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a b s t r a c t

Organizations providing home care services are inclined to optimize their activities in order to meet the con-

stantly increasing demand for home care. In this context, home care providers are confronted with multiple,

often conflicting, objectives such as minimizing their operating costs while maximizing the service level of-

fered to their clients by taking into account their preferences. This paper is the first to shed some light on

the trade-off relationship between these two objectives by modeling the home care routing and scheduling

problem as a bi-objective problem. The proposed model accounts for qualifications, working regulations and

overtime costs of the nurses, travel costs depending on the mode of transportation, hard time windows, and

client preferences on visit times and nurses. A distinguishing characteristic of the problem is that the schedul-

ing problem for a single route is a bi-objective problem in itself, thereby complicating the problem consid-

erably. A metaheuristic algorithm, embedding a large neighborhood search heuristic in a multi-directional

local search framework, is proposed to solve the problem. Computational experiments on a set of benchmark

instances based on real-life data are presented. A comparison with exact solutions on small instances shows

that the algorithm performs well. An analysis of the results reveals that service providers face a considerable

trade-off between costs and client convenience. However, starting from a minimum cost solution, the average

service level offered to the clients may already be improved drastically with limited additional costs.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In the European Union, the population share of persons older

than 60 was 17 percent in 1980 and increased to 22 percent in

2004/5 (it is expected to reach 32 percent in 2030). Life expectancy

of men (women) has risen from 68 (76) years to 74 (80) years during

the same time period (European Commission, 2007). Increased life

expectancy goes hand in hand with increased demand for care. In

addition, many elderly people prefer to grow old in the privacy of

their homes rather than in a nursing home. On the other hand,

willingness for informal care by relatives is decreasing. This is partly

due to the fact that women and men are both working (Tarricone

& Tsouros, 2008). Therefore, organizations providing home care

services are inclined to optimize their activities in order to meet

the constantly increasing demand for home care (Koeleman, Bhulai,

& van Meersbergen, 2012). This situation gave rise to a number of
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ublications dealing with the daily routing and scheduling of home

are workers in the last couple of years (an overview is given in

able 1). Most of them are application inspired and therefore deal

ith different variants of the problem.

However, several common characteristics can be identified. First

f all, most works consider the total distance traveled or the rout-

ng costs of the nurses in the objective function (see e.g. Akjiratikarl,

enradee, & Drake, 2007; Begur, Miller, & Weaver, 1997; Eveborn, Flis-

erg, & Rönnqvist, 2006; Eveborn, Rönnqvist, Einarsdóttir, Eklund,

íden, & Almroth, 2009; Hiermann, Prandtstetter, Rendl, Puchinger,

Raidl, 2015; Mankowska, Meisel, & Bierwirth, 2014; Rasmussen,

ustesen, Dohn, & Larsen, 2012; Trautsamwieser, Gronalt, & Hirsch,

011), often in addition to a number of other terms. Besides overtime

osts, which can easily be combined with routing costs, these other

erms usually account for nurse or client inconvenience. The former

spect involves, e.g. the penalization of assignments to clients that

he respective care worker does not like. The latter aspect concerns,

.g. penalties for deviations from preferred visit times or from the

et of preferred nurses. Trautsamwieser et al. (2011) consider seven

ifferent terms in the objective function and Hiermann et al. (2015)

onsider as many as 13 (see Table 1, column “# OF terms”).
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1

Related work on daily home care worker routing and scheduling problems.

Reference # OF terms TW Skills Nurse-client Work time

Akjiratikarl et al. (2007) 1 x − − x

Begur et al. (1997) 1 − − − x

Bertels and Fahle (2006) 5 x x x x

Cheng and Rich (1998) 2 x x − −
Eveborn et al. (2006, 2009) >7 x x x x

Hiermann et al. (2015) 13 x x x x

Kergosien, Lenté, and Billaut (2009) 1 x x x x

Mankowska et al. (2014) 3 x x − −
Nickel et al. (2012) 4 x x x x

Rasmussen et al. (2012) 3 x − x x

Trautsamwieser et al. (2011) 7 x x x x
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A second common characteristic is the consideration of prefer-

nces of nurses or clients, e.g. in the objective function as mentioned

bove. Column “Nurse-Client” in Table 1 indicates whether a paper

onsiders preferences of nurses for clients, preferences of clients for

urses or service consistency, i.e. if an attempt is made to keep the

umber of different nurses per client low.

Third, a majority of the available studies consider hard time win-

ows on the start of service (see Table 1, column “TW”). In Austria, for

xample, home care organizations split the day into about five time

lots of up to four hours per slot, which usually gives rise to such time

indows.

Another common characteristic is the consideration of skills

nd/or skill levels (Table 1, column “skills”). In most applications,

ome of the home care workers are registered nurses while others are

nly qualified for housekeeping or personal hygiene tasks. Finally, in

ddition to skills, usually also working time regulations are taken into

ccount (see Table 1, column “Work time”).

Besides the daily routing and scheduling problem, authors have

lso addressed the long term problem. Nickel, Schröder, and Steeg

2012) look at weekly schedules and link them to the opera-

ional planning problem. Weekly home care scheduling problems

re also addressed in, e.g., Borsani, Matta, Beschi, and Sommaruga

2006), Gamst and Jensen (2012), Cappanera and Scutellà (2013),

aya Duque, Castro, Sörensen, and Goos (2015) and Trautsamwieser

nd Hirsch (2014), while Nowak, Hewitt, and Nataraj (2013) investi-

ate planning horizons of two to three months, anticipating future

equests.

Successful implementations of home health care scheduling

ools are described, e.g., in Eveborn et al. (2006, 2009) or Begur

t al. (1997). An overview of home care routing and scheduling and

elated problems can be found in Castillo-Salazar, Landa-Silva, and

u (2015). More information on home care worker scheduling is

rovided in the survey by Gutiérrez, Gutiérrez, and Vidal (2013) and

n personnel scheduling in general by Van den Bergh, Beliën, De

ruecker, Demeulemeester, and De Boeck (2013) and De Bruecker,

an den Bergh, Beliën, and Demeulemeester (2015).

In this paper the focus is on the daily home care routing and

cheduling problem. In almost all related studies client inconve-

ience is either penalized in the objective function or considered in

erms of constraints. The first approach assumes that the decision

aker is able to provide appropriate weights for each term in the

bjective function. In the second approach strict bounds on client in-

onvenience levels have to be respected.

In our opinion, assigning weights to different terms in the objec-

ive function a priori can be a difficult task and allowing no deviations

rom pre-defined client inconvenience levels may be impractical.

hus, the aim of the current paper is to shed some light on the trade-

ff relationship between cost and client inconvenience in the context

f home care routing and scheduling. For this purpose we model

he home care routing and scheduling problem as a bi-objective

roblem. To the best of our knowledge, this is the first time.
The paper is organized as follows. In Section 2, we introduce the

i-objective home care routing and scheduling problem and we de-

ise a mixed integer problem formulation that is strengthened by

eans of several families of valid inequalities. Embedded into the

ell-known ε-constraint scheme, we solve small instances to op-

imality. In Section 3, we propose several approaches to solve the

cheduling subproblem which is itself a bi-objective problem. We

hen design a metaheuristic solution framework that is based on

ulti-directional local search (Tricoire, 2012) to solve instances of

ealistic size (see Section 4). Finally, we analyze the trade-off be-

ween cost and patient inconvenience on a set of new instances in

ection 5. These instances are derived from available data from differ-

nt home health care organizations in Austria and are available on-

ine (http://alpha.uhasselt.be/kris.braekers). Conclusions and direc-

ions for future research are given at the end of the paper.

. Problem description

.1. Problem definition

The Bi-objective Home Care Routing and Scheduling Problem (BI-

CRSP) may be defined as follows. Given a set of nurses and a set

f jobs to be performed at patient locations on a single day, the goal

s to find a route and schedule for each nurse, indicating the jobs to

erform, in which order and at what time.

Nurses have a start and end location (typically their home loca-

ion), a time window in which they are available to work, and a reg-

lar and maximum working time. It is assumed that nurses are paid

or their regular working time regardless of the amount of work they

o. Working overtime is allowed at a certain cost, although the total

orking time cannot exceed the maximum. Each nurse uses a certain

ode of transportation (e.g. car, public, …), while other nurses may

se another mode. Besides, nurses have a certain level of qualification

ndicating their ability to perform a certain type of job, thereby mak-

ng some nurse-job combinations infeasible. Lunch breaks for nurses

re not considered explicitly, as nurses generally take breaks at their

wn convenience whenever possible. The time at which a job may

e started is restricted by a hard time window. When nurses arrive

efore the start of the hard time window, they have to wait.

Two objectives are considered: minimizing total costs and mini-

izing client inconvenience. The former consists of the sum of travel

osts and overtime costs of the nurses, while the latter depends on

atient preferences regarding nurses and visit times.

Patients may specify preferences regarding the nurses that per-

orm the jobs. For each job, a nurse is indicated as preferred, moder-

tely preferred or not preferred, resulting in a penalty of respectively

, 1 or 2 when such a nurse is assigned to the job. In addition, for each

ob, the corresponding patient may indicate a preferred time for the

tart of service. These preferences are modeled by constructing two

dditional soft time windows for each job, a tight one and a loose one.

hen service starts within the tight soft time window, no penalty is

http://alpha.uhasselt.be/kris.braekers


430 K. Braekers et al. / European Journal of Operational Research 248 (2016) 428–443

V

z

w

h

T

T

T

o

s

i

n

T

M

T

M

T

M

e

T

M

T

T

M

incurred. When service starts outside of the tight soft time window

but within the loose one, a penalty of one is incurred. When service

starts outside of the loose time window a penalty of two is incurred.

Unless stated otherwise, numerical experiments in this paper con-

sider soft time windows with a width of one and two hours, symmet-

rically around the preferred visit time. However, these values can eas-

ily be adapted to reflect other situations as indicated in Section 5.4.

Waiting is only allowed when arriving before the start of a hard

time window. Hence, it is not allowed to postpone the start of service

of a job to improve the level of patient convenience. The reason is

that in reality nurses tend not to wait in such a situation. Modeling

time preferences and soft time windows discretely instead of con-

tinuously makes the scheduling subproblem of the BIHCRSP slightly

easier, by reducing the number of (non-dominated) schedules for a

certain route/solution (see Section 3). Furthermore, this way time

preferences are expressed similarly as nurse preferences (a penalty

of 0, 1 or 2 per job), which makes it more meaningful to aggregate

them in a single objective indicating the inconvenience for the

patients. Of course, penalty levels can easily be adapted to put more

emphasis on one of the objective components. Alternatively, patient

convenience regarding time and nurse preference may be considered

as two separate objectives. However, in our opinion these are two

aspects of the same objective (patient convenience), and hence the

decision maker would probably aggregate them anyway. Finally,

besides modeling patient preferences, the convenience objective

may also be used to incorporate service consistency in this single day

problem for jobs which reoccur over a longer planning horizon.

2.2. Problem formulation

We model the BIHCRSP on a directed graph G = (V, A) where V is

the set of vertices and A the set of arcs. We consider a set of home

care workers N = {1, . . . , N} and a set of jobs J = {1, . . . , I}. Each

job is represented by a separate vertex in our graph, irrespective of

whether two or more jobs are associated with the same physical lo-

cation or client. We denote by 0 the starting location of a nurse and

by I + 1 the ending depot/location. These may be the same or differ-

ent physical locations. Thus, V = J ∪ {0, I + 1}. Parameter qin is used

to indicate whether a nurse n ∈ N is sufficiently qualified to perform

job i ∈ J (qin = 1) or not (qin = 0). Note that q0n = qI+1,n = 1. Using

this information the arc set is defined as follows: A = {(i, j, n)|i ∈
\ {I + 1}, j ∈ V \ {0}, n ∈ N , i �= j, qin = 1, q jn = 1}.

For each nurse n ∈ N a maximum regular working time duration

rn is known, in addition to a maximum allowed daily working time

mn, with rn ≤ mn, and a hard availability time window [an, bn]. Work-

ing times exceeding rn incur a cost of dn per time unit. Finally, let cn
i j

and tn
i j

denote the travel cost and travel time for nurse n between ver-

tices i and j respectively. These travel costs and travel times are nurse-

specific since nurses may use different modes of transportation and

their depots may be at different physical locations.

Each job i ∈ J has a service duration si, a hard time window [ei, li]

and a preferred starting time pti, where ei ≤ pti ≤ li. As a result, the

arc set A may be reduced by eliminating arcs between jobs i, j ∈ J
which are infeasible with respect to hard time windows, i.e. arcs (i, j,

n) for which max (ei, an + tn
0i
) + si + tn

i j
> min (l j, bn − tn

j,J+1
− s j).

In addition, clients specify preferences for nurses for each job,

with pnin indicating the penalty incurred (0, 1 or 2) when assigning

nurse n to job i.

In order to formulate the BIHCRSP, we use the following binary

decision variables:

xn
i j =

{
1, if nurse n travels from i to j,
0, otherwise,
p1
i =

{
1, if a deviation of more than 30 minutes from pti exists

at job i,
0, otherwise,

p2
i =

{
1, if a deviation of more than 60 minutes from pti exists

at job i,
0, otherwise,

i =
{

1, if waiting until beginning of time window ei at i
is necessary,

0, otherwise (no waiting is necessary to start job i),

here the last set of variables is used to prohibit waiting inside of

ard time windows. We also use the following continuous variables:

n
0 = time at which nurse n leaves from 0,

n
I+1 = time at which nurse n arrives at I + 1,

i = time at which service starts at i,

pi = inconvenience score for job i ∈ J
with respect to time windows,

n = overtime performed by nurse n.

f1 = min
∑

(i, j,n)∈A

cn
i jx

n
i j +

∑
n∈N

dnon (1)

f2 = min
∑

(i, j,n)∈A

pninxn
i j +

∑
i∈J

pi (2)

ubject to:∑
j|(0, j,n)∈A

xn
0 j ≤ 1 ∀n ∈ N , (3)

∑
|(i,I+1,n)∈A

xn
i,I+1 ≤ 1 ∀n ∈ N , (4)

∑
, j|(i, j,n)∈A

xn
i j = 1 ∀i ∈ J , (5)

∑
j|( j,i,n)∈A

xn
ji =

∑
j|(i, j,n)∈A

xn
i j ∀i ∈ J , n ∈ N , (6)

n
0 + tn

0 j ≤ Tj + Mn
0 j(1 − xn

0 j) ∀(0, j, n) ∈ A, j �= I + 1,

n
0 j = bn + tn

0 j − e j, (7)

i + si +
∑

n|(i, j,n)∈A

tn
i jx

n
i j ≤ Tj + M1

i j

(
1 −

∑
n|(i, j,n)∈A

xn
i j

)
∀i, j ∈ J ,

1
i j = li + si − e j, (8)

i + si + tn
i,I+1 ≤ T n

I+1 + Mn
i,I+1(1 − xn

i,I+1) ∀(i, I + 1, n) ∈ A, i �= 0,

n
i,I+1 = li + si + tn

i,I+1 − an, (9)

i ≤ Ti ≤ li ∀i ∈ J , (10)

j ≤ Ti + si +
∑

n|(i, j,n)∈A

tn
i jx

n
i j + M2

i j

(
1 −

∑
n|(i, j,n)∈A

xn
i j + z j

)
∀i, j ∈ J ,

2
i j = l j − ei − si, (11)

j ≤ e j + Mj(1 − z j) ∀ j ∈ J , Mj = l j − e j, (12)

j ≤ T n
0 + tn

0 j + Mn
j (1 − xn

0 j) ∀(0, j, n) ∈ A,

n
j = l j − an − tn

0 j, (13)
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I+1 ≤ Ti + si + tn

i,I+1 + Mn
i (1 − xn

i,I+1) ∀(i, I + 1, n) ∈ A,

n
i = bn − ei − si − tn

i,I+1, (14)

n ≤ T n
0 ≤ bn ∀n ∈ N , (15)

n ≤ T n
I+1 ≤ bn ∀n ∈ N , (16)

n
I+1 − T n

0 ≤ mn ∀n ∈ N , (17)

n ≥ max (0, T n
I+1 − T n

0 − rn) ∀n ∈ N , (18)

i − pti ≤ 30 + p1
i M1

i ∀i ∈ J , M1
i = li − pti − 30, (19)

i − pti ≥ −30 − p1
i M2

i ∀i ∈ J , M2
i = pti − ei − 30, (20)

i − pti ≤ 60 + p2
i M3

i ∀i ∈ J , M3
i = li − pti − 60, (21)

i − pti ≥ −60 − p2
i M4

i ∀i ∈ J , M4
i = pti − ei − 60, (22)

pi = p1
i + p2

i ∀ ∈ J (23)

n
i j ∈ {0, 1} ∀(i, j, n) ∈ A (24)

i ∈ {0, 1} ∀i ∈ J (25)

p1
i , p2

i ∈ {0, 1}. ∀i ∈ J (26)

Objective function (1) minimizes the total cost which is composed

f routing and overtime costs. Objective function (2) minimizes client

nconvenience which is measured by the deviation from the preferred

isit time and how disliked the assigned nurses are. Constraints (3)

nd (4) make sure that each nurse leaves the depot and returns to

he depot at most once. Equalities (5) ensure that each job is car-

ied out by a nurse and (6) that each job location is entered and

eft. Constraints (7)–(10) make sure that the time variables are cor-

ectly set and that each job is started within its time window. Wait-

ng times within the time window are prohibited by constraints (11)–

14). Nurses are only allowed to work within a given time window,

hich is taken care of by constraints (15) and (16). Constraints (17)

ake sure that the maximum working time is not exceeded and con-

traints (18) compute the overtime. Client inconvenience in terms of

he deviation from the preferred starting time is computed by means

f constraints (19)–(23). Finally, constraints (24)–(26) define the do-

ains of the variables.

.3. Enhancements

To improve the performance of the model described in the previ-

us section, several enhancements are introduced.

Binary assignment variables yin = ∑
j∈V xn

i j
may be introduced to

ndicate whether nurse n is assigned to job i or not. Since each job

hould be assigned to exactly a single nurse, constraints (27) may

hen be appended to the model (Y). Additionally, branching priority

ay be given to these assignment variables (YBP)∑
∈N

yin = 1 ∀i ∈ J . (27)

Furthermore, six families of valid inequalities are considered to

urther strengthen the model (IN1-IN6). Inequalities (28) indicate the

elation between variables p1
i

and p2
i

(IN1) while inequalities (29)

nd (30) exclude subtours of length two and three respectively (IN2-

N3)

p2 ≤ p1 ∀i ∈ J (28)
i i i
∑
∈N

(xn
i j + xn

ji) ≤ 1 ∀i, j ∈ V, n ∈ N (29)

∑
∈N

(xn
i j + xn

ji + xn
ik + xn

ki + xn
jk + xn

k j) ≤ 2 ∀i, j, k ∈ V, n ∈ N . (30)

Partial routes < i − j − k > between three vertices i, j, k ∈ J
hich are infeasible for a nurse n due to time windows may be ex-

luded as well (IN4). Combined with the fact that subtours are not

llowed, this yields inequality (31). When all partial routes between

ertices i, j, k ∈ J are infeasible for nurse n, the inequality may be

trengthened as shown in (32). When one of these inequalities is valid

or several nurses, it may be strengthened by including the respective

rcs of each nurse on the left-hand side of (31) or (32) respectively

n
i j + xn

ji + xn
jk ≤ 1 ∀i, j, k ∈ J , n ∈ N |ei + si + tn

i j + s j + tn
jk > lk

(31)

n
i j + xn

ji + xn
jk + xn

k j + xn
ik + xn

ki ≤ 1 ∀i, j, k ∈ J ,

∈ N | all partial routes infeasible. (32)

The relation between routing variables xn
i j

and variables pi and pj

ndicating the inconvenience related to the timing of service is ex-

ressed in inequalities (33)–(36) (IN5). Again these may be strength-

ned when valid for multiple nurses

xn
i j ≤ pi + pj ∀(i, j, n) ∈ A|pti − 30 + si + tn

i j > pt j + 60 (33)

n
i j ≤ pi + pj ∀(i, j, n) ∈ A|pti − 30 + si + tn

i j > pt j + 30 (34)

xn
i j ≤ pi + pj ∀(i, j, n) ∈ A|pti + 30 + si + tn

i j

≤ pt j − 60 ∧ e j < pt j − 60 (35)

n
i j ≤ pi + pj ∀(i, j, n) ∈ A|pti + 30 + si + tn

i j

≤ pt j − 30 ∧ e j < pt j − 30. (36)

Finally, variables xn
i j

and pi (or pj) may be combined with the time

indows to yield inequalities (37)–(42) (IN6)

xn
i j ≤ pi ∀(i, j, n) ∈ A|pti − 60 + si + tn

i j > l j (37)

n
i j ≤ pi ∀(i, j, n) ∈ A|pti − 30 + si + tn

i j > l j (38)

xn
i j ≤ pj ∀(i, j, n) ∈ A|ei + si + tn

i j > pt j + 60 (39)

n
i j ≤ pj ∀(i, j, n) ∈ A|ei + si + tn

i j > pt j + 30 (40)

xn
i j ≤ pj ∀(i, j, n) ∈ A|e j < li + si + tn

i j < pt j − 60 (41)

n
i j ≤ pj ∀(i, j, n) ∈ A|e j < li + si + tn

i j < pt j − 30. (42)

Computational experiments in Section 5.2 indicate the effect of

sing the enhancements described above. Note that the valid inequal-

ties are added before the model is solved whenever a violation is

ossible (taking into account the reduced arc set). We did not con-

ider adding the inequalities in a branch-and-cut fashion as it is not

ur intention to provide a state-of-the-art exact method to solve the

roblem at hand. The mathematical model is used to acquire some

nitial insights into the problem and as a tool to assess the qual-
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ity of the heuristic method proposed in Section 4 on small problem

instances.

We note here that, while the model does not require any assump-

tions on the input data, we assume that all time related parameters

are integer and we exploit this property in the scheduling algorithm

described next.

3. Scheduling problem

This section focuses on the scheduling subproblem of the BI-

HCRSP. Let an unscheduled solution denote a set of unscheduled

routes (or job sequences), one for each nurse, indicating the patients

to be visited by this nurse and their visiting order. The scheduling

problem then consists of deciding on a time schedule for each of these

routes such that all constraints are satisfied.

Due to the bi-objective nature of our problem and the numer-

ous side constraints, the scheduling problem is non-trivial. A dis-

tinctive characteristic of our scheduling problem is the fact that the

scheduling of a single route is already a bi-objective problem in itself

as explained below. Hence, a single unscheduled route may repre-

sent multiple non-dominated scheduled routes, and an unscheduled

solution may represent many mutually non-dominated solutions to

the BIHCRSP. Therefore the scheduling problem may be decomposed

into two problems which can be solved sequentially: generating all

non-dominated schedules for each individual route (Section 3.1) and

generating all non-dominated solutions from the set of schedules for

each route (Section 3.2).

3.1. Scheduling of a single route

The scheduling of a single route (or sequence of jobs) involves de-

ciding on the visit time of each job. Since waiting is only allowed be-

fore hard time windows, this can be reduced to determining the start

time of the route (the time the nurse leaves their starting location).

For a given start time, all other timing variables of the route can easily

be calculated. As mentioned above, a distinctive characteristic of this

problem is the fact that it is bi-objective in itself. The route schedule

may influence both the amount of overtime (and hence total costs)

and how well time preferences are satisfied (and hence the level of

inconvenience). While postponing the start of the route as much as

possible will guarantee the minimization of overtime costs, the ef-

fect on the level of inconvenience might be positive or negative. In

fact, the relationship between the start time of a route and the level

of inconvenience will often be nonlinear (e.g. with increasing start

time of the route, the inconvenience level may first increase and then

decrease). As a result, solving the scheduling problem involves find-

ing the set of non-dominated schedules and their corresponding start

time of the route. This is in contrast with other scheduling problems

as subproblems of routing problems in the literature, which are gen-

erally either constraint-satisfaction problems (e.g. finding a sched-

ule which satisfies hard time windows) or single objective problems

(e.g. minimizing soft time window violations or minimizing route

duration).

Using the notation of Vidal, Crainic, Gendreau, and Prins (2015),

the scheduling problem may be described as in (43)

{DUR ∪
∑

i

ci(ti)|TW, DUR, P(t)}. (43)

The objectives consist of a route duration feature to minimize over-

time costs (DUR) and a sum of non-convex time-dependent cost func-

tions to minimize the level of inconvenience (�ici(ti)). Since the latter

functions are piecewise linear, they can be optimized efficiently (de-

spite being non-convex) using dynamic programming (Vidal et al.,

2015). Constraints include hard time windows (TW) and a duration

constraint to satisfy maximum working times (DUR), while the no-

waiting constraints may be considered as time-dependent processing

times (P(t)).
As the scheduling problem is likely to be solved a considerable

umber of times in a heuristic solution approach, the problem should

e solved efficiently. Several approaches have been considered by the

uthors. Preliminary tests indicated that using CPLEX to solve the

cheduling problem is too time consuming. This may be explained

y the fact that a mathematical formulation of the scheduling prob-

em still contains binary decision variables due to the combination of

he hard time window and the no-waiting constraints.

Since only integer values are considered for all time-related pa-

ameters such as travel times, time windows, preferred visit times,

tc. (see Section 5.1), a simple enumeration method has been tested.

his method consists of performing a forward loop through the route

or each feasible start time of the route to determine the correspond-

ng overtime costs and inconvenience level. At the end, dominated

chedules can easily be removed. An improved version of the enu-

eration method is considered as well. In that case, the search starts

ith the latest feasible start time of the route. During each forward

oop through the route, the minimal time by which the start time of

he route should be decreased in order to improve (i.e. reduce) the

nconvenience level at one of the jobs is maintained. In the next iter-

tion, the start time of the route is decreased by this value since all

easible start times in between may be discarded (the inconvenience

evel will not improve and decreasing the start time of the route may

ever have a positive effect on overtime costs).

Finally, a dynamic programming method is proposed. The idea

ehind this method is partially based on existing methods for non-

onvex piecewise linear cost functions (for an overview we refer

o Vidal et al. (2015) and Hashimoto, Yagiura, Imahori, and Ibaraki

2013)). However, these methods only deal with a single objective

minimizing the total cost function) and therefore cannot be applied

irectly in our bi-objective setting. Given a route which is feasible

ith respect to time windows, our method consists of a single for-

ard loop through the route, while maintaining for each node a list of

ime intervals in which the penalty with respect to time preferences

tays the same. More specifically, for each node a number of “transi-

ion points” are calculated, corresponding to a service start time just

efore the total penalty for the partial route up to this node changes,

.e. starting service 1 minute later at this node will result in a change

n the total penalty up to this node.

The pseudo code for this method is presented in Algorithm 1. The

ollowing notation is used. A route < v0, v1, v2, . . . , vk, vk+1 > is con-

idered with k jobs and v0 and vk+1 denoting the depot location of

he nurse n that is assigned to this route (node indices i, j). Let Ei

nd Li represent the earliest and latest time that service at node vi

ay start to guarantee time window feasibility for the complete route

see also Section 4.3.2). A set of transition points for node vi is rep-

esented by T i = {T i
1
, T i

2
, . . . , T i

|T i|}. For each transition point T i
f

∈ T i,

tuple of three values (ti
f
, pi

f
, wi

f
) is stored, indicating respectively

he start of service at node vi, the total penalty up to node vi when

tarting service at time ti
f

and the latest possible start time at the de-

ot that corresponds to the previous two values. Similarly, let T j and
temp denote respectively the set of transition points for node vj (in-

ex h) and a temporary set of transition points (index g). A transition

oint T
j

h
∈ T j is defined by tuple (t

j

h
, p

j

h
, w

j

h
), while a transition point

temp
g ∈ T temp is defined by tuple (t

temp
g , p

temp
g , w

temp
g ). Furthermore,

et T 0 = {(bn, 0, bn)} and ρ j(t) a function to calculate the penalty re-

arding time preferences when service starts at time t at node vj.

In the first part of Algorithm 1 (lines 1–21), for each job vj ( j =
, . . . , k) the set of transition points T j is calculated, starting from the

et of transition points T i of the previous node vi in the route and a

et of temporary transition points T temp. First, the latter set T temp for

ob vj is generated as follows (line 5). Starting from an empty set, a

ransition point T
temp

g is added for each point in time right before the

enalty with respect to time preferences would change (ptv j
− 61,
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Algorithm 1 Scheduling method.

1: //find the set of transition points for each job in the route

2: T 0 = {(bn, 0, bn)}
3: for j = 1 → k do

4: i = j − 1

5: generate T temp

6: T j = ∅, f = g = 1, h = 0

7: while f ≤ |T i| and g ≤ |T temp| do

8: h = h + 1

9: if ti
f
+ svi

+ tn
viv j

≤ t
temp
g then

10: t
j

h
= max (ti

f
+ svi

+ tn
viv j

, ev j
)

11: T j = T j ∪ {T
j

h
(t

j

h
, pi

f
+ ρ j(t

j

h
), wi

f
)}

12: if ti
f
+ svi

+ tn
viv j

= t
temp
g then

13: g = g + 1

14: end if

15: f = f + 1

16: else

17: T j = T j ∪ {T
j

h
(t

temp
g , pi

f
+ ρ j(t

temp
g ), wi

f
− (ti

f
+ svi

+
tn
viv j

− t
temp
g ))}

18: g = g + 1

19: end if

20: end while

21: end for

22: //find the transition points for the end depot vk+1

23: T k+1 = T k

24: for f = 1 → |T k+1| do

25: T k+1
f

(tk+1
f

, pk+1
f

, wk+1
f

) = T k+1
f

(tk+1
f

+ svk
+ tn

vkvk+1
, pk+1

f
, wk+1

f
)

26: end for

27: //find the set of non-dominated schedules

28: S = ∅, s = 1, f = |T k+1|
29: if tk+1

f
− wk+1

f
≤ mn then

30: os = max (0, tk+1
f

− wk+1
f

− rn)

31: ps = pk+1
f

32: S = S ∪ {Ss(os, ps)}
33: f = f − 1

34: while f > 0 do

35: if pk+1
f

< ps then

36: s = s + 1

37: os = max (0, tk+1
f

− wk+1
f

− rn)

38: if os ≤ mn − rn then

39: if os = os−1 then

40: S = S \ {Ss−1} ∪ {Ss(os, pk+1
f

)}
41: else

42: S = S ∪ {Ss(os, pk+1
f

)}
43: end if

44: else

45: f = 0

46: end if

47: end if

48: f = f − 1

49: end while

50: end if

t

i

t

s

(

s

j

Table 2

Comparison of scheduling methods.

Method Computation time (s)

CPLEX >3600

Enumeration 0.494

Enumeration improved 0.317

Dynamic programming 0.165
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o

ptv j
− 31, ptv j

+ 30, ptv j
+ 60), provided that it satisfies the condi-

ion E j ≤ t
temp
g < L j . A transition point for start of service at time Lj

s added as well, since the penalty value increases to infinity after

his time. Finally, an additional transition point is added for time of

ervice equal to ev j
when (1) no such transition point already exists

�T
temp

g ∈ T temp|ttemp
g = ev j

), (2) job vj may be started as early as the

tart of its time window (E j = ev j
), and (3) waiting time will exist at

ob vj when starting service at the preceding node vi at the time of
ts first transition point (ti
1

+ svi
+ tn

viv j
< ev j

). Although in this case

he penalty level does not change, the transition point is required

o account for the fact that when nurse n arrives at node vj before

ime ev j
, the nurse should wait and hence route duration is affected.

he transition points T
temp

g ∈ T temp are sorted from small to large

ccording to t
temp
g and for each transition point the penalty level is

p
temp
g = ρ j(t

temp
g ), while the value of w

temp
g is irrelevant. Second, it-

ratively the smallest transition point among T i (increased with the

ime required to reach vj) and T temp is selected and a new transi-

ion point for vj is created (lines 7–21). In case the transition point

n T temp is selected (lines 16–18), note that the start time of the

oute in the newly created transition point T
j

h
is equal to the start

ime of the route for the transition point in T i minus the difference

etween the start of service at job vj for both transition points, i.e.
j

h
= wi

f
− (ti

f
+ svi

+ tn
viv j

− t
temp
g ).

When the transition points for the final job in the route T k have

een found, the transition points for the end depot T k+1 are calcu-

ated by copying T k and increasing the start of service of each of

hese transition points with the service time at vk and the time to

ravel to the end depot vk+1 (lines 22–26). Finally, the set of non-

ominated schedules S = {S1(o1, p1), . . . , S|S|(o|S|, p|S|)} (index s) is

ound, where each schedule Ss is represented by an amount of over-

ime os and a penalty level regarding time preferences ps (lines 27–

0). This is done by considering each of the transition points of vk+1

n reverse order, i.e. starting with the final one in T k+1 (the one with

he largest arrival time at the end depot and hence also the latest cor-

esponding start time of the route), and calculating the correspond-

ng overtime costs. Note that when considering the transition points

n this order, overtime costs cannot decrease since overtime is mini-

al when starting the route as late as possible. Hence, only transition

oints which reduce the penalty level should be considered. Further-

ore, the search can be stopped whenever a transition point violates

he maximum working time constraint.

Table 2 compares computation times of the different schedul-

ng methods. Each method was used to schedule all routes of all

on-dominated solutions that were found in five runs of the base

lgorithm described in Section 4 on all 90 benchmark instances. This

orresponds to 14,153 solutions consisting of 722,913 routes in total.

otal computation times over all routes are reported. Solving the sin-

le route scheduling problem by CPLEX is clearly too time consuming.

he other approaches are considerably faster, scheduling all routes

n less than half a second. While the proposed improvements of

he enumeration method reduce its computation time, the dynamic

rogramming approach clearly performs best. Therefore, this method

as been used in all other experiments described in this paper.

.2. Scheduling of multiple routes

Given a set of non-dominated schedules for each route of an un-

cheduled solution, a scheduled solution is obtained by selecting a

ingle schedule for each route. To obtain only the non-dominating

olutions, a simple dynamic programming-based method is applied.

n a first step, the routes are sorted according to their number of non-

ominated schedules, from small to large. Second, all combinations

f the schedules of routes one and two are made and the dominated
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Algorithm 2 MDLS structure.

input: a set of non-dominated scheduled solutions F

repeat

x ← select_a_solution(F)
Gcost ← set of solutions generated by LNScost(x)
Gincon ← set of solutions generated by LNSincon(x)
G ← Gcost ∪ Gincon

update(F, G)
until stopping criterion is met

return F
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ones are discarded. Next, the non-dominated combinations are com-

bined with the schedules from route three and so on, until all routes

have been considered.

4. Metaheuristic approach

Due to the bi-objective nature of the BIHCRSP, a single optimal so-

lution to the problem will often not exist. Instead, the goal is to find

the set of Pareto optimal or efficient solutions. It is assumed that the

reader is familiar with the basic concepts of multi-objective optimiza-

tion such as Pareto optimality and dominance. For a detailed descrip-

tion of these concepts and their underlying principles, the reader is

referred to Ehrgott and Gandibleux (2002, 2004) and Ehrgott (2005).

Since exactly solving instances of realistic size in a reasonable

amount of computation time does not seem feasible, a metaheuristic

algorithm is proposed to find a set of mutually non-dominated solu-

tions which approximates the set of efficient solutions. The algorithm

is based on the multi-directional local search framework (Tricoire,

2012) and uses large neighborhood search (LNS) as a subheuristic.

Multi-directional local search (MDLS) is a recently proposed

meta-heuristic framework for multi-objective optimization problems

(Tricoire, 2012). It is based on the idea that in order to find new effi-

cient solutions that are neighbors of a solution x, it is sufficient to

start a search from x in the direction of one objective at a time only. In

general, the method works as follows. An archive of non-dominated

solutions is maintained and in each iteration of the algorithm a solu-

tion is selected from this archive. For each objective a single-objective

local search is performed on the selected solution. The resulting new

solutions, as many as there are objectives, are then used to update

the archive. Advantages of the method are its simplicity, flexibility

and the fact that for each objective any existing single-objective local

search method may be applied.

Large neighborhood search (LNS) is a metaheuristic which was

first introduced by Shaw (1998). It uses the concept of ruin and recre-

ate to define an implicit, large neighborhood of a current solution as

the set of solutions that may be attained by destroying a large part of

the solution and subsequently rebuilding the resulting partial solu-

tion. A successful general-purpose LNS algorithm for a variety of ve-

hicle routing problems was proposed by Pisinger and Ropke (2007).

The algorithm iteratively removes a number of customers from the

current solution and reinserts them to obtain a new solution. Several

simple removal and insertion operators, selected randomly in each it-

eration, are applied. An adaptive version of LNS is proposed by Ropke

and Pisinger (2006) in which the selection of the operators is biased

using their success in previous iterations. In recent years, many rout-

ing problems have been successfully solved using LNS-based meth-

ods. For details and an overview of recent developments on LNS, the

reader is referred to Pisinger and Ropke (2010).

Tricoire (2012) shows that, using LNS as a subheuristic, the MDLS

framework produces results which are competitive to those of the

best known solution method for three general multi-objective op-

timization problems (multi-dimensional multi-objective knapsack

problem, bi-objective set packing problem, bi-objective orienteering

problem). Therefore, a similar approach is proposed for the BIHCRSP.

The general structures of the MDLS algorithm and LNS subheuristic

are discussed in Sections 4.1 and 4.2, while the LNS operators and

their implementation are discussed in Section 4.3.

4.1. MDLS structure

The general structure of the MDLS algorithm is presented in

Algorithm 2. The initial set of solutions, which serves as an input

for the MDLS algorithm, is found by applying each insertion operator

(see Section 4.3.2) individually on the problem. In each iteration of

the algorithm, a solution x is randomly selected from F. Next, for each
bjective an LNS iteration is performed, resulting in a set of new solu-

ions G. These new solutions are used to update set F. This is repeated

ntil the stopping criterion is met, which can either be a predefined

umber of iterations, a maximum computation time or any other cri-

erion defined by the decision maker. The structure of our MDLS al-

orithm is very similar to the structure described by Tricoire (2012),

lthough in our case a single-objective local search procedure may

esult in more than one new solution as is discussed in Section 4.2. A

et of non-dominated scheduled solutions F is maintained through-

ut the search, i.e. for each solution in F the timing variables are fixed

o specific values. These values are required to know the actual ob-

ective values of the solution, but as a result several solutions in the

et may have the same routing (but a different timing). Set F is stored

s an ordered list which reduces the number of dominance checks to

e performed when updating the set compared to an unordered list

see Tricoire, 2012). Besides, in order to diversify the search, solutions

hich have the same objective values but a different routing are all

ept.

For hard instances, it may take a number of iterations to find a

easible solution. This is handled by using a request bank, which is

common concept in LNS methods. Whenever not all jobs can be

nserted in the routes of the nurses, the remaining jobs are put into

he request bank. New solutions are first evaluated on the number

f jobs in the request bank and second on both objective values. This

eans that as soon as a feasible solution to the problem has been

ound, infeasible solutions are no longer allowed during the search

nd these may be discarded immediately.

.2. LNS structure

Two major issues arise in the implementation of any local search

ove for the problem under study (no matter whether using small

r large neighborhoods). First, the objective values of a new solution

an only be measured when the scheduling subproblem is solved. As

iscussed in Section 3, this problem is non-trivial and although an

fficient algorithm has been proposed, it seems unpractical to solve

he scheduling problem from scratch after each local search move

s this would result in excessive computation times. Second, even

hen developing an efficient reoptimization algorithm by maintain-

ng non-dominated schedules for partial routes to avoid having to

olve the scheduling problem from scratch, the evaluation of local

earch moves (or of insertion positions of a job in LNS) and select-

ng the best one is not straightforward, since a single new routing

olution may result in multiple non-dominated scheduled solutions.

For each objective (costs and inconvenience), a single LNS itera-

ion in the direction of this objective is performed on the selected so-

ution x (Algorithm 3). First, the number of jobs to be removed in this

teration (q), and the removal and insertion operators to be applied

a and b) are determined randomly. Next, using removal operator a,

jobs are removed from x and added to the request bank, resulting

n a partial solution x′. The jobs which have been removed (and those

otentially already in the request bank) are then reinserted using the

elected insertion operator b. To overcome the issues stated above,
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Algorithm 3 LNS structure.

input: solution x

q ← number of jobs to be removed

a ← randomly selected removal operator

b ← randomly selected insertion operator

x′ ← removal(x, q, a)
x′ ← insertion(x′, b)
if rb(x′) ≤ rb(x) then

S ← non-dominated schedules of x′
return S

else

return ∅
end if
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t is decided not to perform these LNS iterations on scheduled solu-

ions, but only on the routing aspect of a solution. This means that

obs are inserted without solving the scheduling problem and hence

ithout knowing the non-dominated set of actual objective values

hat result from this insertion. Instead, insertion positions are eval-

ated based on approximative objective values which are discussed

n Section 4.3.2. Only after all jobs have been inserted (or no feasi-

le insertion positions for the remaining jobs exist), the scheduling

roblem is solved to obtain the set of non-dominated solutions from

he newly obtained routing solution using the method proposed in

ection 3. Of course, this final step may be skipped and the new rout-

ng solution x′ may be discarded immediately when the number of

obs in the request bank rb(x′) is larger than that of the solutions cur-

ently in set F.

Note that performing multiple LNS iterations on a single solution

s not considered as preliminary results indicated that the second ob-

ective is likely to diverge too far after a few iterations, making it un-

ikely to find new non-dominated solutions.

.3. LNS operators

Several standard removal and insertion operators from the LNS lit-

rature (Pisinger & Ropke, 2007; Ropke & Pisinger, 2006; Shaw, 1998)

re adapted to the specific problem context of the BIHCRSP. They are

iscussed in Sections 4.3.1 and 4.3.2 respectively.

.3.1. Removal operators

For each objective, six removal operators are considered. Three of

hem are the same for both objectives (random, route, related) while

he other three represent objective-specific implementations of the

orst removal concept.

The random removal operator randomly removes q jobs from the

urrent solution, while the route removal operator removes complete

outes which are randomly selected until q jobs have been removed.

he related removal operator removes jobs which are related to

ach other and hence are expected to be easy to interchange. The

elatedness rij of two jobs i, j ∈ J is expressed in terms of their

ocation, preferred timing, qualification requirements or a random

eighted combination of these (44), each of these options having

n equal probability of being chosen (i.e. (α, β , γ ) is (1, 0, 0), (0, 1,

), (0, 0, 1) or any random combination with α + β + γ = 1 and all

hree non-negative). Relatedness in terms of location is based on

he average travel time over all nurses between the two jobs, while

elatedness in terms of qualification requirements is based on the

umber of nurses which are only qualified to perform one of the jobs.

lower value of rij indicates that jobs i and j are more related. Note

hat t
′n
i j

and pt ′
i

represent normalized values such that they only take

alues from [0, 1]. The implementation of the operator is the same as

n Shaw (1998). Initially a job is removed randomly. Next, iteratively

n already removed job is selected randomly and its most related job
of those still in the solution) is removed

i j = α
∑
n∈N

t
′n
i j /N + β|pt ′

i − pt ′
j| + γ

∑
n∈N

|qin − qjn|/N. (44)

For the objective of minimizing costs, a worst travel cost, a worst

inimal overtime cost and a worst combined cost removal operator

re applied. The first two operators remove jobs which result in

espectively the largest travel cost savings and the largest minimal

vertime cost savings when being removed from the solution. The

inimal overtime cost of a route is defined as the overtime cost

hen starting the route as late as possible and hence resulting in the

mallest possible amount of overtime. The minimal overtime cost is

sed instead of the actual overtime cost as the latter would require

esolving the scheduling problem when removing a job while the

ormer may be calculated in constant time (Vidal et al., 2015). The

hird operator removes jobs which result in the largest cost savings

hen the travel costs and minimal overtime costs are combined.

Note that in our problem context some (or all) nurses may use

ublic transportation and hence their traveling will not result in

ravel costs (see Section 5.1). Therefore, the term “travel costs” is in-

erpreted slightly different for the worst removal operators. When all

urses use public transportation, the effect on travel time is used in-

tead. When only some nurses use public transportation, the cost of

raveling by car is used for all nurses.

For the objective of minimizing inconvenience, similarly a worst

urse inconvenience, worst time inconvenience and worst total inconve-

ience removal operator are applied. The effect of removing a job on

otal time inconvenience of a route is not modeled as the difference in

ime inconvenience between the route with and without the job, as

his would again involve solving the scheduling problem to find the

econd value. Instead, the effect on time inconvenience of removing

ob i is only based on the penalty value for time inconvenience (pi) of

his job in the current solution.

As in Shaw (1998) and Ropke and Pisinger (2006), a parameter P ≥
is used in all worst removal operators to introduce some random-

ess in the selection of jobs, thereby avoiding the same jobs to be

emoved over and over again. In each iteration of a removal operator,

he list of L jobs which may be removed is ordered from worst to best,

nd the xth job in the list is selected to be removed with x =
⌊

yPL
⌋

nd y a random number in [0, 1]. A lower value of P corresponds to

ore randomness. Besides, we add a very small random noise value

o the savings of removing a job to randomize the order in which jobs

ith the same savings are selected (as in our problem context often

everal jobs may result in the same savings, especially with respect

o the inconvenience objective).

.3.2. Insertion operators

Four insertion operators are applied. The structure of these opera-

ors is the same for both objectives, although the considered objective

unction differs.

The well-known basic greedy, regret-2 and regret-3 operators are

pplied. The former iteratively inserts the job with the cheapest in-

ertion position among all jobs to be inserted, while the regret-k op-

rators take into account the difference in insertion cost between

he least-cost route and the next k − 1 least-cost routes. For a de-

ailed discussion of these operators, the reader is referred to Ropke

nd Pisinger (2006) and Pisinger and Ropke (2007). Furthermore, an

ther greedy operator, denoted random greedy, is applied. This oper-

tor iteratively selects a job to be inserted randomly and inserts it at

ts cheapest insertion position.

Note that the feasibility of an insertion position can be evaluated

n constant time. Parameter qin indicates whether nurse n is quali-

ed to carry out job i while time window and route duration con-

traints may be evaluated in constant time by maintaining for each

ob i ∈ J the earliest time service may start (E ) and the latest time
i
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service should start (Li) in order for the rest of the route to be feasible

(Campbell & Savelsberg, 2004; Kindervater & Savelsbergh, 1997).

Since we do not want to solve the scheduling problem for each

feasible insertion position of each job to be inserted, the actual ob-

jective values cannot be used to evaluate insertion positions. Instead

approximative objective functions are applied. For this matter we de-

cided to use several hierarchical objectives for two reasons. First, this

allows to discriminate between insertion positions with the same pri-

mary insertion cost (as is often the case due to the absence of travel

costs when using public transportation and the limited penalty lev-

els for the inconvenience objectives). Second, this allows to take the

cost objective into account as a tie-breaker when minimizing incon-

venience (and vice versa).

For the objective of minimizing costs, three hierarchically struc-

tured objectives are considered. The first objective is to minimize the

sum of travel costs and minimal overtime costs, approximating the

actual objective. The second and third objective are to minimize route

duration and total travel time respectively. The idea is that it is bene-

ficial to construct compact routes with small travel and waiting times,

even when no travel costs are incurred and insertion positions do not

generate overtime costs, as this would allow other jobs to be inserted

later at lower costs. Preliminary results have indicated that using the

approximate objective value for inconvenience as a fourth objective

or a third objective (instead of travel time) has only limited impact.

Hence, this is not considered.

For the objective of minimizing inconvenience, two hierarchical

objectives are used to evaluate an insertion position of a job, an ap-

proximation of the total inconvenience incurred by this job and the

sum of the additional travel costs and minimal overtime costs. To-

tal inconvenience inconi when inserting job i between jobs i − 1 and

i + 1 in the route of nurse n is approximated as in (45). A penalty

value in the interval [0, 4] is obtained. The first term is the inconve-

nience with respect to the nurse. The second term approximates the

inconvenience with respect to the visit time and consists of the av-

erage of two measures. The first measure (η) indicates whether for

job i a feasible visit time t ∈ [Ei, Li] exists within either the tight soft

time window (0), the loose soft time window (1), or none of both (2).

The second part indicates whether the preferred visit times of nodes

i − 1, i and i + 1 are in increasing order or not

inconi = pnin + (η + θ)/2

with

η =
{

0 if Ei ≤ pti + 30 and Li ≥ pti − 30
1 if Ei ≤ pti + 60 and Li ≥ pti − 60
2 else

and

θ =
{

0 if pti−1 ≤ pti and pti ≤ pti+1

2 if pti−1 > pti and pti > pti+1

1 else
(45)

To diversify the search, a noise term may be added to the objective

functions of the insertion heuristics (Pisinger & Ropke, 2007; Ropke &

Pisinger, 2006). At each LNS iteration, we select randomly whether to

apply noise or not. To account for the fact that hierarchical objectives

are used, noise is only added to the sum of travel costs and minimal

overtime costs, and to total route duration when the original objec-

tive value differs from zero (to avoid losing the effect of the second

or third objective). Furthermore, adding noise to inconi is modeled

by defining small probabilities for adding (subtracting) 0.5 or 1 to

(from) inconi.

5. Computational results

All algorithms are implemented in C++. MDLS is run on an Intel

Xeon Processor E5-2670 at 2.50 gigahertz, using a single thread. To

solve the model, ILOG Cplex 12.5 is used. All experiments with the

model are performed on the Vienna Scientific Cluster (VSC-1) using
ntel X5550 CPUs at 2.66 gigahertz and a run time limit of two days.

n the next sections, we first present the characteristics of our bench-

ark instances and then the results of our numerical experiments.

.1. Problem instances

Since no benchmark data are available for our problem, prob-

em instances have been generated randomly. However, the pa-

ameter values that have been applied are based on both real-

ife data of two Viennese companies and real-life-based benchmark

ata for a related problem (Hiermann et al., 2015). A general dis-

ussion of these instances is provided here, while numerical de-

ails are available in Appendix A. The instances are available online

http://alpha.uhasselt.be/kris.braekers).

A set of 90 instances has been generated, consisting of a first set of

0 small test instances (10–25 jobs) and a second set of instances of

ealistic size (50–300 jobs). For each instance, the set of nurses con-

ists of a number of full-time nurses with a regular and maximum

orking time of 8 and 10 hours respectively, and a number of part-

ime nurses with a regular and maximum working time of 4 and 6

ours respectively (either in the morning or the evening). The num-

er of nurses is set such that on average the number of jobs is five

imes the number of full-time nurse equivalents.

Six types of jobs are considered, corresponding to six qualification

evels of the nurses. These nurse qualification levels are assumed to

e non-hierarchical since high-qualified nurses generally do not per-

orm jobs requiring a low qualification level. Probabilities for a job to

equire a certain level of qualification, and for a nurse to possess a

ertain level of qualification, are based on real-life data. Nurse over-

ime wages depend on their level of qualification and are based on

ata of the Public Employment Service Austria (AMS). Besides, some

ariation in the wages of the nurses of a single qualification category

s introduced to account for differences in their length of service.

Corresponding to current practices of Austrian home care organi-

ations, a working day, which ranges from 6 a.m. to 8 p.m., is split in

ve time slots of 2–4 hours. Each job is assigned to one of these time

lots, which then represents a hard time window for the start time of

he job. Both the distribution of jobs over the time slots and the ser-

ice duration of a job are based on real-life data. The preferred visit

ime of a job is randomly selected within the hard time window. To

ntroduce the fact that some jobs have to be performed at a specific

ime (e.g. certain medical treatments), both the start and end of the

ard time window of 5 percent of the jobs are set at the preferred

isit time. Finally, regarding nurse preferences, it is assumed that for

certain job each qualified nurse has an equal probability of being

referred, moderately preferred or not preferred.

Four types of instances may be distinguished based on the travel

ost and travel time matrices used. The first three types are based on

he travel time matrices for car and public transportation provided

y Hiermann et al. (2015) and are generated using OpenStreetMap.

n types one and two, all nurses are assumed to use car transporta-

ion or public transportation respectively, while in the third type

ome nurses use car transportation while others use public trans-

ortation. Since no corresponding travel distance matrices are avail-

ble, distances in kilometers are assumed to be equal to travel times

n minutes. Besides, time is discretized on a 5-minute level. In the

ourth type of instances, a distance matrix and a travel time matrix

or car transportation between actual job locations of a Viennese ser-

ice provider are used. In this case, distance and travel time are not

erfectly correlated and time is discretized on a 1-minute level. All

urses are assumed to use car transportation, as this is the only in-

ormation available. Travel costs by car are set at 42 eurocents per

ilometer, while it is assumed that no operational costs are incurred

hen using public transportation (assuming that nurses have a yearly

icket). The number of instances of the third type (mixed mode) is

http://alpha.uhasselt.be/kris.braekers
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Table 3

Computation times on small problem instances using the ε-constraint method (in minutes).

Instance Jobs Base Y YBP IN1 IN2 IN3 IN4 IN5 IN6 All Sel.

1 10 0 0 0 0 0 0 0 0 0 0 0

2 10 0 0 0 0 0 0 0 0 0 0 0

3 10 0 0 0 0 0 0 0 0 0 0 0

4 10 0 0 0 0 0 0 0 0 0 0 0

5 10 0 0 0 0 0 0 0 0 0 0 0

6 15 0 0 0 0 0 0 0 0 0 0 0

7 15 0 0 0 0 0 0 0 0 0 0 0

8 15 3 3 2 2 3 3 3 2 3 2 2

9 15 12 10 11 10 12 10 8 12 9 11 8

10 15 2 1 1 1 1 1 1 1 1 1 0

11 20 45 31 25 28 37 34 27 16 14 11 20

12 20 23 12 13 13 7 10 8 19 14 5 6

13 20 2270 1500 871 2582 2322 1930 1238 2667 2337 685 642

14 20 3 2 3 2 3 3 2 3 2 2 2

15 20 41 25 25 25 38 34 30 20 16 18 24

16 20 121 96 133 158 92 103 169 146 100 73 132

17 20 524 450 443 375 316 389 290 495 442 244 278

18 20 30 26 36 43 38 41 34 46 46 14 16

19 20 25 17 35 33 44 30 40 40 35 16 12

20 20 − − − − − − − − − 1197 1484

21 25 − − − − − − − − − − −
22 25 − − − − − − − − − 566 382

23 25 − − − − − − − − − − −
24 25 − − − − − − − − − 1532 1338

25 25 − − − − − − − − − − −
26 25 − − − − − − − − − − −
27 25 − − − − − − − − − 334 351

28 25 − − − − − − − − − − −
29 25 − − − − − − − − − − −
30 25 − − − − − − − − − − −
Avg1−19 163 114 84 172 153 136 97 182 159 57 60
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wice that of the other instances, as we believe these instances to be

he most realistic and hardest to solve.

Finally, since in practice a patient may have several service re-

uests per day, up to four jobs may be required at the same physical

ocation.

.2. Results of ε-constraint method

To assess the quality of the proposed metaheuristic, Pareto-

ptimal solutions for small problem instances are generated by em-

edding the model described in Section 2.1 into the well-known ε-

onstraint scheme (Laumanns, Thiele, & Zitzler, 2006).

Table 3 gives an overview of the computation times in minutes

equired to solve the small problem instances. Nineteen instances

f up to 20 jobs could be solved using the base model within the

untime limit. Most of the enhancements introduced in Section 2.3

educe average computation times on these instances when applied

ndividually. We also consider applying all enhancements simultane-

usly (“All”) and a version where we only apply the enhancements

hich reduce overall computation times when applied individually

“Sel”). In both cases, computation times are reduced by more

han 60 percent on average compared to the base model and some

nstances up to 25 jobs can be solved as well. Note that omitting

he “bad” enhancements does not give an improvement compared

o keeping them all. However, computation times also indicate that

olving the problem to optimality for instances of realistic size would

e troublesome and hence the use of a heuristic method is justified.

.3. Results of metaheuristic method

Several quality indicators have been proposed in the literature to

valuate approximations of the Pareto frontier generated by heuristic

olution procedures (Knowles, Thiele, & Zitzler, 2006; Zitzler, Thiele,

aumanns, Fonseca, & Grunert da Fonseca, 2003). In this paper,

wo well-known quality indicators (hypervolume and multiplicative
nary epsilon) are used to compare our heuristic results with opti-

al Pareto fronts and to evaluate different algorithmic designs and

arameter settings. For both indicators, the reference set R is equal

o the optimal Pareto front if known. Otherwise R is approximated by

aking the union of all solutions obtained by any of the experiments

uring algorithm design and testing, and removing dominated

olutions. These reference sets are provided online.

The hypervolume indicator (IH(A)), introduced by Zitzler and

hiele (1999), measures the portion of the objective space that is

eakly dominated by an approximation set A. Normalized objec-

ive values are used and hence the reference point is (1,1). To al-

ow a meaningful aggregation over all instances, hypervolume re-

ults of an approximation set A are presented as the fraction of the

ypervolume value of the reference set R that is covered by set A

I
f r
H

(A) = IH(A)/IH(R)). High values are preferable. The multiplicative

nary epsilon value (Iε(A)) (Zitzler et al., 2003) gives the minimum

umber ε by which each point in the reference set R should be multi-

lied such that the resulting approximation set is weakly dominated

y approximation set A. Low values are preferable. Since one of the

bjective values for some solutions may be zero, objective values are

ormalized between 1 and 2 instead of between 0 and 1.

The base version of our algorithm (v0) as presented in Section 4

ses the following initial parameter settings. The number of jobs se-

ected to be removed q is distributed uniformly between max (2, 0.1 ·
) and min (50, 0.6 · I). Both absolute and relative bounds are applied

o allow a very large removal rate for small instances while ensuring

cceptable computation times for large instances. For the removal

perators, the randomness parameter P is set to 5. Maximum noise

evels for travel costs (travel time and route duration) is 10 percent

f the average travel cost (travel time) in the network. Maximum

oise levels for overtime costs are 25 percent of the average of the

aximum overtime cost over all nurses. Finally, the probabilities

or adding (subtracting) 0.5 and 1 to (from) inconi are 0.1 and 0.05

espectively. The algorithm is run for 2 million iterations (large time

imit), while results after 200,000 iterations are reported as well
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Table 4

Average results of different algorithm configurations.

Configuration Small time limit Large time limit

I f r
H

(A) Iε (A) # Solutions I f r
H

(A) Iε (A) # Solutions

Unique All Unique All

v0 0.8889 1.0712 88 107 0.9450 1.0433 95 166

v1 0.9063 1.0639 93 128 0.9607 1.0339 100 290

v2 0.8985 1.0678 88 109 0.9534 1.0398 95 186

v3 0.8892 1.0724 89 108 0.9472 1.0408 96 167

v4 0.8913 1.0718 88 108 0.9466 1.0413 95 178

v5 0.8958 1.0703 89 109 0.9505 1.0405 95 181

v6 0.9215 1.0571 94 151 0.9719 1.0290 100 393

Table 5

Trade-off analysis.

Instances Minimum cost solution Minimum inconvenience solution

Cost/job Inconvenience/job Cost/job Inconvenience/job

Avg. Avg. St.dev 0 1 2 3 4 Avg. Avg. St.dev 0 1 2 3 4

All 2.10 1.49 1.28 0.24 0.27 0.30 0.12 0.06 6.54 0.48 0.47 0.69 0.18 0.10 0.02 0.01

Small 4.26 1.76 1.38 0.17 0.27 0.31 0.15 0.11 7.53 1.05 0.99 0.38 0.30 0.24 0.06 0.02

Medium 1.39 1.41 1.26 0.27 0.27 0.30 0.12 0.05 6.72 0.28 0.31 0.78 0.17 0.04 0.01 0.00

Large 0.66 1.30 1.21 0.29 0.29 0.28 0.10 0.04 5.36 0.11 0.13 0.91 0.08 0.01 0.00 0.00

Car 2.41 1.49 1.39 0.26 0.27 0.27 0.12 0.08 6.94 0.39 0.45 0.76 0.12 0.09 0.01 0.01

Public 2.44 1.46 1.28 0.26 0.26 0.31 0.11 0.06 6.89 0.64 0.58 0.59 0.23 0.14 0.02 0.01

Mix 1.79 1.47 1.23 0.24 0.28 0.32 0.10 0.06 6.68 0.48 0.45 0.68 0.20 0.09 0.03 0.01

Car (own) 2.08 1.58 1.29 0.21 0.28 0.28 0.16 0.06 5.51 0.40 0.43 0.74 0.15 0.08 0.03 0.00
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(

(small time limit). Although the former results are generally consid-

erably better than the latter, the latter results represent already good

solutions obtained in relatively small computation times (60 seconds

on average, compared to 592 seconds for 2 million iterations). Av-

erage results over five runs on all instances are reported in the first

line of Table 4. Columns two and three indicate the average indicator

values. The number of non-dominated solutions with unique objec-

tive values and the total number of non-dominated solutions (some

having the same objective values but different routing solutions) are

presented in columns four and five respectively.

Various configurations of our algorithm have been tested to find

good parameter settings and to identify non-contributing compo-

nents of the algorithm. These configurations make use of different pa-

rameters for generating q, different values for P, different maximum

noise levels, no noise at all, only a subset of the removal and inser-

tion heuristics or an adaptive version of LNS. To allow a fair compari-

son of the different configurations, for each instance the algorithm is

run for the average amount of computation time required by the base

version. In this paper, only those configurations that improve at least

three out of four quality indicators (I
f r
H

(A) and Iε(A), for both time

limits) are reported in Table 4. These configurations include:

• changing the lower bound on the interval for q to max (2,

0.05 · I) (v1),
• changing the upper bound on the interval for q to max (40,

0.60 · I) (v2),
• changing the value of P to 4 (v3),
• not applying the related removal operator when minimizing

costs (v4),
• not applying the basic greedy insertion operator for both objec-

tives (v5),
• a combination of configurations v1 to v5 (v6).

The final configuration clearly provides the best results. Detailed

results for this configuration are provided in Appendix B. Note that

the algorithm provides the complete optimal Pareto front for 20 out

of the 23 instances for which this front is known (I
f r
H

(A) = Iε(A) = 1).

For the other instances only small differences with the optimal front
xist, except for instance 27. The rather bad indicator values for this

nstance may be caused by reducing the number of operators and

he smaller (bounds on the) removal rate q, changes which appear

o be highly beneficial for solution quality on larger instances. Fur-

hermore, the fact that the number of solutions in the optimal front

s rather low for this instance (9), makes that not finding one of

hese solutions may have a comparably large effect on the indicator

alues.

Table 4 already indicates that a set of solutions may contain sev-

ral solutions with the same objective values but different routes.

ice versa, due to the bi-objective nature of the scheduling problem,

set of routes may result in multiple non-dominated solutions. In

act, the set of non-dominated solutions with unique routes on aver-

ge only represents 82 percent of the total number of non-dominated

olutions found by the algorithm.

.4. Trade-off analysis

The trade-off between both objectives is analyzed using five runs

f the best settings of the metaheuristic algorithm (v6). For this pur-

ose, several subsets of the 90 instances are considered. A distinction

s made between small instances (I ≤ 25), medium-sized instances

50 ≤ I ≤ 150) and large instances (I ≥ 200). Besides, a distinction is

ade based on the considered mode(s) of transportation and travel

ost/time data (car, public, mix, car (own data)). A difficulty with an-

lyzing the trade-off is the fact that for some solutions one of the ob-

ective values may be zero, thereby making it impossible to express

or example the increase in costs when reducing client inconvenience

s a percentage of the minimum cost.

Information on the two extreme solutions in an approximation

et, the one with minimum cost and the one with minimum incon-

enience, is presented in Table 5. For each set of instances, aver-

ge values over five runs on all instances are reported. The first two

olumns indicate the average cost per job in euros and the average

evel of inconvenience for a job in the solution. Values per job in-

tead of total values are used to allow a fairer comparison between

sets of) instances. However, comparison between sets of instances
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hould still be made with care as the underlying network informa-

ion differs from instance to instance. Since inconvenience is clearly

ttributable to a specific job and the inconvenience level may only

ake integer values from zero to four, some additional information on

he distribution of total inconvenience over the jobs is presented as

ell. The third column indicates the standard deviation from the av-

rage, while the other columns indicate the fraction of jobs having a

pecific inconvenience level, averaged over all runs and instances.

Results indicate that on average a considerable difference be-

ween the minimum cost and minimum inconvenience solution

xists in terms of both objectives. Hence, the decision of service

roviders on which service level to offer to their clients has a large

ffect on operating costs and this decision should be made carefully.

hile the mode of transportation does not seem to have a large ef-

ect on the extreme solutions, the cost and inconvenience per job

eem to decrease considerably when the number of jobs increases,

ndicating economies of scale for larger service providers. Looking at

he distribution of inconvenience over the jobs for the minimum in-

onvenience solution, it is clear that most jobs have a small level of

nconvenience (0 or 1). Although the objective is to minimize total in-

onvenience, without imposing constraints on the inconvenience of a

pecific job, only very few jobs seem to suffer from a very high level of

nconvenience (3 or 4). Even for the minimum cost solution, on aver-
ge jobs still have a relatively low level of inconvenience (1.49), with

ost jobs having levels of 0, 1 or 2.

More information on the trade-off may be found in Fig. 1 which in-

icates the average shape of the trade-off curve between the two ex-

reme solutions over all runs and instances. The figure is constructed

s follows. For each run on each instance, the range of total costs is

efined as the difference between total costs in the minimum incon-

enience solution and the minimum cost solution. This range indi-

ates the additional costs a service provider might incur in order to

mprove the offered service level to his clients. Similarly the range of

nconvenience is defined as the reduction in inconvenience that may

e achieved by incurring these additional costs. Next, starting from

he minimum cost, for every increase in costs equal to a multiple of 5

ercent of the total cost range, the corresponding inconvenience level

s found. This is done by calculating the total cost level, looking for the

wo solutions in the front which encompass this cost level and lin-

arly interpolating to find the inconvenience level which corresponds

o the cost level. The difference between this inconvenience level and

he minimum inconvenience level is then expressed as a fraction of

he range of inconvenience. Fig. 1 shows the average fractions over

ll runs and instances. It indicates which fraction of the total possible

eduction in inconvenience is achieved on average when increasing

osts with a certain fraction of its range. Since fractions of the ranges
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Table A.1

Overview of instances.

Instance Jobs Patients Nurses Modes1 Inst. Jobs Pat. Nurses Modes Inst. Jobs Pat. Nurses Modes

FT PT FT PT FT PT

1 10 6 2 0 0 31 50 33 6 8 0 61 200 117 21 38 0

2 10 6 2 2 1 32 50 25 6 8 1 62 200 112 21 38 1

3 10 6 2 0 2 33 50 27 6 8 2 63 200 117 21 38 2

4 10 6 2 0 3 34 50 34 6 8 3 64 200 110 21 38 3

5 10 6 2 2 2 35 50 27 6 8 2 65 200 115 21 38 2

6 15 6 2 2 0 36 50 32 6 8 0 66 200 106 21 38 0

7 15 6 3 2 1 37 50 25 6 8 1 67 200 108 21 38 1

8 15 8 3 2 2 38 50 31 6 8 2 68 200 106 21 38 2

9 15 7 2 2 3 39 50 31 6 8 3 69 200 113 21 38 3

10 15 9 3 2 2 40 50 28 6 8 2 70 200 115 21 38 2

11 20 13 3 2 0 41 100 56 11 18 0 71 250 141 26 48 0

12 20 10 3 2 1 42 100 56 11 18 1 72 250 142 26 48 1

13 20 14 3 2 2 43 100 53 11 18 2 73 250 150 26 48 2

14 20 14 3 2 3 44 100 55 11 18 3 74 250 152 26 48 3

15 20 12 3 2 2 45 100 60 11 18 2 75 250 135 26 48 2

16 20 13 3 2 0 46 100 53 11 18 0 76 250 149 26 48 0

17 20 14 3 2 1 47 100 63 11 18 1 77 250 135 26 48 1

18 20 11 3 2 2 48 100 50 11 18 2 78 250 140 26 48 2

19 20 11 3 2 3 49 100 58 11 18 3 79 250 149 26 48 3

20 20 11 3 2 2 50 100 63 11 18 2 80 250 154 26 48 2

21 25 14 3 4 0 51 150 90 16 28 0 81 300 170 31 58 0

22 25 13 3 4 1 52 150 89 16 28 1 82 300 164 31 58 1

23 25 16 3 4 2 53 150 83 16 28 2 83 300 164 31 58 2

24 25 12 3 4 3 54 150 90 16 28 3 84 300 168 31 58 3

25 25 16 3 4 2 55 150 90 16 28 2 85 300 167 31 58 2

26 25 13 3 4 0 56 150 85 16 28 0 86 300 182 31 58 0

27 25 15 3 4 1 57 150 85 16 28 1 87 300 180 31 58 1

28 25 16 3 4 2 58 150 91 16 28 2 88 300 165 31 58 2

29 25 13 3 4 3 59 150 87 16 28 3 89 300 171 31 58 3

30 25 13 3 4 2 60 150 99 16 28 2 90 300 167 31 58 2

1 0: Car, 1: Public, 2: Mixed, 3: Car (own data).

Table A.2

Information on nurses and qualifications.

Nurse qualifications Probability

0 1 2 3 4 5

Job qualifications 0 x x x x 0.05

1 x x x 0.02

2 x x x x 0.68

3 x x x 0.11

4 x x 0.12

5 x 0.01

Probability 0.01 0.04 0.62 0.09 0.11 0.12

Min. wage (euro/overtime hour) 20.18 25.45 28.57 27.59 30.98 37.81

Max. wage (euro/overtime hour) 22.32 28.21 31.88 34.46 37.81 44.64

Table A.3

Information on time parameters.

Time slots Probability Service duration (in hours)

Avg. St.dev. Min. Max.

6:00−7:59 0.20 1.1015 0.3715 0.25 2.5

8:00−10:59 0.34 1.5188 0.8105 0.50 4

11:00−12.59 0.28 1.0093 0.5008 0.50 4

13:00−15:59 0.04 1.1027 0.5073 0.50 3

16:00 −20:00 0.14 0.7209 0.1745 0.50 2

Table A.4

Jobs per patient.

Jobs 1 2 3 4

Probability 0.52 0.26 0.17 0.05

w

e

(

d

of both objectives are used, the actual slope of the trade-off curve will

depend on the actual absolute ranges. For example, a large cost range

and a small inconvenience range will result in a rather steep curve.

Besides, note that for individual instances the trade-off curve might

not be convex, i.e. some efficient solutions may be non-supported

and cannot be found using a simple weighted objective approach. For

service providers mainly focusing on minimizing costs, the curve in

Fig. 1 indicates that with a relatively small effort in terms of costs,

inconvenience for the clients may already be reduced considerably.

An increase in costs of respectively 5 or 10 percent of its range will

already result in a reduction of inconvenience of 27 or 39 percent of

its range. As can be expected, the more one moves towards the min-

imum inconvenience solution, the more costly it becomes to reduce

inconvenience even further.

Finally, the effect of the width of the soft time windows around the

preferred visit time is analyzed. Service providers may set the width

of these time windows in accordance with their view on client expec-

tations. The less clients are prepared to allow a deviation from their

preferred visit time, the narrower these time windows should be set.

For all experiments discussed above, the soft time windows had a
idth of 1 and 2 hours, centered around the preferred visit time. The

ffect of widening (to 1 hour 30 minutes and 3 hours) and narrowing

to 30 minutes and 1 hour) these time windows is shown in Fig. 2. It

epicts the non-dominated solutions found by the algorithm for each



K. Braekers et al. / European Journal of Operational Research 248 (2016) 428–443 441

Table B.1

Detailed results of algorithm configuration v6.

Configuration First time limit Second time limit

I f r
H

(A) Iε (A) # Solutions Runtime # Iterations I f r
H

(A) Iε (A) # Solutions Runtime # Iterations

Unique All Unique All

11 1.0000 1.0000 7 7 4 322371 1.0000 1.0000 7 7 22 2691070

21 1.0000 1.0000 5 5 3 282485 1.0000 1.0000 5 5 21 2694370

31 1.0000 1.0000 3 3 3 291106 1.0000 1.0000 3 3 20 2703950

41 1.0000 1.0000 10 10 4 341821 1.0000 1.0000 10 10 24 2707320

51 1.0000 1.0000 3 4 3 285050 1.0000 1.0000 3 4 21 2618540

61 1.0000 1.0000 11 11 4 255984 1.0000 1.0000 11 11 31 2645000

71 1.0000 1.0000 4 4 4 278697 1.0000 1.0000 4 4 28 2721530

81 1.0000 1.1005 3 3 4 258437 1.0000 1.0000 3 3 31 2660400

91 1.0000 1.0000 8 8 4 246401 1.0000 1.0000 8 8 32 2710920

101 1.0000 1.0000 8 16 4 243982 1.0000 1.0000 8 16 32 2667950

111 1.0000 1.0000 7 14 6 278093 1.0000 1.0000 7 14 44 2653590

121 1.0000 1.0000 4 4 4 220984 1.0000 1.0000 4 4 36 2751050

131 1.0000 1.0375 13 29 5 229217 1.0000 1.0000 14 31 44 2663390

141 0.9995 1.0023 12 18 5 247119 1.0000 1.0000 12 17 41 2743380

151 1.0000 1.0000 5 13 5 245938 1.0000 1.0000 5 13 40 2700010

161 0.9967 1.0166 12 30 5 232229 0.9976 1.0133 12 30 43 2679460

171 1.0000 1.0000 4 4 5 268351 1.0000 1.0000 4 4 38 2715520

181 1.0000 1.0000 12 19 5 233234 1.0000 1.0000 12 19 42 2705350

191 0.9990 1.0066 7 7 6 286213 1.0000 1.0000 7 7 43 2757600

201 0.9841 1.0432 9 11 5 251434 1.0000 1.0000 10 14 39 2729790

21 0.9904 1.0318 17 19 7 229940 0.9995 1.0054 19 21 63 2682040

221 0.9946 1.0348 23 53 6 242204 0.9959 1.0261 23 53 51 2774820

23 0.9577 1.0353 9 19 7 259000 1.0000 1.0000 9 20 56 2693320

241 1.0000 1.0000 7 7 6 247483 1.0000 1.0000 7 7 51 2783750

25 0.9924 1.0257 19 49 6 218788 0.9986 1.0052 19 43 56 2700240

26 0.9881 1.0329 21 29 8 252751 0.9969 1.0255 23 35 66 2736450

271 0.8364 1.3005 6 6 6 252593 0.9343 1.1394 8 8 49 2843050

28 0.9972 1.0194 18 52 7 253171 1.0000 1.0000 18 51 57 2736360

29 0.9919 1.0284 18 44 7 232890 0.9962 1.0234 19 51 63 2770440

30 1.0000 1.0000 14 22 6 233665 1.0000 1.0000 14 22 53 2734000

31 0.9351 1.0810 37 476 19 217197 0.9544 1.0583 37 559 185 2725800

32 0.8974 1.0690 39 60 16 222906 0.9513 1.0517 37 60 152 2794580

33 0.9416 1.0592 50 65 17 215487 0.9648 1.0380 57 93 164 2705710

34 0.9355 1.0604 49 67 18 223049 0.9605 1.0474 54 68 170 2884650

35 0.9451 1.0492 36 76 18 221306 0.9628 1.0419 37 79 169 2840250

36 0.9712 1.0366 47 130 18 213989 0.9798 1.0324 51 143 177 2827630

37 0.9335 1.0626 23 26 15 228768 0.9689 1.0437 27 31 138 2839860

38 0.9613 1.0390 43 78 16 220366 0.9801 1.0281 47 82 153 2815620

39 0.9523 1.0505 49 140 19 228582 0.9831 1.0269 51 142 176 2907700

40 0.9667 1.0337 47 132 17 220942 0.9781 1.0270 51 158 161 2791240

41 0.9192 1.0580 78 299 51 274777 0.9590 1.0380 88 1240 504 2814610

42 0.9000 1.0732 54 126 43 275827 0.9616 1.0442 56 315 417 2922740

43 0.8688 1.0912 73 149 47 277188 0.9310 1.0611 77 343 454 2809980

44 0.8936 1.0644 91 110 48 277917 0.9564 1.0379 108 166 469 2723040

45 0.8515 1.1125 76 183 43 277093 0.9268 1.0629 91 358 421 2696050

46 0.9237 1.0496 91 191 50 274703 0.9682 1.0280 99 246 491 2706940

47 0.8231 1.1106 60 243 40 274956 0.9015 1.0749 67 577 397 2717750

48 0.9181 1.0590 72 164 49 272636 0.9672 1.0306 80 410 481 2696040

49 0.9113 1.0542 103 160 51 274866 0.9629 1.0310 119 310 501 2683230

50 0.8245 1.1338 63 335 43 282215 0.8896 1.0880 76 1526 416 2706030

51 0.9309 1.0478 115 231 76 275950 0.9690 1.0302 126 868 747 2694410

52 0.8925 1.0705 126 192 62 271299 0.9577 1.0436 125 638 604 2625660

53 0.8437 1.0997 103 212 59 268968 0.9430 1.0612 116 860 589 2639600

54 0.9298 1.0523 134 284 78 277235 0.9690 1.0330 152 993 767 2712780

55 0.8671 1.0776 117 184 66 273112 0.9495 1.0439 123 537 645 2656050

56 0.9258 1.0494 124 251 77 274260 0.9719 1.0294 131 1021 762 2724560

57 0.8315 1.1156 102 174 58 271762 0.9426 1.0529 119 434 571 2665890

58 0.8817 1.0694 126 277 60 268710 0.9629 1.0315 126 720 591 2656460

59 0.8346 1.0880 137 182 66 279283 0.9436 1.0424 160 320 643 2759500

60 0.8555 1.0904 100 179 62 273971 0.9527 1.0469 115 391 602 2665460

61 0.9322 1.0494 142 346 100 276093 0.9546 1.0371 149 1999 987 2738750

62 0.8354 1.1009 134 189 80 274146 0.9459 1.0520 150 461 793 2688050

63 0.8822 1.0737 152 228 87 270057 0.9609 1.0354 156 542 862 2686490

64 0.8869 1.0657 196 232 96 272925 0.9713 1.0286 222 544 953 2736870

65 0.8815 1.0672 154 282 88 271487 0.9580 1.0370 152 552 873 2697460

66 0.9161 1.0526 136 212 101 279382 0.9707 1.0284 147 922 995 2745010

67 0.8005 1.1155 132 212 83 274922 0.9382 1.0473 156 505 822 2712940

68 0.8439 1.0841 164 269 83 270783 0.9421 1.0480 162 849 825 2692670

69 0.9237 1.0488 160 203 105 278501 0.9760 1.0223 194 639 1042 2773290

70 0.8404 1.0998 155 220 81 273566 0.9481 1.0431 160 341 802 2698750

71 0.8818 1.0663 203 304 134 278977 0.9536 1.0363 221 1685 1324 2757720

72 0.8416 1.0992 177 245 104 275415 0.9570 1.0485 200 680 1032 2705170

(continued on next page)
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Table B.1 (continued)

Configuration First time limit Second time limit

I f r
H

(A) Iε (A) # Solutions Runtime # Iterations I f r
H

(A) Iε (A) # Solutions Runtime # Iterations

Unique All Unique All

73 0.8348 1.0812 178 217 114 275871 0.9641 1.0339 201 455 1132 2710080

74 0.9219 1.0663 180 266 149 283546 0.9751 1.0282 209 1586 1466 2829770

75 0.8108 1.1076 195 235 114 275883 0.9537 1.0455 217 457 1135 2722950

76 0.9088 1.0528 199 254 139 278235 0.9788 1.0210 202 722 1372 2769220

77 0.8238 1.0978 176 228 105 276788 0.9584 1.0400 181 352 1046 2701120

78 0.8575 1.0869 217 256 121 275645 0.9633 1.0310 221 518 1201 2702410

79 0.9070 1.0683 207 247 143 281027 0.9722 1.0328 245 528 1416 2790080

80 0.8838 1.0772 188 221 121 272210 0.9631 1.0372 177 441 1195 2693270

81 0.9092 1.0626 194 254 212 289459 0.9754 1.0320 200 614 2100 2869860

82 0.7956 1.1089 195 240 139 285936 0.9504 1.0445 226 552 1393 2828100

83 0.8598 1.0771 243 291 172 280946 0.9618 1.0377 242 666 1719 2828220

84 0.8853 1.0669 302 327 204 286940 0.9698 1.0284 313 555 2015 2844880

85 0.8281 1.0882 236 278 164 284656 0.9479 1.0401 265 558 1629 2805600

86 0.9074 1.0674 185 228 211 289169 0.9778 1.0288 179 550 2093 2881800

87 0.8825 1.0743 218 272 154 275307 0.9762 1.0266 205 393 1540 2785550

88 0.8685 1.0858 238 291 171 283158 0.9659 1.0377 235 452 1702 2787670

89 0.9248 1.0516 253 307 220 287101 0.9781 1.0248 282 1250 2194 2898160

90 0.8676 1.0719 242 299 169 285335 0.9705 1.0272 245 794 1665 2793740

1 Pareto-optimal solutions are known.
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of these settings for one of the largest instances (instance 90). Clearly,

when the soft time windows are narrower it becomes more costly to

offer a similar service level and hence the trade-off curve shifts to the

upper right corner.

6. Conclusions and future research

Demand for home care services in western countries is increasing

due to demographic changes in terms of a continuously aging popu-

lation. Home care providers are faced with the need for tools to sup-

port and optimize their operational routing and scheduling to cope

with this increasing demand. This optimization problem consists of

assigning jobs to nurses and constructing efficient routes and sched-

ules for the nurses. It has been studied extensively in the past years,

often inspired by real-life applications.

Service providers are confronted with multiple, often conflicting,

objectives in this process. On the one hand the objective is to mini-

mize their operating costs while on the other hand they want to of-

fer a high service level to their clients by taking into account their

preferences. Current planning models either use weighted objective

functions or hard constraints to incorporate the latter aspect, thereby

masking or ignoring the trade-off between both objectives. Since the

trade-off between cost and client convenience is an important con-

sideration for service providers, this paper is the first to shed some

light on this trade-off relationship by modeling the home care rout-

ing and scheduling problem as a bi-objective problem.

A definition of the problem is presented, together with a mixed in-

teger problem formulation and some valid inequalities to strengthen

this formulation. The problem takes into account qualifications,

working regulations and overtime costs of the nurses, travel costs

depending on the mode of transportation, hard time windows, and

client preferences on visit times and nurses. A distinguishing char-

acteristic of the problem is that the scheduling problem for a sin-

gle route is a bi-objective problem in itself, thereby complicating the

problem considerably.

Small problem instances are solved by applying the ε-constraint

solution framework. In order to solve problem instances of realistic

size, a metaheuristic algorithm is proposed. This algorithm embeds

a large neighborhood search heuristic in the multi-directional local

search framework. A set of benchmark instances is generated using

real-life data, and computational experiments of different parameter

settings of the metaheuristic algorithm are presented. A comparison
ith exact solutions on small instances shows that the algorithm

dequately solves the problem under study. An analysis of the results

eveals that service providers face a considerable trade-off between

osts and client convenience. However, starting from a minimum

ost solution, the average service level offered to clients may already

e improved drastically with a relatively small fraction of additional

osts, e.g. on average an increase in costs of respectively 5 or 10

ercent of its range already results in a reduction of inconvenience

f 27 or 39 percent of its range.

As this paper is the first to study the home care scheduling prob-

em from a bi- or multi-objective perspective, many opportunities for

uture research exist. More sophisticated exact solution approaches

e.g. Branch-and-Cut(-and-Price)) may be developed to assess the

uality of heuristic procedures for larger instances. Furthermore, the

roblem and the MDLS-based metaheuristic can easily be extended

ith additional objectives. Nurse convenience may for example be in-

luded to address the preferences of nurses regarding working times

nd the clients to visit. Finally, the problem may be extended with

dditional real-life aspects such as temporal dependencies between

obs, dynamic aspects of visits and travel times, and a longer planning

orizon.
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ppendix A. Info on problem instance generation

In this appendix detailed information on the parameters used

o generate the problem instances is provided. Table A.1 gives an

verview of the instances, indicating for each instance the number

f jobs, the number of patient locations, the number of full-time (FT)

nd part-time (PT) nurses, and the transportation modes considered.

n Table A.2 the probability for a job to require a certain level of qual-

fication and for a nurse to possess a certain level of qualification are

hown, together with a compatibility matrix. Nurse wages are dis-

ributed uniformly between the bounds provided in the last two lines

f the table. Information on the time-related parameters is provided

http://dx.doi.org/10.13039/501100003130
http://dx.doi.org/10.13039/501100002428
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n Table A.3. The second column shows the probability for a job to

e assigned to a time slot. For each time slot, the service duration

f a job is generated according to a normal distribution with a time

lot-specific average and standard deviation, although a hard min-

mum and maximum are applied to avoid unrealistic values. Finally,

able A.4 indicates the probability for a patient to request several jobs

n a single day, thereby reducing the number of physical locations in

he network.

ppendix B. Detailed results

See Table B.1 for detailed results.
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