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On the derived category of Grassmannians in

arbitrary characteristic

Ragnar-Olaf Buchweitz, Graham J. Leuschke and Michel Van den Bergh

Abstract

In this paper we consider Grassmannians in arbitrary characteristic. Generalizing
Kapranov’s well-known characteristic-zero results we construct dual exceptional col-
lections on them (which are however not strong) as well as a tilting bundle. We show
that this tilting bundle has a quasi-hereditary endomorphism ring and we identify the
standard, costandard, projective and simple modules of the latter.

1. Introduction

Throughout K is a field of arbitrary characteristic. Let X be a smooth algebraic variety over
K and let D be its bounded derived category of coherent sheaves. An object T ∈ D is called a
tilting object if it classically generates D (i.e. the smallest thick subcategory of D containing T
is D itself) and HomOX (T , T [i]) = 0 for i 6= 0.

If T is a tilting object in D and A = EndOX (T ) then the functor RHomOX (T ,−) defines an
equivalence D ∼= Db(modA◦). If in addition T is a vector bundle then we call T a tilting bundle.

A sequence of objects E1, E2, . . . , Ed which classically generates D is called an exceptional
sequence if RHomOX (Ej , Ei) = 0 for j > i and RHomOX (Ei, Ei) = K. An exceptional sequence
is strongly exceptional if in addition ExtkOX (Ei, Ej) = 0 for all i, j and k 6= 0. Obviously if (Ei)i
is strongly exceptional then T =

⊕
iEi is a tilting object in D.

Two exceptional sequences E1, E2, . . . , Ed and Fd, Fd−1, . . . , F1 are said to be dual if

RHomOX (Ei, Fj) = δi,j ·K .

We now specialize to the the case whereX is the Grassmannian G = Grass(l, F ) ∼= Grass(l,m)
of l-dimensional subspaces of an m-dimensional K-vector space F . On G we have a tautological
exact sequence of vector bundles

0 −→ R −→ F ∨ ⊗K OG −→ Q −→ 0 (1.1)

in which Q has rank l and R has rank m − l. When K is a field of characteristic zero, Kapra-
nov [Kap88] constructs a pair of dual strongly exceptional sequences on G which we now describe.
For a partition α let Lα be the associated Schur functor; our conventions are that L(t)V = Symt V
and L(1t)V =

∧tV . Further let α′ be the transpose of α and let |α| = ∑i αi be its degree.
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Ragnar-Olaf Buchweitz, Graham J. Leuschke and Michel Van den Bergh

Theorem 1.1 (Kapranov [Kap88]). Assume that K has characteristic zero. Let Bu,v be the set
of partitions with at most u rows and at most v columns equipped with a total ordering ≺ such
that if |α| < |β| then α ≺ β. Let Bu,v be the same as Bu,v but equipped with the opposite
ordering. Then there are strongly exceptional sequences on G given by

(LαQ)α∈Bl,m−l and (Lα
′R)α∈Bl,m−l .

In particular the vector bundle

K =
⊕

α∈Bl,m−l
LαQ

is a tilting bundle on G. Moreover the exceptional sequences (LαQ)α∈Bl,m−l and (Lα
′R[|α|])α∈Bl,m−l

are dual.

For K a field of positive characteristic p, Kaneda [Kan08] shows that K remains tilting as
long as p > m− 1. However K fails to be tilting in very small characteristics.

Example 1.2. Assume that K has characteristic 2 and put G = Grass(2, 4). Then the short
exact sequence

0 −→ ∧2Q −→ Q⊗Q −→ Sym2Q −→ 0 (1.2)

is non-split. This follows for example from Theorem 5.4 below and the fact that the sequence of
GL(2)-representations

0 −→ ∧2V −→ V ⊗ V −→ Sym2 V −→ 0

is not split, where V = K2 is the standard representation. In particular Ext1
OG

(Sym2Q,∧2Q) 6=
0, so that Sym2Q and

∧2Q are not common direct summands of a tilting bundle on G in
characteristic two.

In this note we give a tilting bundle on G which exists in arbitrary characteristic. For a
partition α = [α1, . . . , αp] put ∧αQ =

∧α1Q⊗G · · · ⊗G
∧αpQ .

Our first main theorem is the following.

Theorem 1.3. Define a vector bundle on G by

T =
⊕

α∈Bl,m−l

∧α′Q . (1.3)

Then T is a tilting bundle on G.

In characteristic zero we recover Kapranov’s tilting bundle, up to multiplicities, by working
out the tensor products in (1.3) using Pieri’s formula.

The proof of Theorem 1.3 depends on the following vanishing result which we will also use
in [BLVdB13].

Proposition 1.4. For α ∈ Bl,m−l and β an arbitrary partition we have for i > 0

ExtiOG(
∧α′Q, LβQ) = 0 . (1.4)

Furthermore if |β| < |α| then we have as well HomOG(
∧α′Q, LβQ) = 0.

2



The derived category of Grassmannians

In our next result we show that Kapranov’s characteristic-zero result can be partially salvaged
in arbitrary characteristic.

Theorem 1.5 (see Theorem 7.5 below). There exists a total ordering ≺ on Bl,m−l such that

(LαQ)α∈Bl,m−l and (Lα
′R[|α|])α∈Bl,m−l

are dual exceptional collections on G, where Bl,m−l is Bl,m−l equipped with the opposite ordering.

We use this result to obtain another proof of Kaneda’s result that K remains tilting in
characteristics p > m− 1 (Corollary 7.7).

The proof of Theorem 1.5 goes through the construction of a nice semi-orthogonal decompo-
sition [BK89] on Db(coh(G)) which we summarize in the following theorem.

Theorem 1.6 (see Theorem 5.6 below). There is a semi-orthogonal decomposition

Db(coh(G)) =
〈
D0, . . . ,Dl(m−l)

〉
where for d = 0, . . . , l(m−l),Dd is the derived category of the generalized Schur algebra associated
to the representations whose composition factors have highest weight α ∈ Bl,m−l such that
|α| = d.

The connection between Theorem 1.3 and 1.5 depends on the theory of quasi-hereditary
algebras [DR92]. In this regard we have the following additional result.

Theorem 1.7. Let T be as in Theorem 1.3 and put A = EndOG(T ). Then A is quasi-hereditary.
Furthermore the homogeneous bundles (LαQ)α∈Bl,m−l correspond to the standard rightA-modules

and (Lα
′R[|α|])α∈Bl,m−l correspond to the costandard right A-modules.

This theorem is a special case of Theorem 8.3 below in which we also characterize the simple
and projective right A-modules.

The authors wish to thank Vincent Franjou, Catharina Stroppel and Antoine Touzé for help
with references. After this paper was posted to the arXiv, we learned that A. Efimov has obtained
results similar to Theorems 1.6 and 1.7 by different methods.

2. Some preliminaries on representation theory

Throughout we use [Jan03] as a convenient reference for facts about algebraic groups. If H ⊂ G
is an inclusion of algebraic groups over the ground field K, then the restriction functor from
rational G-modules to rational H-modules has a right adjoint denoted by indGH ([Jan03, I.3.3]).
Its right derived functors are denoted by Ri indGH . For an inclusion of groups K ⊂ H ⊂ G and
M a rational K-representation there is a spectral sequence [Jan03, I.4.5(c)]

Epq2 : Rp indGH R
q indHKM =⇒ Rp+q indGKM . (2.1)

If H ⊂ G are group schemes such that G/H is a scheme, and V is a finite-dimensional H-
representation, then LG/H(V ) is by definition the G-equivariant vector bundle on G/H given by
the sections of (G× V )/H. The functor LG/H(−) defines an equivalence [CPS83, Theorem 2.7]
between the finite-dimensional H-representations and the G-equivariant vector bundles on G/H.
The inverse of this functor is given by taking the fiber in [H] ∈ G/H.
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If G/H is a scheme then Rn indGH may be computed as [Jan03, Prop. I.5.12]

Rn indGHM = Hn(G/H,LG/H(M)) . (2.2)

We now assume that G is a split reductive group with a given split maximal torus and Borel
T ⊂ B ⊂ G. We let X(T ) be the character group of T and we identify the elements of X(T ) with
the one-dimensional representations of T . The set of roots (the weights of G on LieG) is denoted
by R. We have R = R−

∐
R+ where the negative roots R− represent the roots of LieB. For

α ∈ R we denote the corresponding coroot in Y (T ) = Hom(X(T ),Z) [Jan03, II.1.3] by α∨. The
natural pairing between X(T ) and Y (T ) is denoted by 〈−,−〉. A weight λ ∈ X(T ) is dominant
if 〈λ, α∨〉 > 0 for all positive roots α. The set of dominant weights is denoted by X(T )+. The set
X(T ) is naturally partially ordered by putting λ 6 µ if µ− λ is a sum of positive roots.

The following is the celebrated Kempf vanishing result ([Kem76], see also [Jan03, II.4.5]).

Theorem 2.1. If λ ∈ X(T )+ then Ri indGB λ = H i(G/B,LG/B(λ)) vanishes for all strictly
positive i.

We now restrict to G = GL(m). In this case we let T be the diagonal matrices in G and
B the lower triangular matrices. The weights of T can be identified with m-tuples of inte-
gers [α1, . . . , αm] via diag(z1, . . . , zm) 7→ zα1

1 · · · zαmm . Thus X(T ) ∼= Y (T ) ∼= Zm. Under this
identification roots and coroots coincide and are given by (0, . . . , 0,±1, 0, . . . , 0,∓1, 0, . . . , 0).
The pairing between X(T ) and Y (T ) is the standard Euclidean scalar product and hence
X(T )+ = {[α1, . . . , αm] | αi > αj for i 6 j}. A dominant weight with only non-negative en-
tries will be called a partition. Mentally we represent a partition by its Young diagram, with the
length of the rows corresponding to the entries. The sum

∑
i αi is the degree of the weight α and

is denoted by |α|. We say that a representation has degree d if all its weights have degree d. We
say that a representation is polynomial if all its weights contain only non-negative entries.

If α = [α1, . . . , αm] is a partition then we denote by Lα, Kα the corresponding Schur and
Weyl functors. More precisely for a vector space (or a vector bundle) V define for a partition α∧αV =

⊗
i

∧αiV Symα V =
⊗
i

Symαi V DαV =
⊗
i

DαiV

where in particular DuV = (V ⊗u)Su is the uth divided power representation,
∧uV is the exterior

power, and Symu V is the symmetric power.

Then we put with d = |α|:

LαV = im
(∧α′V −a−→ V ⊗d −s−→ Symα V

)
(2.3)

KαV = im
(
DαV −s−→ V ⊗d −a−→ ∧α′V

)
(2.4)

where a and s are respectively the anti-symmetrization map and the symmetrization map. Their
precise form is obtained from a filling of the Young diagram associated to α (see [Ful97, §8.1]).
The resulting representations KαV , LαV are independent of this labeling.

In the sequel we freely pass between the functor point of view and the representation theory

point of view using the following lemma. If λ ∈ X(T )+ then H0(λ)
def
= indGB λ is a so-called induced

representation with highest weight λ. Dually one defines the corresponding Weyl representation
as V (λ) = H0(−w0λ)∨ where w0 is the longest element of the Weyl group [Jan03, §2.13].
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Lemma 2.2. Let V be the standard representation of GL(m) and let α be a partition. Then

LαV = H0(α) (2.5)

KαV = V (α) (2.6)

Proof. The identity (2.5) is [Wey03, (4.1.10)]1. To prove (2.6) we note that by [Jan03, II.2.13(2)]
we have V (α) = τ H0(α), where τM is M∨ as a vector space and g ∈ G acts on ϕ ∈ M∨ via
g · ϕ = ϕ ◦ gt where (−)t denotes transposition. Clearly M 7→ τM is a contravariant monoidal
functor and furthermore one verifies

τ Symu V = DuV
τ∧uV =

∧uV .

Applying τ (−) to the right-hand side of (2.3) yields the right-hand side of (2.4), finishing the
proof.

According to [Jan03, Prop. II.2.4] LαV has a simple socle which we denote by Σα. According
to [Jan03, §II.2.6] KαV has a simple top, which is also equal to Σα. (Recall that the socle is the
sum of all simple submodules, while the top of a module M is M/ radM .)

We also state for easy reference the following characteristic-free versions of the Cauchy formula
and the Littlewood-Richardson rule. See [Wey03, (2.3.2), (2.3.4)].

Theorem 2.3 (Boffi [Bof88], Doubilet-Rota-Stein [DRS74]). Let V and W be K-vector spaces
and let α and β be dominant weights.

(i) There is a natural filtration on Symt(V ⊗W ) whose associated graded object is a direct
sum with summands tensor products LγV ⊗ Lγ′W of Schur functors.

(ii) There is a natural filtration on LαV ⊗ LβV whose associated graded object is a direct
sum of Schur functors LγV . The γ that appear, and their multiplicities, can be computed
using the usual Littlewood-Richardson rule.

If charK = 0 then the filtrations above degenerate to direct sums.

3. Proofs of Theorem 1.3 and Proposition 1.4

We stick to the notation already introduced in the introduction. We will identify G = Grass(l, F )
with Grass(m− l, F ∨) via the correspondence (V ⊂ F ) 7→ ((F/V )∨ ⊂ F ∨).

For convenience we choose a basis (fi)i=1,...,m for F and a corresponding dual basis (f∗i )i for
F ∨. We view G as the homogeneous space G/P with G = GL(F ∨) = GL(m) and P ⊂ G the
parabolic subgroup stabilizing the point (W ⊂ F ∨) ∈ G where W =

∑m
i=l+1Kf

∗
i . As above let

1Note that our Lα is Lα′ in [Wey03].
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T and B be respectively the diagonal matrices and the lower triangular matrices in G.

l

m− l

l

m− l

GL(m) F ∨

P

GL(l)

GL(m− l)

Qx

Rx

Let H = G1×G2 = GL(l)×GL(m− l) ⊂ GL(m) be the Levi-subgroup of P containing T . We
put Bi = B∩Gi and Ti = T ∩Gi. We denote the standard representations of G1 and G2 by V and
W respectively. Thus for x = [P ] ∈ G/P we have V = Qx and W = Rx; equivalently Q = LG(V )
and R = LG(W ). (Throughout we silently view Gi-representations as P -representations to apply

LG(−).) It follows that
∧α′Q = LG(

∧α′V ) and LαQ = LG(LαV ).

For use in the proof below we fix an additional parabolic P ◦ in G given by the stabilizer of
the flag (

∑
i>pKf

∗
i )p=1,...,l. We let G◦ = GL(m− l + 1) ⊂ P ◦ ⊂ G = GL(m) be the lower right

(m− l + 1×m− l + 1)-block in GL(m). We put T ◦ = T ∩G◦ and B◦ = B ∩G◦, i.e. B◦ is the
set of lower triangular matrices in G◦ and T ◦ is the set of diagonal matrices.

G◦

P ◦

m− l + 1

Proof of Proposition 1.4. The usual spectral sequence argument implies that ExtiOG
(
∧α′Q, LβQ)

is the ith cohomology of HomOG(
∧α′Q, LβQ) ∼= (

∧α′Q)∨ ⊗G L
βQ, so we must show

H i(G,
∧u1Q∨ ⊗G · · · ⊗G

∧um−lQ∨ ⊗G L
βQ) = 0

for all i > 0 and u1 > · · · > um−l > 0, and also for i = 0 if
∑
ui > |β|.

6
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Using the identity

(
∧uQ)∨ =

∧l−uQ⊗
(∧lQ

)∨
and the fact (Theorem 2.3(ii)) that

∧l−uQ ⊗ LβQ is filtered by subquotients of the form LγQ
with |γ| > |β|, we can reduce immediately to the case u1 = · · · = um−l = l, replacing β with a
larger partition if necessary. The tautological exact sequence (1.1) allows us to write(∧lQ

)∨
=
∧mF ⊗K

∧m−lR .

Thus it is enough to prove that for an arbitrary partition γ,

LγQ⊗G
∧m−lR⊗G · · · ⊗G

∧m−lR
(with m− l factors of

∧m−lR) has vanishing higher cohomology. Using (2.2) we see that we must
prove that for i > 0 we have

Ri indGP

(
LγV ⊗∧m−lW ⊗ · · · ⊗∧m−lW

)
= 0 , (3.1)

where as above V , W are the standard representations of G1, G2. Since V has rank l, we may
assume that γ has at most l entries. Put γ = [γ1, . . . , γl,m− l, . . . ,m− l] ∈ X(T ). We have

LγV ⊗∧m−lW ⊗ · · · ⊗∧m−lW = indG1
B1
LγV ⊗ indG2

B2
L(m−l)m−lW

= indPB γ .

It is clear that γ is dominant when viewed as a weight for T considered as a maximal torus in
H = G1 × G2 with respect to the Borel subgroup B1 × B2. So Kempf vanishing implies that
Ri indPB γ = Ri indG1×G2

B1×B2
γ = 0 for all i > 0.

Thus the spectral sequence (2.1) degenerates and we obtain

Ri indGP

(
LγV ⊗∧m−lW ⊗ · · · ⊗∧m−lW

)
= Ri indGB γ . (3.2)

Thus if γ is dominant (i.e. γl > m− l) then the desired vanishing (3.1) follows by invoking Kempf
vanishing again.

Assume then that γ is not dominant, i.e. 0 6 γl < m − l. We claim that Ri indP
◦

B γ = 0 for
all i. Then by the spectral sequence (2.1) applied to B ⊂ P ◦ ⊂ G we obtain that Ri indGB γ = 0
for all i.

To prove the claim we note that P ◦/B ∼= G◦/B◦ and hence by (2.2) Ri indP
◦

B γ = Ri indG
◦

B◦(γ |
T ◦). In other words we have reduced ourselves to the case l = 1 (replacing m by m− l + 1).

So now we assume l = 1. Thus G = P(F ) ∼= Pm−1, which we write as P for short. The partition
γ consists of a single entry γ1 and we have γ = [γ1,m − 1, . . . ,m − 1]. Under the assumption
γ1 < m − 1 we have to prove Ri indGB γ = 0 for all i. Applying (3.2) in reverse this means we
have to prove that

Q⊗γ1 ⊗P

(∧m−1R
)⊗m−1

has vanishing cohomology on P.

We now observe Q ∼= OP(1) and since

R ∼= ker(OmP −→ OP(1))

we also have ∧m−1R ∼= OP(−1)

7
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so that

Q⊗γ1 ⊗P
∧m−1R⊗m−1 ∼= OP(−m+ 1 + γ1) .

It is standard that this line bundle has vanishing cohomology when 0 6 γ1 < m − 1, so we are
done.

For the last statement of the Proposition, observe that in the above argument if |β| < |α|
then we are always in the case where γ is not dominant, and thus the vanishing holds also when
i = 0.

Proof of Theorem 1.3. The main thing to prove is that ExtiOG
(T , T ) = 0 for i 6= 0. Applying the

characteristic-free Littlewood-Richardson rule Theorem 2.3(ii), we see that it suffices to prove
that T ∨⊗GL

γQ has vanishing higher cohomology whenever γ is a partition with at most l rows.
This is the content of Proposition 1.4.

Kapranov’s resolution of the diagonal argument together with the characteristic-free version
of Cauchy’s formula (Theorem 2.3(i)) still implies that the vector bundle K in Theorem 1.1
classically generates Db(coh(G)). See, for example, [LSW89]. Thus it suffices to show that LαQ
for α ∈ Bl,m−l is in the thick subcategory C generated by T . Inductively, we may assume that α
is such that LβQ is in C for all β less than α in the lexicographic ordering on partitions.

Consider U =
∧α′1Q ⊗G · · · ⊗G

∧α′lQ. Then Pieri’s formula, which is a special case of the
Littlewood-Richardson rule, yields a filtration of U with successive quotients LβQ such that
β 6 α and such that LαQ appears with multiplicity one. Furthermore U has a good filtration
[Jan03, §II.4.16], one in which the LβQ appearing as quotients are in decreasing order for the
lexicographic ordering on partitions, that is, the largest β appear on top [Jan03, II.4.16, Remark
(4)]. Hence U maps surjectively to LαQ and the kernel is an extension of various LβQ with β
strictly smaller than α in the lexicographic ordering. By the hypothesis all such LβQ are in C.
Since U is in C as well we obtain that LαQ is in C.
Remark 3.1. By [Don93, Lemma (3.4)] the indecomposable summands of

∧α′V are precisely
the tilting representations for GL(V ), so we can obtain the following more economical tilting
bundle for G

T ◦ =
⊕

α∈Bl,m−l
LG(Mα) ,

where Mα is the tilting GL(l)-representation with highest weight α [Jan03, E.3]. Note however
that the character of Mα strongly depends on the characteristic. Hence so does the nature of T ◦.

For use below we need the following complement to Proposition 1.4.

Proposition 3.2. For every partition α and every polynomial G1-representation U of degree
< |α| we have

RHomOG(
∧α′Q,LG(U)) = 0 . (3.3)

Proof. It suffices to prove the claimed vanishing for U simple of degree less than |α|, so for
U = Σβ with β a partition such that |β| < |α|. We do this by induction on β. Since Σβ is the
socle of LβQ we have by [Jan03, Prop. 6.15] a short exact sequence

0 −→ Σβ −→ LβV −→ S −→ 0

where S is obtained through extensions involving only Σγ with γ < β. By induction we may
assume RHomOG(

∧α′Q,LG(S)) = 0. Then (3.3) for U = Σβ follows from the final statement of
Proposition 1.4.
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4. Reminder on semi-orthogonal decompositions

We recapitulate some facts concerning semi-orthogonal decompositions that we need later. No
originality is intended.

If S is a triangulated category and S is a set of objects then we denote by 〈S〉 the smallest
triangulated subcategory of S that contains S and is closed under isomorphisms. If S = 〈S〉
then we say that S generates S as a triangulated category. (This is stronger than “classically”
generating S as in the Introduction.)

Definition 4.1. A semi-orthogonal decomposition of a triangulated category S is a sequence
of full subcategories A1, . . . ,An ⊂ S generating S as a triangulated category and such that
HomS(Aj ,Ai) = 0 for j > i. We denote such a semi-orthogonal decomposition by 〈A1, . . . ,An〉.
Sometimes we write S = 〈A1, . . . ,An〉.

If X is an object in a triangulated category then a filtration F of length n on X is a sequence
of maps

0 = FnX −→ Fn−1X −→ · · · −→ F0X = X .

We write (grF X)i = cone(Fi+1X −→ FiX). The following well-known lemma shows that Defi-
nition 4.1 is equivalent to the seemingly stronger one in [Kuz09, Def. 2.3].

Lemma 4.2. Let 〈A1, . . . ,An〉 be a semi-orthogonal decomposition of S. Then every object X in
S has a filtration F of length n such that (grF X)i ∈ Ai+1.

Proof. By induction it is sufficient to prove this for n = 2. In that case the result is [Bon89,
Lemma 3.1].

In order to work conveniently with semi-orthogonal decompositions one needs a property
called “admissibility” [BK89]. If A is a full triangulated subcategory of a triangulated category
S then A is (left, right) admissible if the inclusion functor A −→ S has a (left, right) adjoint,
or equivalently if there exist semi-orthogonal decompositions 〈A,A′〉 resp. 〈A′′,A〉. If A is both
left and right admissible then it is said to be admissible.

A saturated triangulated category is a K-linear triangulated category A such that for all
A, B ∈ A we have

∑
i dim Homi

A(A,B) <∞ and such that every co- or contravariant cohomo-
logical functor H i : A −→ mod(K) satisfying

∑
i dimH i(A) < ∞ is representable. The derived

category of coherent sheaves on a smooth proper algebraic variety is a particular example of a
saturated triangulated category [BVdB03, BK89].

If A is a saturated full triangulated subcategory of a K-linear triangulated category S then
A is admissible [BK89, Prop 2.6]. Furthermore if S is a saturated triangulated category then
every left/right admissible subcategory is automatically admissible (and hence saturated). This
follows by combining [BK89, Prop. 2.6] and [BK89, Prop. 2.8]. From this we deduce that if we
have a semi-orthogonal decomposition S = 〈A1, . . . ,An〉 of a saturated S then all the “slices”
〈Ai, . . . ,Aj〉 are admissible and saturated.

In particular if we put S6i = 〈A1, . . . ,Ai〉 then this yields a filtration S61 ⊂ · · · ⊂ S6n = S
by admissible subcategories. Let Bi be the right orthogonal of S6i−1 in S6i. Then we have
semi-orthogonal decompositions S6i = 〈Bi,S6i−1〉. Iterating we obtain a semi-orthogonal de-
composition

S = 〈Bn,Bn−1, . . . ,B1〉

9
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such that

〈A1, . . . ,Ai〉 = 〈Bi, . . . ,B1〉 .
This is called the semi-orthogonal decomposition (right) dual to S = 〈A1, . . . ,An〉. Note that
[Kuz09, (4)]

Bi = S6i ∩ S⊥6i−1

= 〈Ai+1, . . . ,An〉⊥ ∩ 〈A1, . . . ,Ai−1〉⊥

= 〈A1, . . . ,Ai−1,Ai+1, . . . ,An〉⊥ .
In particular for i 6= j

Hom(Ai,Bj) = 0 . (4.1)

The following is also well-known [Kuz09].

Lemma 4.3. Assume S is saturated. Let γi be the composition of the canonical functors

γi : Ai −→ S6i −→ S6i
/
S6i−1 = Bi .

Then γi is an equivalence of categories. Furthermore we have for A ∈ Ai, B ∈ Bi
HomS(A,B) = HomBi(γi(A), B) = HomS(γi(A), B) .

Proof. We have semi-orthogonal decompositions

S6i = 〈S6i−1,Ai〉 = 〈Bi,S6i−1〉 .
The fact that γi is an equivalence follows from [BK89, Lemma 1.9].

Let  : Ai −→ S6i and ı : Bi −→ S6i be the inclusion functors and let ı∗ be the left adjoint to
ı. Then γi = ı∗ ◦ . We have

HomS(A,B) = HomS6i(A, ıB)

= HomS6i(ı
∗A,B)

= HomBi(γi(A), B) .

The equality HomBi(γi(A), B) = HomS(γi(A), B) is just that Bi is a full subcategory of S.

5. Semi-orthogonal decompositions for Grassmannians

In this section we write D for the bounded derived category of coherent sheaves on G. This is in
particular a saturated category (see §4). We will construct a semi-orthogonal decomposition of
D.

We start by observing that the proof of Theorem 1.3 actually shows

Lemma 5.1. D is generated as a triangulated category by (
∧α′Q)α∈Bl,m−l (instead of just clas-

sically generated, see §4).

A set S of dominant weights is saturated if whenever α ∈ S and β < α is dominant we have
β ∈ S. (Here and below “<” is the standard ordering on weights; see §2.) The set Bl,m−l is
an example of a saturated set for GL(l). For d > 0 let Cd be the category of finite-dimensional
G1 = GL(l)-representations whose composition factors have highest weights α satisfying |α| = d
and α ∈ Bl,m−l. Thus Cd is a truncated category in the sense of [Jan03, Ch. A] associated to

10
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a saturated set of dominant weights. In particular Cd is the category of finite modules over a
certain finite-dimensional algebra, called a generalized Schur algebra [Jan03, §A.16].

We collect some elementary facts about the derived category of Cd.

Lemma 5.2. Let Rep(G1) be the category of rational G1-representations and for each d let
Db
Cd(Rep(G1)) be the bounded derived category of complexes of representations having cohomol-

ogy in Cd. The canonical functor

Db(Cd) −→ Db
Cd(Rep(G1))

is an equivalence of categories.

Proof. That the functor is fully faithful follows from the fact that the Yoneda Ext’s in Cd are the
same as those in the ambient category Rep(G1) (see [Jan03, Prop. A.10]). Essential surjectivity
follows from fully faithfulness and the fact that the essential image contains the generating
subcategory Cd.

In the sequel we will simply confuse Db(Cd) and Db
Cd(Rep(G1)).

Lemma 5.3. The triangulated category Db(Cd) is generated by the representations
∧α′V for

α ∈ Bl,m−l, |α| = d, where as usual V is the standard representation of G1.

Proof. This is of course well-known but for the convenience of the reader we give the proof. Let
A be the full subcategory of Db(Cd) generated by (

∧α′V )α∈Bl,m−l,|α|=d. It is sufficient to prove
that A contains the simples Σα for α ∈ Bl,m−l, |α| = d.

By reasoning similar to the proof of Theorem 1.3 we see that A contains KαV for α ∈ Bl,m−l
with |α| = d. By [Jan03, II.2.13] KαV has simple top Σα and by the dual version of [Jan03,
II.6.13] the other Jordan-Hölder quotients of KαV are of the form Σγ with |γ| = |α| = d and
γ < α. Thus Σγ ∈ Cd. By induction we may assume that such Σγ ∈ A. Hence it follows that
Σα ∈ A.

We define a functor

Φd : Db(Cd) −→ D
by Φd(U) = LG(U) for U ∈ Db(Cd), where we view U as a complex of P -representations in the
obvious way.

Theorem 5.4. The functor Φd is fully faithful.

Proof. By Lemma 5.3 it is sufficient to prove that for α, β ∈ Bl,m−l with |α| = |β| = d the
canonical map

RHomG1(
∧α′V,

∧β′V ) −→ RHomOG(
∧α′Q,∧β′Q) (5.1)

is an isomorphism (where we have used that LG(V ) = Q). Now
∧α′V and

∧β′V are tilting
representations [Don93, Lemma (3.4)] and so on the left-hand side of (5.1) there are no higher
Ext’s. Likewise on the right-hand side there are no higher Ext’s because of Proposition 1.4.

So we only have to show that the map

HomG1(
∧α′V,

∧β′V ) −→ HomOG(
∧α′Q,∧β′Q)

is an isomorphism. It is certainly injective: take the fiber of the right-hand side in [P ] ∈ G/P
to get HomK(

∧α′V,
∧β′V ), and the composition is injective. Thus we need only compute the

11
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K-dimensions of each side. Since the Euler characteristic is independent of base field2and the
higher Ext’s vanish, it suffices to do this in characteristic zero.

Thus we assume that K has characteristic zero. Then we may decompose
∧α′V ,

∧β′V as
sums of simple modules LγV , LδV . Thus it is sufficient to prove that

HomGL(l)(L
αV,LβV ) −→ HomOG(LαQ, LβQ)

is an isomorphism. Or in other words, since in characteristic zero the LαV are simple,

HomOG(LαQ, LβQ) = δα,β ·K .

This follows from the Littlewood-Richardson rule, combined with Bott’s theorem (see e.g. [Kap88,
§3.2, §3.3]).

Now let Dd be the essential image of Db(Cd) under Φd, i.e. the closure of that image under
isomorphisms. From Lemma 5.3 we obtain:

Corollary 5.5. Dd is generated by
∧α′Q for α ∈ Bl,m−l, |α| = d.

We have:

Theorem 5.6. The triangulated category D has a semi-orthogonal decomposition

D =
〈
D0, . . . ,Dl(m−l)

〉
. (5.2)

Furthermore Dd is generated by LαQ for α ∈ Bl,m−l with |α| = d.

Proof. By Lemma 5.1, D is generated by
∧α′Q for α ∈ Bl,m−l. It follows from Corollary 5.5 that

D is generated by (Dd)d and that Dd is generated by those
∧α′Q with |α| = d.

To complete the proof that (5.2) is a semi-orthogonal decomposition we need that Hom(Dd,De) =

0 for d > e, or equivalently that RHomD(
∧α′Q,∧β′Q) = 0 for |α| = d, |β| = e. This follows from

Proposition 3.2.

The theorems we have stated have dual versions where Q is replaced by R and Bl,m−l by
Bm−l,l. We prove these by passing to the dual Grassmannian Grass(m− l, F ∨).
Lemma 5.7. The vector bundle

T ′ =
⊕

α∈Bm−l,l

∧α′R (5.3)

is a tilting bundle on G.

Proof. Using the duality RHomOG(−,OG) on D it is sufficient to show that T ′∨ is a tilting

bundle. Now T ′∨ is equal to
⊕

α∈Bm−l,l
∧α′(R∨) and we see that the latter is a tilting bundle by

passing to the dual Grassmannian (which replaces R∨ by Q) and invoking Theorem 1.3.

For d > 0 let C′d be the category of finite-dimensional G2 = GL(m− l)-representations whose
composition factors have highest weights α satisfying |α| = d and α ∈ Bm−l,l. We have the
following analogue of Theorem 5.4, where

Φ′d : Db(C′d) −→ D
is defined again by U 7→ LG(U)

2This follows from the standard fact (see for example [Dan96, 3.8]) that Euler characteristics are constant in
families. To deduce characteristic independence one must use that everything in our setup can be defined over a
commutative ring, and in particular over a discrete valuation ring of unequal characteristic.

12
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Theorem 5.8. The functor Φ′d is fully faithful.

Proof. This follows by dualizing the proof of Theorem 5.4.

Below we let D′d be the essential image of Db(C′d) under Φ′d. We obtain the following analogue
of Corollary 5.5.

Lemma 5.9. D′d is generated by
∧α′R for α ∈ Bm−l,l, |α| = d.

Theorem 5.10. The triangulated category D has a semi-orthogonal decomposition〈
D′l(m−l), . . . ,D′0

〉
.

Furthermore D′d is generated by KαR for α ∈ Bm−l,l with |α| = d.

Proof. This follows by dualizing the proof of Theorem 5.6.

Remark 5.11. Let repe(Gi) be the category of finite-dimensional Gi-representations of degree
e. Then LG(U) for U ∈ repe(Gi) with e 6 d is contained in 〈De〉e6d if i = 1 and 〈D′e〉e6d if i = 2.
Note that we do not assume that the dominant weights of U are in Bl,m−l or Bm−l,l. To prove
this for i = 1 we have to show that Hom(Df ,LG(U)) = 0 for f > d. Given that Df is generated

by
∧α′Q for α ∈ Bl,m−l and |α| = f this follows from Proposition 3.2. The argument for i = 2

is dual.

The following result finishes this section.

Theorem 5.12. The semi-orthogonal decompositions

D =
〈
D0, . . . ,Dl(m−l)

〉
and D =

〈
D′l(m−l), . . . ,D′0

〉
are dual to each other. Furthermore the induced equivalence γd : Dd −→ D′d defined in Lemma 4.3
sends LαQ to Kα′R[d] for α ∈ Bl,m−l with |α| = d.

Proof. To prove that the semi-orthogonal decompositions are dual, according to §4 we have to
show that

D6d = D′6d ,
where we set D6d = 〈D0, . . . ,Dd〉 and D′6d = 〈D′d, . . . ,D′0〉. We prove the inclusion D6d ⊂ D′6d.
The opposite inclusion is similar.

From Theorem 5.6 we obtain that D6d is generated by LαQ for |α| 6 d. Thus we have to
show that for such α we have LαQ ∈ D′6d.

According to [Wey03, Ch 2, Ex. 21] we have a resolution for LαQ given by the Schur complex

Lα(R −→ F ∨ ⊗OG)

and furthermore by [Wey03, Thm. (2.4.10)(b)] Lα(R −→ F ∨ ⊗OG) has a filtration such that

grLα(R −→ F ∨ ⊗OG)t =
⊕

|ν|=t,ν⊂α
Kν′R⊗ Lα/ν(F ∨) . (5.4)

By Remark 5.11 all Kν′R are in D′6d. Hence so is LαQ.

Assume now |α| = d. In that case (5.4) shows that

LαQ = Kα′R[|α|] modD′6d−1 .

If in addition α ∈ Bl.m−l then Lemma 5.9 implies Kα′R[|α|] ∈ D′d, from which we conclude that
γd(L

αQ) = Kα′R[|α|].
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6. Some more comments on representation theory

If we combine Theorems 5.4, 5.8, and 5.12 we obtain an equivalence of categories δd
def
= (Φ′−1

d ◦
γd ◦Φd)[−d] between Db(Cd) and Db(C′d). The existence of such an equivalence is well-known (see
e.g. [Don93, Cor (3.9)] for a similar result) but the standard construction uses the representation
theory of the symmetric group.

Below we list some properties of the equivalence, which we will use in §8. For α a partition
let Mα be the indecomposable tilting G1-representation with highest weight α. Similarly for
β ∈ Bm−l,l let Σ′β be the simple G2-representation with highest weight β and let P ′β be the
projective cover of Σ′β in C′d.

Since Mα has highest weight α and since Bl,m−l is a saturated set of partitions, all the
dominant weights of Mα are in Bl,m−l, whence Mα ∈ Cd by [Jan03, Lemma E.3].

Proposition 6.1. We have for α ∈ Bl,m−l with |α| = d

δd(L
αV ) = Kα′W (6.1)

δd(M
α) = P ′α

′
. (6.2)

Proof. Statement (6.1) follows from Theorem 5.12. To prove (6.2) we first note that by suit-
ably filtering Mα and invoking (6.1) we obtain that δd(M

α) ∈ C′d. Furthermore since δd is an
equivalence for i > 0 and β ∈ Bl,m−l with |β| = d we have

ExtiG2
(δd(M

α),Kβ′W ) = ExtiG2
(δd(M

α), δd(L
βV )) = ExtiG1

(Mα, LβV ) = 0 . (6.3)

We now claim that we have for i > 0

ExtiG2
(δd(M

α),Σβ′) = 0 . (6.4)

We prove this by induction. As before we have a short exact sequence

0 −→ U −→ Kβ′W −→ Σβ′ −→ 0

where U is obtained through extensions involving only Σγ with γ < β′. By induction we may
assume ExtiG2

(δd(M
α), U) = 0. Then (6.4) follows from (6.3). We conclude that δd(M

α) is
projective. Since Mα is indecomposable, the same is true for δd(M

α). Hence δd(M
α) is equal to

some P ′γ . To prove that δd(M
α) = P ′α

′
it is sufficient to construct a surjective map

δd(M
α) −→ Kα′W

since Kα′W has simple top Σ′α
′
.

By [Jan03, §E.4] we have a short exact sequence

0 −→ H −→Mα −→ LαV −→ 0

where H is an extension of LγW with γ < α. After applying δd this becomes a distinguished
triangle

δd(H) −→ δd(M
α) −→ Kα′W −→

with δd(H), δd(M
α) ∈ C′d. The long exact sequence for cohomology shows that δd(M

α) −→ Kα′W
is indeed surjective.

14



The derived category of Grassmannians

7. Exceptional sequences on Grassmannians

Proposition 7.1. Assume α, β ∈ Bl,m−l with |α| = |β|. If

RHomOG(LαQ, LβQ) 6= 0 (7.1)

then α > β. Furthermore we also have

RHomOG(LαQ, LαQ) = K .

Proof. We have LαQ = Φd(L
αV ), LβQ = Φd(L

βV ). So to prove the first claim, by Theorem 5.8
we must show that

RHomG1(LαV,LβV ) 6= 0

implies α > β. Since LαV , LβV are induced representations it suffices to invoke [Jan03, Prop.
II.6.20].

By [Jan03, Prop. II.2.8] we have HomG1(LαV,LαV ) = K. Hence to prove the second claim
we have to show

ExtiG1
(LαV,LαV ) = 0

for i > 0. This follows from [Jan03, Prop. II.6.20].

Proposition 7.2. Assume α, β ∈ Bm−l,l, |α| = |β|. Then

RHomOG(LαR, LβR) 6= 0 (7.2)

implies α > β. Furthermore we also have

RHomOG(LαR, LαR) = K .

Proof. This is proved in exactly the same way as Proposition 7.1.

Corollary 7.3. The subcollections

(LαQ)α∈Bl,m−l, |α|=d and (LαR)α∈Bl,m−l, |α|=d

form exceptional collections in Dd.
Proposition 7.4. For α, β ∈ Bm−l,l, |α| = |β| we have

RHomOG(KαR, LβR) = δα,β ·K .

Proof. Put d = |α| = |β|. We have KαR = Φ′d(K
αW ), LβR = Φ′d(L

βW ). So by Theorem 5.8 we
must show

RHomG2(KαW,LβW ) = δα,β ·K .

As KαW is a Weyl representation and LβW is an induced representation, it suffices to invoke
[Jan03, II.4.13].

Now we make Bl,m−l into a totally ordered set by equipping it with an arbitrary total ordering
≺ such that if |α| < |β| then α ≺ β and if |α| = |β| and α > β in the standard partial order on
partitions, then α ≺ β. We write Bl,m−l for Bl,m−l, equipped with the opposite ordering.

The following is the main result of this section.

Theorem 7.5. The collections (LαQ)α∈Bl,m−l and (Lβ
′R[|β|])β∈Bl,m−l form dual exceptional

collections in D. In other words for α, β ∈ Bl,m−l we have

RHomOG(LαQ, Lβ′R[|β|]) = δα,β ·K . (7.3)
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Proof. The fact that (LαQ)α∈Bl,m−l is an exceptional sequence follows from Theorem 5.6 and

Proposition 7.1. Similarly the fact that (Lβ
′R[|β|])β∈Bl,m−l is an exceptional collection follows

from Theorem 5.10 and Proposition 7.2. So it remains to prove the duality property (7.3). By
Theorem 5.12 combined with (4.1) we may assume that |α| = |β|. We compute for all i ∈ Z

ExtiOG(LαQ, Lβ′R[|β|]) = ExtiOG(γ|α|(L
αQ), Lβ

′R[|β|])
= ExtiOG(Kα′R[|α|], Lβ′R[|β|])
= δα,β · δi0 ·K ,

using, respectively, Lemma 4.3, Theorem 5.12, and Proposition 7.4.

To conclude this section we use the “linkage principle” [Jan03, Cor. II.6.17] to recover the
result of Kaneda, mentioned in the Introduction, that Kapranov’s tilting bundle K remains tilting
in large characteristic.

Lemma 7.6. Assume that K has characteristic p with p > m− 1. Let α ∈ Bl,m−l. Then
∧α′Q is

a direct sum of LβQ with |β| = |α| and furthermore there are no homomorphisms between the

summands of
∧α′Q.

Proof. Set d = |α|. Using Theorem 5.4 it is enough to prove the following claim: Cd is a semi-
simple category with simple objects given by LβV for β ∈ Bl,m−l with |β| = d. Indeed if this

claim holds then
∧α′V is a direct sum of the simple objects LβV (which thus have no Hom’s

among them) and it suffices to apply the fully faithful functor Φ(−)d to obtain the corresponding

result for
∧α′Q.

The claim follows directly from the linkage principle [Jan03, Cor. II.6.17] which we state in
the case of interest to us. If γ, δ are dominant weights for G1 and Ext1

OG
(Σγ ,Σδ) 6= 0 then γ, δ

are in the same orbit for the affine Weyl group.

A fundamental domain3 C for the affine Weyl group ([Jan03, II.6.1(6)]) is given by the set
of x = [x1, . . . , xl] satisfying 〈x + ρ, α〉 6 p for all positive roots α, where ρ = [l, l − 1, . . . , 1];
equivalently

0 6 xi − i− xj + j 6 p

for j > i. The first inequality is automatically satisfied for a dominant weight. For the second
inequality we note that if γ = [γ1, . . . , γl] ∈ Bl,m−l then

γi − γj 6 m− l
and

−i+ j 6 l − 1 .

Thus

γi − i− γj + j 6 m− l + l − 1 = m− 1 6 p .

In other words Bl,m−l ⊆ C and thus no two elements of Bl,m−l are in the same orbit for the
affine Weyl group. The claim follows.

The fact that
⊕

α∈Bl,m−l
∧α′Q is a tilting object, together with Theorem 5.6 and the previous

lemma, yields immediately the following.

3A fundamental domain is a complete irredundant set of orbit representatives [Bou02, IV.3.3].
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Corollary 7.7 (Kaneda [Kan08]). The Kapranov strong exceptional collection (LαQ)α∈Bl,m−l
remains strong exceptional as long as p > m − 1. In particular K =

⊕
α∈Bl,m−l L

αQ remains
tilting for such p.

8. Relation with quasi-hereditary algebras

We quickly remind the reader of the module-theoretic description of quasi-hereditary algebras
à la Dlab-Ringel [DR92]; see also for example [Erd94, HP11]. Let A be a finite-dimensional K-
algebra and let (S(λ))λ∈Λ be a complete set of the simples, with projective covers P (λ)� S(λ)
and injective hulls S(λ)↪→Q(λ).

Fix a total ordering ≺ on Λ. Define the standard module ∆(λ) to be the largest quotient of
P (λ) having composition factors of the form S(µ) with µ � λ. Equivalently [DR92, Lemma 1.1]
∆(λ) is the quotient of P (λ) by the maximal submodule generated by any direct sum of the
form

⊕
µ�λ P (µ). Similarly the costandard module ∇(λ) is the largest submodule of Q(λ) having

composition factors S(µ) with µ � λ. In particular S(λ) is the top of ∆(λ) and the socle of ∇(λ).
Set ∆ = (∆(λ))λ∈Λ and ∇ = (∇(λ))λ∈Λ.

We assume that each ∆(λ) (equivalently each ∇(λ)) is Schurian, i.e. the endomorphism ring
is a division ring.

For an arbitrary collection Θ of A-modules, denote by F(Θ) the class of Θ-filtered modules,
that is, A-modules M having a filtration M = M0 ⊃ M1 ⊃ · · · ⊃ Mt = 0 with successive
quotients Mi/Mi−1 in the collection Θ.

Definition 8.1 ([DR92, Theorem 1]; see also [Don81, Sco87, CPS88]). The algebra A (with the
fixed order ≺) is called quasi-hereditary if the following equivalent conditions hold:

(i) AA ∈ F(∆);

(ii) F(∆) =
{
X
∣∣ Ext1

A(X,∇(λ)) = 0
}

;

(iii) F(∆) =
{
X
∣∣ ExtiA(X,∇(λ)) = 0 for all i > 1

}
;

(iv) Ext2
A(∆,∇) = 0.

For a quasi-hereditary algebra, the standard and costandard modules determine each other
in Db

f (A) (the bounded derived category with finite cohomology) by

RHomA(∆(λ),∇(µ)) = δλ,µ ·K . (8.1)

For the proof of Theorem 8.3 below we also remind the reader of the notion of “standardiza-
tion” [DR92, §3], see also the “universal extensions” of [HP11], in the special case of interest. An
indexed collection Θ = (Θ(λ))λ∈Λ of objects in a K-linear abelian category C is standardizable
provided

(i) HomC(Θ(λ), Θ(µ)) and Ext1
C(Θ(λ) Θ(µ)) are finite-dimensional for all λ, µ, and

(ii) the quiver with vertex set Λ and an arrow λ −→ µ if either there is a non-trivial non-
isomorphism Θ(λ) −→ Θ(µ) or Ext1

C(Θ(λ), Θ(µ)) 6= 0 has no oriented cycles.

In particular note that if Θ is an exceptional collection then Θ is standardizable.

The next result is essentially contained in the proof of [DR92, Theorem 2] for modules over a
finite-dimensional algebra; see also [HP11, Theorem 5.1] for a statement in the geometric context.

17



Ragnar-Olaf Buchweitz, Graham J. Leuschke and Michel Van den Bergh

Theorem 8.2. Let Θ = (Θ(λ))λ∈Λ be a standardizable collection in an abelian category C. Then
there exists a projective generator P ∈ F(Θ) such that A′ = EndC(P ) is quasi-hereditary with
standard modules HomC(P,Θ(λ)).

As in the introduction put

T =
⊕

α∈Bl,m−l

∧α′Q

and A = EndOG(T ). Denote by A◦ the opposite algebra. For α ∈ Bl,m−l consider the following
complexes of right A-modules:

∆(α) = RHomOG(T , LαQ) (8.2)

∇(α) = RHomOG(T , Lα′R[|α|]) (8.3)

P (α) = RHomOG(T ,LG(Mα)) (8.4)

S(α) = RHomOG(T ,LG(Σ′α
′
)[|α|]) (8.5)

where as before Mα is the indecomposable tilting GL(l)-representation with highest weight α.

Theorem 8.3. The complexes ∆(α), ∇(α), P (α), S(α) are concentrated in degree zero, and
the S(α) are the simple right A-modules with the P (α) their projective covers.

As in §7, let ≺ be an arbitrary total ordering on Bl,m−l such that if |α| < |β|, or if |α| = |β|
and α > β in the natural partial order on partitions, then α ≺ β. Then A is quasi-hereditary
with respect to this ordering. The standard and costandard modules having S(α) respectively as
top and socle are ∆(α) and ∇(α).

Proof. Set Θ = (LαQ)α∈Bl,m−l . Then Θ is an exceptional collection by Theorem 7.5, so in par-
ticular is standardizable. Let P ∈ F(Θ) be the projective generator guaranteed by Theorem 8.2,
so that A′ = EndOG(P ) is quasi-hereditary with standard modules HomOG(P,LαQ).

On the other hand Proposition 1.4 implies that T is a projective generator for F(Θ) as well.
This easily yields that A and A′ are Morita equivalent and that the objects HomOG(T , LαQ) are
the standard objects. By Proposition 1.4 we may replace Hom by RHom.

Since the costandard modules ∇(β) are characterized by RHomA◦(∆(α), ∇(β)) = δα,β ·K,
we deduce from (7.3) that they are indeed given by the formula (8.3).

By [Don93, Lemma (3.4)] the indecomposable summands of
∧α′V are precisely the tilting

representations Mβ, and Mα occurs as a direct summand with multiplicity one in
∧α′V . It

follows that the P (α) are indeed the indecomposable projectives.

To show that the S(α) are the corresponding simple A-modules we have to prove

RHomA◦(P (α), S(β)) = δα,β ·K .

We compute

RHomA◦(P (α), S(β)) = RHomOG(LG(Mα),LG(Σ′β
′
)[|β|]) .

It follows from Theorem 5.10 combined with (4.1) that if |α| 6= |β| then there is nothing to prove.
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So assume |α| = |β| = d. Then we have

RHomOG(LG(Mα),LG(Σ′β
′
)[|β|]) = RHomOG(γd(Φd(M

α)),Φ′d(Σ
′β′)[|β|])

= RHomG2(δd(M
α),Σ′β

′
)

= RHomG2(P ′α
′
,Σ′β

′
)

= δα,β ·K ,

where the first equality is Lemma 4.3 and the third is Proposition 6.1; in the second, δd is as
introduced in §6.

It remains to prove that S(α) is the top of ∆(α) and the socle of ∇(α). Since for quasi-
hereditary algebras the top of ∆(α) coincides with the socle of ∇(α) it is sufficient to prove only
the first of these statements. There is a surjective map Mα −→ LαV whose kernel is an extension
of LβV with β < α [Jan03, §E.4]. Apply HomOG(T ,LG(−)) to obtain a map P (α) −→ ∆(α),
which is surjective by Proposition 1.4. This finishes the proof.

Example 8.4. We compute the quiver and relations of the quasi-hereditary algebra A in the
first non-trivial example, (m, l) = (4, 2). We live inside the 2× 2 box B2,2, so the vertices of the
quiver, equivalently the summands of the tilting bundle T , are labeled

O, Q, ∧2Q, Q⊗Q, ∧2Q⊗Q,
(∧2Q

)⊗2
.

The quiver has the following form. ∧2Q

a

��

O sλ // Q

αλ
!!

∧2Q⊗Q tλ //
(∧2Q

)⊗2

Q⊗Q

p

OO

βλ

::

The labels stand for natural maps between these bundles, some of which depend on a global
section λ ∈ F ∨:
• p : Q⊗Q −→ ∧2Q the natural surjection and a :

∧2Q −→ Q⊗Q the anti-symmetrization;

• sλ : O −→ Q with 1 7→ λ;

• αλ : Q −→ Q⊗Q with x 7→ λ⊗ x ;

• βλ : Q⊗Q −→ ∧2Q⊗Q with x⊗ y 7→ λ ∧ y ⊗ x ; and

• tλ :
∧2Q⊗Q −→

(∧2Q
)⊗2

with x ∧ y ⊗ z 7→ x ∧ y ⊗ λ ∧ z.
These maps generate all the arrows in the quiver. For example, the obvious complementary map
α′λ : Q −→ Q ⊗ Q defined by α′λ(x) = x ⊗ λ can be obtained as αλ(1 − ap). The relations are

most compactly written in terms of the pseudo-idempotent e
def
= ap satisfying e2 = 2e, and the

“swap” 1− e which sends x⊗ y to y ⊗ x. We have

• pa = 2 Id∧2Q ;

• (1− e)αλsµ = αµsλ ;

• βλ(1− e)αµ = βλαµ − βµαλ ;
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• tλβµ(1− e) = tµβλ .

We observe that in this picture, each vertical “slice” is equivalent to the derived category of
a generalized Schur algebra. For example, in the middle we recognize the quiver for the Schur
algebra S(2, 2) in characteristic 2 [Erd93, 3.1.1, 5.4].

In characteristic different from 2, the idempotent 1
2e gives Q⊗Q ∼=

∧2Q⊕ Sym2Q, and the
algebra becomes Morita-equivalent to the path algebra of the equivariant quiver∧2Q

F∨

$$

D2F∨

##

O F∨ //

D2F∨
//

∧2 F∨ ..

Q

F∨
!!

F∨
==

F∨⊗F∨
//
∧2Q⊗Q F∨ //

(∧2Q
)⊗2

Sym2Q
F∨

::

∧2 F∨

;;

with relations

• O −→ ∧2Q given by D2F ∨;

• O −→ Sym2Q given by
∧2F ∨;

• Q −→ ∧2Q⊗Q given by F ∨ ⊗ F ∨;

• ∧2Q −→
(∧2Q

)⊗2
given by D2F ∨; and

• Sym2Q −→
(∧2Q

)⊗2
given by

∧2F ∨.

Most of these are straightforward to verify. The relations across the central diamond, however,
are not the obvious commutativity ones [Hil98, SW11]. To compute those relations, give names
to the maps: ∧2Q

bλ

%%

Q

cλ
""

aλ
<<

∧2Q⊗Q

Sym2Q
dλ

99

with

• aλ(x) = λ ∧ x;

• bλ(x ∧ y) = x ∧ y ⊗ λ;

• cλ(x) = λx; and

• dλ(xy) = λ ∧ x⊗ y + λ ∧ y ⊗ x.

Then we find, for λ, µ ∈ F ∨,
dµcλ = 2bλaµ − bµaλ .
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It follows that the defining relations are

dλcµ + dµcλ = bλaµ + bµaλ

dµcλ − dλcµ = 3(bλaµ − bµaλ) .
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