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Abstract

Many systems rank outcomes before suggesting them to a user, such as Recommender Systems or Information Retrieval Algo-

rithms. These systems require manual validation, which is time consuming and costly in industrial context. As it is the case in

our industrial applications, we assume that the user’s needs can be fulfilled by only one relevant outcome. We thus consider an

algorithm that systematically selects the top ranked outcome. This approach requires to compute a correctness, estimating the

confidence of the automatic decision, or equivalently how likely the first outcome of the ranking system is to be correct. Based on

this estimation, we can apply a threshold on the correctness, above which no manual action is required; the system avoids human

validation in many cases.

This paper proposes a novel method to estimate this correctness based on a supervised classification approach using the manual

validations available in the base coupled with a representation of the system’s scores. We conducted experiments on Multiposting

real-world datasets generated by algorithms used in the industry; the first algorithm categorizes a job offer, the second recommends

semantic equivalents for a given expression in a nomenclature. Our approach has thereby been evaluated and compared, and

showed good results on our datasets, even with a limited training base. Moreover, in our experiments, for a given threshold, the

better is the correctness estimation, the more performant is the semi-automatic system, showing that the correctness estimation

leads thus to a crucial efficiency gain.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

Multiposting is the French leader on e-recruitment solutions. Each year, millions of job offers are posted on

recruitment websites, such as Monster.com, through Multiposting’s interface. To handle such amount of data, the

company is developing an automatic categorization of job offers on a high resolution nomenclature; at the moment,

the algorithm suggests categories that need manual validation. Similarly, to help its clients in posting their job ads

easily, the company needs to find semantic equivalences between e-recruitment websites nomenclatures. Once these

hierarchies are matched, the client only needs to fill one form instead of dozens. The company employees are now

matching items after items the nomenclatures, helped by a recommender system.
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Both of these algorithms (categorization and schema mapping) rely on textual processing and data mining tech-

niques, and are now subject to the following constraints:

- One outcome is required per query, and one is sufficient,

- When taking the top ranked suggestion as answer, the precision is too low for industrial use,

- Manual validation is systematically required (ranked suggestions displayed).

As the manual validation is time consuming, we would like to skip this step when possible. This implies to estimate
when the top suggestion is reliable, and when it is not, taking it as the unique answer to the query only in the first case.

As ranking systems are predicting real-valued scores to rank outcomes, we propose to consider these scores, coupled

with a learning base, to estimate when the top ranked outcome is correct.

The paper is organized as follows: Section 2 surveys related research, while section 3 describes our problem and

table 1 summarizes our notations. We dissect in section 4 variant approaches to estimate the correctness, and propose

a method based on a specific representation of scores. Section 5 describes our algorithms deployed in real-world

on which we applied our approach. Tests and comparisons in section Section 6 show the efficiency of the presented

method and the industrial impact of our estimation. We finally conclude and discuss the obtained results in section 7.

2. Related Work

Information Retrieval systems and recommender systems are generally platforms suggesting outcomes to a user in

response to a query2,4, by ranking them. For these ranking systems, the computation focuses on the query (including

user’s preferences for recommendation) to suggest relevant outcomes. Generally, and in our experiments, outcomes

and queries features are textual documents. We transform them using natural language processing (tokenization,

stemming)9 and represent as vectors using the vector space model with TF-IDF as term weighting function8.

A problem we tackle is the industrial cost of manually validating the outcomes suggested by the system. By

taking the most likely outcome as the result, our work falls into a classification task. To face the cost of correct or

incorrect classification, cost-sensitive learning25,24 proposes to consider this industrial constraint by balancing the

classes weights in the training of the classification algorithm. However, the method remains limited to classification

on given fixed classes, and requires as an input the cost matrix of our system.

Our approach to face this industrial cost is to estimate the confidence of our automatic decision. An important

question we address in this paper is how to estimate the confidence of the most likely result of a ranking system.

Many research has been done on estimating a probability from raw algorithms output, such as in18 where the system

is a single class SVM outputting an unbounded distance to the separating hyper-plane.11,23 propose approaches for

estimating probabilities from any multi-class classifier; this topic still remains an area of interest in the literature16,10.

However, these studies only apply on classification on fixed classes, and need a large training set, including positive

cases for every class.

Our work is also an approach for evaluating recommender systems. Indeed, we do not only evaluate the overall

accuracy and coverage of our ranking system, but also derive metrics that indicate the confidence one can have in

individual recommendations. In this sense we go further than existing evaluation approaches2, while recent works

suggest the importance of other metrics besides accuracy for evaluating the usefulness of recommendations15.

3. The Notion of Correctness for a Ranking System

3.1. A Ranking System

The general problem is described by a query q and a set Oq of possible outcomes, a single outcome being denoted

o. One notices that Oq and its size |Oq| generally depend on the query, but this is not the case for every ranking system.

Ranked outcomes are displayed to the user, and he can validate or not these outcomes, depending on the requirements.

We assume that the relevance of each outcome o ∈ Oq with respect to the query q is independent to the relevance

of the other outcomes Oq \ {o}. This independence assumption usually applies in information retrieval20, but can be

found in other algorithms such as recommender systems.

Outcomes are theoretically ranked with respect to P(o relevant|q). However, in practice, these probabilities are

represented by a function s(q, o) ∈ R, evaluated independently for every outcome o. This scoring function can be
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a direct estimation of the probability P(o relevant|q), but in general it doesn’t have a probabilistic interpretation; it

can indeed be unbounded, depending on the algorithm. The function s only depends on one outcome o due to the

independence assumption. The system then ranks the outcomes with respect to s(q, o) and display them to the user.

Depending on the system, the set of possible outcomes Oq can be fixed or not. In Information Retrieval, for

instance, the outcomes are the retrieved documents, and might change regarding the query, when the user applies a

filter on the documents for instance.

A first simple example for the scoring function s is the cosine similarity: s(q, o) = cos(�q, �o), where �q and �o are

the representations of query q and outcome o, processed as textual documents to form vectors (see section 2). Many

different algorithms exists for information retrieval, as21. Content-based recommender systems2 are also ranking

systems, where query q includes user’s preferences. Multiclass classifiers based on one versus all approach19 also

compute scores, the query being the features vector and the outcome being the class. For more detailed examples, we

refer to section 5 which describe two real-world ranking systems are provided in section 5.
To estimate which outcomes are relevant to the user, we suppose that a base Γ is available:

Γ = {(q,Oq,Or
q)}

Where Oq is the set of suggested outcomes for query q, and Or
q ⊂ Oq is the set of relevant outcomes, manually

validated.

Γ gives an idea of the user’s feedback on system suggestions, and thus expresses which outcomes are really relevant.

This base can be used to validate the computation of local scores s(q, o), using for instance accuracy evaluation

metrics12. This base can also be used as to improve the scores computation, by learning on Γ how to compute s(q, o)

in the best way possible. The validation metrics are then computed through a cross validation process.

From now on, we assume that the initial system is fixed, meaning that the computation of the scoring function s
has been fixed, even if the function s itself can vary depending on the learning set in the case of an algorithm learned

on Γ.

3.2. Correctness of the Top-Ranked Outcome

We now focus on the case where the user only needs one relevant outcome for each query, and systematically
needs it. In other terms, once a relevant outcome is found, the other ones are useless. Some examples of such systems
are detailed in the section 5. It is natural to focus on the most likely outcome, as being the potential unique relevant
answer for a given query. We write o∗ ∈ Oq to denote the top ranked outcome for query q, that is to say the outcome
with the highest s(q, o) value:

o∗ = argmaxo∈Oq s(q, o)

This leads us to propose a semi-automatic system, requiring human action only when the system is not confident

enough about the relevancy of its first ranked suggestion o∗:

Algorithm 1: Semi-automatic System

input: q, Oq

foreach outcome o in Oq do compute s(q, o)

o∗ = argmaxo∈Oq s(q, o)

if o∗ is likely enough to be correct then
return o∗ as a unique final answer

else
ask a manual selection, displaying ranked outcomes

end

The crucial point of this automatization is to determine how likely is o∗ to be correct. We define the correctness Cq

as the probability that the top ranked outcome is a correct answer:

Cq = P (o∗ relevant)
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The correctness differs from the score s(q, o∗) representing P (o∗ relevant): first, Cq is a probability, contrary to the

scores. Second, scores are computed with independence assumption, whereas Cq takes into account that o∗ is the top

ranked outcome of the query, and is implicitely aware of the other outcomes. For instance, even if all the scores s(q, o)

are very low but s(q, o∗) remains much higher than other scores, it gives more chance to o∗ to be a correct answer.

On the other hand, if every outcome has a high score, but no outcome seems to stand out from the others, we are less

confident about o∗ being a correct answer.

Once the system can compute the correctness Cq, the condition o∗ is likely enough to be correct can be changed to

Cq > t, where the threshold t is choosen regarding the industrial strategy (see section 6). As our automation requires

to compute the correctness, our problem is thus to estimate the correctness Cq the most precisely as possible.

4. Various Approaches for Correctness Cq Estimation

4.1. Heuristic-Based Approach

A first natural approach is to rely directly on the scores s(q, o) predicted by the ranking algorithm. As we consider
the case of a unique choice (the choice of o∗), we want to interpret the scores as the probability for each outcome to
be this unique relevant one. To interpret s(q, o) as a probability, we process the scores for a given query q:

s′(q, o) =
s(q, o) − ε∑

o∈Oq (s(q, o) − ε)
Where ε is the lower bound of scores s(q, o). As a lower bound is not necessarily available, ε can be arbitrarily

chosen, and cut scores below it. We then have s′(q, o) ∈ [0, 1] ∀ o ∈ Oq and
∑

o∈Oq
s′(q, o) = 1.

We use several metrics that are proposed in22 to estimate the correctness:

- The Maximum; we simply consider highest normalized score: Ĉq = maxo∈Oq s′(q, o) = s′(q, o∗)
- Distance; we evaluate how much the best outcome stands out from the second one: Ĉq = maxo∈Oq s′(q, o∗) −

2nd maxo∈O s′(q, o)

These approaches only rely on the s(q, o) with highest value for Maximum, and on the two highest ones for Dis-

tance. We note that more values s(q, o) could be considered. Second, these estimations are static, as the computation

doesn’t rely on the manual validations Or
q available in the base Γ. The following section thus proposes to estimate the

correctness by learning an estimator on Γ.

Notations for Ranking System

Symbol Description

q Query

o Outcome

Oq set of possible outcomes for query q

Or
q set of relevant (validated) outcomes, ⊂ Oq

s(q, o) Scoring function, used for ranking

Notations for Correctness Estimation

o∗ Top-ranked outcome

Φk(q) Top-k scores vector for query q

Cq Correctness of the query q

Pq,o Probability that o is correct for q

ψ Learned function estimating Pq,o from s(q, o)

ϕ Learned function estimating Cq from Φk(q)

Table 1. Notations.

4.2. Learning on Independent Scores

For this section, considering a query q, we focus on the score s(q, o) for a given outcome o, not taking into

account the scores for other outcomes of Oq. It is meaningful to separate every outcome making use the independence

assumption (see section 3.1). We try thereby to estimate from any value s(q, o) the probability that a user validates o,

that is to say P (o relevant|s(q, o)). This estimated probability P̂q,o is computed through a predicting function ψ:

P̂q,o = ψ
(
s(q, o)

)

where the prediction function ψ
(
x ∈ R

) ∈ [0, 1] is learned on the validation data-set Γ. Compared to multi-class

probability estimation, this prediction is unaware of the class of o as there is not necessarily defined classes for the

outcomes, and can thus be applied to a wider range of systems. The estimation is done independently for every
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outcome, making abstraction of the fact that they are from the same query. In that case, we express the base as a set

of entries (s(q, o), y), where y = 1 when o is relevant for the query q and y = 0 otherwise. The number of entries is

much higher than for Γ, as there is one for each pair (q, o).

The estimated correctness of the query Ĉq is computed as:

Ĉq = P̂q,o∗ = ψ
(
s(q, o∗)

)
(1)

This approach takes advantage of the base Γ, in order to learn when users are satisfied with the best outcome or not.

We note that this estimation might be useful even when scores s(q, o) are already computed as probabilities, because

the score computation might be computed of the users’ needs expressed by Γ. However, we note from equation 1 that

the estimation of the correctness Cq only relies on the outcome with the highest value o∗. We can expect that scores

for other outputs can give additional information on the quality of our recommendation: indeed, if the second highest

local score s(q, o) is much lower than the highest one, it means that first outcome stands out of the others. We thus

extend this method by considering all scores in the next section.
4.3. Learning on Top-k Scores

For this part and the following, given a query q, we focus on all the corresponding scores s(q, o), at the number of

|Oq|. We thereby try to estimate the correctness from all the scores s(q, o) for o ∈ Oq:

Cq = P(o∗ relevant|s(q, o), o ∈ Oq)

For this approach, we will train a classification algorithm using all scores s(q, o), o ∈ Oq as features. We notice that

a dimension problem arises: the number of features |Oq| is not fixed for all q. Moreover, even when this dimension is

constant (i.e. a fixed number of outcomes), there might be a risk of over-fitting when learning the algorithm for high

number of outcomes, as for job categorization in section 5 with high number of outcomes compared to base size |Γ|.
For these two reasons, we build a vector from the scores s(q, o) before applying a classification algorithm.

To build this vector, we want to avoid principal components analysis. It reduces the dimension, but can only be

applied in case when outputs oi belongs to fixed classes, whereas we regard a problem with generally not defined

classes. Moreover, the final projection can reduce drastically one component such that it is not taken into account

in the correctness estimation. We will thus only consider the ranked k highest values of s(q, o), where k ∈ N. One

can link this process with the distance D computation, where the 2 highest components are considered. This process

defines the top-k scores vector �Φk(q):

�Φk(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

maxo∈Oq s(q, o)

2nd maxo∈Oq s(q, o)
...

kth maxo∈Oq s(q, o)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Rk

One notes that �Φk can be viewed as a feature map, mapping a query q in the feature space R
k.

The correctness is then estimated from the formula below:

Ĉq = ϕ
(
�Φk(q)
)

(2)

Where the prediction function ϕ
(�X ∈ R

k) ∈ [0, 1] is learned on the validation data-set Γ, expressed as a set of

entries (�Φk(q), y) where y = 1 when the top ranked outcome o∗ is relevant for the query q, and y = 0 otherwise.

5. Two real-world Ranking Systems

We consider two real-world systems for our correctness estimation and automation. Their brief descriptions are

more detailed in distinct papers (6 and7). The technical characteristics are detailed in table 2.

5.1. Categorization of Job Offers

To standardize its data, and in particular its millions of job ads, Multiposting is developing a computer-assisted tool

for categorizing job offers, by matching them with the concepts of an ontology. Job categories are represented by the
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ROME ontology, an equivalent of O*Net5 with 531 categories, provided by Pole Emploi (http://www.pole-emploi.fr.),

the French national employment service. Pole Emploi provides job category descriptions, separated into textual fields:

title, description, skills, tasks, place of work, typical job titles.
The algorithm takes a job offer -a query- and tries to match it with a category description - the outcomes. This is

done by predicting a similarity s(q, o) between offer q and category o. As the query is a job offer, it is separated into 4
textual fields (title, description, profile, company description); for each field f = 1..4 we extract a vector �q f , following

the process described in9. Thus a job offer is represented by a tuple of vectors defined as follows:

q = (�q1, ..., �q4)

Similarly, an outcome o represents a job category, separated into 14 vectorized textual fields: o = (�o1, ..., �o14).

The method proposed in6 focuses on the field to field similarity cos(�q f , �o f ′ ), computed from cosine similarity

as defined in8. The idea behind this similarity is to independently compare a field to another. To consider a field

represented by �q f might be meaningful when compared to �o f ′
1

but totally irrelevant when compared to �o f ′
2
. Approaches

weighting terms according to their fields - as proposed in21 or in6 - can’t handle such situation. The predicted

similarity score between q and o is then defined as:

s(q, o) =

4∑
f=1

14∑
f ′=1

λ f , f ′cos(�qf , �of ′ )

Where λ ∈ M4,14(R) are the similarities weights, that are learned on the validation base Γ. For this purpose,

our experts have manually assigned categories to more than 1,300 job offers, helped by an open source information

retrieval system (Solr21). A job offer can be assigned to several categories or none, even if in practice, we need one

and only one.

5.2. Semantic Mapping of Schemas

To save Multiposting clients’ time, employees need to semantically map a schema to another one, referred as the

source and the target schemas. The schemas represent for instance company sectors, courses provided in a university

or a website jobs classification. Each item of the source schema needs one and only one equivalent item in the target

schema. The company has developed an interface for employees to complete this task, with source schema on the left,

and target one on the right.

The system aims at ranking the possible mappings by semantic relevance, a problem referred as name-based

schema mapping. It considers leaves of the source schema one by one; such a leaf is then conceptually a query

q. Similarly, the target schema is conceptually the set of possible solutions, each target leaf being an outcome o. The

algorithm computes a score for each possible mapping s(q, o), evaluating the semantic equivalence between q and o.

In practice, to represent a schema leaf, we consider only the textual label of the leaf and that of the parent, such as

(”Web Development”, ”IT Department”). We extract then two vectors following the process described in9 to form q,

and define the similarity among leaves f (q, q′) as:

q = (�q1, �q2) f (q, q′) =
1

2

(
cos(�q1, �q′1) + cos(�q2, �q′2)

)

This definition ensures keeping information about the hierarchy and doesn’t mix labels of different depth. In this

system, Oq is the target schema, and changes at every schema mapping. We define a similarity g(Oq,O′q) that captures

how the vocabularies of schemas Oq and O′q are similar, thanks to a cosine similarity between bag of words vectors

for these vocabularies.

The idea to compute the semantic similarity s(q, o) is to express the base Γ as a case base CB = {(q,Oq, o)}, where

we only keep the positive cases or semantic maps validated by the employees. The target schema Oq is implicitly

precised by the query, and semantic mapping score s(q, o) is then computed using:

s(q, o) = max
(q′,O′q,o′)∈CB

f (q, q′) · f (o, o′) · g(Oq,O′q)
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This approach can be viewed as a case-based reasoning14. The definition of f ensure that s(q, o) ∈ [0, 1], but we

don’t expect any probabilistic interpretation of scores, because of the specificity of their computation. The systematic

manual validation through the interface keeps enriching the case base CB.

Ranking System

Categorization Schema Mapping

|Γ|: Number of queries in data-set 1,338 203,990

Outcomes Oq Job categories, Fixed Schema items Change at every query

|Oq |: outcomes per query 531 3 to 1000

|Or
q |: relevant outcomes per query 0 to 3 1

Number of pairs (q, o) 710,478 72,523,082

Range for s(q, o) Unbounded [0, 1]

Accuracy@1 of initial ranking system 65% 49%

Table 2. Characteristic from our data-sets.

6. Experiments on the Systems

6.1. Method For Evaluation

For dynamic methods, our validation relies on a 5-folds cross validation: the algorithm estimating Cq is trained on

a part of Γ and then used to predict correctness on the other part. We compared our methods with a random prediction,

for which Ĉq = 0.5.

The tricky part of this validation is to learn the Cq estimation from unbiased values s(q, o). Generally, and it is the

case in our real-world systems, the scoring function s is learned on the base Γ, and we must pay attention to the way

we build the training set for Ĉq, built from s(q, o) values. When learning functions ψ and ϕ, every s(q, o) training value

needs to reflect the value that would be predicted for an unseen query q. Thus, at each fold of the cross-validation, we

perform a second-level cross-validation on the training fold, to compute unbiased s(q, o) values on the fold. The sub-

level cross-validation is for learning and predicting s, while the main cross-validation is for learning and predicting φ
or ϕ.

6.2. Learning functions for ϕ and ψ

The approaches described in sections 4.2 and 4.3 rely on functions ψ and ϕ. They are respectively trained on scores

s(q, o) and top-k scores �Φk(q) to estimate the correctness Ĉq. We used the following algorithms in our experiments,

as being classification algorithms whose output can be interpreted as a probability.

An algorithm showing good results in posterior probability estimation13 is to fit a sigmoid on the vectors X. The

output is P(Y = 1|X) = 1
1+e−(β0+β.X) , where β0 ∈ R and β has the dimension of X.

A popular algorithm is K nearest neighbors1 (K = 20 in our experiments). The idea is to consider the K closest

vectors Xi in the base (i = 1..K), with respect to a distance d(X, Xi). The output is P(Y = 1|X) = 1
K
∑K

i
Yi

d(X,Xi)

We will also consider the random forest3, combining randomized decision trees (300 trees in our experiments).

Each tree outputs a probability Ptree(Y), and the forest averages them to output P(Y = 1|X) =
∑

trees Ptree(Y=1|X)

|{trees}|

6.3. Performance Metrics Used

To estimate the quality of our estimation Ĉq, we compare it with the corresponding ideal values 1 when o∗ is

relevant, and 0 when it is not, leveraging the following performance metrics:

- The mean square error: MS E = 1
|Γ|
( ∑

(q,Oq )∈Γ
o∗ relevant

(Ĉq − 1)2 +
∑

(q,Oq )∈Γ
o∗ irrelevant

Ĉ2
q

)

- The negative log-likelihood:LL = − 1
|Γ|
( ∑

(q,Oq )∈Γ
o∗ relevant

log(Ĉq) +
∑

(q,Oq )∈Γ
o∗ irrelevant

log(1 − Ĉq)
)
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- The area under the ROC curve ROC − AUC, as defined in17.

6.4. Experimental Results

6.4.1. Heuristic-Based Estimation
On both data-sets, ROC − AUC values in table 3 show that heuristic approaches seem to detect relatively well

the queries with a correct first outcome. Second, ROC − AUC is higher for distance (equation 4.1): it confirms the

relevancy to consider several scores. However, these metrics don’t have a good probabilistic interpretation, as the

log-likelihood and mean square error are even lower than for a random correctness, and would be thus inappropriate

for visualization on an interface.

ROC-AUC LL MSE

Random 0.50 ± 0.00 0.69 ± 0.00 0.25 ± 0.00
Maximum 0.73 ± 0.03 1.41 ± 0.14 0.49 ± 0.05

Distance 0.75 ± 0.00 2.20 ± 0.23 0.57 ± 0.06

ROC-AUC LL MSE

0.50 ± 0.00 0.69 ± 0.00 0.25 ± 0.00
0.70 ± 0.03 1.74 ± 0.35 0.36 ± 0.06

0.75 ± 0.02 3.46 ± 0.44 0.43 ± 0.08

Table 3. Performance of Heuristic-Based Estimation, for Job Categorization on the left and Schema Mapping on the right.

6.4.2. Estimation from Independent Scores
We evaluated the estimation from independent scores (table 4). For both tests, the log-likelihood and mean square

error are lower than for previous metrics: we succeed in better estimating the probability. However, the ROC − AUC
remains quite low, suggesting not to consider the scores s(q, o) independently for our problem. Moreover, the training

is much longer as there is an entry for each pair q, o. As a consequence, a computer with 8 cores and 16GB of RAM

couldn’t perform the tests on the schema mapping database with prediction by random forest and nearest neighbors

algorithms.

ROC-AUC LL MSE

Neighbors 0.70 ± 0.03 4.02 ± 1.82 0.26 ± 0.02

Forest 0.70 ± 0.03 12.56 ± 3.67 0.28 ± 0.02

Sigmoid 0.76 ± 0.02 0.72 ± 0.02 0.22 ± 0.00

ROC-AUC LL MSE

Sigmoid 0.65 ± 0.02 1.34 ± 0.14 0.35 ± 0.03

Table 4. Performance of Estimation learned on independent scores, for Job Categorization on the left and Schema Mapping on the right.

6.4.3. Estimation from Top-k Scores
First, we studied the value of k to consider for the top-k scores Φk(q). ROC − AUC values when k varies (figure

1) suggest that k = 4 is sufficient for both data-set. For the schema mapping data-set, the 3 learning algorithms

seems equivalent, while for the categorization (smallest data-set), the logistic regression shows better performance,

showing nevertheless an over-fit for high values of k; Indeed, random forest and nearest neighbors generally need a

large training set to work well.

Figure 1. Performances of estimation with respect to k, on categorization data-set in the left and schema mapping data-set in the right.
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Table 5 shows performances for k = 4. Firstly, it confirms that considering top-k scores is relevant to estimate the

correctness, as results are better than for previous estimations. Secondly, using Sigmoid for ϕ seems to be appropriate

for probability estimation: on one hand, it gives high ROC − AUC, one the other hand, it approaches relatively well

the ideal probability (see log-likelihood). Last but not least, the training is fast with a computational time under one

second and not memory costly, because it is performed on entries Φk(q) ∈ R4 at the number of |Γ| (Experiments done

on a 2GB RAM and 2.1GHz computer). If our model gives results on just a thousand of queries (job categorization

system), it can also be trained on a large data-set (schema mapping).

ROC-AUC LL MSE

Neighbors 0.76 ± 0.02 1.41 ± 0.56 0.19 ± 0.01

Forest 0.74 ± 0.02 0.58 ± 0.03 0.20 ± 0.02
Sigmoid 0.77 ± 0.02 0.58 ± 0.01 0.20 ± 0.01

ROC-AUC LL MSE

0.76 ± 0.01 1.74 ± 0.15 0.20 ± 0.01

0.77 ± 0.01 0.72 ± 0.10 0.19 ± 0.01
0.77 ± 0.02 0.57 ± 0.02 0.19 ± 0.01

Table 5. Performance of Estimations learned on Top-k Scores for Job Categorization on the left and Schema Mapping on the right.

6.5. Efficiency of the Semi Automatic System: choice of threshold

We now consider the system that always selects the top ranked outcome as a result (algorithm 1), along with the

estimated correctness. As described in table 6, we split the queries in two parts using a threshold on Ĉq, automatically

process the first one, and keep the initial ranking system for the second one. For a given threshold t on the correctness,

let Coveraget be the proportion of queries of Γ such that Ĉq > t and Precisiont the precision of the automatic system

on this sub-part of queries. One notes that Precisiont also corresponds to the accuracy at 1 of the ranking system on

the first part of queries.

Ranking System Semi-Automatic System
For all queries: Queries such that Ĉq > t: Queries such that Ĉq < t:
(100% queries) (Coveraget % queries) (1 −Coveraget % queries)

Manual validation, Visualization of Ĉq Automatic decision, Precisiont Manual validation

Table 6. Description of a semi-automatic system compared to the basic one

To visualize the optimal threshold for such a system, we plotted the accuracy with respect to the coverage in figure

2. The curve is more regular with the estimation learned on top-k scores, which is crucial for industrial strategy.

We note that the first half of the figures is more important - where the accuracy is higher. These curves show which

correctness estimation yields to better accuracy for the hybrid system: on the categorization data-set (figure 2, left), for

an objective of 90% of job correctly categorized, we can cover 31% of cases when Cq is estimated from top-k scores,

against 19% for distance or 25% for estimation from independent scores. This gap is even deeper for schema mapping

(figure 2, right); the best industrial strategy corresponds to the one provided by the nearest neighbors estimation from

global score. With this estimation, for an objective of 80% of accuracy, we cover 34% of the mappings, while an

estimation from independent scores can’t provide this accuracy.

7. Conclusion and Future Work

We proposed a method to semi automate a ranking system, involving the estimation of the probability that the

system suggests a correct first outcome; this estimation is based on top-k scores and fitting a sigmoid on a learning set.

Experiments we conducted on 2 real-world data-sets yields to better results for our approach, compared to heuristic-

based or independent score based estimations; moreover, our method doesn’t require a large amount of data to learn

an efficient estimation, compared to the requirements of literature multi-class probability estimates. The correctness

estimation and automation can be applied to a wide range of ranking systems, as the computation is class independent

and rely on few assumptions; our real-world systems are for instance a field to field job/category matching and a case

base reasoning for schema mapping.
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Figure 2. Coverage with respect to the Precision, on categorization data-set on the left and schema mapping data-set on the right.

Our next work will focus on improving the correctness estimation from additional features given by the ranking

system. We remained in a general case by relying only on the scores used for ranking, but we hope for instance to

better estimate correctness by taking into account the taxonomy of job categories in the job ads categorization.
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