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ABSTRACT
A dominant cost for query evaluation in modern massively
distributed systems is the number of communication rounds.
For this reason, there is a growing interest in single-round
multiway join algorithms where data is first reshuffled over
many servers and then evaluated in a parallel but communic-
ation-free way. The reshuffling itself is specified as a distri-
bution policy. We introduce a correctness condition, called
parallel-correctness, for the evaluation of queries w.r.t. a
distribution policy. We study the complexity of parallel-
correctness for conjunctive queries as well as transferability
of parallel-correctness between queries. We also investigate
the complexity of transferability for certain families of distri-
bution policies, including, for instance, the Hypercube dis-
tribution.

Categories and Subject Descriptors
H.2 [Database Management]: Languages; H.2 [Database
Management]: Systems—Distributed databases

Keywords
Distributed databases; Parallel query evaluation; One-round
evaluation; Distribution policies

1. INTRODUCTION
In traditional database systems, the complexity of query

processing for large datasets is mainly determined by the
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number of IO requests to external memory. A factor domi-
nating complexity in modern massively distributed database
systems, however, is the number of communication steps [6].
Motivated by recent in-memory systems like Spark [12] and
Shark [14], Koutris and Suciu introduced the massively par-
allel communication model (MPC) [11] where computation
proceeds in a sequence of parallel steps each followed by
global synchronization of all servers. In this model, evalua-
tion of conjunctive queries [5, 11] and skyline queries [2] has
been considered.

Of particular interest in the MPC model are the queries
that can be evaluated in one round of communication. Re-
cently, Beame, Koutris and Suciu [6] proved a matching
upper and lower bound for the amount of communication
needed to compute a full conjunctive query without self-joins
in one communication round. The upper bound is provided
by a randomized algorithm called Hypercube which uses a
technique that can be traced back to Ganguli, Silberschatz,
and Tsur [9] and is described in the context of map-reduce
by Afrati and Ullman [3]. The Hypercube algorithm eval-
uates a conjunctive query Q by first reshuffling the data
over many servers and then evaluating Q at each server in
a parallel but communication-free manner. The reshuffling
is specified by a distribution policy (hereafter, called Hyper-
cube distribution) and is based on the structure of Q. In
particular, the Hypercube distribution partitions the space
of all complete valuations of Q over the computing servers
in an instance independent way through hashing of domain
values. A property of Hypercube distributions is that for
any instance I, the central execution of Q(I) always equals
the union of the evaluations of Q at every computing node
(or server).1

In this paper, we introduce a general framework for rea-
soning about one-round evaluation algorithms under arbi-
trary distribution policies.2 Distribution policies (formally

1We emphasize that, for a query Q, there is no single Hy-
percube distribution but rather a family of distributions as
the concrete instantiation depends on choices regarding the
address space of servers.
2Our aim is to study one-round evaluation algorithms, not
to advocate them. We plan further investigation that also
takes multi-round algorithms into account. Furthermore,



defined in Section 2) are functions mapping input facts to
sets of nodes (servers) in the network. We introduce the
following correctness property for queries and distribution
policies: a query Q is parallel-correct for a given distribution
policy P , when for any instance I, the evaluation of Q(I)
equals the union of the evaluation of Q over the distribu-
tion of I under policy P . We focus on conjunctive queries
and study the complexity of deciding parallel-correctness.
We show that the latter problem is equivalent to testing
whether the facts in every minimal valuation of the con-
junctive query are mapped to a same node in the network
by the distribution policy. For various representations of
distributions policies, we then show that testing parallel-
correctness is in ΠP

2 . We provide a matching lower bound
via a reduction from the ΠP

2 -complete Π2-QBF-problem.
One-round evaluation algorithms, like Hypercube, redis-

tribute data for the evaluation of every query. For sce-
narios where queries are executed in sequence, it makes
sense to study cases where the same data distribution can
be used to evaluate multiple queries. We formalize this
as parallel-correctness transfer between queries. In partic-
ular, parallel-correctness transfers from Q to Q′ when Q′ is
parallel-correct under every distribution policy for which Q
is parallel-correct. We characterize transferability for con-
junctive queries by a (value-based) containment condition
for minimal valuations of Q′ and Q, and use this charac-
terization to obtain a ΠP

3 upper bound for transferability.
Again, we obtain a matching lower bound, this time via a
reduction from the ΠP

3 -complete Π3-QBF-problem. We ob-
tain a (presumably) better complexity, NP-completeness, in
the case that Q is strongly minimal, i.e., when all its val-
uations are minimal. Examples of strongly minimal CQs
include the full conjunctive queries and those without self-
joins. At the heart of the upper bound proof lies the insight
that the above mentioned value-based inclusion w.r.t. min-
imal valuations reduces to a syntactic inclusion of Q′ in Q
modulo a variable renaming when Q is strongly minimal.
We obtain that deciding strong minimality is NP-complete
as well.

Finally, we study parallel-correctness transfer from Q to
Q′ w.r.t. a specific family F of distribution policies rather
than the set of all distribution policies. We show that it is
NP-complete to decide whether Q′ is parallel-correct for a
given family F if this family has the following two properties:
it is Q-generous (for each, not only for minimal, valuation
of Q, its facts occur at some node) and Q-scattered (for
every instance some distribution has, at every node, only
facts from one valuation). It is easy to see that the family
of Hypercube distributions for a given CQ Q satisfies these
properties, which implies that deciding transferability for
Hypercube distributions is NP-complete, as well.

We complete our framework by sketching a declarative
specification formalism for distribution policies, illustrated
with the specification of Hypercube distributions.

Outline. We introduce the necessary definitions in Sec-
tion 2. We study parallel-correctness in Section 3 and trans-
ferability in Section 4. We examine families of distribution
policies including the Hypercube distribution in Section 5.
We conclude in Section 6. We give at least sketches of most

our emphasis is on reasoning about queries and distribu-
tion policies, not on the development of good distribution
policies.

proofs but defer some proof details to the full version of this
paper.

2. DEFINITIONS

Queries and instances.
We assume an infinite set dom of data values that can be

represented by strings over some fixed alphabet. A database
schema D is a finite set of relation names R where every R
has arity ar(R). We call R(t) a fact when R is a relation
name and t a tuple in dom. We say that a fact R(d1, . . . , dk)
is over a database schema D if R ∈ D and ar(R) = k. By
facts(D), we denote the set of possible facts over schema D.
A (database) instance I over D is a finite set of facts over
D. By adom(I) we denote the set of data values occurring
in I. A query Q over input schema D1 and output schema
D2 is a generic mapping from instances over D1 to instances
over D2. Genericity means that for every permutation π of
dom and every instance I, Q(π(I)) = π(Q(I)).

Conjunctive queries.
Let var be the universe of variables, disjoint from dom.

An atom is of the form R(x), where R is a relation name and
x is a tuple of variables in var. We say that R(x1, . . . , xk)
is an atom over schema D if R ∈ D and k = ar(R).

A conjunctive query Q (CQ) over input schema D is an
expression of the form

T (x)← R1(y1), . . . , Rn(yn),

where every Ri(yi) is an atom over D, and T (x) is an atom
for which T 6∈ D. Additionally, for safety, we require that
every variable in x occurs in some yi. We refer to the head
atom T (x) by headQ, and denote the set of body atoms
Ri(yi) by bodyQ.

A conjunctive query is called full if all variables of the
body also occur in the head. We say that a CQ is without
self-joins when all of its atoms have a distinct relation name.

We denote by vars(Q) the set of all variables occurring in
Q. A valuation for a conjunctive query is a total function
V : vars(Q)→ dom that maps each variable of Q to a data
value. We say that V requires or needs the facts V (bodyQ)
for Q. A valuation V is said to be satisfying for Q on in-
stance I, when all the facts required by V for Q are in I. In
that case, V derives the fact V (headQ). The result of Q on
instance I, denoted Q(I), is defined as the set of facts that
can be derived by satisfying valuations for Q on I. We note
that, as we do not allow negation, all conjunctive queries are
monotone.

We frequently compare different valuations for a query Q
with respect to their required sets of facts. For two valua-
tions V1, V2 for a CQ Q, we write V1 ≤Q V2 if V1(headQ) =
V2(headQ) and V1(bodyQ) ⊆ V2(bodyQ). We write V1 <Q V2

if furthermore V1(bodyQ) ( V2(bodyQ) holds.
A substitution is a mapping from variables to variables,

which is generalized to tuples, atoms and conjunctive queries
in the natural fashion [1].3 We denote the composition of
functions in the usual way, i.e., (f ◦ g)(x)

def
= f(g(x)).

The following notion is fundamental for the development
in the rest of the paper:

3As we only consider CQs without constants, substitutions
do not map variables to constants.



Definition 1. A simplification of a conjunctive query Q is
a substitution θ : vars(Q)→ vars(Q) for which headθ(Q) =
headQ and bodyθ(Q) ⊆ bodyQ.

A simplification is thus a homomorphism from Q to Q and
by the homomorphism theorem [1] (and the trivial embed-
ding from θ(Q) to Q), Q and θ(Q) are equivalent. Of course,
the identity substitution is always a simplification.

Example 2.1. We give a few examples to illustrate sim-
plifications. Consider the query

T (x)← R(x, x), R(x, y), R(x, z).

Then θ1 = {x 7→ x, y 7→ y, z 7→ y} as well as θ2 = {x 7→
x, y 7→ x, z 7→ x} are simplifications. For the query

T (x)← R(x, y), R(y, y), R(z, z), R(u, u),

possible simplifications are θ3 = {x 7→ x, y 7→ y, z 7→ y, u 7→
z} and θ4 = {x 7→ x, y 7→ y, z 7→ y, u 7→ y}. For the query
T (x) ← R(x, y), R(y, z) there are no simplifications besides
the identity.

The notion of simplification is closely related to foldings as
defined by Chandra and Merlin [7]. In particular, a folding
of a conjunctive query Q is a simplification θ that is idem-
potent. That is, θ2 = θ. Intuitively, the idempotence means
that when θ gives a new name to a variable then it sticks to
it. Notice that in Example 2.1 simplifications θ1, θ2, θ4 are
foldings but θ3 is not as θ3(u) = z 6= y = θ3(θ3(u)).

Networks, data distribution, and policies.
A network N is a nonempty finite set of values from dom,

which we call (computing) nodes.
A distribution policy P for a database schema D and a

network N is a total function mapping facts from facts(D)
to sets of nodes.4 For an instance I overD, let distP ,I denote
the function that maps each κ ∈ N to {f ∈ I | κ ∈ P (f)},
that is, the set of facts assigned to it by P . We sometimes
refer to distP ,I(κ) as a data chunk.

In this paper, we do not always explicitly give names to
schemas and networks but tacitly assume they are under-
stood from the queries and the distribution policies under
consideration, respectively.

We do not always expect that distribution policies P are
given as part of the input by exhaustive enumeration of all
pairs (κ,f), for which κ ∈ P (f). We also consider mech-
anisms, where instead the distribution policy is implicitly
represented by a given “black box” procedure. While there
are many possible ways to represent distribution policies,
either as functions or as relations belonging to various com-
plexity classes, in this paper, we only consider one such class.
In particular, we define the class Pnrel where each distribu-
tion P is represented by a NP-testable relation, that on
input (κ,f) yields “true” if and only if κ ∈ P (f). We will
discuss declarative ways to specify distribution policies in a
non-black-box fashion in Section 5.

The definition of a distribution policy is borrowed from
Ameloot et al. [4] (but already surfaces in the work of Zinn
et al. [15]), where distribution policies are used to define the
class of policy-aware transducer networks.
4Notice that our formalization allows to ‘skip’ facts by map-
ping them to the empty set of nodes. This is, for instance,
the case for a Hypercube distribution (cf. Section 5), which
skips facts that are not essential to evaluate the query at
hand.

3. PARALLEL-CORRECTNESS
In this section, we introduce and study the notion of

parallel-correctness, which is central to this paper.

Definition 2. A query Q is parallel-correct on instance I
under distribution policy P , if Q(I) =

⋃
κ∈N Q(distP ,I(κ)).

That is, the centralized execution of Q on I is the same
as taking the union of the results obtained by executing Q
at every computing node. Next, we lift parallel-correctness
to all instances.

Definition 3. A query Q is parallel-correct under distribu-
tion policy P , if Q is parallel-correct on all input instances
under P .

Of course, when a query Q is parallel-correct under P ,
there is a direct one-round evaluation algorithm for every
instance. Indeed, the algorithm first distributes (reshuffles)
the data over the computing nodes according to P and then
evaluates Q in a subsequent parallel step at every computing
node. Notice that as P is defined on the granularity of a fact,
the reshuffling does not depend on the current distribution
of the data and can be done in parallel as well.

While Definitions 2 and 3 are in terms of general queries,
in the rest of this section, we only consider conjunctive
queries. It is easy to see that a CQ Q is parallel-correct
under distribution policy P if for each valuation for Q the
required facts meet at some node, i.e., if the following con-
dition holds:

(C0) for every valuation V for Q,⋂
f∈V (bodyQ)

P (f) 6= ∅.

Even though (C0) is sufficient for parallel-correctness, it
is not necessary (c.f., Example 3.2). It turns out that for a
semantical characterization only valuations have to be con-
sidered that are minimal in the following sense.

Definition 4. Let Q be a CQ. A valuation V for Q is min-
imal for Q if there exists no valuation V ′ for Q such that
V ′ <Q V .

The next lemma now states the targeted characterization:

Lemma 3.1. A CQ Q is parallel-correct under distribu-
tion policy P if and only if the following holds:

(C1) for every minimal valuation V for Q,⋂
f∈V (bodyQ)

P (f) 6= ∅.

Proof (sketch). (if) Assume (C1) holds. Because of
monotonicity, we only need to show that, for every instance
I, Q(I) ⊆

⋃
κ∈N Q(distP ,I(κ)). To this end, let f be a fact

that is derived by some valuation V for Q over I. Then,
there is also a minimal valuation V ′ that is satisfying on
I and which derives f . Because of condition (C1), there
is a node κ where all facts required for V ′ meet. Hence,
f ∈

⋃
κ∈N Q(distP ,I(κ)).

(only-if) Proof by contraposition. Suppose that there is
a minimal valuation V ′ for Q for which the required facts



do not meet under P . Consider V ′(bodyQ) as input in-
stance. Then, by definition of minimality, there is no valua-
tion that agrees on the head-variables and is satisfied on one
of the chunks of V ′(bodyQ) under P . So, Q is not parallel-
correct.

Example 3.2. For a simple example of a minimal valua-
tion and a non-minimal valuation, consider the CQ Q,

T (x, z)← R(x, y), R(y, z), R(x, x).

Both V = {x 7→ a, y 7→ b, z 7→ a} and V ′ = {x 7→ a, y 7→
a, z 7→ a} are valuations for Q. Notice that both valuations
agree on the head-variables of Q, but they require different
sets of facts. In particular, for V to be satisfying on I, in-
stance I must contain the facts R(a, b), R(b, a), and R(a, a),
while V ′ only requires I to contain R(a, a). This observation
implies that V is not minimal for Q. Further, as V ′ requires
only one fact for Q, V ′ must be minimal for Q.

We next argue that (C0) is not a necessary condition for
parallel-correctness. Indeed, take N = {1, 2} and P as the
distribution policy mapping every fact except R(a, b) onto
node 1 and every fact except R(b, a) onto node 2. Con-
sider the valuations V and W = {x 7→ b, y 7→ a, z 7→
b}. Then, R(a, b) and R(b, a) do not meet under P , thus
violating condition (C0). It remains to argue that Q is
parallel-correct under P . For every minimal valuation U ,
either

⋂
f∈U(bodyQ) P (f) 6= ∅ or U requires both R(a, b) and

R(b, a). In the latter case U is either valuation V or W as
defined above, which are not minimal. Thus, by Lemma 3.1,
query Q is parallel-correct under P .

Unfortunately, condition (C1) is complexity-wise more in-
volved than (C0) as minimality of V needs to be tested. The
lower bound in Theorem 3.6 below indicates that this can,
in a sense, not be avoided.

Towards an upper bound for the complexity of parallel-
correctness, we first discuss how minimality of a valuation
can be tested. Obviously, this notion is related to the (clas-
sical) notion of minimality for conjunctive queries, as we will
make precise next. First, recall that a CQ Q is minimal if
there is no equivalent CQ with strictly less atoms.

Lemma 3.3. Let Q be a conjunctive query. For every in-
jective valuation V for Q, it holds that V is minimal if and
only if Q is minimal.

Proof. In the following let Q be a CQ. We show that
there is a non-minimal injective valuation V for Q if and
only if Q is not minimal.

(if) Suppose that Q is not minimal. Then, by [7] there is
a folding h for Q, where bodyh(Q) ( bodyQ and headh(Q) =
headQ. Let V be an arbitrary injective valuation for Q.
Injectivity implies that |V (bodyQ)| = |bodyQ|, that is the
number of facts in V (bodyQ) equals the number of atoms in
bodyQ.

Since h(Q) only has variables that also appear in Q, V is
a valuation for h(Q) as well. However, thanks to bodyh(Q) (
bodyQ, h(bodyQ) has fewer atoms than bodyQ, therefore
(V ◦h)(bodyQ) has fewer facts than V (bodyQ). Thus, (V ◦h)
is a counterexample for the minimality of V , since (V ◦
h)(bodyQ) = V (bodyh(Q)) ⊆ V (bodyQ) and (V ◦h)(headQ) =
V (headh(Q)) = V (headQ).

(only-if) Suppose there is an injective valuation V for
Q and a valuation V ′ for Q, such that V ′ <Q V . Then,

h
def
= (V −1 ◦ V ′) is a homomorphism from Q to itself, as

bodyh(Q) = V −1(V ′(bodyQ)) ( V −1(V (bodyQ)) = bodyQ,

headh(Q) = V −1(V ′(headQ)) = V −1(V (headQ)) = headQ.
Therefore h(Q) is equivalent to Q, thanks to the homomor-
phism theorem (see, e.g., [1]).

Lemma 3.3 immediately yields the following complexity
result.

Proposition 3.4. Deciding whether a valuation V for a
CQ Q is minimal is coNP-complete.

Proof (sketch). Lemma 3.3 allows a reduction from
minimality of CQs to minimality of valuations. Therefore,
coNP-hardness follows from the coNP-hardness of mini-
mality for CQs, which follows from [10]. The upper bound
is immediate from the definition of minimality of valuations
and from the fact that, for given V1, V2,Q, it can be tested
in polynomial time whether V1 <Q V2 holds.

Now, we are ready to settle the complexity of parallel-
correctness for general conjunctive queries for a large class
of distributions. We study two settings, Pfin, where dis-
tribution policies are explicitly enumerated as part of the
input, and Pnrel, where the distribution policy is given by
a black box procedure which answers questions of the form
“κ ∈ P (f)?” in NP. In the latter case, the distribution
is not part of the (normal) input and therefore does not
contribute to the input size. Instead, the input has an ad-
ditional parameter n which bounds the length of addresses
in the considered networks.

By domn we denote the set of all elements of dom that
can be encoded by strings of length at most n. For a distri-
bution policy P (coming with a network N ) and a number
n, we denote by P n the distribution policy that is obtained
from P by (1) only distributing facts over domn and (2)
only distributing facts to nodes whose addresses are of length
at most n.

We study the following algorithmic problems for explicitly
given database instances:

PCI(Pfin):
Input: CQ Q, instance I, and P ∈ Pfin

Question: Is Q parallel-correct on I under P ?

PCI(Pnrel):
Input: CQ Q, instance I, a natural number n in unary
representation
Black box input: P ∈ Pnrel

Question: Is Q parallel-correct on I under P n?

We also study the parallel correctness problem without
reference to a given database instance.

PC(Pfin):
Input: CQ Q, P ∈ Pfin

Question: Is Q parallel-correct on I under P , for all
instances I ⊆ facts(P )?

Here, facts(P ) denotes the set of facts f with P (f) 6= ∅.

PC(Pnrel):
Input: CQQ, a natural number n in unary representation
Black box input: P ∈ Pnrel

Question: Is Q parallel-correct on I under P n, for all
instances I ⊆ facts(P n)?



We quickly discuss how to use distribution policies from
Pnrel.

A distribution policy P ∈ Pnrel is an NP-testable relation.
This means that there exists a (deterministic) algorithm AP

with time bound a polynomial in 〈κ,f〉 that accepts input
(〈κ,f〉, x) for some string x if and only if κ ∈ P (f). We use
algorithm AP as a subroutine in the following algorithms,
as described below.

Remark 3.5 (Use of subroutine). Let V be a valua-
tion for a query Q with k body atoms and let κ be a node. We
assume some additional input string x = x1 ◦ · · · ◦ xk, where
each substring xi has a length polynomial in V (bodyQ) and
the representation size of κ. An algorithm can “test” (w.r.t.
x) whether there is a fact in V (bodyQ) = {f1, . . . ,f `} that
is not assigned to node κ under distribution policy P , where
` ≤ k. To this end, the algorithm invokes AP as a sub-
routine with inputs (〈κ,f i〉, xi) for each i ∈ {1, . . . , `}. If
any input is rejected, the algorithm accepts, otherwise it re-
jects. The running time is obviously bounded by the size of
V (bodyQ) and the represention size of κ.

Theorem 3.6.

(a) PC(Pfin) and PCI(Pfin) are ΠP
2 -complete.

(b) PC(Pnrel) and PCI(Pnrel) are in ΠP
2 .

Of course, the upper bounds in Theorem 3.6 also hold if
questions of the form “κ ∈ P (f)?” are answered in polyno-
mial time, or if P is just given as a polynomial time function.

Due to the implicit representation of distributions, we can-
not formally claim Πp

2-hardness for distribution policies from
Pnrel. However, in an informal sense, they are, of course, at
least as difficult as for Pfin.

Proof (sketch). The upper bounds follow quite directly
from Definition 2, or Lemma 3.1 and Proposition 3.4, respec-
tively.

For the lower bound of PCI(Pfin) we give a polynomial
reduction from the ΠP

2 -complete problem Π2-QBF, which
can be adapted for PC(Pfin).

Let ϕ be an input for Π2-QBF, i.e., a formula of the form
∀x∃yψ(x,y). We assume ψ to be a propositional formula in
3-CNF with variables x = (x1, . . . , xm) and y = (y1, . . . , yn).
Let C1, . . . , Ck denote their (disjunctive) clauses, where, for
each j, Cj = (`j,1 ∨ `j,2 ∨ `j,3).

We describe next how the corresponding input instance for
PCI(Pfin), consisting of a query Qϕ, a database instance Iϕ,
and a distribution policy P ϕ, is defined.

The query Qϕ is formulated over variables w1, w0, and
xg, xg, yh, yh, for g ∈ {1, . . . ,m} and h ∈ {1, . . . , n}. Intu-
itively, these variables are intended to represent the Boolean
values true and false and the (negated) values of the vari-
ables xg, yh in ψ, respectively. We overload the notation `j,i
as follows: if `j,i is a negated literal ¬x in Cj , then `j,i also
denotes the variable x.

Let B+ def
= B \ {(0, 0, 0)} be the set of non-zero Boolean

triples and W+ def
= W \ {(w0, w0, w0)} the set of triples over

{w0, w1} that contain at least one w1.
We define Qϕ as the query with headQϕ = H(x1, . . . , xm)

and bodyQϕ
= Cons ∪ Struct(ψ), where

Cons
def
=

{
True(w1), False(w0)

}
∪

{
Neg(w1, w0), Neg(w0, w1)

}
∪

{
Cj(w) | j ∈ {1, . . . , k},w ∈W+

}

is a set of consistency atoms, representing valid combina-
tions of values for Neg-facts and satisfying combinations of
values for Cj-facts, and

Struct(ψ)
def
=
{
Neg(x, x) | x ∈ {x1, . . . , xm, y1, . . . , yn}

}
,

∪
{
Cj(`j,1, `j,2, `j,3) |
for each clause Cj = (`j,1 ∨ `j,2 ∨ `j,3)

}
is a set of atoms representing the logical structure of ψ: it
relates variable xg to xg and also variable yh to yh for each
g ∈ {1, . . . ,m} and h ∈ {1, . . . , n}, respectively. Addition-
ally, it relates all variables that represent literals occurring
in the same clause to each other. Furthermore, we define

Iϕ
def
=

{
True(1), False(0), Neg(1, 0), Neg(0, 1)

}
∪

{
Cj(b) | j ∈ {1, . . . , k},b ∈ B

}
,

which we partition into I−ϕ
def
= {Cj(0, 0, 0) | j ∈ {1, . . . , k}}

and I+
ϕ

def
= Iϕ \ I−ϕ .

Moreover, we define P ϕ to be the finite distribution policy
for Iϕ over a network N = {κ+, κ−} as

P ϕ(f) =

{
{κ+} if f ∈ I+

ϕ ,
{κ−} if f ∈ I−ϕ .

It remains to show that this mapping is a polynomial-time
reduction. Obviously, query Qϕ, instance Iϕ and distribu-
tion policy P ϕ can be computed in polynomial time from
ϕ.

4. TRANSFERABILITY
Although parallel-correctness provides a direct one-round

evaluation algorithm, it still requires a reshuffling of the data
for every query. It therefore makes sense, in the context of
multiple query evaluation, to consider scenarios in which
such reshuffling can be avoided. To this end, we introduce
the notion of parallel-correctness transfer which ensures that
a subsequent query Q′ can always be evaluated over a dis-
tribution for which a query Q is parallel-correct:

Definition 5. For two queries Q and Q′ over the same
input and output schema, parallel-correctness transfers from
Q to Q′ when Q′ is parallel-correct under every distribution
policy for which Q is parallel-correct.

As for parallel-correctness we first give a semantical char-
acterization before we study the complexity of parallel-cor-
rectness transfer.

Lemma 4.1. Parallel-correctness transfers from a CQ Q
to a CQ Q′ if and only if the following holds:

(C2) for every minimal valuation V ′ for Q′, there is a min-
imal valuation V for Q with V ′(bodyQ′) ⊆ V (bodyQ).

The two implications of Lemma 4.1 are shown in Propo-
sitions 4.2 and 4.3 below.

Proposition 4.2. Let Q and Q′ be CQs. If condition
(C2) holds, then, parallel-correctness transfers from Q to
Q′.

Proof. Let P be a distribution policy under which Q is
parallel-correct and let I be an instance. Then we show that
Q′ is parallel-correct as well on I under P . By monotonicity
of CQs,

⋃
x∈N Q

′(distP ,I(x)) ⊆ Q′(I). Thus it suffices to
show that for every fact f ∈ Q′(I), there is some valuation



for Q′ that allows to derive f on one of the chunks of I
under P . For f ∈ Q′(I), there is a minimal valuation V ′

for Q′ which satisfies on I for Q′ and derives f . That is,
V ′(bodyQ′) ⊆ I and V ′(headQ′) = f . Next, we show that
the facts required by V ′ for Q′ meet at some node under
P , which implies that the chunks of I under P indeed allow
deriving f .

For this, we rely on the assumption that there is a mini-
mal valuation V for Q, where V ′(bodyQ′) ⊆ V (bodyQ). Let
J = V (bodyQ). Then, by parallel-correctness of Q under
P , there is a valuation W and node κ ∈ N , such that
W (bodyQ) ⊆ distP ,J(κ) and W (headQ) = V (headQ). Be-
cause V is minimal and distP ,J(κ) ⊆ V (bodyQ), it must be
that V (bodyQ) = W (bodyQ). So, P maps all the facts in
J onto node κ, implying that all the facts in V ′(bodyQ′)
are mapped onto node κ under P (because V ′(bodyQ′) ⊆
V (bodyQ) = J).

Hence, Q′ is indeed parallel-correct under the distribution
policies for which Q is parallel-correct.

Proposition 4.3. Let Q and Q′ be CQs. If parallel-
correctness transfers from Q to Q′, then, condition (C2)
holds.

Proof. The proof is by contraposition. So, we assume
that there is a minimal valuation V ′ for Q′ for which there
is no valuation V for Q, where V ′(bodyQ′) ⊆ V (bodyQ). Let
m = |V ′(bodyQ′)|.

We distinguish two cases, depending on whether V ′ re-
quires only one fact or at least two facts. For both cases
we construct a network N and distribution policy P over N
for which Q is parallel-correct but Q′ is not, implying that
parallel-correctness does not transfer from Q to Q′.

(Case m = 1) Let V ′(bodyQ′) = {f}. Let N be a single-
node network, i.e., N def

= {κ}. For P we consider the dis-
tribution policy thats skips f , that is, maps P (f) to the
empty set, and maps every other fact in facts(D) onto node
κ. By assumption on V ′, none of the minimal valuations
for Q requires f . So it immediately follows by Lemma 3.1
that Q is parallel-correct under P . However, because V ′ is
minimal for Q′, Q′ needs f to derive V (headQ′) when only
f is given as input instance. Thus Q′ is not parallel-correct
under P which leads to the desired contradiction.

(Case m ≥ 2) Let I
def
= V ′(bodyQ′) = {f1, . . . ,fm}, N

def
=

{κ1, . . . , κm}, and let P be the mapping defined as follows:

• P (g) = N , for every g ∈ facts(D) \ I; and

• P (f i) = N \ {κi}, for every i.

Intuitively, on every instance J , either the facts in J meet on
some node under P , or I ⊆ J . By assumption, none of the
minimal valuations for Q requires all the facts in I, implying
thatQ is parallel-correct under P . Nevertheless, on instance
I under P , none of the nodes receives all the facts in I,
and there is no valuation that can derive V ′(headQ′) for a
strict subset of the facts in I (by minimality of V ′). So, Q′
is not parallel-correct under P which leads to the desired
contradiction.

The characterisation given by Lemma 4.1 allows us to pin-
point the complexity of parallel-correctness transfers. For a
formal statement we define the following algorithmic prob-
lem:

pc-trans:
Input: CQs Q and Q′
Question: Does parallel-correctness transfer from Q to
Q′?

In principle, Lemma 4.1, on which the following proofs
are based, talks about an infinite number of valuations over
the infinite domain dom. However, since our queries are
generic, the only observable property of the constants used
by some valuation is equality/inequality. It therefore suffices
to check valuations over an arbitrary finite domain with at
least as much constants as valuations for both queries can
use. This is stated more explicitly in the following claim.

Claim 1. Let Q and Q′ be CQs with variables x1, . . . , xm
and y1, . . . , yn, respectively. Moreover, for k = m + n let
domk = {1, . . . , k} be a subset of the (countably) infinite set
dom.

The following two conditions are equivalent.

1. For every minimal valuation V ′ for Q′ over dom there
is a minimal valuation V for Q over dom such that
V ′(bodyQ′) ⊆ V (bodyQ).

2. For every minimal valuation V ′ for Q′ over domk there
is a minimal valuation V for Q over domk such that
V ′(bodyQ′) ⊆ V (bodyQ).

Theorem 4.4. pc-trans is ΠP
3 -complete.

Proof (sketch). For the upper bound, we note that, by
Lemma 4.1, deciding parallel-correctness transfer is equiva-
lent to verifying that for each minimal valuation V ′ for Q′
there is a minimal valuation V for Q such that V ′(bodyQ′) ⊆
V (bodyQ). This, in turn, is equivalent to checking for each
valuation V ′ for Q′ that it is not minimal, which can be
witnessed by another valuation W ′ that derives the same
fact and requires strictly less facts, or that there is a mini-
mal valuation V for Q such that V ′(bodyQ′

ϕ
) ⊆ V (bodyQϕ

).

Non-minimality of valuation V can be witnessed by a valua-
tion W . Thanks to Claim 1, all valuations can be restricted
to domk = {1, . . . , k}, where k = m+n andQ,Q′ are queries
over variables x1, . . . , xm and y1, . . . , yn, respectively.

To prove membership in class ΠP
3 , it suffices to show

that there is an algorithm with a time bound polynomial
in |Q| + |Q′| such that for every pair (Q,Q′) of queries
it holds (Q,Q′) ∈ pc-trans if and only if for every Q′-
valuation V ′ there is a Q-valuation V and a Q′-valuation W ′

such that for every Q-valuation W , the algorithm accepts(
〈Q,Q′〉, V ′, 〈V,W ′〉,W

)
.

For input
(
〈Q,Q′〉, V ′, 〈V,W ′〉,W

)
the algorithm proceeds

as follows. First, it is checked whether W ′ contradicts the
assumed minimality of V ′, that is, whether W ′(headQ′) =
V ′(headQ′) as well as W ′(bodyQ′) ( V ′(bodyQ′). If this test
succeeds, the algorithm accepts because there is no require-
ment on a non-minimal Q′-valuation. Second, it is checked
in an analogous fashion whether W contradicts the assumed
minimality of V . If this test succeeds, the algorithm rejects.

Lastly, the algorithm continues with testing V ′(bodyQ′) ⊆
V (bodyQ). It accepts in case of satisfaction, and rejects oth-
erwise. All containment tests can be done in polynomial
time.

The lower bound is by a reduction from the ΠP
3 -complete

Π3-QBF-problem. The reduction is based on the character-
ization of parallel-correctness transfer by condition (C2) as
stated in Lemma 4.1.



Reduction function. Let ϕ = ∀x∃y∀zψ(x,y, z) be a for-
mula with a quantifier-free propositional formula ψ in 3-
DNF over variables x = (x1, . . . , xm), y = (y1, . . . , yn), and
z = (z1, . . . , zp).

Let k be the number of clauses of ψ and, for each j ∈
{1, . . . , k}, let Cj = (`j,1 ∧ `j,2 ∧ `j,3) denote the j-th (con-
junctive) clause of ψ.

The reduction function maps ϕ to a pair (Qϕ,Q′ϕ) of CQs
that will be described next. It will be obvious that this map-
ping can be computed in polynomial time. Query Qϕ uses
the variables w1, w0, which are intended to represent truth
and falseness, respectively, the variables of ψ and variables
u, for each variable u of ψ, representing the literal ¬u.5

Besides these variables, query Q′ϕ additionally uses the fol-
lowing variables

• sj , for every j ∈ {1, . . . , k}, intended to represent the
truth value of Cj , and

• rj , for every j ∈ {1, . . . , k}, intended to represent the
truth value of C1 ∨ · · · ∨ Cj .

We first describe the general construction, give an example
explaining its intuition afterwards and finally prove correct-
ness of the reduction.

The queries Qϕ and Q′ϕ are defined as follows:

headQϕ

def
= H(x1, . . . , xm, w1, w0)

bodyQϕ

def
=
{
YValh(w1), YValh(w0) | h ∈ {1, . . . , n}

}
∪ {Res(w1)} ∪ Fix ;

headQ′
ϕ

def
= H(x1, . . . , xm, y1, . . . , yn, w1, w0)

bodyQ′
ϕ

def
=
{
YValh(yh), YValh(yh) | h ∈ {1, . . . , n}

}
∪ {Res(w0), Res(rk)} ∪ Fix ∪Gates ∪ Circuit ,

where

Fix
def
=
{
XVal1(x1), . . . , XValm(xm), True(w1), False(w0)

}
is intended to “fix” truth values for x1, . . . , xm, w1, w0, while
the set

Gates
def
= {Neg(w0, w1), Neg(w1, w0)}
∪ {And(w1, w1, w1, w1), And(w0, w1, w1, w0),

And(w1, w0, w1, w0), And(w0, w0, w1, w0),
And(w1, w1, w0, w0), And(w0, w1, w0, w0),
And(w1, w0, w0, w0), And(w0, w0, w0, w0)}

∪ {Or(w1, w1, w1), Or(w0, w1, w1),
Or(w1, w0, w1), Or(w0, w0, w0)}

contains all atoms that are consistent with respect to the in-
tended meaning of negation, And- and Or-gates6 on w1, w0,
and

Circuit
def
= {Neg(u, u) | for each variable u in ψ}
∪ {And(`j,1, `j,2, `j,3, sj) |

for each clause Cj = (`j,1 ∧ `j,2 ∧ `j,3)}
∪ {Or(s1, s1, r1)}
∪ {Or(r1, s2, r2), . . . , Or(rk−1, sk, rk)}

is intended to represent a Boolean circuit (with output bit
rk) that evaluates ψ.

5If ` is a negated literal ¬u, we write ` also for u.
6The last position in a gate-atom represents the output bit
of the gate, the others the input bits.

Example 4.5. We obtain the queries displayed in Fig-

ure 1 for ϕ = ∀x1∃y1∃y2∀z1

(
(x1∧y1∧z1) ∨ (¬x1∧y2∧z1)

)
.

Note that ϕ /∈ Π3-QBF because no truth assignment with
z1 7→ 0 is satisfying for ψ. In particular, for the truth as-
signment βx : x1 7→ 1 there is no truth assignment βy such
that for every βz it holds (βx ∪ βy ∪ βz) |= ψ. We illustrate
why (Qϕ,Q′ϕ) /∈ pc-trans.

Let valuation V for Qϕ be defined by V (x1)
def
= βx(x1) = 1,

V (w1)
def
= 1 and V (w0)

def
= 0. This valuation is minimal for

Qϕ (because Qϕ is full) and requires the set V (bodyQϕ
) ={

YVal1(1), YVal1(0), Res(1), XVal1(1), True(1), False(0)
}

of facts.

We now argue why there is no minimal valuation V ′ for
Q′ϕ such that V ′(bodyQ′

ϕ
) ⊆ V (bodyQϕ

). If a valuation V ′

fulfills V ′(bodyQ′
ϕ

) ⊆ V (bodyQϕ
) it must map w0 7→ 0, w1 7→

1, x1 7→ 1, r2 7→ 1. Furthermore, it must map each of
(y1, y1) and (y2, y2) to some pair in {(0, 1), (1, 0)}. Thus,
V induces a truth assignment βy via βy(y1)

def
= V (y1) and

βy(y2)
def
= V (y2). Let V ∗ be the valuation that coincides

with V on all variables w0, wi, x1, x1, y1, y1, y2, y2 and maps
z1 7→ 0 and maps all other variables to the “correct” values
with respect to the semantics of the logical gates in Qϕ. In
particular, since (βx ∪ βy ∪ βz) 6|= ψ (where βz(z1)

def
= 0), we

get V ∗(r2) = 0. It is now easy to check that V ∗ <Q V , and
therefore that V is not minimal.

To complete the proof, we need to show that the map-
ping ϕ 7→ (Qϕ,Q′ϕ) is indeed a reduction, i.e. that ϕ is
in Π3-QBF if and only if parallel-correctness transfers from
Qϕ to Q′ϕ.

We start by some observations. We call a valuation for Qϕ
or Q′ϕ 0-1-valued, if its range is {0, 1} and it maps (w0, w1)
to (0, 1) and every pair (u, u) of variables from ψ to (0, 1)
or (1, 0). A 0-1-valued valuation is called consistent, if the
values V (sj) and V (rj), for j ∈ {1, . . . , k} are consistent
with the values V (u) for variables of ψ, in the obvious sense.
That is, V (sj) = 1 if and only if clause Cj evaluates to true
for the truth assignment βV obtained from V and V (rj) = 1
if and only if C1 ∨ · · · ∨ Cj evaluates to true.

It is easy to see that a 0-1-valued valuation V is consistent,
if and only if V (Circuit) ⊆ V (Gates), because inconsistency
requires facts in V (Circuit) that are not in V (Gates) and
likewise the existence of such facts implies inconsistency.

Claim 2. For every 0-1-valued valuation V of Qϕ the fol-
lowing conditions are equivalent.

(i) V is minimal;

(ii) V is consistent.

(only-if). Let ϕ = ∀x∃y∀zψ(x,y, z) be a formula with a
quantifier-free propositional formula ψ in 3-DNF such that
ϕ /∈ Π3-QBF. We show that there is a minimal valuation
V for Qϕ such that each valuation V ′ for Q′ϕ which satisfies
V ′(bodyQ′

ϕ
) ⊆ V (bodyQϕ

) is not minimal. From that we

can conclude by Lemma 4.1 that parallel-correctness does
not transfer from Qϕ to Q′ϕ.

Let βx be a truth assignment for x1, . . . , xm in ψ such
that for all truth assignments βy for y1, . . . , yn in ψ there is
a truth assignment βz for z1, . . . , zp such that (βx∪βy∪βz) 6|=
ψ.



Qϕ : H(x1, w1, w0) ← YVal1(w1), YVal1(w0), YVal2(w1), YVal2(w0), Res(w1),
XVal1(x1), True(w1), False(w0).

Q′ϕ : H(x1, x2, y1, w1, w0) ← YVal1(y1), YVal1(y1), YVal2(y2), YVal2(y2), Res(w0), Res(r2),
XVal1(x1), True(w1), False(w0),
. . . all atoms from Gates . . . ,
Neg(x1, x1), Neg(y1, y1), Neg(y2, y2), Neg(z1, z1),
And(x1, y1, z1, s1), And(x1, y2, z1, s2), Or(s1, s1, r1), Or(r1, s2, r2).

Figure 1: Output of the reduction function on input ϕ = ∀x1∃y1∃y2∀z1

(
(x1 ∧ y1 ∧ z1) ∨ (¬x1 ∧ y2 ∧ z1)

)
.

Let V be the valuation defined by V (x1, . . . , xm, w1, w0)
def
=

(βx(x1), . . . , βx(xm), 1, 0), which is minimal for Qϕ because
Qϕ is full.

Let V ′ be any valuation for Q′ϕ such that V ′(bodyQ′
ϕ

) ⊆
V (bodyQϕ

). In particular, Res(1) ∈ V ′(bodyQ′
ϕ

). Then,

valuations V and V ′ agree on variables x1, . . . , xm, w1, w0

because each atom in Fix is the only atom of Qϕ with
its particular relation symbol. Similarly, the YVali-atoms
in Qϕ and Q′ϕ ensure that V ′ maps each pair (yi, yi) to
(0, 1) or (1, 0). Let βy be the truth assignment defined
by βy(yi)

def
= V (yi), for every i ∈ {1, . . . , n}. Since ϕ /∈

Π3-QBF, there is a truth assignment βz such that (βx ∪
βy∪βz) 6|= ψ. Let V ∗ be the uniquely defined consistent 0-1-
valued valuation induced by (βx∪βy∪βz). Since V ∗ is consis-
tent, V ∗(Circuit) ⊆ V ∗(Gates) and therefore V ∗(bodyQϕ

) ⊆
V (bodyQϕ

). Furthermore, since (βx ∪ βy ∪ βz) 6|= ψ, we get

V ∗(rk) = 0 and therefore Res(1) 6∈ V ∗(bodyQϕ
) and, conse-

quently, V ∗(bodyQϕ
) ( V (bodyQϕ

), showing that V is not
minimal.

(if). Let ϕ = ∀x∃y∀zψ(x,y, z) be a formula in Π3-QBF
and let V ′ be an arbitrary valuation for Q′ϕ. We will show
that there exists a minimal valuation V for Qϕ such that
V ′(bodyQ′

ϕ
) ⊆ V (bodyQϕ

), and thus that parallel-correct-

ness transfers from Qϕ to Q′ϕ, again by Lemma 4.1.
We assume in the following that all quantified variables

appear (possibly negated) in ψ. Let c0
def
= V ′(w0) and

c1
def
= V ′(w1). Since, neither Q′ϕ nor Qϕ uses any constant

symbols, minimality of V ′ is not affected, if V ′ is composed
with any bijection of the domain. The same holds for every
valuation V and the statement V ′(bodyQ′

ϕ
) ⊆ V (bodyQϕ

),

as long as V ′ and V are composed with the same bijection.
Therefore, we can assume without loss of generality that
V ′(w0) = 0 and V ′(w1) ∈ {0, 1}.

We distinguish between three cases depending on whether
dom(V ′) ⊆ {0, 1} and V ′(w1) = 1.

Case 1 (dom(V ′) ⊆ {0, 1} and V ′(w1) = 1): Let βx be
the partial truth assignment for the variables x1, . . . , xm in ψ
defined by βx(xi) = V ′(xi), for every i ∈ {1, . . . ,m}. Since,
ϕ ∈ Π3-QBF, there exists a partial truth assignment βy for
the variables y1, . . . , yn in ψ such that for each partial truth
assignment βz for the variables z1, . . . , zp we have (βx∪βy∪
βz) |= ψ. For concreteness let βz(zi)

def
= 0, for i ∈ {1, . . . , p}

and β
def
= βx ∪ βy ∪ βz.

Let V be the uniquely defined 0-1-valued consistent valu-
ation induced by β. Since V is consistent it is also minimal
by Claim 2, and as β |= ψ, V (rk) = 1. Thanks to the lat-

ter, V ′(bodyQ′
ϕ

) ⊆ V (bodyQϕ
) follows easily and Case 1 is

complete.

Case 2 (dom(V ′) ⊆ {0, 1} and V ′(w1) = 0): Let V be
defined by

V (u)
def
=

{
V ′(u) if u ∈ {w0, w1, x1, . . . , xn},
0 otherwise.

It is easy to see that V ′(bodyQ′
ϕ

) ⊆ V (bodyQϕ
). Further-

more, V ′ is minimal as every fact from V (bodyQϕ
) either

stems from an atom with (only) head variables or is in the
unavoidable set V (Gates).

Case 3 (For some g, V ′(xg) /∈ {c0, c1}): We recall that
by our assumptions, c0 = 0 = V ′(w0) and c1 = V ′(w1) ∈
{0, 1}. The following argument works for both subcases,
c1 = 1 and c1 = 0. We call a variable xg foul if V ′(xg) /∈
{c0, c1}. Likewise, we call a clause foul if it contains (pos-
itively or negatively) some foul variable. Let G be the set
of all indices g for which xg is foul and J be the set of all
indices j of foul clauses. Furthermore, let7 a = V ′(xg) for
the minimal index g ∈ G.

We define valuation V by

V (u)
def
=



V ′(u) if u ∈ {w0, w1, x1, . . . , xm},
c1 if u ∈ {y1, . . . , yn, z1, . . . , zp},
c0 if u ∈ {y1, . . . , yn, z1, . . . , zp},
a if u = xg and xg is foul,

c0 if u = xg and V ′(xg) = c1,

c1 if u = xg and V ′(xg) = c0.

For variables sj , V (sj)
def
= c1, if Cj is foul or for all its literals

`, it holds V (`) = c1, otherwise V (sj)
def
= c0. For variables rj ,

V (rj)
def
= c1, if V (si) = c1, for some i ≤ j and V (rj)

def
= c0,

otherwise.
It is clear that V ′(bodyQ′

ϕ
) ⊆ V (bodyQϕ

) holds, but we

can not expect that V is minimal. There might be some
And-facts in V (Circuit) resulting from clauses that can be
avoided by changing the valuation for some variables zi.
However, we can show that every minimal valuation V ∗ con-
tained in V fulfills V ′(bodyQ′

ϕ
) ⊆ V ∗(bodyQϕ

) and thereby

yields (C3).
To this end, let V ∗ be a minimal valuation such that

V ∗ ≤Q V . We show first that V ∗ has to produce most
facts from V (bodyQϕ

). This is immediate for all facts from

V ({YValh(yh), YValh(yh) | h ∈ {1, . . . , n}}), and also for
those from V (Fix ), and V (Gates).
7In fact, any value not in {c0, c1} would do.



Any facts of the form V (Neg(u, u)) that do not occur in
V (Gates) are of the form Neg(V ′(xg), a), for some foul vari-
able xg. As xg occurs in the head, and there is at most one
such fact per foul variable, these facts can not be avoided in
V ∗(bodyQϕ

). As all facts of the form V ∗(Neg(u, u)) have to

be in V ∗(bodyQϕ
) and all variables xi, yi occur in headQϕ ,

we can conclude that V ∗ has to agree with V for all variables
of the form xi, xi, yi, yi and on w0 and w1.

Therefore, it is clear for all facts from V ′(bodyQ′
ϕ

) except

Res(c1) that they are captured by V ∗(bodyQϕ
). It therefore

only remains to show Res(c1) ∈ V ∗(bodyQϕ
).

Let xg be the foul variable that was used to define a
def
=

V ′(xg) and let Cj be some clause in which it occurs. Thus,
by definition of V there is an And-fact in V (Circuit) with
value a in one of its first three positions and with c1 in its
fourth position. Furthermore, all And-facts in V (Circuit)
with a-values have c1 in their fourth position. Therefore,
V ∗(Circuit) needs to contain at least one And-fact with a
in one of its first three positions and with c1 in its fourth
position. That is, V ∗(si) = c1, for at least one i. As
V ∗(Circuit) can only contain Or-facts from V (Gates), it
follows that V ∗(rh) = c1, for all h ≥ i and, in partic-
ular, for h = k. Therefore, Res(c1) ∈ V ∗(bodyQϕ

) and

V ′(bodyQ′
ϕ

) ⊆ V ∗(bodyQϕ
).

It is an easy observation that, if we require each valuation
of Q to be minimal, then condition (C2) yields a better, ΠP

2 ,
complexity bound. Surprisingly, in this case, we even get a
complexity drop to NP, as will be shown in Theorem 4.8
below. We next introduce the notions needed for this result.

Definition 6. A conjunctive query Q is strongly minimal
if all its valuations are minimal.

We give some examples illustrating this definition. In
Lemma 4.9, we present a sufficient condition for CQs to be
strongly minimal.

Example 4.6. For an example of a strongly minimal CQ,
consider query Q1,

T (x1, x2, x2, x4)← R(x1, x2), R(x2, x3), R(x3, x4).

Notice that, by fullness of Q1, there are no two distinct val-
uations for Q1 that derive the same fact. Hence, every val-
uation of Q1 must indeed be minimal.

For another example, consider the query Q2,

T ()← R1(x1, x2), R2(x2, x3), R3(x3, x4).

As each atom in the body of Q2 has a different relation sym-
bol, each valuation of Q2 yields exactly three different facts
and therefore, each valuation is minimal.

It is easy to see that every strongly minimal CQ is also a
minimal CQ, but the converse is not true as witnessed by
the query of Example 3.2, which is minimal but not strongly
minimal.

The following lemma now provides a characterization of
parallel-correctness transfer for strongly minimal queries.

Lemma 4.7. Let Q′ be a CQ and let Q be a strongly min-
imal CQ. Parallel-correctness transfers from Q to Q′ if and
only if the following holds:

(C3) there is a simplification θ for Q′ and a substitution ρ
for Q such that bodyθ(Q′) ⊆ bodyρ(Q).

Proof. We show that, for strongly minimal Q, (C2) and
(C3) are equivalent.

We first show that (C3) implies (C2). It suffices to show
that if (C3) holds then for every minimal valuation V ′ for
Q′, there is a valuation V for Q such that V ′(bodyQ′) ⊆
V (bodyQ). By strong minimality of Q, we can then conclude
that V is actually minimal.

Let V ′ be a minimal valuation for Q′ and let θ and ρ be
as in (C3). As θ is a simplification, headθ(Q′) = headQ′ and
bodyθ(Q′) ⊆ bodyQ′ . Therefore (V ′ ◦ θ) is also a valuation

for Q′ with (V ′ ◦ θ)(bodyQ′) = V ′(bodyθ(Q′)) ⊆ V ′(bodyQ′)

and by minimality of V ′ the latter inclusion is actually an
equality.

By (C3), bodyθ(Q′) ⊆ bodyρ(Q), therefore V ′ is a partial

valuation for ρ(Q). Let V ′′ be some arbitrarily chosen ex-
tension of V ′ that is a (total) valuation for ρ(Q). Then,
V ′(bodyQ′) = V ′(bodyθ(Q′)) = V ′′(bodyθ(Q′))

⊆ V ′′(bodyρ(Q)) = (V ′′ ◦ ρ)(bodyQ).

Thus, V
def
= V ′′ ◦ ρ is the desired valuation for Q.

We next show that (C2) implies (C3). Actually, this impli-
cation even holds without the assumption that Q is strongly
minimal. Let us therefore assume that (C2) holds. We
choose θ as an arbitrary simplification that minimizes Q′.
Such a simplification can be found thanks to [7]. In partic-
ular, θ(Q′) is a minimal CQ that is equivalent to Q′.

Let V ′ be an injective valuation for Q′. We claim that
V ′ ◦ θ is a minimal valuation for Q′. Towards a contradic-
tion, let us assume that there is a valuation V ′′ such that
V ′′ <Q′ V ′ ◦ θ. Since θ is the identity on the head variables,
V ′ is injective, and V ′ and V ′′ agree on headQ, we can con-
clude that ((V ′)−1◦V ′′)(headQ′) = headQ′ , thus (V ′)−1◦V ′′
is a homomorphism from Q to ((V ′)−1 ◦ V ′′)(Q). Further-
more, ((V ′)−1 ◦ V ′′)(bodyQ) ⊆ bodyθ(Q) ⊆ bodyQ, therefore

the identity is a homomorphism from ((V ′)−1◦V ′′)(Q) to Q.
Together, ((V ′)−1◦V ′′)(Q) is equivalent to Q. Furthermore,
((V ′)−1◦V ′′)(bodyQ) ( (V ′)−1(V ′(bodyQ)) = bodyθ(Q), con-

tradicting the minimality of θ. We thus conclude that V ′ ◦θ
is indeed a minimal valuation for Q′.

By (C2), there exists a minimal valuation V for Q such
that V ′(bodyθ(Q′)) = (V ′◦θ)(bodyQ′) ⊆ V (bodyQ). Now, let

f be an extension of (V ′)−1, which maps values that occur
in V (bodyQ) but not in V ′(bodyQ′) in an arbitrary fashion
and let ρ

def
= (f ◦ V ). Then,

bodyθ(Q′) = (V ′)−1(V ′(bodyθ(Q′)))

= f(V ′(bodyθ(Q′))) = f((V ′ ◦ θ)(bodyQ′))

⊆ f(V (bodyQ)) = ρ(bodyQ) = bodyρ(Q).

Thus, θ and ρ witness condition (C3).

Theorem 4.8. pc-trans restricted to inputs with strongly
minimal Q is NP-complete.

Proof (sketch). The upper bound follows from Lemma
4.7 by the observation that condition (C3) can be checked
by a straighforward NP-algorithm. The lower bound follows
from Proposition 5.3 below.



Theorem 4.8 assumes that it is known that Q is strongly
minimal. We complete the picture by investigating the com-
plexity of the problem to decide whether a CQ is strongly
minimal.

We first give a lemma that generalizes the above exam-
ples into a sufficient (but not necessary) condition for strong
minimality. In particular, Lemma 4.9 implies that every full
CQ and every CQ without self-joins is strongly minimal.
We say that an atom in a CQ is a self-join atom when the
relation name of that atom occurs more than once in Q.
For instance, in the query T () ← R(x1, x2), R(x2, x1) both
R(x1, x2) and R(x2, x1) are self-join atoms.

Lemma 4.9. Let Q be a CQ. Then Q is strongly minimal
when the following condition holds: if a variable x occurs at
a position i in some self-join atom and not in the head of
Q, then all self-join atoms have x at position i.

Proof (sketch). The proof is by contraposition, i.e., we
show that if there is a valuation for Q which is not minimal
then the condition is not satisfied. To this end, let V and V ′

be valuations for Q which agree on the head-variables and
where V ′(bodyQ) ( V (bodyQ).

Then, there are at least two atomsA1 = R(x1, . . . , xk) and
A2 = R(y1, . . . , yk) in the body of Q that collapse under V ′,
but not under V . That is, V ′(A1) = V ′(A2) and V (A1) 6=
V (A2). So, under V ′ all the variables in A1 and A2 on
matching positions must be mapped on the same constant,
V ′(xi) = V ′(yi) for each i ∈ {1, . . . , k}, while for V there is
a position j ∈ {1, . . . , k} where this is not the case, V (xj) 6=
V (yj). Obviously, at least one of these variables must then
be a non-head variable. So, either only xj is a head variable,
or only yj is a head variable, or both are distinct non-head
variables. In both cases the condition is not satisfied.

Example 4.10. For an example of a strongly minimal
CQ that does not satisfy the condition in Lemma 4.9, con-
sider query Q3,

T ()← R(x1, x2), R(x2, x1).

Notice that Q3 is indeed strongly minimal, because every val-
uation for Q3 either maps x1 and x2 on the same value, and
thus requires only one fact where both values are equal, or
maps x1 and x2 onto two distinct values, and thus requires
exactly two facts where both values are distinct.

Finally, we establish the complexity of deciding strong
minimality.

Lemma 4.11. Deciding whether a CQ is strongly minimal
is coNP-complete.

Proof (sketch). The complement problem is easily seen
to be in NP: for two guessed valuations V ∗, V (encoded in
length polynomial of the query Q) it can be checked in poly-
nomial time whether V ∗ <Q V .

A lower bound for the complement problem can be ob-
tained via a reduction from 3sat.

5. FAMILIES OF DISTRIBUTION
POLICIES

Parallel-correctness transfer can be seen as a generaliza-
tion of parallel-correctness. In both cases, the goal is to de-
cide whether a query can be correctly evaluated by evaluat-
ing it locally at each node. However, for parallel-correctness

transfer, the question whether Q′ is parallel-correct is not
asked for a particular distribution policy but for the fam-
ily of those distribution policies, for which Q is parallel-
correct.8

In this section, we study the parallel-correctness problem
for other kinds of families of distribution policies that can
be associated with a given query Q. In Section 5.1, we will
identify classes of families of policies, for which (C3) char-
acterizes parallel-correctness. For these classes we conclude
that it is NP-complete to decide, whether for the family F
of policies associated with some given CQ Q, a CQ Q′ is
parallel-correct for all distributions from F . In Section 5.2,
we will see that this, in particular, holds for the families of
distribution policies related to the practical Hypercube algo-
rithm, that was previously investigated in several works [3,
5, 6, 8, 9]. In fact, we even show that this holds for a more
general class of distribution policies specified in a declarative
formalism.

5.1 Parallel-correctness
We start with the following definition:

Definition 7. A query Q is parallel-correct for a family F
of distribution policies if it is parallel-correct under every
distribution policy from F .

We call a distribution policy P Q-generous for a CQ Q, if,
for every valuation V for Q, there is a node κ that contains
all facts from V (bodyQ). A family of distribution policies
F is Q-generous if every policy in F is. For an instance I,
a distribution policy P is called (Q, I)-scattered if for each
node κ there is a valuation V for Q, such that distP ,I(κ) ⊆
V (bodyQ). We then say that a family F of distribution
policies is Q-scattered if F contains a (Q, I)-scattered policy
for every I. A (Q, I)-scattered policy that is alsoQ-generous
yields the finest possible partition of the facts of I and thus,
intuitively, scatters them as much as possible.

Lemma 5.1. Let Q be a CQ and let F be a family of dis-
tribution policies that is Q-generous and Q-scattered. Then
for every CQ Q′, Q′ is parallel correct for F if and only if:

(C3) there is a simplification θ for Q′ and a substitution ρ
for Q such that bodyθ(Q′) ⊆ bodyρ(Q).

We emphasize that Lemma 5.1 uses the same condition (C3)
as Lemma 4.7.

Proof (sketch). (if) Let I be a database for Q′, P a
distribution policy from F , and let θ and ρ be as guaranteed
by (C3). We show that each fact from Q′(I) is produced at
some node. Let V ′ be a valuation that yields some fact
h

def
= V ′(headQ′) and let V ′′ be an arbitrary extension of V ′

for ρ(Q). As θ is a simplification, (V ′ ◦ θ) also yields the
fact h. By (C3) we get (V ′ ◦ θ)(bodyQ′) = V ′(bodyθ(Q′)) ⊆
V ′′(bodyρ(Q)) = (V ′′ ◦ρ)(bodyQ). As P is Q-generous, there

is some node κ that has all facts from (V ′′ ◦ ρ)(bodyQ) and
therefore all facts from (V ′ ◦ θ)(bodyQ′), and thus h is pro-
duced at κ.

(only-if) Suppose Q′ is parallel-correct under all distribu-
tion policies in F . Let V ′ be some injective valuation for
Q′. Denote I

def
= V ′(bodyQ′) and h

def
= V ′(headQ′). Let P be

8A family of distribution policies is just a set of distribution
policies.



some (Q, I)-scattered distribution policy from F . Because
Q′ is parallel-correct under P , there must be a node κ that
outputs h when I is distributed according to P . There-
fore, there is a valuation W ′ for Q′ such that κ contains
all facts from W ′(bodyQ′) and W ′(headQ′) = h. We claim

that θ
def
= (V ′)−1 ◦ W ′ is a simplification of Q′. Indeed,

this substitution is well-defined thanks to the injectivity of
V ′ and furtermore ((V ′)−1 ◦ W ′)(headQ′) = headQ′ and
((V ′)−1 ◦ W ′)(bodyQ′) ⊆ bodyQ′ , as W ′(bodyQ′) ⊆ I =

V ′(bodyQ′) and (V ′)−1 maps I back to bodyQ′ .
As P is (Q, I)-scattered, there is a valuation V such that

distP ,I(κ) ⊆ V (bodyQ). Then, let g be some mapping from
img(V ) to var such that for all d ∈ img(W ′), g(d) = g′(d).
We define the renaming ρ

def
= g ◦V and show that with these

choices, bodyθ(Q′) ⊆ bodyρ(Q), and thus (C3) holds.
Let R(x1, . . . , xk) ∈ bodyθ(Q′). Then, there is an atom

R(y1, . . . , yk) ∈ bodyQ′ with W ′(R(ȳ)) ∈ distP ,I(κ) and, for

each i, xi = (V ′)−1(W ′(yi)). So, as distP ,I(κ) ⊆ V (bodyQ),
W ′(R(ȳ)) ∈ V (bodyQ) and there is an atom R(z1, . . . , zk) ∈
bodyQ such that W ′(R(ȳ)) = V (R(z̄)). Clearly, W ′(yi) =
V (zi) for all i. By definition of g, it then follows that xi =
(V ′)−1(W ′(yi)) = g(V (zi)), for all i. Thus, R(x1, . . . , xk) is
in bodyρ(Q), as desired.

Theorem 5.2. It is NP-complete to decide, for given CQs
Q and Q′, whether Q′ is parallel-correct for Q-generous and
Q-scattered families of distribution policies.

The proof of this theorem shows in particular, that Q′ is
either parallel-correct for all Q-generous and Q-scattered
families of distribution policies or for none of them.

Proof (sketch). The upper bound follows immediately
from Lemma 5.1 and the fact that (C3) can be checked by an
NP-algorithm. Indeed such an algorithm only needs to guess
θ and ρ and to verify (in polynomial time) that bodyθ(Q′) ⊆
bodyρ(Q).

The lower bound follows by Lemma 5.1 and the following
Proposition 5.3.

Proposition 5.3. It is NP-hard to decide, whether for
CQs Q and Q′ condition (C3) holds. This statement re-
mains true if either Q or Q′ is restricted to acyclic queries.
It also remains true if both CQs are Boolean and if Q is full.

Remark 5.4. The proof of Proposition 5.3 in both cases
(Q acyclic or Q′ acyclic) is by a reduction from graph 3-
colorability. The first reduction, in which the input graph
is encoded in Q′ and the valid color-assignments in Q is
straightforward. As it only uses a fixed number of colors, Q
can be made acyclic by adding an atom to Q that contains
all allowed colors.

The second reduction, in which the graph is encoded in Q
and the valid color-assignments in Q′, is a bit more involved.

The reader may now wonder whether NP-hardness re-
mains when both Q and Q′ are required to be acyclic. When
relations of arbitrary arity are allowed, this is indeed the
case: acyclicity is then easily achieved by using one atom
containing all variables of the query. Under bounded-arity
database schemas, however, the complexity of parallel-cor-
rectness transfer for acylic queries remains open.

5.2 Hypercube Distribution Policies
In the following, we give a short definition of Hypercube

distributions and settle the complexity of the parallel-cor-
rectness transfer problem for families H(Q) of Hypercube
distributions for some CQ Q with the help of the results of
Section 5.1. We highlight how Hypercube distributions can
be specified in a rule-based fashion, which we consider useful
also for more general distributions.

Let Q be a conjunctive query with variables x1, . . . , xk.
A collection H = (h1, . . . , hk) of hash functions9 (called a
hypercube in the following) determines a hypercube distribu-
tion PH for Q in the following way. For each i ∈ {1, . . . , k},
we let Ai

def
= img(hi) and define the address space A of PH

as the cartesian product A1 × · · · ×Ak.
In a nutshell, PH has one node per address in A and

distributes, for every valuation V of Q, every fact f =
V (A), where A is an atom of Q, to all nodes whose ad-
dress (a1, . . . , ak) satisfies ai = hi(V (xi)), for all variables
xi occurring in A.

For the declarative specification of PH we make use of
predicates10 bucket i and bucket∗i , where bucket i(a, b) holds,
if hi(a) = b, and bucket∗i (b) holds, if b ∈ img(hi).

With these predicates, PH can be specified by stating, for
each atom R(y1, . . . , ym) of Q, one rule

TR(z1, . . . , zk; y1, . . . , ym)←R(y1, . . . , ym),

B1, . . . , Bk.

Here, for each i ∈ {1, . . . , k}, Bi is bucket i(xi, zi), if xi oc-
curs in y1, . . . , ym, and Bi is bucket∗i (zi), otherwise.

The semantics of such a rule is straightforward. For each
valuation V of the variables z1, . . . , zk, x1, . . . , xk, that makes
the body of the rule true, the fact R(V (y1), . . . , V (ym)) is
distributed to the node with address (V (z1), . . . , V (zk)). We
emphasize that the variables y1, . . . , ym need not be pairwise
distinct and that {y1, . . . , ym} ⊆ {x1, . . . , xk}.

Remark 5.5. It is evident that one could use more gen-
eral rules to specify distribution policies. More than one
atom with a database relation could be in the body, and there
could be other additional predicates than those derived from
hashing functions. Furthermore, the address space could be
defined differently.

For a CQ Q, we denote by HQ the family of distribution
policies {PH | H is a hypercube for Q}.

Lemma 5.6. Let Q be a CQ. Then HQ is Q-generous and
Q-scattered.

Proof. Let Q be a CQ with vars(Q) = {u1, . . . , uk}.
We first show that every policy PH ∈ HQ is Q-generous.

To this end, let H be a hypercube and let V be a val-
uation for Q. Then, by definition, for the node κ with
address (h1(V (u1)), . . . , hk(V (uk))), κ ∈ PH(f) for every
f ∈ V (bodyQ).

We now show thatHQ isQ-scattered. Thereto, let I be an
instance. For every i ≤ k, we choose Ai

def
= adom(I) and let

hi(a)
def
= a, for every a ∈ Ai. Let κ be an arbitrary node and

9A hash function is a partial mapping from dom to a finite
set whose elements are sometimes referred to as buckets.

10For the purpose of specification it is irrelevant whether
these predicates are materialized in the database.



let (a1, . . . , ak) be its address. Let V be the valuation map-
ping ui to ai, for each i. Let R(d1, . . . , dm) ∈ distPH ,I(κ)
thanks to some rule

TR(z1, . . . , zk; y1, . . . , ym)←R(y1, . . . , ym),

B1, . . . , Bk.

By definition of the hash functions, every valuation that sat-
isfies the body of this rule, maps xi to ai, for every xi that
appears in R(y1, . . . , ym). However, as this valuation coin-
cides with V on y1, . . . , ym, it maps R(y1, . . . , ym) to an ele-
ment of V (bodyQ). Therefore, distPH ,I(κ) ⊆ V (bodyQ).

Corollary 5.7. It is NP-complete to decide, for given
conjunctive queries Q,Q′, whether Q′ is parallel-correct for
HQ.

Remark 5.8. It is easy to see that Lemma 5.6 and then
the upper bound of Corollary 5.7 holds for more general fam-
ilies of distribution policies. As an example, one could add
further atoms of Q as “filters” to the bodies of the above
rules.

6. CONCLUSIONS
We have introduced parallel-correctness as a framework

for studying one-round evaluation algorithms for the eval-
uation of queries under arbitrary distribution policies. We
have obtained tight bounds on the complexity of deciding
parallel-correctness and the transferability problem for con-
junctive queries. For general conjunctive queries, these com-
plexities reside in different levels of the polynomial hierarchy
(even when considering Hypercube distributions). Since the
considered problems are static analysis problems that re-
late to queries and not to instances (at least in the case of
transferability), such complexities do not necessarily put a
burden on practical applicability. Still, it would be inter-
esting to identify fragments of conjunctive queries or partic-
ular classes of distribution policies that could render these
problems tractable. In addition, it would be interesting to
explore more expressive classes of queries like unions of CQs
and CQs with negation, and other families of distribution
policies.

The notion of parallel-correctness is directly inspired by
Hypercube where the result of the query is obtained by
aggregating (through union) the evaluation of the original
query over the distributed instance. Other possibilities are
to consider more complex aggregator functions than union
and to allow for a different query than the original one to
be executed at computing nodes.
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