABIA bicluster 6.
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6.3.4 Loadings and Scores

We can further examine the factor loadings and the factor scores for a bicluster of interest.

These plots can help to identify genes/compound associated with the bicluster (Figure

6.8).

6.4 Discussion

Biclustering has been extensively used in extracting relevant subsets of genes and samples

from microarray experiments. In drug discovery studies, more information about com-

pounds (such as chemical structure, bioactivity properties, toxicity etc.) are available.

In this chapter, we show two approaches of ranking biclusters: (1) how FABIA ranks

biclusters according to their information content, which is an information-theory based

statistic and (2) how to incorporate other sources of information to prioritize biclusters.

For the latter, other biclustering methods, such as the Plaid model and ISA can be used.

The integration of additional information to rank gene-expression based biclusters

mainly focus on the use of similarity scores. Here, we used the Tanimoto coefficient which

is commonly applied for chemical structure similarity (Willett et al., 1998). However,

other similarity measures could be also used which may give slightly different scores and

in extreme cases may affect the ranking. This instability of the ranking is of minor concern

since we do not aim to choose one bicluster but rather to prioritize interesting biclusters.

In fact, we showed that different descriptive statistics may lead to a different ranks but

a similar set of prioritized biclusters. Although in this application, we only generated ten

biclusters to illustrate the analysis workflow, in other cases a large number of biclusters

can be extracted and this exploratory approach would be useful.

In Section 6.3 we focus on ranking based on chemical structure. Of course, other

sources of data can be used. The analysis presented in this chapter helps us not just to

identify local patterns in the data but interpret these patterns in terms of the dimensions

of interest (for example chemical structures, toxicity etc.).
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Chapter 7

Multiple Factor Analysis (MFA)

for QSTAR Data Integration

7.1 Introduction

In the second part of the thesis we discussed semi-supervised methods for data inte-

gration of the QSTAR datasets. In this part of the thesis we focus on unsupervised

approaches and in particular, in this chapter, we focus on Multiple Factor Analysis (MFA,

Escofier and Pagés (1988)). Multiple Factor Analysis makes it possible to analyze several

sets of variables simultaneously and to discover the underlying patterns which are common

across the different data sets. Multiple Factor Analysis makes it possible to analyse sev-

eral sets of variables simultaneously or globally with the focus on making the structure of

the samples induced by these sets of variables balanced or comparable. Since the analysis

consists of several datasets, measured on the same group of samples (i.e., compound), the

first step of a MFA is a normalization step in which the different datasets are normalized

so the variability across the different datasets becomes comparable. Without this step a

single dataset can dominate the analysis. The number of variables in each dataset may

differ and the nature of the variables (nominal or quantitative) can vary from one dataset

to the other but the variables should be of the same nature in a given group. In the

context of the QSTAR framework, the samples are the compounds and the variables in

the different datasets represents gene expression levels, bioactivity read-outs and chemical

structures.

MFA was first introduced by Escofier and Pagés (1988) with application on chemo-

metrics data. It then gained popularity among researchers working on multiple datasets

111
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measured on the same observations. Recent fields of application include environmen-

tal chemistry (Stanimirova et al., 2005), fisheries (Petitgas and Poulard, 2009), geology,

broadcasting, neuroimaging, and also in genetics (Franco et al., 2010, de Tayrac et al.,

2009, Pavoine and Bailly, 2007). In this chapter, we introduce a new data analysis ap-

proach for drug discovery studies using MFA. In Section 7.2 we present different aspects

of the MFA method. Section 7.3 is devoted to the application of the MFA within the

QSTAR context and the proposed method is applied to the EGFR data, as discussed in

the previous parts of the thesis. We conclude the chapter with a discussion presented in

Section 7.4.

7.2 Multiple Factor Analysis

Principal component analysis (PCA, Jolliffe (2002)) has been used to find correlated

features in an unsupervised manner. In the context of ordinary PCA, only one set of

variables is analysed. Performing PCA on multiple sets of variables simultaneously was

introduced by Escofier and Pagés (1988) who suggested to use Multiple Factor Analysis

(MFA) (Escofier and Pagés, 1990, 1988, 1983) for this setting. MFA can be seen as a

weighted PCA. It is characterized by two steps: (1) dataset normalization via weighting

of the inverse of the first singular value; and (2) ordinary Principal Component Analysis

(PCA) analysis (frequently implemented as SVD) on the combined normalized datasets.

7.2.1 Normalization Step

Quantitative Datasets

Let X1, . . . , XD be a set of D data matrices where each matrix has a dimension of

n × md, d = 1, . . . , D for which the number of columns of the dth matrix is equal to

md variables and the number of rows equal to n samples. The main idea behind MFA is

the weighting of the D datasets to achieve a ’fair’ data integration. Following the idea

of a z-score normalization, where each variable is centered and divided by its standard

deviation making all variables comparable, each dataset, Xd, is divided by its first singular

value (which can be seen as the standard deviation) so that their first principal component

has the same length prior to the integrated analysis.

Recall that the singular value decomposition (SVD) of an n × m data matrix X can

be expressed as

X = UΛVT =

r
∑

i=1

σiuiv
T
i with UT U = VT V = I,
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where r is the rank of X and Λ is a diagonal matrix with a rank-ordered set of positive

singular values, σ1 ≥ σ2 ≥ . . . ≥ σr, as elements. The matrices U and V are n × r and

m × r matrices, respectively containing the orthonormal left-singular vectors (u1, . . . , ur)

and the orthonormal right-singular vectors (v1, . . . , vr). SVD decomposes X into a sum

of r rank-one matrices σiuiv
T
i , termed as SVD layer. Typically, only the first K layers

with large σi values are retained to represent the data and the remaining (r − K) layers

are considered as less useful.

Then the size of the dth matrix, Xd, can be measured by
∑

i

σ2
di where σ2

di is the

eigenvalue of the ith component. In addition, the redundancy of information in the sub-

matrix can be measured by the proportion of variance accounted for by the first principal

component, given by σ2
d1/
∑

i

σ2
di. Hence, matrix Xd can be corrected for size and redun-

dancy using the inverse of the first singular value as weight as shown (Van Deun et al.,

2009):
1

√

∑

i

σ2
di

1
√

σ2
d1

∑

i

σ2
di

Xd =
1

σd1
Xd.

Escofier and Pagés (1988) proposed to use the matrix-specific weight in order to cor-

rect for possible unwanted dominance of large matrices and to avoid that the solution is

dominated by the matrix with homogeneous information. Note that this weighting does

not balance the total variance of the different datasets. Thus, a set with more features will

contribute to more dimensions but will not particularly contribute to the first dimension.

Moreover, a matrix Xd that contains only a number of correlated variables can strongly

contribute to only one dimension which will be the first dimension (Escofier and Pagés,

1988).

Qualitative Dataset

To integrate categorical dataset into MFA, Bécue-Bertauta and Pagés (2007) showed the

equivalence between Multiple Correspondence Analysis (MCA) and PCA. MCA is a data

analysis technique for nominal categorical data, used to detect and represent underlying

structures in a data set. This is done by representing data as points in a low-dimensional

space. The procedure thus appears to be the counterpart of PCA for categorical data

(Greenacre, 2007). In MCA, each category is associated with an indicator variable. In the

case of a set of F binary variables, each variable will have two indicators giving a total

of K = 2 · F indicator variables. Let Z be a data matrix of categorical variables with K
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categories for which the ikth entry is given by

zik =

{

1 sample i belongs to the category k,

0 otherwise.

The results of MCA applied on matrix Z can be obtained by performing a PCA on

(zik − wk)

wk

where wk =
n
∑

i

pi · zik. Here, pi is the weight assigned for the ith sample which is usually

uniform with pi = 1/n. Hence, wk is simply the mean of the kth column. Note that the
K
∑

k

wk = F where F is the total number of binary variables. Finally, the kth column is

weighted by wk/F to have a PCA-MCA equivalent results. Hence, following the discussion

in the previous subsection, we use 1/σd1 for the weight of Xd in the case of quantitative

set and (wkd
/Fd)/σd1 in the case of a categorical dataset.

7.2.2 Simultaneous Analysis

Once the data matrices are normalized following the procedure discussed in the previous

section, MFA can be applied for the combined normalized data.

Let X = [X1| . . . |Xd| . . . |XD]. The number of samples (rows) is n, which is the

common dimension among the D matrices, and the total number of variables (columns)

in X is m =
D
∑

d=1

md where md is the number of variables in Xd, then X is an n × m

matrix. Using the SVD decomposition, X can be expressed in the form of

X = UΛVT = TVT , (7.1)

where T = UΛ are the principal components (associated with the observations) and the

columns of V store the corresponding loadings associated to the principal components

(associated with the variables).

Note that T denotes one matrix of common component scores the same across all

D data sources representing a compromise score for all datasets. The matrix V can be

partitioned in the same way as X, representing the matrix of combined feature loadings.
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Specifically, V can be expressed as a column block matrix as:

V =





















V1

...

Vd

...

VD





















= [VT
1 | . . . |VT

d | . . . VT
D]T ,

where Vd is a md × r (r is the rank of X) matrix storing the right singular vectors

corresponding to the variables of the matrix Xd. Following the dataset weighting of

MFA, we define matrix X̃,

X̃ = [
√

α1X1| . . . |√αdXd| . . . |√αDXD],

where αd = 1/σ2
d1. Hence, the SVD of X̃ can be expressed as

X̃ = ŨΛ̃ṼT .

It can be shown (i.e. Abdi et al. (2013)) that the factor (dimension) scores for the

observations can be obtained by

T = ŨΛ̃,

and the loadings for the dth dataset are obtained as

Vd =
1√
αd

ṼT
d .

7.2.3 Identification of Important Features, Observations per Factor

MFA highlights the important features and observations that best describes each compo-

nent. As in the standard PCA, the MFA factor scores, which is seen as composite scores

from all datasets, can be used to identify observations with similar structure across all

the datasets. As the components are obtained by combining the original variables, each

variable ‘contributes’ in a different way to each component in the solution. The contribu-

tion of each variable can be measured by the loading of a variable on a component. The

loading reflects the importance of that variable for this component. In MFA, the loadings

are the correlations between the original variables and the factor scores. The higher is the

loading the better this variable is ‘explained’ by the components.

Alternatively, we can also evaluate the importance of each observation (variable) to a

specific component as the proportion of the explained variance of the component by the
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observation (variable). This statistics is called contributions (Abdi and Williams, 2010,

Husson et al., 2011).

For the observation, the contribution of the ith observation to the rth component,

denoted by ctri,r is given by the ratio of the squared weighted factor score (ti,r) and the

component’s variance, its eigenvalue σ2
r . For observations with equal weights of 1/n, it

is equal to,

ctri,r =
1
n · t2

i,r

σ2
r

, 0 ≤ ctri,r ≤ 1 and

n
∑

i=1

ctri,r = 1.

The larger the value of ctri,r , the higher the contribution of the ith observation to

the rth component. Observations with high contributions and whose factor scores have

different signs can then be contrasted to help interpret the component (Abdi et al., 2013).

Similarly, we can find the important variables for a given component by computing

variable contributions given by the ratio of its squared weighted loading (v2
j,r) for this

component and its variance. The variance of the loadings for the variables is equal to one

when the weights 1/σj are used for the jth variable, that is

1 =
m
∑

j=1

1

σj
· v2

j,r.

Note that variables from the same dataset have the same weight, 1/σj . Thus, the variable

contribution, denoted by ctrj,r, is given by

ctrj,r =
1

σj
· v2

j,r where 0 ≤ ctrj,r ≤ 1 and

m
∑

j=1

ctrj,r = 1.

The higher the value of ctrj,r the higher the contribution of the variable for the rth

component. Variables with high contributions and whose loadings have different signs

can then be contrasted to help interpreting the component.

The total contribution of the Xd to the rth component, denoted by ctrd,r is given by

ctrd,r =

md
∑

j=1

ctrj,r.

Between Dataset Correlation

The Escoufier’s RV coefficient (Robert and Escofier, 1976), a non-centered squared coef-

ficient of correlation between two matrices, can be used to evaluate the similarity between

two datasets. Specifically, the RV coefficient between datasets X1 and X2 is computed
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as

RV =
tr(X1XT

1 × X2XT
2 )

√

tr(X1XT
1 × X1XT

1 ) × tr(X2XT
2 × X2XT

2 )
,

where 0 ≤ RV ≤ 1.

If the RV coefficient is very low then it is not useful to study these datasets simulta-

neously since there are no common structures shared by the two datasets. We can also

evaluate the canonical correlation coefficient between component r and dataset Xd as

well. This would indicate whether the structure defined by component r is induced by the

variables of dataset Xd.

7.3 Application to the EGFR Project

The QSTAR data structure consists of three data sources, shown in Figure 7.1. Our aim

is to find a subset of genes, bioactivity and chemical structures which share a common

dimension, i.e. they share similar patterns across a subset of compounds.
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dataset normalization

Figure 7.1: QSTAR concatenated data for MFA.

Using the EGFR datasets, we compute the between dataset correlation matrix (shown

in Table 7.1). RV ranges between 0.34 to 0.56 indicating that a common structure is

present between the three datasets.

The highest eigenvalue obtained from the separate PCA of X and Y and MCA for Z

are equal to 1316.48, 2.898 and 0.15177, respectively. The variable loadings are presented

in Figure 7.2. From these plots, we can identify the variables with high contribution to
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Table 7.1: RV coefficients for the 3 EGFR datasets.

Datasets X Y Z

Genes (X) 1.00 0.56 0.36
Bioassays (Y) 0.56 1.00 0.34
Chemical Structures (Z) 0.36 0.34 1.00

the first 2 components. Notice that the fingerprint feature in Figure 7.2b marked in red

is the fingerprint feature we highlighted in Chapter 2.

The compound scores for the first 2 factors are also shown in Figure 7.3a. Moreover,

the contribution of each compound to the construction of a factor allows us to detect

which compounds have the highest contribution to the factor. Figure 7.3b,the compounds

scores and contributions for the first factor where the two reference compounds, gefitinib

and erlotinib, are part of the group having a higher contribution.

The contribution of each dataset reflected by the proportion of the variance of a

component that can be attributed to this dataset is given in Table 7.2. The larger the

contribution of a dataset to a component, the more important this dataset is for this

component. We can see that the three data sources have comparable contributions on

the first factor. Alternatively, we can inspect the canonical correlation between the MFA

factor and each dataset. We can see in Table 7.3 that the first MFA factor is highly

correlated with the three datasets while the second factor is mostly correlated to the

chemical structure dataset.

Table 7.2: Contributions of each dataset to the first 2 factors. Note that the sum of the
contributions by factor is 1.

Datasets Factor 1 Factor 2
Genes (X) 35.28 16.40
Bioassays (Y) 37.59 10.48
Chemical Structures (Z) 27.13 73.11

Table 7.3: Canonical correlation of each dataset to the first 2 factors.

Datasets Factor 1 Factor 2
Genes (X) 0.92 0.51
Bioassays (Y) 0.95 0.51
Chemical Structures (Z) 0.86 0.95

Once a subset of features, in each data source, with high contribution to the first

factor were identified we inspect their profiles plots which is presented in Figure 7.4.

Notice that the quantitative features are differentially expressed among the compounds
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(first 7 compounds) that are close to the 2 reference compounds in Figure 7.4. Moreover,

those compounds are characterized by the absence (in gray) of the fingerprint features that

are highlighted in Figure 7.2b. This compound set contributing most to MFA factor 1 is

the same compound cluster without JNJ-24 identified using the weighted similarity-based

clustering presented in Chapter 4.
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Figure 7.4: Profiles of features with the highest contribution to the first MFA factor.
The plot highlights the profiles of the features that best describes the structure of the
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7.4 Discussion

In this chapter, we apply the MFA method in order to integrate the three QSTAR datasets.

This allows us to identify the main structures shared by these datasets. In this chapter

a structure is defined as a subset of genes, bioactivity data and chemical structure which

share similar patterns across a subset of compounds.

We have shown that, for the EGFR datasets, it is possible to identify, using the

MFA method, a subset of features in each data source that have the same expression

profile across a subset of compounds. Hence, we were able to identify the patterns in the

chemical structures that initiate the biological pattern that was observed in the bioactivity

data and gene expression data. MFA, however, is an exploratory multivariate technique.

The inferential aspects particularly on the reliability and robustness of the results should be

further investigated. Moreover, MFA uses a weighting scheme to achieve a fair integration

of datasets. It gives less weight to bigger and/or redundant datasets. In extreme cases,

this would mean giving more weight to noisy data which is undesirable. Also, in the

presence of multiple datasets, it would be reasonable to give more weight to datasets

that share more information. Hence, the normalization step in MFA could be modified or

improved to account for other properties inherent in high-dimensional datasets.

In this chapter we focused on the first factor since all 3 datasets have comparable

influence on this structure. Typically, this is the case in early drug discovery projects

when the focus is placed on the primary assays, which are (in most cases) correlated, and

the bioassay data reflects one dominant structure. The dominant common structure in the

MFA solution is further exploited in the context of gene module enrichment. Moreover,

for each dataset, only the top contributing features to the factor were selected to facilitate

interpretation of the latent structure. This can be done by setting a threshold value on

the univariate association between the feature and the latent factor scores. Another way

is to simply select the top k << md features, with k chosen arbitrarily. In Chapter 9, we

will present an alternative method of component-wise feature selection approach.

In the next two chapters, we continue to focus on MFA. In Chapter 8 we show how

MFA can be used in order to enrich a gene module. In this setting, we use only one data

source and our aim is to find, in a given expression matrix, a subset of genes with similar

expression profiles across a subset of compounds. In Chapter 9 we present the sparse

MFA method that penalizes for the number of variables/samples related to a given factor

and explore the connection between MFA and biclustering as presented in Figure 7.5 .
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Figure 7.5: Modified MFA for feature selection and bicluster extraction. In SMFA, the
sparsity is only introduced in the dimension of variables whereas in biMFA, the sparsity is
imposed on both dimensions: samples and variables.





Chapter 8

Enrichment of Gene Expression

Modules using Multiple Factor

Analysis and Biclustering

8.1 Introduction

In Chapter 7, we discussed the use of MFA as an integrative method for the analysis

of several data sources. In this chapter, we present the use of Multiple Factor Analysis

(MFA) and biclustering methods for gene set enrichment when the subset of the lead

genes is known a priori. Recall from Chapter 6 that local patterns were found by applying

biclustering methods to the data matrix. A bicluster can be of interest in case it contains

genes that are not only regulated under a subset of conditions but are also mostly func-

tionally coherent. The summarized expression profiles of these genes that act in concert

to carry out a specific function will then be presented as a gene module . Hence, a gene

module is a subset of known genes for which a local pattern is observed across a subset of

compounds. The aim of the analysis presented in this chapter is to find new genes which

share the same local pattern as the genes belonging to the gene module. We term this

process, a gene module enrichment.

125
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8.2 Data Setting

Let X be an expression matrix of G genes (rows) and n compounds (columns). We

assume that X can be partitioned into two submatrices sharing a common dimension. In

the case where a set of lead genes are known, then we can extract it from X to form the

submatrix X1 while the remaining genes form the other submatrix X2. The matrix X

partitioned into two submatrices sharing the same columns is shown in (8.1).

X =

(

X1

X2

)

. (8.1)

Alternatively, the submatrices could also share the same rows in common. For instance,

a matrix X1, contains gene expression measurement for a set of compounds under a given

condition. In addition, there is another set of compounds that have been profiled on the

same set of genes for which the expression matrix is denoted by X2. In this case, the two

matrices can be merged by rows to give one gene expression matrix X,

X = (X1 X2) . (8.2)

In general, for the data matrix given in (8.1) we are looking for a subset of rows in

X1 and X2 sharing similar profiles across a subset of the columns. For the data matrix

specified in (8.2), we aim to identify a subset of conditions from both submatrices having

similar profiles across the rows. In this chapter, the focus is placed on the first setting

with two subsets of gene expression data measured on the same set of observation. Note

that we assume that local pattern(s) are observed for the genes belonging to X1 (i.e., the

gene module).

8.3 Gene Module

Consider an experiment in which gene expression data of G genes is available for a set of

n compounds. M of this G (M << G) genes are a priori identified as a gene module of

interest. Let XM be the expression matrix of the gene module given by
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XM =























X11 X12 . . . X1n

X21 X22 . . . X2n

. . . .

. . . .

. . . .

XM1 XM2 . . . XMn























.

Note that XM , containing information about M genes, is a submatrix of the

expression matrix X.

8.3.1 Examples of Gene Module

The first example of a gene module is related to the drug discovery project mGluR2PAM

introduced in Chapter 1. The mGluR2PAM project consists of a set of n = 62 compounds

described by the expression level of G = 566 genes. The research question is related to a

gene module comprising of four (M = 4) genes that are known to be biologically related

and are linked to the phenotype of interest. Figure 8.1a displays the profiles of these 4

genes where similar expression pattern can be detected across a subset of 6 compounds.

The second example of gene module that we consider in this chapter is related to

the CMap data. In this example, the gene module is a subset of genes identified to

be differentially expressed on a certain condition. For example, the top 8 differentially

expressed genes for cluster 1, presented in Chapter 5, of the CMap data whose profiles are

presented in Figure 8.1b. Note that, in this example, M = 8 and G = 2434 for n = 35

compounds.

8.3.2 Gene Module Summarization

Genes that belong to the gene module are expected to be correlated since they share

the same local pattern in the expression matrix. For example, in Figure 8.1 we can

clearly observe the local patterns among the genes belonging to the two gene modules.

Hence, we expect that a one factor solution in a factor analysis model will capture a

substantial proportion of the total variability from these genes. The factor, is the true,

but unobserved, gene module. Therefore, classical variable reduction methods such as

factor analysis model or the principal component analysis or their variants can be used to

estimate the latent factor that summarizes the information present in all the genes of this

module.

In Figure 8.2, we present three different methods to summarize the gene module:
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(a) Lead genes from the mGluR2PAM project.
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Figure 8.1: Profiles plot of genes in a module.
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Figure 8.2: Gene module summarization using the first factor from Factor Analysis, PC1
from PCA and metafarms (mGluR2PAM data).

(1) factor analysis with one factor solution (Factor 1); (2) the first principal component

in a principal component analysis (PC1) and (3) by using the summarization method

metaFarms (Verbist et al., 2015). Note that for the mGluR2PAM data, the summarization

obtained by the three methods are highly correlated. Factor 1 explains about 88.7% of

the variance while PC1 captures about 91.4% of the total variance in the data.

8.3.3 Enrichment of Gene Module

Let XM̄ be a (G − M) × n submatrix of X without the module of interest. Note that

XM and XM̄ have the same set of compounds (the same column dimension), i.e.,

X =

(

XM

XM̄

)

,

In contrast to XM that contains highly correlated genes and can be summarized using

the first factor/component, XM̄ needs at least 15 factors to retain 80% of the variability

(Figure 8.3), an indication that there is no dominant structure present in the second set.

Plotting the scores of the first principal components of the two submatrices in Figure

8.4 a shows that the first PC is dominated by the 6 compounds (marked in red) while only

one compound contributed to the first PC in XM̄ (Figure 8.4b). Given that we have one
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Figure 8.3: Scree plots of the 2 submatrices.

known structure in XM , the first PC, we wish to find if that structure is also present in

XM̄ , i.e., our aim is to identify a subset of genes in XM̄ having similar expression profiles

to those genes in XM . The result presented in Figure 8.4 is expected since we do not

assume that there is only one dominant pattern in XM̄ . In the next section we illustrate

how the multiple factor analysis can be used in order to identify the subset of genes in

XM̄ that share the same local pattern as the genes belonging to the gene module in XM .
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Figure 8.4: PC1 compound scores for each submatrix.
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8.4 MFA for Gene Module Enrichment

As introduced in the previous chapter, Multiple Factor Analysis (MFA, Escofier and Pages,

1994) allows to analyse several sets of quantitative variables which were measured on the

same units, simultaneously. The units are the common dimension in the submatrices. The

aim of the analysis is to study the relationship between the observations, the variables, and

the datasets. In particular, we want to find links between datasets (presence of common

structure) and to quantify the contributions of each dataset to the common structure.

The basis of MFA can be viewed as a weighted PCA applied to multiple datasets. It begins

with a normalization of each dataset to ensure that no particular dataset can dominate

the common structure. In the second step, a PCA of concatenated normalized datasets

is performed.

In this particular application of MFA on gene module enrichment, two submatrices

sharing the same samples are involved. Each submatrix is normalized and combined to

form matrix X. Here we define the combined matrix X with compounds (the common

dimension) in the rows and genes in the columns. Hence, the concatenated gene expression

matrix is written as

X =

(

1

σ1M

XT
M

1

σ1M̄

XT
M̄

)

. (8.3)

For the mGluR2PAM data, the largest eigenvalues for XM and XM̄ are respectively

3.6579 and 140.0129 indicating a need to normalize these two matrices prior to combining

them. We use 0.5228 as weighting factor for XM and 0.0845 for XM̄ . The same holds

for the CMap data where the largest eigenvalues for XM and XM̄ are respectively 6.4806

and 812.9709.

We apply MFA to the mGluR2PAM gene expression dataset. The results are presented

in Figures 8.5a and 8.5b and Table 8.1. The gene loadings are presented in Figure 8.5a.

Genes with relatively high and low loadings are related to the first factor. Note that

the four genes comprising the gene module are marked in red. Figure 8.5b shows the

compounds scores. In addition to the six lead compounds marked in red, we can observe

three compounds with relatively low scores in relation to the first factor. As we can see in

Table 8.1, for the mGluR2PAM data, about 24% of the variance of the first factor can be

attributed to the second gene set and the majority of the contributions, as expected, come

from the gene module. The second factor can be totally attributed to the second gene

set which should be the case since the first factor already accounts for the one structure

present in the gene module.

The expression profiles of genes that are highly correlated with the first MFA factor are

shown in Figure 8.6. The enriched gene module consists of 42 genes instead of 4 genes

that originally belong to the gene module. In addition to the 6 compounds (marked in
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Figure 8.5: Genes and compounds that contribute to the first factor of MFA.

Table 8.1: Dataset contribution to each factor.

Datasets Factor 1 Factor 2
XM 76.48 0.68
XM̄ 23.52 99.32
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red) that characterize the gene module, the enriched set identifies also 3 extra compounds

(marked in blue) that are also active on most of the member genes of the enriched gene

module. The first principal component can be used to summarize these genes into one

set of compromised scores, and in this example, it can explain 72% of the variability in

the dataset (Figure 8.7).
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Figure 8.6: mGluR2PAM: Profiles plot of enriched gene module.
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8.5 Biclustering and Multiple Factor Analysis to find

Gene Modules

The results of the MFA presented Figure 8.6 reveal a subset of genes (the enriched gene

module) that are regulated by a subset of compounds. Using the terminology of this book,

these subsets of genes and the compounds form a bicluster. In this section we explore the

similarity between MFA and FABIA. We focus on factor loadings and factor scores and

investigate how the local patterns in X can be identified using MFA or FABIA.

Figure 8.8 shows the factor loading and factor scores obtained for MFA and FABIA. We

notice that both factor scores (of the compounds) and factor loadings (of the genes) are

highly correlated indicating that both MFA and FABIA identified the same enriched gene

module. Consequently, the expression profiles presented in Figure 8.8c are very similar to

the profiles presented in Figure 8.6 (for the MFA solution).

Similar patterns were obtained for the CMap dataset (shown in Figure 8.9), but in

addition, it clearly highlights the effect of the sparsity factor imposed on the Fabia loadings

which is not available under MFA (Figure 8.9a). While FABIA searches only for correlated

profiles across a subset of samples, MFA uses the similarity of gene profiles across all

compounds. As a result, some genes discovered by MFA are not part of the FABIA

solution and vice versa. This is the case since the size of the bicluster depends on

the sparseness parameters specified for the FABIA algorithm. The enriched CMap gene

module is the first bicluster discovered by FABIA consisting of 12 genes and 8 of which

are the genes from the gene module (Figure 8.9c).

For the mGluR2PAM project, the second bicluster obtained by FABIA that contains

the 4 lead genes is composed of 42 genes which were also identified by the MFA (as the

top 42 most correlated genes with the first factor). Interestingly, although the two sets of

genes identified by the two methods are not identical, the estimated latent structure (i.e.

summarized gene module) underlying them is almost identical as shown in Figure 8.10a.

On the other hand, for the CMap data, the gene modules from FABIA and MFA, each

consisting of 12 genes, is also correlated (Figure 8.10b).

8.6 Discussion

The application of Multiple Factor Analysis and biclustering technique in the context of

gene expression module enrichment is summarized in Figue 8.11.

MFA is a descriptive multivariate technique for integrating multi-source datasets or

multiple datasets from the same source. This approach helps us to find common struc-

tures within and between the different datasets. It is typically used to discover common
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(b) Factor scores.
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(c) Profiles plot of genes in FABIA bicluster 2.

Figure 8.8: The mGluR2PAM Dataset: FABIA bicluster 2 versus MFA factor 1.
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(c) Profiles plot of genes in the bicluster.

Figure 8.9: The CMap Dataset: FABIA bicluster 1 versus MFA factor 1.
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Figure 8.10: Summarized gene module obtained for MFA and FABIA.

structures shared by several sets of variables describing the same set of observations. In

this chapter, we have multiple datasets from the same source, the gene expression data.

The dataset is split into two groups: (1) lead genes (termed as “gene module") and (2)

the other genes in the dataset. Here, we propose to use the MFA as a gene module en-

richment technique wherein additional genes from the second group that are co-regulated

with the lead genes are discovered. Using MFA, the first factor will always be described

by the two groups of genes. Without the splitting and normalization step, the structure

of the lead genes may not be identified as the main factor of variability in the data due

to the noisy nature of microarray datasets.

Biclustering analysis of gene expression data using FABIA produces several biclusters.

A bicluster containing the gene module can be identified as an enriched gene module.
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Figure 8.11: Gene module enrichment technique using MFA and biclustering.

However, in contrast to MFA that does not depend on any tuning parameters, the bi-

clustering results are not stable and may depend on the input parameters. Although in

MFA, the interest lies only on the first factor, the other structures present in the dataset

characterizes the remaining factors. Here, MFA can be viewed as a guided biclustering

method as supported by the similarity of the results of MFA and FABIA for gene module

enrichment purpose.

In FABIA, we take a bicluster as the enriched gene module where the number of

member genes per bicluster depends on the specified tuning parameters. In MFA, as

mentioned in Chapter 7, we can highlight important features, i.e. genes with high loadings

or contributions to factor 1 according to some cut-off value for the loadings. In the next

chapter, we propose to modify the MFA method by incorporating component-wise feature

selection which facilitates bicluster extraction for multiple data sources.



Chapter 9

Unsupervised Integrative

Methods for High Content

Screening and Gene Expression

Data Analysis: Sparse MFA and

biMFA

9.1 Introduction

In this chapter, we focus on two extensions of the methodology presented in Chapters 7

and 8. The first extension is related to a new data source, high-content imaging data

(HCS) and the second is an extension of the MFA methodology which includes a penalty

on the number of variables and observations related to a given factor in the solution.

The underlying idea is that the inclusion of high-content imaging data in the data

analysis pipeline and the integration of this data source with gene expression data is

expected to improve our understanding of the on- and off-target effects of compounds

already identified as potential leads by traditional high-throughput screening (HTS) in

early drug discovery. During lead optimization, a very narrow chemical space is being

considered and transcriptional profiling can help elucidate the mechanism of action of

these compounds. Verbist et al. (2015) highlighted the utility of gene expression profiling

139
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during the lead optimization phase, particularly on the detection of off-target effects. On

the other hand, HCS provides information-rich data sets containing readouts on multiple

cellular parameters. Image-based screen cellular phenotypes can suggest both selectivity

and toxicity of lead compounds.

Independent analysis of these two data sources can already reveal valuable information

about the compounds’ mechanism of action. For instance, extracting subsets of function-

ally coherent genes from the microarray data can suggest possible biological pathways of

lead compounds. Similarly, identifying a number of HCS parameters indicating cellular

phenotypic changes upon compound treatment relative to the control can direct us to iden-

tify phenotypic subclasses without the need to inspect every compound image. Connecting

gene expression to the phenotypic changes in HCS can serve as a "biology" screening tool

of lead compounds. In fact, HCS and gene expression data complement each other to

provide a more mechanistic insight into compounds’ biological activity, most especially

genotoxicity. The image-based phenotypic changes may be rationalized by identifying the

affected genes. For example, compounds exhibiting phenotypic features indicating toxic

events can be explained by compound perturbations on toxicity-related genes. Likewise

the biological relevance of gene expression can be confirmed by HCS images. Hence, an

integrated analysis of these two datasets can provide a deeper understanding of compound

effects both on transcriptional and phenotypic levels.

The Multiple Factor Analysis discussed in Chapter 7 can be applied to integrate these

two datasets. Recall that MFA can be used to find co-regulated profiles between or among

the coupled matrices, that is multiple datasets defined on the same set of samples. As

mentioned in Chapter 7, the analysis consists of two steps: (1) dataset normalization via

weighting based on the inverse of the first singular value; and (2) Principal Component

Analysis (PCA) analysis (implemented as SVD) on the combined normalized datasets.

One difficulty related to the MFA presented in Chapters 7 and 8 is the interpretation

of a given factor or a selection procedure of variables and observations related to a given

factor. In this chapter, we address this problem by including, per factor, penalties for

variables, observations or both. Using these penalties, some of the loadings and scores

will be shrunk to zero and will not be related to the factor. This motivated the use

of sparse Principal Component Analysis (SPCA) (Zou et al., 2006, Witten et al., 2009)

which penalizes the estimation of loadings by integrating sparsity inducing penalty terms

in the regression criterion to shrink many of the loadings to zero (since most genes do

not contribute much or are just noise). Moreover, in early drug discovery microarray

experiments, biclustering techniques have been successfully applied to find local patterns

in the data, i.e. genes that are coregulated under a subset of conditions. The major

drawback is its reliance on random starting seeds that could produce inconsistent results
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(Sill et al., 2011). SPCA, however, is not suitable for biclustering since sparsity is induced

only in the estimation of gene loadings and not on the compound scores. A recent SVD-

based methods to detect block structures is the so called sparse SVD (SSVD), proposed

by Lee et al. (2010) and improved by Sill et al. (2011) using a robust version of the SSVD.

The SSVD method applies sparsity on both the left and right singular vectors, i.e., on

both observations and variables.

In this chapter, we continue to focus on integrated analysis and introduce two sparse

methods. The sparse Multiple Factor Analysis (SMFA) is presented in Section 9.3 and

a new biclustering algorithm for multi-source data, based on SSVD (biMFA, biclustering

using Multiple Factor Analysis) is presented in Section 9.4. In Section 9.2 we present the

data structure that will be considered in this chapter. The proposed methods are applied

to the PDE10 data and presented in Section 9.5.

9.2 Data Structure

The analysis presented in this chapter consists of two data matrices, a m × n gene

expression matrix, X containing m genes and n compounds, and a s × n HCS data

matrix, H, given by

Hs×n =























h11 h12 . . . h1n

h21 h22 . . . h2n

. . . .

. . . .

. . . .

hs1 hs2 . . . hsn























.

Note that the hji is the measurement of the jth HCS feature for the ith compound. We

express the combined matrix with variables in the columns and their common dimension,

the samples, in the rows as a n × p matrix Q =
[

XT |HT
]

where p = m + s is the total

number of features.

9.3 Sparse Multiple Factor Analysis (SMFA) for Simul-

taneous Feature Selection and Data Integration

MFA, as presented in the previous chapters, is simply a weighted PCA. This is very useful

especially if the PCs can be readily interpreted. However, this is not the case when

simultaneously dealing with gene expression and high content screening data, with the
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derived PCs being a linear function of a large number of variables. Hence, as pointed out

earlier, the attractive way from the interpretability point of view, is to impose sparsity on

either the variable loadings, component scores or both. This can be done by penalizing

the right singular vector (V) to get sparse variable loadings or the left singular vectors (U)

to get sparse component scores, or both vectors to reveal biclusters within a least-squares

approach.

Sparse Multiple Factor Analysis is similar to the MFA algorithm but it includes a

Sparse PCA (SPCA) in the simultaneous analysis instead of PCA. As pointed out by

Zou et al. (2006), it is desirable not only to achieve the dimensionality reduction but also

to reduce the number of used variables to facilitate ease of interpretation. One direct way

to achieve this is by setting some variable loadings in PCA with absolute value smaller than

an (arbitrary) threshold to zero. Cadima and Jolliffe (1995) shows that this technique,

however, can be misleading and can misidentify important variables.

Shen and Huang (2008) presented an SPCA approach using the low rank approxi-

mation of SVD with penalized loadings. Let X be any data matrix of size n × m with

elements xij where i = 1, ..., n samples and j = 1, ..., m variables. Then the SVD of X,

is given by

X = UΛVT with UT U = VT V = I,

where r is the rank of X and Λ is a diagonal matrix with a rank-ordered set of positive

singular values, σ1 ≥ σ2 ≥ . . . ≥ σr , as elements. The columns of U and V are

orthonormal. Then, the columns of an n × r matrix T = UΛ are the PCs, and the

columns of an m × r matrix V are the corresponding loadings.

Note that, for the analysis of multiple data sources, the data matrix X is the normalized

combined matrix Q defined in the previous section. The closets rank-l approximation to

the data matrix X is given by

X(l) ≈ UΛVT =
l
∑

i=1

σiuiv
T
i .

Note that any n × m rank-one matrix can be written as ũṽT , where ũ is a n-vector

and ṽ is a m-vector. According to Eckart and Young (1936), the first SVD-layer gives us

the best rank-one approximation of X with respect to the squared Frobenius norm, i.e.

(σ1, u1, v1) = argminũṽ‖X − ũṽT ‖2
F =

n
∑

i=1

m
∑

j=1

(xij − ũiṽj)2,

where ‖ · ‖2
F indicates the squared Frobenius norm, which is the sum of squared elements

of the matrix. The vector u1 and v1 are the right and left singular vectors of the first
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layer, respectively and σ1 is the first singular value.

Shen and Huang (2008) presented the sparse PCA via regularized SVD which imposes

regularization penalties that promote shrinkage and sparsity on the ṽ thereby achieving

sparse loadings. Specifically, their method searches for an n-vector ũ subject to ‖ũ‖ = 1

and a m-vector ṽ that minimize the following penalized sum-of-squares criterion,

‖X − ũṽT ‖2
F + Pλ(ṽ) =

n
∑

i=1

m
∑

j=1

(xij − ũiṽj)2 +

m
∑

j=1

pλ(|ṽj |). (9.1)

The second term Pλ(ṽ) is a sparsity penalty on the vector of loadings, ṽ, with λ ≥ 0

as a tuning parameter.

The iterative algorithm to minimize (9.1) proceeds as follows to estimate the best

rank-one approximation, (u1, v1), of X.

1. Initialize: Apply the standard SVD to X and obtain the best rank-one approximation

of X as σ1u∗v∗T where u∗ and v∗ are unit vectors. Set ṽold = σ1v∗ and ũold = u∗.

2. Update:

(a) For a fixed ũ, subject to
n
∑

i=1

ũi = 1, it is shown that by expanding the squares in

(9.1), the optimal ṽ minimizes ṽ2
j −2(XT ũ)j ṽj +pλ(|ṽj |) (Shen and Huang, 2008).

It follows that the optimal ṽj can be obtained by applying a thresholding function,

hλ, to the vector XT ũold which depends on the form of the penalty function pλ(ṽj).

Applying the soft-thresholding rule with penalty function pλ(|ṽj |) = 2λ|ṽj | (Tibshi-

rani, 1996), hard thresholding rule (Donoho,1994) with penalty function pλ(|ṽj |) =

λ2I(|ṽj | 6= 0) and the smoothly clipped absolute deviation (SCAD) (Fan and Li,

2001), we respectively get

ṽsoft
j,new = sign(XT ũold)(|XT ũold| − λ)+,

ṽhard
j,new = I(|XT ũold| > λ)(XT ũold),

ṽSCAD
j,new =















sign(XT ũold)(XT ũold − λ)+ if |XT ũold| ≤ 2λ,

(a − 1)XT ũold − sign(XT ũold)aλ/(a − 2) if 2λ < |XT ũold| ≤ aλ,

XT ũold if |XT ũold| > aλ.

(b) After fixing ṽ, we can get the minimizer of (9.1) given by ũnew =

XT ṽnew/‖XT ṽnew‖.

3. Repeat Step 2 replacing ũold and ṽold by ũnew and ṽnew until convergence.

4. Standardize the final ṽnew as v1 = ṽnew/‖ṽnew‖, and u1 = ũnew .
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We can apply the same procedure to the residual matrix, X − σ1u1vT
1 , to estimate

the next SMFA factor. Note that for λ = 0 we get ṽnew = XT ũold. Then the above

algorithm simplifies to the calculation of SVD using the alternating least squares (Gabriel

and Zamir, 1979).

Penalty Parameter Selection

The estimation of sparse vector loadings depends on the penalty function with λ as the

tuning parameter since a is usually fixed at a = 3.7 for the SCAD thresholding rule (Fan

and Li, 2001). The choice of λ is still an open question. Here, we investigated, three ways

of tuning the parameter λ: (1) the use of the cumulative percentage of explained variance

proposed by Shen and Huang (2008), (2) the k-fold cross validation technique (2008) and

(3) the use of Bayesian Information Criterion (Schwarz, 1978) (Lee et al., 2010).

These algorithms makes use of the degree of sparsity (df(λ)) as the tuning parameter

instead of λ. The degree of sparsity is defined as the number of variables with non-zero

loadings in ṽj,new. That is, setting the degree of sparsity to be j, j ∈ (0, m − 1) is the

same as setting |XT ũold|(j) ≤ λ ≤ |XT ũold|(j+1) where |XT ũold|(j) is the jth order

statistic of |XT ũold|.

(1) The Variance Explained by PC

Let Vr = [v1, ..., vr] be a n×r matrix of the first r sparse loading vectors and Tr = XVr

denote the matrix of the first r principal components. When the PCs, T, are uncorrelated

and their loadings are orthogonal then Xr = TrVT
r and the total explained variance is

simply tr(TT
r Tr). However, in sparse PCA, these properties are lost (Zou et al., 2006).

Shen and Huang (2008) proposed that to deal with the correlation among PCs, in calcu-

lating the added variance explained by an additional PC, the variance attributable to the

previous PCs should be adjusted for and the adjusted variance of the rth PC, denoted by

σ2
r , is given by

σ2
r = tr(XT

r Xr) − tr(XT
r−1Xr−1),

where Xr = XVr(VT
r Vr)−1VT

r .

The cumulative percentage of variance explained (CPEV) by the first r PCs is

tr(XT
r Xr)/tr(XT X). Therefore, for each component, the corresponding λ or df(λ) = j

is chosen sequentially such that the CPEV is still close to the CPEV when λ = 0 and

j = 0. For example, a drop of at most 10%. This procedure, therefore, involves personal

judgement on deciding the value of λ.
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(2) K-fold Cross-validation (CV)

Another way of assessing the degree of sparsity is by performing a K-fold cross-validation.

We follow the suggestion of Shen and Huang to calculate a cross-validation score (CV).

Their algorithm proceeds as follows:

1. Randomly group the rows of an n × m matrix X into K almost uniformly-sized

groups, denoted as X1, X2, . . . , XK .

2. For each j = 0, 1, . . . , m, do the following;

(a) For k = 1, . . . .K, let X−k be the data matrix X leaving out Xk. Perform

the spca algorithm, presented in section 9.3, on X−k to extract its corresponding

loadings v−k(j). Then project the left-out dataset, XK , onto v−k(j), giving us

uk(j) = Xkv−k(j).

(b) Calculate the K-fold CV score which is defined by

CV (j) =
K
∑

k=1

n
∑

i=1
k

m
∑

l=1

{xk
il − uk

i (j)v−k
l (j)}2

nkm
,

where nk is the number of rows of Xk, and uk
i and v−k

l are respectively the ith

and lth elements of uk and v−k

3. The degree of sparsity is given by ĵ = argminj{CV (j)}.

(3) Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC, Schwarz, 1978) has been successfully applied to

select the optimal number of non-zero coefficients in a penalized regression (Zou, Hastie

and Tibshirani, 2007). In the penalized regression in (9.1) with fixed (ũi), the BIC is

defined as

BIC(λ) =
‖X − ũṽT ‖2

nm · σ̂2
+

log(nm)

nm
df(λ),

where df(λ) is the degree of sparsity with λ as the penalty parameter and σ2 is the OLS

estimate of the error variance of the model. We then choose λ or df(λ) that minimizes

the BIC(λ).

Illustration of SMFA for Variable Selection

Suppose, we have a hypothetical data matrix, Q, from the combined normalized datasets

with n = 70 rows (samples) and m = 100 columns (variables). The heatmap of the
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dataset is shown in Figure 9.1. We can see that there is a subset of rows (20 samples)

and a subset of columns (30 variables) that are associated.
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Figure 9.1: Hypothetical data: Heatmap of the 70 samples ×100 variables data matrix,
Q.

We want to apply SMFA on Q to select variables. Using the 3 criteria to choose the

optimal value of λ which is essentially equivalent to finding the optimal number of non-

zeroes in the vector loadings, df(λ). The three types of thresholding rules are accounted

for in identifying the parameters. The hard-thresholding generally deviates from SCAD

and soft-thresholding which behave similarly across the 3 criteria as shown in Figure 9.2.

Figures 9.2b, 9.2d, 9.2f indicate that the 3 criteria point to similar choice for the df(λ).

Similarly, Figures 9.2a, 9.2c, 9.2e shows the effect of varying λ on the BIC, CV-score and

PEV.

In Figure 9.3, we show the variable loadings and sample scores when using the three

thresholding rules for SMFA. Here, we only induce the penalty on the loading vector.

Hence, the greater the λ, the more variable loadings are shrunk to zero in Figures 9.3a,

9.3c, and 9.3e. The red lines are the 30 variables that are part of the red block in

Figure 9.1. The corresponding scores do not vary across lambda since the sparsity is only

imposed on the variable loadings allowing for variable selection.
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(a) BIC as a function of df .
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(b) BIC as a function of λ.
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(c) 5-fold CV-score as a function of df .
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(d) 5-fold CV-score as a function of λ.
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(e) PEV as a function of df .
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(f) PEV as a function of λ.

Figure 9.2: Penalty parameter selection using BIC, 5-fold CV and PEV.



148 Chapter 9. Unsupervised Integrative Methods: SMFA and biMFA

0 5 10 15 20 25 30

0
5

10
15

20
25

30

λ(v)

va
ria

bl
e 

lo
ad

in
gs

(a) Soft-thresholding of loadings.
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(b) Sample scores profile.
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(c) Hard thresholding of loadings.
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(d) Sample scores profile.

0 5 10 15 20 25 30

0
5

10
15

20
25

30

λ(v)

va
ria

bl
e 

lo
ad

in
gs

(e) Variable loadings using SCAD.
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(f) Sample scores profile.

Figure 9.3: Variable loadings (left panels) and sample scores (right panels) across finite
values of λ by thresholding rule (row panels). The red lines represent the 30 variables and
20 compounds that are part of the block structure present in Figure 9.1.
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9.4 Biclustering of Multi-Source Data Using the biMFA

Algorithm

SMFA serves as a dimension reduction or feature selection technique producing modified

PCs with sparse loadings that can explain most of the variation in a dataset. However,

if the aim is to simultaneously identify subset of rows and subset of columns of X that

are associated, then a biclustering method is more appropriate. While SPCA imposes

sparsity on the loadings of the principal components, the Sparse SVD (SSVD) proposed

by Lee et al. (2010) imposes sparsity on both the left and right singular vectors in order

to extract sub-matrices showing row-column interactions when forming a low-ranked ap-

proximation to the data matrix. Combining the ideas of MFA for data integration and

the SSVD as biclustering leads to biclustering using MFA (biMFA)..

In this case, decomposing X by the SVD, each submatrix Xi will be associated with

a singular vector pair(ui, vi) such that non-zero coefficients in ui represent the rows that

belong to Xi and the non-zero coefficients in vi represent the columns that belong to

Xi.

Following Lee’s SSVD approach, we can obtain the sparse vectors u and v by mini-

mizing the following penalized sum of squares criterion,

‖X − uṽT ‖2
F + λuP1(ũ) + λvP2(ṽ), with ũ = σu, ṽ = σv, (9.2)

where P1(ũ) and P2(ṽ) are sparsity inducing penalty terms and λu and λv are 2 non-

negative penalty parameters that balance the goodness-of-fit measure of ‖X − uṽT ‖2
F

and the penalty terms. Here, it allows for varying levels of sparsity for u and v. When

λu = λv = 0, the criterion in (9.2) reduces to SVD. Moreover, by setting ṽ = σv and

λu = 0, λv = λ and P2(·) = P (·) in (9.2), the SPCA criterion in (9.1) is obtained.

Recall that in Section 9.3, we have used the lasso penalty given by P (ṽ) =
m
∑

j=1

pλ(|ṽj |)
and the estimation of the sparse loading vector ṽj depends on the choice of the thresh-

olding rule.

In biMFA, we use the adaptive lasso penalties given by

P2(ṽ) = σ

m
∑

j=1

w2,j(|ṽj |) and P1(ũ) = σ

n
∑

i=1

w1,i(|ũi|),

where w1,i and w2,j are possibly data-driven weights. When w1,i = w1,j = 1, we

obtain the lasso penalty. In this biclustering algorithm, the weights are set to w1,i ≡
(w1,1, . . . , w1,n) = |ũ|γ1 and w2,j ≡ (w2,1, , w2,m) = |ṽ|γ2 , following the suggestion of
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Zou et al. (2006). Some suggested values for γ1 or γ2 are 0 (corresponds to lasso fit), 1

(similar to nonnegative garrote (Breiman, 1995)) and 0.5 and 0.2 by Zou et al. (2006).

The iterative algorithm presented in Section (9.3) to estimate sparse loading vectors is

extended to also estimate the sparse scores vectors to extract a bicluster.

1. Initialize: Apply the standard SVD to X and obtain the best rank-one approximation

of X as σ1u∗v∗T where u∗ and v∗ are unit vectors. Set ṽold = σ1v∗ and ũold =

σ1u∗.

2. Update:

(a) For a fixed ũ the optimal ṽj can be obtained by applying a thresholding rule

to the vector XT ũold which depends on the form of the penalty function and the

choice of γ2.

Similar to Section 9.3, we can use the soft-thresholding penalty (Tibshirani, 1996),

hard thresholding (Donoho,1994) and the smoothly clipped absolute deviation

(SCAD) (Fan and Li, 2001) to solve for the closed-form solution of (9.2) and we

respectively get

ṽsoft
j,new = sign(XT ũold)(|XT ũold| − λvw2,j/2)+,

ṽhard
j,new = I(|XT ũold| > λvw2,j/2)(XT ũold),

ṽSCAD
j,new =















sign(X
T

ũold)(X
T

ũold − λvw2,j/2)+ if |X
T

ũold| ≤ 2λv w2,j /2,

(a − 1)X
T

ũold− sign (X
T

ũold)a(λvw2,j/2)/(a − 2) if 2λv w2, j/2 < |X
T

ũold| ≤ aλvw2,j /2,

X
T

ũold if |X
T

ũold| > aλv w2,j /2.

The λv that minimizes the BIC(λv) and the K-fold CV-score as well as following

the selection based on the adjusted variance as previously discussed is selected.

Standardize ṽ = ṽnew/‖ṽnew‖.

(b) Similarly, for a fixed ṽ, we can obtain the optimal ũi by applying a thresholding

rule, to the vector Xṽ instead of XT ũold as shown in 2a. The λu that minimizes the

BIC(λu) and the K-fold CV-score as well as on the bases of the adjusted variance

is chosen. Standardize the ũ = ũnew/‖ũ‖.

3. Repeat Step 2 replacing ũold and ṽold by ũ and ṽ, respectively, until convergence.

4. Set u = ũ, v = ṽ and σ = uT Xv at convergence.

In order to search for more biclusters, we use the residual matrix, X − σuvT as input

to the iterative algorithm.
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Illustration of biMFA for Bicluster Extraction

When the interest is on detecting a bicluster, then biMFA can be used which imposes

sparsity on both dimensions, the scores and the loadings. We can use the same set of

criteria to assess the values of the tuning parameters for both dimensions. For illustration,

we apply biMFA on the same dataset presented in Figure 9.1. We have the BIC and PEV

for the variable loadings across a set of λv and presented in Figure 9.4. Similarly, in

Figure 9.5, we use the BIC and PEV for the sample scores across λu and df(λu).
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(b) BIC as a function of λv.
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(c) PEV as a function of df(λv).
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(d) PEV as a function of λv.

Figure 9.4: biMFA: Selection of λv using BIC and PEV.
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(a) BIC as a function of df(λu).
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(b) BIC as a function of λu.
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Figure 9.5: biMFA: Selection of λu using BIC and PEV.
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Figure 9.6 displays the loadings (panels a,c,e) and scores (panels b,d,f) when varying

the penalty parameter λv and λu, respectively. The double penalization gives a subset of

variables and a subset of samples subject to the choice of λv and λu, where the choice

can be guided by the BIC and PEV presented in Figures 9.4 and 9.5. After fixing the

tuning parameters, the members of the biclusters may depend on the thresholding rule

used. Note that, for biMFA, we can use the adaptive lasso penalties which require the

specification of γv and γu. So far, what we have presented uses the lasso penalty, that is

setting γv = 0 and γu = 0. Figure 9.7a shows the BIC values across λv by γv = 0, 1, 2

while Figure 9.7b displays the BIC values across λu by γu = 0, 1, 2. We can see that

γu = γv = 2 would generally give a lower BIC for any λv and λu. Figure 9.8 gives the

loadings and scores profiles across different choices of λ fixing γv = γu = 2. It is easy

to see that at df(λv) = 30 and df(λu) = 20 and their corresponding λv and λu that

gives the minimum BIC. Using the biMFA algorithm with this tuning parameters, we can

partition the observed data matrix into 2 matrices presented in Figure 9.9: the predicted

matrix (9.9b) and the residual matrix (9.9c).

9.5 Application to the PDE10 Dataset

For the integration of HCS and gene expression data, we get a combined normalized

matrix that contains 16 compounds × 736 genes and HCS features combined.

If the aim is limited to feature selection we can apply SMFA which is just equivalent

to a biMFA analysis without penalizing the scores. Also, by getting rid of the penalty

terms in biMFA and SMFA, the analysis reduces to that of MFA. Using the combined

normalized HCS and gene expression datasets, we run MFA, sMFA and biMFA. Figure

9.10 compares the feature loadings when using MFA versus SMFA and biMFA for one

factor. Both induces sparsity on the loadings to select important features. The difference

on the number of non-zero loadings between SMFA and biMFA mainly depends on the

tuning parameters. In addition, biMFA identifies genes that are co-regulated on a sub-

set of compounds whereas SMFA groups features that exhibits similar profiles across all

compounds. The two methods, however, are quite consistent in selecting features with

relatively high loadings. With respect to the compound scores, the idea is to automatically

associate a subset of compounds to a subset of features. The biMFA induces sparsity on

the compound scores which is not done in SMFA. Each factor derived by biMFA now

corresponds to a bicluster consisting of subset of features and compounds with non-zero

loadings and scores, respectively.

Now, we will focus on the results of applying biMFA where we identified several biclus-

ters in the integrated datasets. Focusing on one-bicluster, we can see from Figures 9.11a
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Figure 9.6: Variable loadings (left panels) and sample scores (right panels) across finite
values of λv and λu by thresholding rule (row panels). The red lines represent the 30
variables and 20 compounds that are part of the block structure present in Figure 9.1.
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(b) BIC as a function of λu by γu.

Figure 9.7: biMFA: Selection of γv and γu using BIC with soft-thresholding rule applied
on varying values of λv and λu, respectively.
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Figure 9.8: Variable loadings (left panel) and sample scores (right panel) across a set
of finite values of the degree of sparsity using the adaptive lasso penalty weights fixed at
γv = 2 and γu = 2 applying the soft-thresholding. The red lines represent the 30 variables
and 20 compounds that are part of the block structure present in Figure 9.1.
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Figure 9.9: Hypothetical data: The observed, predicted and the residual matrices when
running a biMFA analysis fixing the degree of sparsity to df(λv) = 30 and df(λu) = 20.
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Figure 9.10: Comparison of loadings from MFA and SMFA and biMFA.

and 9.11b that we have 81 features for this bicluster with corresponding λv = 0.21. Fig-

ures 9.11c and 9.11d shows the feature loading profiles across the values of the tuning

parameters. The same set of plots are presented in Figure 9.12 for the compound scores.

Figure 9.12b shows that 7 compounds are part of this bicluster. The compound score

profiles across λu and df(λu) are given in Figures 9.12c and 9.12d.

Figures 9.13 and 9.14 shows the loadings(scores) per bicluster which is helpful in ex-

ploring the number of features (compounds) with non-zero coefficients. The first and

third bicluster are mainly characterized by similar set of genes. Bicluster 2 and 5 are in-

teresting since they share 2 common compounds, Taxotere and compound JnJ-h1 (Figure
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Figure 9.11: The effect of tuning parameters λv and df(λv) on the loadings using hard
thresholding.
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Figure 9.12: The effect of tuning parameters λu and df(λu) on the compound score
using hard thresholding.
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9.15b) but only one feature, the gene KRTAP10-6 (Figure 9.15a). Moreover, the genes

that dominates bicluster 2 are Tubulin genes. The profiles plot of the member features

are presented in Figure 9.16 where the first compounds marked in red are part of the

bicluster. The features are only co-regulated on the compounds within the bicluster.
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0 100 200 300 400 500 600 700

−0.5

0

0.5

1

1.5

HCS_164HCS_158HCS_200 HCS_361HCS_182 HCS_367HCS_385HCS_403
HCS_181HCS_184HCS_166HCS_183 HCS_379HCS_387HCS_170 HCS_373HCS_204 HCS_384

HCS_407HCS_168HCS_202 HCS_371HCS_176HCS_186HCS_172HCS_208HCS_206 HCS_409HCS_411HCS_185 HCS_577HCS_157 HCS_621HCS_623HCS_386HCS_169HCS_178 HCS_369 HCS_620HCS_622HCS_405HCS_375HCS_408HCS_410HCS_163 HCS_564HCS_599HCS_188 HCS_360HCS_391HCS_199 HCS_388HCS_389HCS_381 HCS_601HCS_171KRTAP10.6 HCS_598
HCS_150HCS_160HCS_149 HCS_565HCS_175 HCS_406HCS_159HCS_205HCS_207 HCS_377HCS_370 HCS_600HCS_575HCS_567HCS_174

TUBB4B

TUBA1C
TUBB

TUBA1A

SIGLEC16

LOC388692
CTGF

GLIPR1

Gene index

Lo
ad

in
gs
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0 100 200 300 400 500 600 700

−1

−0.5

0

0.5

1

1.5 TXNIP

HCS_420 HCS_480ZYX HCS_57HCS_67HCS_59 HCS_422GLIPR1

CYR61HBEGF

ARRDC4

TNFRSF12A
ANKRD1

ETV5

ZNF503.AS2

DUSP8ACTBL2
CTGF

TUBB TUBA1ATUBB4BHOXA6LOC100507025
TUBA1CADMDDIT3

HIST1H1T
ZNF280C

CREB5

TMSB15B

JUN

HIST1H2BF

ETV1ATF3

IDI2.AS1

PAGE2B
JAKMIP2FAM217B

MIR7.3HG

Gene index

Lo
ad

in
gs

(c) Genes and HCS loadings BC3.
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Figure 9.13: Variable loadings of Biclusters with eigenvalue>1.

For the interpretation of the results, we focus on the second bicluster which is char-

acterized by the downregulation of Tubulin genes. Down regulation of Tubulin genes

indicates also a possible genotoxic effect on the microtubule-based chromosome segrega-

tion. This is exhibited by 5 compounds since Taxotere and JnJ-h1 shows upregulation.
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Figure 9.14: Compound scores of Biclusters with eigenvalue>1.
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(a) Scatterplot of the loadings for Biclusters 5 and 2.
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(b) Scatterplot of the scores for Biclusters 5 and 2.

Figure 9.15: Scatterplot of loadings and scores of BC2 and BC5 highlighting the member
features and compounds.
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(a) Profiles plot of features in BC2.

Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5Bicluster 5

−1

0

1

2

3

Jn
J−

h9
Ta

xo
te

re
Jn

J−
h3

Jn
J−

h1
Jn

J−
h7

G
ris

eo
fu

lv
in

e
V

in
bl

as
tin

e
C

ol
ch

ic
in

e
N

oc
od

az
ol

e
Jn

J−
h2

Jn
J−

h4
Jn

J−
h5

Jn
J−

h6
Jn

J−
h8

Jn
J−

h1
0

Jn
J−

h1
1

Compounds

S
ta

nd
ar

di
ze

d 
re

ad
−

ou
t

Features

Genes

HCS

 

(b) Profiles plot of features in BC5.

Figure 9.16: Profiles plot of features in BC2 and BC5.
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In fact, in this experiment, Nocadozole and Taxotere are used as positive and negative

control, respectively for the downregulation of tubulin. Moreover, the HCS features iden-

tified in the Tubulin-linked bicluster are microtubule related features that are located in

the cytoplasm and cells whereas those in the bicluster 5 are mostly Tubulin-linked features

in the nucleus.

Figure 9.17: Compound scores of Bicluster 5 and Bicluster 2. Compounds that are
outlying with respect to Bicluster 2 are identified with their respective HCS Images after
compound administration.

Inspecting the high content images of some compounds (Figure 9.17), compared to

the DMSO, compound JnJ-h8, identified to be down-regulating Tubulin genes has little

green dots present at the border of the cell while long green lines in the cells are observed

in Taxotere. This is an indication of microtubule aggregation which is an indication of
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genotoxicity. Therefore compounds that downregulate Tubulin genes are indicating toxic

effects and thus should be carefully examined in order to make a go/no go decision in the

lead optimization process.

9.6 Discussion

In this chapter, we present a new biclustering approach which include feature selection on a

properly integrated datasets. The usefulness of Multiple Factor Analysis for the integration

of several datasets has been explored in different applications. In the drug development

setting, however, applying this method to multiple sources of high-dimensional data leads

to difficulty in identifying and interpreting few relevant features that can well characterize

the activities of the lead compounds. Hence, a modification of MFA is proposed in this

chapter by making use of the sparse extension of PCA, such as sparse PCA for dimension

reduction and feature selection and SSVD for finding biclusters. This leads to the two

unsupervised integrative methods which we term SMFA and biMFA.

The results show that combining gene expression data and high content screening can

jointly uncover biological insights about the compounds. Identifying potentially genotoxic

compounds early in the drug development pipeline can prevent the discovery of toxic

effects of lead compounds at a later stages. This means that this strategy can save

considerable amount of investments, both in time and money. Failed compounds may

still be repurposed or altered to exhibit desirable characteristics. SMFA and biMFA are

useful methods to explore structures present in several data sets. The output of these

methods allow scientists to make informed decisions that can guide medicinal chemists

on which lead compounds to prioritise early on in the development.
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Chapter 10

The biclustRank R Package

In Chapter 6 we presented an analysis in which biclusters were ranked based on the

information content of the bicluster or the chemical similarity of the compounds that

belong to the bicluster. The analysis was conducted using a new R package developed

for this purpose, the biclustRank R package (Perualila, et al., 2016).

Consider a data matrix X and let assume that our aim is to find local patterns in the

X. The R package biclustRank allows to use the output of FABIA (Hochreiter et al.,

2006), Plaid or ISA for ranking. Hence, in the first stage, biclustering can be done using

in the following way:

> resFabia <- fabia(X, p=10, cyc=1000, alpha=0.1, random=0)

> resIsa <- isa(X)

> resPlaid <- biclust(X, method = BCPlaid(), back.fit = 2,

shuffle = 3, fit.model = ~m + a + b, iter.startup = 5,

iter.layer = 30, verbose = F)

Let us focus on the result obtained for FABIA which are stored in the R object

resFabia. The biclustering result can be viewed using the function summary. The

first list is the information content of biclusters, the second list is the information content

of samples, the third statistics is the factors per bicluster, and the last statistics is the

loading per bicluster.

169
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> summary(resFabia)

An object of class Factorization

call:

"fabia"

Number of rows: 566

Number of columns: 62

Number of clusters: 10

Information content of the clusters:

BC 1 BC 2 BC 3 BC 4 BC 5

361.15 188.57 170.31 169.85 162.32

BC 6 BC 7 BC 8 BC 9 BC 10

161.57 154.31 135.61 133.17 132.82

BC sum

1764.04

Information content of the samples:

Sample 1 Sample 2 Sample 3 Sample 4

29.26 28.10 31.32 30.78

....

Sample 61 Sample 62 Sample sum

26.46 27.08 1764.04

Column clusters / Factors:

BC 1 BC 2

Min. :-7.7939 Min. :-2.07772

...

Row clusters / Loadings:

BC 1 BC 2

Min. :-1.03309 Min. :-0.415639

1st Qu.:-0.00109 1st Qu.:-0.107525

...

In the analysis presented above, the biclusters were ranked based on the information
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content of the biclusters. In many cases, there is a need to rank the biclusters based

on a different criterion which was NOT used for biclustering. For example, ranking the

biclusters based on the biological functionality of the genes belonging to the biclusters or

based on the chemical similarity of the compounds belonging to the biclusters. For the

latter, the R package biclustRank can be used. In the first step we need to identify

the rows and columns belong to each one of the biclusters. This can be done using the

function extractBicList.

> library(biclustRank)

> bicF <- extractBicList(data = X,

biclustRes = resFabia, p=10, bcMethod="fabia")

> str(bicF)

List of 10

$ BC1 :List of 2

..$ samples: chr "JnJ-xx9"

..$ genes : chr [1:63] "LOC100288637" "KRTAP5-3" ...

$ BC2 :List of 2

..$ samples: chr [1:18] "JnJ-xx3" "JnJ-xx20" ...

..$ genes : chr [1:42] "PSMB6" "RPS13" "NUDT5" ...

...

$ BC10:List of 2

..$ samples: chr [1:11] "JnJ-xx12" "JnJ-xx9" ...

..$ genes : chr [1:2] "TBC1D3B" "LOC100506667"

We can use the function Distance to compute for the distance matrix of Z, given by

Dn. We subtract Dn from 1 to get the similarity scores Sn.

Dn <- Distance(dataB = t(Z), distmeasure = "tanimoto")

Sn <- 1-Dn #similarity matrix for n compounds

The similarity score per biclusters can be calculated by
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> Sk <- extractSimBC(biclustList = bicF, simMat = Sn, p=10 )

> SkScores <- getLowerSim(simMat)

> str(SkScores)

List of 8

$ BC2 : num [1:153] 0.317 0.278 0.106 0.41 0.308 ...

$ BC3 : num [1:55] 0.0476 0.1061 0.2319 0.2321 0.25 ...

$ BC4 : num [1:10] 0.239 0.305 0.673 0.407 0.328 ...

$ BC6 : num [1:15] 0.509 0.379 0.277 0.315 0.328 ...

$ BC7 : num [1:6] 0.524 0.5 0.264 0.769 0.457 ...

$ BC8 : num [1:3] 0.44 0.352 0.365

$ BC9 : num [1:190] 0.4894 0.0909 0.3571 0.1525 0.0845 ...

$ BC10: num [1:55] 0.273 0.203 0.138 0.611 0.271 ...

This results are summarized using the function statTab. The ordering arguments

takes a value of 0 to 7 with 0 as default. This allows to reorder the table’s rows (i.e., rank

the biclusters) according to several statistics with 0=no reordering, 1= similarity mean,

2= similarity median, 3=SD(standard deviation), 4= CoefVar(coefficient of variation),

5= Range, 6 = MAD(mean absolute deviation), and 7= IQR (interquartile range).

> statTab(SkScores,ordering=4)

Figure 6.3 was produced with the functionboxplotBC

> boxplotBC(simVecBC,qVal=0.5,rank=FALSE)

BC2 BC3 BC4 BC6 BC7 BC8 BC9 BC10

0.17 0.19 0.33 0.43 0.48 0.37 0.14 0.23

> boxplotBC(SkScores,qVal=0.5,rank=TRUE)

BC7 BC6 BC8 BC4 BC10 BC3 BC2 BC9

0.48 0.43 0.37 0.33 0.23 0.19 0.17 0.14

The arguments qVal=0.5 and rank=TRUE implies that the biclusters should be ac-

cording to the quantile value with default set at 0.5 (equivalent to ordering by median

similarity score). The function cumBC is used to produce the cumulative probability dis-

tribution plot, as shown in Figure 6.4. This function displays the probability of observing

a similarity score greater than the refScore, with default value set to 0.5. Based on this
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probability, the top biclusters are 6,7, and 4. While bicluster 8 shows desirable summary

statistics, it includes individual similarity scores less than the reference score, hence a

probability value of 0.

> cumBC(SkScores,prob=TRUE, refScore=0.5)

BC6 BC7 BC4 BC10 BC9 BC2 BC3 BC8

0.3333 0.3333 0.2000 0.0909 0.0263 0.0261 0.0182 0.0000

The following code can be used to display the heatmap of similarity matrix:

> bcNum=c(6,7) # can be more than 2 biclusters

> heatmapBC(simMat=Sn, bicRes=bicF, bcNum=bcNum,

main = "Structural Profiles Similarity",...)

The functions ppBC and heatmapBC2 are used to respectively output the two plots in

Figure 6.6. For heatmapBC2, the number of top features, N, should be specified.

> par(mfrow=c(2,1))

> ppBC(bicF,eMat=X, bcNum=6)

> heatmapBC2(fingerprints,bicF,bcNum=6, N=10)

We can use the function plotFabia to output the plots of loadings (plot=1) and

scores (plot=2) for a given bicluster.

> plotFabia(resFabia, bicF, bcNum=6, plot=1)





Chapter 11

The biMFA R Package

In Chapter 9, we discussed the SMFA and biMFA methods for the integration of multi-

source data. In this chapter, we present the biMFA R package containing the functions

used to conduct the analysis presented in Chapter 9.

We consider D data matrices, X1, . . . , XD with rows as the common dimension and

let X be the combined data matrix. This matrix is used as input to the function biMFA,

an adaptation of Shen and Huang’s ssvd method.

The biMFA package allows to perform three types of multi-source integration: MFA,

SMFA or biMFA. The choice of the integration method depends on the specification of

the parameters threu (represents the type of thresholding rule with 0 = none, 1=soft,

2=hard, and 3=SCAD for the u vector) and threv (represents the type of thresholding

rule with 0 = none, 1=soft, 2=hard, and 3=SCAD for the v vector). MFA can be

conducted using threu=0 and threv=0, in this case sparsity will not be applied for both

loadings and scores.

In order to conduct a SMFA we need to specify threu= 0 and threv=1 or threu=

1 and threv=0. In this case, sparsity will be applied to the dimension for which the

parameter is not zero. A biMFA requires a non-zero value for both threu=2 and threv=2

for example to apply the hard thresholding rule. For example, a biMFA with two biclusters

(K=2) and soft-threshold can be done by using the following code

> X <- list(X1, X2,...,XD)

> res <- biMFA(X ,K=2, threu = 1, threv = 1, gamu = 0, gamv = 0)

Note that gamu and gamv corresponds to γ1 and γ2, respectively, discussed in Section

9.3.2.
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The object res is a list of length K factors containing a list of several values that are

presented in Chapter 9.

The data matrices used for illustration are shown in Figure 11.1. The output is shown

in the panel below.
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(a) X1, a 70 × 200 matrix with 2 biclusters
each containing 20 samples and
30 variables.
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(b) X2, a 70 × 37 matrix, with 2 biclusters of
sizes 20 samples × 5 variables and 20 samples
× 21 variables.

Figure 11.1: Two datasets to integrate.
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> str(res)

List of 2

$ :List of 21

..$ u : num [1:70] 0 0 0 0 0 0 0 0 0 0 ...

..$ v : num [1:237] 0 0 0 0 0 0 0 0 0 0 ...

..$ iter : num 3

..$ lambdau : num [1:71] 0 0.000869 0.00102 0.001104 ...

..$ BIClambdau: num [1:70] 17200 17190 17181 17171 17162 ...

..$ lambdauSel: num 0.0632

..$ lambdav : num [1:238] 0.00 5.64e-06 1.95e-05 ...

..$ BIClambdav: num [1:237] 18656 18646 18636 18627 ...

..$ lambdavSel: num 0.0391

..$ SSEudelta : num [1:70] 17.8 17.8 17.8 17.8 17.8 ...

..$ SSEvdelta : num [1:237] 17.8 17.8 17.8 17.8 17.8 ...

..$ vdelta : num [1:237, 1:237] -0.0134 -0.0134 ...

..$ udelta : num [1:70, 1:70] -0.00422 -0.00335 ...

..$ pevv : num [1:237] 0.916 0.916 0.916 0.916 ...

..$ pevu : num [1:70] 0.916 0.915 0.915 0.915 ...

..$ dfu : num [1:70] 70 69 68 67 66 65 64 63 ...

..$ dfv : num [1:237] 237 236 235 234 233 232 ...

..$ dfuSel : num 22

..$ dfvSel : num 55

...

$ :List of 21

..$ u : num [1:70] -0.263 -0.24 -0.182 -0.256 ...

..$ v : num [1:237] -0.1377 -0.0979 -0.0422 ...

...

The following code can be used to plot the BIC values versus λv and λu and df(λv)

and df(λu) .
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> k=1

> plot(res[[k]]$lambdav[-1],res[[k]]$BIClambdav,

type="p", xlab=expression((lambda[v])),

ylab=expression(BIC(lambda[v])))

> plot(res[[k]]$dfv,res[[k]]$BIClambdav,

type="p", xlab=expression((df[v])),

ylab=expression(BIC(lambda[v])))

> plot(res[[k]]$lambdau[-1],res[[k]]$BIClambdau,

type="p", xlab=expression((lambda[u])),

ylab=expression(BIC(lambda[u])))

> plot(res[[k]]$dfu,res[[k]]$BIClambdau,

type="p", xlab=expression((df[u])),

ylab=expression(BIC(lambda[u])))

The function getWeightedDat can be used to get the normalized data of X1 given

by

> X1w <- getWeightedDat(X1, scale.unit=FALSE, res=FALSE)

Set res=TRUE if the used weight and the results of the PCA is desired.

The cvScore function can be used to perform K-fold cross-validation as discussed in

Section 9.3.1 where Q is the combined normalized data.

> cvScore(Q, K=10)
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(a) BIC as a function of df(λv) for BC 1.
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(b) BIC as a function of df(λv) for BC 2.
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(c) BIC as a function of df(λv) for BC 1.
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(d) BIC as a function of df(λv) for BC 2.

Figure 11.2: biMFA: Selection of df(λv) using BIC. We have two biclusters each con-
taining, 20 samples × 51 variables and 20 samples × 35 variables.





Chapter 12

Discussion and Future Research

The research presented in this thesis is focused on integrative data analysis methods to

address the pharmaceutical research questions arising from the QSTAR approach in drug

discovery and early development studies. The initiative of integrating gene expression

data to the conventional structure-activity analysis in order to understand new molecules

is analytically challenging, for three reasons: (1) it involves the integration of three high-

dimensional datasets, (2) data analysis work flow does not exist for this framework and (3)

the results should be interpretable. Various methodologies were covered: joint modeling,

path analysis, penalized regression, integrative clustering, ranking of biclusters, multiple

factor analysis for data integration and gene module enrichment, sparse multiple factor

analysis and biclustering using MFA. For the remainder of this chapter we discuss several

research lines that can be further developed based on the research presented in this thesis.

12.1 QSTAR Statistical Modeling Framework

The first method presented in the thesis is the joint modeling of bioactivity and gene

expression accounting for the chemical structure of the compounds. This is a simple

approach in the sense that it models one feature per data source at a time. This approach

has been earlier demonstrated to be useful in identifying genetic biomarkers for efficacy.

In this thesis, the model was applied on two case studies to demonstrate its utility, but

in practice, this model is implemented in the pharmaceutical pipeline to different number

of interesting chemical substructures, genes and biological assays (efficacy or toxicity

related). The large amount of output are collated and filtered for vital information that can

help the research team, especially, the medicinal chemist and biologist in taking the next
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step. The same idea is also reformulated in the context of path analysis modeling. Instead

of modeling the association between genes and bioactivity adjusting for the structure

effect, in path analysis, it is presented as a decomposition problem of the total effect of

the fingerprint feature on the bioactivity via gene expression. It allows us to estimate the

direct and indirect effects which is not possible with the joint modeling. Although both

models are specified differently, congruent information can be retrieved as illustrated by

the results of a case study.

Two main issues related to the joint model can be further investigated. The first

is related to computation time. Taking into account that the joint and path analysis

models presented in Chapters 2 and 3 were fitted to a specific finger print, we should

expect that a complete analysis including all possible fingerprint features and bioactivity

data will require relatively long computation time. Therefore a solution for this problem,

like parallel programming using worker framework in a computer cluster, will allow to

implement the analysis presented in Chapters 2 and 3 as a pipeline analysis for any size

of discovery project.

The second issue is related directly to the “feature by feature” analysis presented in

Chapters 2 and 3. An alternative approach is to construct a biomarker using all information

available in the expression matrix. This can be done in several ways discussed below.

Construction of a Joint Biomarker

The gene-specific joint model can be also implemented when using a gene signature,

U(X), which is a latent score that represents a genetic score of the sample. Let us

assume that U(X) is known, in this case we can re-formulate the joint model as

U(X)i = ϕ0 + ϕ2Zi + ε1i,

Yi = φ1 + φ2Zi + ε2i.
(12.1)

where U(X) =
∑g

j=1 ηjXj , g ≤ m genes, ηj is a gene-specific weights .

Similarly, the model formulated in (3.5 and 3.6) can be expressed as

E(Yi|Zi) = δ0 + δ1Zi, (12.2)

and

E(Yi|Zi, U(X)i) = λ0 + λ1Zi + λ2U(X)i. (12.3)

Note that R2
h(U(X)) can be calculated by comparing the likelihood of models (12.2)

and (12.3) following (3.7). When U(X) is unknown, it can be estimated using either

supervised PCA (SPCA, Bair et al. (2004)) or penalized regression methods such as
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LASSO or elastic net.

Hence, this is a two-stage joint modeling approach involving (1) gene signature con-

struction and (2) joint modeling of bioactivity and gene signature. For the first step,

several methods can be used. Once, we have identified different classes of genes, then

supervised PCA (SPCA) can be used to construct U(X). On the other hand, we can use

penalized regression (lasso, elastic net), random forest, among others to select genes to

be summarized to U(X).

Supervised PCA

The principal components (PCA) method can be used to construct a gene profile that

can be used to predict a quantitative response. However, as mentioned by Bövelstad

(2007), a drawback of PCA is that there is no guarantee that the principal component is

associated with the response. Bair et al. (2004) then proposed the supervised PCA which

only applies PCA on genes that are associated with the response. This supervised gene

screening step reduces the dimension of the expression matrix (X) and ensures that the

resulting principal components are associated with the outcome of interest. The SPCA,

therefore, relies on the underlying assumption that there is a latent variable U(X) (the

gene signature), which is maximally associated with the response variable Y . In this case,

the candidate genetic biomarker is a latent score and not observed but can be estimated

using the SPCA method. From this point, the joint model in (12.1) can be fitted as the

second step to estimate the association between U(X) and bioactivity accounting for the

effect of a fingerprint feature.

Penalized Likelihoods

A second modeling approach that can be used to estimate U(X) is the penalized regres-

sion approach. Similar to (3.2) and (3.4), the model formulated in (12.1) implies that

conditioning on the gene signature, Y follows the following regression model

Yi|U(X), Z = θ1 + θ2U(X)i + θ3Zi + ε3i. (12.4)

Expanding the model in (12.4), we get

Yi|X, Z = θ1 +

g
∑

j=1

θ2jXji + θ3Zi + ε3i. (12.5)

Here, we fit a regression model with all genes and one fingerprint feature as explanatory

variables. Since g >> n, ordinary least squares is not feasible. However, penalized
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regression models that simultaneously selects genes and estimates the model parameters

can be fitted. Note that for model (12.5) the penalty is only imposed on the genes but

other models in which penalties are imposed on the fingerprint feature are possible as

well.

12.2 Semi-supervised Integration

Integrative clustering was presented in the second part of the thesis. Clustering technique

is usually applied in drug discovery to group compounds into different chemical classes.

The central idea for this part of the thesis is to incorporate extra information into the

clustering procedure of the compounds.

Li et al. (2011) proposed an approach to associate structural differences between com-

pounds with the expression level of a defined set of genes by performing clustering on

chemical structures to find differentially expressed genes between adjacent clusters of

compounds from the same node. Perualila-Tan et al. (2015) extended this approach and

instead of using only the chemical structure, proposed to use the bioactivity dataset as

well. We have shown that independent clustering of these two matrices does not neces-

sarily results in a similar compound clusters. Compounds belonging to the same structural

clusters does not necessarily induce the same level of bioactivity. Hence, an integrated

clustering of these two datasets is needed to provide a more meaningful characterization

of compound clusters, having similar biological and structural properties.

Following the same framework, another drug discovery clustering approach presented

in this thesis made use of the in silico target prediction data to cluster compounds. The

target prediction score is computed based on bioactivity data and chemical structure data.

Here, compounds are predicted to hit protein targets given their chemical structure.

Clustering is an unsupervised approach and the analysis flow presented in this thesis

is composed of two levels. The first part is (bi)cluster analysis and the second part is

the identification of features that are associated to each (or some) cluster(s). Hence, the

approaches used are semi-supervised.

The choice of weights for the similarity matrices is still an open topic for research.

Here, the integration was only presented using two datasets but this can be extended

to more than two datasets. Other integrative clustering techniques also exist. The R

package IntClust (Van Moerbeke et al. (2015)) provides some of the approaches for

integrative clustering but it has not been fully explored yet for the application of drug

discovery research.

Furthermore, it was shown that genes-compound cluster association where the clusters

are derived using similarities of target prediction are also discovered when applying biclus-
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tering analysis on the gene expression alone. This only means that the target prediction

data and the gene expression data contain similar information.

Moreover, in this thesis we proposed a way to prioritize biclusters in the presence

of multiple sources of compound information. This was done by first identifying the

biclusters based on one information and rank them according to similarity of the member

observations based on another data source.

12.3 Unsupervised Methods

In the third part of the thesis, we discussed the use of an unsupervised approach to inte-

grate multiple data types which can handle the QSTAR datasets. Here, we first introduced

the use of MFA as an integrative method and then as a gene module enrichment teach-

nique. We have shown that MFA can be used as a biclustering technique by extracting a

subset of variables and a subset of samples. Further, we explored the simplicity of MFA

as a weighted PCA to extend this method as a biclustering technique which penalizes the

loadings and/or scores to get sparse loadings and scores per component. We propose a

modification of the MFA method by making use of the sparse extension of PCA, such as

sparse PCA for dimension reduction and feature selection and SSVD for finding biclus-

ters. This leads to the two unsupervised integrative methods which we term SMFA and

biMFA. The approaches are new biclustering methods of multiple datasets. A thorough

investigation of these techniques would be an interesting topic for further research.

12.4 Concluding Remarks

This thesis, however, is not about highlighting which method is the best to use within

the QSTAR framework. The aim rather is to layout the potential of each method in

generating interpretable results. Based on the results obtained by the methods discussed

in this thesis, further investigation (typically experimental validation) will be carried out

with respect to alterations in the chemistry and their transcriptional effects on a cell.

Hence, consistency of the results across different methods would prove helpful in making

concrete decisions during the lead selection to optimization phase.

Moreover, although we used various methods for data integration that led to inter-

esting discoveries, we provided limited biological insights and structural interpretations

of the identified features. We can view the output of the analyses in this thesis as a

starting point for providing answers to research questions. It would be interesting to have

an extensive interpretation of the chemical and biological features as a next step. In this

stage, the medicinal chemists and molecular biologists are indispensable to provide feed-
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back regarding the results. It is worth noting that statistical significance may have little

biological or chemical significance. Hence, linking statistical findings back to biology and

chemistry is a challenging process.

In conclusion, the QSTAR framework was developed in order to provide data analysis

tool box for the decision-making in drug discovery studies. By interrelating chemistry,

phenotype, and ’omics’ data, functional manifestations (on-target and off-target effects) of

drug actions on living cells can be explored and predicted for a set of candidate compounds

in the compound optimization step. This can lead to a more efficient pipeline working

procedures in which only the most promising compounds need to undergo experimental

validation. A step which will reduce the development time of new drugs and reduce the

overall production cost due to early detection of on-target and off-target effects.
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Appendix A

Supplementary Results for

Chapter 3

Table A1: Estimated standard errors corresponding to the estimates presented in Table
3.3.

Setting ID se(α) se(β) se(ϑZY ) se(ϑZX) se(ϑXY ) se(ϑZXY ) se(Total)
A 0.12 0.14 0.14 0.12 0.06 0.18 0.14
B 0.12 0.14 0.06 0.12 0.06 0.12 0.14
C 0.12 0.14 0.14 0.12 0.06 0.18 0.14
D 0.12 0.14 0.27 0.12 0.06 0.29 0.14
E 0.12 0.14 0.40 0.12 0.06 0.41 0.14
F 0.12 0.05 0.12 0.12 0.05 0.11 0.04
G 0.12 0.05 0.04 0.12 0.05 0.00 0.04
H 0.12 0.05 0.12 0.12 0.05 0.11 0.04
I 0.12 0.05 0.22 0.12 0.05 0.21 0.04
J 0.12 0.05 0.32 0.12 0.05 0.32 0.04

K 0.19 0.16 0.47 0.18 0.11 0.45 0.16
L 0.19 0.16 0.47 0.18 0.11 0.45 0.16
M 0.19 0.16 0.47 0.18 0.11 0.45 0.16
N 0.19 0.16 0.47 0.18 0.11 0.45 0.16
O 0.19 0.16 0.47 0.18 0.11 0.45 0.16
P 0.19 0.28 0.54 0.18 0.12 0.55 0.27
Q 0.19 0.28 0.54 0.18 0.12 0.55 0.27
R 0.19 0.28 0.54 0.18 0.12 0.55 0.27
S 0.19 0.28 0.54 0.18 0.12 0.55 0.27
T 0.19 0.28 0.54 0.18 0.12 0.55 0.27
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Samenvatting

Vroeg geneesmiddel onderzoek en de bijhorende ontwikkelprocessen omvatten verschil-

lende technologiem de chemische en biologische effecten van chemische samenstellingen

op een moleculair niveau te meten en vormen de basis om beslissingen te maken tijdens de

ontwikkeling voor een nieuw geneesmiddel. Bijgevolg genereert dit proces meerdere bron-

nen aan hoogdimensionale gegevens die onder andere high throughput screening (HTS)

omvatten, chemische structuren, genexpressie en image based high content screening

(HCS). Een geïntegreerde analyse van deze bronnen is het centrale thema van deze scrip-

tie. Hoogdimensionale gegevens worden gekarakteriseerd door het hebben van een enorm

aantal kenmerken (variabelen) en relatief weinig chemische samenstellingen (samples).

Dit brengt ons bij het probleem van data integratie en vormt een uitdagend platform voor

het ontwikkelen van een methodiek en het toepassen ervan om essentiële informatie af te

leiden van zowel de biologie als de chemie. Een geïntegreerde methode die toelaat om

de relatie tussen al deze kenmerken in kaart te brengen kan zeer relevant zijn om het nut

en de veiligheid van samenstellingen te evalueren als eventuele leidende samenstellingen

dooruit de optimalisatie. In het onderzoek naar nieuwe geneesmiddelen werken weten-

schappers samen om een mogelijk biomoleculair "target"te identificeren. Deze bestaat

meestal uit een enkel molecule, gewoonlijk een eiwit, die betrokken is in een bepaalde

ziekte en moet kunnen interageren met en beïnvloed worden door een molecuul.

Na de identificatie en validatie van het target volgt het proces om veelbelovende sa-

menstellingen te ontdekken die uiteindelijk zouden kunnen uitmonden in een geneesmiddel

voor een bepaalde ziekte. Het ontdekken begint daarom met de creatie van een nieuw

molecule of het hergebruiken van een bestaand molecule. Op dit punt in het onderzoek

kunnen duizenden kandidaat samenstellingen gescreend worden tegen het target voor in-

teractie gebruik maken van HTS reeksen om het vervolgens te optimaliseren door de

structuur aan te passen voor een betere interactie.

203
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Sinds enkele decennia worden Quantitative Strcutural-Activity Relationships (QSAR)

modellerings technieken (Nantasenamat et al., 2009) uitgebreid gebruikt om de relatie

tussen de chemische structuur en de activiteit te kwantificeren en om hierdoor meer

begrip te winnen over hoe chemische substructuren invloed hebben op de biologische

activiteit van een verbinding en vervolgens deze kennis te gebruiken om samenstellingen

te ontwerpen met een verbeterde activiteit ofwel gerelateerd aan een grotere werkzaamheid

ofwel aan een lagere toxiciteit (Dearden, 2003, Martin et al., 2002, Bruce et al., 2008).

Het fundamentele uitgangspunt voor de QSAR aanpak is gebaseerd op de waarneming

dat chemicaliën met soortgelijke structuren vaak vergelijkbare fysische eigenschappen and

biological activiteiten delen.

De Quantitative Structure-Transcriptionele-Assay Relationship (QSTAR) modellerings

framework is een uitbreiding van de QSAR. Hier worden transcriptie data gïntegreerd met

de structurele informatie van de samenstelling alsook met experimentele biologische gege-

vens om de effecten van de samenstellingen in biologische systemen te analyseren vanuit

verschillende hoeken om een licht te werpen op het werkingsmechanisme (Mechanism of

Action, MoA) van de verbindingen. Dit kan inzicht bieden in onbedoelde fenotypische

effecten die van grote waarde kunnen zijn in een vroeg stadium van de farmaceutische

besluitvorming.

Hoewel de bioactieve data, die typisch gemeten wordt per target assay, belangrijk

is in het optimalisatieproces van het chemisch ontwerpen van samenstelling, biedt het

niet veel waardevol inzicht over de onderliggende biologische mechanismen. In contrast

met de biologische gegevens die enkel biologische effecten beschrijven, is genexpressie

data, als een multidimensionale assay, in staat om informatie te geven over een brede

verscheidenheid van biologische effecten van een samenstelling op het transcriptionele

niveau van het gehele genoom, en geeft daarmee een informatie-rijke snapshot van de

biologische toestand van een cel (Gölmann en Talloen, 2009, Amaratunga et al., 2014).

Transcriptomische veranderingen die optreden na toediening van een samenstelling kunnen

ook worden gemeten in high throughput, waardoor screening van veel stoffen in meerdere

cellijnen tegen een lage kost kan gebeuren. Ook is het geobserveerd dat transcriptie data

veelal biologisch relevante signalen detecteren en beter in staat is om samenstellingen

te prioriseren dan de conventionele target assays (Verbist et al., 2015). Toepassingen

die met behulp van genexpressie profielen meerdere genen en biologische reactiepaden

tegelijkertijd observeren verrijken het inzicht in de onderliggende mechanismen. Binnen

het QSTAR kader, kunnen mRNA biomarkers ontdekt worden door samenstelling die

ziektegerelateerde variatie van de genexpressie veroorzaken. Analyse van de transcriptie

profielen maakt het mogelijk om nieuwe biomarkers gerelateerd aan bepaalde biologische

effecten veroorzaakt door deze samenstellingen te identificeren. Met deze aanpak kan een
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aanzienlijke hoeveelheid middelen worden uitgespaard vanwege de vroege identificatie van

gevaren en zo fouten te vermijden in de latere stadium van de farmaceutische ontwikkeling

van geneesmiddelen.

Dit proefschrift bestaat uit een aantal analyse workflows om de drie hoog-dimensionale

datatypes te integreren; gen-expressie, fingerprint eigenschappen (FFS die de chemische

structuren voorstellen) en bioassay data (fenotype). De methoden in dit proefschrift zijn

verdeeld in drie soorten: het QSTAR modelkader, semi-supervised methoden, van een

clustering tot een biclustering analyse en unsupervised multivariate methoden voor data

exploratie en integratie. Het laatste deel van het proefschrift behandelt de statistische

software ontwikkeld samen met de methoden.

Het eerste deel van het proefschrift is toegewijd aan statische modellen die toepasselijk

zijn in de context van QSTAR. Hoofstuk 2 omvat het kader van gezamenlijk modelleren

(joint modeling framework) wat ons toestaat om (1) actieve genhandtekeningen die de

chemie sturen te identificeren, (2) chemische substructuren (oftewel ‘fingerprint features‘,

FF) van samenstellingen te bepalen die gerelateerd zijn met de effecten op bio-assay data

voor specifieke "targets"van interesse en (3) om na te gaan of dit effect ook kan bevestigd

worden door veranderingen in genexpressies (zowel on- of off-target gerelateerd). Hoofd-

stuk 3 beschrijft de relatie tussen gezamenlijk modelleren, "path analysis"modelleren, en

voorwaardelijk modelleren.

Het tweede deel van het proefschrift bevat de sequentiële integratie van meerdere

datasets met het doel het werkingsmechanisme te verklaren van een deelgroep van sa-

menstellingen (chemische stoffen) met behulp van clustering en biclustering technieken

(Kasim et al., 2016). Clustering algoritmes gebruiken de similariteit data om objecten te

groeperen en worden voornamelijk gebruikt op één databron. In Hoofdstuk 4 wordt een

clustering oplossing voorgelegd die meerdere databronnen kan hanteren in de context van

ontwikkeling van nieuwe geneesmiddelen. Een typische strategie voor de selectieprocedure

van chemische stoffen omvat het clusteren van deze stoffen gebaseerd op hun chemische

structuur. Dit idee wordt verder uitgebreid met een geïntegreerde clustering benadering

die gebruik maakt van beide databronnen met het oog op de ontdekking van een deelgroep

van chemische stoffen met gelijkaardige structuur- en biologische eigenschappen. Deze

methode voegt bioactiviteit en structuur gebaseerde similariteitsmatrices met behulp van

complementaire gewichten samen waardoor er een gewogen similariteitsmatrix, de stan-

daard invoer in elk clustering algoritme, wordt gevormd. Hierna wordt een tweede analyse

uitgevoerd waarin elke biologische en structuur gestuurde cluster van chemische stoffen

verder gelinkt wordt aan een set van transcriptoom kenmerken.

Een nieuwe deelgroep van chemische samenstellingen die op vlak van structuur en

biologische eigenschappen gelijken op de referentie stof worden zo ontdekt met de voor-
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gestelde clustering benadering. Hoofdstuk 5 behandelt het integreren van genexpressie

profielen van specifieke proteïnen met als doel onze kennis van de fundamentele mecha-

nismen in proteïne-ligand bindingen te verrijken. Dit hoofdstuk focust op de integratie

van genexpressie data en in-silico target predictie scores, om inzicht te verschaffen over

het werkingsmechanisme (Mechanism of Action, MoA). De chemische samenstellingen

worden geclusterd op basis van de similariteit van hun voorspelde proteïne targets waarna

elke cluster gelinkt wordt aan "gene sets"door middel van Lineaire Modellen voor Micro-

array Data. Pathway analysis wordt vervolgens gebruikt om de gene sets te identificeren

op basis van hun biologische processen. Verder wordt er een kwalitatief onderzoek uitge-

voerd op the homogene clusters van de chemische stoffen gebaseerd op hun targets om

de pathways te identificeren. Hoofdstuk 6 stelt een workflow voor om de genexpressie

biclusters te ranken met behulp van een andere bron van informatie wat in dit geval de

chemische structuur zal zijn.

Het derde deel van het proefschrift bestaat uit 3 hoofdstukken, beginnende met

Hoofdstuk 7 waarin de Multiple Factor Analysis (MFA) voor normalisatie en integra-

tie van datasets wordt geïntroduceerd. Voor deze analyse zullen de 3 QSTAR datasets

gebruikt worden. Hoofdstuk 8 illustreert het gebruik van MFA als een gen-module ver-

rijkingstechniek. In Hoofdstuk 9 worden 2 varianten van MFA gepresenteerd, namelijk

SMFA and biMFA. In dit hoofdstuk wordt de genexpressie (GE) data geïntegreerd met

"high content screening"(HCS) data. Het doel hiervan is de transcriptionele effecten van

de chemische samenstellingen te relateren met bioactiviteitsmetingen in een cel na toe-

diening gebaseerd op beelden. Deze idenficatie van fenotypische subklasses (GE en HCS)

die co-gereguleerd zijn over een deelgroep van chemische stoffen, kan worden toegepast

als een biologisch screening tool om het potentieel voor doeltreffendheid en toxiciteit van

deze stoffen te schatten. Dit is in lijn met het basis concept van biclustering, rekening

houdende met meerdere databronnen. Vandaar, met het oog op deze doelstelling, zijn

Sparse Multiple Factor Analysis (SMFA) en biclustering met MFA (biMFA) ontwikkeld

om simultaan te zoeken naar associatie tussen kenmerken en chemische stoffen. Deze

integratie methodes combineren de ideeën van MFA en singulierewaardeontbinding tech-

nieken met een strafterm. De resultaten brengen een groep van potentiële geno-toxische

leidende stoffen en een Tubulin-gelinkte groep van stoffen, samen met hun respectievelijke

HCS kenmerken indicators aan het licht.

De laatste 2 hoofdstukken van het proefschrift bevatten de ontwikkelde R producten

voor de voorgestelde methodologie in de verhandeling. Het eerste R pakket biclustRank,

wordt behandeld in Hoofdstuk 10 en Hoofdstuk 11 bespreek het R pakket biMFA welke

ontwikkeld is voor de methodologie in het derde deel van het proefschrift.
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