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Abstract

Commonly used methods to analyze incomplete longitudinal clinical trial data include com-
plete case analysis (CC) and last observation carried forward (LOCF). However, such methods
rest on strong assumptions, including missing completely at random (MCAR) for CC and un-
changing profile after dropout for LOCF. Such assumptions are too strong to generally hold.
Over the last decades, a number of full longitudinal data analysis methods have become avail-
able, such as the linear mixed model for Gaussian outcomes, that are valid under the much
weaker missing at random (MAR) assumption. Such a method is useful, even if the scientific
question is in terms of a single time point, e.g., the last planned measurement occasion, and it is
generally consistent with the intention-to-treat (ITT) principle. The validity of such a method
rests on the use of maximum likelihood, under which the missing data mechanism is ignorable
as soon as it is MAR. In this paper, we will focus on non-Gaussian outcomes, such as binary,
categorical, or count data. This setting is less straightforward since there is no unambiguous
counterpart to the linear mixed model. We first provide an overview of the various modeling
frameworks for non-Gaussian longitudinal data, and subsequently focus on generalized linear
mixed-effects models on the one hand, of which the parameters can be estimated using full
likelihood, and on generalized estimating equations on the other hand, which is a non-likelihood
method and hence requires a modification to be valid under MAR. We briefly comment on the
position of models that assume missingness not at random (MNAR) and argue they are most
useful to perform sensitivity analysis. Our developments are underscored using data from two
studies. While the case studies feature binary outcomes, the methodology applies equally well
to other discrete-data settings, hence the qualifier “discrete” in the title.

Some Key Words: Complete Case Analysis, Ignorability, Generalized Estimating Equations,
Generalized Linear Mixed Models, Last Observation Carried Forward, Missing At Random, Miss-
ing Completely At Random, Missing Not At Random, Sensitivity Analysis.
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1 Introduction

Data from longitudinal studies in general, and from clinical trials in particular, are prone to in-
completeness. Dropout is a special case of incompleteness. Since incompleteness usually occurs
for reasons outside of the control of the investigators and may be related to the outcome measure-
ment of interest, it is generally necessary to address the process governing incompleteness. Only in
special but important cases it is possible to ignore the missingness process.

When referring to the missing-value, or non-response, process we will use terminology of Little
and Rubin (2002, Chapter 6). A non-response process is said to be missing completely at random
(MCAR) if the missingness is independent of both unobserved and observed data and missing at
random (MAR) if, conditional on the observed data, the missingness is independent of the unob-
served measurements. A process that is neither MCAR nor MAR is termed non-random (MNAR).
In the context of likelihood inference, and when the parameters describing the measurement process
are functionally independent of the parameters describing the missingness process, MCAR and
MAR are ignorable, while a non-random process is non-ignorable.

Early work regarding missingness focused on the consequences of the induced lack of balance of
deviations from the study design (Afifi and Elashoff 1966, Hartley and Hocking 1971). Later, algo-
rithmic developments took place, such as the expectation-maximization algorithm (EM; Dempster,
Laird, and Rubin 1977) and multiple imputation (Rubin 1987). These have brought likelihood-
based ignorable analysis within reach for a large class of designs and models. However, they
usually require extra programming in addition to available standard statistical software.

In the meantime, however, clinical trial practice has put a strong emphasis on such methods as
complete case analysis (CC), which restricts the analysis to those subjects for which all informa-
tion has been measured according to protocol, and last observation carried forward (LOCF), for
which the last observed measurement is substituted for values at later points in time that are not
observed, or other simple forms of imputation. Claimed advantages include computational sim-
plicity, no need for a full longitudinal model (e.g., when the scientific question is in terms of the
last planned measurement occasion only) and, for LOCF, compatibility with the intention-to-treat
(ITT) principle. Within the Gaussian setting, Molenberghs et al (2004) have argued that this
focus is understandable but, given current computational resources, unfortunate. They suggest the
use of a likelihood-based ignorable analysis, e.g., based on the linear mixed-effects model. Such
a method requires MAR and not the much stronger assumptions underlying CC and LOCF, uses
all data, obviating the need for both deleting and filling in data, and is thus consistent with the
intention-to-treat principle. Nevertheless, care has to be taken when subjects are discontinued for
reasons of non-compliance, since then the modes of analysis indicated here would assume that treat-
ment is unchanged after dropout. This implies the need for sensitivity analysis and an important
discussion of this point has been given by Fitzmaurice (2003). They show that also the incomplete
sequences contribute to estimands of interests, even early dropouts when scientific interest is in the
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last planned measurement only. Finally, they show that such an analysis is possible, without the
need of any additional data manipulation, using, for example, the SAS procedure MIXED or the
SPlus or R function ‘lme’. Of course, a longitudinal model has to be specified for the entire vector
of responses. In a clinical trial setting, with relatively short and balanced response sequences,
full multivariate models, encompassing full treatment-by-group interactions, perhaps corrected for
baseline covariates, and an unstructured variance-covariance matrix, is usually within reach. A
model of this type is relatively mild in the restrictions made.

The non-Gaussian setting is different in the sense that there is no generally accepted counterpart
to the linear mixed-effects model. We therefore first sketch a general taxonomy for longitudinal
models in this context, including marginal, random-effects (or subject-specific), and conditional
models. We then argue that marginal and random-effects models both have their merit in the
analysis of longitudinal clinical trial data and focus on two important representatives, i.e., the
generalized estimating equations (GEE) approach within the marginal family and the generalized
linear mixed-effects model (GLMM) within the random-effects family. We highlight important
similarities and differences between these model families. While GLMM parameters can be fitted
using maximum likelihood, the same is not true for the GEE method, which is of a frequentist
nature. Therefore, Robins, Rotnitzky, and Zhao (1995) have devised so-called weighted generalized
estimating equations (WGEE), valid under MAR but requiring the specification of a dropout model
in terms of observed outcomes and/or covariates, in view of specifying the weights.

Thus, we believe that generally, methods such as complete case analysis or LOCF ought to be
abandoned in favor of the likelihood-based and weighted GEE models discussed here.

By definition, MNAR missingness cannot be fully ruled out based on the observed data. Neverthe-
less, ignorable analyses may provide reasonably stable results, even when the assumption of MAR
is violated, in the sense that such analyses constrain the behavior of the unseen data to be similar
to that of the observed data. A discussion of this phenomenon in the survey context has been
given in Rubin, Stern, and Vehovar (1995). These authors firstly argue that, in well conducted
experiments (some surveys and many confirmatory clinical trials), the assumption of MAR is often
to be regarded as a realistic one. Secondly, and very important for confirmatory trials, an MAR
analysis can be specified a priori without additional work relative to a situation with complete data.
Thirdly, while MNAR models are more general and explicitly incorporate the dropout mechanism,
the inferences they produce are typically highly dependent on the untestable and often implicit
assumptions built in regarding the distribution of the unobserved measurements given the observed
ones. The quality of the fit to the observed data need not reflect at all the appropriateness of
the implied structure governing the unobserved data. Based on these considerations, we recom-
mend, for primary analysis purposes, the use of ignorable likelihood-based methods or appropriately
modified frequentist methods. To explore the impact of deviations from the MAR assumption on
the conclusions, one should ideally conduct a sensitivity analysis (Verbeke and Molenberghs 2000,
Ch. 18–20).
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Two case studies motivate our work. The first one arises from a randomized, double-blind psy-
chiatric clinical trial, conducted in the United States. The primary objective of this trial was
to compare the efficacy of an experimental anti-depressant with placebo in order to support a
New Drug Application. The study enrolled 167 patients. The Hamilton Depression Rating Scale
(HAMD17) is used to measure the depression status of the patients. The binary indicator of in-
terest is 1 if the HAMD17 score is larger than 7, and 0 otherwise. For each patient, a baseline
assessment is available, as well as 8 post-baseline visits going from visit 4 to 11.

The second case study arises from a randomized multi-centric clinical trial comparing an experimen-
tal treatment (interferon-α) to a corresponding placebo in the treatment of patients with age-related
macular degeneration. Interest focuses on the comparison between placebo and the highest dose
(6 million units daily) of interferon-α (Z), but the full results of this trial have been reported
elsewhere (Pharmacological Therapy for Macular Degeneration Study Group 1997). Patients with
macular degeneration progressively lose vision. In the trial, the patients’ visual acuity was assessed
at different time points (4 weeks, 12 weeks, 24 weeks, and 52 weeks) through their ability to read
lines of letters on standardized vision charts. These charts display lines of 5 letters of decreasing
size, which the patient must read from top (largest letters) to bottom (smallest letters). Each line
with at least 4 letters correctly read is called one ‘line of vision.’ The patient’s visual acuity is the
total number of letters correctly read. The primary endpoint of the trial was the loss of at least
3 lines of vision at 1 year, compared to their baseline performance, i.e., a binary endpoint. The
total number of longitudinal profiles is 240, but only for 188 of these have the four follow-up mea-
surements been made. An overview is given in Table 1. Thus, 78.33% of the profiles are complete,
while 18.33% exhibit monotone missingness. Out of the latter group, 2.5% or 6 subjects have no
follow-up measurements. The remaining 3.33%, representing 8 subjects, have intermittent missing
values. Although the group of dropouts is of considerable magnitude, the ones with intermittent
missingness is much smaller. Nevertheless, it is cautious to include all into the analyses. Data on
the second case study are available on the author’s website.

The general data setting is introduced in Section 2, as well as a formal framework for incomplete
longitudinal data, together with a discussion on the problems associated with simple methods.
Section 3 focuses on two important families of models for discrete repeated measures. The first
case study is analyzed in Section 4, while the second one is the subject of Section 5. The paper
ends with a discussion in Section 6.

2 Data Setting and Modeling Framework

Assume that for subject i = 1, . . . , N a sequence of responses Yij is designed to be measured at
occasions j = 1, . . . , n. The outcomes are grouped into a vector Y i = (Yi1, . . . , Yin)′. In addition,
for each occasion j define Rij as being equal to 1 if Yij is observed and 0 otherwise. The missing
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data indicators Rij are grouped into a vector Ri which is of the same length as Y i. Define now
a dropout indicator Di for the occasion at which dropout occurs and make the convention that
Di = n+ 1 for a complete sequence. Further, split the vector Y i into observed (Y o

i ) and missing
(Y m

i ) components, respectively.

Modeling usually is initiated by considering the full data density f(yi, di|θ,ψ), where the parameter
vectors θ and ψ describe the measurement and missingness processes, respectively. Covariates are
assumed to be measured but, for notational simplicity, suppressed from notation.

Most strategies used to analyze such data are, implicitly or explicitly, based on two choices.

Model for measurements. A choice has to be made regarding the modeling approach to the
measurements. There are three common views. In the first view, one opts to analyze the
entire longitudinal profile, irrespective of whether interest focuses on the entire profile on the
one hand (e.g., difference in slope between groups) or whether a specific time is of interest on
the other hand (e.g., the last planned occasion). In the latter case, the motivation to model the
entire profile is because, for example, earlier responses do provide statistical information on
later ones. This holds especially true when dropout is present. In the second view, one defines
the scientific question and restrict the corresponding analysis to the last planned occasion. Of
course, as soon as dropout occurs, such a measurement may not be available, whence often last
observation carried forward (LOCF) is used. Such an analysis is based on strong assumptions
that often do not hold. This point has been made extensively in Molenberghs et al (2004).
These authors advocate the use of proper, likelihood-based, longitudinal methods, which
are generally valid under MAR. In the third view, one chooses to define the question and the
corresponding analysis in terms of the last observed measurement. While sometimes used as an
alternative motivation for so-called last observation carried forward analyses (Siddiqui and Ali
1998, Mallinckrodt et al 2003ab), a common criticism is that the last observed measurement
amalgamates measurements at real stopping times (for dropouts) and at a purely design-
based time (for completers). Thus, we hope to show that the first view is in many situations
the most sensible route of analysis.

Method for handling missingness. A choice has to be made regarding the modeling approach
to the missingness model. Luckily, under certain assumptions, this process can be ignored
(likelihood-based or Bayesian ignorable analysis, for which MAR is a sufficient condition).
Some simple methods, such as complete case analysis (CC) and LOCF do not explicitly
address the missingness mechanism either, but are nevertheless not ignorable. We will return
to this issue in the next section.

Let us first describe the measurement and missingness models in turn, and then introduce and
comment on ignorability. The measurement model will depend on whether or not a full longitudinal
analysis is done. In case the second or third view is adopted, one typically opts for classical two-
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or multi-group comparisons (t test, Wilcoxon, etc.). In case a longitudinal analysis is deemed
necessary, the choice made depends on the nature of the outcome.

For continuous outcomes, a common choice is the general linear mixed-effects model, or a special
case of it, such as a (structured) multivariate normal model (Verbeke and Molenberghs 2000).
However, for categorical (nominal, ordinal and binary) and discrete outcomes (counts), as in our
case study, the modeling choices are less straightforward. Extensions of the generalized linear
models to the longitudinal case are discussed in Diggle, Heagerty, Liang and Zeger (2002), where
a lot of emphasis is on generalized estimating equations (Liang and Zeger 1986). Generalized
linear mixed models have been proposed and/or studied by, for example, Stiratelli, Laird and Ware
(1984), Wolfinger and O’Connell (1993), and Breslow and Clayton (1993). Fahrmeir and Tutz
(2001) devote an entire book to generalized linear models for multivariate settings. We return to
modeling non-Gaussian repeated measures in Section 3. It is important to note that, since quite
distinct modeling families are in use, the researcher ought to be guided by the main scientific
question at hand when choosing between the modeling families.

Assume that incompleteness is due to dropout only, and that the first measurement Yi1 is obtained
for everyone. The model for the dropout process is based on, for example, a logistic regression for
the probability of dropout at occasion j, given the subject is still in the study. We denote this
probability by g(hij , yij) in which hij is a vector containing all responses observed up to but not
including occasion j, as well as relevant covariates. We then assume that g(hij, yij) satisfies

logit[g(hij , yij)] = logit [pr(Di = j|Di ≥ j,yi)] = hijψ + ωyij, i = 1, . . . , N. (2.1)

When ω equals zero, and assuming the posited model is correct, the dropout model is MAR. If
ω 6= 0, the posited dropout process is MNAR. Model (2.1) provides the building blocks for the
dropout process f(di|yi,ψ).

Rubin (1976) and Little and Rubin (2002) have shown that, under MAR and mild regularity condi-
tions (parameters θ and ψ are functionally independent), likelihood-based and Bayesian inference
is valid when the missing data mechanism is ignored (see also Verbeke and Molenberghs 2000).
Practically speaking, the likelihood of interest is then based upon the factor f(yo

i |θ). This is called
ignorability. A model of the form (2.1), of course with ω = 0 may, but does not have to be consid-
ered in such a case. The practical implication is that a software module with likelihood estimation
facilities and with the ability to deal with incompletely observed subjects manipulates the correct
likelihood, providing valid parameter estimates, standard errors if based on the observed infor-
mation matrix, and likelihood ratio values (Kenward and Molenberghs 1998). Examples of such
software tools include the MIXED, NLMIXED and GENMOD procedures in SAS.

A few cautionary remarks are in place. First, when at least part of the scientific interest is directed
towards the nonresponse process, obviously both processes need to be considered. Still, under
MAR, both processes can be modeled and parameters estimated separately. Second, it may be
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hard to fully rule out the operation of an MNAR mechanism. Third, one is now restricted to the
first view on modeling the outcomes, i.e., a full longitudinal analysis is necessary, even when interest
is restricted to, for example, a comparison between the two treatment groups at the last occasion.
In the latter case, the fitted model can be used as the basis for inference at the last occasion. A
common criticism, especially in a regulated controlled clinical trial setting, is that a model needs
to be considered. However, it should be noted that in many clinical trial settings the repeated
measures are balanced in the sense that a common (and often limited) set of measurement times is
considered for all subjects, allowing the a priori (protocol) specification of a saturated model (e.g.,
full group-by-time interaction model for the means and unstructured variance-covariance matrix).

Such an ignorable linear mixed model specification is termed MMRM by Mallinckrodt et al (2001ab).
Thus, MMRM is a particular form of a linear mixed model, relevant for acute phase confirmatory
clinical trials, fitting within the ignorable likelihood paradigm. It has to be noted that this approach,
for the special case where no dropout occurs, is fully equivalent to a one-way MANOVA model for
the repeated outcomes, with a class variable treatment effect. This observation provides a strong
basis for such an approach, which is a very promising alternative for the simple ad hoc methods such
as complete-case analysis or LOCF. While the above reasoning is tied to the continuous-outcome
setting, similar modeling strategies exist for the non-Gaussian case, as discussed in Section 3.

These arguments, supplemented with the availability of software tools within which such multivari-
ate models can be fitted to incomplete data, cast doubts regarding the usefulness of such simple
methods as CC and LOCF. This issue has been discussed in detail, in the context of Gaussian
outcomes, by Molenberghs et al (2004). Apart from biases as soon as the missing data mecha-
nism is not MCAR, CC can suffer from severe efficiency losses. Especially since tools have become
available to include incomplete sequences along with complete ones into the analysis, one should
do everything possible to avoid wasting patient data.

LOCF, as other imputation strategies (Dempster and Rubin 1983, Little and Rubin 2002) can lead
to artificially inflated precision. Further, as Molenberghs et al (2004) have shown, the method
can produce severely biased treatment comparisons and, perhaps contrary to some common belief,
such biases can be conservative but also liberal. The method rests on the strong assumption that
a patient’s outcome profile remains flat, at the level of the last observed measurement, throughout
the remainder of follow up.

3 Discrete Repeated Measures

Whereas the linear mixed model, and its special cases, is seen as a unifying parametric framework
for Gaussian repeated measures (Verbeke and Molenberghs 2000), there are many more options
available in the non-Gaussian setting. In a marginal model, marginal distributions are used to
describe the outcome vector Y , given a set X of predictor variables. The correlation among
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the components of Y can then be captured either by adopting a fully parametric approach or
by means of working assumptions, such as in the semiparametric approach of Liang and Zeger
(1986). Alternatively, in a random-effects model, the predictor variables X are supplemented with
a vector θ of random effects, conditional upon which the components of Y are usually assumed
to be independent. This does not preclude that more elaborate models are possible if residual
dependence is detected (Longford 1993). Finally, a conditional model describes the distribution of
the components of Y , conditional on X but also conditional on (a subset of) the other components
of Y . Well-known members of this class of models are log-linear models (Gilula and Haberman
1994). Let us give a simple example of each for the case of Gaussian outcomes. A marginal model
starts from specifying:

E(Yij |xij) = x′
ijβ, (3.2)

whereas in a random-effects model we focus on the expectation, conditional upon the random-effects
vector:

E(Yij |bi,xij) = x′
ijβ + z′ijbi. (3.3)

The conditional model uses expectations of the form

E(Yij |Yi,j−1, . . . , Yi1,xij) = x′
ijβ + αYi,j−1. (3.4)

In the linear mixed model case, random-effects models imply a simple marginal model. This is due
to the elegant properties of the multivariate normal distribution. In particular, the expectation
(3.2) follows from (3.3) by either (a) marginalizing over the random effects or by (b) conditioning
upon the random-effects vector bi = 0. Hence, the fixed-effects parameters β have both a marginal
as well as a hierarchical model interpretation.

Since marginal and random-effects models are the most useful ones in our context, and given this
connection between them, it is clear why the linear mixed model provides a unified framework in
the Gaussian setting. Such a close connection between the model families does not exist when
outcomes are of a non-normal type, such as binary, categorical, or discrete. We will consider the
marginal and random-effects model families in turn and then point to some particular issues arising
within them or when comparisons are made between them. The conditional models are less useful
in the context of longitudinal data and will not be discussed here (Molenberghs and Verbeke 2005).

3.1 Marginal Models

Thorough discussions on marginal modeling can be found in Diggle, Heagerty, Liang, and Zeger
(2002), and Fahrmeir and Tutz (2001). The specific context of clustered binary data has received
treatment in Aerts, Geys, Molenberghs and Ryan (2002). Apart from full likelihood approaches,
non-likelihood approaches, such as generalized estimating equations (GEE, Liang and Zeger 1986)
or pseudo-likelihood (le Cessie and van Houwelingen 1994; Geys, Molenberghs, and Lipsitz 1998)
have been considered.
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Bahadur (1961) proposed a marginal model, accounting for the association via marginal correla-
tions. Ekholm (1991) proposed a so-called success probabilities approach. George and Bowman
(1995) proposed a model for the particular case of exchangeable binary data. Ashford and Sow-
den (1970) considered the multivariate probit model, for repeated ordinal data, thereby extending
univariate probit regression. Molenberghs and Lesaffre (1994), and Lang and Agresti (1994) have
proposed models which parameterize the association in terms of marginal odds ratios. Dale (1986)
defined the bivariate global odds ratio model, based on a bivariate Plackett distribution (Plackett
1965). Molenberghs and Lesaffre (1994, 1999), Lang and Agresti (1994), and Glonek and McCul-
lagh (1995) extended this model to multivariate ordinal outcomes. They generalize the bivariate
Plackett distribution in order to establish the multivariate cell probabilities.

While full likelihood methods are appealing because of their flexible ignorability properties (Sec-
tion 2), their use for non-Gaussian outcomes can be problematic due to prohibitive computational
requirements. Therefore, GEE is a viable alternative within this family. Since GEE is motivated by
frequentist considerations, the missing data mechanism needs to be MCAR for it to be ignorable.
This motivates the proposal of so-called weighted generalized estimating equations (WGEE). We
will discuss these in turn.

3.1.1 Generalized Estimating Equations

GEE, useful to circumvent the computational complexity of full likelihood, can be considered when-
ever interest is restricted to the mean parameters (treatment difference, time evolutions, effect of
baseline covariates, etc.). It is rooted in the quasi-likelihood ideas expressed in McCullagh and
Nelder (1989). Modeling is restricted to the correct specification of the marginal mean function,
together with so-called working assumptions about the correlation structure of the vector of re-
peated measures.

Let us now introduce the classical form of GEE. Note that the score equations, to be solved when
computing maximum likelihood estimates under a marginal normal model yi ∼ N(Xiβ, Vi), are
given by

N∑

i=1

X ′
i(A

1/2
i CiA

1/2
i )−1(yi −Xiβ) = 0, (3.5)

in which the marginal covariance matrix Vi has been decomposed in the form A
1/2
i CiA

1/2
i , with

Ai the matrix with the marginal variances on the main diagonal and zeros elsewhere, and with Ci

equal to the marginal correlation matrix. Switching to the non-Gaussian case, the score equations
become

S(β) =
N∑

i=1

∂µi

∂β′ (A
1/2
i CiA

1/2
i )−1(yi − µi) = 0, (3.6)
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which are less linear than (3.5) due to the presence of a link function (e.g., the logit link for binary
data), and the mean-variance relationship. Typically the correlation matrix Ci contains a vector
α of unknown parameters which is replaced for practical purposes by a consistent estimate.

Assuming that the marginal mean µi has been correctly specified as h(µi) = Xiβ, it can be shown
that, under mild regularity conditions, the estimator β̂ obtained from solving (3.6) is asymptotically
normally distributed with mean β and with covariance matrix

I−1
0 I1I

−1
0 , (3.7)

where

I0 =

(
N∑

i=1

∂µi
′

∂β
V −1

i

∂µi

∂β′

)
,

I1 =

(
N∑

i=1

∂µi
′

∂β
V −1

i Var(yi)V −1
i

∂µi

∂β′

)
.

In practice, Var(yi) in (3.7) is replaced by (yi−µi)(yi−µi)′, which is unbiased on the sole condition
of correct mean specification. One also needs estimates of the nuisance parameters α. Liang and
Zeger (1986) proposed moment-based estimates for the working correlation. To this end, define
deviations

eij =
yij − µij√
v(µij)

.

Some of the more popular choices for the working correlations are independence (Corr(Yij , Yik) =
0, j 6= k), exchangeability (Corr(Yij, Yik) = α, j 6= k), AR(1) (Corr(Yij , Yi,j+t) = αt, t =
0, 1, . . . , ni − j), and unstructured (Corr(Yij, Yik) = αjk, j 6= k). Typically, moment-based estima-
tion methods are used to estimate these parameters, as part of an integrated iterative estimation
procedure. An overdispersion parameter could be included as well, but we have suppressed it
for ease of exposition. The standard iterative procedure to fit GEE, based on Liang and Zeger
(1986), is then as follows: (1) compute initial estimates for β, using a univariate GLM (i.e., as-
suming independence); (2) compute the quantities needed in the estimating equation: bi; (3)
compute Pearson residuals eij ; (4) compute estimates for α; (5) compute Ci(α); (6) compute
Vi(β,α) = A

1/2
i (β)Ci(α)A1/2

i (β); (7) update the estimate for β:

β(t+1) = β(t) −
[

N∑

i=1

∂µi
′

∂β
V −1

i

∂µi

∂β

]−1 [ N∑

i=1

∂µi
′

∂β
V −1

i (yi − µi)

]
.

Steps (2)–(7) are iterated until convergence. To illustrate step (4), consider compound symmetry,
in which case the correlation is estimated by:

α̂ =
1
N

N∑

i=1

1
ni(ni − 1)

∑

j 6=k

eijeik.
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3.1.2 Weighted Generalized Estimating Equations

As Liang and Zeger (1986) pointed out, GEE-based inferences are valid only under MCAR, due to
the fact that they are based on frequentist considerations. An important exception, mentioned by
these authors, is the situation where the working correlation structure (discussed in the previous
section), happen to be correct, since then the estimates and model-based standard errors are valid
under the weaker MAR. This is because then, the estimating equations can be interpreted as
likelihood equations. In general, of course, the working correlation structure will not be correctly
specified. The ability to do so is the core motivation of the method, and therefore Robins, Rotnitzky
and Zhao (1995) proposed a class of weighted estimating equations to allow for MAR, extending
GEE.

The idea is to weight each subject’s contribution in the GEEs by the inverse probability that a
subject drops out at the time he dropped out. This can be calculated, for example, as

νidi
≡ P [Di = di] =

di−1∏

k=2

(1 − P [Rik = 0|Ri2 = . . . = Ri,k−1 = 1]) ×

P [Ridi
= 0|Ri2 = . . . = Ri,di−1 = 1]I{di≤T}.

Recall that we partitioned Y i into the unobserved components Y m
i and the observed components

Y o
i . Similarly, we can make the exact same partition of µi into µi

m and µi
o. In the weighted GEE

approach, which is proposed to reduce possible bias of β̂, the score equations to be solved when
taking into account the correlation structure are:

S(β) =
N∑

i=1

1
νidi

∂µi

∂β′ (A
1/2
i CiA

1/2
i )−1(yi − µi) = 0

=
N∑

i=1

n+1∑

d=2

I(Di = d)
νid

∂µi

∂β′ (d)(A
1/2
i CiA

1/2
i )−1(d)(y(d) − µi(d)) = 0, (3.8)

where yi(d) and µi(d) are the first d− 1 elements of yi and µi respectively. We define ∂µi

∂β′ (d) and

(A1/2
i CiA

1/2
i )−1(d) analogously.

It is worthwhile to note that the recently proposed so-called doubly robust methods (van der Laan
and Robins 2002) is more efficient and robust to a wider class of deviations. However, it is harder
to implement than the original proposal.

An alternative mode of analysis, generally overlooked but proposed by Schafer (2003), would consist
in multiply imputing the missing outcomes using a parametric model, e.g., of a random-effects or
conditional type, followed by conventional GEE and conventional multiple-imputation inference on
the so-completed sets of data.
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3.2 Random-effects Models

Unlike for correlated Gaussian outcomes, the parameters of the random-effects and population-
averaged models for correlated binary data describe different types of effects of the covariates on
the response probabilities (Neuhaus 1992). Therefore, the choice between population-averaged
and random-effects strategies should heavily depend on the scientific goals. Population-averaged
models evaluate the success probability as a function of covariates only. With a subject-specific
approach, the response is modeled as a function of covariates and parameters, specific to the
subject. In such models, interpretation of fixed-effects parameters is conditional on a constant
level of the random-effects parameter. Population-averaged comparisons, on the other hand, make
no use of within cluster comparisons for cluster varying covariates and are therefore not useful to
assess within-subject effects (Neuhaus, Kalbfleisch and Hauck 1991). While several non-equivalent
random-effects models exist, one of the most popular ones is the generalized linear mixed model
(GLMM, Breslow and Clayton 1993), implemented in the SAS procedure NLMIXED. We will focus
on this one.

3.2.1 Generalized Linear Mixed Models

A general formulation of mixed-effects models is as follows. Assume that Yi (possibly appropriately
transformed) satisfies

Yi|bi ∼ Fi(θ, bi), (3.9)

i.e., conditional on bi, Yi follows a pre-specified distribution Fi, possibly depending on covariates,
and parameterized through a vector θ of unknown parameters, common to all subjects. Further, bi
is a q-dimensional vector of subject-specific parameters, called random effects, assumed to follow
a so-called mixing distribution G which may depend on a vector ψ of unknown parameters, i.e.,
bi ∼ G(ψ). The bi reflect the between-unit heterogeneity in the population with respect to the
distribution of Yi. In the presence of random effects, conditional independence is often assumed,
under which the components Yij in Yi are independent, conditional on bi. The distribution function
Fi in (3.9) then becomes a product over the ni independent elements in Yi.

In general, unless a fully Bayesian approach is followed, inference is based on the marginal model
for Yi which is obtained from integrating out the random effects, over their distribution G(ψ).
Let fi(yi|bi) and g(bi) denote the density functions corresponding to the distributions Fi and G,
respectively, we have that the marginal density function of Yi equals

fi(yi) =
∫
fi(yi|bi)g(bi)dbi, (3.10)

which depends on the unknown parameters θ and ψ. Assuming independence of the units, estimates
of θ̂ and ψ̂ can be obtained from maximizing the likelihood function built from (3.10), and inferences
immediately follow from classical maximum likelihood theory.
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It is important to realize that the random-effects distribution G is crucial in the calculation of
the marginal model (3.10). One often assumes G to be of a specific parametric form, such as
a (multivariate) normal. Depending on Fi and G, the integration in (3.10) may or may not be
possible analytically. Proposed solutions are based on Taylor series expansions of fi(yi|bi), or on
numerical approximations of the integral, such as (adaptive) Gaussian quadrature.

Note that there is an important difference with respect to the interpretation of the fixed effects
β. Under the classical linear mixed model (Verbeke and Molenberghs 2000), we have that E(Yi)
equals Xiβ, such that the fixed effects have a subject-specific as well as a population-averaged
interpretation. Under non-linear mixed models, however, this does no longer hold in general. The
fixed effects now only reflect the conditional effect of covariates, and the marginal effect is not easily
obtained anymore as E(Yi) is given by

E(Yi) =
∫
yi

∫
fi(yi|bi)g(bi)dbidyi.

However, in a biopharmaceutical context, one is often primarily interested in hypothesis testing
and the random-effects framework can be used to this effect.

A general formulation of GLMM is as follows. Conditionally on random effects bi, it assumes
that the elements Yij of Yi are independent, with density function usually based on a classi-
cal exponential family formulation, i.e., with mean E(Yij |bi) = a′(ηij) = µij(bi) and variance
Var(Yij|bi) = φa′′(ηij), and where, apart from a link function h (e.g., the logit link for binary data
or the Poisson link for counts), a linear regression model with parameters β and bi is used for the
mean, i.e., h(µi(bi)) = Xiβ+Zibi. Note that the linear mixed model is a special case, with identity
link function. The random effects bi are again assumed to be sampled from a (multivariate) normal
distribution with mean 0 and covariance matrix D. Usually, the canonical link function is used,
i.e., h = a′−1, such that ηi = Xiβ +Zibi. When the link function is chosen to be of the logit form
and the random effects are assumed to be normally distributed, the familiar logistic-linear GLMM
follows.

3.3 Marginal versus Random-effects Models

It is useful to underscore the difference between both model families, as well as the nature of this
difference. To see the nature of the difference, consider a binary outcome variable and assume a
random-intercept logistic model with linear predictor logit[P (Yij = 1|tij , bi)] = β0+bi+β1tij , where
tij is the time covariate. The conditional means E(Yij |bi), as functions of tij , are given by

E(Yij |bi) =
exp(β0 + bi + β1tij)

1 + exp(β0 + bi + β1tij)
, (3.11)

whereas the marginal average evolution is obtained from averaging over the random effects:

E(Yij) = E[E(Yij |bi)] = E

[
exp(β0 + bi + β1tij)

1 + exp(β0 + bi + β1tij)

]
6= exp(β0 + β1tij)

1 + exp(β0 + β1tij)
. (3.12)
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Figure 1: Graphical representation of a random-intercept logistic curve, across a range of levels of
the random intercept, together with the corresponding marginal curve.

A graphical representation of both (3.11) and (3.12) is given in Figure 1. This implies that the
interpretation of the parameters in both types of model is completely different. A schematic display
is given in Figure 2. Depending on the model family (marginal or random-effects), one is led to
either marginal or hierarchical inference. It is important to realize that in the general case the
parameter βM resulting from a marginal model is different from the parameter βRE even when
the latter is estimated using marginal inference. Some of the confusion surrounding this issue may
result from the equality of these parameters in the very special linear mixed model case. When a
random-effects model is considered, the marginal mean profile can be derived, but it will generally
not produce a simple parametric form. In Figure 2 this is indicated by putting the corresponding
parameter between quotes.

As an important example, consider our GLMM with logit link function, and where the only random
effects are intercepts bi. It can then be shown that the marginal mean µi = E(Yij) satisfies
h(µi) ≈ Xiβ

M with
βRE

βM
=
√
c2σ2 + 1 > 1, (3.13)

in which c equals 16
√

3/15π. Hence, although the parameters βRE in the generalized linear mixed
model have no marginal interpretation, they do show a strong relation to their marginal counter-
parts. Note that, as a consequence of this relation, larger covariate effects are obtained under the
random-effects model in comparison to the marginal model.
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model family
↙ ↘

marginal random-effects
model model

↓ ↓
inference inference
↙ ↘ ↙ ↘

likelihood GEE marginal hierarchical
↓ ↓ ↓ ↓
βM βM βRE (βRE, bi)

↓ ↓
“βM” “βM”

Figure 2: Representation of model families and corresponding inference. A superscript ‘M’ stands
for marginal, ‘RE’ for random effects. A parameter between quotes indicates that marginal functions
but no direct marginal parameters are obtained.

4 Analysis of First Case Study

Let us now analyze the motivating clinical trial. Therapies are recorded as A1 for primary dose
of experimental drug, while B refers to non-experimental drug and C to placebo. The primary
contrast is between A1 and C. Emphasis is on the difference between arms at the end of the study.
A graphical representation of the dropout, per study and per arm, is given in Figure 3.

The primary null hypothesis (zero difference between the treatments and placebo in terms of pro-
portion of the HAMD17 total score above the level of 7) will be tested using both marginal models
(GEE and WGEE) and random-effects models (GLMM). According to the study protocol, the mod-
els will include the fixed categorical effects of treatment, visit, and treatment-by-visit interaction,
as well as the continuous, fixed covariates of baseline score and baseline score-by-visit interaction.
A random intercept will be included when considering the random-effects models. Analyses will be
implemented using the SAS procedures GENMOD and NLMIXED.

Missing data will be handled in three different ways: (1) imputation using LOCF, (2) deletion
of incomplete profiles, leading to a CC, and (3) analyzing the data as they are, consistent with
ignorability (for GLMM and WGEE). A fully longitudinal approach (View 1) is considered in
Section 4.1. Section 4.2 compares the results of the marginal and random-effects models. Section 4.3
focuses on Views 2 (treatment effect at last planned occasion) and 3 (last measurement obtained),
respectively.
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Figure 3: Evolution of dropout per study and per treatment arm. Treatment arms A1 and C, being
the ones of primary interest, are shown in bolder typeface.

4.1 View 1: Longitudinal Analysis

4.1.1 Marginal Models

First, let us consider the GEE approach. Within the SAS procedure GENMOD the exchangeable
working correlation matrix is used.

An inspection of parameter estimates and standard errors (not shown) reveals that the interaction
between treatment and time is non-significant. The same holds in the analyses that will be done in
what follows. At first sight, this suggests model simplification. However, there are a few reasons to
prefer a different route. First, as stated before, a longitudinal model used in a regulatory, controlled
environment, is ideally sufficiently generally specified to avoid driving conclusions through models
that are too simple. Sticking to a single, pre-specified model also avoids dangers associated to
model selection (e.g., inflated type I errors), recently reported in the literature (Hjort and Claeskens
2003). Second, a general model allows for, as a by-product, assessment of treatment effect at the
last planned occasion. Third, one can still assess the important null hypothesis of (1) no average
treatment effect, and (2) no treatment effect at any of the measurement occasions. These tests
have been conducted, with for (1) also the estimated average treatment effect, and are reported in
Table 2.

In many cases, the empirically-corrected standard errors are larger than the model-based ones. This
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is because model-based standard errors are the ones that would be obtained if the estimating equa-
tions would be true likelihood equations, i.e., when the working correlation structure is correct. In
such cases, likelihood inference enjoys optimality. However, since the working correlation structure
is allowed to be misspecified, model-based standard errors will be biased and it is advisable to base
conclusions on empirically-corrected standard errors.

Turning to WGEE, the method is applied to perform an analysis that is correct under MAR, not
only under MCAR as in ordinary GEE. This procedure is a bit more involved in terms of fitting
the model to the data. We will outline the main steps, while the SAS code is available from the
authors upon request.

To compute the necessary weights, we first fit the dropout model, using logistic regression. The
outcome drop is binary and indicates whether or not dropout occurs at a given time. The response
value at the previous occasion (prevhamd) and treatment are included as covariates.

Next, the predicted probabilities of dropout are translated into weights, defined at the individ-
ual measurement level. Let us describe the procedure to construct the inverse weights. At the
first occasion, define wi1 = 1. At other than the last occasions, the quantity of interest equals
the cumulative weight over the previous occasions, multiplied by (1−the predicted probability of
dropout). At the last occasion within a sequence where dropout occurs, it is multiplied by the
predicted probability of dropout. At the end of the process, this quantity is inverted to yield the
actual weight.

After these preparations, we merely need to include the weights by means of the scwgt statement
within the GENMOD procedure. Together with the use of the repeated statement, WGEE follows.
Also here, we use the exchangeable working correlation matrix.

Let us now turn to the results. The marginal models reveal non-significant treatment effects in all
cases, for either the composite hypothesis of no treatment effects or the hypotheses of no average
effects. This holds for both arms separately, as well as for the two arms jointly. Corresponding
to the one degree-of-freedom tests, parameter estimates and standard errors can be estimated as
well. For conciseness, only empirically corrected standard errors are shown. A strong difference
is observed between the WGEE and other cases. Since this is the only one valid under MAR, it
is clear that there are dangers associated to too simple methods. Furthermore, some of the CC
p-values are smaller than their MAR and LOCF counterparts.

4.1.2 Random-effect Models

To fit generalized linear mixed models, we use the SAS procedure NLMIXED, which allows fitting a
wide class of linear, generalized linear, and non-linear mixed models. It relies on numerical integra-
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tion. Not only different integral approximations are available, the principal ones being (adaptive)
Gaussian quadrature, it also includes a number of optimization algorithms. The difference between
non-adaptive and adaptive Gaussian quadrature is that for the first procedure the quadrature points
are centered at zero for each of the random-effects and the current random-effects covariance ma-
trix is used as the scale matrix, while for the latter the quadrature points will be appropriately
centered and scaled, such that more quadrature points lie in the region of interest (Molenberghs
and Verbeke 2005). We will use both adaptive and non-adaptive quadrature, with several choices
for the number of quadrature points, to check the stability of the results over a variety of choices
for these numerical choices.

Precisely, we initiate the model fitting using non-adaptive Gaussian quadrature, together with the
quasi-Newton optimization algorithm. The number of quadrature points is left to be determined by
the procedure, and all starting values are set equal to 0.5. Using the resulting parameter estimates,
we keep these choices but hold the number of quadrature points fixed (2, 3, 5, 10, 20 and 50).
Subsequently, we switch to adaptive Gaussian quadrature (step 2). Finally, the quasi-Newton
optimization is replaced by the Newton-Raphson optimization (step 3). The effect of the method
and the number of quadrature points is graphically represented in Figure 4 for a selected parameter
(treatment effect of A1). While the differences between these choices are purely numerical, we do
notice differences between the results, illustrating that a numerical sensitivity analysis matters.
The parameter estimates tend to stabilize with increasing number of quadrature points. However,
non-adaptive Gaussian quadrature needs obviously more quadrature points than adaptive Gaussian
quadrature.

Focusing on the results for 50 quadrature points, we observe that the parameter estimates for step
1 and step 2 are the same. On the other hand, parameter estimates for step 3 are different (order of
10−3, visible in p-values). In spite of the differences in parameter estimates, is the noteworthy fact
that the likelihood is the same in all steps, due to a flat likelihood. This was confirmed by running
all steps again, but now using the parameter estimates of step 3 as starting values, at which point
the parameter estimates all coincide. Thus, it may happen that the optimization routine has only
seemingly converged.

Exactly as in the marginal model case, we assessed average treatment effect as well as treatment
effect at any of the times. The results are reported in Table 2 as well. The parameter p-values are
more different across methods than in the marginal model case. The most striking feature is that
there is evidence for a treatment effect in the two groups together, under MAR, and also with CC.
Note that the corresponding one-degree of freedom tests do not show significance. In the LOCF
case, some p-values are smaller while others are larger. This contradicts a common belief that
LOCF is conservative. Molenberghs et al (2004) have shown that both conservative and liberal
behavior is possible.
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Figure 4: The effect of adaptive versus non-adaptive quadrature, quasi-Newton versus Newton-
Raphson, and the number of quadrature points on the treatment effect parameter for arm A1.

4.2 Marginal versus Random-effects Models

In all cases, the variability of the random effect (standard deviation parameter σ) is highly sig-
nificant. This implies that the GEE parameters and the random-effects parameters cannot be
compared directly. If the conversion factor (3.13) is computed, then one roughly finds a factor of
about 2.5. We note that this factor is not reproduced when directly comparing the two sets of
estimates (estimates not shown). This is due to the fact that (3.13) operates at the true population
parameter level, while we only have parameter estimates at our disposition. Since many of the es-
timates are not or only marginally significant, it is not unexpected, therefore, to observe deviations
from this relationship, even though the general tendency is preserved in most cases.

4.3 Views 2 and 3: Single Time Point Analysis

When emphasis is on the last measurement occasion, LOCF and CC are straightforward to use.
When the last observed measurement is of interest, while a different scientific question, the analysis
is not different from the one obtained under LOCF but, of course, in this case CC is not an option.

Since the outcome is a dichotomous response, the data can be summarized in a 2×k table, where k
represents the number of treatments. The analysis essentially consists of comparing the proportions
of success or failure in all groups. For this purpose, both Pearson’s chi-squared test (Agresti 1990)
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and Fisher’s Exact test (Freeman and Halton 1951) will be used. Nevertheless, it is still possible
to obtain inferences from a full longitudinal model in this context. We add these for the sake of
reference, but it should be understood that the analysis using a simple model for the last time point
only is more in line with practice.

When an ignorable analysis is considered, one has to explicitly consider all incomplete profiles, in
order to correctly incorporate all information available. Thus, one has to consider a longitudinal
model.

Placebo C is considered as reference treatment. Let αi be the effect of treatment arm i at the last
measurement occasion, where i = A1, B or C. We wish to test whether at the last measurement
occasion all treatment effects are equal. This translates into αA1 = αB = αC , or equivalently into
αA1 − αC = αB − αC = 0. Such contrasts can be obtained very easily using the SAS procedure
NLMIXED. Table 3 shows a summary of the results in terms of p-values.

The GLMMs lead to a small difference between CC and MAR: both are borderline. On the other
hand, the GLMM for LOCF leads to a non-significant result. An endpoint analysis (i.e., using
the last available measurement) shows the same result for LOCF (non-significant), whereas the
result for CC becomes significant. An endpoint analysis leads to a completely different picture,
with results that are strongly different (significant) from the GLMM model. This illustrates that
the choice between modeling technique is far from an academic question, but can have profound
impact on the study conclusions, ranging from highly significant over borderline (non-) significant
to highly non-significant.

5 Analysis of Second Case Study

We compare analyses performed on the completers only (CC), on the LOCF imputed data, as
well as on the observed data. For the observed, partially incomplete data, GEE is supplemented
with WGEE. Further, a random-intercepts GLMM is considered, based on numerical integration.
The GEE analyses are reported in Table 4 and the random-effects models in Table 6. For GEE,
a working exchangeable correlation matrix is considered. The model has four intercepts and four
treatment effects. Precisely, the marginal regression model takes the form

logit[P (Yij = 1|Ti)] = βj1 + βj2Ti,

where j = 1, . . . , 4 refers to measurement occasion, Ti is the treatment assignment for subject
i = 1, . . . , 240 and Yij is the indicator for whether or not 3 lines of vision have been lost for subject
i at time j. The advantage of having separate treatment effects at each time is that particular
attention can be given at the treatment effect assessment at the last planned measurement occasion,
i.e., after one year. From Table 4 it is clear that the model-based and empirically corrected standard
errors agree extremely well. This is due to the unstructured nature of the full time by treatment
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mean structure. However, we do observe differences in the WGEE analyses. Not only are the
parameter estimates mildly different between the two GEE versions, there is a dramatic difference
between the model-based and empirically corrected standard errors. Nevertheless, the two sets of
empirically corrected standard errors agree very closely, which is reassuring.

When comparing parameter estimates across CC, LOCF, and observed data analyses, it is clear that
LOCF has the effect of artificially increasing the correlation between measurements. The effect is
mild in this case. The parameter estimates of the observed-data GEE are close to the LOCF results
for earlier time points and close to CC for later time points. This is to be expected, as at the start
of the study the LOCF and observed populations are virtually the same, with the same holding
between CC and observed populations near the end of the study. Note also that the treatment
effect under LOCF, especially at 12 weeks and after 1 year, is biased downward in comparison to
the GEE analyses. To properly use the information in the missingness process, WGEE can be used.
To this end, a logistic regression for dropout, given covariates and previous outcomes, needs to be
fitted. Parameter estimates and standard errors are given in Table 5. Intermittent missingness will
be ignored. Covariates of importance are treatment assignment, the level of lesions at baseline (a
four-point categorical variable, for which three dummies are needed), and time at which dropout
occurs. For the latter covariates, there are three levels, since dropout can occur at times 2, 3, or 4.
Hence, two dummy variables are included. Finally, the previous outcome does not have a significant
impact, but will be kept in the model nevertheless. In spite of there being no strong evidence for
MAR, the results between GEE and WGEE differ quite a bit. It is noteworthy that at 12 weeks, a
treatment effect is observed with WGEE which goes unnoticed with the other marginal analyses.
This finding is mildly confirmed by the random-intercept model, when the data as observed are
used.

The results for the random-effects models are given in Table 6. We observe the usual relationship
between the marginal parameters of Table 4 and their random-effects counterparts. Note also
that the random-intercepts variance is largest under LOCF, underscoring again that this method
artificially increases the association between measurements on the same subject. In this case,
unlike for the marginal models, LOCF and in fact also CC, slightly to considerably overestimates
the treatment effect at certain times, in particular at 4 and 24 weeks.

6 Discussion

In this paper, we have indicated that a variety of approaches is possible, when analyzing incomplete
longitudinal data from clinical trials. First, unlike in the continuous case where the linear mixed
model is the main mode of analysis, one has the choice between a marginal model (generalized esti-
mating equations, GEE) and a random-effects approach (generalized linear mixed models, GLMM).
While these may provide similar results in terms of hypothesis testing, things are different when
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the models are used for estimation purposes, because the parameters have quite different meanings.
Both GEE and GLMM can be used when data are incomplete. For GLMM this holds under the
fairly general assumption of an MAR mechanism to operate, while for GEE the stronger MCAR is
required. However, GEE can be extended to weighted GEE, making it also valid under MAR. Cur-
rent statistical computing power has brought both GLMM and WGEE within reach and we have
implemented such analyses in the real-life setting of clinical trials on depression and on macular
degeneration. This underscores that simple but potentially highly restrictive modes of analyses,
such as CC or LOCF, should no longer be seen as the preferred mode of analysis. This message is
in line with the one reached for continuous outcomes (Molenberghs et al 2004).

While in the studies considered here there are no extreme differences between the various analyses
conducted, some differences are noticeable, especially in the second case study (Molenberghs et al
2004). So, generally, caution should be used and it is best to move away from the overly simple
methods.

Note that such a full longitudinal approach, under MAR, is also very sensible, even when one is
interested in an effect at one particular scheduled measurement occasion, say, the treatment effect
at the last scheduled visit. Indeed, an ignorable analysis takes all information into account, not only
from complete observations, but also from incomplete ones, through the conditional expectation of
the missing measurements given the observed ones. Thus, when combined with an analysis where
the treatment allocation is used “as randomized” rather than “as treated”, such an approach is
fully compatible with the intention-to-treat principle.

When there is residual doubt about the plausibility of MAR, one can conduct a sensitivity analy-
sis. Many proposals have been made, but this remains an active area of research. Obviously, a
number of MNAR models can be fitted, provided one is prepared to approach formal aspects of
model comparison with due caution. Such analyses can be complemented with appropriate (global
and/or local) influence analyses. Some sensitivity analyses frameworks are provided by Robins,
Rotnitzky, and Scharfstein (1998), Forster and Smith (1998), Raab and Donnelly (1999), Kenward,
Goetghebeur and Molenberghs (2001), Van Steen et al (2001), and Jansen et al (2003).
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Table 1: Age Related Macular Degeneration Trial. Overview of missingness patterns and the fre-
quencies with which they occur. ‘O’ indicates observed and ‘M’ indicates missing.

Measurement occasion
4 wks 12 wks 24 wks 52 wks Number %

Completers
O O O O 188 78.33

Dropouts
O O O M 24 10.00
O O M M 8 3.33
O M M M 6 2.50
M M M M 6 2.50

Non-monotone missingness
O O M O 4 1.67
O M M O 1 0.42
M O O O 2 0.83
M O M M 1 0.42

Table 2: Depression trial. View 1. GEE, WGEE and GLMM. Tests for (1) the joint null hypothesis
of no treatment effect at none of the time points and (2) the hypothesis of no average treatment
effect.

Joint effects Mean effects
A1 B A1&B1 A1 B A1&B1

(8df) (8df) (16df) (1df) (1df) (2df)
Analysis p p p p (est.,s.e.) p (est.,s.e.) p

CC(GEE) 0.4278 0.9859 0.8444 0.5259 (-2.66;4.19) 0.9165 ( 0.47;4.50) 0.5845
LOCF(GEE) 0.7008 0.9956 0.9768 0.7713 (-1.15;3.96) 0.9070 ( 0.49;4.19) 0.8605
MAR(GEE) 0.6465 0.9931 0.9413 0.6015 (-1.92;3.67) 0.8671 ( 0.65;3.89) 0.6804
MAR(WGEE) 0.1690 0.7601 0.5372 0.5477 ( 2.61;4.34) 0.3883 ( 3.97;4.60) 0.7224
CC(GLMM) 0.7572 0.9743 0.7233 0.4954(-0.40;0.59) 0.2671( 0.64;0.57) 0.0440
LOCF(GLMM) 0.7363 0.9953 0.9763 0.1571(-0.66;0.47) 0.4555(-0.34;0.45) 0.3611
MAR(GLMM) 0.7476 0.9738 0.7152 0.4495(-0.41;0.55) 0.2844( 0.58;0.54) 0.0375
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Table 3: Depression trial. Views 2 and 3. p-values are reported (‘mixed’ refers to the assessment
of treatment at the last visit based on a generalized linear mixed model).

Method Model p-value
CC mixed 0.0463

Pearson’s Chi-squared Test 0.0357
Fisher’s Exact Test 0.0336

LOCF mixed 0.1393
Pearson’s Chi-squared Test 0.1553
Fisher’s Exact Test 0.1553

MAR mixed 0.0500

Table 4: Age Related Macular Degeneration Trial. Parameter estimates (model-based standard
errors; empirically corrected standard errors) for the marginal models: GEE on the CC and LOCF
population, and on the observed data. In the latter case, also WGEE is used.

Effect Par. CC LOCF Observed data
Unweighted WGEE

Int.4 β11 -1.01(0.24;0.24) -0.87(0.20;0.21) -0.87(0.21;0.21) -0.98(0.10;0.44)
Int.12 β21 -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.21;0.21) -1.78(0.15;0.38)
Int.24 β31 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.22;0.22) -1.11(0.15;0.33)
Int.52 β41 -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.72(0.25;0.39)
Tr.4 β12 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.28;0.28) 0.80(0.15;0.67)
Tr.12 β22 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.29;0.29) 1.87(0.19;0.61)
Tr.24 β32 0.48(0.33;0.33) 0.42(0.29;0.29) 0.44(0.30;0.30) 0.73(0.20;0.52)
Tr.52 β42 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37;0.37) 0.74(0.31;0.52)
Corr. ρ 0.39 0.44 0.39 0.33

Table 5: Age Related Macular Degeneration Trial. Parameter estimates (standard errors) for a
logistic regression model to describe dropout.

Effect Parameter Estimate (s.e.)
Intercept ψ0 0.14 (0.49)
Previous outcome ψ1 0.04 (0.38)
Treatment ψ2 -0.86 (0.37)
Lesion level 1 ψ31 -1.85 (0.49)
Lesion level 2 ψ32 -1.91 (0.52)
Lesion level 3 ψ33 -2.80 (0.72)
Time 2 ψ41 -1.75 (0.49)
Time 3 ψ42 -1.38 (0.44)

28



Table 6: Age Related Macular Degeneration Trial. Parameter estimates (standard errors) for the
random-intercept models: Numerical-integration based fits (adaptive Gaussian quadrature) on the
CC and LOCF population, and on the observed data (direct-likelihood).

Effect Parameter CC LOCF Direct lik.
Numerical integration

Int.4 β11 -1.73(0.42) -1.63(0.39) -1.50(0.36)
Int.12 β21 -1.53(0.41) -1.80(0.39) -1.73(0.37)
Int.24 β31 -1.93(0.43) -1.96(0.40) -1.83(0.39)
Int.52 β41 -2.74(0.48) -2.76(0.44) -2.85(0.47)
Trt.4 β12 0.64(0.54) 0.38(0.52) 0.34(0.48)
Trt.12 β22 0.81(0.53) 0.98(0.52) 1.00(0.49)
Trt.24 β32 0.77(0.55) 0.74(0.52) 0.69(0.50)
Trt.52 β42 0.60(0.59) 0.57(0.56) 0.64(0.58)
R.I. s.d. τ 2.19(0.27) 2.47(0.27) 2.20(0.25)
R.I. var. τ2 4.80(1.17) 6.08(1.32) 4.83(1.11)
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