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Abstract

Models for incomplete longitudinal data under missingness not at random have
gained some popularity. At the same time, cautionary remarks have been issued
regarding their sensitivity to often unverifiable modeling assumptions. Consequently,
there is evidence for a shift towards using ignorable methodology, supplemented with
sensitivity analyses to explore the impact of potential deviations of this assumption
in the direction of missingness at random. One such tool is local influence. It is
shown that local influence tends to pick up a lot of different anomalies in the data
at hand, not just deviations in the MNAR mechanism. This particular behavior is
described and insight offered in terms of the non-standard behavior of the likelihood
ratio test statistic for MAR missingness versus MNAR missingness within a model
of the Diggle and Kenward type.
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1 Introduction

Longitudinal data, while very common in contemporary applications, typically
suffer from incompleteness. Over the last century, the focus, when formulat-
ing answers to the analysis of such incomplete data, has shifted. Indeed, early
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work on missing values was largely concerned with overcoming the lack of bal-
ance or deviations from the intended study design (Afifi and Elashoff, 1966;
Hartley and Hocking, 1971). Later, general algorithms such as expectation-
maximization (EM) (Dempster, Laird, and Rubin, 1977), and data imputation
and augmentation procedures (Rubin, 1987), combined with powerful comput-
ing resources have largely provided a solution to this aspect of the problem.
During the last decade, a multitude of advanced models, allowing for poten-
tially complicated ways in which missingness is influenced by observed and
unobserved measurements, have been formulated. To properly describe such
methods, let us review the now well established framework of Little and Rubin
(1987, Chapter 6). A non-response process is said to be missing completely at

random (MCAR) if the missingness is independent of both unobserved and
observed data and missing at random (MAR) if, conditional on the observed
data, the missingness is independent of the unobserved measurements. A pro-
cess that is neither MCAR nor MAR is termed non-random (MNAR). In the
context of likelihood inference, and when the parameters describing the mea-
surement process are functionally independent of the parameters describing
the missingness process, MCAR and MAR are ignorable, while a non-random
process is non-ignorable. The property of ignorability is a convenient one, since
it implies that incomplete data, fulfilling this property, can be analyzed as they
are, without the need for an explicit missingness model. It has been advocated
by many that such an approach ought to be considered way more often than
is currently the case (Molenberghs et al , 2004; Jansen et al , 2004). Examples
include the linear and generalized linear mixed-effects models, analyzed using
maximum likelihood. Such analyses are less stringent than a complete case
analysis or last observation carried forward , which have had, and still have,
a strong popularity in clinical trial settings. Nevertheless, a shift, away from
such simple ad hoc methods, to the more principled (likelihood-based) ignor-
able analyses, further supported by the availability of the necessary standard
statistical software to allow for such analyses in practice, is an important step
but it does not solve the issues surrounding incompleteness (Lavori, Dawson,
and Shera, 1995; Mallinckrodt et al , 2003a,b).

For example, it is possible for the assumption of ignorability not to be true and
then one might want to consider more general models. Instances of MNAR
models include Diggle and Kenward (1994, DK), Molenberghs, Kenward, and
Lesaffre (1997), Van Steen et al (2001), and Jansen et al (2003). These belong
to the so-called selection model family (Little and Rubin, 1987) which factors
the joint distribution of the measurement and response mechanisms into the
marginal measurement distribution and the response distribution, conditional
on the measurements. While such models seem to be the proper answer to the
need for more flexible models, a number of criticisms have been formulated.
Computational instability is one of them but, more importantly, conclusions
based on such models have often been questioned as unreliable because they
depend on the specific form assumed for the MNAR process, which can, in
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principle, not be verified from the data.

Thus, with the volume of literature on non-random missing data increasing,
there has been growing concern as well (Glynn, Laird, and Rubin, 1986), es-
pecially for selection models. For example, formal tests for the null hypothesis
of random missingness, while technically possible, should be approached with
caution. As a result, several authors have advocated to investigate the sensi-
tivity of the results with respect to model assumptions (Little, 1994; Rubin,
1994; Laird, 1994; Molenberghs et al , 1999). As a general rule, fitting a MNAR
model should be subject to careful scrutiny. First, the impact of the assumed
distributional form and the specific model choices on the conclusions, when an
MNAR model is fitted, has been shown to be much higher than would be the
case if data were complete (Kenward, 1998; Scharfstein, Rotnizky, and Robins,
1999; Kenward, Goetghebeur, and Molenberghs, 2001). Second, one may shift
from the classical selection model framework, to which the DK model be-
longs, to the pattern-mixture model framework (Little, 1993, 1994). The use
of pattern-mixture models for sensitivity analysis purposes has been explored
by Thijs et al (2002). Third, one may want to consider the impact one or a few
influential subjects may have on the model parameters. It is natural, at first
sight, to make use of the specific influence assessment methodology that has
been developed over the years (Cook, 1986; Chatterjee and Hadi, 1988). Ap-
plications of local influence analysis to the Diggle and Kenward (1994) model
can be found in Verbeke et al (2001), Thijs, Molenberghs, and Verbeke (2000),
and Molenberghs et al (2001). Similar ideas for the context of categorical lon-
gitudinal data have been developed in Van Steen et al (2001) and Jansen et

al (2003). Hens et al (2004) proposed kernel weighted influence measures.

The original idea behind the use of local influence methods with an eye on
sensitivity analysis was to detect observations that had a high impact on
the conclusions due to their aberrant missingness mechanism. For example,
most missing measurements might be MAR, while a few could be MNAR
following one or a few deviating mechanisms. However, in most successful
applications, where a seemingly MNAR mechanism turned out to be MAR or
even MCAR after removing the influential subjects identified upon the use of
local influence, the situation turned out to be more complex than anticipated.
Indeed, the influential subjects often are influential for other than missingness
related features. For example, in the mastitis dataset analyzed by Molenberghs
et al (2001), the three influential cows had complete data but were identified
by an extreme increase between the measurements at two subsequent years.
Thijs, Molenberghs, and Verbeke (2000) observed similar behavior when local
influence was augmented with global influence (case deletion) as well.

In this paper, we aim to further the study of the method of local influence,
not only to better understand its behavior, but also to increase insight in
the overall behavior and impact of MNAR mechanisms. This is done using
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simulations and general modeling considerations.

In Section 2, a case study is introduced which motivates this work and is used
throughout the paper. A general framework to model incomplete longitudinal
data is sketched in Section 3, while sensitivity analysis tools, especially local
influence, are described in Section 4. This methodology is applied to the rat
case study in Section 5. Section 6 is dedicated to the behavior of local influence
under standard conditions as well as under a number of anomalous scenarios
and the likelihood ratio test statistic for the MNAR parameter in the Diggle
and Kenward (1994) model is studied in Section 7.

2 Case Study

The data come from a randomized experiment, designed to study the effect of
the inhibition of testosterone production in rats (Department of Orthodontics
of the Catholic University of Leuven (K.U.L.) in Belgium; Verdonck et al

(1997). A total of 50 male Wistar rats have been randomized to either control
or one of two treatment groups (low or high dose of the drug Decapeptyl; an
inhibitor for the testosterone production). The treatment started at the age of
45 days, and measurements were taken every 10 days, with the first observation
taken at the age of 50 days. Our response is a characterization of the height
of the skull, taken under anaesthesia. Many rats do not survive anaesthesia
implying that for only 22 (44%) rats all 7 designed measurements could have
been taken. The investigators’ impression is that dropout is independent of
the measurements.

The individual profiles are shown in Figure 1. To linearize, we use the loga-
rithmic transformation t = ln(1 + (age − 45)/10) for the time scale. Let yij

denote the jth measurement for the ith rat, taken at t = tij, j = 1, . . . , ni,
i = 1, . . . , N . A simple statistical model, as considered by Verbeke et al (2001),
then assumes that yij satisfies a model of the form (3.2) with common average
intercept β0 for all three groups, average slopes β1, β2 and β3 for the three
treatment groups, respectively, and assuming a so-called compound symme-
try covariance structure, i.e., with common variance σ2 + τ 2 and common
covariance τ 2.

3 Modeling Incomplete Longitudinal Data

Let us introduce the necessary notation. For subject i and occasion j, define
Rij = 1 if yij is observed and 0 otherwise. For convenience, partition yi into two
subvectors such that yo

i is the vector containing those yij for which Rij = 1
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Fig. 1. Individual growth curves for the three treatment groups separately. Influential
subjects are highlighted.

and ym
i contains the remaining components. Statistical modeling begins by

considering the full data density

f(yi, ri|Xi, Zi,θ,ψ),

where Xi and Zi are the design matrices for fixed and random effects, respec-
tively, and θ and ψ are vectors that parameterize the joint distribution.

A large class of models are based on the selection model factorization:

f(yi, ri|Xi, Zi,θ,ψ) = f(yi|Xi, Zi,θ)f(ri|yi, Xi,ψ), (3.1)

where the first factor is the marginal density of the measurement process and
the second one is the density of the missingness process, conditional on the
outcomes. It is possible to have additional covariates in the missingness model,
but this is suppressed from notation. An alternative taxonomy can be built
based on so-called pattern-mixture models (Little, 1993, 1994) but these will
not be considered within this paper.

Much of the early development of, and debate about, selection models ap-
peared in the econometrics literature in which the tobit model (Heckman,
1976) played a central role. This combines a marginal Gaussian regression
model for the response, as might be used in the absence of missing data, with
a Gaussian-based threshold model for the probability of a value being missing.
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The selection model of Diggle and Kenward (1994) is essentially a variation to
this theme, combining the multivariate Gaussian linear model with a logistic
dropout model. For the full likelihood analyses, subject-by-subject integra-
tion is required in general, unless MAR is assumed. This makes maximization
somewhat cumbersome. Diggle and Kenward (1994) used the Nelder and Mead
simplex algorithm (Nelder and Mead, 1965). However, such an approach lacks
flexibility and is inefficient for high-dimensional problems. Alternatives are the
EM algorithm and direct likelihood maximization.

Let us consider the Diggle and Kenward selection model in some more detail.
They combine a linear mixed model (Laird and Ware, 1982) for the measure-
ment process with a logistic regression model for the dropout process. The
measurement model assumes that the vector yi of repeated measurements for
the ith subject satisfies the linear regression model

yi ∼ N(Xiβ, Vi), i = 1, . . . , N (3.2)

in which β is a vector of population-averaged regression coefficients called
fixed effects, and where Vi = ZiGZ ′

i + Σi (Verbeke and Molenberghs, 2000)
for positive definite matrices G and Σi. The parameters in β, G, and Σi are
assembled into θ.

Since no data would be observed otherwise, we assume that the first measure-
ment yi1 is obtained for every subject in the study. The model for the dropout
process is based on a logistic regression for the probability of dropout at occa-
sion j (let Di be the occasion at which dropout occurs), given the subject was
still in the study up to occasion j. We denote this probability by g(hij, yij) in

which hij is a subvector of the history h̃ij, containing all responses observed
up to but not including occasion j, as well as covariates. We assume

logit[g(hij, yij)] = logit [pr(Di = j|Di ≥ j,yi)]

= h′
ijψ + ωyij i = 1, . . . , N. (3.3)

In our case hij will contain the previous measurement yi,j−1.

When ω equals zero and the model assumptions made are correct, the dropout
model is random, and all parameters can be estimated using standard software
since the measurement model and dropout model parameters can then be
fitted separately. If ω 6= 0, the dropout process is assumed to be non-random.
Earlier, we pointed to the sensitivity of such an approach and a dropout model
may be found to be non-random solely since one or a few influential subjects
have driven the analysis. This concern will be taken up, as a starting point
for the local influence based sensitivity analysis mode, in Section 4.2.
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4 Sensitivity Analysis Tools

4.1 A General View On Sensitivity Assessment

We indicated in the introduction and at the end of the previous section that
models for incomplete longitudinal data, especially the MNAR based ones,
are vulnerable to model-assumption related sensitivity. Even when the linear
mixed model would beyond any doubt be the choice of preference to describe
the measurement process should the data be complete, then the analysis of
the actually observed, incomplete version is, in addition, subject to further
untestable modeling assumptions.

With the growing volume of MNAR based selection models, including Heck-
man (1976) and Diggle and Kenward (1994), the need for a careful understand-
ing of such sensitivities, and the development of tools to discern their impact,
has been growing as well (Glynn, Laird, and Rubin, 1986). Early, important
contributions to sensitivity analysis have been made by Draper (1995), Copas
and Li (1997), and Vach and Blettner (1995).

A strong conclusion, arising from most sensitivity analysis work, is that MNAR
selection models have to be approached cautiously. This was made clear by
several discussants of Diggle and Kenward (1994). This implies, for example,
that formal tests for the null hypothesis of MAR versus the alternative of
MNAR, should be approached with caution. Verbeke and Molenberghs (2000,
Ch. 17) have shown, in the context of an onychomycosis study, that exclud-
ing a small amount of measurement error, drastically changes the likelihood
ratio test statistics for the MAR null hypothesis. Kenward (1998) revisited
the analysis of the mastitis data performed by Diggle and Kenward (1994). In
this study, the milk yields of 107 cows were to be recorded during two con-
secutive years. While data were complete in the first year, 27 measurements
were missing in year 2 because these cows developed mastitis and their milk
yield was not of use anymore. While in the initial paper there was strong
evidence for MNAR, Kenward (1998) showed that removing two out of 107
anomalous profiles, completely removed this evidence. Alternatively, Kenward
showed that changing the conditional distribution of the year 2 yield, given
the year 1 yield, from a normal to a heavy-tailed t, also led to the same result
of no residual evidence for MNAR. This particular conditional distribution is
of great importance, because a subject with missing data does not contribute
to it, and hence, as we will illustrate later, is a source of sensitivity issues.
Thus, fitting a MNAR model should be subject to careful scrutiny.

Such sensitivities to model assumptions have been reported for about two
decades. See, for example, Nordheim (1984), Fitzmaurice, Molenberghs, and
Lipsitz (1995), Molenberghs et al (1999), and Kenward and Molenberghs
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(1999). In an attempt to formulate an answer to these concerns, a number of
authors have proposed strategies to study sensitivity. We broadly distinguish
between two types. A first family of approaches can be termed substantive-

driven in the sense that they start from particularities of the problem at
hand. Kenward’s (1998) approach falls within this category. Arguably, such
approaches are extremely useful in their own right and in preparation of use
of the second family, where what could be termed general purpose tools are
used.

We could define a sensitivity analysis as one in which several statistical mod-
els are considered simultaneously and/or where a statistical model is further
scrutinized using specialized tools (such as diagnostic measures). This rather
loose and very general definition encompasses a wide variety of useful ap-
proaches. The simplest procedure is to fit a selected number of (nonrandom)
models which are all deemed plausible or one in which a preferred (primary)
analysis is supplemented with a number of variations. The extent to which
conclusions (inferences) are stable across such ranges provides an indication
about the belief that can be put into them. Variations to a basic model can
be constructed in different ways. The most obvious strategy is to consider
various dependencies of the missing data process on the outcomes and/or on
covariates. Alternatively, the distributional assumptions of the models can be
changed.

Several authors have proposed to use local influence tools (Verbeke et al ,
2001; Thijs, Molenberghs, and Verbeke, 2000; Molenberghs et al , 2001; Van
Steen et al , 2001; Jansen et al , 2003), the method that will be considered in
detail in the next section. In particular, Molenberghs et al (2001) revisited the
mastitis example. They were able to identify the same two cows also found
by Kenward (1998), in addition to another one. However, it is noteworthy
that all three are cows with complete information, even though local influence
methods were originally intended to identify subjects with other than MAR
mechanisms of missingness. Thus, an important question is to what exactly are
the sources causing an MNAR model to provide evidence for MNAR against
MAR. There is some evidence to believe that a number of outlying aspects,
but not necessarily the (outlying) nature of the missingness mechanism in one
or a few subjects, is responsible for an apparent MNAR mechanism. In the
next section, after briefly introducing local influence, this issue will be taken
up.

Of course, it goes without saying that for other than selection models, e.g.,
pattern-mixture models, different sensitivity analysis tools need to be and have
been developed (Thijs et al , 2002). These are interesting in their own right
but are outside the scope of this paper.
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4.2 Local Influence

Verbeke et al (2001), Thijs, Molenberghs, and Verbeke (2000), and Molen-
berghs et al (2001) investigated sensitivity of estimation of quantities of in-
terest, such as treatment effect, growth parameters, or the dropout model pa-
rameters, w.r.t. assumptions regarding the dropout model. To this end, they
considered the following perturbed version of dropout model (3.3):

logit(g(hij, yij)) = logit [pr(Di = j|Di ≥ j,yi)]

= h′
ijψ + ωiyij i = 1, . . . , N, (4.1)

where the ωi are local, individual-specific perturbations around a null model.
They should not be confused with subject-specific parameters. Our null model
will be the MAR model, corresponding to setting ω = 0 in (3.3). Thus, the ωi

are perturbations that will be used only to derive influence measures (Cook,
1986).

Using this proposal, one can study the impact on key model features, induced
by small perturbations in the direction, or seemingly so, of MNAR. This can
practically be done by constructing local influence measures (Cook, 1986).
When small perturbations in a specific ωi lead to relatively large differences
in the model parameters, this suggests that the subject is likely to drive key
conclusions. For example, if such a subject would drive the model towards
MNAR, then the conditional expectations of the unobserved measurements,
given the observed ones, may deviate substantially from the ones under an
MAR mechanism (Kenward, 1998). Such an observation is important also
for our approach since then the impact (e.g., from influential subjects) on
dropout model parameters extends to all functions that include these dropout
parameters. One such function is the conditional expectation of the unobserved
measurements, given the corresponding dropout pattern : E(ym

i |y
o
i , Di,θ,ψ).

As a consequence, the corresponding measurement model parameters will be
affected as well.

We are interested in the influence exerted by the dropout model on the pa-
rameters of interest. This can be done, for example, by considering (4.1) as
the dropout model. When small perturbations in a specific ωi lead to rela-
tively large differences in the model parameters, then this suggests that these
subjects may have a large impact on the final analysis. However, even though
we may be tempted to conclude that such subjects drop out non-randomly,
this conclusion is misguided since we are not aiming to detect (groups of) sub-
jects that drop out non-randomly but rather subjects that have a considerable
impact on the dropout and measurement model parameters. Indeed, a key ob-
servation is that a subject that drives the conclusions towards MNAR may be
doing so, not only because its true data generating mechanism is of an MNAR
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type, but also for a wide variety of other reasons, such as an unusual mean
profile or autocorrelation structure. Earlier analyses have shown that this may
indeed be the case. Likewise, it is possible that subjects, deviating from the
bulk of the data because they are generated under MNAR, go undetected by
this technique. This begs the question that one needs to reflect carefully upon
which anomalous features are typically detected and which ones typically go
unnoticed.

Let us now introduce the key concepts of local influence (Cook, 1986). Since
the resulting influence diagnostics can in many cases be expressed analytically,
they often can be decomposed in interpretable components, which yields ad-
ditional insight. We denote the log-likelihood function corresponding to model
(4.1) by ℓ(γ|ω) =

∑
N

i=1 ℓi(γ|ωi), in which ℓi(γ|ωi) is the contribution of the

ith individual to the log-likelihood, and where γ = (θ,ψ) is the s-dimensional
vector, grouping the parameters of the measurement model and the dropout
model, not including the N×1 vector ω = (ω1, ω2, . . . , ωN)′ of weights defining
the perturbation of the MAR model. It is assumed that ω belongs to an open
subset Ω of IRN . For ω equal to ω0 = (0, 0, . . . , 0)′, ℓ(γ|ω0) is the log-likelihood
function which corresponds to a MAR dropout model.

Let γ̂ be the maximum likelihood estimator for γ, obtained by maximiz-
ing ℓ(γ|ω0), and let γ̂ω denote the maximum likelihood estimator for γ un-
der ℓ(γ|ω). The local influence approach now compares γ̂ω with γ̂. Strongly
different estimates suggest that the estimation procedure is highly sensitive
to such perturbations. Cook (1986) proposed to measure the distance be-
tween γ̂ω and γ̂ by the so-called likelihood displacement, defined by LD(ω) =
2[ℓ(γ̂|ω0) − ℓ(γ̂ω|ω)]. This takes into account the variability of γ̂. Indeed,
LD(ω) will be large if ℓ(γ|ω0) is strongly curved at γ̂, which means that
γ is estimated with high precision, and small otherwise. Therefore, a graph
of LD(ω) versus ω contains essential information on the influence of pertur-
bations. It is useful to view this graph as the geometric surface formed by
the values of the N + 1 dimensional vector ξ(ω) = (ω′, LD(ω))′ as ω varies
throughout Ω. Since this influence graph can only be depicted when N = 2,
Cook (1986) proposed to look at local influence, i.e., at the normal curvatures
Ch of ξ(ω) in ω0, in the direction of some N dimensional vector h of unit
length. Let ∆i be the s dimensional vector defined by

∆i =
∂2ℓi(γ|ωi)

∂ωi∂γ

∣∣∣∣∣
γ=γ̂ ,ωi=0

(4.2)

and define ∆ as the (s × N) matrix with ∆i as its ith column. Further,
let L̈ denote the (s × s) matrix of second order derivatives of ℓ(γ|ω0) with
respect to γ, also evaluated at γ = γ̂. Cook (1986) has then shown that
Ch can be easily calculated by Ch = 2|h′∆′L̈−1∆h|. Obviously, Ch can be
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calculated for any direction h. One evident choice is the vector hi containing

one in the ith position and zero elsewhere, corresponding to the perturbation

of the ith weight only. This reflects the influence of allowing the ith subject
to drop out non-randomly, while the others can only drop out at random. The
corresponding local influence measure, denoted by Ci, then becomes Ci =
2|∆′

iL̈
−1∆i|. Another important direction is the direction hmax of maximal

normal curvature Cmax. It shows how to perturb the MAR model to obtain
the largest local changes in the likelihood displacement. Cmax is the largest
eigenvalue of −2 ∆′ L̈−1 ∆ and hmax is the corresponding eigenvector.

When a subset γ
1
of γ = (γ ′

1
,γ ′

2
)′ is of special interest, a similar approach can

be used, replacing the log-likelihood by the profile log-likelihood for γ
1
, and

the methods discussed above for the full parameter vector directly carry over
(Lesaffre and Verbeke, 1998).

4.3 Applied to the Model of DK

Let us focus on (3.2) and (3.3). First note that the dropout mechanism is
described by

f(di|yi,ψ) =





ni∏

j=2

[1 − g(hij, yij)] for a completer (di = ni + 1),

d−1∏

j=2

[1 − g(hij, yij)]g(hid, yid) for a dropout (di = d ≤ ni),

where the g-factors follow from (4.1). The log-likelihood contribution for a
complete sequence then is

ℓiω = ln f(yi) + ln f(di|yi,ψ),

where the parameter dependencies are suppressed for notational ease. The
density f(yi) is multivariate normal, following from the linear mixed model.
The contribution from an incomplete sequence is more complicated. Its log-
likelihood term is

ℓiω = ln f(yi1, . . . , yi,d−1) +
d−1∑

j=2

ln[1 − g(hij, yij)]

+ ln
∫

f(yid|yi1, . . . , yi,d−1)g(hid, yid)dyid.

Further details can be found in Verbeke et al (2001). We need expressions
for ∆ and L̈. Straightforward derivation shows that the columns ∆i of ∆ are
given by
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∂2ℓiω

∂θ∂ωi

∣∣∣∣∣
ωi=0

=0, (4.3)

∂2ℓiω

∂ψ∂ωi

∣∣∣∣∣
ωi=0

=−
ni∑

j=2

hijyijg(hij)[1 − g(hij)], (4.4)

for complete sequences (no drop out) and by

∂2ℓiω

∂θ∂ωi

∣∣∣∣∣
ωi=0

= [1 − g(hid)]
∂λ(yid|hid)

∂θ
, (4.5)

∂2ℓiω

∂ψ∂ωi

∣∣∣∣∣
ωi=0

=−
d−1∑

j=2

hijyijg(hij)[1 − g(hij)]

−hidλ(yid|hid)g(hid)[1 − g(hid)], (4.6)

for incomplete sequences. All above expressions are evaluated at γ̂, and g(hij) =
g(hij, yij)|ωi=0, is the MAR version of the dropout model. In (4.5), we make
use of the conditional mean

λ(yid|hid) = λ(yid) + Vi,21V
−1
i,11[hid − λ(hid)]. (4.7)

The variance matrices follow from partitioning the responses as
(yi1, . . . , yi,d−1|yid)

′.

The derivatives of (4.7) w.r.t. the measurement model parameters are

∂λ(yid|hid)

∂β
= xid − Vi,21V

−1
i,11Xi,(d−1),

∂λ(yid|hid)

∂α
=

[
∂Vi,21

∂α
− Vi,21V

−1
i,11

∂Vi,11

∂α

]
V −1

i,11[hid − λ(hid)]

where x′
id is the dth row of Xi, and where Xi,(d−1) indicates the first (d − 1)

rows Xi. Further, α indicates the subvector of covariance parameters within
the vector θ.

In practice, the parameter θ in the measurement model is often of primary
interest. Since L̈ is block-diagonal with blocks L̈(θ) and L̈(ψ), we have that
for any unit vector h, Ch equals Ch(θ) + Ch(ψ), with

Ch(θ) =−2h′


 ∂2ℓiω

∂θ∂ωi

∣∣∣∣∣
ωi=0



′

L̈−1(θ)


 ∂2ℓiω

∂θ∂ωi

∣∣∣∣∣
ωi=0


 h (4.8)
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Ch(ψ) =−2h′


 ∂2ℓiω

∂ψ∂ωi

∣∣∣∣∣
ωi=0



′

L̈−1(ψ)


 ∂2ℓiω

∂ψ∂ωi

∣∣∣∣∣
ωi=0


 h, (4.9)

evaluated at γ = γ̂. It now immediately follows from (4.3) and (4.5) that
direct influence on θ only arises from those measurement occasions at which
dropout occurs. In particular, from (4.5) it is clear that the corresponding
contribution is large only if (1) the dropout probability was small but the sub-
ject disappeared nevertheless and (2) the conditional mean ‘strongly depends’
on the parameter of interest. This implies that complete sequences cannot
be influential in the strict sense (Ci(θ) = 0) and that incomplete sequences
only contribute, in a direct fashion, at the actual dropout time. However, we
make an important distinction between direct and indirect influence. It was
shown that complete sequences can have an impact by changing the condi-
tional expectation of the unobserved measurements given the observed ones
and given the dropout mechanism. Thus, a complete observation which has a
strong impact on the dropout model parameters, can still drastically change
the measurement model parameters and functions thereof.

Expressions (4.8)–(4.9) can be simplified further in specific cases. For example,
Verbeke et al (2001) considered the compound-symmetric situation. Precisely,
they were able to split the overal influence in the approximate sum of three
components, describing the mean model parameter β, the variance compo-
nents σ2 and τ 2, and the dropout model parameters ψ, respectively:

C
ap
i (β) = 2[1 − g(hid)]

2(ξidxid + (1 − ξid)ρid)
′

×σ2

[
N∑

i=1

(
ξidX

′

i(d−1)Xi(d−1) + (1 − ξid)R
′

i(d−1)Ri(d−1)

)]−1

×(ξidxid + (1 − ξid)ρid), (4.10)

C
ap
i (σ2, τ 2) = 2[1 − g(hid)]

2ξ2
id(1 − ξid)

2 ˜[hid − λ(hid)]
2

×
(
−1,

1

τ 2

)
L̈−1(σ2, τ 2)



−1

1
τ2


 , (4.11)

Ci(ψ) = 2




d∑

j=2

hijyijvij




′ 


N∑

i=1

d∑

j=2

vijhijh
′
ij




−1

×




d∑

j=2

hijyijvij


 , (4.12)

where Ri,d−1 = Xi(d−1) − 1d−1
˜Xi(d−1), ˜Xi(d−1) = 1

d−1
1′

d−1Xi(d−1),

˜[hid − λ(hid)] =
1

d − 1
1′

d−1[hid − λ(hid)],
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L̈(σ2, τ 2) =
N∑

i=1

d − 1

2(σ2 + (d − 1)τ 2)2

×




[σ2 + (d − 1)τ 2]2 − τ 2[2σ2 + (d − 1)τ 2] 1

1 (d − 1)


 ,

d = ni for a complete case and where yid needs to be replaced with

λ(yid|hid) = λ(yid) + (1 − ξid)
˜[hid − λ(hid)]

for incomplete sequences. Further, vij equals g(hij)[1 − g(hij)] which is the
variance of the estimated dropout probability under MAR.

5 Analysis and Sensitivity Analysis of the Rat Data

The rat data, which are introduced in Section 2, are analyzed using model
(3.2) with the following specific version of dropout model (3.3):

logit [pr(Di = j|Di ≥ j,yi)] = ψ0 + ψ1yi,j−1 + ψ2yij. (5.1)

Parameter estimates are shown in Table 1. More details about these estimates
and the performance of a local influence analysis can be found in Verbeke
et al (2001). This section will focus on specific details of this local influence
analysis.

Figure 2 displays overall Ci and influences for subvectors θ, β, α, and ψ.
In addition, the direction hmax corresponding to maximal local influence is
given. Apart from the last one of these graphs, the scales are not unitless and
therefore it would be hard to use a common one for all of the panels. This
implies that the main emphasis should be on relative magnitudes.

The largest Ci are observed for rats #10, #16, #35, and #41, and virtually the
same picture holds for Ci(ψ). They are highlighted in Figure 1. All four belong
to the low dose group. Arguably, their relatively large influence is caused by
an interplay of three facts. First, the profiles are relatively high, and hence
yij and hij in (4.12) are large. Second, since all four profiles are complete, the
first factor in (4.12) contains a maximal number of large terms. Third, the
computed vij are relatively large.

Turning attention to Ci(α) reveals peaks for rats #5 and #23. Both belong
to the control group and drop out after a single measurement occasion. They
are highlighted in the first panel of Figure 1. To explain this, observe that
the relative magnitude of Ci(α), approximately given by (4.12), is determined
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Fig. 2. Index plots of Ci, Ci(θ), Ci(β), Ci(α), Ci(ψ), and of the components of the
direction hmax of maximal curvature.

by 1 − g(hid) and hid − λ(hid). The first term is large when the probability
of dropout is small. Now, when dropout occurs early in the sequence, the
measurements are still relatively low, implying that the dropout probability is
rather small (cf. Table 1). This feature is built into the model by writing the
dropout probability in terms of the raw measurements with time-independent
coefficients rather than, for example, in terms of residuals. Further, the resid-
ual hid − λ(hid) is large since these two rats are somewhat distant from the
group by time mean. A practical implication of this is that the time-constant
nature of the dropout model may be unlikely to hold. Therefore, a time-
varying version was considered, where the logit of the dropout model takes
form ψ0 +ψ1yi,j−1 +ν0tij +ν1tijyi,j−1. There is overwhelming evidence in favor
of such a more elaborate MAR model (likelihood ratio statistic of 167.4 on
2 degrees of freedom). Thus, local influence can be used to call into question
the posited MAR (and MNAR) models, and to guide further selection of more
elaborate, perhaps MAR, models.

Since all deviations are rather moderate, we further explore our approach by
considering a second analysis where all responses for rats #10, #16, #35,
and #41 have been increased with 20 units. The effect of this distortion will
primarily be seen in the variance structure. Precisely, such a change is likely
to inflate the random intercept variance, at the expense of the other variance
components. In doing so, we will illustrate that (1) such a change is likely to
show up in the assessment of the dropout model, underscoring the sensitivity
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Table 1
Maximum likelihood estimates (standard errors) of completeley random, random and
non-random dropout models, fitted to the rat data set, with and without modification.

Original Data

Effect Parameter MCAR MAR MNAR

Measurement model:

Intercept β0 68.61 (0.33) 68.61 (0.33) 68.60 (0.33)

Slope control β1 7.51 (0.22) 7.51 (0.22) 7.53 (0.24)

Slope low dose β2 6.87 (0.23) 6.87 (0.23) 6.89 (0.23)

Slope high dose β3 7.31 (0.28) 7.31 (0.28) 7.35 (0.30)

Random intercept τ2 3.44 (0.77) 3.44 (0.77) 3.43 (0.77)

Measurement error σ2 1.43 (0.14) 1.43 (0.14) 1.43 (0.14)

Dropout model:

Intercept ψ0 −1.98 (0.20) −8.48 (4.00) −10.30 (6.88)

Prev. measurement ψ1 0.08 (0.05) 0.03 (0.16)

Curr. measurement ψ2 0.07 (0.22)

-2 loglikelihood 1100.4 1097.6 1097.5

Modified Data

Effect Parameter MCAR MAR MNAR

Measurement model:

Intercept β0 70.20 (0.92) 70.20 (0.92) 70.25 (0.92)

Slope control β1 7.52 (0.25) 7.52 (0.25) 7.42 (0.26)

Slope low dose β2 6.97 (0.25) 6.97 (0.25) 6.90 (0.25)

Slope high dose β3 7.21 (0.31) 7.21 (0.31) 7.04 (0.33)

Random intercept τ2 40.38 (0.18) 40.38 (0.18) 40.71 (8.25)

Measurement error σ2 1.42 (0.14) 1.42 (0.14) 1.44 (0.15)

Dropout model:

Intercept ψ0 −1.98 (0.20) -0.79 (1.99) 2.08 (3.08)

Prev. measurement ψ1 −0.015 (0.03) 0.23 (0.15)

Curr. measurement ψ2 −0.28 (0.17)

-2 loglikelihood 1218.0 1217.7 1214.8

and that (2) the local influence approach is able to detect such an effect. The
parameter estimates for all three models are also shown in Table 1. Clearly,
while the fixed-effect parameters remain virtually unchanged, the random in-
tercept parameter has, of course, drastically increased. Likewise, the dropout
parameters are affected. In addition, the likelihood ratio statistic for MAR
versus MCAR changes from 2.8 to 0.3 and for MNAR versus MAR changes
from 0.1 to 2.9. Thus, the evidence has shifted from the first to the second test.
While all of these statistics seem to be non-significant, there is an important
qualitative effect. Moreover, as discussed in Section 7, the use of the classical
χ2-distribution is very questionable for testing MNAR.
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Fig. 3. Index plots of Ci, Ci(θ), Ci(β), Ci(α), Ci(ψ), and of the components of the
direction hmax of maximal curvature, where 4 profiles have been shifted upward.

In order to check whether these findings are recovered by the local influence
approach, let us study Figure 3. In line with the changes in parameter esti-
mates, Ci(β) shows no peaks in these observations but peaks in Ci(α) and
Ci(ψ) indicate a relatively strong influence from the four extreme profiles.

It will be clear from the above that subjects may turn out to be influential,
for reasons different from the nature of the dropout model. Indeed, increasing
the profile by 20 units primarily changes the level of the random intercept and
ultimately changes the form of the random-effects distribution. Nevertheless,
this feature shows in our local influence analysis, where the perturbation is
put into the dropout model and not, for example, in the measurement model.
This feature requires careful study and will be addressed in the next section.

6 Local Influence Methods and Their Behavior

A number of concerns have been raised, not only about sensitivity, but also
about the tools used to assess sensitivity themselves. For example, Verbeke et

al (2001) noted, based on a case study, that the local influence tool, as de-
fined and implemented in Section 4.2, is able to pick up anomalous features of
study subjects that are not necessarily related to the missingness mechanism.
In particular, they found that subjects with an unusually high profile, or a
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somewhat atypical serial correlation behavior, are detected with the local in-
fluence tool. At first sight, this is a little disconcerting, since the ωi parameter
in (4.1) is placed in the dropout model and not in the measurement model,
necessitating further investigation regarding which effects are easy or difficult
to detect with these local influence methods.

We aim to gain more insight into this phenomenon in a number of ways. To
this effect, we undertake a targeted simulation study to explore various sources
of influence. First, we took interest in the relative magnitudes of the influence
measures to assess how feasible it is to separate influence values that are in
line with regular behavior from those that are unduly large. This can be done
by proposing a rule of thumb as well as by constructing sampling-based con-
fidence limits and bounds. Second, the impact of one or a few subjects with
an anomalous dropout mechanism was explored. Such anomalies are of the
type one would intuitively expect to be picked up by the proposed tool. We
illustrate that great care is needed. Third, impact due to anomalies in the mea-
surement model was studied. We will show that precisely such anomalies are
relatively easily picked up by the tool, in spite of its conception for anomalies
in the missingness mechanism. We offer an explanation for why such behaviour
is seen, which is then backed up with some complementary considerations in
Section 7.

6.1 The Effect of Sample Size

Lesaffre and Verbeke (1998) applied local influence methods to the classical
linear mixed-effects model. They introduced ωi parameters as follows: ℓ =∑

i ωiℓi where ℓi is the log-likelihood contribution for subject i. They were
able to show that the sum of the influences is approximately equal to 2N
with N the sample size. Their result is based on the fact that, in their local
influence contributions, ∆i in (4.2) becomes

∆i =
∂ℓi

∂θ
,

so that the entire expression has the flavor of a contribution to the score test.
In our case, as can be seen from (4.5) and (4.6), ∆i is a second rather than
a first derivative of the log-likelihood contributions, implying that a, perhaps
linear, dependence on the sample size could be envisaged. Such a calibration
would be beneficial since it would allow to determine critical values, or at least
rules of thumb, to determine what is large enough for a subject’s influence to
undergo further scrutiny.

To this end, we generated a number of datasets, all under the assumption of
MAR and with parameters equal to the ones from the rat example. The only
difference between these simulations was the sample size. Selected quantiles
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Table 2
Selected quantiles of the local influence measures for datasets of different sample
sizes, as obtained from simulations and after fitting a simple empirical model.

Simulated results Empirical model
sample size 50 50 50 500 500 1000 50 500 1000

median 176.7 138.7 146.8 16.5 15.6 7.6 150.0 15.0 7.5
95 percentile 384.5 359.9 317.3 40.6 39.5 18.7 359.4 39.4 20.3
maximum 683.7 674.1 950.7 138.0 137.8 53.6 — — —

for sample sizes 50, 500, and 1000 are shown in Table 2. Studying even larger
sample sizes would be faced with increasing computation times. This also is
the reason for considering a single run at size 1000. While the relationship is
less clear, as is to be expected, for the maximum value, an obvious trend is
seen in the median values and in the 95th percentile. We indeed notice that
the influence for a subject decreases linearly with sample size, and hence the
total influence for a dataset is roughly constant. This is confirmed by a simple
multiplicative regression model, which yields that the product of the median
and the sample size is constant and equal to 7500. Similarly, the product of the
95th percentile and the sample size to the power 0.96 equals 15,367. To ensure
calibration at the individual level, one could then multiply all influences by the
sample size. This calibration result implies that the rescaled local influence
can be used as a rough measure to determine whether large values are present.
For example, one could investigate subjects for which the influence exceeds
1/N of the calibrated total with a certain amount. However, while useful in
its own right, we still do not learn anything about the actual distribution of a
local influence profile under the null hypothesis. To gain further insight into
this problem, we will derive confidence limits and simultaneous confidence
bounds in the next section.

6.2 Pointwise Confidence Limits and Simultaneous Confidence Bounds for

the Local Influence Measure

Since for practical purposes only high values of the influence measures are of
interest, we will focus on one-sided (upper) limits and bounds. To this end, we
simulated 1000 datasets of 50 rats, using the parameters of the MAR model.
To have a consistent ordering of the Ci values, not based on the arbitrary
order of the rats within the set of data, we sorted them from large to small.

This can be seen from, say, 1000 repetitions of a bootstrap experiment with
50 grid points. At each grid point, the 95% pointwise upper confidence limit
then simply is the 95% quantile of the Ci,j values at that particular grid point.
Construction of the simultaneous confidence bounds is based on Besag et al

(1995). For each grid point j, order the Ci,j values to obtain order statistics

C
[t]
i,j and their corresponding ranks r

(t)
j , t = 1, ..., 1000. Next, for fixed k, define
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Fig. 4. 95% pointwise upper confidence limit (dotted) and 95% simultaneous upper
confidence bound (solid).

tk as the k-th order statistic of the set
{
max

(
max

1≤j≤50
r
(t)
j ; 1001 − min

1≤j≤50
r
(t)
j

)
; t = 1, ..., 1000

}
.

Then, by construction, the intervals
{[

C
[1001−tk]
i,j ; C

[tk]
i,j

]
; j = 1, ..., 50

}

have a global confidence level of at least 100(k/1000)%. To obtain the 95%
simultaneous upper confidence bound, simply take k = 900, and restrict con-
sideration to the upper bound C

[tk]
i,j . A graphical representation of this result

is given in Figure 4.

6.3 The Effect of Anomalies in the Missingness Mechanism

To get an idea of the effect of anomalies in the dropout mechanism, a general
procedure was followed, as described next. Generate an MNAR dataset, fit
these data assuming an MAR mechanism in model (3.3), and use the estimates
of those model parameters to generate 1000 datasets, which are then used to
construct the pointwise confidence limits and simultaneous confidence bounds
as outlined in Section 6.2. Afterwards, add the profile of ordered Ci values from
the original MNAR dataset on the graph with the pointwise confidence limits
and simultaneous confidence bounds. Several different settings to generate the
MNAR dataset were explored, and will be discussed in the remainder of this
section.

First, attention is paid to the creation of MNAR based on the model param-
eters. This was done in the following ways: (1) a set of 50 rats were generated
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Fig. 5. Graphical representation of the profiles of different parameter-based MNAR
settings (dotted), compared with the 95% pointwise upper confidence limit and 95%
simultaneous upper confidence bound (solid).

using the MNAR parameters from the original rats data, as presented in the
upper part of Table 1; (2) the same parameters were used, except for ψ2,
which was increased to 0.5. (3) only 10% of the data (equivalently to 5 rats)
were generated taking ψ2 = 0.2, while for the remaining 90% of the data
(45 rats) ψ2 = 0; (4) using the incremental parameterization introduced in
Thijs, Molenberghs, and Verbeke (2000), 10% of the rats were generated with
λ2 = 0.2, and the other 90% with λ2 = 0.

All different settings of these simulations were repeated several times, but,
since they all gave similar results, and in the interest of space, for each setting
only one result is discussed and presented in Figures 5 and 7.

A general trend is observed in settings (1) to (4). The Ci profile of the MNAR
dataset crosses neither the 95% pointwise upper confidence limit nor the si-
multaneous upper confidence bound for large values of Ci. On the other hand,
in some settings they cross the 95% pointwise upper confidence limit for small
values of Ci (near the end of the profile), but since we are only interested in
highly influential subjects, this result is irrelevant for our purposes. Taking a
closer look at the rats for whom ψ2 6= 0 (settings 3 and 4) we note that their
Ci values are very small (all within the 10 lowest values). We can therefore
conclude that this type of MNAR is not detectable using local influence. Note
that the limit and bound for setting (2) is more ragged than for the others.
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Fig. 6. Individual growth curves (left panel, subjects 3, 21 and 26 highlighted) and
Ci profile (right panel) of the MAR dataset which will be manipulated.

The reason is that convergence is quite difficult to obtain for this setting, in
line with general convergence problems for situations where ψ2 is substantially
different from zero. The scale for setting (4) in Figure 5 is completely differ-
ent from the scale in the other settings, which is due to the fact that setting
(4) considers the effect of the difference between the current and the previous
measurement on the dropout process, rather than the raw effect of the current
measurement in the other three settings.

Alternatively, in a second round of settings, MNAR was created in a deter-
ministic way. Therefore a dataset is generated using the MAR parameters
of the original rats data in Table 1 (the Ci profile of this dataset is shown
in Figure 6). Afterwards, the MNAR part was created by manually deleting
values from some profiles as follows: (5) all values of skull height from the
moment that one of them exceeded 86 mm; (6) all values of skull height from
the moment that one of them exceeded 85 mm; (7) second to last values of
skull height if the value at age 60 days (2nd value) exceeded 78.83 mm (95th

percentile); (8) third to last values of skull height if the value at age 70 days
(3rd value) exceeded 80.82 mm (95th percentile).

Our interest is now in seeing how such sets of data give qualitatively different
influence graphs than under the original rat dataset. Therefore, we have to
proceed somewhat differently from the simulation study done for settings (1)–
(4). We now rather directly compare the influence graphs from the four settings
(5)–(8) with the original one. Under setting (5), we see that the peak for rat
#25, seen in the original analysis, is removed, while others pop up, in the sense
that some moderate peaks now become the largest ones. However, no rat really
sticks in such a way that further investigation would need to be undetaken. It
is noteworthy though, that those whose profiles have been shortened due to the
action described under setting (5), have, as a consequence, a smaller influence
value. A similar phenomenon has been observed in Jansen et al (2003) for
categorical responses. Settings (6)–(8) are similar in qualitative terms, even
though the phenomena are tiny bit more extreme in setting (6) than in setting
(5).
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Fig. 7. Graphical representation of the unordered Ci profiles of different settings with
manually created anomalies in the missingness model.

6.4 The Effect of Anomalies in the Measurement Model

In this section, we shifted attention to anomalies in the measurement model.
We generated 4 MAR datasets, each of them with its specific changes to the
measurement model for 3 randomly selected rats, namely (1) an increased
mean profile by 20 units after the dropout probability was calculated, (2) an
increased mean profile by 20 units before the dropout probability was calcu-
lated, (3) an increased variance component by 20 units, and (4) an increased
τ 2 (covariance for the compound symmetry) by 20 units. The starting dataset
without any changes to the measurement model is the same as was used in
Section 6.3, Figure 6.

While settings (3) and (4), focusing on the variance-covariance structure, show
virtually no impact (Figure 8), settings (1) and (2) exhibit a dramatic effect.
The impact is larger in setting (2) because there also the dropout model
is affected. In both settings, rats #3 and #26 clearly stick out, while with
differing relative magnitudes. The effect of rat #21 is negligible. These results
can be explained by taking a closer look at the individual profiles of those
rats. Figure 9 shows that in setting (1) rat #21 has only 2 observations, while
rats #3 and #26 have complete profiles. In setting (2), the profile of rat #21
reduces to only one observation, which explains the negligible influence, and
the profiles of rats #3 and #26 reduce to 6 and 3 measurements, respectively.
Previous conclusions again indicate that shortened profiles tend to give smaller
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Fig. 8. Graphical representation of the unordered Ci profiles of different settings with
anomalies in the measurement model.

Fig. 9. Individual growth curves for settings 1 and 2, where the mean profile is
increased, before of after the dropout probability was calculated. Subjects 3, 21 and
26 are highlighted.

influence values (Jansen et al , 2003).

6.5 Discussion of Results

These results indicate that there is little or no local influence stemming from
having a few subjects that drop out in a non-random way, by setting ψ2 for
these equal to a nonzero value, while there is considerable influence in a num-
ber of settings where the measurement model is changed in the sense that a
few profiles following a deviating mean-model structure. This indicates that

24



the non-random parameter ψ2, rather than capturing true MNAR missingness,
has a strong tendency to pick up other deviations, primarily in the measure-
ment model. Many authors have noted that there is very little information in
many sets of data for the parameter ψ2, in addition to the information avail-
able for all other parameters. If this were to be true, this ought to show in the
behavior of the likelihood ratio test statistic for ψ2, as well as in the structure
of the information matrix for the vector of model parameters. We will explore
this further in the next section.

7 Behavior of the Likelihood Ratio Test for MAR versus MNAR

In this section we report a simulation study designed to examine the finite
sample behaviour of the likelihood ratio test (LRT) for testing MAR versus
MNAR within the selection model framework of Diggle and Kenward (1994).
For comparison we also consider the test for MCAR versus MAR. The be-
haviour of a parametric and a semi-parametric bootstrap approach in this
context is also investigated.

It follows from standard theory that the LRT for MCAR versus MAR has an
approximate χ2

1 distribution but the test for MNAR versus MAR is a nonstan-
dard situation. Indeed, Rotnitzky et al (2000) have proven that for a similar
but simpler setting the limiting distribution is a χ2-mixture with character-
istics governed by the singularity properties of the information matrix. The
score equation associated with the MNAR parameter ψ2 apparently generates
a quasi-linear dependence structure in the system of score equations. When
reducing the model to a MAR/MCAR model, this dependency disappears.
They moreover have shown that convergence to this limiting distribution is
extremely slow.

Similar theoretical considerations show that the same phenomena hold for
the model of Diggle and Kenward (1994). The slow convergence also raises
the question whether, even if known, an asymptotic distribution is of any
practical use. This was our motivation to examine the finite sample properties
of the LRT in this setting and to investigate whether a bootstrap simulated
null distribution, known to be a (slightly) better approximation in several
classical settings, could be a useful alternative to χ2 based distributions.

The simulation settings are as follows: the measurement model (3.2) with
N = 200, ni = 3, Xi = 1 (intercept only), mean vector β = (2, 0,−2)′ and
compound-symmetric covariance structure with common variance equal to 8
and common covariance equal to 6; the missingness model given by (5.1).

As mentioned before, consider the following hypotheses: (1) ψ1 = 0 in model
(5.1) with ψ2 = 0, i.e., MCAR vs MAR, (2) ψ2 = 0 in model (5.1) with ψ1 6= 0,
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Fig. 10. Kernel density plots of the simulated null distribution based on 800 samples,
under each Hypothesis i = 1, 2, together with the density of the χ2

1-distribution.

i.e. MAR vs MNAR. When not put to zero, we took ψ0 = −2, ψ1 = 1, ψ2 = 2.

7.1 Simulated Null Distributions

Figure 10, based on 800 samples generated under each of the two null hy-
potheses, shows the simulated null distribution of the likelihood ratio test.

As expected, the simulated null distribution deviates more pronounced from
the χ2

1 distribution when going from Hypothesis 1 to 2. Indeed, the p-value of
the Kolmogorov-Smirnov goodness-of-fit test equals 0.0548 for Hypothesis 1
and 0.0000 for Hypothesis 2. The mean and variance are 0.94 and 1.75 respec-
tively under Hypothesis 1 and 2.54, 8.11 under Hypothesis 2, clearly showing
an increase in the values of the LRT. This is also confirmed by the 90, 95 and
99% quantiles as shown in the the bottom lines of Tables 3 and 4. Whereas the
theoretical results of Rotnitzky et al (2000) indicate that in this setting the
asymptotic distribution is stochastically smaller than a χ2

1 distribution, i.e.,
a mixture with a χ2

0, the simulated null distribution is stochastically larger.
Probably the slow rate of convergence is causing this opposite behavior. Ex-
perimentation with larger sample sizes did not substantially change this result.

This restricted simulation experiment clearly shows that the use of the χ2
1

distribution, which holds in standard situations, should be discouraged in the
settings studied here. There is a need for an alternative approach and in the
next section we propose two bootstrap approaches and investigate to which
extent they can resolve the aforementioned problems.
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7.2 Performance of Bootstrap Approaches

We propose a parametric and a semi-parametric bootstrap likelihood ratio
test. In case the asymptotic null distribution does not depend on unknown
parameters, the bootstrap is expected to have a smaller asymptotic order of
error in level (Efron, 1979; Efron and Tibshirani, 1998; Davison and Hinkley,
1997). Beran (1988) showed that the bootstrap LRT automatically accom-
plishes the Bartlett adjustment, at least in a standard setting.

7.2.1 Parametric bootstrap

Given the data, a parametric bootstrap procedure for testing Hypotheses 1 or
2 in the selection model can be implemented using the following 4-step algo-
rithm. (1) Fit the initial data under the null and the alternative hypothesis
resulting in (θ̂H0

, ψ̂H0
) and (θ̂H1

, ψ̂H1
) respectively, where θ denotes the param-

eter vector for the measurement part and ψ for the missingness part; compute
the LRT for the hypotheses under consideration. (2) Generate a ‘bootstrap
sample’ from the selection model, reflecting the null hypothesis by using the
estimates (θ̂H1

, ψ̂H0
). (3) Compute the LRT test for the bootstrap sample. (4)

Repeat step 2 and 3 B times and determine the bootstrap p-value as the pro-
portion of bootstrap LRT values larger than its value for the original data
from step 1.

Alternatively, step 2 could be based on the estimates (θ̂H0
, ψ̂H0

). But some
exploratory simulations showed that both choices resulted in essentially the
same p-values. Instead of a p-value, one can also compute critical points of the
bootstrap approximate null distribution (90, 95 and 99% quantiles) in step 4
(Tables 3 and 4).

The parametric bootstrap heavily depends on the quality of the estimates
(θ̂H1

, ψ̂H0
). In case the initial data are generated under the alternative, one

can expect that bias disturbs the procedure, especially for Hypothesis 2. This
would lead to the generation of bootstrap data in step 2 which would obey
the null constraint but which would be substantially different from the initial
data in many other respects. A semi-parametric model based on resampling
and less depending on the estimates from the initial sample might perform
better.

7.2.2 Semi-parametric Bootstrap

Given the data, a semi-parametric bootstrap procedure for testing Hypotheses
1 or 2 in the selection model can be implemented using the following algorithm.
(1) Fit the initial data under the null and the alternative hypothesis resulting
in (θ̂H0

, ψ̂H0
) and (θ̂H1

, ψ̂H1
) respectively; compute the LRT for the hypothesis
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under consideration. (2) Impute the missing data, conditionally on the ob-
served outcomes at the previous occasion, and based on the probability model
for the measurement part (3.2) using the estimate θ̂H1

(this is a parametric
part). (3) Draw (complete) observations from the augmented data set (result-
ing from step 2), with replacement, yielding a new sample of the same size N
(this resampling is the nonparametric part). (4) Observations at time t ≥ 2
are deleted with a probability according the logistic dropout model (3.3) using
the estimate ψ̂H0

(thus reflecting the null hypothesis; this is again a paramet-
ric part); this is the final bootstrap sample. (5) Compute the LRT test for
the bootstrap sample. (6) Repeat steps 2 and 5 B times and determine the
bootstrap p-value as the proportion of bootstrap LRT values larger than its
value from the initial data from step 1.

For more details about similar semi-parametric bootstrap implementations in
other settings, see Davison and Hinkley (1997).

For Hypothesis i (i = 1, 2), two initial data sets were generated under three
scenarios: Scenario 1: all N observations generated under Hypothesis i; Sce-
nario 2: all N observations generated under the alternative: ψ1 = 1 for i = 1,
ψ2 = 2 for i = 2; Scenario 3: 10 observations generated under Hypothesis i
and 190 observations under the corresponding alternative.

For each Hypothesis i, for each Scenario j and for each initial dataset, B = 400
bootstrap samples were generated and bootstrap LRT values were computed.
The results (p-values and quantiles) for these 18 combinations are shown in
Tables 3 and 4.

Fitting the selection model, obtaining the maximum likelihood estimates and
computing the LRT, is a nontrivial iterative computing exercise, not lending
itself for intensive simulations. A full simulation study based on, e.g., 100
initial samples was computationally not feasible. The ‘optmum’ procedure in
Gauss 3.2.32 was used. The optimization method used the Broyden-Fletcher-
Goldfarb-Shanno procedure to obtain starting values for the Newton-Raphson
procedure and it took about one week to obtain the results of one of the 18
combinations. Nevertheless, we think that our limited results do reveal the
main characteristics of the performance of both bootstrap procedures.

For Hypothesis 1, Table 3 shows that, for all scenarios, the χ2
1 approximation

and the bootstrap approximation to the null distribution are consistent and in
line with our expectations. Note that the results for the two initial data sets
under Scenario 3 are not in agreement: one clearly rejects the hypothesis and
the other clearly not. Since only 5% of the initial data are generated under
the alternative, a less clear rejection pattern is to be expected here.

The results in Table 4 globally show that for testing MAR versus MNAR (Hy-
pothesis 2), also the bootstrap is not able to approximate the true null distri-
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Table 3
Hypothesis 1. Critical points based on the parametric and semi-parametric bootstrap
procedure (400 bootstrap runs) for two initial data sets. Lower lines show the critical
points of the simulated null distribution based on 800 samples, together with those
of the χ2

1 distribution.

quantiles p-value
0.10 0.05 0.01

Scenario 1 Parametric 3.04 4.17 6.12 0.7556
2.53 3.35 6.76 0.3566

Semi-Parametric 2.96 3.83 6.22 0.7890
2.46 4.16 6.60 0.3616

Scenario 2 Parametric 2.55 3.39 6.36 <0.0025
2.83 3.68 7.02 <0.0025

Semi-Parametric 2.41 3.39 6.49 <0.0025
2.68 3.68 6.37 <0.0025

Scenario 3 Parametric 2.35 3.72 7.91 0.9352
3.00 3.93 6.48 <0.0025

Semi-Parametric 2.83 4.13 8.00 0.6085
2.70 4.40 6.49 <0.0025

simulated H0 2.23 3.27 6.04
χ2

1 distribution 2.71 3.84 6.63

Table 4
Hypothesis 2. Critical points based on the parametric and semi-parametric bootstrap
procedure (400 bootstrap runs) for two initial data sets. Lower lines show the critical
points of the simulated null distribution based on 800 samples, together with those
of the χ2

1 distribution.

quantiles p-value
0.10 0.05 0.01

Scenario 1 Parametric 38.71 42.68 46.21 0.1870
9.62 12.25 19.77 1.000

Semi-Parametric 4.86 6.74 10.48 0.0998
7.40 9.35 14.47 0.2743

Scenario 2 Parametric 22.07 24.84 30.32 0.0349
9.36 11.39 14.04 0.0025

Semi-Parametric 12.35 15.63 20.88 0.0050
17.05 19.75 27.56 0.0224

Scenario 3 Parametric 8.17 10.09 15.02 0.0175
15.46 17.85 24.38 0.9351

Semi-Parametric 15.68 19.11 25.58 0.1397
8.11 10.46 13.55 0.6085

simulated H0 6.44 9.17 12.10
χ2

1 distribution 2.71 3.84 6.63

bution. Especially the behaviour of the parametric bootstrap is very unstable
and variable. The semi-parametric version seems to slightly perform better,
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especially for Scenario 1. As the bootstrap is also an asymptotic method, it
suffers from the same slow convergence as the χ2 type distributions.

8 Concluding Remarks

In recent times, models for MNAR missingness have gained in popularity.
However, as already noted in the discussion to Diggle and Kenward (1994), it
has been made clear at various occasions that caution should be used when
interpreting such models, due to the great sensitivity the results exhibit with
respect to the model assumptions made. This has led to quite a bit of work
on sensitivity analysis. One such tool is local influence but this particular
tool itself tends to behave in an, at first sight, non-intuitive fashion. At the
same time, there is some confusion about the identifiability issues implied
by the Diggle and Kenward (1994) model, since a likelihood ratio and the
corresponding p-value can apparently be obtained in a standard way. In this
paper, by studying both of these issues, we have provided evidence that they
are, in fact, two faces of the same coin.

The behavior of the likelihood ratio statistic for the MNAR parameter ψ2 is
non-standard. The information on ψ2, available in the data, is very scarce and
interwoven with other features of the measurement and dropout model. This
translates mathematically into dependent systems of estimating equations and
thus singularities in the corresponding information matrix. The rate of con-
vergence to the asymptotic null distribution is extremely slow, implying that
also well-established bootstrap methods appear to be deficient.

This implies that there is much less information available, even with increasing
sample sizes, than one typically would expect. As a result of this, the ψ2

parameter is more vulnerable than others for all sorts of deviations in the
model, in particular to unusual profiles. This includes profiles with an average
away from the bulk of the data, unusual autocorrelation pattern etc.

The bottomline is that local influence tools in the incomplete data context
are useful, not to detect individuals that drop out non-randomly, but rather
to detect anomalous subjects that lead to a seemingly MNAR mechanism.
A careful study of such subjects, combined with appropriate treatment (e.g.,
correction of errors, removal,. . . ), can lead to a final MAR model, in which
more confidence can be put by the researchers, which ultimately is the goal of
every sensitivity analysis.
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