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Abstract. Aggregating the preference of multiple experts is a very old problem 

which remains without an absolute solution. This assertion is supported by the 

Arrow’s theorem: there is no aggregation method that simultaneously satisfies 

three fairness criteria (non-dictatorship, independence of irrelevant alternatives 

and Pareto efficiency). However, it is possible to find a solution having minimal 

distance to the consensus, although it involves a NP-hard problem even for only 

a few experts. This paper presents a model based on Ant Colony Optimization 

for facing this problem when input data are incomplete. It means that our model 

should build a complete ordering from partial rankings. Besides, we introduce a 

measure to determine the distance between items. It provides a more complete 

picture of the aggregated solution. In order to illustrate our contributions we use 

a real problem concerning Employer Branding issues in Belgium. 
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1   Introduction 

The aggregation of multiple preferences has been widely studied by economists under 

social choice theory. In recent years reasoning based on permutations has gained great 

attention due to the applications in solving decision-making problems. For example, a 

main aspect in some machine learning tasks is how to combine the output of multiple 

classifiers, in order to determine the most adequate class. Other relevant applications 

include: computational biology [1], multi-agent planning [2], voting in elections [3], 

information retrieval [4], among others interesting fields. 

Formally the aggregation of preferences could be summarized as follows: given 𝑁 

orderings over 𝑀 objects/items where each ranking denotes the preference of a single 

expert, then the goal is to build a consensus (aggregated) ranking taking into account 

all input rankings. Borda [5] and Condorcet [6] proposed diverse ways of aggregating 

the preferences of the multiple voters, and argued over which method is the right one. 

Unfortunately, Arrow [7] proved that there is no right approach, since there exists no 

aggregation method that concurrently satisfies three fairness criteria: non-dictatorship, 

Pareto efficiency and independence of irrelevant alternatives. 

 



Despite this negative result, it is possible to compute an aggregated ranking having 

minimal distance to the global consensus. This ranking/ordering is also known as the 

Kemeny ranking. In [8] the authors performed an extensive study including different 

methods (e.g. Branch and Bound, approximate algorithms) for computing the Kemeny 

ranking. It was also concluded that heuristic approaches are recommended in contexts 

having weak or no consensus. More recently, Aledo at al. [9] introduced an approach 

based on evolutionary computation, which clearly outperformed the remaining tested 

algorithms. However, this model is based on the Kendall distance and hence it cannot 

be directly applied to the aggregation of incomplete preferences. 

Inspired on this work we introduce an approximate model for aggregating partial 

rankings which uses Ant Colony Optimization (ACO) as optimizer. The main reason 

behind this decision is moved by the strong ability of ACO for solving combinatorial 

problems [10] and also by its scheme for generating new states. In a few words, ACO 

exploits the heuristic information for improving the search, and this knowledge could 

be easily computed from input data. Moreover, we present a measure for computing the 

relative distance between two items/objects in the final ranking (which is entirely based 

on the induced deviation to the experts’ consensus). 

The rest of the paper is organized as follows. The next section makes an overview 

about the Kemeny ranking problem and describes an extension for aggregating partial 

rankings. It includes the design of the objective function to be optimized, and also the 

measure for computing the distance between two objects. Section 3 reviews the main 

ideas of ACO-based optimizers, which will be used next for generating the candidate 

ranking. In Section 4 we explain how to estimate the heuristic information from input 

data for two different scenarios. Section 5 presents a real study case about employees’ 

preferences in Belgium when they look for an employer. In the last section the authors 

discuss conclusions and future research directions. 

2   Extending the Kemeny ranking problem 

Solving the Kemeny ranking problem is equivalent to compute the consensus ranking 

for a set of input rankings. The reader can find the formulation of this problem in [11] 

although it could be summarized as follows: given a set of 𝑁 rankings 𝜋1, 𝜋2, … , 𝜋𝑁 

with 𝑀 elements, the Kemeny ranking problem consists on finding the ranking 𝜋∗ that 

satisfies the expression (1). Here 𝜋∗ is the central permutation to be computed by the 

model, whereas 𝑑1(𝜋, 𝜋∗) denotes the Kendall distance [12]. In brief, the Kendall-Tau 

distance between two rankings 𝜋1 and 𝜋2 is defined as the total number of items pairs 

over which they disagree. However, this function assumes that all objects are ranked 

where ties are no allowed, hence the Kendall-Tau distance is not a suitable alternative 

when we want to face the aggregation of partial rankings. 

 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜋𝑖
1

𝑁
∑𝑑1(𝜋𝑖 , 𝜋∗)

𝑁

𝑖=1

 (1) 

 

 



In many important applications, rankings are only partial, in the sense that ties are 

allowed. This happens, for example, when only the top, say 𝐾, elements are ordered, 

while all the remaining elements are assumed to have rank 𝐾 + 1 [13]. It is possible a 

second scenario where each expert 𝑋𝑖 selects 𝐾𝑖 items as relevant, leading to a ranking 

with (𝑀 − 𝐾𝑖) elements are tied at the 𝐾𝑖 + 1 position. To deal with such scenarios we 

need to extend the Kemeny ranking problem by replacing the Kendall-Tau distance by 

a measure able of comparing partial rankings. In this paper we adopt the Hausdorff 

distance [14] since it is based on the Kendall-Tau principle. Besides, this distance has 

been widely studied and shown to have especially nice mathematical and algorithmic 

properties, particularly with regard to rank aggregation [15]. 

 

𝑑2(𝜋𝑖 , 𝜋∗) = |𝒟(𝜋𝑖 , 𝜋∗)| + 𝑚𝑎𝑥⁡{|ℛ1(𝜋𝑖 , 𝜋∗)|, |ℛ2(𝜋𝑖 , 𝜋∗)|} (2) 

 

In the equation (2) the set 𝒟(𝜋𝑖 , 𝜋∗) denotes all items pairs that appear in different 

order, ℛ1(𝜋𝑖 , 𝜋∗) represents the set of all objects pairs which are tied in 𝜋𝑖 but not tied 

in the ordering 𝜋∗, whereas ℛ2(𝜋𝑖 , 𝜋∗) is the set of elements pairs which are tied in 𝜋∗ 
but not tied in the ranking 𝜋𝑖. However, if we consider that the ranking 𝜋∗ is complete 

then the expression (2) could be notably reduced as follows: 

 

𝑑2(𝜋𝑖 , 𝜋∗) = |𝒟(𝜋𝑖 , 𝜋∗)| + (
𝑀 − 𝐾𝑖

2
) (3) 

 

In other words, |ℛ2(𝜋𝑖 , 𝜋∗)| = 0 since 𝜋∗ is a complete ordering (i.e. the candidate 

solution to be generated by the selected optimizer). Likewise, the reader could observe 

that |ℛ1(𝜋𝑖 , 𝜋∗)| = (𝑀−𝐾𝑖
2
) where 𝐾𝑖 is the number of relevant items, according to the 

ith respondent. Next equation shows the normalized objective function, which should 

be minimized during the search process. The closer to zero the evaluation, the closer 

the permutation 𝜋 to the consensus. In the next Section we describe the main ideas of 

ACO-based algorithms, but first we present a new measure for computing the relative 

distance between two consecutive objects in a consensus ranking.  

 

𝐻(𝜋) =
1

𝑁
∑

|𝒟(𝜋𝑖 , 𝜋)| + (𝑀−𝐾𝑖
2
)

𝑀(𝑀 − 1)/2

𝑁

𝑖=1

 (4) 

 

2.1   Measuring the distance between two objects  
 

As discussed, the goal of the Kemeny ranking problem is to find a complete ordering 

from a set of input rankings, having minimal distance to the consensus. In this scheme 

the inputs could be partial or complete. The aggregated ranking is a suitable tool when 

we want to face decision-making problems based on permutations, but sometimes this 

knowledge is not enough, and further analysis is often required. For instance, a central 

question when experts interpret a consensus ordering is: which is the relative distance 

between two consecutive objects? Next we introduce a strategy to solve this question, 

which is completely based on the objective function. 

 



Let us consider a consensus ordering 𝜋 = {𝜋(1), 𝜋(2),… , 𝜋(𝑙), 𝜋(𝑙 + 1), … , 𝜋(𝑀)} 
that minimizes (4) such as 𝑥 = 𝜋(𝑙) and 𝑦 = 𝜋(𝑙 + 1). In other words, 𝜋 is a solution 

for the Kemeny ranking problem where 𝑥 ≺ 𝑦. The equation (5) displays the induced 

deviation 𝛿(𝑦, 𝑥)𝜋 which measures the distance between such items. 

 

𝛿(𝑦, 𝑥)𝜋 =
|𝐻(𝜋) − 𝐻(𝜋̌𝑦≺𝑥)|

∑ |𝐻(𝜋) − 𝐻(𝜋̌𝜋(𝑘+1)≺𝜋(𝑘))|𝑘

 (5) 

 

 In this equation 𝜋̌𝑦≺𝑥 represents a ranking obtained from 𝜋 where objects 𝑥 and 𝑦 

were exchanged, whereas 𝑘 = 1,… ,𝑀 indexes the elements. The reader could notice 

that 𝛿(𝑦, 𝑥)𝜋 = 0 if 𝜋𝑥≺𝑦 and 𝜋̌𝑦≺𝑥 have the same heuristic value, and accordingly we 

can conclude that 𝑥 and 𝑦 are tied (i.e. they are at the same level). It should be stated 

that our model attempts to compute a complete ordering using a set of partial and/or 

complete rankings as input data. However, it is possible to obtain a solution implicitly 

having tied items. Even it is possible that ∑ |𝐻(𝜋) − 𝐻(𝜋̌𝜋(𝑘+1)≺𝜋(𝑘))| = 0, ∀𝑘, so we 

must assume that 𝛿(𝑦, 𝑥) = 0 for all pairs of elements. 

The central idea behind this measure could be summarized as follows: which is the 

induced deviation to the consensus if 𝑥 and 𝑦 are exchanged? In principle the ordering 

should have minimal distance to the general consensus, otherwise the results could be  

confusing. However, as was discussed before, finding this ranking involves a complex 

combinatorial problem for only a few experts and alternatives. That is why we prefer 

to adopt a heuristic approach based on Swam Intelligence. 

3   Ant Colony Optimization 

A central component in the proposed model is the generation of feasible permutations 

using the objective function for guiding the search. In this paper we use ACO methods 

as optimizers, where each permutation comprises a possible solution. 

The ACO metaheuristic is a search method for addressing combinatorial problems, 

which is inspired on a colony of agents (ants) [16]. Real ants in nature search for food 

in a random proximity to the nest. Once the ants found a source of food, they evaluate 

this source according to quality and quantity. In the path back to the nest, they deposit 

a chemical pheromone trail on the ground, in order to guide the rest of the colony to the 

food source [17]. Therefore, ACO is a fully constructive model where each ant builds 

a candidate solution of the problem by exploring a construction graph. 

 Each artificial ant moves from one state to another during the search process (here 

states are components of the solution). The preference of moving from one node to the 

other mainly depends on two values associated to each connection: 

 The artificial information⁡𝜏𝑖𝑗 is directly based on the pheromone trails, and it is 

iteratively updated by ants during the algorithm progress. 

 The heuristic information⁡𝜂𝑖𝑗 denotes the preference of moving from one state 

to another. It should be specified that this knowledge is not modified during the 

algorithm execution, so it must be carefully estimated. 



From the perspective of the Kemeny ranking problem, the equation (6) denotes the 

probability of accepting the 𝑗th state (i.e. elements to be ordered) at the 𝑖th position of 

the candidate ranking, 𝒩𝑖
𝑘  is the set of unvisited states for the 𝑘th ant, while 𝛼 and 𝛽 

are two parameters which are used for controlling the strength of the pheromone trails 

and the heuristic information over the decision, respectively. 

 

𝑃𝑖𝑗
𝑘(𝑡 + 1) =

[⁡𝜏𝑖𝑗(𝑡)]
𝛼
[⁡𝜂𝑖𝑗]

𝛽

∑ ⁡⁡[⁡𝜏𝑖𝑟(𝑡)]
𝛼[⁡𝜂𝑖𝑟]

𝛽⁡
𝑟∈𝒩𝑖

𝑘

, 𝑗 ∈ 𝒩𝑖
𝑘 (6) 

 

After the construction process is complete, it is necessary to update all pheromone 

trails using the solutions found by agents. As a first stage, pheromone evaporation takes 

place uniformly reducing all pheromone trails. Subsequently, one or more solutions are 

used to increase the value of such paths included in selected solutions. It is a sensible 

issue in ACO-based algorithms. Essentially, most of ACO variants mainly differ in the 

strategy for updating the pheromone trail at each cycle. 

 

3.1   Ant System  
 

The Ant System (AS) was the first ACO algorithm [18]. In AS the pheromone trails is 

updated once all ants have completed their tours. As a first step all pheromone trails are 

uniformly evaporated using a constant factor 0 < 𝜌 < 1. After that, each ant 𝑘 deposits 

a quantity of pheromone ∆𝜏𝑖𝑗  on those connections that belong to its solution. It should 

be mentioned that the value ∆𝜏𝑖𝑗  is calculated according to the quality of the solution 

found by the 𝑘th ant. The following equation shows both procedures, where 𝜌 denotes 

the evaporation rate, whereas 𝑃 is the number of agents. 

 

⁡𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)⁡𝜏𝑖𝑗(𝑡) +∑∆

𝑃

𝑘=1

𝜏𝑖𝑗
𝑘  (7) 

 

On arcs which are not regularly chosen by ants, the associated pheromone strength 

will decrease exponentially with the number of iterations, whereas arcs often chosen by 

agents will receive more pheromone and therefore they are more likely to be chosen in 

future cycles. However, deeper simulations reported in [18] proved that better results 

could be computed if only the global-best solution is used for updating the pheromone 

trails, instead of using all individuals belonging to the swarm. 

 

3.2   Ant Colony System  
 

The Ant Colony System (ACS) improves the AS method by exploiting the global-best 

solutions found by ants during the search stage [19]. As result, the algorithm enhances 

the exploitation features of ants when they build a solution, instead of exploring new 

areas of the solution space. This goal is achieved using three mechanism: a strong elitist 

strategy for updating pheromone trails, a rule for updating pheromone trails during the 

search phase, and a pseudo-random rule when selecting new states. 



The following equation formalizes the strategy when updating the pheromone trails, 

where 𝜏𝑖𝑗
∗  denotes the pheromone quantity associated to the agent having better heuristic 

value. It means that the evaporation step takes place in all arcs, but the updating process 

only occurs in the tour traveled by the best individual.  

 

⁡𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)⁡𝜏𝑖𝑗(𝑡) + 𝜌𝜏𝑖𝑗
∗ (𝑡) (8) 

 

In order to fully exploit the best knowledge discover by ants, ACS also introduces a 

pseudo-random proportional rule (see next equation). More specifically, if a random 

number 𝑞~𝑈(0,1) falls below 𝑞0 then the agent will move to the state maximizing the 

product between pheromone trail and heuristic information, otherwise ACS will adopt 

the standard decision rule (6). The value 𝑞0 is a parameter that should be fixed by the 

expert; when it is close to 1, exploitation is favored over exploration. 

 

𝑗 = argmax
𝑟∈𝒩𝑖

𝑘
{[⁡𝜏𝑖𝑗(𝑡)]

𝛼
[⁡𝜂𝑖𝑗]

𝛽
} ⁡𝑖𝑓⁡𝑞 ≤ 𝑞0 (9) 

 

Finally, in the ACS model ants use a further rule for updating the pheromone trails 

whey they are building the candidate solution (see next equation). This approach has 

the same effect of decreasing the probability of selecting the same path for all ants, as 

a way of introducing a balance between exploitation and exploration. 

 

⁡𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)⁡𝜏𝑖𝑗(𝑡) + 𝜌𝜏𝑖𝑗(0) (10) 

 

The ACS algorithm regularly computes better solutions regarding the AS, since we 

know that ACO-based model performs better if artificial ants exploit the best solution 

found during the search process. In the next sub-section we revise another variant that 

adopt a similar principle attempting improving the performance. 

 

3.3   MAX-MIN Ant System  
 

The MAX-MIN Ant System (MMAS) was specifically developed to achieve stronger 

exploitation of solutions, avoiding stagnation states [20]. In a nutshell, we could define 

a stagnation state as the situation where ants construct the same solution over and over 

again and the exploration stops. This model has the following features. 

Equally to the ACS, a strong elitist strategy regulates the agent which is allowed to 

update the pheromone trails. It could be the ant having better evaluation so far, or the 

agent with the best tour in the current iteration. Second, all pheromone trails are limited 

in the range [𝜏𝑀𝐼𝑁 , 𝜏𝑀𝐴𝑋]. If 𝜏𝑀𝐼𝑁 > 0 for all solution components, then the probability 

of choosing a specific state will never be zero, which avoids stagnation configurations. 

As a final point, pheromone trails are initialized with 𝜏𝑀𝐴𝑋 to ensure further exploration 

of the search space at the beginning of the optimization phase. 

 



4   Estimating the heuristic information 

Another crucial component when solving combinatorial problems using an ACO-based 

algorithms is the estimation of the heuristic matrix. During the search process ants use 

this information to guide their movements (i.e. selection of a new state when they are 

building the candidate solution). If this matrix is appropriately estimated, then the ACO 

metaheuristic will lead to high-quality solutions, otherwise the algorithm will produce 

sub-optimal rankings. Next we explain two strategies to estimate this component from 

input data, assuming two partial rankings aggregation scenarios. 

 

4.1   Aggregation of multiple top-𝑲 rankings  
 

The first scenario takes place when each expert (hereinafter called respondent) selects 

the top-𝐾 objects (hereinafter called factors). It means that each input rankings will be 

partial in the sense that only the top-𝐾 factors are ordered, whereas the other (𝑀 −𝐾) 

factors are tied at the 𝐾 + 1 position. The reader can notice that estimating the matrix 

for the first 𝐾 factors across the 𝑀 positions is equivalent of computing the total number 

of times that the 𝑗th factor was observed in the 𝑖th position. For the remaining (𝑀 − 𝐾) 

places it cannot be directly used since these factors are tied, however, we could count 

how many times a factor was not included into the top-𝐾. Next equation formalizes this 

reasoning, assuming 𝑁 as the total number of respondents. 

 

𝜂𝑖𝑗 = {
𝑋𝑖𝑗 𝑁⁄ ,      ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡   𝑖 ≤ 𝐾

𝑌𝑗 (𝑁(𝑀 − 𝐾))⁄ ,   𝑖 > 𝐾
 (11) 

 

Example#1. Let us consider a ranking aggregation problem with 5 possible factors 

and 5 respondents, where each expert selected the top-3 factors. Next table shows this 

scenario. Observe that each row (respondent) comprises a partial ordering where factors 

are associated to specific positions. According to (11) the heuristic value of accepting 

the second factor at the first ranking position is 𝜂12 = 2/5. 

Table 1. Example of a dataset when aggregating multiple top-𝐾 rankings. 

 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 

𝑅1 1 2 𝐾 + 1 3 𝐾 + 1 

𝑅2 2 1 𝐾 + 1 𝐾 + 1 3 

𝑅3 1 3 𝐾 + 1 𝐾 + 1 2 

𝑅4 1 3 𝐾 + 1 2 𝐾 + 1 

𝑅5 2 1 3 𝐾 + 1 𝐾 + 1 

 

Note that 𝜂52 = 0 since 𝐹2 was always included into the top-3 sites and according to 

the equation (6) the probability 𝑃52 will be zero! However, this probability should not 

be zero because it is still possible building a solution having 𝐹2 at the last position. That 

is why we replace all zero-values by 𝜂𝑀𝐼𝑁 = min⁡{𝜂𝑖𝑗} such as 𝜂𝑖𝑗 ≠ 0, so we guarantee 

that all states could be visited by ants when they are building a solution. 



4.2   Aggregation of multiple top-𝑲𝒍 rankings 

  

This scenario is more complex since each respondent is free of selecting 𝐾𝑙  factors such 

as 1 ≤ 𝐾𝑙 ≤ 𝑀. Since the number of related factors is not fixed, we cannot simply count 

the number of times that a factor was observed at each site, we also must quantify the 

number of times that the factor could be observed at each position. It allows computing 

a more realistic heuristic matrix. Next equation summarizes this idea, where 𝑋𝑖𝑗 denotes 

the number of times the 𝑗th factor was observed at the 𝑖th position, 𝑄𝑗  is the set of input 

rankings where the 𝑗th factor was not included into the top-𝐾𝑙  positions, 𝐷𝑘 represents 

the set of feasible ranking positions (i.e. they do not induce new tied elements) for the 

𝑗th factor, while 𝐸𝑘𝑖(𝑗) is a binary function. This function responds a simple question: 

could be the 𝑗th factor assigned to the 𝑖th ranking position? 

 

𝜂𝑖𝑗 =
1

𝑁
(𝑋𝑖𝑗 + ∑

𝐸𝑘(𝑖)

|𝐷𝑘|
𝑘∈𝑄𝑗

) (12) 

 

Example#2. Let us consider a ranking aggregation problem with 5 possible factors 

and 5 respondents, where each expert 𝑅𝑙 selected the top-𝐾𝑙  factors, as summarizes the 

next table. According to (12) the heuristic value of accepting 𝐹2 at the first position is 

𝜂12 = 1 5⁄ (2 + 0 2⁄ + 0 3⁄ ) = 2/5 because 𝑄2 = {𝑅1, 𝑅4}, 𝐷1 = {4,5}, 𝐷4 = {3,4,5} 
and 𝐸𝑘(𝑖) = 0, ∀𝑖 ∈ {1,4} since 1 ∉ (𝐷1 ∪ 𝐷4). It means that 𝐹2 cannot be assigned to 

the first position, without introducing a new tied element. It should be also mentioned 

that tied factors into the top-𝐾𝑙  relevant positions are not allowed. 

Table 2. Example of a dataset when aggregating multiple top-𝐾𝑙 rankings. 

 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 

𝑅1 1 𝐾1 + 1 2 𝐾1 + 1 3 

𝑅2 3 1 𝐾2 + 1 2 𝐾2 + 1 

𝑅3 2 1 4 5 3 

𝑅4 2 𝐾4 + 1 𝐾4 + 1 𝐾4 + 1 1 

𝑅5 5 3 1 2 4 

 

Similarly to the above scenario, we must avoid zero-values in the heuristic matrix, 

although this situation is possible (i.e. the factor was never observed in a position and 

there is no chance to be observed without inducing a tied element). However, it is still 

possible to build a candidate solution with this feature having minimal distance to the 

general consensus, therefore it must be considered as well. In such cases the probability 

should not be zero but low (e.g. 𝜂𝑀𝐼𝑁 = min⁡{𝜂𝑖𝑗} such as 𝜂𝑖𝑗 ≠ 0). 

Notice that other scenarios are possible when aggregating partial rankings (e.g. tied 

elements in the top-𝐾 are allowed). In such cases our methodology is still useful since 

the modeling (i.e. generation of permutations) could be adopted, but some changes are 

required. In the following section, we explore the performance of our methodology in 

a real study case concerning Employer Branding issues in Belgium.   



5   Numerical simulations 

Which are the most significant factors to be considered by employees when they look 

for an employer? The answer for this question embraces a valuable knowledge for any 

company since it provides the key for attracting the best employees, hence being more 

competitive. In this section we address this complex issue by solving a partial ranking 

aggregation problem. It includes two different scenarios: 

a) Each respondent 𝑅𝑙 selects the top-5 factors from 𝑀 = 17 possible factors. 

b) Each respondent 𝑅𝑙 is free of selecting the most significant 𝐾𝑙  factors (there is 

no limit regarding the number of relevant factors, but 1 ≤ 𝐾𝑙 ≤ 17). 

  

In this study 14.585 respondents (aged between 18 and 65 years old) from Belgium 

where consulted1. As mentioned before, in the survey they evaluated 17 global factors 

elaborated by marketing experts, which are listed in the following table: 

Table 3. Global factors evaluated by each respondent during the online survey. 

𝐹1 Financially sound 

𝐹2 Offers quality training  

𝐹3 Offers long-term job security 

𝐹4 Offers international / global career 

𝐹5 Future prospects / career opportunities 

𝐹6 Strong management 

𝐹7 Offers interesting jobs (job description) 

𝐹8 Pleasant working environment 

𝐹9 Competitive salary package  

𝐹10 Good balance between life and work 

𝐹11 Well located 

𝐹12 Strong image / pursues strong values 

𝐹13 Quality products / services offered 

𝐹14 Deliberately handles the environment and society 

𝐹15 Uses the latest technologies / innovative 

𝐹16 Provides flexible working conditions 

𝐹17 Encourages diversity (age, gender, ethnicity) 

  

Besides, respondents are grouped according to the sector that they belong, resulting 

the following categories: automotive, business services, chemical and pharmaceutical 

industry, construction, education/government/care, energy services, human resources, 

informatics-consultancy, retail, travel/leisure/hospitality, industry and manufacturing, 

finance, food, transportation and logistics, and other. 

 

                                                           
1 Randstad was founded in 1960 by Frits Goldschmeding in the Netherlands. This company plays 

a pivotal role in the World of Work since it expanded its operations to 39 countries, representing 

more than 90 percent of the global HR services market. Actually, Randstad company is now the 

second largest HR services provider in the world. See http://www.randstad.com. 



For ACO-based methods we adopt the following parameters: 𝛼 = 3 and 𝛽 = 2 since 

the knowledge learned by ants is often more confident, the evaporation constant is set 

as 𝜌 = 0.6, whereas the pheromone matrix is initialized with 𝜏𝑖𝑗(0) = 0.5. In the case 

of the ACS method, we fix 𝑞0 = 0.7; whereas the pheromone limits 𝜆𝑀𝐼𝑁 and 𝜆𝑀𝐴𝑋 in 

the MMAS algorithm are computed as suggested [19]. Finally, we use a swarm having 

17 artificial ants (one ant per factor) and 150 generations. 

 

5.1   First scenario: each respondent 𝑹𝒍 selects the top-𝑲 factors 

 

The first experiment consists on finding the best optimizer. With this purpose in mind 

we averaged the best heuristic value 𝐻(𝜋∗) over 10 independent trials for each sector, 

since our model is non-deterministic. Next figure shows the mean ranks achieved for 

each algorithm according to the Friedman test [21]. Using a significance level of 0.05, 

corresponding to the 95% confidence interval, the Friedman test suggests rejecting the 

null hypothesis H0 (p-value = 0.0 < 0.05). As a result, we can conclude that there exist 

highly significant differences between at least two algorithms. 

 
Fig. 1. Mean ranks achieved by the Friedman test for the first problem. 

 

However, we cannot ensure that ACS is the best optimizer (notice that ACS has the 

lowest mean rank). As second step it is necessary to proof that ACS is involved in the 

highly significant differences reported by the Friedman test. To do that, we compute 

the Wilcoxon signed rank test [22] with the purpose of identifying significant difference 

between pairs of algorithms. The Wilcoxon test attempts to answer a question: do two 

samples represent two different populations? It suggests rejecting the null hypothesis 

for all pairs (𝑝-value < 0.05), assuming a significance level of 0.05. Hence, one can 

conclude that ACS is able of finding solutions closest to the consensus, outperforming 

the other algorithms when aggregating partial rankings. 

Based on this result, next we select the best solution found by the ACS model for all 

respondents after 10 independent trials. Table 4 shows the averaged ranking 𝜋 and also 

the distance between consecutive factors, according to (5). It can be noted that people 

in Belgium prefer interesting jobs, financially sound with competitive salary packages 

having pleasant working environment. However, the most desirable factor is long-term 

security. It is confirmed by the “distance” between the factor 𝐹3 ranked as first and the 

factor 𝐹7 ranked as second: 𝛿(𝐹7, 𝐹3)𝜋 = 0.27. It should be remarked that this measure 

has the greatest value between all pairs of consecutive factors. 
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Table 4. Best ranking for the first problem and distances between consecutive factors. 

Position Factor 𝛿(𝑦, 𝑥)𝜋 Position Factor 𝛿(𝑦, 𝑥)𝜋 

𝜋(1) 𝐹3 0.0000 𝜋(10) 𝐹2 0.1048 

𝜋(2) 𝐹7 0.2717 𝜋(11) 𝐹13 0.0886 

𝜋(3) 𝐹8 0.0638 𝜋(12) 𝐹4 0.0026 

𝜋(4) 𝐹9 0.0419 𝜋(13) 𝐹14 0.0190 

𝜋(5) 𝐹1 0.0870 𝜋(14) 𝐹6 0.0159 

𝜋(6) 𝐹10 0.0962 𝜋(15) 𝐹12 0.0026 

𝜋(7) 𝐹11 0.0602 𝜋(16) 𝐹17 0.0012 

𝜋(8) 𝐹5 0.0090 𝜋(17) 𝐹15 0.0289 

𝜋(9) 𝐹16 0.1059 - - - 

 

5.2   Second scenario: each respondent 𝑹𝒍 selects the top-𝑲𝒍 factors 

 

In this scenario we assume that each respondent is free of selecting the most significant 

𝐾𝑙  factors such as 1 ≤ 𝐾𝑙 ≤ 𝑀. Here the same simulation design discussed in the above 

section is assumed. The following figure summarizes the mean ranks achieved for each 

algorithm according to the Friedman test [21]. Adopting a significance level of 0.05, 

corresponding to the 95% confidence interval, the Friedman test suggests rejecting the 

hypothesis H0 (p-value = 0.0 < 0.05). These results show that the ACS model computes 

the lowest mean rank, but we must analyze all pairs of optimizers.  

 
Fig. 2. Mean ranks achieved by the Friedman test for the second problem. 

 

In order to determine that the ACS algorithm is a responsible of the highly significant 

differences reported by the Friedman test, next we compute the Wilcoxon signed rank 

test [22] for all pairs of optimizers (i.e. AS-ACS, AS-MMAS, ACS-MMAS). Assuming 

a significance level of 0.05, this test proposes rejecting the null hypothesis H0 for all 

pairs (𝑝-value < 0.05). It confirms that the ACS method is also the best variant when 

facing partial rankings aggregation problems with variable length. 

Afterward we select the best solution found by the ACS model for all respondents 

after 10 independent trials. Table 4 depicts the averaged ranking 𝜋 and also the distance 

between consecutive factors. From these results we can surely conclude that the most 

desirable factor is long-term security. In addition, this aggregated ranking has the same 

top-5 regarding the previous one, although the order is different. 
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Table 5. Best ranking for the second problem and distances between consecutive factors. 

Position Factor 𝛿(𝑦, 𝑥)𝜋 Position Factor 𝛿(𝑦, 𝑥)𝜋 

𝜋(1) 𝐹3 0.0000 𝜋(10) 𝐹16 0.0128 

𝜋(2) 𝐹9 0.0852 𝜋(11) 𝐹6 0.1857 

𝜋(3) 𝐹7 0.1419 𝜋(12) 𝐹13 0.0349 

𝜋(4) 𝐹8 0.0171 𝜋(13) 𝐹14 0.0262 

𝜋(5) 𝐹1 0.0474 𝜋(14) 𝐹12 0.0615 

𝜋(6) 𝐹10 0.1410 𝜋(15) 𝐹4 0.0092 

𝜋(7) 𝐹11 0.0750 𝜋(16) 𝐹17 0.0072 

𝜋(8) 𝐹5 0.0009 𝜋(17) 𝐹15 0.0031 

𝜋(9) 𝐹2 0.1502 - - - 

  

In general terms we believe that both solutions are consistent, although the second 

scenario is more informed (i.e. there is less tied elements) if we want to build a complete 

ranking. However, these solutions are not totally comparable because we use different 

input datasets, although we must expect some correspondence between them since the 

same respondent provided its best expertise for both scenarios. To overcome this issue 

we should formulate a “consistency” measure capable of computing the correspondence 

degree between both rankings (e.g. using the Hausdorff distance properties). 

6   Conclusions 

The aggregation of partial rankings could be faced using different approaches, although 

the absolute solution remains as an open problem. In this paper we presented a distance-

based approach which directly extends the Kemeny ranking problem. In a few words, 

the objective is to find a permutation of factors minimizing the averaged distance to the 

general consensus. It involves a complex combinatorial problem for only a few experts 

and alternatives; that is why we prefer to use an approximate approach based on Swarm 

Intelligence. The proposal also includes other features such as: 

 It replaces the Kendall distance by the Hausdorff distance, which allows to 

face partial rankings aggregation problems. 

 It introduces a new measure for computing the relative distance between two 

consecutive items in the consensus (final) ranking. 

 

From numerical results we concluded that the ACS method is the best variant when 

solving this kind of aggregation problems. It also showed that people in Belgium prefer 

stability (long-term security) instead of jobs financially sound. However, this outcome 

is not surprising and it could be a direct result of the economic crisis. As a future work 

we will focused on extending the simulations by including other approaches such as the 

Genetic Algorithm discussed in [9]. Although such experiments are absolutely required 

we are expecting promising results due to the ability of ACO-based methods for solving 

combinatorial problems, but this conjecture must be verified. 
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