

Preface

This Ph.D. thesis contains the result of research undertaken at the Databa-
ses and Theoretical Computer Science Research Group of Hasselt University.
This research was realized within the framework of three projects: project
G.0344.05: Knowledge Representation and Database Problems for Spatio-Tem-
poral Databases of Research Foundation Flanders (FWO-Vlaanderen), FET-
IST project Geographic Privacy-aware Knowledge Discovery and Delivery
(GeoPKDD) and FET-ICT project Mobility, Data Mining, and Privacy
(MODAP). Certainly, I would have never reached the point of finishing my
dissertation without the help and support of others.

My research trajectory have been a challenging trip, with both ups and
downs. Fortunately, I was not alone on this road, but accompanied by an
extended team of experts, always willing to coach, sponsor, help, and motivate
me. For this, I would like to kindly thank them. My most important coach
throughout all these years was Bart Kuijpers. I am grateful to have you as
my promoter, you have given me the opportunity and freedom to determine
the direction of my research and to gain a lot of international experience. You
guided me through the world of science and, probably the biggest challenge,
thought me a lot about scientific writing.

Many thanks to my fellow researchers within Hasselt University and the
three projects. I very much enjoyed our exchange of ideas and thoughts, and
the fun moments together. Special thanks go to all other people who have
worked with me over the years, in particular the co-authors Vania Bogorny,
Luis Otavio Alvares, Walied Othman, Alejandro A. Vaisman and Nico Van de
Weghe for many useful discussions, comments and suggestions.

Much gratitude goes also to Kristof Bamps, Kristof Ghys Dries Vangoid-
senhoven and Jelle Vanhoof. Students I worked with as part of their master’s
thesis that helped me with software tools and critical questions to get new
ideas for this dissertation.

i

ii

Many thanks also to the members of my promotion committee and jury
for spending time on evaluating my thesis, and for providing useful comments
and suggestions.

I also appreciate the support of my (former) colleagues at PXL, CiBLiS
and Antwerp University, for encouraging me to finish my PhD.

Thanks and love to my father John and my mother Alice, for their encour-
agement and support and giving me the opportunity to go to the university
in the first place. Undoubtedly, my wife Annika deserves a special word of
appreciation for her moral support, for her patience and love.

Contents

Introduction and summary 1

1 Definitions and preliminaries on trajectories and polylines 9
1.1 Notation . 9
1.2 Trajectories and trajectory samples 10

1.2.1 Trajectories . 10
1.2.2 Trajectory samples . 11
1.2.3 The linear interpolation model 12

1.3 Polylines and α-polylines . 14
1.3.1 Polylines . 14
1.3.2 α-Polylines . 16

I The double-cross description of polylines 19

2 Background on the double-cross formalism for polylines 21
2.1 Historical background on the double-cross calculus 21

2.1.1 Spatial reasoning . 21
2.1.2 Qualitative representation 22

2.2 The double-cross matrix . 26
2.2.1 The double-cross value of two (located) vectors 26
2.2.2 The double-cross matrix of a polyline 29

2.3 Double-cross similarity of polylines 31

3 Algebraic and geometric characterizations of double-cross ma-
trices of polylines 33
3.1 An algebraic characterization of the double-cross matrix of a

polyline . 33
3.2 Some properties of double-cross matrices that can be derived

from their algebraic characterisation 36
3.2.1 Symmetry in the double-cross matrix of a polyline . . . 37
3.2.2 The double-cross value of consecutive line segments . . 38

iii

iv CONTENTS

3.2.3 On the length of line segments of a polyline 39

3.2.4 The quadrant of points of a polyline 40

3.3 A geometric characterization of the double-cross similarity of
two polylines . 40

3.3.1 The local carrier order of a polyline 40

3.3.2 An algebraic characterization of the local carrier order
of a polyline . 43

3.3.3 A characterization of double-cross similarity of polylines
in terms of their local carrier order 44

3.4 A characterization of the double-cross invariant transformations
of the plane . 46

4 Algorithms to test double-cross similarity 55

4.1 Generalizations of polylines . 55

4.2 An algorithm to test double-cross similarity of polylines 56

4.2.1 The algorithm DC-similar∆ 56

4.2.2 Basic properties of DC-similar∆ 59

4.2.3 Time complexity of DC-similar∆H
. 60

4.3 Experimental results . 60

4.3.1 Experiment 1: Polygon similarity 61

4.3.2 Experiment 2: Query by sketch 62

4.3.3 Experiment 3: Classification of terrain features 64

4.4 An alternative ∆, which is more suited for polylines 67

5 The double-cross matrix of polylines on a grid 69

5.1 Polylines on a grid . 69

5.1.1 Properties of double-cross matrices of polylines on a grid 72

5.1.2 Constructing example polylines on a grid from a given
a double-cross matrix 76

5.1.3 Properties of double-cross matrices of completely snapped
polylines . 79

6 On the realizability of double-cross matrices 81

6.1 A theoretical solution . 82

6.2 Generating double-cross similar polylines with
equal length line segments for a given polyline 85

6.3 A realizability test for 90◦-polylines 88

6.4 The polar coordinate representation of a polyline 92

6.4.1 From the Cartesian coordinate to the polar coordinate
representation . 92

6.4.2 From the polar coordinate to the Cartesian coordinate
representation . 93

CONTENTS v

6.4.3 The double-cross conditions for polar coordinates 97

6.5 A realizability test for 45◦-polylines 99

6.6 Convexity properties of 45◦-polylines 103

II Map matching techniques for trajectory data 107

7 Introduction to map matching 109

7.1 What is map matching? . 109

7.2 Map matching: issues and problem statement 109

7.3 Classifications of map-matching algorithms 112

7.3.1 Offline versus online map matching 112

7.3.2 Low sampling rate versus high sampling rate map match-
ing . 113

7.4 Existing Map Matching algorithms 115

7.4.1 Geometric methods . 115

7.4.2 Topological analysis . 120

7.4.3 Probabilistic algorithms 128

7.4.4 Combined algorithms 130

7.4.5 Algorithms for data with low sampling rate 131

8 An uncertainty-based map matching algorithm 135

8.1 Introduction . 135

8.2 Modeling uncertainty with space-time prisms 137

8.3 Using space-time prisms for map matching 138

8.3.1 Computation of the projection of a space-time prism and
its bounding box . 139

8.3.2 Using bounding boxes of the projection of the space-time
prisms in map matching 145

8.3.3 An algorithm for k-shortest path routing 146

8.3.4 Description of the space-time prisms map matching al-
gorithm . 149

9 Experimental evaluation of map matching algorithms 153

9.1 Data properties . 154

9.2 Sources of data . 154

9.2.1 Human labeled data . 154

9.2.2 Computer generated data 155

9.2.3 Unknown source data 155

9.3 Measure the quality of a map matching algorithm 155

9.3.1 Flaws in measuring accuracy 157

9.3.2 A new accuracy measure: CL-accuracy 159

vi CONTENTS

9.4 Overview of the experimental evaluation of map matching al-
gorithms . 160

9.5 Tests on human labeled data 161
9.5.1 Data from the police force of Ghent 161
9.5.2 Conclusions for human labeled data 164

9.6 Tests on computer generated data 165
9.6.1 High sampling rate . 165
9.6.2 Low sampling rate . 174

9.7 Conclusion on map matching algorithms 177

Discussion 181

Nederlandstalige samenvatting 193

Publications by Bart Moelans 201

Introduction and summary

Polylines arise in Geographical Information Science (GIS) in a multitude of
ways. One recent example comes from the collection of moving object data,
where trajectories of moving objects (for instance, pedestrians, cars, animals,
...), that carry GPS-equipped devices, are collected in the form of time-space
points that are registered at certain (ir)regular moments in time. The spatial
trace of this movement is a collection of points in two-dimensional geographical
space. There are several methods to extend the trajectory in between the mea-
sured sample points, of which linear interpolation is a popular method [GS05].
The resulting curve in the two-dimensional geographical space is a polyline.

Although most people use a GPS as a navigational tool, it can also be used
for storing the position of moving objects for (spatio-temporal) data analysis
(we refer to [GP08] for an overview of spatio-temporal data mining and anal-
ysis). For instance, we can analyse the routes followed by a person or a group
of people and try to discover hidden patterns in this trajectory data. How-
ever, a major disadvantage of using GPS obtained coordinates is that they are
not always very accurate and will not always match the road followed by, for
instance, a car or a pedestrian. Therefore, most GPS devices, used in cars,
account for these errors by mapping the measured location to the street that
was followed, instead of just displaying the location information received from
satellites. The general problem of matching GPS-recorded positions to a road
network is called map matching and it will be the focus of Part II of this thesis
(see below).

Another example of the use of polylines in GIS comes from shape recog-
nition and retrieval, which arises in domains, such as computer vision, image
analysis and GIS, in general. Here, closed polylines (where the starting point
coincides with the end point) or polygons, often occur as the boundary of
two-dimensional shapes or regions. Shape recognition and retrieval are cen-
tral problems in this context.

In examples, such as the above, there are, roughly speaking, two very dis-
tinct approaches to deal with polylines, polygonal curves and shapes. On the
one hand, there are the quantitative approaches and on the other hand there
are the qualitative approaches. Initially, most research efforts have dealt with

1

2 Introduction and summary

the quantitative methods [Boo86, DM98, KM01, MM92]. Only afterwards,
the qualitative approaches have gained more attention, mainly supported by
research in cognitive science that provides evidence that qualitative models of
shape representation are much more expressive than their quantitative coun-
terpart and reflect better the way in which humans reason about their en-
vironment [Ger99]. Polygonal shapes and polygonal curves are very complex
spatial phenomena and it is commonly agreed that a qualitative representation
of space is more suitable to deal with them [Mea01].

Within the qualitative approaches to describe two-dimensional movement
or shapes, two major approaches can be distinguished: the region-based and
the boundary-based approach. The region-based approach, using concepts
such as circularity, orientation with respect to the coordinate axis, can only
distinguish between shapes with large dissimilarities [Sch96]. The boundary-
based, using concepts such as extremes in and changes of curvature of the
polyline representing the shape, gives more precise tools to distinguish poly-
lines and polygons. Examples of the boundary-based approaches are found
in [Got03, Jun93, KE03, LL00, Ley88, Mea01, Sch96].

The principles behind qualitative approaches to deal with polylines are also
related to the field of spatial reasoning. Spatial reasoning has as one of its main
objectives to present geographic information in a qualitative way to be able
to reason about it (see, for example, Chapter 12 in [GP08], also for spatio-
temporal reasoning) and it can be seen as the processing of information about
a spatial environment that is immediately available to humans (or animals)
through direct observation. The reason for using a qualitative representation is
that the available information is often imprecise, partial and subjective [Fre92].
If we return to the example of trajectory data, we can see that if a person
orients her- or himself at a certain location in a city and then moves away
from this location, she or he remembers her or his current location by using
a mental map that takes the relative turns into account with respect to the
original starting point, rather than the precise metric information about her
or his trajectory. For such navigational problems, a person will for instance
remember: “I left the station and went straight; passing a church to my right;
then taking two left turns; ...” This brings us to Part I of this thesis.

Part I: The double-cross description of polylines.

One of the formalisms to qualitatively describe polylines in the plane is
given by the double-cross calculus. In this method, a double-cross matrix cap-
tures the relative position of any two line segments in a polyline by describing
it with respect to a double cross based on the starting points of these line
segments. The double-cross calculus was introduced as a formalism to qual-
itatively represent a configuration of vectors in the plane [Fre92, ZF96]. For

3

an overview of the use of constraint calculi in qualitative spatial reasoning, we
refer to [RN07]. In the double-cross formalism, the relative position (or orien-
tation) of two (located) vectors is encoded by means of a 4-tuple, whose entries
come from the set {0,+,−}. Such a 4-tuple expresses the relative orientation
of two vectors with respect to each other. The double-cross formalism is used,
for instance, in the qualitative trajectory calculus, which, in turn, has been
used to test polyline similarity with applications to query-by-sketch, indexing
and classification [KpMdW06].

Two polylines are called double-cross similar if their double-cross matrices
are identical. Two polylines, that are quite different from a quantitative or
metric perspective, may have the same double-cross matrices. The idea is
that they follow a similar pattern of relative turns, which reflects how humans
visualize and remember movement patterns.

Algebraic and geometric characterizations of double-cross matrices
of polylines. In Chapter 3, we provide an algebraic and geometric interpre-
tation of the double-cross matrix of a polyline and of double-cross similarity
of polylines. To start with, we give a collection of polynomial constraints
(polynomial equalities and inequalities) on the coordinates of the measured
points of a polyline (its vertices) that express the information contained in
the double-cross matrix of a polyline. This algebraic characterisation can be
used to effectively verify double-cross similarity of polylines and to generate
double-cross similar polylines by means of tools from algebraic geometry, im-
plemented, for instance, in software packages like Mathematica [Wol]. This
algebraic characterization of the double-cross matrix also allows us to prove a
number of properties of double-cross matrices. As an example, we mention a
high degree of symmetry in the double-cross matrix along its main diagonal.

Next, we turn to a geometrical interpretation of double-cross similarity
of two polylines. This geometrical interpretation is based on local geometric
information of the polyline in its vertices. This information is called the local
carrier order and it uses (local) compass directions in the vertices of a polyline
to locate the relative position of the other vertices. Our main result in this
context says that two polylines are double-cross similar if and only if they have
the same local carrier order structure.

From the definition of the double-cross matrix of a polyline it is clear
that this matrix remains the same if, for instance, we translate or rotate the
polyline in the two-dimensional plane. In a final part of this chapter, we
identify the exact set of transformations of the two-dimensional plane that
leave double-cross matrices invariant. Our main result states that the largest
group of transformations of the plane, that is double-cross invariant consist
of the similarity transformations of the plane onto itself. This result implies,
for instance, that it is sufficient to prove any statement about double-cross

4 Introduction and summary

matrices of arbitrary polylines, only for polylines that start in the origin of
the two-dimensional plane and have a unit length first line segment.

Algorithms to test double-cross similarity. In Chapter 4, we present
an algorithm, based on the double-cross formalism, to test for polyline- (and
polygon-) similarity. To determine the degree of similarity between two poly-
lines (not necessary of the same size), the algorithm first computes their “gen-
eralized polylines,” that consist of almost equally long line segments and that
approximate the length of the given polylines within an ε-error margin. In a
next step, the algorithm determines the double-cross matrices of the general-
ized polylines and the difference between these matrices is used as a basis to
measure the degree of dissimilarity between the given polylines. We prove the
termination of our algorithm and give its sequential time complexity.

This chapter ends with a number of applications. We apply our method to
query-by-sketch, indexing of polyline databases, and classification of terrain
features and show experimental results for each of these applications.

The double-cross matrix of polylines on a grid. In Chapter 5, we study
properties of double-cross matrices of polylines that are situated on a grid
in the two-dimensional plane. The grid lines are assumed to be parallel to
the standard x- and y-axes of the plane. Polylines on grids may arise from
trajectories on Manhattan-like road networks.

We give an effective characterization of what double-cross similarity means
for polylines that are drawn on a grid. For a polyline on a grid, we call
the vertical and horizontal straight lines through its vertices its vertical and
horizontal carriers and we call the order in which they appear as we go through
the polyline from start to end the V - and H-order of the polyline. We call two
polylines V H-equivalent if they have the same V -order and the same H-order.

To a polyline on a grid, we also associate a canonical polyline, which is
V H-equivalent to the original polyline and which has the same double-cross
matrix as the original polyline. It turns out that V H-equivalence is the notion
that captures the geometric information contained in the double-cross matrix:
two polylines have the same matrix if and only if they are V H-equivalent
(their last vectors may differ in length, though). We also give an algorithm
that on input a double-cross matrix of size N by N , checks in O(N2) time
whether it is realizable by a polyline on a grid. For polylines whose vertices
are “snapped” to the grid, the above results can be improved on. Here, once
the realizability of a matrix has been checked (in O(N2) time again), it can
be realized in O(N) time.

On the realizability of double-cross matrices. In Chapter 6, we address
the problem of the realizability of double-cross (like) matrices. Not every
N×N matrix of 4-tuples from {−, 0,+} is the double-cross matrix of a polyline
with N + 1 vertices. This gives rise to the following decision problem: Given

5

an N ×N matrix of 4-tuples from {−, 0,+}, decide whether it is the double-
cross matrix of a polyline (with N + 1 vertices), and if it is, given an example
(or many examples) of a polyline that realizes the matrix.

From Chapter 3, we know a collection of polynomial (in)equalities on the
coordinates of the vertices of a polyline, that express the information contained
in the double-cross matrix of a polyline. Since first-order logic over the reals
(or elementary geometry) is decidable ([Tar51]), it follows that our decision
problem is also decidable. However, we are left with the question of its time
complexity.

In computational algebraic geometry, the problem can be viewed as a sat-
isfiability problem of a system of quadratic equations in 2(N + 1) variables.
However, the best known algorithms to solve our problem (including the pro-
duction of sample points) take exponential time. Our decision problem has
many particularities (the polynomials are homogeneous of degree 2; they use
few monomials and each of them uses only six variables), nevertheless the
problem is known to be NP-hard.

In this chapter, we focus on subclasses of the above decision problem for
which we can give polynomial time decision algorithms. A first subclass is
obtained by restricting the attention to polylines in which consecutive line
segments make angles that are multiples of 90◦. For this sub-problem, we give
a O(N2)-time decision procedure. Next, we turn our attention to polylines in
which consecutive line segments make angles that are multiples of 45◦. To solve
the more complicated case of 45◦-polylines, we introduce the polar-coordinate
representation of double-cross matrices. We give two-way translations between
the Cartesian- and the polar-coordinate representations. Using polar coordi-
nates, our decision problem can be reduced to a linear programming problem,
with algebraic coefficients, however. Also here, we obtain a polynomial time
decision procedure. This result has some implications on the convexity of the
solution set consisting of all 45◦-polylines that realise a matrix.

Part II: Map matching techniques for trajectory data.

A common problem in moving object databases (MOD) is the reconstruc-
tion of a trajectory from a trajectory sample. Trajectory samples are automat-
ically collected using location-aware devices. Over the past decade, GPS-based
navigation systems are becoming increasingly popular. More than often, ob-
ject positions obtained using these location-aware devices fall outside a road
or street network. Typically, when the position of a car or a pedestrian is
monitored using GPS, around ninety-five percent of the recorded time-space
points fall outside the actually followed road network. Besides the measure-
ment errors, there are also other problems with real-world data. We think of
traffic jams and gaps between measured points, produced by some interference

6 Introduction and summary

in the satellite signal (for instance, when moving in tunnels). Thus, matching
the user’s position to a location on the digital map is required. The general
problem of matching GPS positions to a road network is called map matching.

Introduction to map matching. We give an almost comprehensive over-
view of the most important types of existing map matching algorithms in
Chapter 7, where we also classify them in the operational way that they can
be used (online versus offline; low versus high sampling rate; etc.). In this
chapter, we also give an overview of characteristics of data sets.

An uncertainty-based map matching algorithm. Many algorithms have
already been proposed to solve the map matching problem [BK98, WBK00],
although none of them considers the uncertainty issue that is caused by the
lack of information about the moving object’s location in between measured
locations. Linear interpolation between sample points, which assumes that
objects move at constant minimal speed, is a classical solution. A more realis-
tic model is based on the notion of uncertainty. An example of such model is
the use of space-time prisms [Ege03, Häg70, HE02, PJ99, Mil05], that model
the unknown, but possible positions of a moving object between sample points
by using background information, like a local physical or law imposed speed
limitation.

In this part of the thesis, we study the relationship between map matching
and uncertainty, and propose an new algorithm that combines weighted k-
shortest paths [Yen72] with space-time prisms to obtain a method that is
applicable on a wide range of trajectory sample types and that outperforms
existing algorithms [GKpM+09]. We apply this algorithm to real-world cases
and to computer generated trajectory samples, consisting of trajectory samples
with a variety of properties. In some cases, observations are taken at small
regular intervals. In other data sets, they are taken at larger and irregular
intervals. This corresponds to the classical distinction between low sampling
rate and high sampling rate, that is often discussed in the map matching
literature. In addition, we compare the results of our new space-time prism
and k-shortest path algorithm against a number of existing algorithms, on a
variety of trajectory sample data with different characteristics. We show that
the incorporation of uncertainty in the map matching process leads to more
positive matchings. This positive outcome largely compensates the longer
running times which, however, remain within reasonable limits.

The main contribution Chapter 8 is a novel map matching algorithm that
uses space-time prisms in combination with a weighted k-shortest paths al-
gorithm. An important component is the computation of the bounding box
of the spatial projection of a space-time prism. This bounding box limits the
number of candidate road segments in the map matching process.

7

Experimental evaluation of map matching algorithms.
In Chapter 9, we start by addressing the problem of accurately comparing

the performance of map matching algorithms against each other. We give an
overview of possible properties of trajectory samples and ways to obtain these
properties in data sets are described in Section 9.2.

We also discuss a number of existing methods to measure the accuracy of a
map matching algorithm on these different data types [LZZ+09, WBK00] and
we propose a novel accuracy measure that does not suffer from the drawbacks
of existing methods.

The remainder of Chapter 9 is devoted to experimental results. We present
a number of tests of different map matching algorithms on a variety of trajec-
tory sample data sets. The aim is to figure out which type of map matching
algorithm works best on a certain type of trajectory samples. We have im-
plemented a number of existing map matching algorithms and compare these
algorithms with our own uncertainty-based map matching algorithm imple-
mentation. The experimental results indicate that our space-time prisms in
combination with weighted k-shortest path algorithm is very robust and out-
performs a variety of existing algorithms on very different types of trajectory
samples.

In conclusion, we want to remark that the two topics of this thesis (map
matching of trajectories and double-cross similarity of polylines) are both part
of the broad area of knowledge discovery in trajectory data. Map matching can
be seen as a preliminary data cleaning step that takes place before actual data
mining algorithms are applied to the trajectory data. Indeed, map-matching
algorithms “clean” the erroneous GPS-measured data by fitting it to the road
network where the movement takes place. For data mining techniques, like
clustering, that are applied to this cleaned trajectory data, the study and de-
sign of distance or similarity measures on trajectory data is necessary. This is
where the double-cross similarity of polylines that are the traces of trajecto-
ries fits in the knowledge discovery process. Both quantitative and qualitative
distance measures can be used for clustering (the traces of) trajectory data.

1
Definitions and preliminaries
on trajectories and polylines

In this chapter, we give the definitions of a trajectory, a trajectory sample, a
polyline and an α-polyline. We also illustrate these concepts. These definitions
are used throughout this thesis.

1.1 Notation

In this thesis, we use the following notational conventions.
Let N and R denote the sets of the natural and the real numbers, respec-

tively. For n ∈ N, Rn denotes the n-dimensional real space.
Since we consider movement of objects in the two-dimensional real plane,

R2, we denote the time-space space, in which we work, by R×R2. Here, the
first dimension represents time and the latter two dimensions represent space.
We prefer the notation R×R2 over the more correct R×R×R (or R3) to
stress the distinction between time and space.

Typically, we use the characters t, t0, t1, ... as variables that range over time
points and x, y, x0, y0, x1, y1, ... as variables that range over spatial coordinates.
This means that a tuple (t, x, y) represents a variable time-space point in the
space R ×R2. Using this convention, we also refer to the time dimension as
the t-axis and to the spatial dimensions as the (x, y)-plane.

To stress that some t, x, y-values (or other values) are constants, we use
sans serif characters: t, x, y, t0, x0, y0, t1, x1, y1, So, (t, x, y) represents some
fixed time-space point in the space R×R2.

9

10 Definitions and preliminaries on trajectories and polylines

For variables that range over points in R2, we use the characters p, p0, p1, . . .
and for constant points in R2, we use, again, sans serif characters p, p0, p1, . . .

1.2 Trajectories and trajectory samples

1.2.1 Trajectories

We now define what we mean by a trajectory, its time domain and its trace.

Definition 1.1. Let I be a closed and bounded interval in R. A trajectory T
is the graph of a continuous (with respect to t) mapping

α : I → R2 : t 7→ α(t) = (αx(t), αy(t)).

That is, T = {(t, αx(t), αy(t)) ∈ R×R2 | t ∈ I}. The set I is called the time
domain of T . The trace of the trajectory T , denoted tr(T), is the range of the
mapping α. That is,

tr(T) = {(αx(t), αy(t)) ∈ R2 | t ∈ I}.

Alternatively, we can view the trace tr(T) of a trajectory T as the projec-
tion of T onto the (x, y)-plane. The time domain of a trajectory T corresponds
to the projection of T onto the t-axis. Figure 1.1 gives an illustration of a tra-
jectory, its time domain and its trace.

For the moment, we do not impose conditions on the finite representability
of (the mappings α that determine) trajectories. An example of mappings α
that are finitely representable is given by the case where the functions αx(t)
and αy(t) are rational functions of t (in which both the numerator and the
denominator are polynomials in t).

An example of this case is the trajectory{(
t,

1− t2
1 + t2

,
2t

1 + t2

)
∈ R×R2 | −1 ≤ t ≤ 1

}
,

which is illustrated in Figure 1.2. This is the trajectory of a moving object (or
point) that moves at non-uniform speed on one half of the unit circle located in
the half-plane x ≥ 0 of the (x, y)-plane. Its time domain is the interval [−1, 1]
and its trace is the half circle described by the formula x2 + y2 = 1 ∧ x ≥ 0.

1.2. Trajectories and trajectory samples 11

x

y

t

tr(T)

T

I

Figure 1.1: A trajectory T (in red) with its time domain I (in green) on the
t-axis and its trace tr(T) (in blue) in the (x, y)-plane.

1.2.2 Trajectory samples

In practice, trajectories of moving objects are only known at discrete moments
in time. As an example, we consider the trajectory of a person, measured and
collected at certain intervals of time by a GPS-equipped device. This partial
knowledge of trajectories is formalized by the notion of a trajectory sample.
In its definition, we do not consider the uncertainty due to possible errors in
the measurement of time and location.

Definition 1.2. A trajectory sample S is a finite set {(t0, x0, y0), (t1, x1, y1), . . . ,
(tN , xN , yN)} (with N ∈ N) of time-space points of R×R2 with different time-
coordinates (that is, ti 6= tj , for 0 ≤ i < j ≤ N).

If the order on time in S is given by t0 < t1 < · · · < tN , then this order
induces a natural order (t0, x0, y0) < (t1, x1, y1) < · · · < (tN , xN , yN) on the
elements of the trajectory sample S.

For practical purposes, we assume that the tuples (ti, xi, yi), for 0 ≤ i ≤ N ,
of a trajectory sample contain rational values.

We now define what it means for a trajectory to be consistent with a
trajectory sample.

12 Definitions and preliminaries on trajectories and polylines

0.0

0.5

1.0

-1.0
-0.5

0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1.2: A trajectory on a half circle (in red) and its trace (in
blue). This figure is produced in Mathematica [Wol] with the command
ParametricPlot3D[{{(1− t2)/(1+ t2), 2t/(1+ t2), t}, {(1− t2)/(1+ t2), 2t/(1+
t2), 0}}, {t,−1, 1}, PlotStyle→ {Red, Blue}].

Definition 1.3. Let S = {(t0, x0, y0), (t1, x1, y1), . . . , (tN , xN , yN)} be a trajec-
tory sample and let T = {(t, αx(t), αy(t)) ∈ R×R2 | t ∈ I} be a trajectory. We
say that the trajectory T is consistent with the sample S, if t0, t1, . . . , tN ∈ I
and αx(ti) = xi and αy(ti) = yi for 0 ≤ i ≤ N .

This definition explains in an intuitive way what consistency means, but
we could express the condition for consistency, in short, by S ⊆ T .

1.2.3 The linear interpolation model

A classical and popular model to reconstruct a trajectory from a trajectory
sample S is the linear-interpolation model (see, for example, Chapter 3 of
[GS05]). Here, the unique trajectory, that is consistent with the sample S
and that is obtained by assuming that the trajectory is run through at con-
stant lowest speed between any two consecutive (in time) sample points, is
constructed.

The following definition describes the linear-interpolation model.

1.2. Trajectories and trajectory samples 13

Definition 1.4. For a trajectory sample S = {(t0, x0, y0), (t1, x1, y1), . . . , (tN ,
xN , yN)}, with t0 < t1 < · · · < tN , the trajectory LIT(S) :=

N−1⋃
i=0

{(
t,

(ti+1 − t)xi + (t− ti)xi+1

ti+1 − ti
,

(ti+1 − t)yi + (t− ti)yi+1

ti+1 − ti

)
| ti ≤ t ≤ ti+1

}

is called the linear-interpolation trajectory of S.

From the definition, it is clear that LIT(S) is consistent with S. The time
domain of LIT(S) is the interval [t0, tN]. The functions describing the x- and
y-coordinates of LIT(S) are continuous. They are everywhere differentiable
except, possibly, at the moments t0, t1, . . . , tN .

Physically seen, a linear-interpolation trajectory is not realistic. At the
moments t0, t1, . . . , tN−1 an infinite acceleration may be required to change
direction instantly. Nevertheless, linear-interpolation trajectories are sufficient
and useful for many practical purposes, especially when the sample points are
frequent enough.

Figure 1.3 shows a trajectory sample and its linear-interpolation trajectory
with its time domain and trace.

x

y

t

Figure 1.3: A trajectory sample (black dots) and its linear-interpolation tra-
jectory (red line). Also the time domain on the t-axis (in green) and the trace
in the (x, y)-plane (in blue) of the linear-interpolation trajectory are shown.

14 Definitions and preliminaries on trajectories and polylines

1.3 Polylines and α-polylines

1.3.1 Polylines

The following definitions specifies what polygonal curves and polylines are and
how they are (finitely) represented. We also introduce some terminology about
polylines.

Definition 1.5. Let T be a trajectory with time domain I = [a, b]. We call T
piecewise affine if T is the graph of some continuous function α : [a, b]→ R2 :
t 7→ (αx(t), αy(t)) for which there exist “division points” a = t0 < t1 < · · · <
tN = b such that αx and αy are affine functions1 on the intervals [ti, ti+1], for
0 ≤ i < N .

The range of such function is called a polygonal curve (in R2).

The linear-interpolation trajectory of a trajectory sample (see Definition
1.4) is an example of a trajectory given by piecewise-affine coordinate func-
tions. Its trace, illustrated (in blue) in Figure 1.3, is a polygonal curve.

We remark that the division points in the above definition are not unique.
For example, we can add arbitrary division points between any ti and ti+1,
resulting in the same piecewise-affine trajectory and the same polygonal curve.

For the finite representation of polygonal curves, we reserve the name
polyline.

Definition 1.6. Let T = {(t, αx(t), αy(t)) ∈ R ×R2 | t ∈ I} and a = t0 <
t1 < · · · < tN = b be as in Definition 1.5 and let α(ti) = (xi, yi), for 0 ≤ i ≤ N .

The ordered list P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 of vertices (xi, yi),
0 ≤ i ≤ N , is called a polyline. We say that N is the size of P . The vertices
(x0, y0) and (xN , yN) are respectively called the start and end vertex of P . The
line segments connecting the points (xi, yi) and (xi+1, yi+1), for 0 ≤ i < N , are
called the (line) segments of the polyline P . The trace tr(T) of T is called the
semantics of P , denoted sem(P).

So, the semantics sem(P) is the following union of line segments:

N−1⋃
i=0

{
(x, y) ∈ R2 | ∃λ ∈ [0, 1] : (x, y) = λ · (xi, yi) + (1− λ) · (xi+1, yi+1)

}
,

which is a polygonal curve in R2. Further on, we will loosely use the term
polyline also to refer to the semantics of a polyline, although, stricto sensu, a
polyline is a list of points in R2.

1A function f : I → R : t 7→ f(t) on an interval I of R is affine if it is of the form
f(t) = at+ b, for all t ∈ I, for some constants a, b ∈ R.

1.3. Polylines and α-polylines 15

We remark that in a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉, which
is given as a list of its vertices, time is completely absent (except for the
ordering of the vertices). We further remark that a polyline may be the trace
of different piecewise-affine trajectories (having different speeds, for instance).

Figure 1.4 gives an example of two polylines with the same semantics, but
a different number of vertices.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(5
2 , 1)

P2

(0, 0) (2, 0) (3, 0) (4, 0)

(5
2 , 1)

P1

Figure 1.4: An example of a polyline P1 = 〈(0, 0), (2, 0), (5
2 , 1), (3, 0), (4, 0)〉 and

a polyline P2 = 〈(0, 0), (1, 0), (2, 0), (5
2 , 1), (3, 0), (4, 0)〉 Although they have a

different vertex set and a different size, still sem(P1) = sem(P2).

We also remark that the line segments, appearing in the semantics, may
intersect in points which may or may be not vertices, as is illustrated by the
polyline shown in Figure 1.5.

(0, 0)

(0, 1)

(1, 0)

(2, 1)

(3, 0)

(4, 2)

(4, 0)

Figure 1.5: An example of a polyline P = 〈(0, 0), (0, 1), (2, 1), (3, 0), (4, 2),
(1, 0), (4, 0)〉 and its semantics sem(P). We see that two of the line segments
of its semantics intersect in a point that is not a vertex. The last line segment
of the polyline intersects two other line segments in a vertex.

It is reasonable to assume that polylines coming from GIS applications have
vertices with rational coordinates. In the algorithms further on, we assume
that these rational numbers are stored in some suitable bit representation.

16 Definitions and preliminaries on trajectories and polylines

Below, we stick to the notation introduced in the above definitions. Fur-
thermore, as a standard, we abbreviate (xi, yi) by pi.

We also use the following notational conventions. The (located) vector2

from pi to pj is denoted by −−→pipj . The counter-clockwise angle (expressed in
degrees) measured from −−→pipj to −−→pipk is denoted by ∠(−−→pipj ,−−→pipk), as illustrated
in Figure 1.6.

\(��!pipj ,
��!pipk)

pj

pi

pk

Figure 1.6: The counter-clockwise angle ∠(−−→pipj ,−−→pipk) from −−→pipj to −−→pipk.

1.3.2 α-Polylines

In the following chapters, we sometimes consider polylines in which the angles
between two consecutive line segments come from a fixed finite set of angles.
This is formalized in the following definition.

Definition 1.7. Let α, 0◦ < α < 360◦, be an angle such that 360◦

α = kα is a
natural number.

Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline with pi = (xi, yi),
for 0 ≤ i ≤ N .

We call P an α-polyline if all angles ∠(−−−→pipi−1,
−−−→pipi+1) are multiples of

α, for 0 < i < N (that is, ∠(−−−→pipi−1,
−−−→pipi+1) is of the form niα, with ni ∈

{0, 1, ..., kα}).

In the previous definition, the case where ni = 0 corresponds to a polyline
that, coming from pi−1, reaches pi, where it returns in the direction of pi−1 to
reach pi+1.

Figure 1.7 shows the 90◦-polyline P1 and the 45◦-polylines P1 and P2. In-
deed, in the polyline P1, for instance, the consecutive angles are 90◦, 90◦, 270◦

and 270◦, assuming that the start vertex is at the left bottom.

2By the located vector from p to q, we mean an ordered pair (p, q) of points of R2, which
we denote −→pq. We use this concept to represent the oriented line segment between p and q.

1.3. Polylines and α-polylines 17

P1 P2

Figure 1.7: An example of a 90◦-polyline (P1) and two 45◦-polylines (P1 and
P2).

Part I

The double-cross description
of polylines

19

2
Background on the
double-cross formalism for
polylines

In this chapter, we give the historical background of the double-cross formalism
and we define the notions of the double-cross matrix of a polyline and of double-
cross similarity of polylines.

2.1 Historical background on the double-cross cal-
culus

Since the main topic of this thesis is qualitative distance measures based on the
double-cross calculus, we give, in this section, some historical background on
the double-cross formalism. The principles behind the double-cross formalism
have emerged from the area of spatial reasoning. This field has as one of its
main objectives to present geographic information in a qualitative way to be
able to reason about it. In the following sections, we briefly discuss some
relevant topics from the area of spatial reasoning.

2.1.1 Spatial reasoning

Spatial reasoning can be seen as the processing of information about a spatial
environment that is immediately available to humans (or animals) through di-
rect observation. It is this direct information that enables us to orient ourselves

21

22 Background on the double-cross formalism for polylines

in a spatial environment. This observational information can be transformed
into a qualitative representation that allows us to compare environments with
each other using some kind of algorithm. The reason for using a qualitative
representation is that the available information is often imprecise, partial and
subjective [Fre92].

For example, if a person orients her- or himself at a certain location in a
city and then moves away from this location taking some right and left turns
into streets, it is normal that this person remembers her or his current loca-
tion by using a mental map that takes the relative turns into account with
respect to the original starting point, rather than the precise metric informa-
tion about her or his trajectory. For such navigational problems it is desirable
to represent and process the spatial information in an appropriate way, namely
rather qualitatively than quantitatively. Qualitative representations of spatial
information are discussed in the following sections.

2.1.2 Qualitative representation

In this section, we discuss qualitative representations of geographical informa-
tion. Since such representations aim to represent, in a natural and simple way,
possibly inaccurate information, they need to fulfil some conditions [ZF96]:

1. The representation should be simple and extendable.

2. The formalism should allow different levels of granularity, both in the
representation (e.g., if only imprecise knowledge is available) and in the
choice of operations (e.g., faster computation of partial results should be
possible under time constraints).

3. The approach should resemble some fundamental properties known about
human spatial reasoning to be plausible from a cognitive point of view.

As will be explained in detail in Section 2.2, the double-cross calculus only
uses three symbols, namely −, 0 and +. These symbols represent “away from”,
“left or right turn from” and “towards” a certain location. Several ways to
extend this calculus have been suggested. For example, a method to take speed
into account has been suggested [Hum10]. So, in some sense, the double-cross
formalism fulfills the first of the above conditions. Also the second condition
is fulfilled, since the double-cross approach allows different levels of precision
and can handle missing data. The last condition, the resemblance with human
reasoning, is a rather subjective one. But in the following sections, we will try
to explain the motivations behind the double-cross formalism and map this to
the way humans perform spatial reasoning.

We start with a simple example. Assume a person walks from point a to
point b, and during his walk observes a third point c. If we represent the road

2.1. Historical background on the double-cross calculus 23

a b

c

Figure 2.1: Walking from a to b, with c on the left.

c

b

a

Figure 2.2: Walking from a to b, with c on the left (from [Fre92]).

from a to b as a vector
−→
ab, it is simple and intuitive human observation to

decide whether the point c is positioned to the left, to the right or on the line

that contains the vector
−→
ab. For instance, in Figures 2.1, 2.2 and 2.3, it is

immediately clear (in different representations by different authors) that point

c is to the left of the line determined by the vector
−→
ab.

This observation can be extended or refined by drawing lines through a

and b perpendicular to the line that contains
−→
ab. Now the point c can be

positioned on 15 different positions according to
−→
ab. By working with these

three lines, we can locate the point c in 15 positions (that are visualized in
Figure 2.4) These 15 positions are divided in 6 regions (a1, . . . , a6), 6 half lines
(`1, . . . , `6), 2 points (p1 and p2) and 1 line segment (p1p2).

These positions can be represented in several iconic ways. Zimmerman et
al. present Figure 2.1 as in Figure 2.3 [ZF96] . For this section, we will use
the representation of Freksa, illustrated in Figure 2.2 [Fre92].

a

b

c

Figure 2.3: Walking from a to b, with c on the left (from [ZF96]).

24 Background on the double-cross formalism for polylines

`6

a1

a2

a3

a5

a6

a4

p1

p2

`1

`2

`3

`4

`5

Figure 2.4: 15 possible positions according to a vector from p1 to p2.

Besides the fact that this notation is simple, a second advantage is the
division of the space by perpendicular lines on a vector. Indeed, for humans
it is more intuitive to estimate angle of 90◦ than angles of other sizes.

In Section 2.1.2.1, some extensions on this spatial representation are dis-
cussed (for instance, the composition of a spatial representation given two
existing representations).

2.1.2.1 Operations

By applying operations on a spatial representation, several representations can
be related to each other. In that way, we can get a more complete and general
spatial representation. We give an example to illustrate the advantage of one
of these operations.

Suppose a person is moving and passing, respectively, the spatial locations
(points) a, b ,c and d. The position of this person observes c with respect to

the first vector of his movement,
−→
ab, is already discussed in previous section.

Similarly, we can look at how this person observes the position of the next

point d with respect to her or his next direction of movement (the vector
−→
bc).

If we now consider the vector −→ac, it would be nice and useful to predict the
relative position of d using the relative position of c with respect to the vector−→
ab and the relative position of d with respect to the vector

−→
bc.

The operation which makes this possible is the composition, discussed in
the following paragraph. Another operations, that we discuss is the inversion.
Zimmerman et al. define two more operations: homing and shortcut, but these
are irrelevant for our purpose [ZF96]. In the remainder of this section, we will

abbreviate the relative position of c with respect to the vector
−→
ab as ab : c.

2.1. Historical background on the double-cross calculus 25

(a) (b)

Figure 2.5: Composition (from [ZF96]).

Figure 2.6: The difference between course and fine composition (from [ZF96]).

Composition In Figure 2.5(a) three line segments, ab, bc and cd and four
points a, b, c and d are shown. If we transform the segments ab and bc into

the vectors
−→
ab and

−→
bc, we can, using the observations of the previous sector,

represent ab : c and bc : d. Now, we can calculate all possible positions for

d according to
−→
ab. Because we can not infer anything about the length of

line segment cd from ab : c and bc : d, there are in this example five possible
positions. If we combine these five positions, we can represent the composition
as shown in Figure 2.5(b).

Furthermore, Zimmerman et al. distinguishes between two kind of com-
positions: coarse and fine composition [ZF96]. Coarse composition only uses
positional information (like in Figure 2.5(b)), whereas fine composition also
uses the length of the vectors. The difference between coarse and fine compo-
sition is illustrated in Figure 2.6.

Knowledge about this composition is necessary to get insight in realizabil-
ity (see Chapter 6) of double-cross matrices (defined in Definition 2.3).

26 Background on the double-cross formalism for polylines

(a) (b)

Figure 2.7: Example of inversion operator (from [ZF96]).

Inversion In contrast with composition, inversion is an unary operation.

As the names indicates, inversion inverts the orientation of the vector
−→
ab into−→

ba and the relation ab : c to ba : c. The inversion operator is visualized in

Figure 2.7. In Figure 2.7(a), the effect of this operation on
−→
ab is shown. The

effect of this inversion of relations is shown in Figure 2.7(b). This inversion
operator is more formally discussed in Property 3.3 of Chapter 3.

2.2 The double-cross matrix

In this section, we define the double-cross matrix of a polyline.
From now on, we impose the following restriction on polylines (as defined

in Chapter 1).

Assumption 1. We assume that no two consecutive vertices of a polyline are
identical.

2.2.1 The double-cross value of two (located) vectors

The double-cross calculus was introduced as a formalism to qualitatively rep-
resent a configuration of vectors in the plane R2 [Fre92, ZF96]. In this forma-
lism, the relative position (or orientation) of two (located) vectors is encoded
by means of a 4-tuple, whose entries come from the set {0,+,−}. Such a
4-tuple expresses the relative orientation of two vectors with respect to each
other.

We associate to a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉, with pi =
(xi, yi), the (located) vectors −−→p0p1,

−−→p1p2, . . . ,
−−−−−→pN−1pN , representing the oriented

line segments between the consecutive vertices of P . Because of Assumption 1,

2.2. The double-cross matrix 27

pi+1

pi

pj

pj+1
PijjPiji

Lij

����!pjpj+1

����!pipi+1

Figure 2.8: The double cross (in blue): the lines Lij , Piji and Pijj .

the vectors −−→p0p1,
−−→p1p2, . . . ,

−−−−−→pN−1pN all have a strictly positive length. In the
double-cross formalism, the relative orientation between −−−→pipi+1 and −−−−→pjpj+1 is
given by means of a 4-tuple

(C1 C2 C3 C4) ∈ {−, 0,+}4.

We follow the traditional notation of this 4-tuple without commas.

To determine C1, C2, C3 and C4, for pi 6= pj , first of all, a double cross is
defined for the vectors −−−→pipi+1 and −−−−→pjpj+1, determined by the following three
lines:

• the line Lij through pi and pj ;

• the line Piji through pi, perpendicular on Lij ; and

• the line Pijj through pj , perpendicular on Lij .

These three lines are illustrated in Figure 2.8. These three lines determine
a cross at pi and a cross at pj . Hence the name “double cross.” The entries
C1, C2, C3 and C4 express in which quadrants or on which half lines pi+1 and
pj+1 are located with respect to the double cross.

We now define this more formally and follow the historical use of the double
cross (see, for instance, [Fre92, ZF96, dW04, dWKpBM05]). In this definition,
an interval (a, b) of angles, represents the open interval between a and b on
the counter-clockwise oriented circle.

Definition 2.1. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline, with
pi = (xi, yi), for 0 ≤ i ≤ N , and with associated vectors−−→p0p1,

−−→p1p2, . . . ,
−−−−−→pN−1pN .

28 Background on the double-cross formalism for polylines

For −−−→pipi+1 and −−−−→pjpj+1 with 0 ≤ i, j < N , i 6= j and pi 6= pj , we define

DC(−−−→pipi+1,
−−−−→pjpj+1) = (C1 C2 C3 C4)

as follows:

C1 =

− if ∠(−−→pipj ,−−−→pipi+1) ∈ (−90◦, 90◦)
0 if ∠(−−→pipj ,−−−→pipi+1) ∈ {−90◦, 90◦}
+ else

C2 =

− if ∠(−−→pjpi,−−−−→pjpj+1) ∈ (−90◦, 90◦)
0 if ∠(−−→pjpi,−−−−→pjpj+1) ∈ {−90◦, 90◦}
+ else

C3 =

− if ∠(−−→pipj ,−−−→pipi+1) ∈ (0◦, 180◦)
0 if ∠(−−→pipj ,−−−→pipi+1) ∈ {0◦, 180◦}
+ else

C4 =

− if ∠(−−→pjpi,−−−−→pjpj+1) ∈ (0◦, 180◦)
0 if ∠(−−→pjpi,−−−−→pjpj+1) ∈ {0◦, 180◦}
+ else.

For −−−→pipi+1 and −−−−→pjpj+1, with pi = pj , we define, for reasons of continuity,1

DC(−−−→pipi+1,
−−−−→pjpj+1) = (0 0 0 0).

So, we have DC(−−−→pipi+1,
−−−−→pjpj+1) = (0 0 0 0) in particular, when i = j.

We remark that the values C1 and C3 describe the location of the point
pi+1 or, equivalently, the orientation of the vector −−−→pipi+1 with respect to the
cross at pi (formed by the lines Lij and Piji). We see that each of the four
quadrants and four half lines determined by the cross at pi are determined
by a unique combination of C1 and C3 values. Similarly, the values C2 and
C4 describe the location of the point pj+1 or, equivalently, the orientation of
the vector −−−−→pjpj+1 with respect to the cross at pj (formed by the lines Lij and
Pijj).

The quadrants and half lines where C1, C2, C3 and C4 take different values
are graphically illustrated in Figure 2.9.

For example, the 4-tuple DC(−−−→pipi+1,
−−−−→pjpj+1) for the vectors −−−→pipi+1 and

−−−−→pjpj+1, shown in Figure 2.8, is (+ − − −).
Further on, we will sometimes use the notation DC(−−−→pipi+1,

−−−−→pjpj+1)[k] to
indicate Ck, for k = 1, 2, 3, 4. Obviously, this notation does not hide the
dependence on i and j.

1This argumentation is given in [For90].

2.2. The double-cross matrix 29

pi pj

C1

C3

C2

C4

+

� �

0�

�

0+

0

+

�

�

0

0

+

+

0 0

+ +

�� +

0

0

�

+

Lij

Piji Pijj

�

�

+

+�

+

0 0 0

Figure 2.9: The quadrants and half lines where C1, C2, C3 and C4 take different
values.

Remark 2.2. Since C1, C2, C3 and C4 take values from the set {−, 0,+}, it
may seem that there are 34 = 81 possible values for the tuples (C1 C2 C3 C4).

However, some combinations are not possible because of Assumption 1,
that says that two consecutive vertices of a polyline have to be different. This
means that C1 and C3 cannot be both 0 and that C2 and C4 cannot be both
0, in each case with the exception of C1, C2, C3 and C4 all being 0, that is
(C1 C2 C3 C4) = (0 0 0 0). So, we have 81 − 8 − 8 = 65 possible values for
(C1 C2 C3 C4).

This number of 65 possible values for the tuples (C1 C2 C3 C4) can also be
reached in another way. The point pi+1 can be in one of four quadrants around
pi or on one of four half lines starting in pi. These are 8 possible locations
for pi+1. Similarly, we have 8 possible locations for pj+1 in the quadrants
and half lines starting in pj . This gives 8 × 8 = 64 possible combinations.
Together with the case (C1 C2 C3 C4) = (0 0 0 0), we reach a total number of
65 possibilities.

2.2.2 The double-cross matrix of a polyline

Based on the definition of DC(−−−→pipi+1,
−−−−→pjpj+1), we now define the double-cross

matrix of a polyline.

Definition 2.3. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline, with
pi = (xi, yi), for 0 ≤ i ≤ N , and with associated vectors−−→p0p1,

−−→p1p2, . . . ,
−−−−−→pN−1pN .

The double-cross matrix of P , denoted DCM(P), is the N × N matrix with
the entries DCM(P)[i, j] = DC(−−−→pipi+1,

−−−−→pjpj+1), for 0 ≤ i, j < N .

30 Background on the double-cross formalism for polylines

−−→p0p1
−−→p1p2

−−→p2p3
−−→p3p4

−−→p4p5−−→p0p1 (0 0 0 0) (− − 0 +) (− + + −) (− − + −) (− + − +)
−−→p1p2 (− − + 0) (0 0 0 0) (− − 0 +) (− + + +) (− − + +)
−−→p2p3 (− − − +) (− − + 0) (0 0 0 0) (− + 0 −) (− − − +)
−−→p3p4 (− − − +) (+ − + +) (+ − − 0) (0 0 0 0) (− − 0 +)
−−→p4p5 (+ − + −) (− − + +) (− − + −) (− − + 0) (0 0 0 0)

Table 2.1: The entries of the double-cross matrix of the polyline of Figure 2.10.

For example, the entries of the double-cross matrix of the polyline of Fig-
ure 2.10 are given in Table 2.1. This first example can be used to illustrate
some properties of this matrix that are proven in Section 3.2. First, we ob-
serve that on the diagonal (0 0 0 0) always appears. We also see that there
is a certain degree of symmetry along the diagonal. If DC(−−−→pipi+1,

−−−−→pjpj+1) =
(C1 C2 C3 C4), then we have DC(−−−−→pjpj+1,

−−−→pipi+1) = (C2 C1 C4 C3). These
two observations imply that it suffices to know a double-cross matrix above its
diagonal.

p0
p1

p2

p3

p4 p5

Figure 2.10: An example of a polyline.

2.3. Double-cross similarity of polylines 31

p0 p1

p2

p3

p4

p5

p0 p1
p2

p4

p5

p3

P

Q

Figure 2.11: The polylines P and Q are double-cross similar.

2.3 Double-cross similarity of polylines

We now define double-cross similarity of two polylines of equal size.

Definition 2.4. Let P and Q be polylines of the same size. We say that P
and Q are double-cross similar if DCM(P) = DCM(Q).

We stress that Definition 2.4 requires that the two polylines have to be of
the same size before we can speak of their double-cross similarity.

Figure 2.11 depicts two polylines, P and Q, which are double-cross similar.
The entries of their double-cross matrices are given in Table 2.2. In polyline P
of Figure 2.11, at each vertex, the polyline bends around 10 degrees to the left.
In polyline Q, this is only around 2 degrees. Nevertheless, all relative positions
of oriented line segments remain the same. As the most extreme example, if
we compare −−→p0p1 and −−→p4p5 in both polylines, we see that −−→p4p5 almost makes
a 90◦ left angle with the central line of the double cross in the polyline P ,
whereas, this is only some 10◦ in the polyline Q. Still, both P and Q have the
same double-cross entry for −−→p0p1 and −−→p4p5.

32 Background on the double-cross formalism for polylines

−−→p0p1
−−→p1p2

−−→p2p3
−−→p3p4

−−→p4p5−−→p0p1 (0 0 0 0) (− + 0 +) (− + + +) (− + + +) (− + + +)
−−→p1p2 (+ − + 0) (0 0 0 0) (− + 0 +) (− + + +) (− + + +)
−−→p2p3 (+ − + +) (+ − + 0) (0 0 0 0) (− + 0 +) (− + + +)
−−→p3p4 (+ − + +) (+ − + +) (+ − + 0) (0 0 0 0) (− + 0 +)
−−→p4p5 (+ − + +) (+ − + +) (+ − + +) (+ − + 0) (0 0 0 0)

Table 2.2: The entries of the double-cross matrix of the polylines of Fig-
ure 2.11.

We end this chapter with a variant of Definition 2.4. If we compare line
segments of a polyline only with the next k line segments in a polyline, we get
the following definition.

Definition 2.5. The k-partial double-cross matrix of P , denoted as DCMk(P),
is defined as DCMk(P) = {DCM(P)[i, j]|i < j ≤ max((i + k), N − 1)}. Two
polylines P and Q are called k-double-cross similar if DCMk(P) = DCMk(Q).

Clearly, for polylines consisting of N line segments, the notions of double-
cross similarity and (N − 1)-double-cross similarity coincide.

3
Algebraic and geometric
characterizations of
double-cross matrices of
polylines

In this chapter, we first give an algebraic characterization of the double-cross
matrix of a polyline and discuss some basic properties of double-cross matrices
that can be derived from the algebraic characterization. Next, we give a
geometric characterization of double-cross similarity of two polylines. To end
this chapter, we identify the transformations of the plane that leave the double-
cross matrix of all polylines in R2 invariant.

3.1 An algebraic characterization of the double-cross
matrix of a polyline

In this section, we give an algebraic characterization of the entries in the
double-cross matrix of a polyline.

Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline and let pi = (xi,
yi), for 0 ≤ i ≤ N . Theorem 3.2 gives algebraic expressions to calculate the
entries DC(−−−→pipi+1,

−−−−→pjpj+1) of a double-cross matrix in terms of the x- and y-
coordinates of the points pi, pi+1, pj and pj+1. Further on, we use this theorem
extensively to prove properties of double-cross matrices.

33

34
Algebraic and geometric characterizations of double-cross matrices

of polylines

Before stating and proving this theorem, we recall some elementary nota-
tions from algebra and some formula’s in the following remark.

Remark 3.1. The well-known formula to calculate the (counter-clockwise)
angle θ between two vectors1 ~a and ~b in R2 (and also, in general, in Rn) is

cos θ =
~a ·~b
|~a| · |~b|

.

Here, the · in the numerator denotes the inner product2 of two vectors and |~a|
is the norm or length of ~a (and the · in the denominator is the product of real
numbers).

The above formula implies that we have cos θ = 0 if and only if ~a ·~b = 0.
And we have ~a ·~b = 0 if and only if θ ∈ {90◦,−90◦}. So, ~a ·~b = 0 means that ~a
is perpendicular to ~b. On the other hand, we have cos θ > 0 and thus ~a ·~b > 0,
when θ ∈ (−90◦, 90◦). And finally ~a ·~b < 0 is equivalent to θ ∈ (90◦, 270◦).

If ~a = (a, b) ∈ R2, then ~a⊥ = (−b, a) is the unique vector, perpendicular
to ~a and of the same length of ~a, such that the (counter-clockwise) angle from
~a to ~a⊥ is 90◦.

In the following theorem, we use the function

sign : R→ {−, 0,+} : x 7→ sign(x) =

− if x < 0;
0 if x = 0; and
+ if x > 0.

We also work with the following convention concerning signs: −− is +; −0
is 0; and −+ is −.

Theorem 3.2. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline and let
pi = (xi, yi), for 0 ≤ i ≤ N . Then, DC(−−−→pipi+1,

−−−−→pjpj+1) = (C1 C2 C3 C4) with

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

Proof. We have pi = pj if and only if xj − xi = 0 and yj − yi = 0 and in
this case the four (instantiated) polynomials in the statement of the theorem
evaluate to zero.

Next, we assume pi 6= pj . We consider the following vectors in R2:

1Now, we are not talking about located vectors like before, but vectors in the common
sense.

2The inner product is also called scalar product.

3.1. An algebraic characterization of the double-cross matrix of a
polyline 35

• −→uij = (xj − xi, yj − yi);

• −→uji = (xi − xj , yi − yj);

• −→vi = (xi+1 − xi, yi+1 − yi); and

• −→vj = (xj+1 − xj , yj+1 − yj).

We remark that −→uij = −−→uji and that the vectors −→uij , −→vi and −→vj (in the common
sense of the word vector) are the (located) vectors −−→pipj , −−−→pipi+1 and −−−−→pjpj+1

translated to the origin of R2.

• C1: Now, we apply the above cosine-formula to −→a = −→uij and
−→
b = −→vi to

obtain an expression for C1. Because C1 is negative towards pj , we get the
minus-sign in the following expression for C1:

C1 = −sign(−→uij · −→vi)
= −sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)).

• C2: Next, we apply the cosine-formula to −→a = −→uji and
−→
b = −→vj to obtain

an expression for C2. Again, because C2 is negative towards pi, we get the
minus-sign in C2 = −sign(−→uji · −→vj). This means that

C2 = sign(−→uij · −→vj)
= sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj)).

• C3: Here, we apply the cosine-formula to −→a = −→uij⊥ and
−→
b = −→vi and get

C3 = −sign(−→uij⊥ · −→vi). We have a minus-sign here, because C3 = − in the
direction of −→uij⊥. Since −→uij⊥ = (−(yj − yi), xj − xi), we get

C3 = −sign(−→uij⊥ · −→vi)
= sign((yj − yi) · (xi+1 − xi)− (xj − xi) · (yi+1 − yi)).

• C4: Finally, we apply the cosine-formula to −→a = −→uji⊥ and
−→
b = −→vj . Since

C4 = − in the direction of −→uji⊥, we have C4 = −sign(−→uji⊥ · −→vj). Since −→uji⊥ =
(yj − yi,−(xj − xi)), we get

C4 = −sign(−→uji⊥ · −→vj)
= sign(−(yj − yi) · (xj+1 − xj) + (xj − xi) · (yi+1 − yi)).

This concludes the proof.

In the following property, we show that the double-cross value (0 0 0 0),
which, for reasons of continuity, is the value in the case pi = pj (see Defini-
tion 2.1), can only occur in that exceptional case.

Property 3.1. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline and let
pi = (xi, yi). Then, DC(−−−→pipi+1,

−−−−→pjpj+1) = (0 0 0 0) if and only if pi = pj .

36
Algebraic and geometric characterizations of double-cross matrices

of polylines

Proof. As already observed in the proof of Theorem 3.2, pi = pj implies xj −
xi = 0 and yj − yi = 0 and in this case the four (instantiated) polynomials of
Theorem 3.2 evaluate to zero. This implies that DC(−−−→pipi+1,

−−−−→pjpj+1) = (0 0 0 0).

For the converse, we have to show that if the four polynomials evaluate
to zero, then pi = pj . We prove this by assuming pi 6= pj and deriving a
contradiction. If pi 6= pj , then xj − xi 6= 0 or yj − yi 6= 0. First, we consider
the case xj − xi 6= 0.

As a first subcase, we consider the case yj − yi = 0. Then we get from the
equations C1 = 0 and C3 = 0 that (xj − xi) · (xi+1 − xi) = 0 and (xj − xi) ·
(yi+1 − yi) = 0. Since xj − xi 6= 0 is assumed, this implies that xi+1 − xi = 0
and yi+1 − yi = 0. This contradicts Assumption 1, which says that no two
consecutive vertices of a polyline are identical.

As a second subcase, we consider the case yj − yi 6= 0. Then we get from
C1 = 0 that

xi+1 − xi =
−(yj − yi) · (yi+1 − yi)

xj − xi
.

From C3 = 0, we get

xi+1 − xi =
(xj − xi) · (yi+1 − yi)

yj − yi
.

Combined, these two equalities imply ((xj−xi)2+(yj−yi)2)·(yi+1−yi) = 0.
Since in this case (xj − xi)

2 + (yj − yi)
2 > 0, we conclude yi+1 − yi = 0. But

then, again using the equation for C1, we get (xj − xi) · (xi+1 − xi) = 0, or
xi+1 − xi = 0. So, we have both xi+1 − xi = 0 and yi+1 − yi = 0, which
again contradicts Assumption 1. We have contradiction in all cases and this
concludes the proof of the first case. The case yj − yi 6= 0 has a completely
analogous proof, now using C2 = 0 and C4 = 0 instead of C1 = 0 and C3 = 0.
This concludes the proof.

We end this section by remarking that all the factors appearing in the
algebraic expressions, given by the theorem, that is xj − xi, xi+1 − xi, yj − yi,
yi+1− yi, xj+1− xj and yj+1− yj are differences in x-coordinate or differences
in y-coordinate values. In Chapter 6, we come back to this remark.

3.2 Some properties of double-cross matrices that
can be derived from their algebraic characteri-
sation

In this section, we give some basic properties of double-cross matrices of poly-
lines. In most cases, these properties can be derived from the algebraic charac-

3.2. Some properties of double-cross matrices that can be derived
from their algebraic characterisation 37

terization of the entries of a double-cross matrix, that we presented in previous
section.

3.2.1 Symmetry in the double-cross matrix of a polyline

In Section 2.2, we have already announced by the example polyline given in
Figure 2.10 with its double-cross matrix given in Table 2.1, that a double-
cross matrix exhibits symmetry properties. We prove these properties in this
section. The first property is by definition, the second needs some inspection
of polynomials. The conclusion is that it is enough to know a double-cross
matrix above its diagonal.

Property 3.2. If P = 〈p0, p1, , . . . , pN 〉 is a polyline, then DC(−−−→pipi+1,
−−−→pipi+1)

= (0 0 0 0), for 0 ≤ i < N .

The following property says how DC(−−−−→pjpj+1,
−−−→pipi+1) can be derived from

DC(−−−→pipi+1,
−−−−→pjpj+1) in a straightforward way.

Property 3.3. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. If DC(−−−→pipi+1,
−−−−→pjpj+1) =

(C1 C2 C3 C4), then DC(−−−−→pjpj+1,
−−−→pipi+1) = (C2 C1 C4 C3).

Proof. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline and let pi =
(xi, yi). We use the polynomials given in Theorem 3.2 to prove this result.
Essentially, what we do is to interchange the role of i and j. If i = j, nothing
has to be shown. So, we assume i 6= j. If we interchange in

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

the role of i and j, we get DC(−−−−→pjpj+1,
−−−→pipi+1) = (C ′1 C

′
2 C

′
3 C

′
4), with

C ′1 = − sign((xi − xj) · (xj+1 − xj) + (yi − yj) · (yj+1 − yj));
C ′2 = sign((xi − xj) · (xi+1 − xi) + (yi − yj) · (yi+1 − yi));
C ′3 = − sign((xi − xj) · (yj+1 − yj)− (yi − yj) · (xj+1 − xj)); and
C ′4 = sign((xi − xj) · (yi+1 − yi)− (yi − yj) · (xi+1 − xi)).

It is easy to see that C ′1 = C2, C ′2 = C1, C ′3 = C4 and C ′4 = C3.

These two properties implies that only the N ·(N−1)
2 entries above the di-

agonal of the double-cross matrix of a polyline are significant.

38
Algebraic and geometric characterizations of double-cross matrices

of polylines

3.2.2 The double-cross value of consecutive line segments

The following property says what the entries in the double-cross matrix of
two successive line segments −−−→pipi+1 and −−−−−→pi+1pi+2 in a polyline P = 〈p0, p1, . . . ,
pN 〉 look like. These are the entries in de double-cross matrix just above its
diagonal.

Property 3.4. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. In DC(−−−→pipi+1,
−−−−−→pi+1pi+2)

the entries C1 and C3 are fixed to − and 0. That is,

DC(−−−→pipi+1,
−−−−−→pi+1pi+2) = (− C2 0 C4),

for any 0 ≤ i < N − 1.

Proof. Let 0 ≤ i < N − 1. We start with the entry DC(−−−→pipi+1,
−−−−−→pi+1pi+2)[1] =

−sign((xi+1 − xi) · (xi+1 − xi) + (yi+1 − yi) · (yi+1 − yi)) = −sign((xi+1 − xi)
2 +

(yi+1− yi)
2). Because of Assumption 1, we have (xi+1− xi)

2 + (yi+1− yi)
2 > 0

and we can conclude that DC(−−−→pipi+1,
−−−−−→pi+1pi+2)[1] = −.

For the third entry we have DC(−−−→pipi+1,
−−−−−→pi+1pi+2)[3] = −sign((xi+1 − xi) ·

(yi+1 − yi)− (yi+1 − yi) · (xi+1 − xi)) = −sign(0) = 0.

The following property shows that more values depend on one another.

Property 3.5. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline and let 1 ≤ i < N − 1.
If DC(−−−→pi−1pi,

−−−→pipi+1) = (− C2 0 C4), with C2 = + or 0, then DC(−−−→pi−1pi,−−−−−→pi+1pi+2) = (− C ′2 C4 C
′
4), for some C ′2, C

′
4 ∈ {−, 0,+}.

Proof. Let DC(−−−→pi−1pi,
−−−−−→pi+1pi+2) be (C ′1 C ′2 C ′3 C ′4). We have the following

expressions:

C2 = sign((xi − xi−1) · (xi+1 − xi) + (yi − yi−1) · (yi+1 − yi))
C4 = sign((xi − xi−1) · (yi+1 − yi)− (yi − yi−1) · (xi+1 − xi))
C ′1 = −sign((xi+1 − xi−1) · (xi − xi−1) + (yi+1 − yi−1) · (yi − yi−1))
C ′3 = −sign((xi+1 − xi−1) · (yi − yi−1)− (yi+1 − yi−1) · (xi − xi−1))

Let us abbreviate the first two expression as C2 = sign(c2) and C4 =
sign(c4) and the latter two as C ′1 = −sign(c′1) and C ′3 = −sign(c′3).

Then we have c′1 = ((xi+1−xi)+(xi−xi−1)) ·(xi−xi−1)+((yi+1−yi)+(yi−
yi−1)) ·(yi−yi−1) = (xi−xi−1)2 +(yi−yi−1)2 +c2. Since, by assumption c2 ≥ 0,
it follows from Assumption 1 that c′1 > 0 and thus C ′1 = −sign(c′1) = −.

Further, we have c′3 = ((xi+1− xi) + (xi− xi−1)) · (yi− yi−1)− ((yi+1− yi) +
(yi − yi−1)) · (xi − xi−1) = −c4. So, C ′3 = −sign(c′3) = −sign(−c4) = C4. This
concludes the proof.

3.2. Some properties of double-cross matrices that can be derived
from their algebraic characterisation 39

3.2.3 On the length of line segments of a polyline

The following properties shows that changing the length of segments in a
polyline may or may not influence certain entries in its double-cross matrix.
By “changing the length of a segment”, we mean that the origin of the located
vector, determined by the segment, is not changed, but only its destination
vertex is scaled out.

Property 3.6. Let −−−→pipi+1 and −−−−→pjpj+1 be two located vectors.Changing the
length of −−−→pipi+1 and −−−−→pjpj+1 does not influence the value of DC(−−−→pipi+1,

−−−−→pjpj+1).

Proof. Let −−−→pipi+1 and −−−−→pjpj+1 be two located vectors. And let pk = (xk, yk),
for k ∈ {i, i+ 1, j, j + 1}.

If we take DC(−−−→pipi+1,
−−−−→pjpj+1) = (C1 C2 C3 C4) and DC(

−−−→
pip
′
i+1,
−−−−→
pjp
′
j+1) =

(C ′1 C
′
2 C

′
3 C

′
4), where

−−−→
pip
′
i+1 is −−−→pipi+1 scaled by a factor c, with c > 0 and

−−−−→
pjp
′
j+1 is −−−−→pjpj+1 scaled by a factor d, with d > 0, then we first observe that

p′i+1 = (xi+c·(xi+1−xi), yi+c·(yi+1−yi)) and p′j+1 = (xj+c·(xj+1−xj), yj+
c · (yj+1−yj)). If we use the abbreviations c1, c2, c3 and c4 for the polynomials
in Theorem 3.2, such that C1 = −sign(c1), C2 = sign(c2), C3 = −sign(c3) and
C4 = −sign(c4), then it is easily verified that C ′1 = −sign(c · c1) = −sign(c1) =
C1, since c > 0. Similarly, we get C ′2 = sign(d · c2) = sign(c2) = C2, C ′3 =
−sign(c · c3) = −sign(c3) = C3 and C ′4 = sign(d · c4) = sign(c4) = C4, since
also d > 0. This concludes the proof.

The length of the last segment of a polyline does not influence the double-
cross matrix. Only its direction matters. This follows straightforwardly from
the definition.

Property 3.7. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. Changing the length
of −−−−−→pN−1pN does not change DCM(P).

For segments, that differ from the last, this is not the case, as the following
property shows.

Property 3.8. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. Changing the length
of −−−→pipi+1 , for 0 ≤ i < N − 1, may change DCM(P).

Proof. Consider the polylines P = 〈p0, p1, p2, p3, p4〉 andQ = 〈q0, q1, q2, q3, q4〉
of Figure 3.1. They only differ in the length of their third segment. For P , we
have DC(−−→p0p1,

−−→p3p4) = (− − − −), whereas for Q, we have DC(−−→q0q1,
−−→q3q4) =

(+ + − −).

40
Algebraic and geometric characterizations of double-cross matrices

of polylines

p0

p1
p2

p3

p4

q4

q3

q2q1

q0

Figure 3.1: Two polylines that differ in the length of their third segment.

3.2.4 The quadrant of points of a polyline

From Section 3.4, we know that we can apply a similarity transformation to a
polyline without changing its double-cross matrix. Without loss of generality,
we may therefore assume that the first line segment of the polyline is the unit
interval of the x-axis, that is, p0 = (0, 0) and p1 = (1, 0).

The following property states that we can derive the quadrants in which
all the other points are located from the double-cross matrix.

Property 3.9. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline and assume that p0 =
(0, 0) and p1 = (1, 0). Let pi = (xi, yi) for 2 ≤ i ≤ N . From DC(−−→p0p1,

−−−→pipi+1),
we can determine sign(xi) and sign(yi).

Proof. It is clear that C1 = −sign((xi − 0) · 1 + yi · 0) = −sign(xi) and that
C3 = −sign(xi · 0 + yi · 1) = −sign(−yi).

3.3 A geometric characterization of the double-cross
similarity of two polylines

In this section, we define the local carrier order of a polyline. This is a
geometric concept and the main result of this section is a characterization of
double-cross similarity of two polylines in terms of their local carrier orders.

3.3.1 The local carrier order of a polyline

Here, we give the definition of the local carrier order of a polyline. First, we
introduce some notation for half-lines.

3.3. A geometric characterization of the double-cross similarity of
two polylines 41

pi

pj

p?r
i

p?`
i

pipj�pipj

pi+1

Figure 3.2: An example the half-lines pipj (in blue), −pipj (in green) and the
two perpendicular half-lines pi

⊥r and pi
⊥` (in red) of Definition 3.3.

Definition 3.3. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline in R2 and let 0 ≤ i <
N . If pi 6= pj , the (directed) half-line starting in pi through pj will be denoted
by pipj . The half-line, also starting in pi, but in the opposite direction is
denoted −pipj . The half-lines pipj and −pipj , for 0 ≤ j ≤ N with j 6= i and
pj 6= pi, are called the carriers at pi.

The perpendicular half-line on pipi+1 starting in pi directing to the right
of pipi+1 (that is, making a 90◦ clockwise angle with pipi+1) as pi

⊥r and the
opposite perpendicular half-line starting in pi as pi

⊥` . The half-lines pi
⊥r and

pi
⊥` are called the perpendiculars at pi.

For 0 ≤ i < N , the point pi has 2N carriers and 2 perpendiculars. For an
illustration of the half-lines of and of this single cross between pi and pi+1, we
refer to Figure 3.2.

Now, we define the local carrier order of a vertex pi of a polyline P , for
0 ≤ i < N . This local carrier order consists of nine sets. One keeps track which
pj ’s are equal to pi and the other eight are corresponding to eight directions
of a compass card. We use the image of a 8-point compass with the northern
cardinal direction in the direction of the half-line pipi+1 to name these sets.

In the following definition, we say that a half-line ` is strictly between
the two perpendicular half-lines `1 and `2, if they all have the same starting
point and ` is in the quadrant determined by `1 and `2 (following the counter-
clockwise direction).

Definition 3.4. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline in R2. For 0 ≤ i < N ,
we define the following nine sets for the vertex pi:

• N(pi) is the set of pipj equal to pipi+1;

• NE(pi) is the set of pipj strictly between pipi+1 and pi
⊥r ;

42
Algebraic and geometric characterizations of double-cross matrices

of polylines

p0

p4

p1

p3

p2

Figure 3.3: A polyline P = 〈p0, p1, , p2, , p3, p4〉 with its carriers (in green) and
its perpendiculars (in red).

• E(pi) is the set of pipj equal to pi
⊥r ;

• SE(pi) is the set of pipj strictly between pi
⊥r and −pipi+1;

• S(pi) is the set of pipj equal to −pipi+1;

• SW(pi) is the set of pipj strictly between −pipi+1 andpi
⊥` ;

• W(pi) is the set of pipj equal to pi
⊥` ; and

• NW(pi) is the set of pipj strictly between pi
⊥` and pipi+1,

with 0 ≤ j < i or i < j < N . Finally, Eq(pi) is the set of pj that are equal
to pi. The local carrier order of P in its vertex pi, for 0 ≤ i < N , denoted as
LCO(P, pi), is the list of sets

〈Eq(pi),N(pi),NE(pi),E(pi), SE(pi), S(pi),SW(pi),W(pi),NW(pi)〉

and the local carrier order of P is the list

〈LCO(P, p0), LCO(P, p1), ..., LCO(P, pN−1)〉.

3.3. A geometric characterization of the double-cross similarity of
two polylines 43

We remark that if pj ∈ Eq(pi), then the half-line pipj makes no sense and
therefore does not appear in any of the sets N(pi), ..., NW(pi).

As an illustration we use the polyline P depicted in Figure 3.3. Here, the
local carrier orders in the vertices are given by:

• LCO(P, p0) = 〈{}, {p0p1}, {p0p2, p0p4}, {}, {}, {}, {}, {}, {p0p3}〉

• LCO(P, p1) = 〈{}, {p1p2}, {}, {}, {p1p0}, {}, {}, {}, {p1p3, p1p4}〉

• LCO(P, p2) = 〈{}, {p2p3}, {p2p4}, {}, {}, {}, {p2p0}, {}, {p2p1}〉

• LCO(P, p3) = 〈{}, {p3p4}, {p3p2}, {}, {p3p1, p3p0}, {}, {}, {}, {}〉

We now define the notion of local-carrier-order similarity of two polylines.

Definition 3.5. Let P = 〈p0, p1, , . . . , pN 〉 and Q = 〈q0, q1, , . . . , qN 〉 be poly-
lines of equal size. We say that P and Q are local-carrier-order similar if
LCO(P, pi) = LCO(Q, qi) for all i = 0, 1, ..., N−1, that is, if LCO(P) = LCO(Q)
(always, modulo changing pi in qi) .

3.3.2 An algebraic characterization of the local carrier order
of a polyline

In this section, we give algebraic conditions to express the local carrier order
of a polyline. Hereto, it suffices to give for each vertex pi, with 0 ≤ i < N , in
the polyline P = 〈p0, p1, . . . , pN 〉 characterizations of the sets in the list

〈Eq(pi),N(pi),NE(pi),E(pi), SE(pi), S(pi),SW(pi),W(pi),NW(pi)〉.

The following property gives this characterization. Obviously, the algebraic
characterisation of Eq(pi) is given by equalities on the coordinates.

Property 3.10. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline and
let pi = (xi, yi), for 0 ≤ i ≤ N . For 0 ≤ j < i or i < j < N , the following
table gives algebraic conditions for the halfline pipj to belong to X(pi) with
X ∈ {N,NE,E, SE,S,SW,W,NW}:

44
Algebraic and geometric characterizations of double-cross matrices

of polylines

X = pipj ∈ X(pi) is equivalent to

N −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) = 0

NE −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

E −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) = 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

SE −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

S −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) = 0

SW −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0

W −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) = 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0

NW −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0

The proof of this property uses the same algebraic tools as the proof of
Theorem 3.2 and we will skip the (straightforward) details.

3.3.3 A characterization of double-cross similarity of polylines
in terms of their local carrier order

In this section, we give a geometric characterization of double-cross similarity
of polylines in terms of their local carrier orders. The main theorem that we
prove in this section is the following.

Theorem 3.6. Let P and Q be polylines of equal size. Then, P and Q are
double-cross similar if and only if they are local-carrier-order similar. That is

DCM(P) = DCM(Q) if and only if LCO(P) = LCO(Q).

3.3. A geometric characterization of the double-cross similarity of
two polylines 45

The two directions of this theorem are proven in Lemma 3.7 and Lemma 3.9
(or, equivalently, in Corollary 3.8 and Corollary 3.10).

Lemma 3.7. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. For i, j with 0 ≤ i ≤
j < N , we can derive the value of the 4-tuple DCM(P)[i, j] = (C1 C2 C3 C4)
from LCO(P, pi) and LCO(P, pj).

Proof. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline of size N . If pj ∈ Eq(pi), then
DCM(P)[i, j] = (0 0 0 0). This is in particular true if i = j.

If pj 6∈ Eq(pi), then the following twelve easily observable facts show how
to determine C1, C2, C3 and C4 (for instance, by inspecting Figure 2.9).

C1 is equivalent to

0 pipj ∈W(pi) ∪ E(pi)
+ pipj ∈ SE(pi) ∪ S(pi) ∪ SW(pi)
− pipj ∈ NW(pi) ∪ N(pi) ∪ NE(pi)

C2 is equivalent to

0 pjpi ∈W(pj) ∪ E(pj)
+ pjpi ∈ SE(pj) ∪ S(pj) ∪ SW(pj)
− pipj ∈ NW(pi) ∪ N(pi) ∪ NE(pi)

C3 is equivalent to

0 pipj ∈ N(pi) ∪ S(pi)
+ pipj ∈ SW(pi) ∪W(pi) ∪ NW(pi)
− pipj ∈ NE(pi) ∪ E(pi) ∪ SE(pi)

C4 is equivalent to

0 pipj ∈ N(pj) ∪ S(pj)
+ pipj ∈ SW(pj) ∪W(pj) ∪ NW(pj)
− pipj ∈ NE(pi) ∪ E(pi) ∪ SE(pi)

This concludes the proof.

This lemma has the following immediate corollary.

Corollary 3.8. Let P be a polyline in R2. Then, the matrix DCM(P) can be
reconstructed from the local carrier order LCO(P).

Proof. Properties 3.2 and 3.3 show that it is sufficient to know a double-cross
matrix of a polyline on and above its diagonal in order to complete it below

46
Algebraic and geometric characterizations of double-cross matrices

of polylines

its diagonal. And Lemma 3.7 shows how the local carrier order gives the
double-cross matrix on and above its diagonal. This concludes the proof.

Now, we turn to the other implication of Theorem 3.6.

Lemma 3.9. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline in R2 of size N . If 0 ≤
i < j < N , then DCM(P)[i, j] contains enough information to derived to which
set of LCO(P, pi) the half-lines pipj belong and to which set of LCO(P, pj) the
half-lines pjpi belong.

Proof. Let DCM(P)[i, j] = (C1 C2 C3 C4), for 0 ≤ i < j < N . Again, the
following facts are easily observable (for instance, by inspecting Figure 2.9).

C1 C3 is equivalent to

− − pipj ∈ NE(pi)
− 0 pipj ∈ N(pi)
− + pipj ∈ NW(pi)

0 − pipj ∈ E(pi)
0 0 pi = pi+1 is excluded
0 + pipj ∈W(pi)

+ − pipj ∈ SE(pi)
+ 0 pipj ∈ S(pi)
+ + pipj ∈ SW(pi)

C2 C4 is equivalent to

− − pjpi ∈ NE(pj)
− 0 pjpi ∈ N(pj)
− + pjpi ∈ NW(pj)

0 − pjpi ∈ E(pj)
0 0 pj = pj+1 is excluded
0 + pjpi ∈W(pj)

+ − pjpi ∈ SE(pj)
+ 0 pjpi ∈ S(pj)
+ + pjpi ∈ SW(pj)

This concludes the proof.

This lemma has the following immediate corollary.

Corollary 3.10. Given DCM(P), LCO(P, pi) can be constructed for all 0 ≤
i < N .

Combined, Corollaries 3.8 and 3.10 prove Theorem 3.6.

3.4 A characterization of the double-cross invariant
transformations of the plane

In this section, we identify the transformations3 of the plane R2 that leave the
double-cross matrix of all polylines invariant.

If α : R2 → R2 is a transformation and if p and q are points in R2, then

we write α(−→pq) for
−−−−−−→
α(p)α(q).

What do we mean by applying a transformation of the plane to a polyline?
The following definition says that we mean it to be the polyline formed by the
transformed vertices.

3A transformation is a continuous, bijective mapping of the plane R2onto itself.

3.4. A characterization of the double-cross invariant
transformations of the plane 47

Definition 3.11. Let α : R2 → R2 be a transformation. Let P = 〈(x0, y0),
(x1, y1), , . . . , (xN , yN)〉 be a polyline. We define α(P) to be the polyline 〈α(x0,
y0), α(x1, y1), , . . . , α(xN , yN)〉.

We remark that since a transformation α is a bijective function, Assump-
tion 1, which says that no two consecutive vertices of a polyline are identical,
will hold for α(P) if it holds for the polyline P .

We now define the notion of double-cross invariant transformation of the
plane.

Definition 3.12. Let α : R2 → R2 be a transformation. Let P be a polyline.
We say that α leaves P invariant if P and α(P) are double-cross similar, that
is, if DCM(P) = DCM(α(P)).

We say that α is a double-cross invariant transformation if it leaves all
polylines invariant. A group of transformations of R2 is double-cross invariant
if all its members are double-cross invariant transformations.

The main aim of this section is to prove the following theorem, which
says that the largest group of transformations that is double-cross invariant
consists of the translations, rotations and homotecies (scalings)4 of the plane.
The elements of this group are called the similarities of R2.

Theorem 3.13. The largest group of transformations of R2, that is double-
cross invariant consist of the similarity transformations of the plane onto itself,
that is, transformations of the form

α : R2 → R2 :

(
x
y

)
7→ c ·

(
a −b
b a

)
·
(
x
y

)
+

(
d
e

)
,

where a, b, c, d, e ∈ R, c 6= 0 and a2 + b2 = 1.

We remark that the condition a2 + b2 = 1 implies that a and b cannot be
both zero. In fact, we can see a as cosϕ and b as sinϕ, where ϕ is the angle
of the rotation expressed by the matrix.

We prove this theorem by proving three lemmas. Lemma 3.14 proves
soundness and Lemma 3.16 proves completeness. Lemma 3.15 is a purely
technical lemma.

Lemma 3.14. The translations, rotations and homotecies of the plane (that
is, the transformations given in Theorem 3.2) are double-cross invariant trans-
formations.

4A homotecy of the plane is a transformation of the form αc : R2 → R2 : (x, y) 7→ c·(x, y),
where c 6= 0.

48
Algebraic and geometric characterizations of double-cross matrices

of polylines

Proof. We consider the three types of transformations separately, since we can
apply them one after the other. In all cases, we use the algebraic characteri-
zation, given by Theorem 3.2.

1. Translations. We have already remarked that all the factors appearing in
the algebraic expressions, given by given by Theorem 3.2, that is (xj − xi),
(xi+1 − xi), (yj − yi), (yi+1 − yi), (xj+1 − xj) and (yj+1 − yj) are differences
in x-coordinates or differences in y-coordinates. A translation τ(d,e) : R2 →
R2 : (x, y) 7→ (x + d, y + e), therefore leaves these differences unaltered. For
instance, (xj − xi) is transformed to (xj + d − (xi + d)), which is, of course,
the original value (xj − xi). None of the expressions given by Theorem 3.2 are
therefore changed and the double-cross conditions remain the same.

2. Rotations. Let

ρ(a,b) : R2 → R2 :

(
x
y

)
7→
(

a −b
b a

)
·
(
x
y

)
,

with a2 + b2 = 1, be a rotation (that fixes the origin).

The expression for C1 is transformed to

(a · (xj − xi)− b · (yj − yi)) · (a · (xi+1 − xi)− b · (yi+1 − yi)) +

(b · (xj − xi) + a · (yj − yi))) · (b · (xi+1 − xi) + a · (yi+1 − yi)),

which simplifies to (a2 +b2) ·((xj−xi) ·(xi+1−xi)+(yj−yi) ·(yi+1−yi)), which
is the original polynomial since a2 + b2 = 1. For C2, C3 and C4, a similar
straightforward computation shows that the polynomials remain the same.

3. Homotecies. A homotecy αc : R2 → R2 : (x, y) 7→ c · (x, y), transforms the
differences (xj−xi), (xi+1−xi), (yj−yi), (yi+1−yi), (xj+1−xj) and (yj+1−yj)
to (c · xj− c · xi), (c · xi+1− c · xi), (c · yj− c · yi), (c · yi+1− c · yi), (c · xj+1− c · xj)
and (c · yj+1 − c · yj). This means that the polynomials given by Theorem 3.2
are multiplied by c2, which is strictly larger than zero, for c 6= 0. The signs of
these polynomials are therefore unaltered. And the double-cross value of the
scaled polyline is the same as the original one.

Before we can turn to completeness, we need the following technical lemma.

Lemma 3.15. Let f : R → R : t 7→ f(t) be a strictly monotone increasing
function. If

f(
s+ t

2
) =

f(s) + f(t)

2

for any s, t ∈ R, then f(t) = (f(1)− f(0)) · t+ f(0).

3.4. A characterization of the double-cross invariant
transformations of the plane 49

Proof. Suppose that f is a function as described and suppose that there is a
t0 ∈ R such that f(t0) 6= (f(1) − f(0)) · t0 + f(0). We remark that therefore
t0 cannot be 0 or 1.

If f(−t0) = (f(1) − f(0)) · (−t0) + f(0), then it follows from 2 · f(0) =
2 · f(t0−t02) = f(t0) + f(−t0) that also f(t0) = (f(1) − f(0)) · t0 + f(0). We
may therefore assume 0 < t0.

If f(t02) = (f(1) − f(0)) · (t02) + f(0), then it follows from 2 · f(0+t0
2) =

f(0) + f(t0) that also f(t0) = (f(1) − f(0)) · t0 + f(0). We may therefore
assume 0 < t0 < 1.

Claim. For any n ∈ N and any k, with 0 ≤ k ≤ 2n, we have that

f(
k

2n
) = (f(1)− f(0)) · k

2n
+ f(0).

We first prove this claim (by induction on n). For n = 0, and k = 0, 1, we
respectively have f(0) = (f(1)−f(0))·0+f(0) and f(1) = (f(1)−f(0))·1+f(0).

Assume now that the claim is true for n. We prove it holds for n+ 1. We
consider k

2n+1 and distinguish between the cases, 0 ≤ k ≤ 2n and k = k′ + 2n

with 0 < k′ ≤ 2n. If 0 ≤ k ≤ 2n, then f(k
2n+1) = f(1

2(0 + k
2n)) = 1

2(f(0) +

f(k
2n)), which by the induction hypothesis equals 1

2(f(0) + (f(1)− f(0)) · k2n +

f(0)) or (f(1)− f(0)) · k
2n+1 + f(0).

If k = k′ + 2n with 0 < k′ ≤ 2n, then f(2n+k′

2n+1) = f(1
2(1 + k′

2n)) = 1
2(f(1) +

f(k
′

2n)), which by the induction hypothesis equals 1
2(f(1) + (f(1)− f(0)) · k′2n +

f(0)) which equals 1
2(f(1)−f(0))+(f(1)−f(0)) · k′

2n+1 +f(0) or (f(1)−f(0)) ·
k′+2n

2n+1 + f(0) which is (f(1)− f(0)) · k
2n+1 + f(0). This concludes the proof of

the claim.

To conclude the proof, let 0 < t0 < 1 and assume first that f(t0) >

(f(1) − f(0)) · t0 + f(0). This means that t0 <
f(t0)−f(0)
f(1)−f(0) . We remark that

since f is assumed to be strictly monotone, f(1)− f(0) 6= 0 and therefore the
division is allowed. Choose k and n such that

k

2n
≤ t0 <

k + 1

2n
<
f(t0)− f(0)

f(1)− f(0)
,

with 0 ≤ k ≤ 2n. Then f(k+1
2n) = (f(1)− f(0)) · k+1

2n + f(0) < f(t0), although

t0 <
k+1
2n , which contradicts the fact that f is strictly monotone increasing.

If we assume f(t0) < (f(1)− f(0)) · t0 + f(0) on the other hand, we have
f(t0)−f(0)
f(1)−f(0) < t0. Choose k and n such that

f(t0)− f(0)

f(1)− f(0)
<

k

2n
< t0 ≤

k + 1

2n
,

50
Algebraic and geometric characterizations of double-cross matrices

of polylines

with 0 ≤ k ≤ 2n. Then f(k
2n) = (f(1) − f(0)) · k2n + f(0) > f(t0), although

k
2n < t0, which contradicts the fact that f is strictly monotone increasing. In
both cases, we obtain a contradiction and this concludes the proof.

The following lemma proves completeness.

Lemma 3.16. The similarity transformations of the plane (given in Theo-
rem 3.2) are the only double-cross invariant transformations.

Proof. Let α : R2 → R2 be a double-cross invariant transformation.

(1) We consider polylines P = 〈p0, p1, p2〉, where p0, p1 and p2 are collinear
points with p1 between p0 and p2. By Assumption 1, p1 should be strictly
between p0 and p2 The only relevant entry in the double-cross matrix of this
polyline is DC(−−→p0p1,

−−→p1p2) which is (− + 0 0). In α(P), DC(α(−−→p0p1), α(−−→p1p2))
should also be (− + 0 0). This implies that α(p0), α(p1) and α(p2) should
also be collinear, with α(p1) (strictly) between α(p0) and α(p2). This means
that α preserves collinearity and betweenness.

p1

p2

p0

α

α(p2)α(p1)α(p1)

Figure 3.4: A collinearity and betweenness-preserving transformation of the
plane.

(2) We consider polylines P = 〈p0, p1, p2〉, where ∠(−−→p1p0,
−−→p1p2) = 90◦, that is,

the polyline takes a right turn at p1. The only relevant entry in the double-
cross matrix of this polyline is again DC(−−→p0p1,

−−→p1p2) which is now (− 0 0 −).
In α(P), DC(α(−−→p0p1), α(−−→p1p2)) should also be (− 0 0 −). This means that
α is a right-turn-preserving transformation. This is illustrated in Figure 3.5.
Similarly, α is a left-turn-preserving transformation.

(3) We consider the polyline P = 〈p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12〉,
with p0 = p4 = p7 = p12(0, 0), p1 = p5 = (0, 1), p2 = p10 = (1, 1),
p3 = p8 = (1, 0) and p6 = p9 = (1

2 ,
1
2), depicted in Figure 3.6. This poly-

line forms a square with its two diagonals after making six 90◦ right-turns and
one 90◦ left-turn. It is also closed in the sense that its start and end vertex are

3.4. A characterization of the double-cross invariant
transformations of the plane 51

p1 p2

p0

α(p1)

α(p0)

α

α(p2)

Figure 3.5: A right-turn-preserving transformation of the plane.

equal. The transformation α, which according to (2) preserves right and left
turns, therefore has to map P again to a square with its diagonals. This means
α is a square-preserving transformation. In particular, α preserves parallel line
segments.

In P , coming from p5, we have a 90◦ right-turn at p6 to move to p7. This
means that in α(P), coming from α(p5), we must also have a 90◦ right-turn
at α(p6) to move to α(p7). The possible locations of α(p6) inside the square
determined by α(p0), α(p1), α(p2) and α(p3) that satisfy this requirement form
a half-circle that is based on the line segment connecting α(p0) and α(p1) and
that passes through the “centre” of the square.

Also in P , coming from p8, we have a 90◦ right-turn at p9 = p6 to move
to p10. This means that in α(P), coming from α(p8), we must also have a
90◦ right-turn at α(p9) = α(p6) to move to α(p10). The possible locations
of α(p6) inside the square determined by α(p0), α(p1), α(p2) and α(p3) that
satisfy this requirement form a half-circle that is based on the line segment
connecting α(p2) and α(p3) and that passes through the “centre” of the square.

This implies that there is only one location to satisfy both restrictions
simultaneously, namely the unique intersection point of these two half circles.
This implies that α(p6) should be the “centre” of the square determined by
α(p0), α(p1), α(p2) and α(p3). This implies that, p6, which is the midpoint
between p0 and p2 is mapped to α(p6), which should be the midpoint between
α(p0) and α(p2). This means α is also a midpoint-preserving transformation.

Suppose α(0, 0) = (a, b). If τ(−a,−b) is the translation (x, y) 7→ (x−a, y−b),
then τ(−a,−b) ◦ α(0, 0) = (0, 0). Suppose τ(−a,−b) ◦ α(1, 0) = (c, d). Let ρ(c,d)

be the rotation with (0, 0) as center that brings (c, d) to the positive x-axis,
that is, to (

√
c2 + d2, 0). We remark that (c, d) cannot be the origin since

α is assumed to be a bijective function. So, also τ(−a,−b) ◦ α is bijective.

52
Algebraic and geometric characterizations of double-cross matrices

of polylines

p2 = p10

p3 = p8

p1 = p5 = p11

p0 = p4 =
p7 = p12

p6 = p9

Figure 3.6: A polyline that is a square with its two diagonals. The six 90◦

right-turns are indicated in bold.

Furthermore, let σ√c2+d2 be the scaling (x, y) 7→ 1√
c2+d2

(x, y) and let

β = σ√c2+d2 ◦ ρ(c,d) ◦ τ(−a,−b) ◦ α.

Then we have that β(0, 0) = (0, 0) and β(1, 0) = (1, 0).
Since α is a double-cross invariant transformation, by assumption, and

since σ√c2+d2 , ρ(c,d) and τ(−a,−b) are double-cross invariant transformations
by Lemma 3.14, also β is a double-cross invariant transformation. And β
also inherits from α the properties of preserving betweenness, collinearity,
right- and left turns, squares, parallel line segments and midpoints. Because
β preserves squares, we also have β(0, 1) = (0, 1).

We now claim the following.

Claim: The transformation β is the identity.

The proof of this claim finishes the proof. Indeed, then we have

α = σ−1√
c2+d2

◦ ρ−1
(c,d) ◦ τ

−1
(−a,−b),

which is of the required form.

Proof of the claim: First, we show that β is the identity on the x-axis and next
we do the same for all lines perpendicular to the x-axis. Hereto, we consider
the function

βx : R→ R : x 7→ βx(x) := πx(β(x, 0)),

where πx is the projection on the first component, that is, πx(x, y) := x. Since
β(0, 0) = (0, 0) and β(1, 0) = (1, 0) and β preserves collinearity, β maps the
x-axis onto the x-axis and we have βx(0) = 0 and βx(1) = 1. Furthermore,
since β and hence βx preserves betweenness, βx is strictly monotone increasing.

3.4. A characterization of the double-cross invariant
transformations of the plane 53

Indeed, let s, t ∈ R with s < t. With respect to 0 and 1, we can consider the
twelve possible locations of s and t: s < t < 0; s < t = 0 < 1; s < 0 < t < 1;
s < 0 < t = 1; s < 0 < 1 < t; s = 0 < t < 1; s = 0 < t = 1; s = 0 < 1 < t;
0 < s < t = 1; 0 < s < 1 < t; 0 < s = 1 < t; and 0 < 1 < s < t. In all
cases, except s = 0 < t = 1, we have three points. So, here we can use the
fact that β preserves betweenness to show that βx(s) < βx(t). In the case
s = 0 < t = 1, we have βx(s) = βx(0) = 0 < 1 = βx(1) = βx(t). Finally, since
β preserves midpoints, also for βx, we have

βx(
s+ t

2
) =

βx(s) + βx(t)

2
,

for all s, t ∈ R. All the conditions to apply Lemma 3.15 are therefore fulfilled.
And we get βx(x) = (βx(1)− βx(0)) · x+ βx(0) = (1− 0) · x+ 0 = x.

Now, we fix some x0 ∈ R and consider the function

βx0,y : R→ R : y 7→ βx0,y(y) := πy(β(x0, y)),

where πy(x, y) := y. Since β preserves parallel line segments, βx0,y maps the
line with equation x = x0 onto itself (since it maps the y-axis to itself). Since
β also preserves the rectangle given by the polyline

P = 〈(0, 0), (0, 1), (1, 1), (x0, 1), (x0, 0), (1, 0), (0, 0), (0, 1)〉

(for x0 = 1, we can omit (x0, 1) and (x0, 0) from the list) onto itself, we have
again have βx0,y(0) = 0 and βx0,y(1) = 1. The function βx0,y also inherits from
β the property of preserving midpoints and is strictly monotonic increasing
on the line x = x0. So, again we can apply Lemma 3.15 to show that βx0,y is
the identity.

Since β(x, y) = (βx(x), βx,y(y)), we obtain that β is the identity transfor-
mation. This finishes the proof of the claim and also of the lemma.

4
Algorithms to test
double-cross similarity

In this chapter, we present an algorithm for polyline- (and polygon-) similarity
testing that is based on the double-cross formalism. To determine the degree of
similarity between two polylines (not necessary of the same size), the algorithm
first computes their “generalized polylines,” that consist of almost equally long
line segments and that approximate the length of the given polylines within an
ε-error margin. Next, the algorithm determines the double-cross matrices of
the generalized polylines and the difference between these matrices is used as
a measure of dissimilarity between the given polylines. We prove termination
of our algorithm and give its sequential time complexity.

We apply our method to query-by-sketch, indexing of polyline databases,
and classification of terrain features and show experimental results for each of
these applications.

4.1 Generalizations of polylines

When we describe our algorithm to test double-cross similarity of polylines, we
want to be able to apply it to test similarity of polylines that are not necessarily
of the same size. But, in order to compare their double-cross matrices, they
need to be of the same size. Further as shown in Figure 3.1, two polylines can
have the same semantics, but a different double-cross matrix. To overcome
this problem, we introduce the notion of “generalized polylines.”

55

56 Algorithms to test double-cross similarity

For a given polyline P , a sequence of generalized polylines

P 2, P 4, P 8, ..., P 2n , ...

are defined that tend (as n grows) to consist of equally long line segments. To
define these generalized polylines, we first need to define the distance along
P from the start vertex of P to some point belonging to sem(P). Hereto, we
introduce a function

λP : [0, `(P)]→ R2

with `(P) the length of P as defined below, that maps a length τ to the unique
point of sem(P) that is at distance τ from the start vertex as we travel along
the polyline from the start to the end vertex. Let P = 〈p0, p1, ..., pN 〉 be a
polyline and let `i denote the length of the vector −−−→pi−1pi for 1 ≤ i ≤ N .

So, for any input τ of the function λP there exists a k, 0 < k ≤ N , and a
0 ≤ τ ′ < `k, such that τ =

∑k−1
i=1 `i + τ ′. Then λP (τ) is the unique point at

distance τ ′ from pk−1 on the line segment connecting pk−1 and pk.
In the following, we abbreviate the length of P by `(P). So, `(P) =

`1 + `2 + · · ·+ `N .

Definition 4.1. Let P = 〈(x0, y0), (x1, y1), ..., (xN , yN)〉 be a polyline. We
define the generalized polylines of P , denoted P 2, P 4, P 8, ..., P 2n , ... as follows.
For n ≥ 1, the polyline P 2n = 〈(u0, v0), (u1, v1), ..., (u2n , v2n)〉 with (ui, vi) the
unique point on sem(P) at distance i

2n · `(P) from the start vertex of P along
P , that is,

(ui, vi) = λP (
i

2n
· `(P)),

for i = 0, 1, ..., 2n.

We remark that, in general, sem(P) and sem(P 2n) are not the same. They
may even be different for all n. An example of this fact is given in Figure 4.1.
Here, the three lines that make up the polyline P = 〈(0, 1), (0, 0), (1, 0), (1, 1)〉
are all equally long. Consequently, the vertices (0, 0) and (1, 0) will never
belong to sem(P 2n), since 1

3 6= i
2n and 2

3 6= i
2n for any n and any 0 ≤ i ≤ 2n.

4.2 An algorithm to test double-cross similarity of
polylines

4.2.1 The algorithm DC-similar∆

We now describe our algorithm for determining the similarity of polylines and
polygonal shapes (we give it in pseudo-code). This algorithm returns a degree
of similarity between two given polylines P1 and P2. It uses an error rate ε

4.2. An algorithm to test double-cross similarity of polylines 57

(1, 0)(0, 0)

(1, 1)(0,1)

P P 2

P 4 P 8

Figure 4.1: An example of a polyline P = 〈(0, 1), (0, 0), (1, 0), (1, 1)〉 (in black).
Next, its first generalizations P 2, P 4and P 8 are shown in blue, in red and in
green, respectively.

(with 0 ≤ ε ≤ 1) and depends on a distance function ∆ between double-cross
matrices, which we consider a parameter of the algorithm.

Basically, the algorithm computes the generalized polylines of P1 and P2

until these approximate the length of P1 and P2 up to an error ε (a “small”
percentage of the length). Then the double-cross matrices of the generalized
polylines are computed and the distance between them is returned. By con-
struction, and as can be seen in Figure 4.1, P 2n−1 ∈ P 2n . So to speed up the
calculation of P 2n we recycle the points calculated in P 2n−1

and only look at
the original polyline P to calculate the extra points on sem(P).

58 Algorithms to test double-cross similarity

Algorithm DC−similar∆

input : t r a j e c t o r i e s P1, P2 ;
t h r e sho ld 0 ≤ ε ≤ 1 .

s e t n :=1;
compute P 2

1 and P 2
2 ;

while |`(P 2n
1)− `(P1)| ≥ ε · `(P1) or |`(P 2n

2)− `(P2)| ≥ ε · `(P2)
do

n:=n+1;
compute in p a r a l l e l

1 . P 2n
1 from P 2n−1

1 and P1 ; and

2 . P 2n
2 from P 2n−1

2 and P2 ;
od

compute in p a r a l l e l
1 . M1 := DCM(P 2n

1) ; and
2 . M2 := DCM(P 2n

2) ;
return ∆(M1,M2) .

As mentioned, ∆(M1,M2) expresses a measure of difference or distance
between the two double-cross matrices M1 and M2. There are many possibili-
ties here, but in our experiments, we have used the distance function ∆H (for
an alternative function ∆E , we refer to Section 4.4). To define the distance
measure ∆H(M1,M2) between double-cross matrices, we first construct, for
both matrices M1 and M2, vectors γ(M1), γ(M2) ∈ N65 that counts for each
of the 65 realizable 4-tuples of −, + and 0, the number of times they occur
in the matrices M1 and M2 (Remark 2.2 explains the number 65). Then, for
matrices M1 and M2 of polylines of size N , we define

∆H(M1,M2) :=
1

N2 −N
65∑
i=1

|γ(M1)[i]− γ(M2)[i]| .

The function ∆H counts the average difference between the 65 count values.
We remark that the function ∆H is not a distance function in the strict sense
of the word. The reason is that there exists double-cross matrices M1 and M2

that are not equal but for which ∆H(M1,M2) = 0.

4.2. An algorithm to test double-cross similarity of polylines 59

4.2.2 Basic properties of DC-similar∆

We now give some basic properties of DC-similar∆. To start, we show that
the algorithm is guaranteed to terminate on any input. We remark that these
properties are independent of the choice of ∆ (as long as the evaluation of ∆
terminates). First, we give a lemma.

Lemma 4.2. Let P be a polyline. For any n ≥ 1, `(P 2n) ≤ `(P) holds.

Proof. Or, sem(P 2n) = sem(P), in which case `(P 2n) = `(P), or, sem(P 2n) 6=
sem(P), in which case P 2n somewhere takes a shortcut (following a straight
line) from P and `(P 2n) < `(P) by the triangle inequality.

Proposition 4.3. The algorithm DC-similar∆ terminates on any inputs P1,
P2 and 0 < ε ≤ 1.

Proof. To prove this property, it suffices to show that for any polyline P and
any 0 < ε ≤ 1, there exists an n ≥ 1 such that |`(P)− `(P 2n)| < ε · `(P). We
prove this by showing that limn→∞ `(P

2n) = `(P).
If we construct P 2n+1

from P 2n and P there are two possibilities: (1) if
each vertex of P 2n+1

is also an element of sem(P 2n), then sem(P 2n) = sem(P)
and thus `(P) = `(P 2n) = `(P 2n+1

) and the stop condition is satisfied; (2)
there is at least one vertex p of P 2n+1

that is not an element of sem(P 2n).
Because of the triangle inequality and by construction we know that `(P 2n) <
`(P 2n+1

) ≤ `(P) (the last inequality is from Lemma 4.2). From these two
cases we can deduce that limn→∞ `(P

2n) = `(P) and therefore there exists an
n ≥ 1 such that |`(P)− `(P 2n)| < ε · `(P).

Proposition 4.4. When the algorithm DC-similar∆, on input P1, P2 and
0 < ε ≤ 1, terminates for some n, then the standard deviation of the lengths
of the line segments of P 2n

k tends to 0, more specifically, it is bounded by
ε

2n · `(Pk) (k = 1, 2).

Proof. Let P be P1 or P2 and let L1, ..., L2n be the line segments of P 2n . Let
¯̀ denote the average length of the segments L1, ..., L2n . The square of the
standard deviation σ is then 1

2n
∑2n

i=1(`(Li) − ¯̀)2. By construction and the

triangle inequality we know that `(Li) ≤ `(P)
2n . We also know that

`(P 2n) =
2n∑
i=1

`(Li) > `(P) · (1− ε).

Therefore,

σ2 ≤ 1

2n

2n∑
i=1

(
`(P)

2n
− `(P)(1− ε)

2n
)2 = (

`(P)

2n
· ε)2

and thus σ ≤ ε
2n · `(P).

60 Algorithms to test double-cross similarity

4.2.3 Time complexity of DC-similar∆H

The following property gives an upper bound for the sequential time complex-
ity of DC-similar∆H

. We remark, that although large parts of DC-similar∆H

can be performed in parallel, this only gives a gain of a factor of 2.

Proposition 4.5. The algorithm DC-similar∆H
, on input P1 = 〈(r0, s0), (r1,

s1), ..., (rN1 , sN1)〉, P2 = 〈(u0, v0), (u1, v1), ..., (uN2 , vN2)〉 and 0 < ε ≤ 1, needs

O

((
max(N1, N2)

ε

)2
)

sequential time to return its output.

Proof. Let P = 〈(x0, y0), (x1, y1), ..., (xN , yN)〉 be P1 or P2. The difference
between P and P 2n is that line segments of P 2n can short cut angles of P .
Such a short-cut angle (or series of angles) of P has length `(P)

2n and there
can at most be N cut angles. The difference in length between P and P 2n is
therefore bounded by N · `(P)

2n . We remark that this number will eventually, for
increasing n, become smaller than ε · `(P), since N · `(P) is fixed. Therefore,
the algorithm DC-similar∆H

terminates, on input P1 and P2, as soon as

N1 · `(P1)
2n < ε ·`(P1) and N2 · `(P2)

2n < ε ·`(P2). This is true for n = blog
(
M
ε

)
c+1

with M = max(N1, N2). In this case, the while-loop of the algorithm has
calculated maximally

2blog(
M
ε)c+1 ≤ 2

M

ε

vertices on the generalized polylines and to compute the matrices M1 and M2

in the algorithm, we need in worst cast to calculate

(2Mε)2 − 2Mε
2

≤ 2(
M

ε
)2

entries. The function ∆H just scans each tuple of M1 and M2 in parallel once
and needs maximum O(Mε) sequential time.

4.3 Experimental results

In this section, we discuss three experiments using Java-implementations of the
algorithm DC-similar∆H

. The run time results we mention are with respect
to a system with an Intel R©Pentium R©M 1.86 GHz processor and 1GB RAM
running Kubuntu as operating system.

4.3. Experimental results 61

(a) (b)

(c) (d)

(e)

Figure 4.2: A map of Belgium and some sketches.

4.3.1 Experiment 1: Polygon similarity

For the first experiment, we used five figures representing Belgium (see Fig-
ure 4.2). Figure 4.2(a) is the correct representation of Belgium, consisting of
2047 line segments. Figure 4.2(b) is the same figure with the three bumps in
the upper part moved to the right. The remaining three figures are sketches of
Belgium made by respectively a geographer (Figure 4.2(c): real representation,
Figure 4.2(d): abstract representation) and a non-specialist (Figure 4.2(e)).

We applied the algorithm DC-similar∆ for ∆ = ∆H to each two of these
five figures with a threshold ε = 0, 05. The results are given in Table 4.1. The
measure ∆H gives results that are very much in line with our intuition. For the
above mentioned hardware, ∆H takes ±2.5 minutes to calculate the similarity
of 2 shapes with 215 line-segments (so ±229 entries). These experiments are
in line with the theoretical complexity bound given by Proposition 4.5. Fig-
ure 4.2(b), with the three bumps moved to the right is 99% similar to the real
map. The remaining three sketches of Belgium are ordered with decreasing
similarity corresponding to our feeling.

62 Algorithms to test double-cross similarity

Figure 4.2(a) 4.2(b) 4.2(c) 4.2(d) 4.2(e)

4.2(a) 100% 99% 87% 66% 60%

4.2(b) 100% 87% 67% 60%

4.2(c) 100% 80% 69%

4.2(c) 100% 84%

4.2(e) 100%

Table 4.1: Similarity between polygons of Figure 4.2 using ∆H with threshold
5%.

We remark that ∆H , in contradiction to ∆E , because it is based on count-
ing entries in the double-cross matrices, gives the same result, independent of
the start vertex of polygonal input figures.

4.3.2 Experiment 2: Query by sketch

Because several experiments indicated that ∆H gives good, start-vertex-inde-
pendent results, we use the vector of 65 count values that is constructed by
∆H as a method to index a database. This index is then used to support
query-by-sketch. The 65-ary vector for a sketched figure is computed and,
e.g., the four figures in the database that have a 65-ary vector closest to it are
returned in order of descending best match.

Figure 4.3: The 43 cities and villages of Limburg.

More precisely, we have applied this method to perform a query-by-sketch
on the villages and cities of Belgium. In this experiment we have calculated
these index value for villages and cities, such that the generalized polygons of
all cities approximate the length of the original polygon with an error smaller

4.3. Experimental results 63

than 2%. So in this case we do not use DC-similar∆ to compare the figures
side by side and thus the calculated double-cross matrices do not have the
same size. Then for each of the villages and cities the 65-ary vector with
count values of the 65 possible 4-tuples of −, + and 0, is calculated as an
index. Next, we queried for the presence of a sketched village. The sketched
polygon is generalized up to the same level as the cities and villages in the
database are; its index value is computed; and the four best fits (using the
distance given by ∆H) are returned.

For the sake of producing readable figures, we given an example of a query
on a limited sample of cities in Belgium, namely the villages and cities in the
province of Limburg, as depicted in Figure 4.3. This province consists of 43
villages and cities and it is not connected. Building the index for this sample
costs 0.8 seconds on the above-mentioned configuration.

Figure 4.4: Bowler hat and bow tie sketch.

The first query is: Give the 4 cities of Limburg looking the most as the
bowler hat sketched on the left in Figure 4.4.

The resulting cities are colored dark gray in Figure 4.5, with Lommel,
the most similar city, shown in the north. We remark that Theorem 3.13
guarantees that similarity is tested invariant under translations, rotations and
scalings, as can be seen from these results. Indeed, Lommel, looks like a the
given bowler hat but 45◦ rotated.

Another query is: Give the 4 cities of Limburg looking the most as the bow
tie sketched on the right in Figure 4.4.

The resulting cities are colored light gray in Figure 4.5. The best fit is
Voeren, the village at the bottom right.

64 Algorithms to test double-cross similarity

Figure 4.5: Result of bowler hat query (dark gray) and bow tie query (light
gray).

4.3.3 Experiment 3: Classification of terrain features

Our last experiment deals with terrain features. The figures in this experiment
are inspired by work of Kulik and Egenhofer [KE03]. We used the seven
figures in Figure 4.6 as primitive terrain features to classify some silhouettes
of terrains.

(a) Butte (b) Plateau (c) Mesa

(d) Flat-floored
Valley

(e) U-shape Valley (f) Depression

(g) Canyon

Figure 4.6: Basic shapes of terrain features.

We use our ∆H measure to classify the figures in Figure 4.7.

Our ∆H algorithm classifies the three silhouettes of Figure 4.7, as (a) Mesa,

4.3. Experimental results 65

(a) (b) (c)

Figure 4.7: Some silhouettes of terrains.

(a)

(b)

Figure 4.8: Figure 4.7(c) divided by his maxima (left) and minima (right).

(b) U-Valley and (c) Mesa (or U Valley) respectively (see Tables 4.2, 4.3 and
4.4). For (a) and (b) this corresponds to our visual observations. Figure 4.7(c)
is more complicated and needs more attention. We divided this figure accord-
ing to its local maxima and minima (see Figure 4.8(a)). The resulting classi-
fications, summarized in Tables 4.3 and 4.4, give a more precise description of
these terrains.

66 Algorithms to test double-cross similarity

Fig. 4.7(a) Fig. 4.7(b) Fig. 4.7(c)
Butte 58% 52% 58%

Plateau 62% 62% 64%
Mesa 71% 64% 70%

Flat Valley 48% 56% 50%
U Valley 63% 77% 68%

Depression 47% 49% 50%
Canyon 42% 50% 43%

Table 4.2: Classification by ∆H of Figure 4.7 using the primitives sketched in
Figure 4.6.

A B C D E
Butte 67% 62% 68% 71% 52%

Plateau 49% 58% 57% 40% 62%
Mesa 68% 71% 78% 65% 62%

Flat Valley 40% 40% 44% 46% 38%
U Valley 48% 54% 56% 40% 49%

Depression 38% 41% 42% 30% 54%
Canyon 39% 42% 40% 30% 47%

Table 4.3: Classification by ∆H of Figure 4.8(a) using the primitives sketched
in Figure 4.6.

a b c d e f
Butte 52% 49% 49% 57% 52% 58%

Plateau 50% 40% 48% 41% 50% 66%
Mesa 53% 49% 53% 53% 53% 68%

Flat Valley 71% 54% 45% 62% 71% 47%
U Valley 54% 63% 61% 69% 68% 56%

Depression 43% 43% 41% 34% 46% 56%
Canyon 31% 37% 52% 54% 43% 50%

Table 4.4: Classification by ∆H of Figure 4.8(b) using the primitives sketched
in Figure 4.6.

4.4. An alternative ∆, which is more suited for polylines 67

4.4 An alternative ∆, which is more suited for poly-
lines

We have given a number of basic properties and described the time complexity
of the algorithm DC-similar∆ for testing polyline similarity. This algorithm
depends on a function ∆ that measures the difference between double-cross
matrices. We have experimented with a number of ∆’s and ∆H , used through-
out the paper gives the best experimental results. As stated, one reason for
this might be that it is independent from the choice of start vertex of a poly-
gon. For polylines, that are not polygons, it might be preferable to work with
a ∆ that compares corresponding line segments in the two polylines more di-
rectly. We here give an example of a ∆, namely ∆E , that is more appropriate
for polylines. First, we define a distance δ between elements of {−, 0,+}:
• δ(−,−) := 0,

• δ(+,+) := 0,

• δ(0, 0) := 0,

• δ(−, 0) := 1,

• δ(+, 0) := 1,

• δ(−,+) := 2 and

• δ(x, y) := δ(y, x).

Next, we define a distance δ̄ between entries of the double-cross matrices:

δ̄((C1C2C3C4), (C ′1C
′
2C
′
3C
′
4)) :=

4∑
i=1

δ(Ci, C
′
i).

Finally, if P1 and P2 are polylines with N edges, then we define

∆E(DCM(P1), DCM(P2)) :=

1

4(N − 1)2

∑
1≤i<j≤N

δ̄(DCM(P1)[i, j],DCM(P2)[i, j]).

The function ∆E measures the differences between the two matrices entry per
entry. In a double-cross matrix, there are N2−N

2 meaningful entries of which
N − 1 (the ones just above the diagonal) have maximal distance 4 and the
other ones have maximal distance 8. In total, the maximal distance can reach
4(N − 1)2, which explains the factor at the start of the above formula.

The proposed algorithm DC-similar∆ might also be improved in other
ways. For instance, termination conditions based on the Hausdorff distance
between a polyline and its generalized polylines might be considered.

5
The double-cross matrix of
polylines on a grid

In this chapter, we study properties of double-cross matrices of polylines
that are situated on a grid. Such polylines may arise from trajectories on
Manhattan-like road networks.

5.1 Polylines on a grid

To start with, we define the class of grids that we will work with. Let Z denote
the set of the integers.

Definition 5.1. The complete infinite grid is defined to be the set (Z×R)∪
(R×Z). We call the elements of Z×Z the crossings of this grid. A grid is a
subset of the complete infinite grid of the form (A×R)∪ (R×B), with A,B
finite subsets of Z. We call the elements of A×B the crossings of this grid.

We say that a polyline P is on a grid G, if the semantics of P is contained
in G, that is, if sem(P) ⊂ G.

In Figure 5.1, a grid G and polyline P on G are shown. In this example,
not all vertices of P are located on crossings of G. For the case where all the
vertices are crossings, we have the following definition.

Definition 5.2. Let G be a grid and let P = 〈(x0, y0), . . . , (xN , yN)〉 be a
polyline on G. We say that P is snapped to G if all vertices of P are crossings
of G. Furthermore, if all crossings of G that belong to sem(P) are vertices of
P , we say that P is completely snapped to G.

69

70 The double-cross matrix of polylines on a grid

(x0, y0)

(x1, y1)

(x2, y2) (x7, y7)

P

G

(x6, y6)

(x4, y4) (x5, y5)(x3, y3)

Figure 5.1: An example of a polyline (in black) on a grid (blue).

We remark that (completely) snapped polylines have vertices with integer-
valued coordinates. But, since we assume rational coordinates, we can always
find a suitable point-scaling that maps an arbitrary polyline on a grid to a
snapped polyline on a sufficiently large grid, such that the resulting polyline
has vertices with integer-valued coordinates. We refer to Property 5.12 for
details.

Later on, for an arbitrary polyline P on a grid, we define a canonical
polyline can(P), which has the same double-cross matrix as P , that is snapped
to the complete infinite grid and that is minimal in some sense. To prove the
existence of can(P), we will first need some definitions.

Definition 5.3. Given a polyline P = 〈(x0, y0), . . . , (xN , yN)〉 on a grid, the
lines Vi, given by the equation x = xi, and Hi, given by the equation y = yi,
0 ≤ i ≤ N , are called the vertical, respectively horizontal carriers of P .

Figure 5.2 shows a polyline P = 〈(x0, y0), . . . , (x7, y7)〉 on a grid (not shown)
and its vertical and horizontal carriers. We remark that some of these carriers
may coincide, as illustrated by H0 = H5 = H6 and V0 = V1 in the example.

We now define two lists of lists that capture the order of the carriers of a
polyline on a grid.

Definition 5.4. Let P = 〈(x0, y0), . . . , (xN , yN)〉 be a polyline on a grid.
The V-order of P , denoted as V (P), is a list (A1, . . . , AK) of lists Ai =
(ai1, . . . , aiki) such that each aij is an element of {0, 1, . . . , N} and appears
exactly once in one of the lists of V (P). Within each Ai, the elements appear

5.1. Polylines on a grid 71

(x0, y0)

V4

V5

V2

V3

(x1, y1)

H7

V7

(x2, y2)

(x5, y5)

V6

V1

V0

(x3, y3)

(x6, y6)

(x7, y7)

H3

H4

H0
H5
H6

H1

H2

(x4, y4)

Figure 5.2: A polyline and its horizontal and vertical carriers (in blue).

in increasing order, and for a, a′ ∈ Ai, we have xa = xa′ . For a ∈ Ai and
a′ ∈ Aj , with i < j, we have xa < xa′ .

The H-order of P , denoted as H(P), is a list (B1, . . . , BL) of lists Bi =
(bi1, . . . , bili) such that each bij is an element of {0, 1, . . . , N} and appears
exactly once in one of the lists of H(P). Within each Bi, the elements appear
in increasing order, and for b, b′ ∈ Bi, we have yb = yb′ . For b ∈ Bi and b′ ∈ Bj ,
with i < j, we have yb < yb′ .

For the polyline P in Figure 5.2, V (P) = ((0, 1), (4, 5), (2, 3), (6, 7)) and
H(P) = ((0, 5, 6), (3, 4, 7), (1, 2)). We remark that V (P) and H(P) are invari-
ant under translations and scalings but not under rotations of the plane R2.
For instance, if ρ is a rotation over 180◦, then V (ρ(P)) = ((6, 7), (2, 3), (4, 5),
(0, 1)) and H(ρ(P)) = ((1, 2), (3, 4, 7), (0, 5, 6)).

The following property follows immediately from the definition.

Proposition 5.5. Let P = 〈(x0, y0), . . . , (xN , yN)〉 be a polyline on a grid.
Given only V (P), we can decide whether xi < xj , xi = xj or xj < xi for any
1 ≤ i < j ≤ N . Given only H(P), we can decide whether yi < yj , yi = yj or
yj < yi for any 1 ≤ i < j ≤ N .

We now define equivalence of polylines on a grid in terms of their V - and
H-order.

72 The double-cross matrix of polylines on a grid

(1, 3)

(2, 2)

(4, 2)

(4, 1)(2, 1)

(3, 2)

(3, 3)

(1, 1)

Figure 5.3: The canonical polyline of the polyline of Figure 5.2.

Definition 5.6. Let P and Q be two polylines of the same size on a grid G.
We say that P and Q are VH-equivalent, denoted P ≡V H Q, if V (P) = V (Q)
and H(P) = H(Q).

Given a polyline on a grid, we now associate a canonical polyline on the
complete infinite grid to it.

Definition 5.7. Given a polyline P = 〈(x0, y0), . . . , (xN , yN)〉 on a grid, with
V (P) = (A1, . . . , AK) and H(P) = (B1, . . . , BL), we define the canonical
polyline of P , denoted can(P), to be the polyline 〈(x′0, y′0), . . . , (x′N , y

′
N)〉, that

is snapped to the complete infinite grid, such that for all i = 0, ..., N , we have
if i belongs to Aj , then x′i = j and if i belongs to Bj , then y′i = j.

For the polyline P of Figure 5.2, can(P) = 〈(1, 1), (1, 3), (3, 3), (3, 2), (2, 2),
(2, 1), (4, 1), (4, 2)〉 is shown in Figure 5.3. We remark that if P is a polyline
on a grid, its canonical polyline, can(P) is a snapped polyline on the complete
infinite grid. In fact, can(P) can be viewed as a polyline on the “small” grid
({1, . . . ,K} ×R) ∪ (R× {1, . . . , L}).

The following property follows straight from the definition.

Proposition 5.8. Let P and Q be of the same size on a grid G. We have
P ≡V H Q if and only if can(P) = can(Q).

5.1.1 Properties of double-cross matrices of polylines on a grid

In this section, we discuss some properties of the double-cross matrix of poly-
lines on a grid. First, we remark that only 33 4-tuples (C1 C2 C3 C4) ∈
{−, 0,+}4 can appear in the double-cross matrix of a polyline on a grid,
namely, those of the form

5.1. Polylines on a grid 73

p0

p1 p2

p3

pk−1

pk+1pk
p0

p1 p2

p3

pk−1

pk+1pk(a) (b)

Figure 5.4: Example polylines for the proof of Proposition 5.9.

• (C1 C2 C3 C4),

• (C1 C2 0 0),

• (C1 0 0 C4),

• (0 0 C3 C4),

• (0 C2 C3 0) and

• (0 0 0 0),

with C1, C2, C3, C4 ∈ {+,−}.
The following property shows that a k-partial double-cross matrix1, in gen-

eral, is not enough to know the complete double-cross matrix. This property
holds on grids and hence in general.

Proposition 5.9. Let k ≥ 1. For polylines (on a grid or not), the (k + 1)-
partial double-cross matrix DCMk+1(P) cannot be derived from the k-partial
double-cross matrix DCMk(P).

Proof. The polylines in (a) and (b) of Figure 5.4 have the same DCMk but
they do not have the same DCMk+1. A polyline like in Figure 5.4 can be
generated for each k ≥ 2. For the case k = 1, just consider P1 = 〈(0, 0), (0, 2),
(0, 1), (1, 1)〉 and P2 = 〈(0, 0), (0, 2), (0,−1), (1,−1)〉. We have DCM1(P1) =
DCM1(P2) but DCM2(P1) 6= DCM2(P2). Since polylines on a grid are a subset
of polylines on the real plane, this also proves the general case.

1Introduced in Definition 2.5

74 The double-cross matrix of polylines on a grid

This property implies that, given a double-cross matrix M , we need to look
at all cells (above the diagonal) of the matrix M to be able to reconstruct a
polyline P such that DCM(P) = M .

Proposition 5.10. If P is a polyline on a grid, then DCM(P) = DCM(can(P)).

Proof. Let P = 〈(x0, y0), . . . , (xN , yN)〉 be a polyline on a grid G and let
can(P) = 〈(x′0, y′0), . . . , (x′N , y

′
N)〉 be its canonical polyline.

Suppose that DCM(P)[i, j] = DC(−−−→pipi+1,
−−−−→pjpj+1) = (C1 C2 C3 C4) and

DCM(can(P))[i, j] = (D1 D2 D3 D4), with 0 ≤ i < j < N . We have to
show that Ck = Dk, for k = 1, 2, 3, 4. If we look at the algebraic expression
for C1, C2, C3 and C4 of Theorem 3.2, we can see they are all of the form
±sign((t11 − t12).(t21 − t22) ± (t31 − t32).(t41 − t42)) and that tk1 and tk2 are
x-coordinates or y-coordinates of vertices, with k ∈ {1, 2, 3, 4}. Let us focus
on C1 and D1. We have C1 = −sign((xj − xi).(xi+1− xi)− (yj − yi).(yi+1− yi))
and D1 = −sign((x′j−x′i).(x′i+1−x′i)−(y′j−y′i).(y′i+1−y′i)). Since P is a polyline
on a grid, we have that xi = xi+1 and yi 6= yi+1 or xi 6= xi+1 and yi = yi+1.
Assume xi = xi+1 and yi 6= yi+1 (the other case is similar). By definition of
V (P) and can(P) we know when xi = xi+1 then x′i = x′i+1, thus we can rewrite
the expression for C1 and D1 as follows: C1 = −sign((yj − yi).(yi+1− yi)) and
D1 = −sign((y′j − y′i).(y

′
i+1 − y′i)). By definition of can(P), we can see that

yi < yj if and only if y′i < y′j . Also, yi < yi+1 if and only if y′i < y′i+1. So, we
have C1 = D1. We can show in a similar way that C2 = D2, C3 = D3 and
C4 = D4.

In the next theorem, we use the following notation. If P = 〈(x0, y0), (x1, y1),
..., (xN , yN)〉 is a polyline, then we denote by Pi the polyline 〈(x0, y0), ..., (xi, yi)〉,
for 0 ≤ i ≤ N . So, in particular P = PN .

We need the following mapping to align the start vectors of two polylines.
Let P = 〈p0, p1, ..., pN 〉 and Q = 〈q0, p1, ..., qM 〉 be two polylines and let αPQ
be the following unique orientation-preserving affinity of R2 that maps −−→p0p1

to −−→q0q1. The transformation αPQ can be decomposed into a translation τPQ
that maps the start vertex of P to the start vertex of Q; a counter-clockwise
rotation ρPQ that aligns τPQ(−−→p0p1) with −−→q0q1; and finally a point-scaling (or
homotecy) σPQ that maps ρPQ(τPQ(−−→p0p1)) onto −−→q0q1.

Theorem 5.11. Let P and Q be two polylines of size N on a grid. Then P
and Q are double-cross similar if and only if

αPQ(PN−1) ≡V H QN−1

and the last vector of αPQ(P) and Q have the same direction with respect to
their one but last vector, that is,

DC(−−−−−−−→pN−2pN−1,
−−−−−→pN−1pN) = DC(−−−−−−−→qN−2qN−1,

−−−−−→qN−1qN).

5.1. Polylines on a grid 75

Proof. From Property 5.10, we know that DCM(P) = DCM(Q) if and only if
DCM(can(P)) = DCM(can(Q)) and from Property 5.8 that αPQ(PN−1) ≡V H
QN−1 if and only if can(αPQ(PN−1)) = can(QN−1). Therefore, it is enough
to prove that DCM(can(P)) = DCM(can(Q)) if and only if can(αPQ(PN−1)) =
can(QN−1) and the last vector of can(αPQ(PN)) and can(QN) have the same
direction with respect to their one but last vector. Since can(αPQ(PN−1)) =
can(QN−1) = αcan(P)can(Q)(can(PN−1)) (where αcan(P)can(Q) is basically a
rotation over 0◦, 90◦, 180◦, or 270◦ with center (1, 1)), it suffices to prove the
theorem for canonical polylines with V H-equivalence replaced by equality.

So, from now, we simplify the notation and assume that P and Q are
canonical. We will therefore write P and Q, meaning, can(P) and can(Q).

First, we prove the if-direction. We distinguish between N = 2 and N > 2.
For N = 2, we have to show that if αPQ(P1) = Q1 and the last vector of
αPQ(P2) and Q2 have the same direction with respect to their one but last
vector (in this case the first vector), then DCM(P2) = DCM(Q2). This is trivial
since the direction of the second segment with respect to the first is uniquely
determines the right upper element in the double-cross matrix.

Let us now assume N > 2. And we assume DC(−−−−−−−→pN−2pN−1,
−−−−−→pN−1pN) =

DC(−−−−−−−→qN−2qN−1,
−−−−−→qN−1qN) together with QN−1 = αPQ(PN−1). The former im-

plies that DCM(P)[N − 1, N] = DCM(Q)[N − 1, N]. The latter implies that
DCM(P)[i, j] = DCM(Q)[i, j] for 1 ≤ i < N and 1 ≤ j < N , by induction
hypothesis. But since the end vertex of QN−1 is equal to the end vertex of
αPQ(PN−1), we also have DCM(P)[i,N] = DCM(Q)[i,N] for i = 1, ..., N − 2.

For the only-if direction, let us assume that DCM(P) = DCM(Q). From
this assumption DCM(P)[N−1, N] = DCM(Q)[N−1, N] follows and therefore
the last vector of αPQ(P) and Q have the same direction with respect to their
one but last vector. Let P = 〈(x0, y0), ..., (xN , yN)〉. For each pair of vertices
(xi, yi) and (xj , yj), with 1 ≤ i < j < N , it can be determined, from DCM(P),
whether xi < xj , xi = xj or xi > xj and also yi < yj , yi = yj or yi > yj .
Indeed, suppose DCM(P)[i, j] = (C1 C2 C3 C4). By looking at Theorem 3.2,
one can see that if C3 = 0 that (xj , yj) is located on −−−→pi−1pi. If C3 = −, (xj , yj)
is located right of −−−→pi−1pi, otherwise (xj , yj) is located left of −−−→pi−1pi. In other
words, the V - and H-order of PN−1 can be derived from DCM(P). Since
DCM(P) = DCM(Q), the canonical polylines of PN−1 and QN−1 are therefore
equal. This concludes the proof.

Proposition 5.12. If P is a polyline on a grid G and G′ = (A×R)∪ (R×B)
is a grid with A and B finite subsets of R and with |A| ≥ |V (P)| and |B| ≥
|H(P)|, then there exists a snapped polyline Q on G′ such that DCM(P) =
DCM(Q).

76 The double-cross matrix of polylines on a grid

Proof. We construct Q on G′ as we constructed the canonical polyline of P on
the complete infinite grid (see Definition 5.7). Then by construction P ≡V H Q
and the last vector from P and Q have the same direction with respect to the
one but last vector. By Theorem 5.11, it follows that DCM(P) = DCM(Q).

Using the previous properties, we can see that two double-cross similar
polylines differ in horizontal and vertical compressions and dilatations from
the canonical polyline (apart from their last vector, whose length is arbitrary).

Corollary 5.13. Let P and Q be two polylines of size N on a grid (not
necessarily the same grid). If P and Q are double-cross similar, there exists a
transformation, preserving the V - and H-order, that maps PN−1 onto QN−1

and that preserves the direction of the last vector of P with respect to the one
but last vector of P .

5.1.2 Constructing example polylines on a grid from a given
a double-cross matrix

We now give an algorithm Reconstruct DCM that, given a double-cross matrix
M of size N × N of a polyline on a grid, generates a snapped polyline P
on an exponentially large grid with M = DCM(P) in time O(N2). As will be
explained later on, the algorithm Reconstruct DCM can be modified to discover
if the input is a matrix that is (not) realizable by a polyline on a grid.

From the output of Reconstruct DCM, it is straightforward to produce the
V - andH-order of the generated polyline. These orders can be used to generate
many more example polylines that satisfy the given double-cross matrix, in
particular the canonical polyline.

Listing 5.1: Algorithm Reconstruct DCM

input : a N ×N matrix M ;

N2 := s i z e (M) ;

L1 . s t a r t := (0 , 0) ;
lastX := 2N ;
lastY := 0 ;
L1 . end := (lastX , lastY) ;
P := L1 ;

for (i :=2; i<N−1; i++) {
Li . s t a r t := Li−1 . end ;

5.1. Polylines on a grid 77

compute d i r e c t i o n d o f −−−→pipi+1

us ing d i r e c t i o n o f −−−→pi−1pi and M [i− 1, i] ;
switch (d){

case Hor i zonta l Right :
newY := lastY ;
based on V (P) , f i n d the i n t e r v a l I

such that ∀x ∈ I and
−→̀

=
−−−−−−−−−−−−−−−−−−−→
(lastX, lastY), (x, newY) , and

∀j ∈ [1, i− 1] : DC(−−−−→pjpj+1,
−→̀

) = M [j, i]
newX := min (x ∈ I)+ 2N−i ;
break ;

case . . .
/∗ do s i m i l a r c o n s t r u c t i o n s
∗ f o r the o the r t h r e e d i r e c t i o n s ∗/

}//end s w i t c h
Li . end := (newX, newY) ;
lastX := newX ;
lastY := newY ;

P. addLast (Li) ;
}// endfor

LN . s t a r t := LN−1 . end ;
compute d i r e c t i o n d o f −−−−−→pN−1pN

us ing d i r e c t i o n o f −−−−−−−→pN−2pN−1 and M [N − 2, N − 1] ;
switch (d){

case Hor i zonta l Right :
newY := lastY ;
newX := lastX + 1 ;
break ;

case . . .
/∗ do s i m i l a r c o n s t r u c t i o n s
∗ f o r the o the r t h r e e d i r e c t i o n s ∗/
}//end s w i t c h

LN . t a i l := (newX, newY) ;
P. addLast (LN) ;

Return P;

78 The double-cross matrix of polylines on a grid

(a) (b)

Figure 5.5: (a) A polyline on a grid. The circle is the start vertex and the
square is the end vertex. (b) The reconstructed snapped polyline from the
double-cross matrix in Table 5.1.

Theorem 5.14. The algorithm Reconstruct DCM, on input a double-cross
matrix M of size N ×N of a polyline on a grid, correctly generates, in O(N2)
time, a snapped polyline P of size N with DCM(P) = M . This algorithm can
also be used to check , with the same time complexity, whether a matrix of size
N ×N is realizable with a polyline on a grid.

Proof. The length of the interval I in the algorithm is in the i-th step max-
imal 2N−i+1. Therefore, the new vertex can always be located in I. The
correctness of the rest of the algorithm can be proven using Theorem 5.11 and
Property 5.12.

For what concerns checking, we observe that the algorithm cannot find an
interval I if and only if the matrix is not realizable.

The algorithm Reconstruct DCM produces a snapped polyline on a grid of
exponential size. However, we remark that the algorithm only outputs the
vertices of the polyline, which can be described in linear size space (using the
bit representation of integers).

In Figure 5.5(a), we can see a polyline on a grid. Its double-cross matrix
is given in Table 5.1. In Figure 5.5(b), we see the snapped polyline generated
using the algorithm Reconstruct DCM with as input the double-cross matrix
in Table 5.1.

5.1. Polylines on a grid 79

Table 5.1: The double-cross matrix of the snapped polyline in Figure 5.5(a).
−00+−−++−−+−−+−+−−−+−−−−+ +−++−−++−−−+ + +++−++

−00+ −−+++−++ +− 00 +00− + + +++−+++−+−−+ ++−−++

−00+ −−++ 0−+0 00 +− −+ ++−−++−−+− −+ 00 −00+

−00+ −−++−−+−−+−+−−−+−−−− 0 +−0 00−+

−00+ −−+++−++ +− 00 +00− + + +++−++

−00+ −−++ 0−+0 00 +− −+ ++−−++

−00+ −−++−−+−−+−+−−−+

−00+ −−+++−++ +− 00

−00+ −−++ 0−+0

−00+ −−++

−00+

5.1.3 Properties of double-cross matrices of completely snapped
polylines

Now, we prove a property of the double-cross matrix of a completely snapped
polyline, that does not hold for arbitrary polylines on a grid.

Proposition 5.15. Given the 1-partial double-cross matrix M = DCM1(P)
of a completely snapped polyline P , we can reconstruct DCM(P).

Proof. Suppose P has N vertices. Then M = DCM1(P) has N − 2 elements.
Let [−N,N] denote the set of integers {−N,−N + 1, ..., 0, 1, ..., N}. Take
G = ([−N,N] × R) ∪ (R × [−N,N]) as a grid. We now show how we can
reconstruct a polyline Q that has M as its double-cross matrix.

We start with setting Q = 〈(0, 0), (0, 1)〉. Then Q is a completely snapped
polyline and G is big enough to reconstruct any polyline with N line segments
that has as start vertex (0, 0). If we want to add a vertex (x2, y2) ∈ G to Q such

that Q is still a completely snapped polyline and M [1, 2] = DC(
−−−→
`1(Q),

−−−→
`2(Q)),

we only have one possibility for the position of (x2, y2). Based on the fact that
Q has to a be completely snapped polyline and (x2, y2) ∈ G there are only
four possible coordinates for (x2, y2). The condition M [0, 1] will only be true
on Qfor one of these four points and so we have a unique solution. For the
same reasons we can see that if we want to extend Q to N line segments such
that M [i, i+ 1]holds on Q for all 0 ≤ i < N − 1, all (xj , yj), for 2 ≤ j ≤ N are
uniquely defined by the choice of the initial segment from (0, 0) to (0, 1); by
G; and by M . Once we have obtained Q = 〈(x0, y0), . . . , (xN , yN)〉 this way,
we can calculate DCM(Q). From Property 5.12, we know that the choice of G
has no influence on DCM(Q). Because a double-cross matrix is invariant un-
der a composition of a rotation, translation and point-scaling, taking another
initial line segment for Q would also not change DCM(Q) therefore for every
Q constructed as described above DCM(Q) = DCM(P).

80 The double-cross matrix of polylines on a grid

The last proof actually describes an algorithm that given a (partial) double-
cross matrix M of a completely snapped polyline, generates a completely
snapped polyline P with DCM(P) = M . The following corollary tells some-
thing about the time complexity.

Corollary 5.16. Given a double-cross matrix M of size N × N of a com-
pletely snapped polyline, a completely snapped polyline P of size N with
M = DCM(P) can be generated in O(N) time. Checking whether a double-
cross matrix of size N by N , can be of a completely snapped polyline takes
O(N2) time.

6
On the realizability of
double-cross matrices

By Properties 3.2 and 3.3, we know that we only need to know the elements
of a double-cross matrix above the diagonal. On the diagonal we find (0 0 0 0)
and the elements below the diagonal can be reconstructed from those above
the diagonal. For polylines of length N , this means that we can have 32N(N−1)

possible matrices of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4. In this chapter, we
address the question, which of those matrices are actually the double-cross
matrix of a polyline in R2.

More specifically, we address the following two problems.

Problem 6.1 (Realizability). Given is an N ×N matrix Mof 4-tuples (C1

C2 C3 C4) ∈ {−, 0,+}4.

(a) Decide whether M is the double-cross matrix of some polyline in R2 of
size N ; and

(b) If the answer to question (a) is yes, then produce an example (or many
examples) of a polyline P with DCM(P) = M .

A related problem, though of less interest to us, is the following.

Problem 6.2. Given is a length N . Which and how many of the 32N(N−1)

possible matrices of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4 are the double-cross
matrix of a polyline of size N in R2?

81

82 On the realizability of double-cross matrices

First, we describe a theoretical, but impractical solution to this problem.
If we restrict our attention to several special cases, like 90◦- and 45◦-polylines,
we present more efficient answers. Hereto, we introduce the polar coordinate
representation of polylines.

6.1 A theoretical solution

Let us first address Problem 6.1 (a). If a given N ×N matrix M of 4-tuples
(C1 C2 C3 C4) ∈ {0,+,−}4 is the double-cross matrix of a polyline P =
〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉, then the coordinates x0, y0, x1, y1, ..., xN , yN
should satisfy the conditions expressed by the entries of the matrix M . By
Theorem 3.2, these conditions can be translated into quadratic polynomial
equalities and inequalities. These are of the form

(xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi) αij 0
(xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj) βij 0
(xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi) γij 0
(xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj) δij 0

(†)

for 0 ≤ i < j ≤ N and αij , βij , γij , δij ∈ {=, <,>}.

The values αij , βij , γij , δij are determined by the entries of the matrix M
as indicated in Theorem 3.2 (the minus signs before the equations for C1 and
C3 are assumed to be incorporated in the αij and γij).

We make the following observations about this system:

• there are 4N(N−1)
2 = 2N(N − 1) (in)equalities in the 2(N + 1) variables

x0, y0, x1, y1, ..., xN , yN ;

• each polynomial uses 6 variables from x0, y0, x1, y1, ..., xN , yN and has at
most 8 monomial terms;

• each of the polynomials is homogeneous of degree 2;

• all the coefficients of the polynomials are 0, 1 or −1.

These 4N(N−1)
2 equalities and inequalities (†) describe a semi-algebraic

subsets of R2(N+1) (see [JBR98]) that is given by a system (†) of (in)equalities
in the 2(N + 1) variables x0, y0, x1, y1, ..., xN , yN .

To answer Problem 6.1 (a), we have to verify whether the system of
(in)equalities (†) has a solution in R2(N+1). In other words, we want to decide
whether this semi-algebraic subset of R2(N+1) is empty or not.

6.1. A theoretical solution 83

So, Problem 6.1 (a) adds up to deciding whether the first-order sentence

∃x0∃y0∃x1∃y1 · · · ∃xN∃yN

∧
0≤i<j≤N

(xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi) αij 0
(xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj) βij 0
(xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi) γij 0
(xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj) δij 0

is true in the structure of the real ordered field. Obviously, the input for this
decision problem consists of the 4N(N−1)

2 conditions αij , βij , γij , δij , 0 ≤ i <
j ≤ N , that can be read from the input matrix M .

The first-order theory of the real ordered field is decidable ([Tar51]) and
various implementations of decision procedures, that are based on Cylindrical
Algebraic Decomposition ([Col75]) or other techniques, for this theory exist.
We refer to QEPCAD ([Hon]), Redlog ([DS97]) and Mathematica ([Wol])
as a few examples. This type of software could be used, in theory, to answer
Problem 6.1 (a) in practice. If there is a solution, these implementations also
provide, as a byproduct of the above decision problem, sample points, thus,
also, effectively answering question Problem 6.1 (b). But it is also known that
the above mentioned implementations are slow and fail in practice to produce
answers as soon as the number of variables increases.

Experiments with Mathematica show that only polylines of up to 5 seg-
ments can be reconstructed this way (depending on the instance). This obvi-
ously does not provide a practical solution to questions Problem 6.1 (a) and
(b).

We include a small example, with N = 4, of a trajectory found by Math-
ematica. If we give the matrix

(0 0 0 0) (−+ 0+) (−−++) (−−++)
(0 0 0 0) (−− 0+) (−−++)

(0 0 0 0) (−+ 0+)
(0 0 0 0)

as input, and ask for a polyline starting with vertices p0 = (0, 0), p1 = (5, 0),
continuing with vertices p2 = (x2, y2), p3 = (x3, y3) and p4 = (x4, y4) and
ignoring the first and third entry of two successive line segments (which is
always − and 0), then the Mathematica input looks like:

FindInstance[{(5 - 0)*(x2 - 5) + (0 - 0)*(y2-0)>0,

(5 - 0)*(y2 - 0) - (0 - 0)*(x2 - 5) > 0,

(x2 - 0)*(5 - 0) + (y2 - 0)*(0 - 0) > 0,

(x2 - 0)*(x3 - x2) + (y2 - 0)*(y3 - y2) < 0,

84 On the realizability of double-cross matrices

(x2 - 0)*(0 - 0) - (y2 - 0)*(5 - 0) < 0,

(x2 - 0)*(y3 - y2) - (y2 - 0)*(x3 - x2) > 0,

(x3 - 0)*(5 - 0) + (y3 - 0)*(0 - 0) > 0,

(x3 - 0)*(x4 - x3) + (y3 - 0)*(y4 - y3) < 0,

(x3 - 0)*(0 - 0) - (y3 - 0)*(5 - 0) < 0,

(x3 - 0)*(y4 - y3) - (y3 - 0)*(x4 - x3) > 0,

(x2 - 5)*(x3 - x2) + (y2 - 0)*(y3 - y2) < 0,

(x2 - 5)*(y3 - y2) - (y2 - 0)*(x3 - x2) > 0,

(x3 - 5)*(x2 - 5) + (y3 - 0)*(y2 - 0) > 0,

(x3 - 5)*(x4 - x3) + (y3 - 0)*(y4 - y3) < 0,

(x3 - 5)*(y2 - 0) - (y3 - 0)*(x2 - 5) < 0,

(x3 - 5)*(y4 - y3) - (y3 - 0)*(x4 - x3) > 0,

(x3 - x2)*(x4 - x3) + (y3 - y2)*(y4 - y3) > 0,

(x3 - x2)*(y4 - y3) - (y3 - y2)*(x4 - x3) > 0},

{x2, y2, x3, y3, x4, y4}]

and Mathematica answers after about 10 seconds with

x2 = 343597733205
68719476736 ,

y2 = 1067
10485760 ,

x3 = 1
131072 ,

y3 = 1
4 ,

x4 = −(1637
131072) and

y4 = 0.

This is due to the intrinsic high time complexity of quantifier elimination in
the ordered field of the reals [HKp04]. The theory of computational algebraic
geometry gives an upper complexity bound. In particular, Theorem 13.13
in [BPR06] gives an upper time complexity bound on determining realizable
sign conditions of a collection of polynomials. When applied to our decision
problem, we get the following result.

Property 6.1. There exists an algorithm to compute the set of all realizable
sign conditions of the system (†) with complexity

(2N(N − 1))2N+3 · 2O(N).

The complexity of deciding the (non-)emptiness of (†) is the same, as well as
that of generating a sample point in case of non-emptiness.

6.2. Generating double-cross similar polylines with
equal length line segments for a given polyline 85

The complexity of deciding the satisfiability of the system is the same,
as well as that of generating a sample point in case of non-emptiness. The
use of alternative data structures to codify the polynomials can improve the
time complexity, but not below exponential time ([GH01]). For a more recent
discussion on lower bounds of the complexity, we refer to ([HKP13]).

The general problem of deciding an existential sentence in the first-order
theory of the reals is known to be NP-hard (and to be in PSPACE) [Can88].
An exponential lower bound is not known [HKp04, HKP13].

However, we have the following, negative result from [SN01] (see also
[RN07]):

Property 6.2. Problem 6.1 (a) is NP-hard.

Whether or not this problem is in NP is less obvious. It is known that if
there is a solution to the above system of polynomial (in)equalities, there is also
an solution with algebraic coordinates ([BPR06]). We could, for instance, try
to guess the coordinates of the vertices of a polyline and then verify whether
it satisfies the above system. Guessing algebraic coordinates could be imple-
mented by guessing a polynomial and a root of this polynomial. However, an
apriori polynomial bound on the complexity of sample points (to be guessed)
is not obvious ([BPR06]). Above, we have observed that each polynomial uses
at most 6 variables from x0, y0, x1, y1, ..., xN , yN and has at most 8 monomial
terms. This implies our problem is part of the field of “fewnomials” ([Kho91]),
where problems are notoriously difficult. And our problem and the production
of sample points, is not covered by the known solutions there.

On the positive side, we have remarked in Chapter 3 that it is clear that
translations, rotations and scalings of a polyline do not change its double-cross
matrix. Double-cross matrices are, in fact, invariant under similarities of R2.
Thus, we can conclude, that if Problem 6.1 (a) has a positive answer, we can
always find a polyline, to witness this fact, that starts of with the vertices
(x0, y0) = (0, 0) and (x1, y1) = (1, 0) and in which the other vertices have
coordinates that are algebraic numbers.

We can conclude that, whereas Problem 6.1 (a) and (b) are solved in theory,
a practical solution remains open.

6.2 Generating double-cross similar polylines with
equal length line segments for a given polyline

In this section, we look at the problem of generating double-cross similar poly-
lines with equal length line segments for a given polyline. The reconstruction
task is considerably simplified by looking for polylines with segments of equal
length.

86 On the realizability of double-cross matrices

For a given polyline P of size N , we compute the double-cross matrix M
of size N by N ; we set the desired lengths of the line segments L; and the
granularity (the number of candidates to be generated) s. The reconstruction
algorithm works as follows. In the first step, the algorithm creates a line of
length L with as start vertex (0, 0) and end vertex (L, 0).

In the second step, the algorithm creates a set of candidate second line
segments. By looking at M [1, 2], we know what the minimum and maximum
angle is between the first and the second line segment. There are two possi-
bilities: the minimum angle is equal to maximum angle; or it is not. In the
first case, there is a unique solution to position the second line segment. In
the other case, we create s candidate solutions, equally distributed between
the minimum and maximum angle.

Table 6.1: The double-cross matrix of the polyline in Figure 6.1.

−+ 0+−+ ++−+ +−−−++−−++ −−+- −−+++ + ++

−+ 0+−+ +−−−++−−++−−++−+ +++ + +−
−− 0−−−−+−+−+−−++−+ ++−+ +−

−− 0+−−+++−+++ +−−+ +−−
−+ 0+−−++−+ +−−+ +−

−− 0+−+ +−−+ +−
−− 0−−−−−

−+ 0−

Given the double-cross matrix in Table 6.1, which is the double-cross ma-
trix of the polyline in Figure 6.1, the output of the algorithm with L = 3 and
s = 10, in the second step looks like the polyline in Figure 6.2.

In the i-th step of the algorithm (i ≤ N), we take one by one the polylines
created in the (i−1)-th step, and create new polylines by adding s possible last
line segments (as we did in the second step). The only difference now is that
when we have a candidate polyline Pnew, we first check whether DCM(Pnew)
corresponds to the given matrix M . If this is not the case, this candidate is
pruned. Only when this is the case, Pnew is further considered as possible
realisation of M .

Given the double-cross matrix in Table 6.1, the output of the algorithm
after the fourth step of the algorithm looks like the polyline in Figure 6.3.
Figure 6.4 gives polylines that all have the double-cross matrix of Table 6.1.
We remark that Figure 6.4 contains not all polylines that were considered as
solution in Figure 6.3, especially the polylines of which the end vertex was
below the x-axis. In this experiment, 632 polylines satisfying the double-
cross matrix of Table 6.1 were created in approximately 3 seconds on a Apple

6.2. Generating double-cross similar polylines with
equal length line segments for a given polyline 87

Figure 6.1: The original polyline.

Figure 6.2: The output after the second step of the algorithm using the double-
cross matrix in Table 6.1.

88 On the realizability of double-cross matrices

Figure 6.3: The considered solutions in step 4 of the algorithm.

Macbook with 2.16 GHz Intel Core 2 Duo processor and 1 GB RAM.

6.3 A realizability test for 90◦-polylines

In this section, we give an efficient solution for a special case of Problem 6.1,
that we first state.

Problem 6.3 (90◦-realizability). Given is an N × N matrix Mof 4-tuples
(C1 C2 C3 C4) ∈ {−, 0,+}4.

(a) Decide whether M is the double-cross matrix of some 90◦-polyline in R2

of size N ; and

(b) If the answer to question (a) is yes, then produce an example (or many
examples) of a 90◦-polyline P with DCM(P) = M .

Obviously, this problem is related to the topic of polylines on a grid, that
we discussed in Chapter 5, but we will treat it here in a purely algebraic way,
rather than in a geometric way.

For the problem of realizability, we may assume, without loss of any gener-
ality, that the polyline that realizes a matrix M , if it exists, starts with the unit
interval on the x-axis, that is, p0 = (x0, y0) = (0, 0) and p1 = (x1, y1) = (1, 0).
Indeed, from Lemma 3.14, we know that similarities preserve the double-cross
matrix of a polyline.

6.3. A realizability test for 90◦-polylines 89

Figure 6.4: A set of complete solutions.

The following property gives a first necessary condition for the input to
our decision problem, the matrix M .

Property 6.3. Let P = 〈p0, p1, p2, ..., pN 〉 be a polyline. A necessary and
sufficient condition for P to be a 90◦-polyline is: for all i, 0 ≤ i < N − 1,
DC(−−−→pipi+1,

−−−−−→pi+1pi+2) =

• (− − 0 0) (reverse);

• (− 0 0 −) (right turn);

• (− + 0 0) (straight); or

• (− 0 0 +) (left turn).

Since we have taken p0 = (x0, y0) = (0, 0) and p1 = (x1, y1) = (1, 0), all line
segments of the polyline, realizing M , should be either horizontal or vertical.
In fact, we have for each i, 0 ≤ i < N that

xi = xi+1 ∧ (yi < yi+1 ∨ yi > yi+1)

or

yi = yi+1 ∧ (xi < xi+1 ∨ xi > xi+1).

Since we take p0 = (x0, y0) = (0, 0) and p1 = (x1, y1) = (1, 0), all line
segments of the polyline, realising M , should be or horizontal or vertical in

90 On the realizability of double-cross matrices

R2 with respect to the standard coordinate axes. In fact, we have for each
i, 0 ≤ i < N that xi = xi+1 ∧ (yi < yi+1 ∨ yi > yi+1) or yi = yi+1 ∧ (xi <
xi+1 ∨ xi > xi+1). Here, for 0 ≤ i < N , we are in exactly one of the following
four situations (always with `i+1 > 0):{
xi+1 = xi + `i+1

yi+1 = yi;

{
xi+1 = xi − `i+1

yi+1 = yi;

{
xi+1 = xi
yi+1 = yi + `i+1;

{
xi+1 = xi
yi+1 = yi − `i+1.

Before we give an efficient solution to Problem 6.3, we prove a lemma
that explains in which quadrant, determined by a horizontal or vertical line
segment of a polyline, a vertex of a polyline is located. For clarity, we state
and prove the lemma for horizontal and vertical segments of a polyline that
coincide with the unit interval on the x- and y-axis (or their negatives), but
the lemma can be easily extended and applied to any horizontal and vertical
polyline segments after applying a scaling and translation of R2. This lemma
is a variant of Property 3.9.

Lemma 6.4. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline and assume that pi =
(0, 0) and pi+1 = (±1, 0) or pi = (0, 0) and pi+1 = (0,±1). Let pj = (xj , yj),
for 0 ≤ i ≤ N and i + 1 < j. From the first and third component of
DC(−−−→pipi+1,

−−−−→pjpj+1), we can determine sign(xj) and sign(yj).

Proof. First, let pi = (0, 0) and pi+1 = (±1, 0). From Theorem 3.2 it is
clear that C1 = −sign((xj − 0) · ±1 + yj · 0) = −sign(±xj) and that C3 =
−sign(xj · 0− yj · ±1) = sign(±yj).

Secondly, let pi = (0, 0) and pi+1 = (0,±1). Similarly, Theorem 3.2 implies
C1 = −sign((xj − 0) · 0 + yj · ±1) = −sign(±yj) and that C3 = −sign(xj · ±1−
yj · 0) = −sign(±xj).

Now, we give an efficient solution to Problem 6.3.

Theorem 6.5. It can be decided in time O(N2) whether a N × N matrix
M of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4 is the double-cross matrix of some
90◦-polyline in R2 of size N . If M is 90◦-realizable, also witnesses to this can
be produced in time O(N2).

Proof. We now describe a decision procedure for Problem 6.3 : in a first step,
we determine the relationship (<,=, >) between coordinates of consecutive
vertices. In a second step, we do it for all remaining vertices

Let M be a N ×N matrix of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4. As an
apriori step, we check whether M doesn’t have (0 0 0 0) entries on its diagonal
or doesn’t have the “symmetry” properties, discussed in Section 3.2.1. If M
fails this symmetry-test, we can already answer no, else we proceed.

Step 1. First, we inspect all entries M [i, i+ 1], 0 ≤ i < N of M . They should
all be of the form

6.3. A realizability test for 90◦-polylines 91

• (− − 0 0) (reverse turn);

• (− 0 0 −) (right turn);

• (− + 0 0) (straight); or

• (− 0 0 +) (left turn).

If this is not the case, we can already answer no. In the other case, we deduce
the arrangement1 of xi and xi+1 of the coordinates of candidate vertices of a
polyline. We do the same for yi and yi+1 and determine whether yi < yi+1,
yi = yi+1 or yi > yi+1. Then we proceed to Step 2.

Step 2. Now, we inspect all entries M [i, j], 1 ≤ i + 1 < j < N of M . Now,
per entry, two cases have to be considered.
Case 1 (xi = xi+1): Taking into account, yi < yi+1 or yi > yi+1, and yj < yj+1

or yj > yj+1, we can use the vertical version of Lemma 6.4, to determine the
quadrant in which (xj , yj) is located compared to the vertical line segment
that connects pi and pi+1. This gives us the arrangement of xj and xi on the
one hand and yj and yi on the other hand.
Case 2 (yi = yi+1): This case is analogous to the previous one. We can get
the arrangement of xj and xi on the one hand and yj and yi on the other hand,
but now using the horizontal version of version of Lemma 6.4.

Now, we have now complete information on how the x-coordinate val-
ues x0, x1, ..., xN are arranged (or ordered) and how the y-coordinate values
y0, y1, ..., yN are arranged (since, form the definition of the double-cross ma-
trix, the length of the last line segment is irrelevant, one of xN and yN may be
undetermined, but we know the direction of the final line segment). We can
store this arrangement information in two matrices (similarly to the double-
cross matrix). The first matrix can be used to verify whether an ordering of
x0, x1, ..., xN is possible. To this purpose, we scan the first matrix column per
column. The first column will allow us to place x0 and x1 on the real line
(according to their arrangement). This results in at most five locations to
place x2 (before; between; after; or on x0 and x1). The second column of the
matrix tells us where. We repeat this process until all the candidate values
x0, x1, ..., xN are placed on the real line. Then, we use the second matrix to
place the y-coordinate values y0, y1, ..., yN on the y-axis. If, in this process,
we find it impossible to find a location to place one of the xi or yi (due to a
contradiction), we answer no. If we have never found a contradiction at all
x- and y-values can be ordered, we are ready to answer yes. This ordering
process takes O(N2) time.

If we have found kx different values x0, x1, ..., xN and ky different values
y0, y1, ..., yN , we can draw an example of a polyline that realises M on the

1By arrangement, we mean which of the cases xi < xi+1, xi = xi+1 and xi > xi+1 holds.

92 On the realizability of double-cross matrices

grid {0, 1, ..., kx − 1} × R ∪ R × {0, 1, ..., kx − 1}, with vertices belonging to
{0, 1, ..., kx − 1} × {0, 1, ..., kx − 1}. This drawing serves as a sample polyline
and answers Problem 6.3 (b).

It is clear that the above inspection of the matrix M takes O(N2) time.
The reconstruction of a polyline can be done in the same amount of time. This
completes the proof.

6.4 The polar coordinate representation of a poly-
line

In this section, we define the polar coordinate representation of a polyline and
we describe how to go from the Cartesian coordinate representation to the
polar coordinate representation and vice versa. We also express the conditions
in the double-cross matrix of a polyline (as given in Thoerem 3.2 for Cartesian
coordinates) in the polar coordinate representation. The polar coordinate
representation of a polyline and its double-cross matrix are used as a technical
tool in Section 6.5.

Definition 6.6. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline (in
Cartesian coordinate representation) and let pi = (xi, yi), 0 ≤ i ≤ N . The
polar coordinate representation of the polyline P is the list

〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N 〉,
where `i is the length of the line segment pi−1pi and θi is the counter-clockwise
angel at pi between the line connecting pi and pi−1 and the line connecting pi
and pi+1.

If at pi, the polyline turns to the left or goes straight, θi = 180◦ −
∠(−−−→pipi−1,

−−−→pipi+1) and if at pi, the polyline turns to the right or returns, θi =
180◦ + ∠(−−−→pipi−1,

−−−→pipi+1).
So, θi captures the (counter-clockwise) change in direction when going

from the line segment pi−1pi to the line segment pipi+1. This is illustrated in
Figure 6.5.

6.4.1 From the Cartesian coordinate to the polar coordinate
representation

To convert a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 given by the Carte-
sian coordinates of its vertices to polar coordinate representation is easy. For
`i, we take the length of the line segment pi−1pi, that is |pi−1pi|.

By definition θi = 180◦ − ∠(−−−→pipi−1,
−−−→pipi+1) if the polyline turns to the left

or goes straight and θi = 180◦ +∠(−−−→pipi−1,
−−−→pipi+1) c. Therefore, the angle θi is

given by the formula

6.4. The polar coordinate representation of a polyline 93

p0
p1

p2

p3

p4
p5

θ1

θ2 θ3

θ4

�1

�2

�3

�4

�5

Figure 6.5: The polar coordinates 〈`1, θ1, `2, θ2, `3, θ3, `4, θ4, `5〉 (in red) of the
polyline 〈p0, p1, p2, p3, p4, p5〉 (in black).

π − arccos (
(xi−1 − xi, yi−1 − yi) · (xi+1 − xi, yi+1 − yi)

|(xi−1 − xi, yi−1 − yi)| · |(xi+1 − xi, yi+1 − yi)|
)

if the polyline turns to the left or goes straight, and by the formula

π + arccos (
(xi−1 − xi, yi−1 − yi) · (xi+1 − xi, yi+1 − yi)

|(xi−1 − xi, yi−1 − yi)| · |(xi+1 − xi, yi+1 − yi)|
)

if the polyline turns to the right or returns.2

6.4.2 From the polar coordinate to the Cartesian coordinate
representation

Now, we turn to transforming the polar coordinate representation into the
classical Cartesian coordinate representation, which is more laborious. Here,
we can use some techniques that are also known in the description of robot
arms with multiple joints (see, for instance, Chapter 6 of ([CLO97])).

Hereto, we first need some technical results. Let P = 〈(x0, y0), (x1, y1), , . . . ,
(xN , yN)〉 be a polyline and let pi = (xi, yi), 0 ≤ i ≤ N . In each vertex (xi, yi),
we create a local coordinate system (Xi, Yi). The origin of this coordinate
system is (xi, yi) and the positive Xi-axis is points from (xi, yi) to (xi+1, yi+1).
The Yi-axis is perpendicular to the Xi-axis in (xi, yi) in the usual way. This
is illustrated in Figure 6.6.

2Here, the · in the numerator denotes the inner product of two vectors and the · in the
denominator is the product of norms.

94 On the realizability of double-cross matrices

pi−1

pi

pi+1

θi

�i

X
i−

1

Y i−
1

X
i

Yi

�i+1

Figure 6.6: The local coordinate systems (Xi−1, Yi−1) (in blue) and (Xi, Yi)
(in green) on the vertices pi−1 and pi of a polyline.

The following property is well known from linear algebra and also from the
field of multiple joint robot arms (see, Chapter 6, page 262, in [CLO97]).

Property 6.4. Let pi−1, pi and pi+1 be three consecutive vertices on a polyline
P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 with pi = (xi, yi), 0 ≤ i ≤ N . If a
point q in R2 has coordinates (ai−1, bi−1) and (ai, bi), respectively, in the local
coordinate systems (Xi−1, Yi−1) and (Xi, Yi), respectively, then ai−1

bi−1

1

 =

 cos θi − sin θi `i
sin θi cos θi 0

0 0 1

 ·
 ai

bi
1

 .

For a polyline P , given by its polar coordinate representation 〈`1, θ1, `2, θ2,
..., `N−1, θN−1, `N 〉, we set

Pi =

 cos θi − sin θi `i
sin θi cos θi 0

0 0 1

 .

From now on, we only consider polylines with (x0, y0) = (0, 0) and (x1,
y1) = (1, 0), such that (X0, Y0) is the standard coordinate system.

The following property, based on the previous property, has a straightfor-
ward induction proof.

6.4. The polar coordinate representation of a polyline 95

Property 6.5. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline. If a
point q in R2 has coordinates (ai, bi) in the local coordinate system (Xi, Yi),
then it has absolute Cartesian coordinates (a0, b0), with a0

b0
1

 = P1 · P2 · · ·Pi ·

 ai
bi
1

 .

The following property tells us what the matrix product P1 ·P2 · · ·Pi looks
like.

Property 6.6. For 1 ≤ i < N , we have

P1 · P2 · · ·Pi =

 cos Θi
1 − sin Θi

1

∑i
j=1 `j cos Θj−1

1

sin Θi
1 cos Θi

1

∑i
j=1 `j sin Θj−1

1

0 0 1

 ,

where Θj
i abbreviates θi + θi+1 + · · ·+ θj , for i ≤ j.

Proof. We proceed by induction on i. For i = 1, we have `1 cos 0 = `1 and
`1 sin 0 = 0, which clearly gives P1.

Now, we proceed from i to i+1. By the induction hypothesis, P1 ·P2 · · ·Pi ·
Pi+1 equals cos Θi

1 − sin Θi
1

∑i
j=1 `j cos Θj−1

1

sin Θi
1 cos Θi

1

∑i
j=1 `j sin Θj−1

1

0 0 1

 ·
 cos θi+1 − sin θi+1 `i+1

sin θi+1 cos θi+1 0
0 0 1

 ,

which is a11 a12 a13

a21 a22 a23

a31 a32 a33

with

• a11 = cos Θi
1 · cos θi+1 − sin Θi

1 · sin θi+1 = cos (Θi
1 + θi+1) = cos (Θi+1

1);

• a12 = − cos Θi
1·sin θi+1−sin Θi

1·cos θi+1 = − sin (Θi
1 + θi+1) = − sin (Θi+1

1);

• a13 = `i+1 cos Θi
1 +

∑i
j=1 `j cos Θj−1

1 =
∑i+1

j=1 `j cos Θj−1
1 ;

• a21 = sin Θi
1 · cos θi+1 + cos Θi

1 · sin θi+1 = sin (Θi
1 + θi+1) = sin (Θi+1

1);

• a22 = − sin Θi
1 · sin θi+1 +cos Θi

1 ·cos θi+1 = cos (Θi
1 + θi+1) = cos (Θi+1

1);

96 On the realizability of double-cross matrices

• a23 = `i+1 sin Θi
1 +

∑i
j=1 `j sin Θj−1

1 =
∑i+1

j=1 `j sin Θj−1
1 ;

• a31 = 0 + 0 + 0 = 0;

• a32 = 0 + 0 + 0 = 0; and

• a33 = 0 + 0 + 1 = 1;

where we have used the well-known formulas for cosinus and sinus of the sum
of angles. This gives the desired matrix and concludes the proof.

The following theorem tells us how to translate from polar coordinates to
Cartesian coordinates.

Theorem 6.7. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline that is
given by its polar coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N 〉. If
we assume that (x0, y0) = (0, 0) and (x1, y1) = (1, 0), then{

xi =
∑i

j=1 `j cos (θ1 + · · ·+ θj−1)

yi =
∑i

j=1 `j sin (θ1 + · · ·+ θj−1)

for 2 ≤ i ≤ N .

We remark that we could also have written{
xi = 1 +

∑i
j=2 `j cos (θ1 + · · ·+ θj−1)

yi =
∑i

j=2 `j sin (θ1 + · · ·+ θj−1)

in the statement of this theorem, since `1 = 1, cos 0 = 1 and sin 0 = 0. For
esthetic reasons, we will stick to the earlier expressions.

Proof. In the local coordinate system (Xi−1, Yi−1), the coordinates op pi =
(xi, yi) are (`i, 0). By Property 6.5, the coordinates of pi in the standard
coordinate system (X0, Y0) are given by xi

yi
1

 = P1 · P2 · · ·Pi−1 ·

 `i
0
1

 .

By Property 6.6, this means

 xi
yi
1

 =

 cos Θi−1
1 − sin Θi−1

1

∑i−1
j=1 `j cos Θj−1

1

sin Θi−1
1 cos Θi−1

1

∑i−1
j=1 `j sin Θj−1

1

0 0 1

 ·
 `i

0
1

6.4. The polar coordinate representation of a polyline 97

or

{
xi = `i cos Θi−1

1 +
∑i−1

j=1 `j cos Θj−1
1 =

∑i
j=1 `j cos Θj−1

1

yi = `i sin Θi−1
1 +

∑i−1
j=1 `j sin Θj−1

1 =
∑i

j=1 `j sin Θj−1
1

which concludes the proof.

6.4.3 The double-cross conditions for polar coordinates

From Theorem 3.2, we know that for a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN ,
yN)〉 with pi = (xi, yi), 0 ≤ i ≤ N , we have DC(−−−→pipi+1,

−−−−→pjpj+1) = (C1 C2 C3 C4)
with

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

If now the polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 is given by its
polar coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N 〉, Theorem 3.2
allows us to translate these conditions into polar coordinates.

Again, we assume that (x0, y0) = (0, 0) and (x1, y1) = (1, 0). Where needed,
we use the abbreviations{

ci = cos Θi
1 = cos (θ1 + · · ·+ θi);

si = sin Θi
1 = sin (θ1 + · · ·+ θi).

to control the length of the expressions.

The following theorem gives the double-cross conditions in polar form.

Theorem 6.8. If now the polyline P = 〈p0, p1, . . . , pN 〉 is given by its polar
coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N 〉, and if we assume
that p0 = (0, 0) and p1 = (1, 0), then DC(−−−→pipi+1,

−−−−→pjpj+1) = (C1 C2 C3 C4), for
0 ≤ i < j < N , are expressed in polar coordinates as follows:

C1 = − sign(
∑j

k=i+1 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+1 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)),

where we agree that the empty sum of angles equals 0.

98 On the realizability of double-cross matrices

Proof. From {
xi =

∑i
k=1 `k cos (θ1 + · · ·+ θk−1)

yi =
∑i

k=1 `k sin (θ1 + · · ·+ θk−1),

for 0 ≤ i ≤ N , we get, for 0 ≤ i < j < N ,

xj − xi =
∑j

k=1 `k cos (θ1 + · · ·+ θk−1)−∑i
k=1 `k cos (θ1 + · · ·+ θk−1)

=
∑j

k=i+1 `k cos (θ1 + · · ·+ θk−1)

yj − yi =
∑j

k=1 `k sin (θ1 + · · ·+ θk−1)−∑i
k=1 `k sin (θ1 + · · ·+ θk−1)

=
∑j

k=i+1 `k sin (θ1 + · · ·+ θk−1)

xi+1 − xi =
∑i+1

k=1 `k cos (θ1 + · · ·+ θk−1)−∑i
k=1 `k cos (θ1 + · · ·+ θk−1)

= `i+1 cos (θ1 + · · ·+ θi)

yi+1 − yi =
∑i+1

k=1 `k sin (θ1 + · · ·+ θk−1)−∑i
k=1 `k sin (θ1 + · · ·+ θk−1)

= `i+1 sin (θ1 + · · ·+ θi)

xj+1 − xj =
∑j+1

k=1 `k cos (θ1 + · · ·+ θk−1)−∑j
k=1 `k cos (θ1 + · · ·+ θk−1)

= `j+1 cos (θ1 + · · ·+ θj)

yj+1 − yj =
∑j+1

k=1 `k sin (θ1 + · · ·+ θk−1)−∑j
k=1 `k sin (θ1 + · · ·+ θk−1)

= `j+1 sin (θ1 + · · ·+ θj).

If we plug these identities in the equations of Theorem 3.2, we get

C1 = − sign(
∑j

k=i+1 `k(cick−1 + sisk−1)

= − sign(
∑j

k=i+1 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k(cjck−1 + sjsk−1)

= sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+1 `k(sick−1 − cisk−1)

= − sign(
∑j

k=i+1 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k(sjck−1 − cjsk−1)

= sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)).
In the last equalities we used the well-known formulas sin (α± β) = sinα cosβ±

cosα sinβ and cos (α± β) = cosα cosβ ∓ sinα sinβ.

We remark that all the double-cross conditions in the above theorem are
linear expressions in the lengths `1, ..., `N−1. We also remark that an alterna-
tive way to write these conditions is

C1 = − sign(`i+1 +
∑j

k=i+2 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+2 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)).

6.5. A realizability test for 45◦-polylines 99

Because of the special location of (x0, y0) = (0, 0) and (x1, y1) = (1, 0), we
look at a special case of this theorem, namely i = 0 and j = 1. Here, we have
DC(−−→p0p1,

−−→p1p2) = (C1 C2 C3 C4), with

C1 = − sign(1) = −;
C2 = sign(`1 + `2c1 − 1) = sign(`2c1);
C3 = − sign(0) = 0; and
C4 = sign(`2s1);

Because, by Assumption 1, we have `2 > 0, we can simplify conditions C2

and C4 and we get

C1 = −
C2 = sign(cos θ1)
C3 = 0 and
C4 = sign(sin θ1).

More generally, we look at the following special case of consecutive line
segments of a polyline.

Corollary 6.9. If now the polyline P = 〈p0, p1, . . . , pN 〉 is given by its polar
coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N 〉, and if we assume
that p0 = (0, 0) and p1 = (1, 0), then DC(−−−→pipi+1,

−−−−−→pi+1pi+2) = (C1 C2 C3 C4),
for 0 ≤ i < N − 1, are expressed in polar coordinates as follows:

C1 = −;
C2 = sign(cos θi+1);
C3 = 0;
C4 = sign(sin θi+1).

6.5 A realizability test for 45◦-polylines

In this section, we describe how it can be decided whether a given N × N
matrix is realizable in the plane by a 45◦-polyline. First, we state the problem
formally.

Problem 6.10 (45◦-realizability). Given is an N ×N matrix M of 4-tuples
(C1 C2 C3 C4) ∈ {−, 0,+}4.

(a) Decide whether M is the double-cross matrix of some 45◦-polyline in R2

of size N ; and

100 On the realizability of double-cross matrices

(b) If the answer to question (a) is yes, then produce an example (or many
examples) of a 45◦-polyline P with DCM(P) = M .

For the problem of realizability, here again, we may assume, without loss
of any generality, that the polyline that realizes a matrix M , if it exists,
starts with the unit interval on the x-axis, that is, p0 = (x0, y0) = (0, 0) and
p1 = (x1, y1) = (1, 0). Indeed, from Lemma 3.14, we know that similarities
preserve the double-cross matrix of a polyline. This also permits us, to use
the results on the polar representation from the previous section.

Theorem 6.11. It can be decided in polynomial time whether an N×N matrix
Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4 is the double-cross matrix of some
45◦-polyline of size N in R2. If M is 45◦-realizable, also witnesses to this can
be produced in polynomial time.

Proof. We now describe a decision procedure that solves Problem 6.10. Let M
be a N×N input matrix of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4. In a first step,
we determine the polar angles of the polyline, we attempt to construct. In a
second step, we see if appropriate lengths of line segments can be found. As an
apriori step, we check whether M doesn’t have (0 0 0 0) entries on its diagonal
or doesn’t have the “symmetry” properties. If M fails this symmetry-test, we
can already answer no, else we proceed.

Step 1 (Determining the angles θ1, θ2, ..., θN−1). First, we inspect the
entries M [i, i + 1], 0 ≤ i < N of M . Hereto, we use Corollary 6.9. So, C1

should be − and C3 should be 0. If this is not the case, we can already answer
no. From C2 and C4 in all entries M [i, i+ 1], we can determine the angles θi
as is shown in the following table.

C2 C4 θi

0 0 answer no
0 + 270◦

0 − 90◦

+ 0 180◦

+ + 225◦

+ − 135◦

− 0 0◦

− + 315◦

− − 45◦

Obviously, if both C2 = sign(cos θi) and C4 = sign(sin θi) (see Corol-
lary 6.9) are 0, we have an impossible situation. So, at this point, or we have
answered no, or we know all the angles θ1, θ2, ..., θN−1 of a possible realisation
of M . In the latter case, we proceed to Step 2.

6.5. A realizability test for 45◦-polylines 101

Step 2 (Determining `1, `2, ..., `N). Once, we have determined the an-
gles θ1, θ2, ..., θN−1, we can compute all the values cos (θi+1 + · · ·+ θk−1),
cos (θk + · · ·+ θj), sin (θi+1 + · · ·+ θk−1) and sin (θk + · · ·+ θj) that appear
in the expressions given in Theorem 6.8. Since all these sums of angles are
multiples of 45◦, these cosines and sines will take values as shown in the fol-
lowing table.

α cosα sinα

0◦ 1 0

45◦
√

2
2

√
2

2
90◦ 0 1

135◦ −
√

2
2

√
2

2
180◦ −1 0

225◦ −
√

2
2 −

√
2

2
270◦ 0 −1

315◦
√

2
2 −

√
2

2

This means that the double-cross conditions given by Theorem 6.8, to-
gether with the constraints that the `i are strictly positive lengths, can be
seen as linear constraint conditions in `1, `2, ..., `N of the form

− ∑j
k=i+1 `k cos (θi+1 + · · ·+ θk−1) αij 0 (0 ≤ i < j < N)∑j
k=i+1 `k cos (θk + · · ·+ θj) βij 0 (0 ≤ i < j < N)

− ∑j
k=i+1 `k sin (θi+1 + · · ·+ θk−1) γij 0 (0 ≤ i < j < N)∑j
k=i+1 `k sin (θk + · · ·+ θj) δij 0 (0 ≤ i < j < N)

`i > 0 (0 < i ≤ N)

(∗)

with αij , βij , γij , δij ∈ {=, <,>} determined by the entries of the matrix

M . Since all cosines and sines take values in the set {0, 1,−1,
√

2
2 ,−

√
2

2 }, all
these conditions are linear in `1, `2, ..., `N . Therefore, (∗) can be seen as a linear
programming problem, or at least almost. Normally in a linear programming
problem, linear polynomial conditions of the form

a1`1 + a2`2 + · · ·+ aN`N ≥ 0,

with the coefficients ai rational numbers are expected to appear together with
the additional conditions

`i ≥ 0 (0 ≤ i ≤ N).

So, we are left with three problems:

102 On the realizability of double-cross matrices

(1) we have `i > 0 for 0 < i ≤ N and not the traditional `i ≥ 0;

(2) we have αij , βij , γij , δij ∈ {=, <,>} and not the traditional ≥; and

(3) we have irrational coefficients
√

2
2 , −

√
2

2 .

The linear polynomial condition

a1`1 + a2`2 + · · ·+ aN`N = 0

is obviously equivalent to

a1`1 + a2`2 + · · ·+ aN`N ≥ 0 and a1`1 + a2`2 + · · ·+ aN`N ≤ 0.

This solves the case of equality. Obviously,

a1`1 + a2`2 + · · ·+ aN`N < 0

is equivalent to

−a1`1 − a2`2 − · · · − aN`N > 0.

So, we are left with a1`1 + a2`2 + · · · + aN`N > 0. To solve the problem of
the strict inequalities in (1) and (2), there is a known trick from the linear
programming literature that we can use (see page 22 of [MG06]). We introduce
a new variable δ, which stands for the “gap” between the left and the right
side of each inequality and we try to make this gap as large as possible. Then
a1`1 + a2`2 + · · ·+ aN`N > 0 is equivalent to

maximize δ
subject to a1`1 + a2`2 + · · ·+ aN`N − δ ≥ 0

and δ ≥ 0.

And this single δ can be used to deal with several strict inequalities all at
once. Indeed, the linear program has now an extra variable δ and the optimal
δ is strictly positive exactly when the original system with strict inequalities
has a solution.

Let us write the first 2N(N − 1) linear polynomials appearing in (∗) as

P
σij
ij (`1, `2, ..., `N) σij 0,

with 0 ≤ i < j < N and σij ∈ {αij , βij , γij , δij}.
We define the sets

6.6. Convexity properties of 45◦-polylines 103

S= := {(i, j, σij | 0 ≤ i < j < N, σij ∈ {αij , βij , γij , δij} and σij ==};
S> := {(i, j, σij | 0 ≤ i < j < N, σij ∈ {αij , βij , γij , δij} and σij =>}; and
S< := {(i, j, σij | 0 ≤ i < j < N, σij ∈ {αij , βij , γij , δij} and σij =<}.

Now, we can see that (∗) can be converted to the following linear program-
ming problem:

maximize δ
subject to P

σij
ij (`1, `2, ..., `N) ≥ 0 for (i, j, σij) ∈ S=

−P σijij (`1, `2, ..., `N) ≥ 0 for (i, j, σij) ∈ S=

P
σij
ij (`1, `2, ..., `N)− δ ≥ 0 for (i, j, σij) ∈ S>

−P σijij (`1, `2, ..., `N)− δ ≥ 0 for (i, j, σij) ∈ S<
`i − δ ≥ 0 for 0 < i ≤ N

and δ ≥ 0.

What remains is Problem (3), namely that we may have the irrational

coefficients
√

2
2 and −

√
2

2 in our linear programming problem. However, a result
by Adler and Beling ([AB94]) shows that linear programming with algebraic
coefficients also has a time complexity that is a polynomial of

(i) the “rank” of the linear system of inequalities, which applied to our
example is O(N2);

(ii) the degree of the extension of the rationals in which we work, which is
in our case 2, since (Q(

√
2) : Q) = 2; and

(iii) a quantity related to the conjugate norm of the linear system, which in
our case is O(N2 logN).

So, we can conclude that our linear programming problem can be solved
in polynomial time in N . This completes the proof.

6.6 Convexity properties of 45◦-polylines

In this section, we discuss some implications of Theorem 6.11 on the convexity
of the solution set, determined by a matrix that is realisable in the plane by
a 45◦-polyline.

From Step 1 of the proof of Theorem 6.11, it follows that a matrix M that
is realisable by a 45◦-polyline determines the angles θi uniquely for 0 < i < N .
This proves the following corollary.

104 On the realizability of double-cross matrices

Corollary 6.12. If an N×N matrix Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4
is realizable by two 45◦-polylines P1 and P2 that start with the line seg-
ment connecting (0, 0) and (1, 0) and have polar-coordinate representations
〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N 〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ

′
N−1, `

′
N 〉, respec-

tively, then θi = θ′i for 0 < i < N .

Also from the proof of the previous theorem, the following property follows.

Corollary 6.13. If an N×N matrix Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4
is realizable by two 45◦-polylines P1 and P2 (that start with the line segment
connecting (0, 0) and (1, 0)) and have polar-coordinate representations 〈`1,
θ1, `2, θ2, ..., `N−1, θN−1, `N 〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ

′
N−1, `

′
N 〉, respectively,

then for any real numbers α1, α2 > 0, the 45◦-polyline given by the polar
coordinate representation 〈α1 · `1 +α2 · `′1, θ1, α1 · `2 +α2 · `′2, θ2, ..., α1 · `N−1 +
α2 · `′N−1, θN−1, α1 · `N + α2 · `′N 〉 also realizes M .

Proof. Corollary 6.12 takes care of the angles. From Step 2 of the proof
of the previous theorem it follows that if P1 and P2 are realizations of a
matrix M their lengths satisfy the same set of linear conditions of the form
a1`1 + a2`2 + · · ·+ aN`N α 0, with α ∈ {<,=, >}. Suppose that we have

{
a1`1 + a2`2 + · · ·+ aN`N > 0 and
a1`
′
1 + a2`

′
2 + · · ·+ aN`

′
N > 0

for P1 and P2, for any of these linear conditions. Since both α1 > 0 and
α2 > 0, we also have

{
α1 · (a1`1 + a2`2 + · · ·+ aN`N) > 0 and
α2 · (a1`

′
1 + a2`

′
2 + · · ·+ aN`

′
N) > 0.

So, also the sum of the two left hand sides,

α1 · (a1`1 + a2`2 + · · ·+ aN`N) + α2 · (a1`
′
1 + a2`

′
2 + · · ·+ aN`

′
N)

will be strictly larger than 0. The same argument hold when α is = or <.
This completes the proof.

We end this chapter with the following convexity property for 45◦-polylines.

Corollary 6.14. If an N×N matrix Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4
is realizable by two 45◦-polylines P1 and P2 (that start with the line segment
connecting (0, 0) and (1, 0)) and have polar-coordinate representations 〈`1,
θ1, `2, θ2, ..., `N−1, θN−1, `N 〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ

′
N−1, `

′
N 〉, respectively,

6.6. Convexity properties of 45◦-polylines 105

then for any λ with 0 ≤ λ ≤ 1, the 45◦-polyline given by the polar coordinate
representation

〈λ · `1 + (1− λ) · `′1, λ · θ1 + (1− λ) · θ′1,
λ · `2 + (1− λ) · `′2, λ · θ2 + (1− λ) · θ′2, ..., λ · `N−1 + (1− λ) · `′N−1,

λ · θN−1 + (1− λ) · θ′N−1, λ · `N + (1− λ) · `′N 〉

also realizes M .

Proof. From Corollary 6.12, it is clear that λ · θi + (1 − λ) · θ′i = θi = θ′i for
0 < i < N .

For λ with 0 ≤ λ ≤ 1, we observe that if we take λ = 0, we get P2 and if
we take λ = 1, we get P1. This leaves us with the case 0 < λ < 1. But here,
both λ and 1 − λ are strictly larger than 0 and Corollary 6.13 applies with
α1 = λ and α2 = 1− λ. This completes the proof.

Part II

Map matching techniques for
trajectory data

107

7
Introduction to map matching

7.1 What is map matching?

Nowadays, one of the most popular technologies, used by location-aware de-
vices, is GPS. Although most people use a GPS as a navigational tool, it can
also be used for storing the position of a moving object (for instance, a car
or a pedestrian) for data analysis. For instance, we can analyse the routes
followed by a person and then study why that person chose one road instead
of another. The main disadvantage of using GPS obtained coordinates is that
they are not always very accurate and will not always match the road fol-
lowed by a car or a pedestrian. Therefore, most GPS devices, used in cars,
account for these errors by mapping the measured location to the street that
was followed, instead of just displaying the location information received from
a satellite. Many algorithms were developed for this task. We give an overview
of them in Section 7.4. The general problem of matching GPS positions to a
road network is called map matching.

7.2 Map matching: issues and problem statement

Typically, when the position of a car or a pedestrian is monitored using GPS,
around ninety-five percent of the recorded time-space points fall outside the
actually followed road network. Besides the measurement errors, there are
also other problems with real-world data. We think of traffic jams and gaps
between measured points, produced by some interference in the satellite signal
(for instance, when moving in tunnels).

109

110 Introduction to map matching

Figure 7.1: A GPS signal that moves away from the followed road before it
returns to it (from [Ghy07]).

As an example, we consider Figure 7.1, where the measures time-space
points start moving towards a road that is north with respect to the road that
was actually followed. After some time the GPS measured points appear to
return to the correct road. This is a typical situation in real data, due to un-
certainty in the measurement of the object’s position. A second problem, that
map matching algorithms have to deal with, are large gaps in the measured
data. Gaps, illustrated in Figures 7.2 and 7.3, appear due to several reasons:

(a) a faulty GPS signal;

(b) an interruption of the communication; or

(c) ambiguous data.

For (a), a faulty GPS signal may be caused by the bad reception of the
coordinates. This is quite unlikely to occur, however.

For (b), an interruption of the communication between the GPS satellite
and the device of the moving object, may be due, for example, to a densely
forested area, a tunnel, or high buildings. If a GPS signal is blocked because
of tall buildings, we speak of urban canyons. For example, Figure 7.2 shows
a gap of 140 meters (indicated by an ellipse on the map and the satellite
image), while Figure 7.3 shows a gap due to the existence of a tunnel. These
two examples show that, sometimes, it is useful and necessary to combine
information from different sources.

For (c), we remark, as an example, that sometimes roads may run parallel
for some distance. This may cause GPS data to be ambiguous. Figure 7.4,
where two roads are possibly correct, illustrates this. Sometimes this problem
can be easily solved by examining the timestamp of each GPS point, and
looking, for instance, at the direction of both road segments, that is, if they
are one-way or not.

7.2. Map matching: issues and problem statement 111

Figure 7.2: a) a large gap in a trajectory sample, with b) a map of the same
area (from [Ghy07]).

We conclude that all these types of problems make mapping the measured
time-space points to the road network necessary. The following classical defini-
tion or description of the map matching problem is given by White, Bernstein
and Kornhauser [WBK00]: An object is moving along a finite system (or set)
of streets, N. A location-aware device such as GPS provides an estimate for the
vehicles location at a finite number of points in time, denoted by {0, 1, . . . , t}.
The vehicles actual location at time t is denoted by P

t
and the estimate is

denoted P t. Map matching is the process of determining the street in N that
contains P t. That is, to determine the street that the vehicle is on at time t.

112 Introduction to map matching

Figure 7.3: A tunnel producing a gap, indicated by an ellipse (from [Ghy07]).

Figure 7.4: Both road segments (in red) could match the measured GPS points
(from [Ghy07]).

7.3 Classifications of map-matching algorithms

There are two important ways to classify map matching algorithms:

• offline versus online; and

• low sampling rate versus high sampling rate.

We discuss these in this section.

7.3.1 Offline versus online map matching

Map matching algorithms are mainly classified in the operational way that
they can be used. One type of use is online. This means they can be used
in a real-time situation, where the object is still on the move. An example
is a GPS route planner in a driving car. This type of algorithm is usually
referred to as a local map matching algorithm. It is called local, since the full
trajectory data is not available yet, but only the previous and current local
data is available.

7.3. Classifications of map-matching algorithms 113

Figure 7.5: Example of a misclassified sampling rate (from [Bam12]).

The other type of map matching is offline. This means the complete tra-
jectory data of a moving object are available to the map matching algorithm.
Here, since more information is available, this type of algorithm generally
provides better results.

Online algorithms can also be used offline: it does not matter if only a
part of the trajectory data or the full trajectory data are available. However,
not all offline algorithms work in online situations, since they generally need
more time to calculate the path or cannot function without the full trajectory
data.

7.3.2 Low sampling rate versus high sampling rate map match-
ing

The rate at which the GPS trajectory data are sampled depends entirely on
the source of the data. This can be anywhere from one sample point per
second up to one sample point per fifteen minutes (or, basically, any rate the
application desires). Lower sampling rates are often used when trying to save
energy or disk space. This can occur when you have to process data from a
lot of different sources at once.

Most of the literature mentioning a sampling rate, defines the threshold
between a low and high sampling rate to be a fixed rate. Often (strictly) more
than one sample point per two minutes is used as the limit for high sampling.
However, this makes it possible for data to be misclassified [Bam12] . We
consider, for example, the situation depicted in Figure 7.5. The sampling rate
of the data is one sample per two minutes, which would be classified as low.
But since the data points are all on or near the same road segment, a map
matching algorithm, which assumes a high sampling rate, would also work
here.

114 Introduction to map matching

Figure 7.6: An example of a high sampling rate. The red points are the
GPS points, the circles around them contain the confidence area. The road
segments selected are drawn in red. Since a trajectory from starting point A
to end point B exists, this is classified as high sampling rate (from [Bam12]).

Therefore, we propose the following, novel way of classifying the data: in
order to classify the sampling rate based on something else than the absolute
time, we use the number of samples per road segment. If there is at least one
sample per road segment traveled, we can assume the sampling rate is high
enough for the data to be used with a regular algorithm.

To achieve this, we calculate a confidence area around each GPS point and
limit the road network to the road segments that fall within the confidence
area. This is done by drawing a circle around the sample point, with a diameter
equal to the possible measurement error. In practice, this is often in the range
of twenty-five meters. If there is a trajectory possible from segment of a road,
given by the start point to a segment of the same road segment given by
the end point, we classify it as a high sampling rate. If this is not possible
and there are gaps in the trajectory, it is classified as low sampling rate. An
example of a high sampling rate is given in Figure 7.6. An example of a low
sampling rate can be seen in Figure 7.7.

Apart from the type of data for which map matching algorithms are de-
signed to work, these algorithms can be further on divided into three cate-
gories. This will be further discussed in next section, which gives an overview
of existing map matching algorithms.

7.4. Existing Map Matching algorithms 115

Figure 7.7: An example of a low sampling rate. The red points are the GPS
points, the circles around them contain the confidence area. The road segments
selected are drawn in red. Since there is no trajectory from point A to B, this
is classified as low sampling rate (from [Bam12]).

7.4 Existing Map Matching algorithms

In this section, we give an overview of the existing algorithms for map match-
ing. These algorithms can be divided in three categories based on the way
they compute their solution. We will first discuss geometric methods (in Sec-
tion 7.4.1) that additionally use geometric information of the original road
network, and do not consider topological information. Next, we discuss topo-
logical methods (in Section 7.4.2) that make use of the geometry of the road
network as well as of the connectivity and contiguity of the links in it. Finally,
we consider probabilistic methods (in Section 7.4.3). These methods define an
elliptical or rectangular confidence region. The error region is superimposed
on the road network to identify a relevant road segment. If the error region
contains more than one street, probabilistic algorithms perform a weighted
search on the candidate streets.

Some authors proposed fuzzy logic approaches as a fourth category, but
the most popular fuzzy methods can be categorised in one of the above three
classes.

7.4.1 Geometric methods

The algorithms in this section provide solutions to the map matching problem
by using the shape of the road segments. They ignore the way in which road

116 Introduction to map matching

Figure 7.8: An example of point-to-point matching (from [Bam12]).

segments are connected. These algorithms are the most straightforward and
can be called, in some sense, naive.

The expositions of the algorithms, that we discuss in this section, are based
on [BK98] and [WBK00].

7.4.1.1 Point-to-point matching

In point-to-point matching, each time-space or sample point is simply mapped
to the nearest node (or vertex) in the road network, as is illustrated in Fig-
ure 7.8.

7.4.1.2 Point-to-curve matching

Point-to-curve matching is similar to point-to-point matching, but time-space
points are matched to the closest road segment, instead of the closest node in
the road network. This is illustrated in Figure 7.9. Improvements of this type
of algorithms exist, which use heading data (that is, the direction the object is
heading). If the heading of the object is not compatible to the heading of the
road segment (for instance, in a one-way road), this road segment is discarded.

There are several problems with the point-to-point and the point-to-curve
matching algorithms. A first problem is that there could be sampling errors
in the provided data. Noise in the sampling rate can occur, for example, when
two consecutive time-space points are further apart in time than they should
be (for instance, given background information such as speed limitations).
This problem is illustrated in Figure 7.10.

7.4. Existing Map Matching algorithms 117

Figure 7.9: An example of point-to-curve matching (from [Bam12]).

Figure 7.10: An example of a case where a naive algorithm fails due to sam-
pling errors. In this case, there would be a gap in the calculated trajectory
(from [Bam12]).

118 Introduction to map matching

Figure 7.11: An example of a case where a naive algorithm fails due to the
inaccuracy of GPS data (from [Bam12]).

Another problem is the inaccuracy of GPS data. Due to this inaccuracy,
a recorded time-space point can be closer to a road that is not in the actual
trajectory. This typically occurs when there are close by parallel roads or in
the vicinity of crossings. This problem is illustrated in Figure 7.11.

Other disadvantages are that these algorithms only look at geometric in-
formation, and do not take into account what road segment the previous point
was matched with.

7.4.1.3 Point-to-curve matching with topological information

Point-to-curve matching with topological information uses connectivity infor-
mation to match points with a road segment [WBK00]. The topology of the
road network is used, whenever possible, to determine candidate nodes. Only
road segments that are directly reachable from the current segment are con-
sidered. But, if the algorithm has low confidence in the previous match, it will
switch to the point-to-curve matching algorithm from the previous section.
In [WBK00], confidence is reached when the error is less than 0.15 km and
two times the average error. To get an intuition of how this approach works,
we look at Figure 7.12. If we know the object was originally at node n, we
know that P1 can only be matched to road segments r1, r2, r3 or r4 (given
a sufficiently high sampling rate). Given that the sampling rate is high, it
is possible to know that also P2 and P3 can only be matched to these road
segments.

7.4.1.4 Curve-to-curve matching

Curve-to-curve matching matches arcs, produces by a trajectory sample, with
an arc on the road network [WBK00]. This is achieved by measuring the
distance between the two arcs, and choosing the arc on the road network at
the smallest distance. A possible problem, caused by this method, is illustrated
in Figure 7.13, where a trajectory arc is matched to the wrong road segment.

7.4. Existing Map Matching algorithms 119

Figure 7.12: An example of point-to-curve matching with topological infor-
mation (from [WBK00]).

Figure 7.13: Curve-to-curve matching would match the sample points
to the horizontal curve, since the distance to this curve is the smallest
(from [Bam12]).

120 Introduction to map matching

7.4.2 Topological analysis

The algorithms in this section provide solutions to the map matching problem
by using the way in which nodes are connected within the road network.
Generally speaking, they give a weight to each road segment, and find the
best path considering these weights.

7.4.2.1 Hidden Markov model map matching

A hidden Markov model models a process, following a path throughout many
possible states [Edd04]. Each state transition has a probability and the mea-
surements of the states are uncertain. An example of this is given by a person
that performs certain activities based on the weather conditions. In this case,
based on the observations of the activities of a person on a certain day, it
is possible to guess the weather conditions of that day. Let us suppose that
there could be two states of the weather that work as a Markov chain: rainy
and sunny. But these are not observed directly. They are hidden. We call
the activities, that a person performs during some day, the observations. In a
system based on a hidden Markov model, the parameters could be the weather
trends and the average activities of a person.

Applied to map matching, a state could be a road segment, with each
transition between road segments having some probability. The state mea-
surements are the measured sample points.

For each time-space point, Pt, and for each road segment, ri, there is a
measurement probability p(Pt|ri). This probability expresses how likely it is
that we observe the time-space measurement Pt actually on the road segment
ri. In [NK09], this is modeled using the great circle distance between the road
segment and the time-space point, as depicted in Figure 7.14. Usually, only
the probabilities of roads that are close to the time-space measurement are
taken into consideration.

The noise on GPS localization is modeled as zero-mean Gaussian, which
gives us the following formula (of a normal distribution), which uses the great
circle distance:

p(Pt|ri) =
1√
πσP

e
− 1

2

(‖Pt−xt,i‖great circle
σP

)2

.

The expression σP is the standard deviation of time-space measurements.

Next, we need to calculate the transition probabilities. Each time-space
point has a list of possible road matches. Given two consecutive time-space
points, the transition probability gives the chance of a vehicle traveling be-
tween two of these possible road matches. In [NK09], the difference between

7.4. Existing Map Matching algorithms 121

Figure 7.14: Great circle and route distance. The road segments are r1, r2

and r3 and Pt and Pt+1 are measured time-space points (from [NK09]).

the great circle distance and the route distance is used to calculate this prob-
ability.

Using the transition and measurement probabilities, the Viterbi algorithm
[Vit67] is used to find the most likely sequence of road segments. For a transi-
tions from time t1 to time t2, the Viterbi algorithm, first, selects the M most
likely paths. Next, the M most likely survivors are extended to time t3 by
using the transitions from time t2 to t3. Once more, only the M most likely
paths are selected. This process continues until we reach the end time. An
example of an input network is given in Figure 7.15. Figure 7.16 illustrates
the working of the Viterbi algorithm for M = 4 and six sample times. In this
example, a shorter path has a higher likelihood.

7.4.2.2 Related work

There are other algorithms, which also use a hidden Markov model for map
matching. In [Hum06], the GPS noise assumption also uses a Gaussian dis-
tribution. The main differences with the algorithm described above is the use
of another term in the calculation of measurement probabilities. This term
represents the heading mismatch between the vehicle on the road network.
The heading indicates the direction the vehicle aimed at (for instance, North-
West). This information is not used in the above algorithm since heading
information is not always available. Heading data can also be very inaccurate
when it is calculated using the GPS points. The second main difference is the

122 Introduction to map matching

Figure 7.15: The transitions with their lengths in blue (from [Bam12]).

calculation of the transition probability. In [Hum06], only roads immediately
adjacent to the current GPS point are used.

Another, similar algorithm is given in [KLH07]. The main difference
with the previous approaches is the calculation of the transition probabili-
ties. Whereas, in the above algorithm, the difference in distance is used, this
algorithm uses the difference in time.

7.4.2.3 Greenfeld’s algorithm

Greenfeld’s algorithm [Gre02] only uses the coordinate information of the ob-
ject and does not use any knowledge about the expected traveling route, the
traveling speed and heading. It consists of two sub-routines: InitialMapping
to determine an initial match and Map to calculate weight.

InitialMapping The InitialMapping sub-routine uses the point-to-point al-
gorithm from Section 7.4.1.1 to find an initial node on the road network. Next,
it determines all the road segments in the road network connected to this node.
When the next time-space point becomes available, it maps the initial point
to one of the previously found road segments.

This sub-routine is called when the first time-space point is being pro-
cessed, when the distance between two consecutive time-space points exceeds
a chosen distance tolerance, or when the Map sub-algorithm is unable to map
the time-space point to a road segment.

Map To determine to what road segment a time-space point will be matched,
a weight W is calculated for several candidate road segments. Tree measures

7.4. Existing Map Matching algorithms 123

Figure 7.16: The working of the Viterbi algorithm for six sample times
(from [Bam12]).

124 Introduction to map matching

for similarity are used:

WD is the weight that expresses the distance from the time-space point to
the road segment;

WAZ is the weight for direction (azimuth) and expressed how similar the line
between consecutive sample points is to the direction of the road seg-
ment;

WI is a weight that express whether or not the line between two consecutive
time-space points intersect the road segment.

The total weight W is calculated as

W = WD +WAZ +WI .

7.4.2.4 Local look-ahead

The local look-ahead algorithm [BPSW05] is very similar to the one described
in Section 7.4.2.3. The calculation of the weight is different, however. Here,
the weight for intersection is not used, but the weight is defined as

W = WD +WAZ .

To improve this weighting algorithm, for each candidate road segment
rj , the score of the best candidates among the exiting road segments rj,k is
recursively calculated as

W (Pi,, rj) =

depth∑
k,l=0

W (Pi+k,, rj+l),

where Pi is a time-space point.

This method explores which branch would be the best match instead of
simply looking for the best edge. An example of this is given in Figure 7.17.

7.4.2.5 A global algorithm that uses the Fréchet distance

The global algorithm using Fréchet distance, in [BPSW05], tries to find a curve
(that is, a number of connected road segments) in the road network that is
as close as possible to the followed trajectory (that is, the curve formed by a
sequence of GPS points). As a measure of distance between two curves, the
Fréchet distance or weak Fréchet distance can be used.

7.4. Existing Map Matching algorithms 125

Figure 7.17: An example of the look-ahead algorithm. Point Pi will be
matched to road segment r2 rather than r1, because of the weight of point
Pi+1 (from [Gre02]).

The Fréchet distance The Fréchet distance is usually explained by the
analogy of a person walking his dog on a leash. The person is walking on
one curve, while the dog is walking on another curve. Both person and dog
may vary speed or stop altogether. But they are not allowed to walk back.
The Fréchet distance is the length of the shortest leash length that makes it
possible to traverse both curves in this way. The weak Fréchet distance allows
traversing backwards on the curves.

Assume A and B are two curves, the Fréchet distance is formally defined
as

F (A,B) = inf
α,β

max
tε[0,1]

{d(A(α(t)), B(β(t)))} ,

where reparameterizations α, β : [0, 1] → [0, 1] of A and B are continuous,
non-decreasing surjections. In the above formula, d is the standard Euclidean
distance function. See Figure 7.18 for an example. The weak Fréchet distance
removes the non-decreasing requirement.

The free-space diagram and surface algorithm To check whether there
is a curve A on the road network with at Fréchet distance at most ε (for ε > 0)
to a moving object’s trajectory B, a free-space diagram is used. It is defined
as

Dε(A,B) =
{

(α, β)ε[0, 1]2 | d(A(α), B(β)) ≤ ε
}
.

Such a curve exists if there is a path in the free-space diagram Dε(A,B)
from the lower left corner to the upper right which is monotone in both coordi-
nates. For the weak Fréchet distance, the path does not have to be monotone.
An example of a free-space diagram is given in 7.19.

126 Introduction to map matching

P

Q

Figure 7.18: The Fréchet distance between P and Q shown in blue.

Figure 7.19: A free-space diagram. Here, f and g are two polygonal curves and
ε is a distance. On the right the corresponding free-space diagram is given.
The holes (white space) in the diagram are the places where the distance
between f and g is below ε (from [BPSW05]).

7.4. Existing Map Matching algorithms 127

Figure 7.20: A free-space surface. The dashed curve is an example path
(from [BPSW05]).

In the free-space diagram algorithm, a free space surface is used, which is
the union of all free-space diagrams, as shown in 7.20.

Calculating the result As shown in the previous paragraphs, the decision
problem for (weak) Fréchet distance can be solved by finding a path in the free-
space from the lower left corner to the top right corner. To find such a path,
the algorithm, in [AERW03], is used for the (regular) Fréchet distance. For
the weak Fréchet distance, any graph traversal algorithm can be used. Solving
the actual minimisation problem is done by applying a binary or parametric
search.

Localizing the Fréchet distance algorithm In [BPSW05], an adaptive
clipping algorithm is proposed, which tries to improve the running time of the
above algorithm. This is achieved by using a worst-case motion estimate. To
this aim, an error is used, based on the maximum speed the object can move
at. It is calculated as shown in Figure 7.21. This error ellipse is a different
name for a bead or space-time prism, that is discussed in Chapter 8.

Adaptive clipping The Fréchet distance algorithm could be improved by
calculating the active region of the road network, and clipping it to this region.
The active region A(e) of an edge e, is defined as the Minkowski sum of the
error ellipse with a disk radius of u. However, this would imply that the
algorithm is of a global nature.

The adaptive clipping algorithm uses the weak Fréchet distance algorithm
to calculate the free-space diagram. Start and end nodes are identified and

128 Introduction to map matching

Figure 7.21: The error ellipse. The distance between the two points is 2c and
the maximum distance the object can travel is 2a. The value 2b is calculated
from these two values (from [Gre02]).

then Dijkstra’s shortest path algorithm is used. It runs in stages, with each
stage corresponding to an edge in the GPS measured trajectory sample. At
each stage, only the active region is considered.

7.4.2.6 An algorithm by Yin and Wolfson

In [YW04], Yin and Wolfson use Dijkstra’s shortest path algorithm to calculate
the path with the smallest weight. Consider a trajectory, which contains a
number of time-space points, with a beginning and end point. Given a road
map, we calculate the minimum distance between every road segment of this
map and the trajectory. We consider the distance of each arc to be the weight
of that arc. Now, the lowest weight path between the beginning and end point
is taken to be the snapped path.

In order to actually calculate the weight, this algorithm uses a 3D-view
weight algorithm. It raises each arc from a two-dimensional polyline to three
dimensions by finding the two closest time-space points on the trajectory, and
then using linear interpolation between the sample points (see Section 1.2.3).
The weight is then calculated using the Euclidean distance between the three
dimensional arc and the sub-trajectory between these two sample points.

7.4.3 Probabilistic algorithms

Probabilistic algorithms use a confidence region around each sample point to
compute a match point on a road network. This confidence region is based on

7.4. Existing Map Matching algorithms 129

the error variances that time-space points typically have.

7.4.3.1 An algorithm by Ochieng, Quddus and Noland

Like many other algorithms, the algorithm by Ochieng, Quddus and Noland
[QON03] consists of a initial mapping process, which finds an initial match, and
a subsequent mapping process. Like the space-time prisms algorithm discussed
in Chapter 8, an area is calculated around each time-space point. The main
difference is that this algorithm uses probability concepts to immediately select
each road match, whereas the space-time prism algorithm attributes a weight
to each segment, and then uses k-shortest paths to find matches. The k-
shortest paths algorithm is further explained in Section 8.3.3.

Initial mapping process To find an initial match, a confidence region
around the sample point is constructed, as illustrated in Figure 7.22, where

a = σ0

√
1
2(σ2

x + σ2
y +

√
(σ2
x − σ2

y)
2 + 4σ2

xy,

b = σ0

√
1
2(σ2

x + σ2
y −

√
(σ2
x − σ2

y)
2 + 4σ2

xy, and

φ = π/2− 1/2 arctan(
2σxy
σ2
x−σ2

y
).

Here, a and b are the lengths of the axes of the of the ellipse and φ is
the orientation of the ellipse compared to the North. The number σ0 is the
expansion factor. The numbers σ2

x and σ2
y are the error variances, and σxy is

the covariance. The formulas for a and b are chosen so that the error ellipse
scales with the error variance. An example of such an error ellipsis can be
found in Figure 7.22.

Road segments, that are in this confidence region, are considered the can-
didate segments. If there is only one such segment, it is selected. If not, link
connectivity, heading information, closeness to the segment in question and
historical info are used to select one.

Subsequent mapping process The algorithm considers the object to re-
main on the same road segment until a junction is reached or a turning ma-
noeuvre is detected. Whenever this is detected, the initial matching process
is called again, and a new road segment is chosen. The detection of a turning
manoeuvre is based on the speed of the object, the time it takes to do the
turn, and the change in heading angle. After matching a time-space point
to a road segment, an estimation of where the object is located on the road
segment is calculated.

130 Introduction to map matching

Figure 7.22: A confidence region(from [SC04])

The algorithm described above is an improvement to the algorithm used
by Zhao [Zha97]. The main difference is in the subsequent mapping process.
The algorithm above only calculates the confidence region when the object
moves through a junction or does a manoeuvre, whereas the algorithm of
Zhao calculates it when traveling along a road segment as well.

7.4.4 Combined algorithms

7.4.4.1 Fuzzy logic

Fuzzy logic [Zad65] is similar to probabilistic logic in the sense that they both
use values between zero and one. Conceptually they are different: fuzzy logic
models a degree of truth, while probabilistic logic models likelihood. As an
example, consider “temperature.” Whether a certain temperature is consid-
ered as “warm” or “cold” is subjective, but this can be modelled using fuzzy
logic. Membership functions are used to determine the degree of membership
of an element in a set. Using the temperature example, f(25) = 0.8 would
mean that a temperature of 25 degrees has a 0.8 probability to be considered
warm. This is illustrated in Figure 7.23.

Algorithms for fuzzy logic are very similar to the weighted topological
algorithms. The main difference is that fuzzy definitions are used to calculate
a membership degree of a time-space point to a road segment, instead of
calculating a weight.

The first map matching algorithm using fuzzy logic was designed by Zhao
[Zha97] and it only matches the time-space points to a nearby road network
segment. Syed and Cannon [SC04] improve his approach by using more inputs
and matching the time-space point to a location on the road segment. Qud-
dus [Qud06] further improves this algorithm by using even more fuzzy inputs
and by also using connectivity information and the historical trajectory of the

7.4. Existing Map Matching algorithms 131

Figure 7.23: An example of fuzzy logic. The blue, orange and red graph are
membership functions for “cold”, “warm” and “hot”, respectively. At the
vertical line, the arrows indicate the probability a certain state has. In this
example, “cold” has a probability of 0.8, “warm” has a probability of 0.2 “hot”
has a probability of 0 (from [Wik]).

object.

This algorithm is very similar to Greenfelds (see Section 7.4.2.3). Only the
way the weight is calculated has to be changed to use fuzzy logic.

7.4.4.2 Extended Kalman filter

A Kalman filter [Kal60] is a mathematical method with the purpose to use
measurements that contain inaccuracies (for example, localisation with GPS-
device), to get a result that is closer to the true value. A Kalman filter is
recursive in the sense that it uses the value of the previous result in the current
calculation. It works by predicting a value, and estimating the uncertainty of
this predicted value. A Kalman filter uses a dynamic model of a system; inputs
to that model; and known measurements to create an estimate that is better
than an estimate that only uses one measurement. In every step of the filter,
a weight is used to determine which values are uncertain. These weights are
then used to make estimations.

In [QZON03], an extended Kalman filter is used to linearise a trajectory.
It can be continually updated with sample points if the algorithm is used in
real time. The inputs for the filter are derived from the sample points. This
particular algorithm also uses “Dead Reckoning” data as input for the filter.
Dead Reckoning uses the estimated speed and direction from the last point to
calculate the current point. A problem with this approach is that errors are
cumulative.

7.4.5 Algorithms for data with low sampling rate

The algorithms described until now require a high sampling rate to provide
meaningful results. Not all provided data will have a sufficiently high sampling

132 Introduction to map matching

Figure 7.24: The generation of the candidate points (from [LZZ+09]).

rate, hence the need for algorithms that can handle a low sampling rate.

7.4.5.1 ST-matching algorithm

In ST-matching [LZZ+09], the first step is generating candidate points. After-
wards, the algorithm uses spatial (using distance between a time-space point
and road segment) and temporal (using average speed between consecutive
points) analysis to give weights to each candidate point. Using these weights,
the path with the highest weight is selected.

Generating candidate points For each sample point Pi in the trajectory,
candidate points on the road segments within a certain radius of the point
are generated. An example of this can be seen in Figure 7.24. The candidate
points are chosen so that the distance between the road segment and time-
space point is minimal. The j-th road segment for time-space point Pi is
denoted as rji and the candidate point as cji .

Spatial Analysis Measurement probability, as defined in Section 7.4.2.1, is
also calculated here and instead of modeling noise with a zero-mean Gaussian
distribution, a normal distribution is used. Also, the transition probability is
calculated in the same as in Section 7.4.2.1.

To represent the likelihood that an object moves from cji to cki+1 (this
is called the spatial analysis function), the product of the measurement and
transition probability is used. For all consecutive GPS sample points Pi and
Pi+1, all candidate paths cji → cki+1 are generated, along with their likelihoods
that are derived from the spatial analysis function.

7.4. Existing Map Matching algorithms 133

Figure 7.25: The candidate graph G
′
T (V

′
T , E

′
T) with V

′
T the set of candidate

points for each GPS point, and E
′
T the set of edges, representing the shortest

path between two consecutive candidate points (from [LZZ+09]).

Temporal Analysis Spatial analysis does not take the speed of the object
into consideration. In some cases, this information is not enough, and we can
use temporal analysis to determine the location of the object. This is achieved
by using the average speed of the vehicle, and the maximum speed on the road
segments nearby. In this algorithm, the cosine distance is used to measure the
similarity between the average speed between two consecutive points, and the
speed constraint on the path. We call this the temporal analysis function.

Result matching The best matching path S for a trajectory T is selected
using the following expression:

S = arg max
Sc

F (Sc), ∀Sc ∈ G
′
T (V

′
T , E

′
T),

where Sc is a candidate path sequence and G
′
T (V

′
T , E

′
T) as defined in Fig-

ure 7.25. The quantity F is the product of the temporal analysis function and
the spatial analysis function.

8
An uncertainty-based map
matching algorithm

The previous chapter gives a broad overview of existing map matching algo-
rithms. In this chapter, we propose a novel map matching algorithm that
exploits the uncertainty caused by a moving object’s unknown location be-
tween sampled time-space points, by using background information, such as
speed limitations. We study the relation between map matching and uncer-
tainty, and propose an algorithm that combines weighted k-shortest paths with
space-time prisms.

8.1 Introduction

One particular model for the management of the uncertainty of the moving ob-
ject’s position in between sample points is provided by the space-time prism 1

model. In this model, it is assumed that besides the time-stamped locations of
the moving object also some background knowledge, in particular a (physically
or law imposed) speed limitation vi at location (xi, yi) is known. The space-
time prism between two consecutive sample points is defined as the collection
of time-space points where the moving objects may have passed, given the
(local) speed limitation. The chain of space-time prisms connecting consecu-
tive trajectory sample points is called a space-time prism chain [Ege03]. We

1Sometimes, the term bead is used for space-time prism and lifeline necklace for space-
time prism chain [Oth09].

135

136 An uncertainty-based map matching algorithm

p

t

x

y

q

Figure 8.1: A space-time prism and a space-time prism chain (from [Oth09]).

refer to Figure 8.1 for an illustration of a space-time prism and a space-time
prism chain in time-space space. Whereas space-time prisms were already con-
ceptually known in the time geography of Hägerstrand in the 1970s [Häg70],
they were introduced in the area of GIS by Pfoser [PJ99] and later studied by
Egenhofer and Hornsby [HE02, Ege03], and Miller [Mil05].

The main contribution of this chapter is a novel map matching algorithm
that uses a combination of techniques for handling uncertainty in trajectory
databases. More precisely, we propose to use space-time prisms in combination
with weighted k-shortest paths algorithms. In the next chapters, we discuss
experimental results using this novel algorithm in comparison with existing
algorithms (as discussed in the previous chapter). We use two real-world
cases. A first one contains very precise information, given at small interval
between measurements. Then, we apply the same methodology to a second
real-world case study, corresponding to trajectories of cars in the city of Milan,
recorded over the course of one week. Here, GPS coordinates are recorded at
irregular and less frequent intervals. This implies that data are more imprecise.
Another difference between the two cases is that in the first case, moving
objects have similar characteristics, while in the second case, we have cars,
trucks, buses, among the kinds of vehicles recorded. We compare not only
the results over these two cases, but we also compared our algorithm against
existing ones. We show that while the geometric algorithm performs rather
well in the case of precise data, when data become imprecise (like in the case of

8.2. Modeling uncertainty with space-time prisms 137

the Milan example) most of the trajectories cannot be reconstructed, while our
algorithm achieves a rate of above 90% of success in map-matched trajectory
reconstruction.

8.2 Modeling uncertainty with space-time prisms

Often, in practical applications, more is known about measured trajectories
than merely some sample points (ti, xi, yi). For instance, background knowl-
edge, like a physically or law imposed speed limitation vi at location (xi, yi),
might be available. Such a speed limitation might even depend on ti. For
instance, some streets might have different speed limits during the day and
the night; or during rush hours. The speed limits, that hold between two
consecutive sample points, can be used to model the uncertainty of a moving
object’s location between sample points. For modeling uncertainty, Pfoser et
al. [PJ99], and later Egenhofer et al. [Ege03, HE02], introduced the notion of
beads (that is, space-time prisms) in the moving object database literature.
Before, Wolfson used cylinders to model uncertainty [Wol02, GS05]. However,
cylinders give less precision (by a factor of 3, compared to space-time prisms).

Let S be a trajectory sample {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)}, with
t0 < t1 < · · · < tN . Basically, the cylinder approach to managing uncertainty,
depends on an uncertainty threshold value ε > 0 and gives a buffer of radius ε
around the linear interpolation trajectory LIT (S) of S (see Section 1.2.3). In
the space-time prism approach, for each pair (ti, xi, yi), (ti+1, xi+1, yi+1), with
0 ≤ i < N , in the sample S, their corresponding space-time prism does not
depend on a (universal) uncertainty threshold value ε > 0, but rather on a
maximal velocity value vi of the moving object between those two locations.

We now formalise the concepts above (the description in this section is
based on [Oth09], which contains more, detailed information on this topic).
We know that, given the speed limitation vi, at a time t, ti ≤ t ≤ ti+1, the
object’s distance to (xi, yi) is at most vi(t−ti) and its distance to (xi+1, yi+1) is
at most vi(ti+1− t). The spatial location of the object is therefore somewhere
in the intersection of the disc with center (xi, yi) and radius vi(t− ti) and the
disc with center (xi+1, yi+1) and radius vi(ti+1− t). The geometric location of
these points is referred to as a space-time prism, and defined as follows, for
arbitrary points p = (tp, xp, yp) and q = (tq, xq, yq) and speed limit vmax.

Definition 8.1. The space-time prism with origin p = (tp, xp, yp), destination
q = (tq, xq, yq), for tp ≤ tq, and maximal speed vmax ≥ 0 is the set of all points
(t, x, y) ∈ R×R2 that satisfy the following constraint formula:

ΨP(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := (x− xp)2 + (y − yp)2 ≤ (t− tp)2v2
max

∧ (x− xq)2 + (y − yq)2 ≤ (tq − t)2v2
max ∧ tp ≤ t ≤ tq.

138 An uncertainty-based map matching algorithm

(ti+1, xi+1, yi+1)

(ti, xi, yi) (ti, xi, yi)

(ti+1, xi+1, yi+1)

x

y

t

Figure 8.2: An example of a space-time prism P(ti, xi, yi, ti+1, xi+1, yi+1, vi) as
the intersection of an upward and a downward cone (from [Oth09]).

We denote this space-time prism by P(p, q, vmax) or P(tp, xp, yp, tq, xq, yq, vmax).

In the formula ΨP(t, x, y, tp, xp, yp, tq, xq, yq, vmax), we consider tp, xp, yp,
tqxq, yq, vmax to be parameters, whereas t, x, y are considered (free) variables
defining a subset of the time-space space R×R2.

Figure 8.2 illustrates the notion of a space-time prism, as the intersection of
an upward and a downward cone, in time-space space. A space-time prism can
be seen as an envelope which includes all time-space points that the moving
object could have visited between the two sample points, given the speed
limitation.

For or a trajectory sample S = {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)}, the
chain of space-time prisms, connecting succeeding trajectory sample points is
the set

⋃N−1
i=0 P(ti, xi, yi, ti+1, xi+1, yi+1, vi) and is called the space-time prism

chain of S.

8.3 Using space-time prisms for map matching

In Section 1.2.3, we discussed linear interpolation as a method for reconstruct-
ing trajectories from trajectory samples. However, linear interpolation relies
on the assumption that between two consecutive points, the object moves at
a constant (minimal) speed. A more realistic assumption would be that the
object moves within a bounded speed limitation, which leads to the space-
time prisms uncertainty model (Section 8.2). For example, given the time
between two consecutive recorded points, and a maximal speed, a moving ob-
ject (for instance, a car) could have been in many possible locations, given
by the projection of the space-time prisms over the plane. The projection of
a space-time prisms on the two-dimensional spatial component of time-space
space is an ellipse with focal points (xi, yi) and (xi+1, yi+1) and semi-major

8.3. Using space-time prisms for map matching 139

axis vi(ti+1−ti)
2 . However, for simplicity, we compute a bounding box of this

ellipse (with respect to the x- and y-axes).
The following sections describe how this bounding box of the projection

of a space-time prism can be determined and how it can be used in practice,
respectively.

8.3.1 Computation of the projection of a space-time prism and
its bounding box

First, we define what we mean by the bounding box of the ellipse that is the
spatial projection of a space-time prism.

Definition 8.2. We define the bounding box of an ellipse in the plane, to be
the smallest rectangle, with sides parallel to the x- and y-axes, that encloses
the ellipse.

Alternatively, we could say that the bounding box of an ellipse is (the
border of) the rectangle that is the Cartesian product of the projection of the
ellipse on the x-axis with the projection of the ellipse on the y-axis.

The theorem in this section shows how the bounding box of an ellipse in
the plane can be determined, given the focal points (x1, y1) and (x2, y2) of the
ellipse and the semi-major axis L > 0 of the ellipse. We remark that the major
axis, 2L, expresses twice the longest distance from the centre of the ellipse to a
point on the ellipse. Loosely, we will also use the terms major axis and minor
axis (see below) to indicate the actual lines that carry these lengths.

In this theorem, we call the x-values of the left and right vertical sides
of the bounding box X1 and X2 and the y-values of the lower and upper
horizontal sides of the bounding box Y1 and Y2. So, the bounding box of the
ellipse is (the border of) the set

[X1, X2]× [Y1, Y2].

Figure 8.3 gives an illustration of an ellipse and its bounding box.
To contain the length of expressions, we introduce some abbreviations.

The centre of the ellipse is the point

(xc, yc) = (
x1 + x2

2
,
y1 + y2

2
).

The distance between the foci is abbreviated by df , that is

df =
√

(x1 − x2)2 + (y1 − y2)2.

The semi-minor axis of the ellipse is denoted by `. Therefor, 2` is the length
of the minor axis of the ellipse.

140 An uncertainty-based map matching algorithm

(x1, y1)

(x2, y2)

L`

Figure 8.3: An ellipse with focal points (x1, y1) and (x2, y2), semi-major axis
L and semi-minor axis ` (in red). Its bounding box is shown in blue.

To determine `, we look at Figure 8.4, where a and b are points on the
intersection of the ellipse with its major and minor axis, respectively. If we
think of the rope-drawing construction of the ellipse, then we can see that

df + d((x1, y1), a) + d((x2, y2), a) = df + d((x1, y1), b) + d((x2, y2), b),

since both the left and the right side in this equality equal the length of
the rope, needed to draw the ellipse. We also know that d((x1, y1), a) +
d((x2, y2), a) = 2L, the length of the major axis.

Furthermore, we know that d((x1, y1), b) = d((x2, y2), b) = H, since we
have an equilateral triangle, if we call H the length of the line segment con-
necting a focal point with b (that is, the length of the hypotenuse of the
triangle formed by a focal point, the centre of the ellipse and b). So, we get
df + 2L = df + 2H or L = H. Pythagoras’ theorem, applied to the triangle
formed by the centre of the ellipse, the focal point (x1, y1) and the point b,

then gives H2 = (
df
2)2 + `2. Since L = H, we obtain

` =
1

2

√
4L2 − d2

f .

Finally, if x1 6= x2, we abbreviate the slope of the line connecting (x1, y1)
and (x2, y2) by s, that is

s =
y1 − y2

x1 − x2
.

8.3. Using space-time prisms for map matching 141

L`

H

a
b

(x1, y1)

(x2, y2)

Figure 8.4: An ellipse with focal points (x1, y1) and (x2, y2), semi-major axis
L and semi-minor axis ` (in red) and points a and b on the major and minor
axis, respectively. The length H of the line segment connecting a focal point
with b is indicated in blue.

The goal of the following theorem and its main contribution is to give an
explicit description of the bounding box of an ellipse in the plane, given the
focal points (x1, y1) and (x2, y2) of the ellipse and the semi-major axis L > 0
of the ellipse. Since the axes of the ellipse are not necessarily parallel to the
coordinate axes, we also derive a formula that describes the ellipse (since in
textbooks such formulas are generally only given for “standard” ellipses).

Theorem 8.3. Let (x1, y1) and (x2, y2) be points in R2 and let L > 0 be a
real number. The equation of the ellipse with foci (x1, y1) and (x2, y2) and
semi-major axis L and its bounding box are given by the following expressions:

• If (x1, y1) = (x2, y2), then

(x− xc)2 + (y − yc)2 = L2

is the equation of the ellipse and the bounding box is given by X1 = xc−L,
X2 = xc + L, Y1 = yc − L and Y2 = yc + L;

• If x1 = x2 and y1 6= y2, then

(x− xc)2

`2
+

(y − yc)2

L2
= 1

142 An uncertainty-based map matching algorithm

is the equation of the ellipse and the bounding box is given by X1 = xc−`,
X2 = xc + `, Y1 = yc − L and Y2 = yc + L;

• If x1 6= x2 and y1 = y2, then

(x− xc)2

L2
+

(y − yc)2

`2
= 1

is the equation of the ellipse and the bounding box is given by X1 = xc−L,
X2 = xc + L, Y1 = yc − ` and Y2 = yc + `;

• If x1 6= x2 and y1 6= y2, then

(y − yc − s(x− xc))2

`2
+

(s(y − yc) + (x− xc))2

L2
= (1 + s2)

is the equation of the ellipse and the bounding box is given by

• X1 = xc −
√

s2`2+L2

1+s2
,

• X2 = xc +
√

s2`2+L2

1+s2
,

• Y1 = yc −
√

s2L2+`2

1+s2
, and

• Y2 = yc +
√

s2L2+`2

1+s2
.

Proof. Let (x1, y1) and (x2, y2) be points in R2 and let L > 0 be a real number.
In each of the four cases of the theorem, we first want to find the equation
of the ellipse with foci (x1, y1) and (x2, y2) and semi-major axis L and then
determine its projections on the x- and the y-axis.

The first three cases are trivial (high-school geometry). Only the forth
case requires some work. We remark that Case 3 coincides with Case 4 for
s = 0.

Case 1. We assume (x1, y1) = (x2, y2). In this case the ellipse is a circle with
centre (xc, yc) = (x1, y1) = (x2, y2) and radius L. It is given by the equation

(x− xc)2 + (y − yc)2 = L2.

The bounding box of this circle is determined by X1, X2 = xc±L and Y1, Y2 =
yc ± L.

8.3. Using space-time prisms for map matching 143

Case 2. We assume x1 = x2 and y1 6= y2. In this case we have an ellipse
where the major axisis in the direction of the y-axis and the minor axis is in
the direction of the x-axis. The equation of this ellipse is

(x− xc)2

`2
+

(y − yc)2

L2
= 1.

The bounding box of this circle is determined by X1, X2 = xc± ` and Y1, Y2 =
yc ± L.

Case 3. We assume x1 6= x2 and y1 = y2. In this case we have an ellipse
where the major axis points in the direction of the x-axis and the short axis
points in the direction of the y-axis. The equation of this ellipse is

(x− xc)2

L2
+

(y − yc)2

`2
= 1.

The bounding box of this circle is determined by X1, X2 = xc±L and Y1, Y2 =
yc ± `.

Case 4. We assume x1 6= x2 and y1 6= y2. So, for the slope s, we have s 6= 0.
The line “F” connecting the foci (x1, y1) and (x2, y2) has equation F (x, y) =

0, where

F (x, y) = y − yc −
y1 − y2

x1 − x2
(x− xc) = y − yc − s(x− xc).

The line “P”, perpendicular to F and through (xc, yc) has equation P (x, y) =
0, where

P (x, y) =
y1 − y2

x1 − x2
(y − yc) + (x− xc) = s(y − yc) + (x− xc).

The ellipse with foci (x1, y1) and (x2, y2) and semi-major axis L, then has

equation E(x, y) = 0, with E(x, y) = F (x,y)2

A2 + P (x,y)2

B2 − 1 or

E(x, y) =
(y − yc − s(x− xc))2

A2
+

(s(y − yc) + (x− xc))2

B2
− 1,

with A,B > 0.
We find B by requiring that the two intersection points of the ellipse with

the major axis are at distance 2L from each other. These intersection points
are the solutions of the system of equations E(x, y) = 0 ∧ F (x, y) = 0. From
F (x, y) = 0, we get y−yc = s(x−xc). If we use this equality in E(x, y) = 0, we
get (1 + s2)2(x− xc)2 = B2, or x = xc ± B

1+s2
for the x-coordinates of the two

intersection points. The corresponding y-coordinates are y = yc ± sB
1+s2

. If we

144 An uncertainty-based map matching algorithm

set the distance between the points (xc− B
1+s2

, yc− sB
1+s2

) and (xc + B
1+s2

, yc +
sB

1+s2
) to 2L, we obtain B2 = L2(1 + s2).

Similarly, we find A by requiring that the solutions of the system E(x, y) =
0 ∧ P (x, y) = 0 are 2` apart. If we set the distance between the points (xc −
sA

1+s2
, yc + A

1+s2
) and (xc + sA

1+s2
, yc − A

1+s2
) to 2`, we obtain A2 = `2(1 + s2).{

A2 = `2(1 + s2)
B2 = L2(1 + s2), and

Therefor, the equation of the ellipse with foci (x1, y1) and (x2, y2) and
semi-major axis L is given by the equation E(x, y) = 0, where

E(x, y) =
(y − yc − s(x− xc))2

`2
+

(s(y − yc) + (x− xc))2

L2
− (1 + s2).

To determine the bounding box of this ellipse, we consider the vector(
∂E

∂x
,
∂E

∂y

)
,

which for a point (x0, y0) on the ellipse (that is, for which E(x0, y0) = 0), gives
the direction perpendicular on the ellipse, when evaluated in (x0, y0).

When we set ∂E
∂x = 0, this perpendicular is in the direction of the y-axis.

The equation ∂E
∂x = 0 is

s(y − yc)(`2 − L2) + (x− xc)(s2L2 + `2) = 0

or

x− xc =
s(L2 − `2)

s2L2 + `2
(y − yc),

which determines a line which intersects the ellipse in the two points. When
we substitute x−xc from the equation of this line in the equation of the ellipse,
we obtain the lower and upper bounds of the bounding box:

Y1 = yc −
√
s2L2 + `2

1 + s2
,

and

Y2 = yc +

√
s2L2 + `2

1 + s2
.

When we set ∂E
∂y = 0, the perpendicular to the ellipse is in the direction of

the x-axis. The equation ∂E
∂y = 0 is

(y − yc)(L2 + s2`2) + (x− xc)s(`2 − L2) = 0

8.3. Using space-time prisms for map matching 145

or

y − yc =
s(L2 − `2)

s2`2 + L2
(x− xc),

which determines a line which intersects the ellipse in the two points. When
we substitute y−yc from the equation of this line in the equation of the ellipse,
we obtain the left and right bounds of the bounding box:

X1 = xc −
√
s2`2 + L2

1 + s2
,

and

X2 = xc +

√
s2`2 + L2

1 + s2
.

This completes the proof.

8.3.2 Using bounding boxes of the projection of the space-time
prisms in map matching

Now, we give two examples of how the bounding box of the projection of the
space-time prism can help to limit the number of road segments that have
to be considered in the map matching process. But first, we explain how we
model road networks.

Definition 8.4. A road network RN is a graph embedding in R2 of a labeled
(directed) graph given by a finite set of vertices V = {(xi, yi) ∈ R2 | i =
1, . . . , N} and a set of edges E ⊆ V × V that are labeled by a speed limit.
Vertices are embedded in R2 by the points that have their coordinates and
edges are embedded as straight line segments between the embedded vertices.2

These straight line segments are called road segment.

Figure 8.5 shows the bounding box of a space-time prism projection com-
puted for two points A and B, that are 13 meters apart. The (projection of
the) space-time prism is extremely large in this case, because the traveling
distance from A to B is 35 seconds (possibly due to a traffic light stop). The
projection of the space-time prism represents the region where the car could
have been when it would travel for 35 seconds at a maximum speed of 120
km/h. This results in a huge bounding box of the projection of a space-time
prism that contains many streets. On the other hand, Figure 8.6 shows the
projection of a space-time prism for two points A and B, which are 11 me-
ters apart, with a travel time of one second. Here, the bounding box of the
projection of the space-time prism includes only two road segments.

2These edge embeddings may intersect to model bridges and tunnels.

146 An uncertainty-based map matching algorithm

Figure 8.5: An example of the bounding box for two consecutive sample points
with a time gap of 35 seconds (from [Bam12])

These examples illustrate how the use of space-time prisms can limit the
number of streets or road segments that have to be considered in the map
matching process.

We remark that a simple approach to perform the further map matching
consists in using a geometric algorithm, as described in Section 7.4.1. In spite
of its simplicity, which makes it very (computationally) efficient, this method
has some drawbacks, given the characteristics of real-world data discussed in
Section 7.2, which, as we see later in our experiments (Chapter 9), sometimes
prevent obtaining a matched trajectory (for instance, if there are large gaps
in the data). Thus, we need a more involved algorithm to overcome these
problems.

8.3.3 An algorithm for k-shortest path routing

Since our new algorithm uses k-shortest path routing, we start with explain-
ing this algorithm. The k-shortest path problem is a well-known problem in
networks. It does not only find the shortest path, but also k − 1 other paths
in order of increasing cost. Here, k is the number of shortest paths to found.
This problem can be adapted to find the k-shortest paths without loops or
with loops. For our purposes, we adapt Yen’s algorithm [Yen72] to rank the
k-shortest paths without loops.

8.3. Using space-time prisms for map matching 147

Figure 8.6: An example of the bounding box for two consecutive points with
a time gap of 1 second (from [Bam12])

The algorithm described in [Yen72], first computes a shortest path between
two vertices using the A∗-algorithm [HNR68]. Then, it takes the n-th vertex
in the shortest path, starting with n = 1, until n = k − 1, and calculates
a shortest path from the n-th vertex to the end vertex, called a spur path.
The path from the start vertex to the n-th vertex is called a root path. Two
restrictions are placed on a spur path of a vertex:

(1) It must not pass through any vertex on the root path of that vertex (to
ensure that the paths are loop-less); and

(2) It must not branch from the current vertex on any edge used by a pre-
viously found k-shortest path.

Item (2) means that the spur path cannot start with an edge that is already
in a previously found shortest path. For example, if we already have found
the shortest paths A → B → C → D and A → B → E → F → D and we
have A→ B as a current root path, then we cannot use the edges B → C or
B → E, because these would result in an already found path.

If a new spur path is found, it is appended to the root path for that vertex
to form a complete path from start to end vertex. We illustrate the working
of Yen’s algorithm [Yen72] in Example 8.5.

The complexity of the algorithm is O(N3), where N is the number of nodes
in the network. Calculating the spur paths from each vertex is O(N) and using

148 An uncertainty-based map matching algorithm

B

A

C G

D H

F

E

Figure 8.7: A road network for Example 8.5.

Dijkstra’s shortest-path algorithm [Dij59] O(N2 + |E|) with |E| the number
of road segment (edges). Also the A∗-algorithm has a O(N2) upper time
complexity bound. Since the time complexity for both Dijkstra’s algorithm
and the A∗-algorithm is O(N2) and we have, in the worst-case, to compute it
for all N vertices, we get that the complexity of the algorithm is O(N3).

Example 8.5. We consider the road network of Figure 8.7. We assume that
all road segments (arrows) are equally weighted. The problem consists in
finding the shortest path from A to D. It is clear that the shortest path is
A→ B → C → D, so we include this path in the result path. Now, we look for
other paths starting from the shortest one. We start with root path A, and look
for a path from A to D that is not already in the result list. The only possible
path, not including the edge from A to B, is A→ E → F → G→ H → D. We
add this path to the result list. Now, we start with A→ B as the new root
path and find A→ B → F → G→ H → D. These are all the possible paths
and the algorithm ends.

Why are we using a k-shortest algorithm? There are several special cases
of map matching inputs, which are difficult to handle just using a shortest
path algorithm. For example, Figure 8.8 depicts a moving object that has
followed the road indicated in thin lines (three sample points are shown).
Algorithms, based in shortest path algorithms, would likely chose the thick
line road (shown in red). We call this problem the triangle problem.

In the next section, we discuss how to solve this issue. What we actually
do is calculate for each edge a weight. Suppose, for instance, that weights 6, 5
and 6 are given to road segments 1, 2, and 3, respectively. We then calculate
for each k-shortest path, for k = 2 in this case, its total weight and select the
path with the largest weight. In this case, the path follows road segments 1
and 2.

8.3. Using space-time prisms for map matching 149

2

1

3

Figure 8.8: A problem with shortest path approaches.

8.3.4 Description of the space-time prisms map matching al-
gorithm

Now, we show how we can use the k-shortest path algorithm, and avoid, for
instance, problems like in Figure 8.8, by using the notion of space-time prisms
(introduced in Section 8.2) and by adding weights to the edges in the road
network. Additionally, using space-time prisms allows us to use data sets that
contain outliers, since the weight that the related edges receive is negligible.
Firstly, the algorithm computes the road segments closest to the recorded
space-time sample points, as follows. For each two consecutive time-space
points, we compute the bounding box of the projection of their space-time
prism, as explained in Section 8.3. Then, we give weights to the road segment.
Let m be the number of road segments that we want to give a weight to. We
give weights in a way such that the road segment closest to a given space-time
sample point gets weight m, the second closest road segment weight m − 1,
continuing until the m-th closest road segment, which receives weight 1. We
remark that only the road segments included in the bounded box are taken
into account, avoiding including roads that are very unlikely to have been
followed. So the number of road segment getting a weight can be less then n.

Then the k-shortest path are calculated, and for each path the total weight
is calculated. The path with the highest weight is selected as the map-matched
path.

Example 8.6. An example of the working of this algorithm, using as max-
imum weight 3, can be found in Table 8.1 and Figure 8.9. We describe the
working of our algorithm, assuming that the space-time prisms have already
been computed (that is, we know which edges are relevant). Starting from
point A, we assign a weight to each road segment according to the closeness to
this point. Therefore, road segment with id = 1 receives a score of 3, and the

150 An uncertainty-based map matching algorithm

Figure 8.9: The symbols A, ...,M represent sample points and the symbols
1, ..., 18 are identifiers of road segments.

road segments with id = 3 and id = 4 receive weights 2 and 1, respectively.
These weights can be found in the first column of Table 8.1. Thus, A will likely
be matched to road segment with id = 1. We continue in this way until all
points have been analysed and weights assigned. Table 8.1 shows the outcome
of the algorithm that gives the weights.

Suppose we calculate 2-shortest paths, then we get route 1 is 1 → 4 →
10 → 11 → 16 and route 2 is 1 → 3 → 5 → 10 → 11 → 16] Although route 2
has more edges, its total weight (44) is smaller than that of route 1 (46). We
can see that the outcome of our algorithm, route 1, indeed is the actual route
taken by the moving object.

In summary, our map matching algorithm proceeds as follows.

Summary of the algorithm

Step 1. First, the algorithm selects parts of the road network by calculating, for
each pair of consecutive points, which road segments the moving object
could have driven on (using the bounding boxes of the projections of
space-time prisms, as described in Section 8.3).

Step 2. Then, for each sample point, it computes the closest road segment, as
described in Section 8.3.4, and assigns scores to each road segment. A
score for a segment s is computed by adding up the weights of all the
segments that match s.

8.3. Using space-time prisms for map matching 151

Table 8.1: An example of the algorithm for the assignment of weights.

Id Init A B C D E F G H I J K L M
1 0 3 5 5 5 5 5 5 5 5 5 5 5 5
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 2 3 3 3 3 3 3 3 3 3 3 3 3
4 0 1 4 7 7 7 7 7 7 7 7 7 7 7
5 0 0 0 2 2 2 2 2 2 2 2 2 2 2
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 1 4 5 5 5 5 5 5 5 5 5
9 0 0 0 0 2 5 7 8 9 9 9 9 9 9
10 0 0 0 0 1 3 6 9 11 13 13 13 13 13
11 0 0 0 0 0 0 1 3 6 9 12 12 12 12
12 0 0 0 0 0 0 0 0 0 1 3 4 5 5
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 1 3 5 5
16 0 0 0 0 0 0 0 0 0 0 0 3 6 9
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Step 3. Finally, the algorithm computes, within this limited road network (as
determined in Step 1), the k-shortest paths, taking the shortest path
with the highest score computed in Step 2.

We end by listing some remarks on this algorithm.

If there are two paths, with the same weight, then the first path found in
the k-shortest paths algorithm is selected.

Figure 8.10: An example of an ambiguous trajectory start.

Sometimes, by simply adopting a starting and ending vertex from the road
segments closest to the first and last time-space point respectively, may not
result in a correct match. This is illustrated in Figure 8.10. Here, the road
segment closest to p1 would be R1, although the trajectory clearly follows R2.

152 An uncertainty-based map matching algorithm

The ending point will be matched to R2, eventually preventing finding a route
for this trajectory. To solve this problem, and taking into account that the
maximum measurement error is about 10 meters, the algorithm looks at all the
possible starting segments (instead of only one) within a circle with a radius
of 5 meters around the first time-space point, and selects all road segments
that intersect with this circle. The same procedure is followed for the end
segment. Then the algorithm looks for possible k-shortest paths between all
the possible start segments and end segments within these boundaries (that
is, the circles).

In Chapter 9, we will evaluate the above map matching algorithm against
the algorithms described is Section 7.4.

9
Experimental evaluation of
map matching algorithms

The goal of this chapter is twofold: we propose a novel method to measure
the accuracy of a map matching algorithm and we present a number of tests
of different map matching algorithms on a variety of trajectory sample data
sets.

Several map matching algorithms have been developed for trajectory sam-
ples with specific properties. We refer to Chapter 7 for an overview. To ac-
curately compare the performance of algorithms against each other, we need
several trajectory samples with different properties and characteristics. In
Section 9.1, we give an overview of possible properties of trajectory samples.
Ways to obtain these properties in data sets are described in Section 9.2. We
also discuss a number of existing methods to measure the accuracy of a map
matching algorithm. In Section 9.3.2, we propose a novel accuracy measure
that does not suffer from the drawbacks of existing methods.

We conclude this chapter with a number of tests of different map matching
algorithms on a variety of trajectory sample data sets. The aim is to figure
out which type of map matching algorithm works best on a certain type of
trajectory samples. We have implemented a number of existing map matching
algorithms and compare these algorithms with our own uncertainty-based map
matching algorithm, that we presented in Chapter 8.

153

154 Experimental evaluation of map matching algorithms

9.1 Data properties

We take following properties of trajectory samples into account to compare
map matching algorithms:

Sampling rate: The average number of time-space points per second of a
trajectory sample. We need to evaluate each map-matching algorithm
using trajectory samples with a variety of sampling rates.

Road length: The accuracy of an algorithm may vary for different road seg-
ment lengths. For instance, we may consider the average length of high-
ways versus the average length of roads in a city center.

Sampling errors: It is possible for measured trajectory sample points to
have an error that is as high as tens of meters. It is also possible that
there is noise in the sample (when the distance between two consecutive
time-space points is further apart than is physically possible). In order
to know how well the algorithm can handle these errors, we consider
different test sets.

Size of the route: The total length of a trajectory sample can impact the
algorithm accuracy. An incorrectly chosen road segment can cause big
errors in, for instance, incremental algorithms.

Road density: The amount of road segments per area of the map (for in-
stance, per square kilometer). When we compare a city center with a
highway, this difference can also be observed.

Now that we know the different parameters that describe the properties of
trajectory sample data, we next need appropriate testing data.

9.2 Sources of data

In this section, we give an overview of possibilities to generate trajectory
samples to test map matching algorithms.

9.2.1 Human labeled data

Using the time-space points measured during a trajectory of a moving person,
this person identifies her- or himself the road segment that each time-space
point resides on. So, actually this person does a manual map-matching that
can be consider as 100% correct. We consider the trajectory created in this
way to be the correct one.

9.3. Measure the quality of a map matching algorithm 155

9.2.2 Computer generated data

To accurately compare algorithms against each other, we need lots of trajec-
tory samples, especially, since we need trajectory samples with a variety of
properties. To generate all this trajectory samples, using the human labeled
method would be ideal, but it would take too much time. Therefore, there are
methods to automatically generate these trajectory samples.

One way of generating trajectory data is using an existing road network,
and randomly selecting 2 nodes in this network. By using a k-shortest path
algorithm, k paths are generated. From this collection of paths, one is ran-
domly selected. This path is chosen as a real trajectory produced by a moving
object.

The generation of a trajectory sample is done by generating points close to
the road segment (within a certain distance). How many points are generated
is based on the preferred sampling rate.

In our implementation, we have included an algorithm that generates tra-
jectory samples as described in this section.

9.2.3 Unknown source data

In case the actual trajectory followed for a trajectory sample is not known, it
is very hard to produce a “correct” matching. Since, to evaluate one particular
map matching algorithm, we need a “correct” matching, one way would be to
generate the correct labeling using another map matching algorithm. Since
the accuracy of this second algorithm is also not known, the results obtained
from comparing the first to the second algorithm may be inaccurate and have
limited meaning.

9.3 Methods to measure the quality of a map match-
ing algorithm

There are multiple ways to measure the correctness or accurateness of a map
matching algorithm on a given trajectory sample. We list the most important
ones below.

Accuracy by length: [LZZ+09] This method uses the total length of the
correctly matched road segments. A benefit of this method is that this
accuracy measure is directly related to the length of roads correctly
matched. Because of this, a long road (or big error) is more important
than a small road (or small error). Accuracy by length is calculated by
the following expression:

156 Experimental evaluation of map matching algorithms

total length of correctly matched road segments

total length of the matched trajectory
.

Accuracy by number: [LZZ+09] This method uses the number of correctly
matched road segments. A downside of this method is that a mismatch
of a long road segment is treated the same as the mismatch of a short
road segment. This method is beneficial when the amount of correctly
matched segments is more important than the correctly matched length.
For instance, an algorithm with high accuracy by number will be a good
algorithm to apply to a city center. Accuracy by number is calculated
by the following expression:

number of correctly matched road segments

number of road segments in matched trajectory
.

A possible alternative to this would be to generalise the road network
(as we did for double-cross descriptions of polylines — see Chapter 4),
making each segment roughly the same size.

Accuracy by length minus erroneous road: [WBK00] This method uses
the total length of the erroneously added and removed road segments.
It has the same benefits as accuracy by length. The main difference is
that incorrectly added road segments have a bigger penalty here. It is
calculated as shown in Figure 9.1. In this figure, d− is the total length of
erroneously subtracted road segments (from the correct trajectory) and
d+ is the total length of erroneously added road segments (compared to
the correct trajectory).

Since this in itself does not give us an idea of how accurate the calculated
trajectory is, we combine this with accuracy by length. This gives us
the following formula for accuracy by length minus erroneous road : we
take the value

length of correctly matched road segments− d− − d+

total length of the matched trajectory
,

if this value is positive and we take 0, otherwise.

Weak, average and strong Fréchet distance: [BPSW05] This method uses
the Fréschet distance measure(s) between two curves. It is calculated as
explained in Section 7.4.2.5. The average Fréchet distance is the average
of the weak and strong Fréchet distance. A benefit of using the Fréchet
distance method is that we look at the curve itself, instead of at the

9.3. Measure the quality of a map matching algorithm 157

Figure 9.1: Calculation of the error using the length of erroneous road method.
(From Bernstein and Kornhauser (2000) [WBK00]).

road segments. A matched trajectory might have a low accuracy with
the other measures, but can still be very close to the actual path. Us-
ing this distance method allows us to calculate how close these paths
are from each other. A downside of this method is that we can get a
high accuracy rating for a path that does not have any road segment in
common with the original path (for instance, a parallel path).

9.3.1 Flaws in measuring accuracy

The above listed methods to measure the quality of a map matching algorithm
might seem to provide an accurate way to measure the correctness of a matched
trajectory, but each of them has one or more flaws which may cause them to
give an incorrect score in certain cases. In this section, we discuss these flaws.

In Figure 9.2, an example is given. The road network is colored purple
and the correct trajectory is colored blue. The selected road segments for
the time-space points (the dots) are colored yellow. In the map matching
algorithm used to generate the matched trajectory, incorrect road segments
are selected. The road segments, that were selected, are parallel to the actual
trajectory The accuracy by length, accuracy by number, as well as the length
of erroneous road quality measures give no score to segments that are parallel
to the correct path, or even penalize those segments. This causes matched
trajectories that are parallel to the correct trajectory, but still very close to
it, to (incorrectly, in some sense) get a too low accuracy. Quality measures
that use the curve distance between the correct trajectory and the matched
trajectory (for example, the Fréchet distance) are able to handle this case more
adequately, since they do not look at which exact road segment was matched.

158 Experimental evaluation of map matching algorithms

Figure 9.2: A matched trajectory which is parallel to the correct trajectory.

Figure 9.3: A matched trajectory where too many segments are selected.

On the other hand, quality measures using curve distance have a different
flaw. This is illustrated by the example shown in Figure 9.3. The road network
is colored purple. The selected road segments for the time-space points are
colored yellow. The map matching algorithm, used to generate the matched
trajectory, selects too many segments. In addition to each correct segment, a
parallel segment is incorrectly selected. This causes the matched trajectory to
be twice as long as the correct one. Quality measures using curve distance to
measure the accuracy would give this trajectory a very good score, since each
selected segment is either on the correct curve, or very close to it. However,
this is inaccurate, due to the big amount of incorrectly selected road segments.

9.3. Measure the quality of a map matching algorithm 159

9.3.2 A new accuracy measure: CL-accuracy

In order to accurately measure the correctness of an algorithm, we propose
another quality measure that is able to handle the flaws mentioned in Sec-
tion 9.3.1. We do this by combining the strengths of the curve distance mea-
sure with the strengths of the other measures. This is possible by calculating a
curve distance between the correct and the matched trajectory, and afterwards
taking the lengths of both trajectories into account. This new method to mea-
sure accuracy is named CL-accuracy, standing for Curve-and-Length-accuracy,
as it combines both these measures.

We calculate a score for each selected segment, which is between 0 and 100.
This score is calculated by calculating the distance to the closest segment on
the correct trajectory. This score is the Euclidean distance (in meters) between
these two segments (with a maximum of 100 meters). We take a hard coded
limit of 100 meter based on the accuracy of GPS devices nowadays. If a time-
space point is more then 100 meter away, it almost certainly is an outlier.

The total score for the matched trajectory is calculated by adding up all
the segment scores and then using the following formula:

score =
maxScore− score

maxScore
.

The quantity maxScore in the above formula is the maximum score possible
for the matched trajectory (which is 100 times the number of segments). Using
this formula, we have calculated a score for the curve distance between the
correct and matched trajectory. A score of 100% means each segment of the
matched trajectory is on the correct trajectory. A score of 0% means each
segment is 100 meters or more away from the correct trajectory. The closer
the matched trajectory is to the correct trajectory, the higher the score.

After calculating a score for the curve distance, we still need to take the
length of both trajectories into account. We do this by multiplying this score
with the length of the smallest trajectory divided by the length of the largest
one. If O is the original trajectory and M its map matched version, then O can
be longer or shorter than M (depending on the algorithm that is used). We
want to obtain a similarity measure between the values 0% and 100%. So, we
cannot just use |O||M | . So, if |O| > |M |, we use |M ||O| instead. As a consequence,

if, for instance, M is 10% longer than O, this is penalised in exactly the same
way as if O is 10% longer than M .

By doing this, a matched trajectory that is twice as long as the correct
trajectory only gets half the score.

160 Experimental evaluation of map matching algorithms

9.4 Overview of the experimental evaluation of map
matching algorithms

In the remainder of this chapter, we present a number of tests of different map
matching algorithms on a variety of trajectory sample data sets. The aim is
to figure out which type of map matching algorithm works best on a certain
type of trajectory samples. We have implemented a number of existing map
matching algorithms and compare these algorithms with our own uncertainty-
based map matching algorithm, that we presented in Chapter 8.

We have selected algorithms from each category discussed in Section 7.4,
in order to compare our own approach to representatives of each category.

The algorithms that we selected for the geometric analysis category are

• the curve-to-point algorithm; and

• the curve-to-curve algorithm,

but we have made a few changes in them. In the geometric analysis algo-
rithms we have implemented, we use Dijkstra’s algorithm when two consecu-
tive matched segments are not connected. This ensures there are no gaps in
the calculated trajectory.

We have selected the

• Greenfeld algorithm

for topological analysis category, since this was one of the first algorithms of
its kind, and many other algorithms resemble this method (using an initial
mapping and sequential mapping subroutine).

For the probabilistic category, we have implemented

• the algorithm by Ochieng, Quddus and Noland.

For the low sampling rate category, we have implemented

• ST-matching algorithm.

Off course, we have also implemented our

• space-time prisms combined with k-shortest-paths algorithm,

as described in Chapter 8. In the experiments we use as maximum weight
m = 50.

In Section 9.5, we show test of these algorithms on trajectory samples
generated by a GPS-equipped device. After this, in Section 9.6, we show test
of these algorithms on computer generated trajectory samples. Finally, in
Section 9.7, we combine all these results and formulate a conclusion on the
discussed map matching algorithms. All tests in this chapter are run on a
Macbook with 2.16 GHz Intel Core 2 Duo processor and 1 GB RAM.

9.5. Tests on human labeled data 161

9.5 Tests on human labeled data

For the tests on human labeled data, we work with trajectory samples gener-
ated by a GPS-equipped device, that are manually labeled (that is, consistent
with the sample). In these data, timestamps, speed and heading information
were included.

9.5.1 Data from the police force of Ghent

The data used for this test are trajectory samples originating from the police
force of Ghent. The trajectory samples were located in the city it self and
collected by intervention cars of the police. In Figure 9.4 and Figure 9.5, two
trajectory samples of this data set are shown.

Figure 9.4: The time-space points of trajectory sample 1 in blue and the
human labeled trajectory in red.

Both samples contains around 400 time-space points and are about 4 km
long. They also contain a couple data gaps, which are usually caused by driving
through tunnels (where GPS reception is absent). The results on these two
test samples are shown in Figure 9.6 and Figure 9.7. In Figure 9.8, we show
the average result on twenty trajectory samples from the police force of Gent.
An overview of average running times in seconds is given in Table 9.1.

162 Experimental evaluation of map matching algorithms

Figure 9.5: The time-space points of trajectory sample 2 in blue and the
human labeled trajectory in red.

Figure 9.6: Results of the map matching algorithms on trajectory sample 1 of
the Ghent police data set.

9.5. Tests on human labeled data 163

Figure 9.7: Results of the map matching algorithms on trajectory sample 2 of
the Ghent police data set.

Figure 9.8: Average results of the map matching algorithms on 20 trajectory
samples of the Ghent police data set.

164 Experimental evaluation of map matching algorithms

Algorithm Sample 1 Sample 2 Average on
20 Samples

Point-to- point 12,941 14,827 7,7725

Point-to- curve 10,174 10,828 6,99015

Greenfeld 1,544 1,454 1,68845

Space-time prisms 9,890 9,454 6,015
with k-shortest- paths

Ochieng, Quddus and Noland 3,861 6,789 7,21515

ST- matching 126,005 220,798 76,12535

Table 9.1: Average running time in seconds of the map matching algorithms
on the three test cases from the date set of the police force of Ghent.

9.5.2 Conclusions for human labeled data

The measures accuracy by length, accuracy by number and length of erro-
neous road, quality measures that do not take into account if a parallel road
is being chosen, proved to not always be a good choice to show how accu-
rate a trajectory sample is. For example, Greenfeld’s algorithm on Sample
2 (see Figure 9.7) has low scores for these quality measures, while being rel-
atively close to the correct trajectory, as shown by the curve distance and
CL-accuracy. On the other side, the curve distance measure in Figure 9.6,
gives a high score on the point-to-point and point-to-curve algorithms which
choose too many segments, resulting in a trajectory that has a close curve
distance to the actual trajectory, but has bad scores in every other measure.
At a first glance, geometric analysis algorithms performs the worst of all al-
gorithms. This makes sense, since they do not look at anything else but the
location of the time-space point. Information about where previous points are
matched, or how the road network is connected, are all ignored.

The other types of algorithms all seem to perform decently in the average
case scenario. In the average case, our space-time prisms combined with k-
shortest-paths algorithm appears to perform best. In Section 9.6, we discuss
tests of these algorithms for many different test cases to figure out which
algorithm works best in which scenario.

The running times of each of the tested algorithms lie closely together. All
of these algorithms are able to be run in real-time on a route planner. The ex-
ception to this is the ST-matching algorithm, which cannot be run in real-time
if the sampling rate is too high. This is due to the fact that the ST-matching
algorithm is specifically designed to run on data with a low sampling rate.
Something that might seem counter-intuitive is that the geometric analysis
algorithms perform slower than most of the other algorithms. This is due to a

9.6. Tests on computer generated data 165

modification we have done in these algorithms. In our implementation of the
geometric analysis algorithms, we use Dijkstra’s shortest path algorithm when
two consecutive matched segments are not connected. This ensures there are
no gaps in the calculated trajectory. Without this change, these algorithms
would run substantially faster than they do now, but still give worse results.

9.6 Tests on computer generated data

In this section, we use data that are generated by our trajectory sample gener-
ator. Using this generator, we are able to create trajectory samples that have
one or more of the properties discussed in Section 9.1 (for instance, data with
a low sample rate). After running our implemented algorithms on these data,
we are able to determine which algorithm suits which situation best.

9.6.1 High sampling rate

In this section, we will focus on simulated trajectory samples having a high
sampling rate. This means that the time difference between two consecutive
time-space points is less then 10 seconds.

9.6.1.1 Simulated trajectory samples with no recording errors

For this test, we created trajectory samples with time-space points being
recorded every couple of seconds. The trajectory samples have lengths of
a few kilometers. In Figure 9.9, the results are shown for one trajectory that
contains 658 time-space points.

Figure 9.10 shows the average result on ten computer-generated trajecto-
ries.

As expected, none of the algorithms had any problem detecting the correct
path. The point-to-point algorithm selects too many segments, resulting in a
less than optimal score. Besides this algorithm, any other algorithm can be
said to be accurate enough to be used with this type of data.

9.6.1.2 Simulated trajectory samples with recording errors

For this test, we created trajectory samples with time-space points being
recorded with an interval between 3 to 10 seconds, with an error between
0 and 15 meters for each point. In Figure 9.11, the results are shown for one
trajectory that contained 631 time-space points, with an interval of 3 seconds
and an error between 0 to 10 meters.

Figure 9.12 shows the average test result on ten trajectories.

166 Experimental evaluation of map matching algorithms

Figure 9.9: Results of the map matching algorithms on one computer gener-
ated trajectory sample with no measurement errors.

Figure 9.10: Average results of the map matching algorithms on ten computer
generated trajectory samples with no measurement errors.

9.6. Tests on computer generated data 167

The algorithms using geometric analysis perform poorly, in this case. They
generate a lot of false positives, resulting in a poor score. The other types of
algorithms perform about equally on this type of data as on data without
errors, and generally have no problem handling these errors.

Figure 9.11: Results of the map matching algorithms on one computer gener-
ated trajectory sample with measurement errors.

9.6.1.3 Simulated trajectory samples with recording errors and
outliers

Data collected with a GPS-equipped device can not only contain measurement
errors, but also outliers. In Figure 9.13, the results are shown for a trajectory
sample containing 520 measurement, measured every 3 seconds. The measure-
ment error of each point varies between 0 and 10 meters. In this trajectory
sample, two outliers were created, 15 and 100 meters removed from any other
point in the trajectory sample.

Figure 9.14 shows the average result on 10 trajectory samples with a high
sampling rate (3-10 secs between time-space points), with measurement errors
(between 0 and 15 meters per point) and with outliers (1-3 outlier per dataset,
ranging from 10-250 meters away from the trajectory).

The geometric algorithms are not able to handle the outliers very well.
This is caused by calculating the shortest path between each two succeeding
points and adding this route to the calculated trajectory. Due to this, a lot of
road segments leading to the outliers are incorrectly added to the calculation,

168 Experimental evaluation of map matching algorithms

Figure 9.12: Average results of the map matching algorithms on ten computer
generated trajectory samples with measurement errors.

resulting in a poor score. The ST-matching algorithm has a similar method
of calculating the trajectory, and also has a poor score caused by this. The
other algorithms have no problems with the outliers, and are able to calculate
the trajectories nearly as well as without outliers. The space-time prisms with
k-shortest-paths algorithm performs very well in this case, and gets a perfect
score in the above test.

9.6.1.4 Simulated trajectory samples with measurement errors and
gaps

When passing through tunnels, there is no connection with GPS satellites
to calculate a moving object’s location. This causes gaps in the trajectory
samples. To test how well map matching algorithms are able to handle these
gaps, we have generated trajectory samples with gaps, to simulate passing
through tunnels.

Figure 9.15 shows the result on a trajectory sample containing 535 points,
measurement errors between 0 and 10 meters per point and 15 consecutive
missing points. We also generated 10 other trajectory samples with a high
sampling rate (3-10 secs between points), measurement errors (between 0 and
15 meters per point) and with gaps (1-3 gaps per sample, ranging from 50-200
meters in size). The average result of the map matching algorithm on those
samples is shown in Figure 9.16.

9.6. Tests on computer generated data 169

Figure 9.13: Results of the map matching algorithms on one computer gener-
ated trajectory sample with measurement errors and 2 outliers.

Figure 9.14: Average results of the map matching algorithms on 10 computer
generated trajectory samples with measurement errors and outliers.

170 Experimental evaluation of map matching algorithms

Figure 9.15: Results of the map matching algorithms on one computer gener-
ated trajectory sample with measurement errors and a gap.

Figure 9.16: Average results of the map matching algorithms on ten computer
generated trajectory samples with measurement errors and gaps.

9.6. Tests on computer generated data 171

Data containing gaps did not cause a problem to any of the algorithms.
The space-time prism with k-shortest-paths algorithm performed very well in
this case. The ST-matching algorithm also did very well in most cases, but was
unable to calculate a trajectory for two of the used data sets. The algorithm
by Ochieng, Quddus and Noland was also able to handle this type of data very
well.

9.6.1.5 Simulated trajectory samples on a highway with GPS er-
rors

For this test, we have simulated trajectory samples on a highway, instead of
near or in a town. On a highway, there are less possible road segments to
choose from. In Figure 9.17, the results are shown for a trajectory sample
of about 50 km long, containing 786 time-space points and a measurement
error between 0 and 10 meters. In Figure 9.18, we show the average results on
ten simulates trajectory samples with a high sampling rate (3-10 secs between
GPS points), with measurements errors (between 0 and 15 meters per point).

Figure 9.17: Results of the map matching algorithms on one computer gener-
ated trajectory simulating driving on a highway with measurement errors.

The poor score of most of the tested algorithms can be explained by the
algorithms often choosing parallel roads, combined with non-highway roads
near the highway. The actual trajectory or a parallel trajectory was selected
in each case, but due to selecting a lot of incorrect road segments, they still
got a poor score. The exceptions to this are the space-time prism with k-

172 Experimental evaluation of map matching algorithms

Figure 9.18: Average results of the map matching algorithms on ten computer
generated trajectories simulating driving on a highway with measurement er-
rors.

shortest-paths algorithm, which still worked fairly well, and the probabilistic
algorithm, which was able to handle data on highways very well.

9.6.1.6 Simulated trajectory samples on a long distance with mea-
surement errors

The data sets used in this section until now, only contained medium sized
trajectory samples. But since some of the implemented algorithms are in-
cremental, errors made in the beginning of the algorithm can cause a big
difference in the following calculations. Therefore, in this section, we use tra-
jectory samples containing several thousand of time-space points. The results
on one trajectory sample, and the average result on ten trajectory samples
with a high sampling rate (3-10 secs between time-space points), with mea-
surement errors (between 0 and 15 meters per point) and several times more
time-space points than other tested trajectories, are shown respectively shown
in Figure 9.19 and Figure 9.20.

We remark that the poor score of the probabilistic algorithms by Ochieng,
Quddus and Noland, as shown in Figure 9.19, is caused by calculating the score
as a product of the distance score WD with azimuth score WAZ

1. This results
in the algorithm getting stuck on selecting one specific road segment, since the

1see Section 7.4.2.3 for details on these scores

9.6. Tests on computer generated data 173

Figure 9.19: Results of the map matching algorithms on one long computer
generated trajectory with measurement errors.

Figure 9.20: Average results of the map matching algorithms on ten long
computer generated trajectories with measurement errors.

174 Experimental evaluation of map matching algorithms

alternative has a very poor score and is never selected. Due to this problem,
this algorithm does not progress further than this road segment. This causes
a bad score. In the other tests, no such problems were encountered.

The other algorithms do not encounter any additional problems with tra-
jectory samples of long length. They obtain scores similar to the ones for a
shorter trajectory.

9.6.2 Low sampling rate

In the previous section, we discussed trajectory samples where the time dif-
ference between two consecutive time-space points is less than 10 seconds. In
the following sections, we investigate what happens when the time difference
is much longer.

9.6.2.1 Simulated trajectory samples with no measurement errors

The trajectory samples used in this test follow the same trajectory as the ones
used in Section 9.6.1.1. In Figure 9.21, the results are shown for a trajectory
sample where time-space points were only generated every 60 seconds, instead
of every 3 seconds as in Figure 9.9. Further, we generated ten trajectories
with a low sampling rate (60-150 secs between consecutive time-space point)
and with no measurement errors. The results are shown in Figure 9.22.

Figure 9.21: Results of the map matching algorithms on one computer gener-
ated trajectory with low sampling rate and no measurement errors.

9.6. Tests on computer generated data 175

Figure 9.22: Average results of the map matching algorithms on ten computer
generated trajectories with low sampling rate and no measurement errors.

As expected, the algorithm specifically designed for map matching data
with low sampling rates score the best on this type of data. The geometric
analysis algorithms, as well as the space-time prism with k-shortest-paths
algorithm are able to handle data with low sampling rate as well in most
cases. However, when the sampling rate drops too low, the space-time prism
with k-shortest-paths algorithm fails to generate a path. This happens twice
in our tests.

Greenfeld’s algorithm and the probabilistic algorithm performed poorly on
data with a low sampling rate. Since these algorithms only pick a maximum of
one road segment per time-space point, not enough road segments are selected,
causing poor result.

9.6.2.2 Simulated trajectory samples with measurement errors

The trajectory samples used in this test have the same trajectory as in Sec-
tion 9.6.1.2. Figure 9.23 shows the results when time-space points are only
generated every 60 seconds, instead of every 3 seconds as in Figure 9.11, and
with measurement errors between 0 and 15 meters per point. To obtain Fig-
ure 9.24, we generate ten trajectory samples with a low sampling rate (60-150
secs between time-space points) and with measurement errors (between 0 and
15 meters per point).

Introducing errors in the data does not affect the results much. The

176 Experimental evaluation of map matching algorithms

Figure 9.23: Results of the map matching algorithms on one computer gener-
ated trajectory with low sampling rate and measurement errors.

Figure 9.24: Average results of the map matching algorithms on ten computer
generated trajectories with low sampling rate and measurement errors.

9.7. Conclusion on map matching algorithms 177

ST-matching algorithm, as well as the geometrical analysis algorithm, per-
forms very well on this type of data. Greenfeld’s algorithm, the space-time
prism with k-shortest-paths algorithm, and the probabilistic algorithm per-
form poorly, as explained in Section 9.6.2.1.

9.7 Conclusion on map matching algorithms

In this section, we recapitulate and aggregate the above results and briefly
discuss which algorithm suits which situation best. For a more detailed dis-
cussion of the results, we refer the reader to the previous sections in this
chapter, which go into deeper detail on each of the test.

Figure 9.25: Average of the results of the data show in Figure 9.8, 9.10, 9.12,
9.14, 9.16, 9.18, 9.20, 9.22 and 9.24

To get an overview, we show in Figure 9.25 the average matching errors
of all test on the dataset with multiple trajectory samples. In Figure 9.26, we
present the average running time per case and in the last column an overall
average.

In nearly every case, the geometric analysis algorithms (point-to-point and
point-to-curve) perform the worst. The only case where using this type of al-
gorithm is feasible is on devices with very lacking processing power. Since this
type of algorithm requires less calculations than the other types of algorithms,
they might be the only feasible ones in that case. In nearly any other case,
the other algorithms perform as well or better than the geometric analysis
algorithms.

The topological analysis algorithms, that we implemented, specifically
space-time prism with k-shortest-paths algorithm, perform the best on av-

178 Experimental evaluation of map matching algorithms

Figure 9.26: Average running times in seconds of the results of the data show in
Figure 9.8, 9.10, 9.12, 9.14, 9.16, 9.18, 9.20, 9.22 and 9.24, where for visibility
we cut the orange line at 80sec. where the running time was more then 200sec.

9.7. Conclusion on map matching algorithms 179

erage. It proves to work well in nearly any case, given a sufficiently high
enough sampling rate. The only case where this algorithm might not perform
well is when there are a lot of outliers in the data, or if the sampling rate is too
low. Due to the way the algorithm calculates the path, outliers cause small
hiccups in the calculation, which causes the algorithm to slow down a lot when
encountering an outlier. In regular, everyday use, the space-time prism with
k-shortest-paths algorithm seems to work best.

The probabilistic algorithms by Ochieng, Quddus and Noland also per-
formed well in nearly every test case. The algorithm we implemented per-
formed decently in most test cases, but had problems with long trajectories
or trajectories with a low sampling rate. Its use should be avoided in these
cases. It performed substantially better than the other algorithms when the
data are located on a highway.

The ST-matching algorithm, an algorithm specifically created for data
with a low sampling rate, had varying results on data with a high sampling
rate. Due to these varying results, and the long run-time required to run this
algorithm, it should be avoided for use on data with a high sampling rate.
When encountering data with a low sampling rate however, the algorithm
proves to calculate a very close match to the trajectory with a short running
time.

Discussion

In the various chapters of this thesis, we already mention a number of open
problems and directions for future research. This chapter adds some general
comments to these previous observations.

The topic of this thesis is motivated by the abundance of spatio-temporal
data that is collected nowadays. In particular, the presented research builds
on trajectory data of moving objects, that is collected using GPS-equipped de-
vices. In some particular areas, this data comes from moving animals that are
typically unconstrained by physical, man-made networks for their movement.
In the majority of cases, GPS-based data concerns humans. In average day
situations, humans tend to move in constrained spaces, for example, on road
networks.

The second part of this thesis concerns map matching, which is a pre-
liminary step in the process of spatio-temporal and trajectory data analysis.
Indeed, map-matching algorithms “clean” the often erroneous GPS-measured
data by fitting it to the road network where human movement takes place.
Measurement errors and outliers in the GPS-recorded spatio-temporal data
points are corrected in this way and the data is ready for further analysis. In
general, movement data hides a wealth of knowledge, which can be used, for
instance, to predict traffic jams or determine different types of movement be-
haviour. Further examples of trajectory data analysis are trajectory clustering
and predictive modeling by association rules.

A problem with trajectory data, even if it is already matched to a road
network, is that it is only recorded at discrete moments in time. If the record-
ing is frequent, the data may be readily usable. However, often, data is not
recorded frequently enough. Urban tunnels, where high city buildings block
satellite reception, are an example of a cause of missing or infrequent data.
We show that the use of uncertainty techniques (such as space-time prisms) to
cover unrecorded movement, is a valuable technique. Through experiments,
we show that the incorporation of uncertainty improves the performance and
accuracy of map-matching algorithms. The experimental results in Chapter 9

181

182 Discussion

show that, on average, our space-time prism with k-shortest-paths algorithm
can compete with the best map-matching algorithms. It even outperforms
geometric map-matching algorithms.

Historically seen, the area of map matching is driven by experimental re-
sults. In this area there exists an abundance of publications that prove the
superiority of some proposed algorithm over existing ones by experiments on
some ad hoc data set of recorded trajectory samples. A general benchmark
for the evaluation of map-matching algorithms is missing. In this field, there
is also no repository of existing implementations. To compare our space-time
prism with k-shortest-paths algorithm with existing map-matching techniques,
we have implemented these existing algorithms ourselves (probably missing
some optimalisations of other authors). The area of map matching is really
missing a flexible benchmarking system, in a wide sense.

As mentioned before, matching recorded GPS points to a map is a cleaning
step in the Knowledge Discovering and Delivery (KDD) process.

For some data mining techniques (like clustering), that are applied to this
cleaned trajectory data, the study and design of distance or similarity measures
on trajectory data is necessary. This brings us to the first part of this thesis.
There, we study double-cross similarity of polylines that are the traces of
trajectories. The main aim of this part is to gain insight in what double-cross
similarity of polylines really means in a geometric sense. Locally, the double-
cross formalism captures the turns made by a moving object. But its less clear
what its meaning is globally (over complete polylines).

We use the double-cross matrices of (generalized) polylines and their differ-
ences to design measures of dissimilarity between polylines. Our algorithms,
that are based on these dissimilarity measures, are guaranteed to terminate
(in quadratic time) and when applied in various settings, like query-by-sketch,
indexing and classification of terrain features, the experimental results prove
to be very satisfactory. However, general principles, that indicate that this
will always be the case, are still missing.

Another line of attack in our pursuit to gain understanding in double-cross
similarity of polylines is illustrated by the question what the set of polylines is
that have a given double-cross matrix. We approach this question algebraically
and geometrically (by the concept of local carrier order). For a restricted class
of polylines, namely polylines on a grid, this question is answerable. In this
setting, it is easy to produce many polylines that have the same double-cross
matrix as a given polyline and geometrically it is clear what double-cross
similarity means.

We also study a related question that is relevant for the integrity of data: is
a double-cross-like matrix realizable by a polyline in the plane? This problem
will probably never be solvable in practice, but if we restrict the angles that
can occur in a polyline to 90◦ or 45◦, we do obtain efficient solutions. There

183

are a number of open problems related to this question. Can this problem
be solved in practice for other restricted classes of polylines. We think of
polylines in which all line segments are of equal length or polylines that take
their angles from a wider class than the above.

Bibliography

[AAL+09] Divyakant Agrawal, Walid G. Aref, Chang-Tien Lu, Mo-
hamed F. Mokbel, Peter Scheuermann, Cyrus Shahabi, and
Ouri Wolfson (eds.), 17th ACM SIGSPATIAL International
Symposium on Advances in Geographic Information Systems,
ACM-GIS 2009, November 4-6, 2009, Seattle, Washington,
USA, Proceedings, ACM, 2009.

[AB94] Ilan Adler and Peter A. Beling, Polynomial algorithms for lin-
ear programming over the algebraic numbers, Algorithmica 12
(1994), no. 6, 436–457.

[AERW03] Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk,
Matching planar maps, SODA, ACM/SIAM, 2003, pp. 589–
598.

[Bam12] Kristof Bamps, Comparing study of map-matching algorithms,
Master’s thesis, Hasselt University, 2012, Masterthesis (Hasselt
University), Advisors: Bart Kuijpers and Bart Moelans.

[BK98] David Bernstein and Alain L. Kornhauser, An introduction to
map matching for personal navigation assistans, Tech. report,
Transportation Research Board, 1998.

[Boo86] Fred L. Bookstein, Size and shape spaces for landmark data in
two dimensions, Statistical Science 1 (1986), no. 2, 181–222.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Al-
gorithms in Real Algebraic Geometry, Algorithms and Compu-
tation in Mathematics, Springer-Verlag New York, Inc., 2006.

[BPSW05] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola
Wenk, On map-matching vehicle tracking data, VLDB (Kle-
mens Böhm, Christian S. Jensen, Laura M. Haas, Martin L.
Kersten, Per-Åke Larson, and Beng Chin Ooi, eds.), ACM,
2005, pp. 853–864.

185

186 BIBLIOGRAPHY

[Can88] John Canny, Some algebraic and geometric computations in
PSPACE, Proceedings of the Twentieth Annual ACM Sym-
posium on Theory of Computing (STOC 1988), ACM, 1988,
pp. 460–467.

[CLO97] David A. Cox, John Little, and Donal O’Shea, Ideals, varieties,
and algorithms - an introduction to computational algebraic ge-
ometry and commutative algebra (2. ed.), Undergraduate texts
in mathematics, Springer, 1997.

[Col75] George E. Collins, Hauptvortrag: Quantifier elimination for
real closed fields by cylindrical algebraic decomposition, Au-
tomata Theory and Formal Languages, 2nd GI Conference,
Kaiserslautern, May 20-23, 1975 (H. Barkhage, ed.), Lecture
Notes in Computer Science, vol. 33, Springer, 1975, pp. 134–
183.

[Dij59] Edsger W. Dijkstra, A note on two problems in connexion with
graphs, Numerische Mathematik 1 (1959), no. 1, 269–271.

[DM98] Ian L. Dryden and Kantilal Varichand Mardia, Statistical shape
analysis, Wiley series in probability and statistics, John Wiley
& Sons, Chichester, New York, 1998.

[DS97] Andreas Dolzmann and Thomas Sturm, Redlog: Computer al-
gebra meets computer logic, SIGSAM Bull. 31 (1997), no. 2,
2–9.

[dW04] Nico Van de Weghe, Representing and reasoning about moving
objects: A qualitative approach, Ph.D. thesis, Ghent University,
Faculty of Sciences, Department of Geography, 2004.

[dWKpBM05] Nico Van de Weghe, Bart Kuijpers, Peter Bogaert, and
Philippe De Maeyer, A qualitative trajectory calculus and the
composition of its relations, GeoS (M. Andrea Rodŕıguez, Is-
abel F. Cruz, Max J. Egenhofer, and Sergei Levashkin, eds.),
Lecture Notes in Computer Science, vol. 3799, Springer, 2005,
pp. 60–76.

[Edd04] Sean R. Eddy, What is a hidden Markov model?, Nature
Biotechnology 22 (2004), no. 10, 1315–1316.

[Ege03] Max J. Egenhofer, Approximation of geospatial lifelines,
SpadaGIS, Workshop on Spatial Data and Geographic Infor-
mation Systems (Elisa Bertino and Leila De Floriani, eds.),
University of Genova, 2003.

BIBLIOGRAPHY 187

[For90] Kenneth D. Forbus, Readings in qualitative reasoning about
physical systems, ch. Qualitative physics: past present and fu-
ture, pp. 11–39, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1990.

[Fre92] Christian Freksa, Using orientation information for qualita-
tive spatial reasoning, Spatio-Temporal Reasoning (Andrew U.
Frank, Irene Campari, and Ubaldo Formentini, eds.), Lecture
Notes in Computer Science, vol. 639, Springer, 1992, pp. 162–
178.

[Ger99] John S. Gero, Representation and reasoning about shapes: Cog-
nitive and computational studies in visual reasoning in de-
sign, Spatial Information Theory: Cognitive and Computa-
tional Foundations of Geographic Information Science, Interna-
tional Conference COSIT ’99, Stade, Germany, August 25-29,
1999, Proceedings (Christian Freksa and David M. Mark, eds.),
Lecture Notes in Computer Science, vol. 1661, Springer, 1999,
pp. 315–330.

[GH01] Marc Giusti and Joos Heintz, Kronecker’s smart, little black
boxes, Foundations of Computational Mathematics (Cam-
bridge) (R. DeVore, Iserles A., and E. Suli, eds.), Cambridge
University Press, 2001, pp. 69–104.

[Ghy07] Kristof Ghys, Map matching tracking data, Master’s thesis,
Hasselt University, 2007, Masterthesis (Hasselt University),
Advisors: Bart Kuijpers and Bart Moelans.

[GKpM+09] Kristof Ghys, Bart Kuijpers, Bart Moelans, Walied Oth-
man, Dries Vangoidsenhoven, and Alejandro A. Vaisman, Map
matching and uncertainty: an algorithm and real-world exper-
iments, in Agrawal et al. [AAL+09], pp. 468–471.

[Got03] Björn Gottfried, Tripartite line tracks qualitative curvature in-
formation, in Kuhn et al. [KWT03], pp. 101–117.

[GP08] Fosca Giannotti and Dino Pedreschi (eds.), Mobility, Data
Mining and Privacy - Geographic Knowledge Discovery,
Springer, 2008.

[Gre02] Joshua S. Greenfeld, Matching gps observations to locations
on a digital map, 81th Annual Meeting of the Transportation
Research Board 1 (2002), no. 3, 164–173.

188 BIBLIOGRAPHY

[GS05] Ralf Hartmut Güting and Markus Schneider, Moving objects
databases, Morgan Kaufmann, 2005.

[Häg70] Torsten Hägerstrand, What about people in regional science?,
Papers Regional Science Association, vol. 24, 1970, pp. 7–21.

[HE02] Kathleen Hornsby and Max J. Egenhofer, Modeling moving ob-
jects over multiple granularities, Annals of Mathematics and
Artificial Intelligence 36 (2002), no. 1-2, 177–194.

[HKp04] Joos Heintz and Bart Kuijpers, Constraint databases, data
structures and efficient query evaluation, Constraint Databa-
ses and Applications (Bart Kuijpers and Peter Z. Revesz, eds.),
Lecture Notes in Computer Science, vol. 3074, Springer, 2004,
pp. 1–24.

[HKP13] Joos Heintz, Bart Kuijpers, and Andres Rojas Paredes, Soft-
ware engineering and complexity in effective algebraic geome-
try, Journal of Complexity 29 (2013), no. 1, 92–138.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, A for-
mal basis for the heuristic determination of minimum cost
paths, IEEE Transactions on Systems Science and Cybernet-
ics 4 (1968), no. 2, 100–107.

[Hon] Hoon Hong, QEPCAD, www.usna.edu/CS/qepcadweb/B/

QEPCAD.html.

[Hum06] Britta Hummel, Map Matching for vehicle guidance (draft),
2006.

[Hum10] Derk Humblet, Kwalitatieve afstandsmaten voor trajecten,
Master’s thesis, Hasselt University, 2010, Masterthesis (Has-
selt University), Advisors: Bart Kuijpers and Bart Moelans.

[JBR98] Michel Coste Jacek Bochnak and Marie-Francoise Roy, Real al-
gebraic geometry, Ergebenisse der Mathematik und ihrer Gren-
zgebiete. Folge 3., vol. 36, Springer-Verlag Berlin Heidelberg,
1998.

[Jun93] Erland Jungert, Symbolic spatial reasoning on object shapes for
qualitative matching, COSIT, 1993, pp. 444–462.

[Kal60] Rudolph Emil Kalman, A new approach to linear filtering and
prediction problems, Transactions of the ASME–Journal of Ba-
sic Engineering 82, Series D (1960), no. Series D, 35–45.

BIBLIOGRAPHY 189

[KE03] Lars Kulik and Max J. Egenhofer, Linearized terrain: Lan-
guages for silhouette representations, in Kuhn et al. [KWT03],
pp. 118–135.

[Kho91] Askold G. Khovanskĭı, Fewnomials, Translations of mathemat-
ical monographs, American Mathematical Society, 1991.

[KLH07] John Krumm, Julie Letchner, and Eric Horvitz, Map matching
with travel time constraints, Society of Automotive Engineers
(SAE) 2007 World Congress, April 2007.

[KM01] John T. Kent and Kanti V. Mardia, Shape, procrustes tangent
projections and bilateral symmetry, Biometrika 88 (2001), 469–
485.

[KpMdW06] Bart Kuijpers, Bart Moelans, and Nico Van de Weghe, Quali-
tative polyline similarity testing with applications to query-by-
sketch, indexing and classification, GIS (Rolf A. de By and
Silvia Nittel, eds.), ACM, 2006, pp. 11–18.

[KWT03] Werner Kuhn, Michael F. Worboys, and Sabine Timpf (eds.),
Spatial information theory. foundations of geographic infor-
mation science, international conference, cosit 2003, ittingen,
switzerland, september 24-28, 2003, proceedings, Lecture Notes
in Computer Science, vol. 2825, Springer, 2003.

[Ley88] Michael Leyton, A process-grammar for shape, Artif. Intell. 34
(1988), no. 2, 213–247.

[LL00] Longin Jan Latecki and Rolf Lakämper, Shape similarity mea-
sure based on correspondence of visual parts, IEEE Trans. Pat-
tern Anal. Mach. Intell. 22 (2000), no. 10, 1185–1190.

[LZZ+09] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang,
and Yan Huang, Map-matching for low-sampling-rate gps tra-
jectories, in Agrawal et al. [AAL+09], pp. 352–361.

[Mea01] Richard C. Meathrel, A general theory of boundary-based qual-
itative representation of two-dimensional shape, Ph.D. thesis,
University of Exeter, UK, 2001.

[MG06] Jiŕı Matousek and Bernd Gärtner, Understanding and using
linear programming, Universitext, Springer, 2006.

[Mil05] Harvey J. Miller, A measurement theory for time geography,
Geographical Analysis 37 (2005), 17–45.

190 BIBLIOGRAPHY

[MM92] Farzin Mokhtarian and Alan K. Mackworth, A theory of mul-
tiscale, curvature-based shape representation for planar curves,
IEEE Trans. Pattern Anal. Mach. Intell. 14 (1992), no. 8, 789–
805.

[NK09] Paul Newson and John Krumm, Hidden markov map match-
ing through noise and sparseness, in Agrawal et al. [AAL+09],
pp. 336–343.

[Oth09] Walied Othman, Uncertainty management in trajectory data-
bases, Ph.D. thesis, Hasselt University, 2009.

[PJ99] Dieter Pfoser and Christian S. Jensen, Capturing the uncer-
tainty of moving-object representations, SSD (Ralf Hartmut
Güting, Dimitris Papadias, and Frederick H. Lochovsky, eds.),
Lecture Notes in Computer Science, vol. 1651, Springer, 1999,
pp. 111–132.

[QON03] Mohammed A. Quddus, Washington Yotto Ochieng, and
Robert B. Noland, Map matching in complex urban road net-
works, Brazilian Journal of Cartography Revista Brasileira de
Cartografia 55 (2003), no. 2, 1–18.

[Qud06] Mohammed A. Quddus, High integrity Map Matching algo-
rithms for advanced transport telematics applications, Ph.D.
thesis, Imperial College, London, U.K., January 2006.

[QZON03] Mohammed A Quddus, L. Zhao, Washington Yotto Ochieng,
and Robert B. Noland, An extended Kalman Filter algorithm
for integrating GPS and low-cost dead reckoning system data
for vehicle performance and emissions monitoring, The Journal
of Navigation 56 (2003), 257–275.

[RN07] Jochen Renz and Bernhard Nebel, Qualitative spatial reasoning
using constraint calculi, Handbook of Spatial Logics (Marco
Aiello, Ian Pratt-Hartmann, and Johan van Benthem, eds.),
Springer, 2007, pp. 161–215.

[SC04] Salman Syed and M. Elizabeth Cannon, Fuzzy logic based
map matching algorithm for vehicle navigation system in urban
canyons, Proceedings of the 2004 National Technical Meeting
of The Institute of Navigation (2004), 982–993.

[Sch96] Christoph Schlieder, Qualitative shape representation, Geo-
graphic Objects with Indeterminate Boundaries, Taylor &
Francis, 1996, pp. 123–140.

BIBLIOGRAPHY 191

[SN01] Alexander Scivos and Bernhard Nebel, Double-crossing: De-
cidability and computational complexity of a qualitative calcu-
lus for navigation, Spatial Information Theory: Foundations
of Geographic Information Science, International Conference,
COSIT 2001, Morro Bay, CA, USA, September 19-23, 2001,
Proceedings (Daniel R. Montello, ed.), Lecture Notes in Com-
puter Science, vol. 2205, Springer, 2001, pp. 431–446.

[Tar51] Alfred Tarski, A decision method for elementary algebra and
geometry, University of California Press, 1951.

[Vit67] Andrew J. Viterbi, Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm, IEEE Transac-
tions on Information Theory 13 (1967), no. 2, 260–269.

[WBK00] Christopher E White, David Bernstein, and Alain L Korn-
hauser, Some map matching algorithms for personal navigation
assistants, Transportation Research Part C: Emerging Tech-
nologies 8 (2000), no. 16, 91 – 108.

[Wik] Wikipedia, Fuzzy logic, https://en.wikipedia.org/wiki/

Fuzzy_logic.

[Wol] Wolfram Research, Mathematica 9, www.wolfram.com.

[Wol02] Ouri Wolfson, Moving objects information management: The
database challenge, NGITS (Alon Y. Halevy and Avigdor Gal,
eds.), Lecture Notes in Computer Science, vol. 2382, Springer,
2002, pp. 75–89.

[Yen72] Jin Y. Yen, Finding the lengths of all shortest paths in n-node
nonnegative-distance complete networks using 1

2n3 additions
and n3 comparisons, Journal of the ACM 19 (1972), no. 3,
423–424.

[YW04] Huabei Yin and Ouri Wolfson, A weight-based map matching
method in moving objects databases, SSDBM, IEEE Computer
Society, 2004, pp. 437–438.

[Zad65] Lotfi A. Zadeh, Fuzzy sets, Information and Control 8 (1965),
no. 3, 338–353.

[ZF96] Kai Zimmermann and Christian Freksa, Qualitative spatial rea-
soning using orientation, distance,and path knowledge, Applied
Intelligence 6 (1996), no. 1, 49–58.

192 BIBLIOGRAPHY

[Zha97] Yilin Zhao, Vehicle location and navigation systems: Intelli-
gent transportation systems, Navtech Seminars and GPS Sup-
ply, 1997.

Nederlandstalige
samenvatting

Polylijnen komen op meerdere manieren naar voren in Geografische Infor-
matiesystemen (GIS). Een voorbeeld zien we bij het verzamelen van gegevens
van bewegende objecten, waar de trajecten van bewegende objecten (zoals bij-
voorbeeld voetgangers, auto’s, dieren, ...) die een met GPS uitgerust apparaat
meedragen, worden verzameld in de vorm van tijd-ruimte punten die op be-
paalde (on)regelmatige tijdstippen geregistreerd worden. Het ruimtelijk spoor
van zo een beweging is een verzameling van punten in de twee-dimensionale
geografische ruimte. Er bestaan verschillende methoden om trajecten uit te
breiden tussen deze gemeten punten. Lineaire interpolatie is een populaire
methode [GS05]. De resulterende curve in de twee-dimensionale geografische
ruimte is een polylijn.

Alhoewel de meeste mensen een GPS gebruiken als navigatie-instrument,
kan het ook gebruikt worden om de positie van bewegende objecten op te
slaan voor latere tijd-ruimtelijke data-analyse (we verwijzen naar [GP08] voor
een overzicht van tijd-ruimtelijke data-mining en -analyse). Bijvoorbeeld, we
kunnen de routes gevolgd door een persoon of een groep personen analyseren
om er verborgen patronen in proberen te ontdekken. Een groot nadeel van
het gebruik van GPS is dat de geregistreerde coördinaten niet altijd zeer ac-
curaat zijn. Ze zullen niet altijd overeenkomen met de wegen die een auto
of een voetganger volgde. De meeste GPS-toestellen, die in auto’s gebruikt
worden, brengen deze meetfouten in rekening door de gemeten locaties op de
gevolgde straten af te beelden in plaats van de satellietgegevens gewoon weer
te geven. Het algemene probleem van het verbinden van gemeten GPS punten
aan locaties op een wegennetwerk wordt map matching genoemd. Dit is het
onderwerp van deel II van dit proefschrift (zie verder).

Een ander voorbeeld van het gebruik van polylijnen in GIS komt uit het
gebied van vorm-herkenning en -retrieval, dat voorkomt in gebieden zoals
computer-visie, beeld-analyse en GIS in het algemeen. Hier komen gesloten

193

194 Nederlandstalige samenvatting

polylijnen (waar het begin- en eindpunt samenvallen) of polygonen, vaak voor
als de randen van twee-dimensionale vormen of gebieden. Vorm-herkenning
en retrieval zijn centrale problemen in deze context.

In de gegeven voorbeelden, zijn er, ruw geschetst, twee zeer verschillende
benaderingen om met polylijnen, polygonale curves en vormen om te gaan.
Aan de ene kant is er de kwantitatieve aanpak en aan de andere kant is er
de kwalitatieve aanpak. Aanvankelijk gaat de meeste onderzoeksaandacht uit
naar de kwantitatieve methoden [Boo86, DM98, KM01, MM92]. Pas later
krijgt de kwalitatieve benadering meer aandacht. Dit wordt vooral onder-
steund door onderzoek in de cognitieve wetenschappen, waar argumenten aan-
gebracht worden die aantonen dat kwalitatieve methoden om vormen voor te
stellen veel expressiever zijn dan hun kwantitatieve tegenhangers en dat ze
beter overeenstemmen met de manier waarmee mensen over hun ruimtelijke
omgeving nadenken [Ger99]. Polygonale vormen en polygonale curves zijn
complexe ruimtelijke fenomenen en het is algemeen aanvaard dat een kwalita-
tieve voorstelling ervan geschikter is om hen te behandelen [Mea01].

Binnen de kwalitatieve benaderingen om twee-dimensionele bewegingen
of vormen te beschrijven, kunnen twee belangrijke benaderingen worden on-
dersheiden: de regio-gebaseerde en de omtrek-gebaseerde aanpak. De regio-
gebaseerde aanpak maakt gebruik van concepten zoals circulariteit, oriëntatie
ten opzichte van de coördinatenas en kan alleen onderscheid maken tussen
vormen met grote verschillen [Sch96]. De omtrek-gebaseerde aanpak maakt
gebruik van concepten zoals extrema in, en veranderingen van de kromming
van de polylijn die de vorm voorstelt. Deze aanpak geeft aanleiding tot nauw-
keurigere toepassingen waarmee polylijnen en polygonen kunnen worden on-
derscheiden. Voorbeelden van de omtrek-gebaseerde benaderingen kunnen ge-
vonden worden in [Got03, Jun93, KE03, LL00, Ley88, Mea01, Sch96].

De principes achter de kwalitatieve benadering zijn ook gerelateerd aan het
domein van spatial reasoning. Spatial reasoning (of ruimtelijk redeneren) heeft
als één van haar belangrijkste doelstellingen om geografische informatie op een
kwalitatieve manier te representeren, om zo hierover te kunnen redeneren. We
verwijzen voor meer informatie naar hoofdstuk 12 in [GP08] (ook voor spatio-
temporal reasoning). Dit kan worden gezien als de verwerking van informatie
over een ruimtelijke omgeving die onmiddellijk beschikbaar is voor de mens (of
dier) door middel van directe observatie. De reden voor het gebruik van een
kwalitatieve representatie is dat de beschikbare informatie vaak onnauwkeurig,
gedeeltelijke en subjectief is [Fre92]. Als we terugkeren naar het voorbeeld
van traject-data, kunnen we zien dat als een persoon zich oriënteert op een
bepaalde locatie in een stad en vervolgens dan weg gaat van deze plaats. De
persoon zich positioneert op de huidige locatie met behulp van een mentale
kaart met navigaties ten opzichte van het oorspronkelijke startpunt, en niet
met exacte meetgegevens over zijn of haar traject. Voor het doel van navigatie,

195

zal een persoon zich bijvoorbeeld herinneren: “Ik verliet het station en ging
meteen rechtdoor; ik passeerde een kerk aan mijn rechterkant; vervolgens sloeg
ik twee keer af naar links; . . . ” Dit brengt ons bij deel I van dit proefschrift.

Deel I: De double-cross beschrijving van polylijnen. Eén van de for-
malismen om polylijnen in het vlak te beschrijven, wordt gegeven door de
double-cross calculus. In deze methode beschrijft een double-cross matrix de
relatieve positie van twee lijnstukken in een polylijn. Dit wordt gedaan door
deze twee lijnstukken te beschrijven ten opzichte van een double cross (of
dubbel kruis), dat gebaseerd is op de startpunten van deze lijnstukken. De
double-cross calculus werd gëıntroduceerd als een formalisme om kwalitatief
een configuratie van vectoren te representeren in het vlak [Fre92, ZF96]. Voor
een overzicht van het gebruik van “constraint calculi” binnen het gebied van
kwalitatieve spatial reasoning, verwijzen we naar [RN07]. In het double-cross
formalisme, wordt de relatieve positie (of richting) van twee (gelokaliseerde)
vectoren gecodeerd door middel van een 4-tupel, waarvan de elementen uit de
verzameling {0,+,−} komen. Zo een 4-tupel beschrijft de relatieve oriëntatie
van twee vectoren ten opzichte van elkaar. Het double-cross formalisme wordt
bijvoorbeeld gebruikt in de kwalitatieve trajectcalculus, die op haar beurt, is
gebruikt om de gelijkenis van polylijnen te testen in toepassingen als “query
door sketch”, indexering en classificatie [KpMdW06].

Twee polylijnen worden double-cross similar (of gelijkend) genoemd als
hun double-cross matrices identiek zijn. Twee polylijnen, die heel verschil-
lend zijn vanuit een kwantitatief of metrisch oogpunt, kunnen toch dezelfde
double-cross matrices hebben. Het idee is dat zij een vergelijkbaar patroon
volgen van relatieve bochten. Dit weerspiegelt hoe mensen bewegingspatronen
visualiseren en onthouden.

Algebräısche en meetkundige karakterisaties van de double-cross
matrices van polylijnen. In hoofdstuk 3, geven we een algebräısche en
meetkundige interpretatie van de double-cross matrix van een polylijn en
double-cross gelijkenis van polylijnen. Om te beginnen drukken we de double-
cross matrix van een polylijn uit als een collectie van beperkingen, in de vorm
van veelterm-gelijkheden en -ongelijkheden op de coördinaten van de geme-
ten punten van een polylijn (de hoekpunten). Deze algebräısche representatie
kan worden gebruikt om effectief de double-cross gelijkenis van polylijnen te
controleren. Dit kan verder ook gebruikt worden om met software-pakketten
zoals Mathematica [Wol] double-cross gelijkende polylijnen te genereren. De
algebräısche representatie van de double-cross matrix laat ons ook toe om een
aantal eigenschappen van de double-cross matrices van polylijnen te bewijzen.
Een voorbeeld van zo een eigenschap is de symmetrie van een double-cross
matrix langs haar hoofddiagonaal.

196 Nederlandstalige samenvatting

Vervolgens gaan we naar een meetkundige interpretatie van de double-cross
gelijkenis van twee polylijnen. Deze geometrische interpretatie is gebaseerd
op lokale meetkundige informatie van de polylijn in haar hoekpunten. Deze
informatie wordt de local carrier order genoemd en gebruikt (lokale) kompas-
richtingen in de hoekpunten van een polylijn om de relatieve positie van de
overige hoekpunten te lokaliseren. Ons belangrijkste resultaat in deze context
zegt dat twee polylijnen double-cross similar zijn als en slechts als ze dezelfde
local carrier order hebben.

Uit de definitie van een double-cross matrix van een polylijn is het dui-
delijk dat deze matrix niet verandert bij bijvoorbeeld, een rotatie of trans-
latie van de polyline in het twee-dimensionale vlak. In een laatste deel van
hoofdstuk 3, identificeren we de exacte verzameling van transformaties van het
twee-dimensionale vlak die de double-cross matrices onveranderd laten. Ons
belangrijkste resultaat is dat de grootste groep van transformaties van het
vlak, waaronder de double-cross matrix invariant is, bestaat uit de similaritei-
ten van het vlak. Dit resultaat laat ons bijvoorbeeld toe om alle eigenschappen
van double-cross matrices aan te tonen met polylijnen die starten in de oor-
sprong van het vlak en waarvan het eerste lijnstuk als lengte één heeft.

Algoritmen om double-cross gelijkenis te testen. In hoofdstuk 4 geven
we een algoritme, gebaseerd op het double-cross formalisme, om te testen of
twee polylijnen (of polygonen) double-cross similar zijn. Om de mate van
gelijkenis tussen twee polylijnen (niet noodzakelijk van dezelfde grootte) te
bepalen, gaat het algoritme eerst hun “gegeneraliseerde polylijnen” berekenen.
Een gegeneraliseerde polylijn van een polylijn bestaat uit bijna even lange
lijnsegmenten en benadert de lengte van de gegeven polylijn binnen een ε-
foutenmarge. In een volgende stap, bepaalt het algoritme de double-cross
matrices van de gegeneraliseerde polylijnen en het verschil tussen deze matrices
wordt gebruikt als basis om de mate van gelijkenis tussen de gegeven polylijnen
te meten. We tonen ook aan dat ons algoritme steeds termineert en we geven
de sequentiële tijdscomplexiteit.

Hoofdstuk 4 eindigt met een aantal toepassingen. We passen onze werk-
wijze toe op query-by-sketch, indexering van polylijn-databases en classificatie
van terrein eigenschappen. We geven ook experimentele resultaten voor elk
van deze toepassingen.

De double-cross matrix van polylijnen op een raster. In hoofdstuk 5
bestuderen we eigenschappen van de double-cross matrices van polylijnen die
zijn gelegen op een raster (of rooster) in het twee-dimensionale vlak. We
veronderstellen dat de rasterlijnen parallel zijn met de standaard x- en y-
assen van het vlak. Polylijnen op rasters kunnen voortvloeien uit trajecten op
een Manhattan-achtig wegennet.

We geven een effectieve karakterisering van wat double-cross gelijkenis be-

197

tekent voor polylijnen op een raster. Voor een polylijn op een raster, noemen
we de verticale en horizontale rechte lijnen door haar hoekpunten de verticale
en horizontale dragers en we noemen de volgorde waarin ze verschijnen als we
de polylijn doorlopen van haar begin tot haar einde de V - en H-orde van de
polylijn. We noemen twee polylijnen V H-equivalent als ze dezelfde V -orde en
dezelfde H-orde hebben.

Aan een polylijn op een raster, associëren we ook een canonieke polylijn,
die V H-equivalent is met de originele polylijn en dezelfde double-cross matrix
heeft als de originele polylijn. Het blijkt dat V H-equivalentie de meetkundige
informatie weerspiegelt die in de double-cross matrix beschreven is: twee po-
lylijnen op een raster hebben dezelfde double-cross matrix als en slechts als ze
V H-equivalent zijn (hoewel hun laatste lijnsegmenten kunnen verschillen in
lengte). We geven ook een algoritme dat op input een double-cross(-achtige)
matrix van grootte N ×N , in O(N2) tijd controleert of deze double-cross ma-
trix werkelijk realiseerbaar is door een polylijn op een raster. In hoofdstuk 6
gaan we dieper in op het begrip realiseerbaarheid. Voor polylijnen waarvan
alle hoekpunten, snijpunten zijn van het raster, kan het bovenstaande resul-
taat worden verbeterd. Hier kan, nadat de realiseerbaarheid van een matrix
is gecontroleerd (weerom in O(N2) tijd), een polylijn worden gegenereerd in
O(N) tijd, die de gegeven matrix als haar double-cross matrix heeft.

Over de realiseerbaarheid van de double-cross matrices. In hoofd-
stuk 6, pakken we het probleem van de realiseerbaarheid van de double-cross-
achtige matrices aan. Niet elke N ×N matrix van 4-tuples uit de verzameling
{−, 0,+} is de double-cross matrix van een polylijn in het vlak met N + 1
hoekpunten. Dit geeft aanleiding tot het volgende beslissingsprobleem: Gege-
ven een N ×N matrix van 4-tuples uit {−, 0,+}, beslis of het de double-cross
matrix van een polylijn (met N + 1 hoekpunten) is. En zo ja, produceer een
voorbeeld (of vele voorbeelden) van een polylijn met deze double-cross matrix.

Uit hoofdstuk 3 kennen we reeds de verzameling van veeltermige (on)gelijk-
heden over de coördinaten van de hoekpunten van een polylijn, die de informa-
tie uitdrukken die in de double-cross matrix van een polylijn bevat is. Sinds
de eerste-orde logica over de reële getallen (of de elementaire meetkunde) be-
slisbaar is [Tar51], kunnen we onmiddellijk inzien dat het bovenstaande be-
slissingsprobleem, ook effectief beslisbaar is. We blijven echter zitten met de
vraag wat de tijdscomplexiteit van ons beslissingsprobleem juist is.

In de computationele algebräısche meetkunde kan dit beslissingsprobleem
worden aanzien als een test die nagaat of een stelsel van kwadratische verge-
lijkingen in 2(N + 1) variabelen voldaan kan worden. De bestaande en beste
algoritmen voor ons probleem (inclusief het produceren van een voorbeeld)
lossen dit probleem echter op tegen een exponentiële tijdskost. Ons beslis-
singsprobleem heeft vele bijzonderheden: de polynomen zijn homogeen van

198 Nederlandstalige samenvatting

graad twee en gebruiken weinig termen (of monomials) en elk van hen gebruikt
slechts zes variabelen. Dit helpt echter niet om een betere tijdscomplexiteit te
verkrijgen. Van ons probleem is geweten dat het NP-hard is.

In dit hoofdstuk richten we ons op deelklassen van bovengenoemd beslis-
singsprobleem waarvoor we beslissingsalgoritmen kunnen geven die in poly-
nomiale tijd werken. Een eerste deelklasse wordt verkregen door ons te be-
perken tot polylijnen waarin de opeenvolgende lijnstukken hoeken maken die
veelvouden van 90◦ zijn. Voor dit deelprobleem, geven wij een O(N2)-tijd
beslissingsprocedure. Ook het produceren van polylijnen kan in dezelfde tijd
uitgevoerd worden.

Vervolgens richten we onze aandacht op polylijnen waarin de opeenvol-
gende lijnstukken hoeken maken die veelvouden van 45◦ zijn. Om het meer
ingewikkelde geval van 45◦-polylijnen op te lossen, introduceren we de pool--
coördinaten-representatie van de double-cross matrices van polylijnen. We
geven vertalingen (in beide richtingen) tussen de representatie in het Carte-
sisch coördinatenstelsel en het pool-coördinatenstelsel. Met behulp van pool-
coördinaten kan ons beslissingsprobleem worden teruggebracht tot een lineair
programmeerprobleem (echter met algebräısche coëfficiënten). Ook hier ge-
ven we een beslissingsprocedure in polynomiale tijd (die ook voorbeelden als
bij-product produceert). Dit resultaat heeft een aantal gevolgen voor de con-
vexiteit van de oplossingsverzameling die bestaat uit alle 45◦-polylijnen die
een double-cross matrix realiseren.

Part II: Map-matching-technieken voor traject-gegevens.

Een veelvoorkomend probleem in het gebied van moving object databa-
ses (MOD) is de reconstructie van een traject dat enkel als traject-monster
(of trajectory sample) gemeten wordt door, bijvoorbeeld, een GPS-toestel.
Trajectory samples worden automatsich verzameld door toestellen die de geo-
grafissche locatie kunnen bepalen (zoals GPS en binnenkort Galileo). Tijdens
het voorbije decenium zijn GPS-gebaseerde navigatie-systemen alsmaar popu-
lairder geworden. Meer dan eens vallen de posities die door deze toestellen
gementen worden buiten het wegennetwerk dat door het bewegend object ge-
volgd wordt. Typisch zullen ongeveer vijfennegentig procent van de gemeten
tijd-ruimtelijke punten buiten het wegennetwerk vallen, wanneer de positie van
een wagen of een voetganger met GPS geregistreerd wordt. Behalve meetfou-
ten zijn er nog andere problemen met gegevens die in de praktijk gemeten
worden. We denken hier aan verkeersopstoppingen en gaten in een traject
tussen gemeten locaties die veroorzaakt kunnen worden door tunnels of zo-
geheten “stadstunnels” (dit zijn plaatsen in een stad waar hoge gebouwen de
goede ontvangst van satellieten verhinderen). Bijgevolg is er een frequente
noodzaak om de positie van een bewegend object te koppelen aan een digitale

199

kaart (van een wegennetwerk). Het algemene probleem van het koppelen van
GPS-locaties aan locaties op een wegennetwerk noemt men map matching.

Inleiding tot map matching. In hoofdstuk 7 geven we een vrijwel volledig
overzicht van de belangrijkste soorten van bestaande map matching algorit-
men. We klasseren deze algoritmen ook naargelang de operationele manieren
waarop ze gebruikt worden (online versus offline; lage versus hoge sampling
frequentie; etc.). In dit hoofdstuk geven we ook een overzicht van de belang-
rijkste karakteristieken van verzamelingen van traject-gegevens.

Een onzekerheid-gebaseerd algoritme voor map matching. Er zijn
reeds vele algoritmen voorgesteld om het map matching probleem op te los-
sen [BK98, WBK00]. Geen van de voorgestelde oplossingen beschouwt echter
de onzekerheid die veroorzaakt wordt door het ontbreken van informatie over
de locatie waar een bewegend object zich kan bevinden tussen gemeten GPS-
loacties. Lineaire interpolatie tussen gemeten locaties veronderstelt dat het ob-
ject zich tussen twee meetpunten aan constante, minimale snelheid verplaatst.
Dit is een klassieke methode die echter niet zeer realistisch is. Een meer
realistisch model is gebaseerd op de notie van onzekerheid (of uncertainty).
Een voorbeeld van zo een model maakt gebruik van ruimte-tijd prisma’s (of
space-time prisms) [Ege03, Häg70, HE02, PJ99, Mil05]. In dit model worden
de onbekende, maar mogelijke locaties van een bewegend object tussen twee
gemeten locaties bepaald door gebruik te maken van achtergrond-informatie,
zoals fysische of wettelijke snelheidsbeperkingen.

In dit deel van het proefschrift bestuderen we de relatie tussen map mat-
ching en onzekerheid. We stellen een nieuw map matching algoritme voor dat
“weighted k-shortest paths” [Yen72] combineert met space-time prisms. Op
deze manier bekomen we een algorime dat op vele soorten traject-gegevens
toepasbaar is en dat beter presteert dan bestaande algoritmen [GKpM+09].

We passen ons algoritme toe op echte traject data, alsook op computer-
gegenereerde data die bestaat uit verschillende soorten trajecten met uiteen-
lopende eigenschappen. In sommige data worden observaties frequent en re-
gelmatig geregistreerd. In andere data worden ze onregelmatigere of minder
frequent geregistreerd. Zo verkrijgen we verschillende data die overeenkomen
met het klassieke onderscheid tussen lage en hoge sampling frequentie, die we
dikwijls in de literatuur tegenkomen. Bovendien vergelijken we de resultaten
van ons nieuw space-time prism en k-shortest path algoritme met een aan-
tal bestaande algoritmen en dit op een ruime variatie van trajectory sample
gegevensverzamelingen met verschillende eigenschappen.

We tonen aan dat het inbouwen van onzekerheid in het map matching-
proces tot betere resultaten en meer positieve matchings leidt. Dit positief
resultaat compenseert ruimschoots voor de langere uitvoeringstijden, die ech-
ter redelijk blijven.

200 Nederlandstalige samenvatting

De voornaamste bijdrage van hoofdstuk 8 is het nieuwe map matching
algoritme dat space-time prisms in combinatie met het weighted k-shortest
path algoritme gebruikt. Een belangrijke component in dit algoritme is de
berekening van de “bounding box” van de ruimtelijke projectie van een space-
time prism. Deze bounding box beperkt het aantal kandidaat wegsegmenten
dat we in het map matching proces moeten beschouwen.

Experimentele evaluatie van map matching algoritmen. In hoofd-
stuk 9, bestuderen we, om te beginnen, het accuraat vergelijken van de pres-
taties van verschillende map matching algoritmen. We geven een overzicht van
verschillende eigenschappen van trajectory samples en bespreken manieren om
deze eigenschappen te realiseren in computer-gegenereerde gegevens.

We overlopen evenzeer een aantal bestaande methoden om de accuraat-
heid van map matching algoritmen te meten op verschillende soorten data-
types [LZZ+09, WBK00]. We stellen ook een nieuwe manier voor om de ac-
curaatheid van algoritmen te meten. Deze nieuwe methode lijdt niet aan de
nadelen van bestaande methoden.

Verder is hoofdstuk 9 gewijd aan experimentele resultaten. We tonen een
aantal tests van de verschillende map matching algoritmen op een variëteit
van trajectory sample data. Het doel is om vast te stellen welk type map
matching algoritme het meest geschikt is voor een bepaald type van trajec-
tory samples. We hebben een aantal bestaande map matching algoritmen
gëımplementeerd en vergelijken deze implementaties met die van ons eigen al-
goritme dat op onzekerheid gebaseerd is. De experimentele resultaten tonen
aan dat ons space-time prisms in combinatie met weighted k-shortest path
algoritme zeer robuust is. Het presteert beter dan de bestaande algoritmen
op een variëteit van trajectory samples van uiteenlopend type.

Ten slotte willen we opmerken dat de twee onderwerpen van dit proef-
schrift (map matching en double-cross gelijkenis van polylijnen) beide deel
uitmaken van het bredere gebied van knowledge discovery in trajectory data.
Map matching kan aanzien worden als een data-cleaning stap die voorafgaat
aan het toepassen van data mining algoritmen. Map matching algoritmen
verwijderen meetfouten uit de GPS-metingen door de gemeten punten op het
wegennetwerk af te beelden waar de beweging echt plaatsgevonden heeft. Voor
vele data mining technieken, zoals clustering, die toegepast worden op gecle-
ande data-verzamelingen is de studie en ontwikkeling van afstandsfuncties op
trajectgegevens noodzakelijk. De double-cross gelijkenis van polylijnen (die
van trajecten afkomstig zijn) past hier in het knowledge discovery proces. Zo-
wel kwantitatieve als kwalitatieve afstandsmaten kunnen bij het clusteren van
trajectgegevens gebruikt worden.

Publications by Bart Moelans

Chapters in books

• Leticia I. Gómez, Bart Kuijpers, Bart Moelans, Alejandro A. Vais-
man. A State-of-the-Art in Spatio-Temporal Data Warehousing, OLAP
and Mining. in Integrations of Data Warehousing, Data Mining and
Database Technologies, 200–236, IGI-Global, 2011.

• Leticia I. Gómez, Bart Kuijpers, Bart Moelans, Alejandro A. Vaisman.
A Survey on Spatio-Temporal Data Warehousing. In Business Informa-
tion Systems: Concepts, Methodologies, Tools and Applications, Volume
4, 949–977, IGI-Global, 2010.

• Chiara Renso, Simone Puntoni, Elias Frentzos, Andrea Mazzoni, Bart
Moelans, Nikos Pelekis, Fabrizio Pini. Wireless Network Data Sources:
Tracking and Synthesizing Trajectories. In Mobility, Data Mining and
Privacy, Fosca Giannotti and Dino Pedreschi (Eds.), 73–100, Springer,
2008.

• Dino Pedreschi, Francesco Bonchi, Franco Turini, Vassilios S. Verykios,
Maurizio Atzori, Bradley Malin, Bart Moelans, Yücel Saygin. Privacy
Protection: Regulations and Technologies, Opportunities and Threats.
In Mobility, Data Mining and Privacy, Fosca Giannotti and Dino Pe-
dreschi (Eds.), 101–119, Springer, 2008.

Journal papers

• Bart Kuijpers and Bart Moelans. On the realisability of double-cross
matrices by polylines in the plane. (37 pages), submitted, 2015.

• Bart Kuijpers and Bart Moelans. Algebraic and geometric character-
izations of double-cross matrices of polylines. (26 pages), submitted,
2015.

201

202 Publications by Bart Moelans

• Bart Kuijpers, Bart Moelans, Walied Othman and Alejandro Vaisman.
An uncertainty-based map matching algorithm. Manuscript, 2015.

• Leticia I. Gómez, Bart Kuijpers, Bart Moelans, Alejandro A. Vaisman.
A Survey of Spatio-Temporal Data Warehousing. In International Jour-
nal of Data Warehousing and Mining, Volume 5, Issue 3, 28–55, IGI-
Global, 2009.

Conference and workshop papers

• Kristof Ghys, Bart Kuijpers, Bart Moelans, Walied Othman, Dries Van-
goidsenhoven, Alejandro A. Vaisman. Map matching and uncertainty:
an algorithm and real-world experiments. In Proceedings of the 17th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (ACM GIS 2009), 468–471, ACM, 2009.

• Bart Kuijpers, Bart Moelans, Walied Othman, Alejandro A. Vaisman.
Analyzing Trajectories Using Uncertainty and Background Information.
In Proceedings of the 11th International Symposium on Spatial and Tem-
poral Databases (SSTD 2009), 135–152, LNCS, Springer, 2009.

• Bart Kuijpers, Bart Moelans: Towards a geometric interpretation of
double-cross matrix-based similarity of polylines. In Proceedings of the
16th ACM SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems (ACM GIS 2008), paper 32, ACM, 2008.

• Arend Ligtenberg, Ramona van Marwijk, Bart Moelans and Bart Kui-
jpers. Recognizing patterns of movements in visitor flows in nature ar-
eas. In Proceedings of the 4th International Conference on Monitoring
and Management of Visitor Flows in Recreational and Protected Areas
(MMV4), 422–427, 2008.

• Vania Bogorny, Bart Moelans, and Luis Otavio Alvares. Filtering Fre-
quent Spatial Patterns with Qualitative Spatial Reasoning. In Proceed-
ings of 19th Belgian-Dutch Conference on Artificial Intelligence (BNAIC
2007), 319–320, 2007.

• Luis Otávio Alvares, Vania Bogorny, Bart Kuijpers, José Antônio Fer-
nandes de Macêdo, Bart Moelans, and Alejandro Vaisman. A Model for
Enriching Trajectories with Semantic Geographical Information. in Pro-
ceedings of the ACM 15th International Symposium on Advances in Ge-
ographic Information Systems (ACM GIS 2007), paper 22, ACM, 2007.

203

• Luis Otávio Alvares, Vania Bogorny, José Antônio Fernandes de Macêdo,
Bart Moelans, and Stefano Spaccapietra. Dynamic Modeling of Trajec-
tory Patterns using Data Mining and Reverse Engineering. In Proceed-
ings of the 28th International Conference on Conceptual Modeling (ER
2007), Tutorials, Posters, Panels and Industrial Contributions, 149–154,
Australian Computer Society, 2007.

• Vania Bogorny, Bart Moelans, Luis Otávio Alvares. Filtering Frequent
Spatial Patterns with Qualitative Spatial Reasoning. In Workshop Pro-
ceedings of the IEEE 23rd International Conference on Data Engineer-
ing (ICDE 2007) – Workshop on Spatio-Temporal Data Mining (STDM
2007), 527–535, IEEE, 2007. 2006

• Bart Kuijpers, Bart Moelans, Nico Van de Weghe. Qualitative poly-
line similarity testing with applications to query-by-sketch, indexing and
classification. In Proceedings of the 14th ACM International Symposium
on Geographic Information Systems (ACM GIS 2006), 11–18, ACM,
2006.

Posters

• Luis Otávio Alvares, Vania Bogorny, José Antônio Fernandes de Macêdo,
Bart Moelans, Stefano Spaccapietra: Dynamic Modeling of Trajectory
Patterns using Data Mining and Reverse Engineering. ER (Tutorials,
Posters, Panels & Industrial Contributions) 2007: 149-154

Others

• Bart Kuijpers, Vanessa Lemmens, Bart Moelans, Karl Tuyls: Privacy
Preserving ID3 over Horizontally, Vertically and Grid Partitioned Data.
CoRR abs/0803.1555 (2008)

• Vania Bogorny, Luis Otávio Alvares, Bart Kuijpers, José Antônio Fer-
nandes de Macêdo, Bart Moelans and Andrey Tietbohl Palma. Towards
Semantic Trajectory Knowledge Discovery. Technical Report, UHasselt,
2007.

