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Lung cancer: a global scourge 

Lung cancer constitutes a major public health problem. Globally, it is the most 

common cancer in males and the fourth most common cancer in females, with 

approximately 1.8 million new cases diagnosed in 2012. Moreover, lung cancer 

represents the leading cause of cancer death worldwide, accounting for about 20% 

of all cancer-related deaths (1). The worldwide relative five-year survival rate of 

lung cancer is extremely poor, ranging from merely 5 to 10%, which is due to the 

fact that it is usually diagnosed at an advanced disease stage when curative 

treatment is limited. This, in turn can be attributed to the lack of symptoms during 

the early phases of lung cancer development (2).  

In Belgium, lung cancer is the leading cause of cancer death in males and the 

second most common cause of cancer death in females. In 2008, the relative five-

year survival rates for lung cancer ranged from 52% (stage I) to 2% (stage IV) 

and from 66% (stage I) to 5% (stage IV) for Belgian men and women, respectively 

(Figure 1.1) (3). Clearly, the prognosis of the patient is inversely related to the 

stage of the disease at time of diagnosis (4). If a closer look is taken at premature 

cancer death, i.e. cancer death before the age of 75 years, lung cancer is the most 

common and second most common cause in Belgian men and women, respectively 

(5). More specifically, 3,718 new cases of lung cancer were diagnosed among 

Belgian men in 2008 and 2,911 of these cases (78%) died as a direct consequence 

of their disease. Similarly, in the same time period, there were 1,470 new cases 

detected among Belgian women, with 1,016 of these patients (69%) dying from 

lung cancer (6).  

 

Figure 1.1. Relative lung cancer survival rates by stage in Belgian men (left) and women 

(right) between 2004 and 2008. Reprinted with permission from Francart et al. (3). 
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Chronic tobacco use is the principal cause of the development of lung cancer, with 

80-90% of all lung cancer cases emerging as a consequence of cigarette smoking 

(7). Consequently, it seems evident that smoking cessation reduces the risk of 

developing lung cancer (8). However, even decades after smoking cessation, ex-

smokers remain at elevated risk for lung cancer compared with people who have 

never smoked. Furthermore, smoking cessation does not have a beneficial impact 

on lung cancer mortality in the short-term, because lung cancer takes about 20 

years to develop (9, 10). Hence, although prevention by means of tobacco control 

should stay the primary focus of public health campaigns, there is an imperative 

need for additional strategies beyond smoking cessation in the fight against lung 

cancer (10, 11). Early detection of lung cancer is required to allow effective 

treatment and to achieve a substantial decline in (premature) lung cancer 

mortality (9, 12).  

Screening  

Screening aims to detect lung cancer in an early stage, i.e. before patients 

experience clinical symptoms and when treatment is the most effective. This early 

detection should benefit the patient by increasing life expectancy and quality of 

life (13-15).  

Criteria for effective screening and their application to lung cancer 

In 2001, Obuchowski et al. (16) formulated ten criteria to evaluate whether 

screening tests are effective or not: two of these criteria apply to the disease 

screened for, five to the offered screening test and three to the available early 

stage treatment options (Table 1.1). 

Table 1.1. Ten criteria for effective screening. 

Characteristics of: Specific criterion: 

Disease Serious consequences 
 High prevalence of detectable preclinical phase 

Screening test Acceptable levels of sensitivity and specificity 

 Detection of disease before critical point 

 Little morbidity 

 Little pseudodisease 

 Affordability and accessibility 

Treatment Existence 

 Effectiveness before symptoms begin 
 Little risks or toxicity 

Reprinted with permission from Obuchowski et al. (16).  

c
o
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Disease 

The poor prognosis of lung cancer due to the lack of symptoms during early phases 

of cancer development makes lung cancer a perfect candidate for screening: even 

a minor advantage from screening could save many lives (17-19).  

Furthermore, to warrant the costs of lung cancer screening, the detectable 

preclinical phase (DPCP) should have a high prevalence in the high-risk target 

population (Figure 1.2). The target population for lung cancer screening consists 

of asymptomatic men and women who are between 55 and 74 years old and who 

have a smoking history of at least 30 pack years (15). In this population, the 

prevalence of DPCP is 2-4% (20). 

 

Figure 1.2. Diagram which displays a time line from birth to death from an individual. The 

natural history of a disease can be separated into a preclinical and a clinical phase. The preclinical phase 

is the time from the onset of disease to the appearance of clinical symptoms, whereas the clinical phase 

starts when clinical symptoms appear. The detectable preclinical phase is part of the preclinical phase, 

i.e. it is the interval of time when the disease is detectable by the screening test. A screening test is only 

effective when the critical point (i.e. when the primary tumor metastasizes) occurs during the detectable 

preclinical phase. CP: critical point; DPCP: detectable preclinical phase. Adapted with permission from 

Obuchowski et al. (16). 

Screening tests 

A screening test should be cost-effective, which means that it should not place a 

massive burden on the health care system and it should not cause more harm 

than good. The latter implies that the part of the population without the disease 

should not be harmed by the screening test and that the number of false positive 

results should be low to prevent unnecessary surgical interventions (15, 21, 22). 
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A cost-effective screening test 1) has acceptable levels of sensitivity and 

specificity, 2) is low-risk, accessible and affordable and 3) reduces disease-related 

mortality. 

It is crucial to select a high-risk target population for screening in order to 

maximize the benefit-risk balance. This population consists of individuals who 

have the largest risk to develop the disease and who will experience the most 

benefits from screening (17, 21, 23). Limiting screening to high-risk individuals 

will lower the number of participants eligible for screening, thereby reducing the 

costs. Additionally, selecting high-risk individuals will also lead to a higher 

prevalence of the disease in the target population and a concomitant decrease in 

the incremental cost-effectiveness ratio (24).  

In order to accurately select high-risk individuals for lung cancer screening, robust 

methods for risk prediction are required (17, 25). Current models to estimate lung 

cancer risk have tended to concentrate on epidemiological and clinical risk factors, 

such as age, gender, smoking behavior, occupational exposure to asbestos, prior 

diagnosis of pneumonia, previous history of cancer and family history of lung 

cancer (26-30).  

Treatment 

Effective treatment (i.e. surgery) is possible when lung cancer is detected in an 

early stage (31). 

Screening biases 

It has to be kept in mind that survival as a determinant of screening effectiveness 

is prone to well-known screening biases, including lead-time bias and 

overdiagnosis bias. Accordingly, an improvement in survival is not necessarily 

equivalent to a decrease in mortality. Hence, randomized controlled trials (RCTs), 

which compare mortality rates between screened individuals and a group of 

controls who do not undergo any form of screening are essential to determine 

whether screening allows to reduce disease-specific mortality, an endpoint for the 

evaluation of screening effectiveness that circumvents screening biases (14, 18, 

23, 32).  



General introduction and aims 

6 
  

Lead-time bias 

The phenomenon of lead-time bias is depicted in Figure 1.3. Lead-time is the 

time between disease detection by screening (before patients experience any 

clinical symptoms) and the moment when the disease would have been diagnosed 

without screening (generally after the patient experiences clinical symptoms). 

Therefore, even when treatment in an early stage has no effect, the survival of 

patients identified by screening seems to be prolonged by the addition of the lead-

time, while in reality the time of death has not been delayed (2, 14, 18).  

 

Figure 1.3. The phenomenon of lead-time bias. In case of an ineffective treatment, early detection 

of a disease by means of screening appears to increase survival, while in reality it has no effect on 

mortality. Adapted with permission from Welch et al. (18).  

Overdiagnosis bias 

Overdiagnosis bias represents the detection of pseudodisease, i.e. slow-growing 

indolent lesions that meet the pathological definition of a certain disease but which 

do not produce clinical symptoms before the patient dies of competing age-related 

causes (18, 33). Again, the detection of many people with pseudodisease will 

increase the survival rate, while mortality remains unaffected (Figure 1.4). 
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Figure 1.4. The phenomenon of overdiagnosis bias. The detection of pseudodisease appears to 

increase survival, while in reality the number of deaths remains unaffected. Adapted with permission 

from Welch et al. (18).  

Lung cancer screening 

Eighty-five percent of all lung cancers represent as non-small cell lung cancer and 

fifteen percent of the patients suffer from small cell lung cancer (SCLC) (15, 34). 

Due to its rapid doubling time and early metastases, it is generally believed that 

screening is not beneficial in patients with SCLC (35, 36). There are various 

methods available that can be used to screen for lung cancer, including chest 

radiography (CXR), sputum cytology and low-dose computed tomography (LDCT).  

Chest radiography and sputum cytology 

Although CXR has been widely used for lung cancer screening in the past, early 

large-scale RCTs failed to demonstrate a beneficial effect of CXR screening alone 

or in combination with sputum cytology on lung cancer mortality (37-41). 

However, many of these studies had methodological limitations (9, 21). Therefore, 

recently, the large Prostate, Lung, Colorectal and Ovarian (PLCO) trial was 

conducted to examine the effectiveness of annual CXR screening compared to 

usual care. The PLCO trial did not show a significant difference in lung cancer 

mortality between CXR screening and usual care, a finding which is consistent 

with the results of earlier RCTs (42). In addition, CXR appears to be a poor 
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diagnostic tool for detecting early stage lung cancer, as it does not allow to detect 

lung tumors smaller than two cm in diameter (43). 

Low-dose computed tomography 

LDCT, a major advance in imaging technology introduced in the mid-1990s, 

renewed interest in lung cancer screening following the disappointing results of 

RCTs using CXR (44, 45). LDCT offers fast image acquisition at a radiation dose 

(± 1.5 millisievert (mSv)) significantly lower than that of a standard CT scan (± 

7 mSv) (13, 46). Nevertheless, the radiation dose necessary to perform LDCT is 

still about ten times larger than that needed for CXR (0.02 mSv) (15, 47).  

Various single-arm cohort studies, including the Early Lung Cancer Action Project, 

have demonstrated that LDCT is far more sensitive in detecting lung cancer than 

CXR (20, 48-57). LDCT screening detects lung cancers at a smaller size (as small 

as 1 mm in diameter) and at an earlier stage which probably offers a higher 

likelihood of surgical cure compared with the lung tumors seen in clinical practice 

or detected by conventional CXR screening (21, 32, 58-60). However, because 

the aforementioned studies had no internal control group, they were subjected to 

screening biases, leaving them unable to answer the question whether LDCT 

screening allows to reduce lung cancer mortality (14, 45, 61). Accordingly, once 

the Lung Screening Study (a feasibility trial) had confirmed that LDCT allows to 

detect more lung cancers than CXR (60, 62), the results of the two largest 

prospective RCTs with lung cancer mortality as a primary endpoint – the National 

Lung Screening Trial (NLST) and the Dutch-Belgian lung cancer screening trial 

(Dutch acronym - NELSON) – were eagerly awaited to ascertain the true benefit 

of LDCT screening. 

National Lung Screening Trial 

The North-American NLST was a multicenter RCT which compared LDCT with CXR 

in the screening of a high-risk population for lung cancer. Remark that the NLST 

was already started before the current risk models were properly validated. Since 

lung cancer is principally due to chronic tobacco use and predominantly occurs in 

elderly people, the NLST selected eligible participants based on age and smoking 

behavior. More specifically, eligible participants for the NLST were aged between 

55 and 74 years and had a smoking history of at least 30 pack years. Former 



CHAPTER 1 

9 
 

smokers were only included in the study if they had quit smoking within the past 

15 years. From the 53,454 enrolled individuals, 26,722 were randomly assigned 

to three annual rounds of LDCT screening, while the remaining 26,732 individuals 

underwent three annual rounds of CXR screening. In all rounds, there was a higher 

rate of positive screening results in the LDCT group (T0: 27%, T1: 28%, T2: 17%) 

than in the CXR group (T0: 9%, T1: 6%, T2: 5%). In addition, LDCT screening 

introduced a stage shift, i.e. the number of early stage lung cancers detected by 

LDCT was increased whereas the number of advanced stage lung cancers was 

decreased relative to CXR screening (63). However, most of the positive results 

in both groups were false positive results. In the LDCT group, the chance that a 

positive result was a true positive result (positive predictive value or PPV) was 

only 3.8% (64).  

Moreover, the NLST researchers showed a 20% relative reduction in lung cancer 

mortality and a 7% relative reduction in death from any cause in the LDCT group 

compared to the CXR group. To avoid one lung cancer death, 320 high-risk 

individuals needed to be screened by LDCT (63). A cost-effectiveness analysis of 

LDCT screening as performed by the NLST researchers showed a cost of $81,000 

per quality-adjusted life-year gained (65). Although these results are already very 

promising, (until today) it is not clear yet whether they also apply to the general 

population. 

Dutch-Belgian lung cancer screening (NELSON) trial 

In Europe, a number of smaller RCTs are ongoing to investigate the mortality 

benefit of LDCT screening (66-70). The European RCTs differ from the NLST in 

that the control group does not undergo any form of screening as opposed to CXR 

screening. So far, three of these studies have demonstrated no mortality benefit 

of annual LDCT screening in their interim reports (66, 67, 69). Nonetheless, it can 

be argued that none of these studies had adequate statistical power at the time 

to identify a significant mortality reduction (12, 17). Currently, the mortality 

results of the second largest trial after the NLST, i.e. the Dutch-Belgian lung 

cancer screening (NELSON) trial, are eagerly awaited in order to confirm the 

findings of the NLST in a separate population (71).  

The Dutch-Belgian NELSON trial evaluated whether three rounds of LDCT with an 

increasing length of screening interval (1, 2 and 2.5 years) relative to no screening 
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at all allows to reduce lung cancer mortality in a population at increased risk for 

lung cancer (71, 72). Note that also the NELSON trial was already begun before 

the existing risk models were accurately validated and that eligible participants 

were selected on the basis of age and smoking behavior. In particular, eligible 

participants for the NELSON trial were aged between 50 and 75 years, had smoked 

15 or more cigarettes a day for more than 25 years ( ≥ 18.75 pack years) or 10 

or more cigarettes a day for more than 30 years (≥ 15 pack years). Former 

smokers were only included in the study if they had quit smoking for less than ten 

years (73). From the 15,822 participants, 7,915 were randomly assigned to three 

rounds of LDCT screening (after 1 year, after 3 years and after 5.5 years) and 7, 

907 individuals were randomly assigned to a control group without screening (74, 

75). For all three screening rounds combined with two-year follow-up, sensitivity 

was 84.6% and specificity was 98.6%. In addition, the chance that a positive 

result was a true positive result (positive predictive value or PPV) was 40.4% and 

the chance that a negative result was a true negative result (negative predictive 

value or NPV) was 99.8%. This implies that more than half of the study 

participants assigned to the screening group were referred for false positive 

results (71). Nevertheless, the PPV observed for two-year follow-up in the 

NELSON trial was already much higher compared to the one found for 

approximately two-year follow-up in the NLST, namely 3.8% (64). In conclusion, 

using LDCT screening with an increasing length of screening interval has a high 

sensitivity and specificity for detecting lung cancer. Nevertheless, the results of 

the mortality analyses are still pending and are expected at the end of 2015 (21). 

The NELSON trial has 80% statistical power to show a relative reduction in lung 

cancer mortality of at least 25% during ten-year follow-up (72, 73). 

Drawbacks of LDCT screening  

The cost-effectiveness of LDCT screening must be rigorously examined. Therefore, 

the benefits of screening (i.e. high sensitivity and reduction in lung cancer 

mortality) need to be weighed against its potential harms and the costs (19). The 

financial costs of LDCT screening that need to be taken into account are the costs 

of the screening examination, the costs of the follow-up diagnostic tests in 

patients who have a positive screening result and the costs of treatment in 

patients who are diagnosed with lung cancer (61). The most important harms of 

LDCT screening are 1) the high rate of false positive results accompanied by 
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follow-up diagnostic tests and possible complications from these procedures, 2) 

the potential of overdiagnosis, and 3) possible radiation-induced carcinogenesis 

(12, 45). These harms entail a lot of additional costs (15).  

False positive results 

The main challenge of LDCT screening is the high rate of false positive results. 

Besides malignant pulmonary lesions, LDCT also identifies benign pulmonary 

lesions, such as inflammation and scars from previous infections (9, 13, 44). In 

the NLST, 96% of all positive screening results in the LDCT group were false 

positive (64). This results in emotional stress, needless financial costs and 

increased risks for healthy people (58). These risks encompass unnecessary 

radiation, biopsies and surgical procedures and are associated with higher 

morbidity and mortality rates (13, 14, 21). 

Overdiagnosis 

A second harm of LDCT screening is overdiagnosis. This refers to 

histopathologically confirmed lung cancers detected by screening that would not 

cause clinical symptoms or lead to death from the patient when left untreated. 

Overdiagnosis results from lesions that are so indolent that the patient will not die 

from them, but rather from competing causes of death (12, 21, 76). 

Consequently, these patients will not benefit from treatment and can only be 

harmed by it, since lung cancer resection is associated with significant morbidity 

and mortality (15, 58). Furthermore, these individuals have to deal with the 

anxiety associated with the diagnosis of lung cancer (18, 33). A recent study 

estimated that about 25% of all lung cancer cases detected by LDCT screening 

represent overdiagnosis (77).  

Radiation exposure 

A consequence of false positive results and overdiagnosis is additional exposure 

to ionizing radiation (1.5 mSv per LDCT examination) during unnecessary follow-

up diagnostic tests (46). Although the dose from a single examination is small, 

the associated risks are not negligible. In particular, the excess radiation can 

interact synergistically with the damaging effects of cigarette smoking and might 

therefore induce the development of cancer, which can emerge even decades after 

exposure (14, 78). While the risks from a single examination are small, Brenner 
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et al. (78) have shown that annual LDCT screening in 50-year-old female smokers 

adds about 0.85% to the population-based expected risk of 16.9%, accounting 

for a 5% increase in risk. In 50-year-old male smokers, annual LDCT screening 

adds about 0.23% to the expected risk of 15.8%, a 1.5% increase in risk. 

Consequently, a mortality benefit of at least 5% is required to outweigh these 

radiation-related risks. Furthermore, de Gonzalez et al. (79) have revealed that 

lung cancer mortality needs to be reduced by 10% to offset the radiation-related 

risks of three annual LDCT screening rounds in 50-year-old smokers. Hence, the 

relative reduction of 20% in lung cancer mortality obtained in the NLST is sufficient 

to outweigh the radiation-related risks (63).  

The need for complementary diagnostic cancer biomarkers  

Due to the high false positive rate of LDCT, there is an increasing interest in 

improving the accuracy of current risk models by incorporating lung cancer risk-

related biomarkers in order to better select high-risk individuals eligible for LDCT 

screening, thereby lowering the false positive rate and the corresponding financial 

burden (80, 81). Biomarkers are biological characteristics that are objectively 

measured and evaluated as indicators of normal biological processes, pathological 

processes or pharmacologic responses to a therapeutic intervention (82). A 

promising and clinically applicable biomarker for risk prediction should ideally be 

inexpensive, obtainable in a non-invasive way and exhibit a high sensitivity and 

specificity (83, 84). A blood-based diagnostic biomarker represents an appealing 

option to complement LDCT screening since blood samples can be obtained non-

invasively and with minimal risk for the patient (85-87). Accordingly, recent 

studies have investigated the role of cell-free DNA and RNA, proteins and 

metabolites as diagnostic biomarkers for cancer (85, 88-92). Moreover, in the last 

couple of decades the -omics of systems biology, genomics, transcriptomics, 

proteomics and metabolomics have become increasingly popular (Figure 1.5) 

(93, 94). These sciences permit the global analysis of DNA, mRNA, proteins and 

metabolites in biological systems, respectively (95).  
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Figure 1.5. The –omics cascade of systems biology. Adapted with permission from Patti et al. (96).  

Metabolomics 

Metabolomics, also sometimes referred to as metabonomics, is defined as the 

analysis of the complete set of metabolites, i.e. the metabolome, within a 

biological system (97, 98). Metabolomics is an emerging field that combines 

analytical methods with multivariate projection methods (99). Although it is 

complementary to the other –omics fields, metabolomics offers a number of 

benefits (100, 101). Firstly, in contrast to the other –omics fields, it is high 

throughput and relatively cheap on a per sample basis (102-104). In addition, the 

metabolome is further down the line from gene to function and therefore reflects 

changes in the observed phenotype (105, 106). The metabolic phenotype is the 

end result of genetic and environmental (diet, physical activity) influences and 

provides a readout of the metabolic state of an individual (107). It is crucial to 

note that the metabolic phenotype is not only affected by disease processes, but 

also by confounding factors, such as age, gender, ethnicity, diet, drug 

administration and lifestyle (107-113).  

Metabolomics studies are broadly divided into targeted and untargeted analyses. 

The untargeted approach, also referred to as metabolic profiling, focuses on the 

profiling of the total complement of metabolites in a biological sample. The 

targeted approach concentrates on the identification and quantification of a 

predetermined set of metabolites, such as those involved in a specific biochemical 

pathway (114). The Human Metabolome Project estimated that the number of 

metabolites is currently more than 40,000, an increase of 600% relative to the 

estimated number of 6,500 metabolites in 2007 (115, 116).  
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The main analytical platforms used in metabolomics studies are based on nuclear 

magnetic resonance (NMR) spectroscopy or mass spectrometry (MS) (103, 114, 

117-119). The latter is combined with chromatographic separation of the 

metabolites using either gas- or liquid chromatography (103, 120). NMR 

spectroscopy and MS have their own specific advantages and limitations and are 

therefore considered to be ideally complementary. The advantages and limitations 

of both techniques are outlined in Table 1.2. Although MS is significantly more 

sensitive than NMR spectroscopy, the latter is highly reproducible (>98%), 

quantitative and non-destructive, provides structural information and requires 

minimal sample preparation (82, 103, 114, 121-123). Currently, no single 

analytical platform enables to identify and quantify all metabolites within a 

biological sample owing to their significant chemical diversity (114, 124).  

Table 1.2. Advantages and limitations of NMR spectroscopy and MS, the main analytical 

platforms used in metabolomics studies.  

 NMR spectroscopy MS 

Sample volume Large sample (200-400 µl) Small sample (1-10 µl) 

Sample handling All metabolites with 

concentrations above the 

detection limit can be detected 

in one measurement 

Requires chromatographic 

separation techniques for 

different classes of metabolites 

Sample recovery Non-destructive Destructive 

Sample preparation Minimal (addition of D2O and 

chemical shift reference) 

Substantial (separation 

techniques) 

Sensitivity Low (µM range) High (pM range) 

Structural information High Low 

Analytical reproducibility Very high Moderate 

D2O: deuterium oxide; MS: mass spectrometry; NMR: nuclear magnetic resonance. Adapted from Lindon 

et al. (103), Van et al. (98), Bictash et al. (108), Aboud et al. (125) and Emwas et al. (114, 117).  

NMR spectroscopy 

NMR-based metabolomics investigations of biofluids have been in use since the 

1980s (126, 127). NMR spectroscopy takes advantage of the fact that nuclei which 

possess a nuclear spin exist at different energy levels when placed in a strong 

magnetic field (94, 100). NMR active nuclei used to examine biological samples 
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encompass 1H, 13C, 15N, 19F and 31P. Of these nuclei, the proton (1H) is the most 

commonly used in the field of NMR-based metabolomics as it has the highest 

relative sensitivity, a natural abundance of 99.9%, and as it is ubiquitously 

present in metabolites (95, 106). A more thorough explanation of the basics of 

1H-NMR spectroscopy is added at the end of this chapter. 

Workflow of a 1H-NMR-based metabolomics study  

Figure 1.6 shows a flow chart of the steps required for performing 1H-NMR-based 

metabolomics studies. These steps include sample collection, storage and 

preparation, data acquisition, data processing and data analysis and biological 

interpretation. To minimize the impact of confounding factors, all experimental 

steps should be optimized carefully and performed according to standard 

operating procedures (128, 129). 

 

Figure 1.6. Overview of the steps required for performing a 1H-NMR-based metabolomics 

study. Reprinted with permission from Dona et al. (130).  
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Sample collection, storage and preparation 

1H-NMR-based metabolomics studies mostly focus on biofluids, such as serum, 

plasma and urine (130-132). These biofluids can be obtained easily and in a 

relatively non-invasive way. Moreover, these body fluids can be analyzed by NMR 

with minimal sample preparation (82). In this thesis, the focus will be put on blood 

plasma.  

Because of diurnal variation and to minimize variation associated with diet, it is 

desirable to collect blood samples in the morning and after an overnight fast (8-

12 h) (110, 113, 133, 134). In order to enable collection of plasma, blood should 

be collected into tubes that contain an anti-coagulant agent in order to prevent 

clotting. For 1H-NMR analysis of plasma, lithium-heparin is the preferred anti-

coagulant because the signals of other anti-coagulants such as ethylenediamine 

tetraacetic acid and sodium citrate interfere with metabolite signals in the 1H-NMR 

spectrum (95). Blood samples should be cooled until centrifugation in order to 

quench the metabolism of blood cells (95). After centrifugation, plasma should be 

collected in multiple aliquots in order to avoid erroneous results due to several 

freeze/thaw cycles. In order to ensure sample stability, long-term storage of 

plasma samples should be at -80°C (95, 128, 134). Furthermore, prior to 1H-NMR 

analysis the thawed plasma sample is centrifuged to remove any cell debris. 

Furthermore, a deuterated solvent (deuterium oxide) is added as a magnetic field 

lock signal and a chemical shift reference is added as a calibration standard. For 

water-soluble metabolites, trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) 

is often employed (95, 114, 135, 136). 

Data acquisition 

Most 1H-NMR-based metabolomics studies of biofluids rely on 1D-NMR spectra. 

Since it takes only a few minutes to acquire these spectra, 1D-1H-NMR is ideally 

suited for high-throughput screening (103). 1H-NMR spectra of blood plasma (and 

serum) display broad signals from macromolecules (proteins and lipoproteins) 

with sharp peaks from metabolites superimposed on them (106). The broad 

signals of proteins and lipoproteins are generally attenuated by applying the Carr-

Purcell-Meiboom-Gill (CPMG) pulse sequence in order to improve the visibility of 

sharp signals from metabolites (82, 137). Furthermore, 1H-NMR spectra of 

biofluids show a large signal arising from the water protons which obscures a large 
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part of the 1H-NMR spectrum if unsuppressed. In general, this dominant signal is 

eliminated by implementing water suppression in the pulse sequence (103, 106).  

Due to the narrow chemical shift range (10 parts per million (ppm)), 1D-1H-NMR 

spectra of biofluids are very crowded and suffer from severe spectral overlap 

(138). As a result, assign NMR resonances to a specific metabolite is a challenging 

task, leading to uncertainties in signal assignments (114, 136). Assigning signals 

in 1H-NMR spectra is generally based on chemical shifts, relative intensities, signal 

multiplicities and coupling constants. Furthermore, the presence of a suspected 

metabolite in the 1H-NMR spectrum can be confirmed by adding a known 

compound to the studied biofluid (i.e. spiking) (106).  

The spectral overlap issue is especially encountered on low- to medium-field NMR 

spectrometers (400-600 MHz), the instruments which are easy accessible in most 

research institutes and therefore mostly used in metabolomics studies (82, 139). 

Higher-field NMR instruments (800-950 MHz) provide an improved spectral 

resolution and signal-to-noise ratio (S/N) (106, 140, 141). Next to using higher-

field NMR instruments, 2D-NMR experiments can be performed to improve signal 

dispersion and to elucidate the connectivities between signals, thereby increasing 

the confidence in a correct metabolite assignment (106, 142). However, the 

significantly longer acquisition times (hours instead of minutes for a 1D-NMR 

experiment) and the complex data analysis restrict common use of 2D-NMR 

experiments in metabolomics research (114, 136).  

Data processing 

Data processing is an essential step in the 1H-NMR workflow in order to convert 

the obtained raw data in such a way that subsequent data analysis is easier and 

more accurate (95). First, the acquired 1H-NMR spectra are subjected to manual 

phase correction, automated baseline correction and spectral referencing using 

NMR software (82). Subsequently, the spectra are subdivided into fixed (e.g. 0.01 

or 0.04 ppm) regions (so-called bins or buckets) or in variably sized bins (i.e. 

intelligent bucketing) in order to reduce the number of data points and the impact 

of pH-induced changes on the chemical shift (95, 143, 144). Fixed spectral binning 

has the disadvantage of the possibility of splitting peaks between adjacent bins 

(114). The NMR spectra needs to be normalized in order to account for 

concentration differences between plasma samples (95, 136). The most common 
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method of normalization in the field of 1H-NMR-based metabolomics is to divide 

each integral value by the total sum of integration values (i.e. integral or constant 

sum normalization) (145-147). However, this method is prone to the presence of 

extreme concentrations of single metabolites (e.g. glucose) in plasma samples, 

hampering subsequent accurate data analysis (147, 148). Furthermore, the 

normalized data needs to be scaled in order to avoid that the most abundant 

metabolites will dominate the constructed statistical models, while low-intensity 

metabolites, although biologically relevant, will be disregarded. A number of 

scaling methods are commonly used, i.e. mean centering, unit variance scaling, 

Pareto scaling and variable stability scaling (82, 147, 149, 150). The most used 

combination is mean centering and Pareto scaling (95). The end result of data 

processing is a table consisting of rows corresponding to the observations and 

columns corresponding to the metabolic variables (i.e. integration values), which 

will be subjected to data analysis (136).  

Data analysis and biological interpretation 

The objective of pattern recognition methods such as multivariate statistical 

analyses is to reduce the complexity of the generated NMR data and to present 

the information in a simple and interpretable format in order to extract useful 

information from the flood of data, i.e. the integration values which contribute 

most to the discrimination between the patients and the controls and the 

underlying disturbed biochemical pathways (95, 120, 136, 151). The first step is 

unsupervised principal component analysis (PCA), an exploratory tool which 

summarizes the majority of the variation in the original dataset into a small 

number of principal components (PCs) without a priori knowledge of sample class, 

thereby reducing the dimensionality of the data (120, 152). Each PC is a linear 

combination of the original variables whereby each successive PC describes the 

maximum amount of variance which was not accounted for by the preceding PCs 

(82, 95). Subsequently, supervised orthogonal partial least squares discriminant 

analysis (OPLS-DA) is performed in order to construct a classification model that 

optimally differentiates between healthy and diseased subjects (120, 153). In 

order to avoid model overfitting, the predictive ability of the constructed 

classification model needs to be evaluated in an independent (i.e. data not used 

to construct the model) validation set (103, 108). More information on 
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multivariate projection methods which can be used in 1H-NMR-based 

metabolomics studies is added at the end of this chapter.  

1H-NMR-based metabolomics in cancer research 

1H-NMR-based metabolomics holds great potential in cancer diagnosis, prediction 

of therapy response and development of new therapies since cancer cells are 

characterized by profound metabolic alterations (154, 155). More specifically, the 

complete metabolism of cancer cells is reorganized to meet their aberrant 

demands for nutrients to support growth, proliferation and survival under 

suboptimal conditions (156-158).  

Recently, the hallmarks of cancer, i.e. self-sufficiency in growth signals, 

insensitivity to anti-growth signals, evasion of apoptosis, limitless replicative 

potential, sustained angiogenesis and tumor invasion and metastasis, described 

by Hanahan et al. were revisited (159). Deregulated cellular metabolism is now 

included amongst the hallmarks of cancer (Figure 1.7) (160). In this thesis, two 

major metabolic pathways which are altered in cancer cells are discussed, i.e. 

enhanced “aerobic” glycolysis and increased glutaminolysis.  

 

Figure 1.7. The revisited hallmarks of cancer. Deregulated cellular metabolism is now included 

among the hallmarks of cancer. Adapted with permission from Hanahan et al. (160). 
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Metabolic reprogramming in cancer cells 

In the presence of O2 (aerobic conditions), normal cells predominantly metabolize 

glucose to pyruvate through glycolysis and fully oxidize the produced pyruvate to 

CO2 in the mitochondria through the Krebs cycle and oxidative phosphorylation 

(OXPHOS) (Figure 1.8). In the absence of O2 (anaerobic conditions), normal cells 

reduce pyruvate and NAD+ to lactate and nicotinamide adenine dinucleotide 

(NADH) by means of lactate dehydrogenase (LDH) (161). Subsequently, lactate 

is released into the extracellular space by monocarboxylate transporter 4 (MCT4), 

regenerating NAD+ in order to continue glycolysis (Figure 1.9). The process that 

converts glucose into pyruvate generates 2 molecules of adenosine triphosphate 

(ATP) per molecule of glucose, whereas the complete oxidation of glucose through 

the Krebs cycle and OXPHOS produces 30 molecules of ATP (155). 

 

Figure 1.8. The metabolism of glucose in normal cells under aerobic conditions. Acetyl-CoA: 

acetyl coenzyme A; ADP: adenosine diphosphate; ATP: adenosine triphosphate; glucose-6-P: glucose-6-

phosphate; GLUT: glucose transporter; NADH: nicotinamide adenine dinucleotide. Adapted with 

permission from Bracke et al. (162). 
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Figure 1.9. The metabolism of glucose in normal cells under anaerobic conditions. Acetyl-CoA: 

acetyl coenzyme A; ADP: adenosine diphosphate; ATP: adenosine triphosphate; glucose-6-P: glucose-6-

phosphate; GLUT: glucose transporter; LDH-A: lactate dehydrogenase A; MCT: monocarboxylate 

transporter; NADH: nicotinamide adenine dinucleotide. Adapted with permission from Bracke et al. (162). 

Otto Warburg observed decades ago that cancer cells consume glucose at a 

surprisingly high rate compared to normal cells. Furthermore, in contrast to 

normal cells cancer cells preferentially metabolize glucose via glycolysis and 

secrete the glucose-derived carbon as lactate even in the presence of sufficient 

O2 to support mitochondrial OXPHOS, a phenomenon referred to as “aerobic 

glycolysis” or the Warburg effect (Figure 1.10) (163, 164). The widely used 

diagnostic technique positron emission tomography takes advantage of the 

Warburg effect to image cancer cells using the radioactive tracer 18F-

fluorodeoxyglucose (165).  
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Figure 1.10. The metabolism of glucose in cancer cells. Even in the presence of sufficient O2 to 

maintain mitochondrial OXPHOS, cancer cells prefer to convert glucose into lactate. This phenomenon is 

known as the Warburg effect or “aerobic glycolysis”. Acetyl-CoA: acetyl coenzyme A; ADP: adenosine 

diphosphate; ATP: adenosine triphosphate; glucose-6-P: glucose-6-phosphate; GLUT: glucose 

transporter; LDH-A: lactate dehydrogenase A; MCT: monocarboxylate transporter; NADH: nicotinamide 

adenine dinucleotide. Adapted with permission from Bracke et al. (162). 

Besides “aerobic glycolysis”, cancer cells exhibit increased uptake and metabolism 

of glutamine (Gln) (166). Gln is deaminated to glutamate (Glu) by the 

mitochondrial enzyme glutaminase (GLS). Subsequently, Glu is transformed into 

α-ketogluterate (α-KG) (glutaminolysis), an intermediate of the Krebs cycle, by 

glutamate dehydrogenase (158, 167, 168). Gln-derived α-KG can then be oxidized 

to malate or oxaloacetate (OAA) (anaplerosis), thereby sustaining Krebs cycle 

function despite constant efflux of intermediates to support biosynthetic pathways 

(169, 170). Furthermore, Gln-derived α-KG can be converted into citrate via 

reductive carboxylation (171).  
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Causes of the metabolic transformation 

Otto Warburg hypothesized that irreversible mitochondrial dysfunction causes the 

switch from OXPHOS to glycolysis in cancer cells in order to compensate for the 

loss of ATP (163). However, it is now clear that the oxidative capacity of 

mitochondria is not impaired in most cancer cells and that the Warburg effect has 

to be perceived as an uncoupling of glycolysis and OXPHOS and not as a switch 

from OXPHOS to glycolysis (172-175). Instead, the metabolic transformation of 

cancer cells is the result of the activation of oncogenes and/or the inactivation of 

tumor suppressor genes, indicating that it is intrinsically linked to oncogenic 

transformation (176-178). Moreover, the adaptation of cancer cells to unfavorable 

conditions (i.e. the hypoxic microenvironment) plays a central role in the 

metabolic transformation of cancer cells (158, 179). In the following sections, the 

most important factors involved in the metabolic transformation of cancer cells 

are discussed.  

Oncogenes and tumor suppressor genes 

PI3K-AKT pathway 

The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is one of the most 

commonly altered signaling pathways in cancer cells. This pathway is activated 

when a growth factor binds to its growth factor receptor, thereby activating PI3K, 

the kinase which converts phosphatidylinositol-4,5-diphosphate (PIP2) to 

phophatidylinositol-3,4,5-triphosphate (PIP3). The phosphatase phosphate and 

tensin homologue (PTEN) catalyzes the opposite reaction, dephosphorylating PIP3 

to PIP2, thereby inhibiting the activation of the PI3K-AKT pathway. PIP3 attracts 

the serine/threonine kinase AKT (or protein kinase B) and phosphoinositide-

dependent kinases, which phosphorylate and activate AKT (162). Constitutive 

activation of the PI3K-AKT pathway is due to overexpression of growth factors, 

overexpression of growth factor receptors, activating mutations in PI3K or AKT 

and/or inactivating mutations in PTEN (177).  

Activation of AKT by phosphorylation results in enhanced cellular glucose uptake 

by inducing the expression and membrane translocation of glucose transporters 

(156, 180). Furthermore, activated AKT stimulates “aerobic glycolysis” by 

activation of the glycolytic enzymes hexokinase-II (HK-II) and 
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phosphofructokinase-1 (PFK-1) (177). Activation of AKT also induces the 

translocation of HK-II to the outer mitochondrial membrane where it binds to the 

voltage-dependent anion channel (VDAC). Translocation of HK-II makes it less 

sensitive to product feedback inhibition and brings it closer to OXPHOS-derived 

ATP, thereby increasing the rate at which phosphorylation of glucose occurs. 

Additionally, the association of HK-II with VDAC prevents binding of pro-apoptotic 

factors (e.g. cytochrome c and b-cell lymphoma-2 (bcl-2) proteins bax and bcl-2) 

to VDAC, thereby linking metabolic reprogramming to apoptosis inhibition (174, 

181, 182). The impact of constitutive activation of the PI3K-AKT pathway in cancer 

cells is depicted in Figure 1.11.  

 

Figure 1.11. AKT as a regulator of “aerobic glycolysis”. Constitutive activation of the PI3K-AKT 

pathway in cancer cells results in enhanced glucose uptake, increased “aerobic glycolysis” and inhibition 

of apoptosis. Acetyl-CoA: acetyl coenzyme A; ATP: adenosine triphosphate; Bcl-2: b-cell lymphoma-2; 

cyt c: cytochrome c; glucose-6-P: glucose-6-phosphate; GLUT: glucose transporter; HK-II: hexokinase-

II; MCT: monocarboxylate transporter; pAKT: phosphorylated AKT; PDK: phosphoinositide-dependent 

kinases; PFK-1: phosphofructokinase-1; PI3K: phosphatidylinositol-3-kinase; PIP2: phosphatidylinositol-

4,5-diphosphate; PIP3: phosphatidylinositol-3,4,5-triphosphate; PTEN: phosphate and tensin 

homologue; VDAC: voltage-dependent anion channel. Adapted with permission from Bracke et al. (162). 

c-myc 

The transcription factor c-myc is often overexpressed in cancer cells. Once 

activated, c-myc forms a complex with its co-factor max. Subsequently, this 
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complex binds to E-boxes and induces transcription of several target genes 

involved in the regulation of glucose and glutamine metabolism (177). 

Overexpression of c-myc induces the expression of glucose transporters and 

stimulates “aerobic glycolysis” by activating nearly all glycolytic enzymes, e.g. 

HK-II, PFK-1, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate 

kinase (PK), and LDH-A (183, 184). C-myc also regulates Gln uptake and 

metabolism. More specifically, it stimulates the expression of Gln transporters and 

increases the activity of GLS, the enzyme that converts Gln into Glu (177, 185). 

The influence of overexpressed c-myc in cancer cells is illustrated in Figure 1.12.  

 

Figure 1.12. c-myc as an activator of “aerobic glycolysis”. Overexpression of c-myc in cancer cells 

induces the expression of glucose transporters and promotes “aerobic glycolysis” as well as glutamine 

uptake and metabolism. acetyl-CoA: acetyl coenzyme A; ENO: enolase; GAPDH: glyceraldehyde-3-

phosphate dehydrogenase; Gln: glutamine; GLS: glutaminase; Glu: glutamate; glucose-6-P: glucose-6-

phosphate; GLUT: glucose transporter; HK-II: hexokinase-II; LDH-A: lactate dehydrogenase A; MCT: 

monocarboxylate transporter; NADH: nicotinamide adenine dinucleotide; PFK-1: phosphofructokinase-1; 

PK: pyruvate kinase. Adapted with permission from Bracke et al. (162). 

p53 

In normal cells, the transcription factor p53 is activated by DNA damage. 

Subsequently, it inhibits the cell cycle in order to permit DNA repair. If DNA repair 

is not possible anymore, it induces apoptosis (177). As part of its tumor 

suppressor function, it promotes mitochondrial OXPHOS and inhibits glycolysis 
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(177). However, in most cancers p53 is mutated, inducing the opposite effect: 

stimulation of “aerobic glycolysis” and inhibition of mitochondrial OXPHOS. Loss 

of function of p53: 1) stimulates glucose uptake by promoting the expression of 

glucose transporters, 2) activates the glycolytic enzyme phosphoglycerate mutase 

(PGM), 3) prevents expression of the gene encoding cytochrome c oxidase 2, 

whose product is required for the assembly of the cytochrome c oxidase complex 

(complex IV) of the mitochondrial respiratory chain and 4) inhibits activation of 

TP53-induced glycolysis and apoptosis regulator, an enzyme which decreases the 

levels of fructose-2,6-biphosphate, a potent activator of the glycolytic enzyme 

PFK-1 (177, 186, 187). The impact of loss of function of p53 in cancer cells is 

depicted in Figure 1.13.  

 

Figure 1.13. p53 as a regulator of “aerobic glycolysis” and mitochondrial OXPHOS. Loss of 

function of p53 in cancer cells induces the expression of glucose transporters, promotes “aerobic 

glycolysis” and suppresses mitochondrial OXPHOS. Acetyl-CoA: acetyl coenzyme A; fru-2,6-P2: fructose-

2,6-biphosphate; glucose-6-P: glucose-6-phosphate; GLUT: glucose transporter; MCT: monocarboxylate 

transporter; OXPHOS: oxidative phosphorylation; PFK-1: phosphofructokinase-1; PGM: 

phosphoglycerate mutase; SCO2: cytochrome c oxidase 2; TIGAR: TP53-induced glycolysis and apoptosis 

regulator. Adapted with permission from Bracke et al. (162). 

Adaptation to the hypoxic microenvironment  

Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor 

consisting of a labile α- and a stabile β-subunit. Under normal oxygen (normoxic) 
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conditions, prolyl residues of HIF-1α are hydroxylated by prolyl-4-hydroxylase 

domain proteins (PHDs). Subsequently, hydroxylated HIF-1α is ubiquitinated by 

the von Hippel Lindau (VHL) protein and degraded by the proteasome (188).  

However, as solid tumors proliferate rapidly, they outgrow the local blood supply, 

leading to hypoxia and concomitant stabilization of HIF-1α. Consequently, it enters 

the nucleus, heterodimerizes with HIF-1β and induces the expression of several 

genes involved in glucose metabolism, angiogenesis, invasion and survival (177, 

189, 190). Stabilization of HIF-1α induces “aerobic glycolysis” by means of 

induction of the expression of glucose transporters to enhance glucose uptake, 

upregulation of the glycolytic enzymes HK-II, PGM and LDH-A as well as the 

plasma membrane MCT4 which transports lactate into the extracellular space 

(191, 192). In addition, it attenuates mitochondrial OXPHOS by activating the 

gene encoding pyruvate dehydrogenase kinase-1. This enzyme phosphorylates 

and inactivates the pyruvate dehydrogenase (PDH) complex, preventing the 

conversion of pyruvate into acetyl coenzyme A (acetyl-CoA) by PDH and thereby 

promoting “aerobic glycolysis” (193, 194).  

It is now clear that besides hypoxia, also oncogenic events contribute to the 

stabilization of HIF-1α in cancer cells. These events give rise to pseudohypoxia, a 

condition in which hypoxic signaling is preserved in normoxic conditions (195). 

For instance, the activation of the PI3K-AKT pathway and the inactivation of the 

VHL protein lead to the stabilization of HIF-1α under pseudohypoxia (188, 196-

198). Moreover, loss-of-function mutations of succinate dehydrogenase and/or 

fumarate hydratase lead to the accumulation of the Krebs cycle intermediates 

succinate and/or fumarate, which interfere with the α-KG-dependent prolyl 

hydroxylation of HIF-1α by PHDs, thereby preventing degradation of HIF-1α under 

normoxic conditions (199-201). The influence of HIF-1α stabilization in cancer 

cells is illustrated in Figure 1.14.  
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Figure 1.14. HIF-1α stabilization as a regulator of glycolysis and mitochondrial OXPHOS. 

Stabilization of HIF-1α promotes glucose uptake and “aerobic glycolysis” and suppresses mitochondrial 

OXPHOS. acetyl-CoA: acetyl coenzyme A; ADP: adenosine disphosphate; ATP: adenosine triphosphate; 

FH: fumarate hydratase; glucose-6-P: glucose-6-phosphate; GLUT: glucose transporter: HK-II: 

hexokinase-II; LDH-A: lactate dehydrogenase A; MCT: monocarboxylate transporter; NADH: 

nicotinamide adenine dinucleotide; OH: hydroxylation; PDH: pyruvate dehydrogenase; PDK-1: pyruvate 

dehydrogenase kinase-1; PGM: phosphoglycerate mutase; PHDs: prolyl-4-hydroxylase domain proteins; 

PI3K: phosphatidylinositol-3-kinase; SDH: succinate dehydrogenase; Ub: ubiquitination; VHL: von Hippel 

Lindau. Adapted with permission from Bracke et al. (162). 

Advantages of the metabolic transformation for cancer cells 

Although the preferential use of “aerobic glycolysis” appears to be unfavorable for 

cancer cells, it offers several advantages for them (190). In the following sections, 

the diverse benefits of the glycolytic switch and increased uptake of glutamine for 

cancer cells are described.  

Survival under conditions of fluctuating oxygen availability 

Cancer cells which rely on “aerobic glycolysis” for ATP production are able to 

survive under unfavorable conditions encountered within the microenvironment 

(e.g. fluctuating oxygen and nutrient availability), while cancer cells which depend 

on OXPHOS cannot produce enough ATP under hypoxia and die (202).  
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Promotion of invasion and metastasis 

“Aerobic glycolysis” in cancer cells leads to acidification of the microenvironment 

due to the action of MCTs which co-transport H+ with monocarboxylate anions 

such as lactate (203). Extracellular acidification promotes invasion and metastasis 

by pH-dependent activation of cathepsins and metalloproteinases that disrupt 

extracellular matrix and basement membranes (204). Furthermore, acidification 

of the microenvironment restrains anticancer T-cell immune responses (205). 

Defense against oxidative stress 

Increased “aerobic glycolysis” leads to the production of reducing equivalents in 

the form of nicotinamide adenine dinucleotide phosphate (NADPH), resulting in a 

good redox status and therefore a decrease in reactive oxygen production and 

oxidative stress in cancer cells (166, 175, 206). 

Evasion from apoptosis 

The glycolytic switch protects cancer cells from apoptosis. The link between 

metabolic reprogramming and resistance to apoptosis is caused by the association 

of HK-II to the outer mitochondrial membrane. HK-II competes with pro-apoptotic 

factors for binding to VDAC and impacts the balance between pro- and anti-

apoptotic factors which regulate membrane permeabilization (207).  

Production of ATP at a faster rate 

Although “aerobic glycolysis” is less efficient than the Krebs cycle and OXPHOS in 

yielding ATP (2 molecules of ATP per molecule of glucose relative to 30 molecules 

of ATP), it can generate more ATP than OXPHOS by producing it at a faster rate 

(208).  

Supply of building blocks for biosynthetic processes 

Last but not least, enhanced “aerobic glycolysis” and the metabolism of glutamine 

provide building blocks required for the biosynthesis of macromolecules (nucleic 

acids, proteins and lipids) essential for cell division, thereby supporting the 

creation of new daughter cells (190, 209, 210). In the following sections, the 

biosynthesis of nucleic acids and lipids in cancer cells are described in more detail.  
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Biosynthesis of nucleic acids 

A key biosynthetic pathway fed by the first steps of the glycolytic pathway is the 

pentose phosphate pathway (PPP), which consists of a non-reversible oxidative 

and a reversible non-oxidative branch. The oxidative branch of the PPP is initiated 

by the conversion of the glycolytic intermediate glucose-6-phosphate to 6-

phosphogluconolactone by glucose-6-phosphate dehydrogenase. This branch 

generates ribose-5-phosphate, a critical precursor for nucleic acids, and NADPH 

which is required to facilitate biosynthetic reactions and to combat oxidative 

stress. In contrast, fructose-6-phosphate and glyceraldehyde-3-phosphate are 

shunted in the non-oxidative branch of the PPP which produces ribose-5-

phosphate.  

Cancer cells prefer to synthesize nucleic acids via the non-oxidative branch of the 

PPP due to the action of PI3K-AKT, c-myc, p53 and HIF-1 (211). Moreover, cancer 

cells promote the biosynthesis of nucleic acids by the selective expression of the 

M2 embryonic isoform of PK (PKM2) instead of the usual somatic M1 isoform. The 

M2 isoform can switch between a highly active tetrameric form and a less active 

dimeric form. Phosphorylation by tyrosine kinases renders PKM2 inactive, causes 

a bottleneck, slowing down the rate of glycolysis at the end and increasing the 

availability of upstream glycolytic intermediates for the biosynthetic PPP (212-

214).  

Biosynthesis of lipids 

The breakdown of glucose via the glycolytic pathway results in the formation of 

mitochondrial acetyl-CoA which condenses with OAA to form citrate. 

Subsequently, citrate is exported from mitochondria to the cytosol where it is 

converted to acetyl-CoA and OAA by the enzyme ATP citrate lyase (ACLY). Next, 

acetyl CoA carboxylase (ACC) converts acetyl-CoA to malonyl-CoA. Finally, fatty 

acid synthase (FAS) condenses acetyl-CoA and malonyl-CoA in fatty acids (161, 

190). Cancer cells utilize these fatty acids to synthesize lipids, which are required 

to assemble membranes and to modify membranes-targeted proteins (176, 215).  

The export of citrate needs to be compensated in order to maintain the function 

of the Krebs cycle. Therefore, Gln-derived α-KG is converted to OAA via an 

anaplerotic reaction (see section 7.2: increased uptake and metabolism of 
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glutamine) (161, 190). Moreover, Gln-derived α-KG can be converted to citrate 

via reductive carboxylation by isocitrate dehydrogenase (171, 216, 217).  

The increased lipid synthesis in cancer cells is predominantly regulated by the 

PI3K-AKT pathway, which activates the lipogenic transcription factor sterol 

regulatory element binding protein-1 and thereby results in the overexpression of 

the lipogenic enzymes ACLY, ACC and FAS (218, 219).  

Application of metabolomics in lung cancer research 

In the past decade, several studies have investigated lung cancer metabolism. 

Most of these studies employed MS to study lung cancer-induced metabolic 

alterations in tumor tissue (220), plasma (221-225), serum (226-228) or urine 

(229), while only a few studies were based on 1H-NMR spectroscopy. Although 

metabolic phenotyping of plasma/serum has the benefit to evaluate more directly 

the complex interaction between tumor and host, the majority of these 1H-NMR-

based metabolomics studies focused on the metabolic composition of lung cancer 

tissue (230, 231) rather than on body fluids (232, 233). To the best of our 

knowledge, only the Portuguese research group of Rocha et al. (232) examined 

lung cancer-induced metabolic changes in plasma by means of 1H-NMR 

spectroscopy. They have shown that the plasma metabolic phenotype enables to 

discriminate between 85 lung cancer patients and 78 controls with a sensitivity of 

92% and a specificity of 89%. Nevertheless, a huge drawback of this and many 

other metabolomics studies is that their findings were not validated in an 

independent cohort. 
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Aims and outline of the study 

From the general introduction, is has become clear that lung cancer constitutes a 

major public health problem, which accounts for approximately one out of five of 

all cancer-related deaths worldwide. Furthermore, the current method used for 

lung cancer screening, namely low-dose computed tomography (LDCT), has 

several limitations. An important disadvantage of LDCT screening is the high rate 

of false positive results, which leads to unnecessary and possibly harmful follow-

up diagnostic tests and puts a huge financial burden on the health care system. 

Therefore, there is an increasing interest in strengthening current risk models by 

incorporating lung cancer-risk related biomarkers in order to improve the selection 

of high-risk individuals eligible for LDCT screening, thereby decreasing the false 

positive rate and the corresponding financial burden. 

Metabolomics holds great potential for cancer diagnosis since the metabolism of 

cancer cells differs from that of normal cells. Metabolites are the end products of 

cellular metabolism and therefore reflect changes in the observed metabolic 

phenotype. 1H-NMR spectroscopy, one of the main analytical platforms used in 

metabolomics studies, is a highly reproducible tool that enables a fast and non-

invasive identification and quantification of complex mixtures of metabolites, as 

in blood plasma, with minimal sample preparation and relatively low costs on a 

per sample basis. Hence, 1H-NMR-based metabolomics of plasma represents an 

attractive tool in the search for blood-based diagnostic biomarkers in order to 

complement current risk models for LDCT screening. 

The first aim was to optimize a NMR analysis protocol which enables a proper 

evaluation of 1H-NMR-based metabolomics of plasma as a tool to detect lung 

cancer. Hereto, human blood plasma was spiked with 37 different metabolites in 

relevant concentrations and analyzed on a medium-field 400 MHz NMR 

spectrometer in order to accurately assign the resonance signals present in the 

plasma 1H-NMR spectrum. The resulting information was used to rationally divide 

the 400 MHz plasma spectra into 110 well-defined integration regions, 

representing the relative metabolite concentrations (i.e. plasma metabolic 

phenotype). Subsequently, the plasma metabolic phenotype was used to classify 

a small group of 53 breast cancer patients and 52 controls in order to show the 
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proof of principle. Furthermore, the impact of noisy integration regions (or noisy 

variables) on multivariate group classification was investigated (Chapter 2).  

The second aim was a detailed signal assignment of human plasma metabolites 

in order to rationally divide the 1H-NMR spectrum in integration regions, which 

represent the plasma metabolic phenotype. To this end, human blood plasma was 

spiked with the same 37 metabolites and analyzed on a high-field 900 MHz 

spectrometer at the “Institut de Reserche Interdisciplinaire” in Lille, France. On 

the basis of the metabolite spiking on the 900 MHz spectrometer, the i) peak 

assignment in the 400 MHz spectra (used in Chapter 4-7) could be somewhat 

further fine-tuned and ii) the 900 MHz spectra could be segmented into 105 

variable-sized integration regions, representing the plasma metabolic phenotype. 

Additionally, the plasma metabolic phenotype (determined on a 400 MHz and 900 

MHz spectrometer) of a case-control dataset of 69 lung cancer patients and 74 

controls was used to train a classification model in discriminating between both 

groups in order to find out advantages and disadvantages of a high-field 900 MHz 

spectrometer versus a medium-field 400 MHz spectrometer (Chapter 3).  

The third aim was to develop a standardized protocol concerning sample handling 

(collection, processing, freezing and storage) which enables the implementation 

of 1H-NMR-based metabolomics in clinical practice. Hereto, the impact of relevant 

preanalytical conditions (a half-filled blood tube, exposure of blood to oxygen, 

hemolysis, prolonged processing delays at 4°C, centrifugation at room 

temperature, freezing of plasma samples on dry ice and in liquid nitrogen before 

storage at -80°C and long-term storage of plasma at -80°C) on the plasma 

metabolic phenotype was examined. In addition, we investigated the value of the 

Standard PREanalytical Code, a method which has recently been developed by the 

biobank community to encode preanalytical conditions and to exclude plasma 

samples that were subjected to undesirable, interfering preanalytical conditions, 

within the field of clinical 1H-NMR-based metabolomics (Chapter 4).  

The following aim was to evaluate whether 1H-NMR-based metabolomics of blood 

plasma can be used as a tool to detect lung cancer. Hereto, a classification model 

was trained in discriminating between 233 lung cancer patients and 226 controls 

based on data input from their plasma metabolic phenotype. Next, the predictive 

accuracy of the trained classification model was investigated in an independent 
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validation cohort consisting of 98 lung cancer patients and 89 controls. Moreover, 

we examined which plasma metabolites are responsible for group discrimination 

in order to get more insight into the disturbed metabolism of lung cancer. 

Notwithstanding the fact that the number of early stage lung cancer patients is 

still limited, in a next step, we made an effort to investigate whether the plasma 

metabolic phenotype permits to differentiate between early stage lung cancer 

patients and controls (Chapter 5). 

The next aim was to find out whether the plasma metabolic phenotype allows to 

discriminate between lung and breast cancer. To this end, a classifier was trained 

in differentiating between 80 female breast cancer patients and 54 female lung 

cancer patients, all with an adenocarcinoma. Subsequently, the validity of the 

trained classifier was assessed in an independent validation cohort consisting of 

60 female breast cancer patients and 81 male lung cancer patients. Furthermore, 

we examined which plasma metabolites are responsible for group discrimination 

in order to improve the understanding of the disturbed metabolism in both cancer 

types (Chapter 6). 

The final aim was to further examine whether the plasma metabolic phenotype 

represents a specific diagnostic tool or rather a common cancer biomarker. 

Hereto, a classification model was constructed to discriminate between 37 

colorectal patients, 37 breast cancer patients and 37 lung cancer patients, all with 

an adenocarcinoma (Chapter 7).



  

   
 

 

 

 

 

 

 

 

 

 

 



 

 
 

ANNEX 

 

 

 

 

 

 

Basics of 1H-NMR spectroscopy and 

multivariate projection methods 

 

 

 

 

 

 

 

 

 

 



Annex 

 

38 
 

This technical note describes the basics of 1H-NMR spectroscopy which rely on 

quantum mechanical laws, and are therefore quite complex and need to be 

explained in order to gain a better understanding of this technique. Furthermore, 

multivariate projection methods used for statistical processing of multidimensional 

1H-NMR datasets are described.  

Basics of 1H-NMR spectroscopy 

1H-NMR spectroscopy is a technique that measures the resonance frequencies of 

hydrogen nuclei that are subjected to a low-frequency radiation and a strong 

magnetic field. The resonance of nuclei at a specific frequency occurs in the 

radiofrequency range of the electromagnetic spectrum (Figure S1).  

 

Figure S1. The electromagnetic spectrum. IR: infrared; NMR: nuclear magnetic resonance; RF: 

radiofrequency; UV: ultraviolet; Vis: visible. Reprinted with permission from Bothwell et al. (234). 

Nuclear spin in a static magnetic field 

NMR spectroscopy relies on the spin (or angular momentum) of protons and 

neutrons. Protons and neutrons are spin ½ particles, i.e. they have a spin with a 

spin quantum number s=1/2. The nuclear spin of an atom is expressed as the 

vector sum of unpaired proton and neutron spins and its nuclear spin quantum 

number I = n/2 with n the sum of unpaired protons and neutrons. Nuclei with an 

even number of both protons and neutrons have a spin quantum number I=0, for 

example, 12C and 16O. These types of nuclei do not have a net nuclear spin and 
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will not give rise to a NMR signal, and are therefore called NMR inactive nuclei. 

Nuclei with an odd number of protons as well as neutrons have a spin quantum 

number I=1, for example, 2H or 14N. However, if the number of protons or 

neutrons is odd, then I=half-integer. For example, the hydrogen nucleus consists 

of only one proton (1H) and therefore has a nuclear spin quantum number I=1/2, 

making it NMR-active. The positively charged hydrogen nucleus creates a small 

magnetic field around the hydrogen atom which is called the magnetic dipole 

moment (μ-vector) (Figure S2). 

 

Figure S2. The magnetic dipole moment μ of the positively charged hydrogen nucleus. The 

orientations of the magnetic moment are defined by magnetic quantum number (m) values. The magnetic 

moment is directly proportional to the angular momentum (μ =  x P, where μ: magnetic moment of the 

nucleus; : gyromagnetic constant; P: spin angular momentum). 

If the 1H atom is placed in a homogenous, strong and static external magnetic 

field (B0), the μ-vector can appear in two states: parallel (spin-up or m=+1/2; α-

state or low energy state) or anti-parallel (spin-down or m=-1/2; β-state or higher 

energy state) with respect to B0 (Figure S3). Due to the interaction between the 

magnetic moment and the magnetic field, the magnetic moment will precess 

around the magnetic field B0. 

 

Figure S3. Two energy states (spin-up or spin-down) of the proton magnetic moment which 

precesses around an externally applied magnetic field B0 oriented along the z-axis. 
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Energy states and population 

For each spin state, there is energy associated with it, which is characterized by 

the frequency of the precession of nuclei in the presence of a magnetic field. The 

frequency with which the μ-vector spins around B0 is called the Larmor frequency 

(ω0) which depends on the strength of B0 and the proton gyromagnetic constant 

(): 

ω = B0 or  = 




2

0B
 

where  is the nuclear gyromagnetic constant which is a characteristic constant 

for a specific nucleus; B0 is the magnetic field strength in the units of Tesla; ω is 

expressed in rad/s and  in Hz. Therefore, the energy difference of the allowed 

transition is given by:  

0BE  = ħω 

where ħ is the Planck constant h divided by 2 (Figure S4). 

 

Figure S4. Energy difference between two Zeeman energy states. The intensity of the NMR signal 

relates to the population difference between two Zeeman energy states of the transition. 

Consequently, spin transitions can be induced between the two different energy 

states by irradiation with electromagnetic radiation of the appropriate frequency. 

To this end, the following resonance conditions must be met: 

E = hν = hνL = h




2

0B
= E  

 



CHAPTER 1 

41 
  

The Boltzmann equation quantitatively describes the ratio of the spin populations 

in the two energy states. Both the energy difference between the transition states 

and the population difference between the states increases with the magnetic field 

strength. At room temperature, the amount of spins (μ-vectors) in the low energy 

state is slightly higher than in the high energy state. Thus, the sum of all these μ-

vectors along the z-axis results in a net z-magnetization along the z-axis, and is 

presented as the magnetization vector M0 (Figure S5). This indicates that only a 

small fraction of the spins will contribute to the NMR signal intensity due to the 

small energy difference between the two states and hence NMR spectroscopy 

intrinsically is a spectroscopic technique with rather low sensitivity. Therefore, 

stronger magnetic fields lead to improvement in sensitivity, in addition to a higher 

resolution. 

 

Figure S5. Statistical distribution of μ-vectors over two cone halves which results in net or 

longitudinal magnetization, M0, which is oriented in the same direction as vector B0. The vector 

sum of the components of the nuclear magnetic moments in the x-y plane is zero. At equilibrium, M0 is 

generated by the small population difference between α and β states, and is parallel to the direction of 

the static magnetic field B0. 

Rotating frame 

In order to create a NMR signal, the proton spins have to be flipped over from a 

low energy level to a high energy level. This is achieved by imposing a short but 

strong radio frequency pulse or B1-pulse into the right angles on the B0 field. This 

causes a simultaneous excitation of all protons by energy transfer from the B1-

pulse to the protons, called resonance. Because the Larmor frequency is not 

observed in an NMR experiment, a new coordinate frame is introduced to remove 
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the effect of the Larmor frequency, called the rotating frame (rotating with 

frequency ν). If a 90° pulse is applied on the spins, the M0 vector will end up in 

the transversal x’-y’ plane (Figure S6). Nuclear moments are no longer spinning 

along the z-axis but are stationary in this rotating frame. It should be noted that 

M0 shifts away from the z-axis in a clockwise angle α, depending on the duration 

and strength of the B1 field.  

 

Figure S6. Vector representation of transversal magnetization (My’=M0) upon applying a 90° 

RF-pulse along the x’-axis by the B1 field in the rotating frame which results in a flip over of 

M0 towards the y’-axis (receiver). 

In practice, the B1-pulse consists of a linear oscillating B1 field along the x’-axis 

with carrier frequency ν (same as the frequency of the rotating frame and in the 

order of the Larmor frequency) and magnitude 2B1 and which is easily produced 

by applying an electric current through the probe coil (Figure S7). The linear 

oscillating B1 field can be decomposed in two circular oscillating magnetic fields 

with Larmor frequency and magnitude B1. Resonance can now be achieved by 

interaction of the μ-vectors with the circular magnetic B1-field that is oscillating in 

the same direction and with frequency ν. This situation is called resonance 

condition.  
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Figure S7. Oscillating B1-fields in the x’-y’-plane are achieved by applying a linear oscillating 

electromagnetic field with magnitude of 2B1 along the x’-axis. The B1 probe coil is oriented along 

the x-axis and the receiver coil along the y-axis. 

A 90° pulse arises when the B1 field is turned on and then turned off while M0 

moves from the z-axis to the x’-y’ plane. The time during which B1 is applied is 

called the 90° pulse width (in the order of µs). During a 90° pulse, the maximal 

NMR signal is obtained by the occurrence of two phenomena: 1) phase coherence, 

i.e. clustering of a part of the μ-vectors at the surface of the precession coin 

resulting in a shift of the equilibrium magnetization M0 from the z-axis 

(longitudinal axis) towards the y‘-axis of the transversal x’-y’ plane (My’); 2) a net 

energy transfer from the B1-field (transmitter) to the nuclear spins, leading to a 

flip over of some of the spins of the low energy state to the high energy state 

(Figure S8). 

 

Figure S8. Net energy transfer from the B1-field to the nuclei leading to a flip over of some 

nuclear spins from the low energy state to the high energy state. 

After a 90° pulse, the magnetization along the z-axis becomes zero resulting in 

an equal distribution of nuclear spins over the two energy states, i.e. an equal 

amount of spins (μ-vectors) that are oriented parallel or anti-parallel to B0 (Figure 

S9). The population difference between the two energy states than also becomes 

zero. In addition, the y-component achieves a maximal M0 value (My’) and a 
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magnetization vector is created in the transversal plane (My’=M0), i.e. transversal 

(detectable) magnetization.  

 

Figure S9. Orientation of nuclear spins after applying a 90° pulse. 

Free induction decay 

After the B1-pulse is switched off, the NMR signal is detected while the nuclei 

return back to their equilibrium (relaxation, see next paragraph). The detection of 

the NMR signal is achieved when μ-vectors – with their unique frequency νi (or in 

the rotating frame νi = νi - ν) – will spin back around the z-axis under the influence 

of B0. This induces a fluctuating electric current in the detection coil (receiver) 

along the y’-axis. In the rotating frame, spins with νi = ν (νi = 0) will not spin 

around the z-axis, and as a function of time they induce a constant current in the 

receiver coil. Nuclei with νi > ν will oscillate with respect to the y’-axis and as a 

function of time they induce a fluctuating current with frequency νi, allowing to 

retrieve νi = νi + ν. Nuclei with νi >> ν will oscillate faster with respect to the y’-

axis and as a function of time they induce a fluctuating current with a higher 

frequency (Figure S10). Hence, a free induction decay (FID; Free of the influence 

in the B1 field; Induced in the receiver coil; Decaying back to the equilibrium) is 

induced in the detector. This is a complex and time dependent signal which is 

induced in the detector as a result of the different resonance frequencies of 

protons having a different electron (chemical) environment. By means of a Fourier 

transformation, the complex time signal can be unraveled in its constituent 

frequencies and amplitudes, establishing the NMR spectrum.  
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Figure S10. The free induction decay (FID) is the decay of the transversal magnetization which 

forms the observable NMR signals detected by the receiver in the x’y’-plane of the rotating 

frame. The FID is the sum of many time domain signals and is transformed via Fourier Transformation 

into the frequency domain signals or NMR spectrum. FT: Fourier transformation.  

Relaxation  

After the B1 pulse, the μ-vectors will also be subjected to relaxation. Two 

relaxation processes, i.e. T1 and T2 relaxation, can be described by an exponential 

function with a characteristic relaxation decay time constant. The inverse of the 

relaxation decay time constant is a measure of the speed of relaxation: the shorter 

the relaxation time is, the more efficient the relaxation will be.  

The longitudinal relaxation or T1 relaxation is the decay time by which the z-

magnetization (Mz) aims to reach its original value M0 by energy exchange 

between the nuclei and the environment (back to the Boltzmann equilibrium: 

excess of spins in the low energy state). Longitudinal relaxation corresponds with 

a change in energy because the energy absorbed by the spins under influence of 

the B1-pulse has to be returned to the environment. Hence, the original 

equilibrium distribution of the two spin states will be restored (Figure S11).  

 

Figure S11. Longitudinal or T1 relaxation. 

Transversal relaxation or T2 relaxation is the decay time by which the x’-y’ 

magnetization disappears. The individual μ-vectors of the hydrogen protons will 

 

i =  

i >  

i >>  
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lose their phase coherence by shared spin-spin interactions (Figure S12). 

Consequently, the transversal magnetization Mx’y’ completely disappears by strong 

spin-spin interactions, while the equilibrium magnetization might still not reached 

(Mz«M0). Generally, T2 is equal to or shorter than T1.  

 

Figure S12. Transversal or T2 relaxation. 

The CPMG pulse sequence 

For this thesis, slightly T2-weighted spectra were acquired using the Carr-Purcell-

Meiboom-Gill (CPMG)-presat pulse sequence which is called after its inventors 

(235, 236). The CPMG pulse sequence uses the faster T2 relaxation of protons in 

macromolecules (such as proteins and polysaccharides), i.e. protons with shorter 

T2 relaxation times, to suppress these particular signals and to generate spectra 

in which only the signals of small molecule metabolites are observed. In addition, 

water suppression (CPMG-presat, i.e. presaturation) was performed during 3 s in 

order to allow optimal detection and quantification of the signals close to the water 

resonance. The CPMG-presat pulse sequence has the form [RD-90°-(-180°-)m-

ACQ]n where RD is the relaxation delay, 90° is the 90° RF-pulse, 180° is the 180° 

RF-pulse, mx2 is the spin-echo delay, m represent the number of loops, and ACQ 

is the acquisition time. During RD (0.5 s), the water signal is irradiated. Another 
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advantage of this spin-echo pulse-sequence is the elimination of the influence of 

irregularities in B0 over the sample volume (by dephasing-rephasing). By this, the 

detected echo signal is only attenuated by real T2 relaxation. An increase in the 

number of ‘spin-echo’ cycles (m) corresponds with an extension of the total spin-

echo delay.  

In this thesis, 400 MHz NMR spectra were acquired at 21.2°C with 96 scans and 

a spectral width of 6,000 Hz on a Varian Inova spectrometer (9.4 Tesla, Agilent 

Technologies Inc.) equipped with an Agilent OneNMR 5mm probe. Furthermore, 

900 MHz NMR spectra were acquired at 21.2°C with 64 scans and a spectral width 

of 14,423 Hz on a Bruker Avance spectrometer (21.2 Tesla, Bruker Biospin) 

equipped with a triple resonance cryoprobe. Each FID was zero-filled to 65 K 

points and multiplied by a 0.7 Hz exponential line-broadening function prior to 

Fourier transformation. 

The 1H-NMR spectrum 

The 1H-NMR spectrum is determined by three parameters that can be related to 

the structure of the molecule: (i) chemical shift or the location of 1H signals in the 

spectrum; (ii) integration of signal area or signal intensity; (iii) J-coupling patterns 

or the shape of the signals in the spectrum (Figure S13). 

 

Figure S13. 1H-NMR spectrum of diethyl ether (C4H10O). The place in the spectrum is determined 

by the chemical shift, the lines above the signals indicate the integration values and regions, and the 

quadruplet and triplet pattern is determined by the J-coupling. ppm: parts per million.  

Chemical shift 

When an atom is placed in a magnetic field, it will not sense the true value of the 

external B0 field since local neighboring electrons shield the nucleus from the B0 

field. Hence, the effective field (B0i) that a hydrogen nucleus feels depends on its 

chemical environment determining the neighboring electron density. The higher 
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the electron density around the hydrogen nucleus, the more it is shielded. For a 

nucleus i with a dimensionless magnetic shielding constant σi the following 

applies: 

0
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Hence, B0i will be different from B0 explaining why the resonance frequency ωi (or 

νi in Hz) is different for different chemical environments. Absolute frequencies are 

rarely used. The location of the resonance signal in the NMR spectrum is 

represented by the chemical shift (δ): 
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in which νi is the resonance frequency of the proton considered and νTMS is the 

resonance frequency of the generally accepted reference compound 

tetramethylsilane. In most cases νi > νTMS.  

For example, for protons of a –O-CH3 group on a 200 MHz (4.7 Tesla) NMR 

spectrometer applies: 

νi = 200,000,646 Hz  if νTMS = 200,000,000 Hz 
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On a 400 MHz (9.4 Tesla) NMR device the following applies: 

νi = 400,001,292 Hz  if νTMS = 400,000,000 Hz 
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Hence, on a 200 MHz NMR spectrometer, 200 Hz equals 1 ppm and on a 400 MHz 

NMR spectrometer – as used in this thesis – 400 Hz equals also 1 ppm. This is 
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explained by the fact that the chemical shift is independent of B0. Therefore, the 

resolution of a 400 MHz NMR spectrometer is greater than that of a 200 MHz NMR 

spectrometer.  

The chemical shift is dimensionless and expressed in parts per million (ppm). Most 

of the proton resonance signals are located between 0 and 12 ppm (Figure S14). 

The reference used in this thesis is TSP which is composed of three equivalent CH3 

methyl groups single bonded to a silicon atom. All CH3 group protons have the 

same electronic environment, and therefore result in only a single 1H-NMR signal 

at 0.015 ppm.  

 

Figure S14. 1H-NMR chemical shifts (δ in ppm) for common functional chemical groups (237). 

*1H-NMR spectra of this thesis were referenced to the methyl resonance of trimethylsilyl-2,2,3,3-

tetradeuteropropionic acid (TSP) at 0.015 ppm. Ppm: parts per million.  

Integration region 

The integration value of an integration (or spectral) region is a measure for the 

number of contributing protons. Integration values are obtained by putting 

integration lines over well-defined integration regions (Figure S13). For this 

thesis, 400 MHz spectra, in the range between 8 and 0.8 ppm, were segmented 

into 110 variable-sized spectral regions, excluding the water region between 5.2 

and 4.7 ppm and the TSP signal between 0.3 and -0.3 ppm. The 110 spectral 

regions were defined by means of spiking of plasma with known metabolites on a 

400 MHz spectrometer (see Chapter 2). Likewise, 900 MHz spectra, in the range 

between 8.5 and 0.8 ppm, were divided into 105 variable-sized spectral regions, 

excluding the water region between 5.1 and 4.7 and the TSP signal between 0.3 
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and -0.3 ppm. The 105 spectral regions were defined by means of spiking of 

plasma with known metabolites on a 900 MHz spectrometer (see Chapter 3). The 

resulting spectral regions in the 400 MHz and 900 MHz spectra were integrated 

and normalized relative to the total integrated area of all spectral regions.  

J-coupling 

Two nuclei with a different chemical environment (non-equivalent nuclei with 

different chemical shift values) can induce the phenomena of spin-spin coupling 

or J-coupling via binding electrons. The J-coupling pattern is determined by the 

rule of multiplicity: (2n1*I1 +1) * (2n2*I2 +1), where n is the number of nuclei 

equivalent to each other but not equivalent to the nucleus under investigation, 

and I is the spin quantum number. 

For example, chloroethane (CH3CH2Cl) consists of CH3 and CH2 protons. In this 

case, the CH3 signal splits into a triplet: 2*2*1/2 +1 = 3, and the CH2 signal into 

a quadruplet: 2*3*1/2 +1 = 4. In other words, the CH3 protons sense the 

orientation of the CH2 proton spins, resulting in a triplet with a 1-2-1 intensity 

ratio: (A) ↑↑; (B) ↑↓ or ↓↑; (C) ↓↓. And the other way around for the CH2 protons 

sensing the CH3 proton spins and producing a quadruplet with a 1-3-3-1 intensity 

ratio: (A) ↑↑↑; (B) ↑↑↓ or ↑↓↑ or ↓↑↑; (C) ↓↓↑ or ↓↑↓ or ↑↓↓; (D) ↓↓↓ (Figure S15).  

 

Figure S15 J-coupling patterns of chloroethane, i.e. a triplet and quadruplet (238). ppm: parts 

per million.  

In general, J-couplings can result in singlets, doublets, triplets, etc. in the 1H-NMR 

spectrum. It should be noted that the J-coupling between chemically equivalent 

protons is not observed in the 1H-NMR spectrum. 
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Multivariate projection methods 

Unsupervised PCA analysis 

Principal component analysis (PCA) constitutes the basis for multivariate data 

analysis and it is performed on a data matrix X with N rows (observations) and K 

columns (variables) (Figure S16). Subsequently, the data matrix X is converted 

to a variable space with as many dimensions as there are variables. Each variable 

represents one co-ordinate axis.  

 

Figure S16. Structure of the data matrix X which is used for PCA analysis. The N observations 

(rows) can be biological individuals, analytical samples, etc. The K variables (columns) can be NMR 

variables derived from spectral data. 

Next, each observation of the X-matrix is placed in the K-dimensional variable 

space (Figure S17A). After mean-centering and scaling of the data, the co-

ordinate system is re-positioned such that the average point now is the origin.  

 

Figure S17. Plotting the observations in a K-dimensional space. (A) Observations (N, rows) in data 

matrix X are a group of points in the variable space K; (B) The vector of variable averages is computed 

and is a point (black dot) situated in the middle of the group of points; (C) After mean-centering, the 

origin of the co-ordinate system is moved to coincide with the average point (black dot).  

The data matrix X can then be converted to principal components (PCs). The first 

principal component (PC1) is the line in the K-dimensional space that best 
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approximates the shape of the group of points (observations), i.e. it describes the 

largest variation in the data (Figure S18A). Each observation is projected onto 

this line in order to get a value which is known as a score. However, one 

component is insufficient to model the systemic variation of a multidimensional 

dataset. Therefore, the second principal component (PC2) which is orthogonal to 

PC1 and improves the approximation of the X-data to a feasible extent, is also 

calculated (Figure S18B). This results in a plane into the K-dimensional variable 

space (Figure S19).  

 

Figure S18. Principal components for PCA. (A) The first principal component, PC1; (B) The second 

principal component, PC2.  

.  

Figure S19. Two principal components define a model plane. 

The co-ordinate values of the observations on this plane are called scores, and 

hence the plotting of such a projected configuration is known as a score plot. A 

score plot is always accompanied by a loading plot that reveals which variables 

are responsible for the patterns seen among the observations (239) (Figure 

S20).  
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Figure S20. PCA score and loading plot. (A) PCA score plot of the two first PCs: PC1 and PC2 of the 

PCA score plot explain the largest and second largest variation within the data, respectively. Each point 

in the score plot represents an observation. Observations that lie outside the white circle (95% confidence 

interval) can be assumed as being outliers. (B) PCA loading plot of the two first PCs (p2 vs p1). Each point 

in the loading plot represents a variable which is responsible for the pattern seen among the observations. 

PC: principal component.  

Consequently, PCA score and loading plots can be used to identify clustering 

patterns and dominant variation in the dataset which may not be associated with 

the real biological effect but could also be due to a secondary effect such as diet, 

age, gender and instrumental error (e.g. batch effect). In addition, PCA score plots 

permit to identify outliers, i.e. observations that lie outside the 95% confidence 

interval (Figure S20). However, it is recommended to perform additional 

methods such as distance to model or a Hotelling’s T2 range plot in order to 

identify outliers in the orthogonal plane (Figure S21). 

 

Figure S21. Outlier detection. (A) DModX is the distance of an observation in the dataset to the X 

model plane. DModX is displayed as the absolute DModX divided by the pooled residual standard deviation 

of the model. The critical value of DModX (Dcrit) is computed from the F-distribution. Observations with 

a DModX twice as large as Dcrit are moderate outliers. (B) Hotelling’s T2 range plot displays the distance 

from the origin in the model plane (score space) for each selected observation. This plot shows the T2 

calculated as the sum over the selected range of components of the scores, i.e. 1 to 6 in this case, in 

square divided by their standard deviations in square. Values larger than the 95% confidence interval are 

suspect, and values larger than 99% confidence interval can be considered as serious. DModX: distance 

to model.  

A B 
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Supervised PLS and OPLS-DA analysis 

Unsupervised methods such as PCA are commonly used together with supervised 

methods such as partial least squares (PLS) and discriminant function analysis 

(e.g. PLS-DA and OPLS-DA) (240).  

PLS is a method for relating two data matrices, X and Y, to each other by a linear 

multivariate model, i.e. it models the association between X and Y by regression. 

Data matrix X with N observations and K factors/predictors (independent 

variables) is related to data matrix Y with N observations and M responses 

(dependent variables) (Figure S22). 

 

 

 

 

 

Figure S22. Structure of data matrix X and Y used for PLS analysis. The N observations (rows) 

can be biological individuals, analytical samples, etc. The X-variables (K, factors/predictors) can be NMR 

variables derived from spectral data. The Y-variables (M, responses) are often gathered to reflect 

properties of samples, clinical variables, etc.  

In contrast to PCA, each row (observation) now represents two points instead of 

one, one in the X-space and one in the Y-space (Figure S23). Also here, data 

have to be mean-centered and scaled. 

 

Figure S23. In a regression model, the observations are two groups of points, one in the 

predictor (X) space and one in the response (Y) space. Note that in this figure, a single Y-variable 

instead of a matrix Y of responses is considered. 
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In PLS, the first component is a line in the X-space that well approximates the 

groups of points and provides a good correlation with the Y-vector (Figure S24). 

The co-ordinate of an observation along this line is obtained by projecting the 

sample onto the line. This co-ordinate is termed the score, ti1, of observation i. 

The scores of all the observations constitute the first X-score vector t1 (a latent 

variable). The score vector t1 can then be used to obtain an estimate of y, ŷ1, after 

PC1 of PLS, which is t1 multiplied by the weight of the y-vector, c1. The differences 

between the measured and estimated response data are called residuals. The y-

residuals represent the variation that is left unexplained by the first PLS 

component. The residual vector f1 is calculated as y – ŷ1. 

 

 

 

 

 

 

Figure S24. First principal component for PLS. With one single Y-variable, the Y-space reduces to a 

one dimensional vector. PC1 will orient itself so that it well describes the group of points in the X-space 

while at the same time giving a good correlation with the Y-vector. Score vector t1 summarizes the 

information in the original X-variables. 

Here too, one PLS component is insufficient to adequately model the variation in 

the Y-data. Therefore, a second component is calculated which is also a line in the 

X-space, which passes through the origin and is orthogonal to the first component 

(Figure S25). This component finds the direction in the X-space that improves 

the description of the X-data as much as possible, while providing a good 

correlation with the y-residuals, f1, remaining after the first component. The 

second set of score values of the observations arises from the co-ordinates along 

the second projection direction in the X-space, i.e. second score vector t2. In 

general, the tighter the scatter around the diagonal, the stronger the correlation 

between X and Y (239). 
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Figure S25. Second principal component for PLS in the X-space is orthogonal to the first one. 

By projecting the observations onto this line, one obtains the score vector t2. The second score vector 

times the second weight of the y-data, c2, correlates with the y-residual, f1, after the first dimension. The 

two components together define a plane in the X-space. 

In addition, the combined power of t1 and t2 in modeling and predicting y can also 

be examined with PLS. An estimate of y after two model components, ŷ2, is 

obtained through computing c1t1 + c2t2. The y-variable is better modeled by two 

components than by one because the agreement between observed and estimated 

Y-data improves. 

Supervised methods such as discriminant analysis (DA) can also be used for 

sample classification (e.g. disease vs. healthy). Orthogonal PLS (OPLS) is an 

extension of PLS which separates the systemic variation in X into two parts, one 

part that is correlated (predictive) to Y and one part that is uncorrelated 

(orthogonal) to Y. In other words, it models the variation orthogonal to the Y 

response, resulting in models that are equally predictive but easier to interpret 

than conventional PLS (153) (Figure S26). In OPLS-DA, knowledge about the 

class membership (e.g. disease vs. healthy) is used to discriminate groups of 

metabolites that are significant in combination (e.g. biomarker 

signature/classifier).  
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Figure S26. OPLS-DA score and loading plot. (A) OPLS-DA score plot: The first predictive component 

(t[1]) explains the variation between both groups and the first orthogonal component (to[1]) explains 

the variation within both groups. (B) OPLS-DA loading plot: The horizontal axis displays the X-loadings p 

and the Y-loadings q of the predictive component. The vertical axis displays the X-loadings p(o) and the 

Y-loadings s(o) for the Y-orthogonal component. 

The model performance can be examined by evaluating the total amount of 

predictive and orthogonal variation in X (R2X(cum)), the total amount of variation 

in Y (R2Y(cum)), and the predictive ability of the model (Q2(cum)) as determined 

by 7-fold cross-validation. The higher these values, the higher the association 

between X and Y variables, the better the model (Figure S26). 

In OPLS-DA it is important to define both a training set (original data) and an 

independent validation set (a class of separate samples that can be predicted 

based on a series of mathematical models derived from the training set) in order 

to validate study results (239) (Figure S27).  

 

Figure S27. Classification models. First, the model must be trained on representative data (training 

set). Next, the model must be tested using new data (validation set). 

 



Annex 

 

58 
 

Diagnostic tools 

OPLS-DA provides many diagnostic tools which assist in the model interpretation, 

and in the assessment of model performance and relevance. The misclassification 

table summarizes how well the OPLS-DA models classify the observations into 

known classes (Figure S28). Sensitivity is defined as the percentage of patients 

that are actually classified as patients, while specificity is explained as the 

percentage of controls that are actually classified as controls. 

  Members Correct 0 1 

0 = Specificity 36 92% 33 3 

1 = Sensitivity 61 95% 3 58 

Figure S28. Misclassification table. 33 out of 36 controls are correctly classified and 58 out of 61 

patients are correctly classified, corresponding to a specificity of 92% and a sensitivity of 95%, 

respectively.  

The variable influence on projection (VIP) parameter gives the importance of the 

X-variables, both for X- and Y-models (Figure S29). The VIP is a weighted sum 

of squares of the OPLS-DA weights, taking into account the amount of explained 

Y-variance in each dimension. Hence, one VIP-vector summarizes all components 

and Y-variables. Predictors with a large VIP are most influential for the model. The 

VIP value and/or visual thresholds on the VIP plot may be used for variable 

selection. Note, however, that variable selection should be carried out with caution 

as there are strong correlations among the X-variables. 

 

Figure S29. Variable influence on projection (VIP) plot. The red lines are indicating different 

thresholds which might be used and tested for variable selection.  
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Especially for NMR data, an S-plot of the variables responsible for the pattern seen 

among the observations, is very useful and can be illustrated as points or a line 

(Figure S30). The S-plot is a practical and reliable way to identify important 

discriminating variables (241).  

Figure S30. S-plots of an OPLS-DA model. 

(A) S-plot with variables in the bottom left or upper right as being those with a strong contribution to the 

model and high statistical reliability. (B) S-line plot has the advantage of taking the spectral order of NMR 

data into account. The relevance of the model is indicated by the signal amplitude and the significance 

by color. Strongly discriminating variables combine a high numerical loading value and red to orange 

color.  

A permutation plot can be developed for PLS-DA to assess the risk that the current 

model is spurious, i.e. the model fits the training set well but does not predict Y 

well for new observations (Figure S31).  

 

 

 

 

 

Figure S31. PLS-DA permutation test. The PLS-DA permutation test illustrates the validity of the 

model. For a model to be valid, R2 (grey dots) and Q2 (black boxes) values for each permuted observation 

have to be lower than the R2 and Q2 values of the original model on the right. 

The permutation plot compares the goodness of fit (R2 and Q2) of the original 

model with the goodness of fit of several models based on data where the order 

of the Y-observations has been randomly permuted, while the X-matrix has been 

kept intact. The plot shows, for a selected Y-variable, on the vertical axis the 

values of R2 and Q2 for the original model (on the right side) and of the Y-permuted 



Annex 

 

60 
 

models (on the left side). The horizontal axis shows the correlation between the 

permuted Y-vectors and the original Y-vector for the selected Y. Criteria for a valid 

model are: (i) all Q2 values on the left are lower than the original point on the 

right; (ii) the regression line of the Q2 points intersects the vertical axis (on the 

left) at or below zero; (iii) all R2 values to the left are lower than the original point 

to the right.  
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Abstract  

This study reports an accurate assignment of the resonance signals present in 1H-

NMR spectra of human blood plasma. Hereto, blood plasma was spiked with 37 

different metabolites in relevant concentrations since reported chemical shift 

values show quite some variability depending on the biofluid under study and the 

applied experimental measuring conditions. The resulting information was used to 

rationally divide the 1H-NMR spectrum in 110 well-defined integration regions for 

application in metabolomics. A case-control dataset of 53 breast cancer patients 

and 52 controls was investigated in order to demonstrate the proof of principle. 

After removal of noisy variables, i.e. variables exceeding a premised threshold for 

the coefficient of variation, the groups could be discriminated by OPLS-DA 

multivariate statistics with a sensitivity and specificity of 83% and 94%, 

respectively. In addition, the classification was validated in a small but 

independent cohort. The proposed methodology might pave the way towards a 

better understanding of disturbances in disease-related biochemical pathways and 

so, to the clinical relevance of study findings. 
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Introduction  

The application of metabolomics as a tool in the search for new biomarkers has 

increased enormously over the past few years (1). The field of metabolomics 

encompasses the comprehensive and simultaneous analysis of small molecules 

within a given biological matrix, the so-called metabolites (2-4). Metabolites 

constitute the end products of cellular metabolism and changes in their 

concentrations reflect alterations in the metabolic phenotype (5, 6). The two 

major analytical tools used for metabolomics studies are mass spectrometry (MS) 

and nuclear magnetic resonance (NMR) spectroscopy. In order to find patterns in 

the massive amount of information, the resulting data are subsequently analyzed 

by multivariate data analyses with the aim to retrieve diagnostic/theranostic 

information regarding diseases and to identify changes in biochemical pathways 

(1, 7).  

Proton (1H)-NMR spectroscopy enables a non-invasive identification and 

quantification of metabolites in complex mixtures such as plasma or urine in a 

single run. It is becoming a key tool for understanding metabolic processes in 

living systems and subsequently metabolic disorders (8, 9). The widespread use 

of this technique along with its exceptional capacity to handle complex mixtures 

made 1H-NMR spectroscopy the preferred technology for launching the field of 

metabolomics (3, 10). While other techniques such as gas- and liquid 

chromatography-MS are also increasingly being used in metabolomics, 1H-NMR 

spectroscopy has still a number of unique advantages. In particular, it is non-

invasive, non-biased and easily quantifiable, needs no chemical derivatization, 

requires little or no sample preparation and permits the identification of novel 

compounds (11). However, there is still room for scientific improvement as the 

accurate interpretation of 1H-NMR spectra in terms of metabolite identities and 

abundances can be challenging, in particular in crowded regions with severe signal 

overlap (6, 12). In current practice, signal assignment often relies on chemical 

shift values reported for different matrices or even non-human specimens (13-

15). Additionally, most chemical shifts are dependent of the applied experimental 

measuring conditions such as temperature, ion content, pH and concentration 

(16-18). Further room for improvement can also be found in the assignment of 

noisy variables, which can be defined as signals showing unpredictable variation 
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in intensity from moment to moment and under identical experimental conditions 

(18). The identification and removal of these noisy variables should be optimized 

in order not to complicate the multivariate data analysis (19).  

This paper describes the identification of the resonance signals observed in 1H-

NMR spectra of human blood plasma on the basis of spiking the plasma with 37 

different metabolites. The proposed methodology offers a guidance to divide the 

1H-NMR spectrum rationally in well-defined integration regions, being the 

variables for the multivariate data analysis, and will contribute to a better 

understanding of the (disturbed) biochemical pathways involved in the disease 

under study. In order to evaluate the proposed analysis platform, it was applied 

to classify a case-control dataset consisting of 53 breast cancer patients and 52 

controls (training cohort) and to examine the predictive accuracy of the 

classification in an independent validation cohort consisting of 20 breast cancer 

patients and 20 controls. In addition, noisy variables were identified and their 

influence on group differentiation is reported. 
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Material and methods 

Ethics statement 

The study was conducted in accordance with the ethical rules of the Helsinki 

Declaration and of Good Clinical Practice. The study protocol was approved by the 

Medical Ethics Committees of Ziekenhuis Oost-Limburg (Campus Sint-Jan, Genk, 

Belgium) and Hasselt University (Campus Diepenbeek, Hasselt, Belgium). 

Informed consent was obtained from all participants prior to their inclusion in the 

study.  

Blood sampling and processing 

Fasting venous blood samples were collected in 10 ml lithium-heparin tubes and 

stored at 4°C within 5 to 10 min. Within 8 h after blood collection, samples were 

centrifuged at 1,600 g for 15 min and plasma aliquots of 500 µl were transferred 

into sterile cryovials and stored at -80°C until NMR analysis within six months. 

NMR sample preparation and analysis 

After thawing, plasma aliquots were centrifuged at 13,000 g for 4 min at 4°C, 

followed by diluting 200 µl of the supernatant with 600 µl deuterium oxide (D2O, 

99.9%) containing 0.3 µg/µl trimethylsilyl-2,2,3,3-tetradeuteropropionic acid 

(TSP, 98%) as a chemical shift reference. Samples were placed on ice until 1H-

NMR analysis. After mixing and transferring into 5 mm NMR tubes, the samples 

were acclimatized at 21.2°C during 7 min. The 1H-NMR spectra were recorded on 

a 400 MHz (9.4 Tesla) Inova spectrometer (Agilent Technologies Inc.) at 21.2°C. 

Slightly T2-weighted spectra were acquired using the Carr-Purcell-Meiboom-Gill 

pulse sequence (total spin-echo time of 32 ms with an interpulse delay of 0.1 ms), 

preceded by an initial preparation delay of 0.5 s, followed by 3 s presaturation for 

water suppression (total relaxation delay of 3.5 s), 6,000 Hz spectral width, an 

acquisition time of 1.1 s, 13 K complex data points and 96 scans. Each free 

induction decay was zero-filled to 65 K points and multiplied by a 0.7 Hz 

exponential line-broadening function prior to Fourier transformation.  
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Spectral processing 

Spectra were phased, baseline corrected and referenced to TSP (δ=0.015 parts 

per million (ppm)). The 1H-NMR spectra were segmented into 110 variable-sized 

spectral regions, excluding the water region (4.7-5.2 ppm) and TSP (-0.3-0.3 

ppm). Two sections of the 1H-NMR spectrum (between 4.6-4.8 ppm and 3.7-3.85 

ppm) were always double checked with respect to the location of the signals. 

These spectral regions were integrated and normalized relative to the total 

integrated area of all regions (except water and TSP), resulting in 110 integration 

values, being the variables for multivariate statistics. So, remark that an 

increase/decrease in the concentration of a metabolite reflects its relative 

concentration. 

Subjects of the training cohort  

A total of 53 untreated women with histologically proven breast cancer of varying 

stages of disease were included. A venous blood sample was taken at the day of 

primary surgery. Diagnosis was confirmed by means of a core needle biopsy. The 

control group consisted of 52 women who were referred to the department of 

Nuclear Medicine (Ziekenhuis Oost-Limburg, Campus Sint-Jan) for a stress 

examination of the heart. Exclusion criteria were defined as follows: (1) not fasted 

for at least 6 h; (2) medication intake at the day of blood sampling and (3) 

treatment or history of cancer in the preceding 5 years. Sample collection, 

preparation and NMR analysis was performed as described above. 

Subjects of the independent validation cohort 

A total of 20 untreated women with histologically proven breast cancer of varying 

stages of disease were included. A venous blood sample was taken at the day of 

primary surgery. Diagnosis was confirmed by means of a core needle biopsy. The 

control group consisted of 20 women who were referred to the department of 

Nuclear Medicine (Ziekenhuis Oost-Limburg, Campus Sint-Jan) for a stress 

examination of the heart. Exclusion criteria were identical to those for the case-

control dataset. Sample collection, preparation and NMR analysis was performed 

as described above. 
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Metabolite spiking of reference plasma 

Fasting venous blood was collected from a healthy 44-year-old female, with no 

family history of breast cancer and a recent negative mammography, and the 

plasma was obtained and processed as described above, and further referred to 

as reference plasma. Stock solutions for spiking were prepared by dissolving 1 mg 

of a known metabolite in 100 µl reference plasma. In a next step, 10 µl stock 

solution was added to a standard NMR sample (200 µl reference plasma and 600 

µl D2O containing TSP) and subsequently analyzed by 1H-NMR spectroscopy as 

described above. This procedure was repeated for the 37 metabolites.  

Multivariate statistical analyses 

All multivariate statistical analyses were performed using SIMCA-P+ (Version 13.0, 

Umetrics, Umea, Sweden). Identification of intrinsic clusters within the case-

control dataset was accomplished via an unsupervised principal component 

analysis by which also outliers were detected on the basis of a Hotelling’s T2 range 

plot and a distance to model plot. Orthogonal partial least squares discriminant 

analysis (OPLS-DA) was used to build models (statistical classifiers) to 

discriminate between breast cancer patients and controls. Models were compared 

on the basis of the total amount of explained variation (R2X(cum) and R2Y(cum)), 

predictive ability (Q2(cum)), and the levels of sensitivity (the percentage of breast 

cancer patients that are actually classified as breast cancer patients) and 

specificity (the percentage of controls that are actually classified as controls) The 

predictive accuracy of the model was examined by means of classifying an 

independent validation cohort consisting of 20 breast cancer patients and 20 

controls. 
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Results and discussion  

1H-NMR chemical shift assignment of human blood plasma 

metabolites via spiking 

Reported chemical shift values of metabolites show quite some variability 

depending on the biofluid under study and the experimental measuring conditions 

employed (e.g. temperature, pH, ion strength and concentration) (16-18). To 

minimize these uncertainties in order to define a rational setting of the integration 

regions in NMR spectra, the metabolite chemical shifts have to be critically 

determined by spiking the biofluid with known metabolites in relevant 

concentrations. Although spiking is a commonly used analytical method to 

accurately identify chemical shifts in a 1H-NMR spectrum (12, 20), the assignment 

of metabolite signals is often still based on existing literature and databases (13, 

15, 21, 22).  

Table 2.1 presents the 1H-NMR chemical shift values and J-coupling patterns of 

metabolites present in human blood plasma as determined via spiking the plasma 

with known metabolites. The atom numbering of the metabolites follows the 

IUPAC-IUB nomenclature unless otherwise indicated in the structures included in 

Table 2.1. For the determination of the chemical shift values and J-coupling 

patterns, 37 aliquots of a reference plasma pool derived from a healthy 44-year-

old female, with no family history of breast cancer and a recent negative 

mammography, were spiked with 37 known metabolites. The resulting information 

allowed us to rationally define 87 fixed integration regions in the spectrum having 

an identified metabolite composition. Including 23 additional integration regions 

emanating from broad lipid signals and non-identified substances, the 1H-NMR 

spectrum could be divided into 110 well-defined integration regions, being the 

variables for the statistical OPLS-DA multivariate analysis. Table 2.2 presents an 

overview of the start and end values (in ppm) of the 110 fixed integration regions 

and their contributing metabolites.  
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Table 2.1. 1H-NMR chemical shifts (δ in ppm) of low molecular weight plasma metabolites and 

their J-coupling constants (in Hz). 

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

Amino acids      

L-Alanine (Ala) αCH 3.790 q 7.2 α-β 

(CHEBI:57972) βCH3
 1.509 d 7.2 β-α 

L-Arginine (Arg) αCH 3.690 t 6.1 α-β; α-β’ 

(CHEBI:32682) βCH2
 1.700 m - - 

 γCH2
 1.902 m - - 

 δCH2
 3.266 t 6.9 δ-γ 

L-Asparagine (Asn) αCH 3.999 dd 7.8; 4.3 α-β; α-β' 

(CHEBI:58048) βCH2
 2.845 dd 16.7; 4.3 β-β'; β-α 

 - 2.962 dd 16.7; 7.8 β'-β; β'-α 

L-Aspartate (Asp) αCH 3.930 dd 8.9; 3.7 α-β; α-β' 

(CHEBI:29991) βCH2
 2.702 dd 17.5; 3.7 β-β'; β-α 

 - 2.850 dd 17.5; 8.9 β'-β; β'-α 

L-Cysteine (Cys) αCH 3.973 dd 5.7; 4.3 α-β; α-β' 

(CHEBI:35235) βCH2
 3.052 dd 14.7; 4.3 β-β'; β-α 

  3.112 dd 14.7; 5.7 β'-β; β'-α 

L-Glutamine (Gln) αCH 3.786 t 6.2 α-β; α-β’ 

(CHEBI:58359) βCH2
 2.160 m - - 

 γCH2
 2.480 m - - 

L-Glutamate (Glu) αCH 3.788 dd 7.1; 4.9 α-β; α-β' 

(CHEBI:29985) βCH2
 2.120 m - - 

 γCH2
 2.388 m - - 

L-Glycine (Gly) αCH2
 3.586 s - - 

(CHEBI:57305)      

L-Histidine (His) αCH 4.012 dd 8.0; 4.9 α-β; α-β' 

(CHEBI:57595) βCH2 3.150 dd 15.5; 8.0 β-β'; β-α 

 - 3.260 dd 15.5; 4.9 β'-β; β’-α 

 γCH 7.802 s - - 

 δCH 7.086 s - - 

L-Isoleucine (Ile) αCH 3.673 d 4.0 α-β 
(CHEBI:58045) βCH 1.990 m - - 

 γCH3
 1.015 d 7.0 γ-β 

 δCH2
 1.476 m - - 

 εCH3
 0.945 t 7.4 ε-δ 

L-Leucine (Leu) αCH 3.769 dd 7.0; 1.3 α-β; α-β’ 

(CHEBI:57427) βCH2
 1.742 m - - 

 γCH 1.742 m - - 

 δCH3
 0.987 d 4.7 δ-γ 

 - 1.003 d 4.7 δ'-γ 

L-Lysine (Lys) αCH 3.772 t 6.0 α-β; α-β’ 

(CHEBI:32551) βCH2
 1.928 m - - 

 γCH2
 1.502 m - - 

 δCH2
 1.751 p 7.5 γ-δ; δ-ε 

 εCH2
 3.060 t 7.5 ε-δ 

L-Methionine (Met) αCH 3.875 dd 7.0; 5.4 α-β; α-β' 
(CHEBI:57844) βCH2 2.195 m - - 

 γCH2 2.673 t 7.6 γ-β; γ-β' 

  δCH3 2.167 s - - 

L-Phenylalanine (Phe) αCH 3.998 dd 7.7; 5.2 α-β; α-β' 

(CHEBI:58095) βCH2
 3.140 dd 14.4; 5.2 β-β'; β-α 

 - 3.310 dd 14.4; 7.7 β'-β; β’-α 

 γCH 7.353 d 7.2 γ-δ 

 δCH 7.454 t 7.2 δ-γ; δ-ε 

 εCH 7.414 t 7.2 ε-δ 

L-Proline (Pro) αCH 4.162 dd 8.9; 6.3 α-β; α-β' 

(CHEBI:60039) βCH2
 2.382 m - - 

 γCH2
 2.060 m - - 

 δCH2
 3.365 t 7.0 δ-γ 

 - 3.441 t 7.0 δ'-γ 
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Table 2.1. continued.  

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

Amino acids      

L-Serine (Ser) αCH 3.845 dd 5.6; 4.0 α-β; α-β' 

(CHEBI:33384) βCH2 3.953 dd 12.2; 5.6 β-β'; β-α 

 - 4.012 dd 12.2; 4.0 β'-β; β'-α 

L-Threonine (Thr) αCH 3.596 d 4.9 α-β 

(CHEBI:57926) βCH 4.276 dq 6.6; 4.9 β-α; β-γ 

 γCH3
 1.358 d 6.6 γ-β 

L-Tryptophan (Trp) αCH 4.086 dd 8.1; 5.2 α-β; α-β' 

(CHEBI:57912) βCH2 3.338 dd 15.3; 8.1 β-β'; β-α 

 - 3.224 dd 15.3; 5.2 β'-β; β'-α 

 γCH 7.351 s - - 

 δCH 7.770 d 7.8 δ-ε 
 εCH 7.229 t 7.8 ε-δ; ε-ζ 

 ζCH 7.310 t 7.8 ζ-ε; ζ-η 

 ηCH 7.570 d 7.8 η-ζ 

L-Tyrosine (Tyr) αCH 3.957 dd 7.8; 5.0 α-β; α-β' 

(CHEBI:58315) βCH2
 3.076 dd 14.2; 7.8 β-β'; β-α 

 - 3.227 dd 14.2; 5.0 β'-β; β'-α 

 γCH 6.924 d 8.4 γ-δ 

 δCH 7.222 d 8.4 δ-γ 

L-Valine (Val) αCH 3.635 d 4.3 α-β 

(CHEBI:57762) βCH 2.305 m - - 

 γCH3
 1.021 d 7.1 γ-β 

 - 1.074 d 7.1 γ'-β 

Carbohydrates       

D-glucose      
 α-anomer C1H 5.264 d 3.8 - 

 (CHEBI:17925) C2H 3.563 dd 9.8; 3.8 - 

 C3H 3.744 t 9.4 - 

 C4H 3.439 t 9.4 - 

 C5H 3.888 m - - 
 C6H 3.858 dd 10; 2.2 - 

 C6’H 3.792 dd 13.1; 6.3 - 

      

 β-anomer C1H 4.678 d 7.8 - 

 (CHEBI:15903) C2H 3.272 t 8.3 - 

 C3H 3.518 t 9.2 - 

 C4H 3.428 t 9.4 - 

 C5H 3.492 m - - 

 C6H 3.933 dd 12.2; 2.0 - 

 C6’H 3.752 dd 12.2; 5.7 - 

      

Glycerol CHC 3.814 m - - 

(CHEBI:17754) CH2: HA 3.591 dd 11.7; 6.6 - 
 CH2: HB 3.682 dd 11.7; 4.4 - 

      

      

      

      

      

      

      

      

      

Myo-Inositol C5H 4.090 t 2.9 - 
(CHEBI:17268)  C4H+C6H 3.562 dd 9.8; 2.9 - 

 C1H+C3H 3.654 t 9.8 - 

 C2H 3.306 t 9.3 - 
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Table 3.1. continued.  

Metabolite Proton δ (ppm) Multiplicity J (Hz) Connectivity 

Organic acids      

Acetate CH3
 1.948 s - - 

(CHEBI:30089)      

Acetoacetate CH2
 2.319 s - - 

(CHEBI:13705) CH3
 3.480 s - - 

α-ketoglutarate CH2-CO 3.040 t 6.9 - 

(CHEBI:16810) CH2-COO- 2.470 t 6.9 - 

D-β-hydroxybutyrate CHA 2.400 dd 14.5; 7.3 - 
(CHEBI:10983) CHB 2.300 dd 14.5; 7.3 - 

 CH 4.184 m - - 

 CH3 1.231 d 6.3 - 

      

      

      

      

      

Citrate CHA 2.717 d 15.8 - 

(CHEBI:16947) CHB 2.566 d 15.8 - 

      
      

      

      

      

      

      

      

L-lactate CH 4.138 q 6.9 - 

(CHEBI:16651) CH3 1.354 d 6.9 - 

Pyruvate CH3 2.402 s - - 

(CHEBI:15361)      

Succinate CH2 2.439 s - - 

(CHEBI:30031)      

Others      

Acetone CH3 2.264 s - - 

(CHEBI:15347)       

Betaine CH3 3.300 s - - 

(CHEBI:17750) CH2 3.939 s - - 

Choline CH3 3.236 s - - 

(CHEBI:133341) CH2 3.554 m - - 
 CH2OH 4.098 m - - 

Creatine CH3 3.068 s - - 
(CHEBI:57947) CH2 3.962 s - - 

Creatinine CH3 3.075 s - - 
(CHEBI:16737) CH2 4.087 s - - 

Methanol CH3 3.402 s - - 

(CHEBI:17790)      

Chemical shifts are expressed relatively to the singlet resonance of the trimethyl protons of TSP at δ 

0.015 ppm and J-coupling patterns are described as: s, singlet; d, doublet; dd, double doublet; dq, double 

quadriplet; t, triplet; q, quadriplet; p, pentaplet; m, multiplet. Metabolite identifiers from the database 

of Chemical Entities of Biological Interest (ChEBI) are indicated. The atom numbering of the metabolites 

follows the IUPAC-IUB nomenclature unless otherwise indicated in the structures included in Table 2.1.  
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Table 2.2. Start and end values (in ppm) of the 110 integrations regions (variables) and their 

contributing metabolites, defined on the basis of metabolite spiking.  

Variable Start ppm End ppm Metabolite 

1 7,9500 7,8200 NI 

2 7,8200 7,7890 His 

3 7,7890 7,7780 NI 

4 7,7780 7,7480 His 

5 7,7480 7,7200 NI 

6 7,6800 7,5920 NI 

7 7,5920 7,5480 NI 

8 7,4840 7,3620 Phe 

9 7,3620 7,3300 Phe, NI 

10 7,3300 7,2820 NI 

11 7,2820 7,2550 NI 

12 7,2550 7,2390 Tyr, NI 

13 7,2390 7,2000 Tyr, NI 

14 7,1070 7,0656 His 

15 6,9430 6,9050 Tyr 

16 6,9050 6,8810 NI 

17 6,7445 6,7020 NI 

18 5,4300 5,2752 Lipids: -CH=CH- in FAC
#

 

19 5,2752 5,2526 Glucose 

20 5,2526 5,2030 C2H in glycerol backbone of PL and TG
#

 

21 4,6940 4,6620 Glucose 

22 4,5560 4,5380 NI 

23 4,5380 4,4100 NI 

24 4,4100 4,3159 C1H and C3H in glycerol backbone of TG
#

 

25 4,3159 4,2332 O-CH2-CH2-N+(CH3)3
 of PC and SM

#, Thr 

26 4,2000 4,1885 Pro, β-hydroxybutyrate 

27 4,1885 4,1750 Pro, β-hydroxybutyrate, lactate 

28 4,1750 4,1260 C1H and C3H in glycerol backbone of PL and TG
#

, lactate 

29 4,1260 4,1110 NI 

30 4,1110 4,1032 NI 

31 4,1032 4,0700 Creatinine 

32 4,0700 4,0570 NI 

33 4,0570 4,0310 His, Ser 

34 4,0310 4,0136 Asn, His, Phe, Ser 

35 4,0136 4,0010 C3H2 in glycerol backbone of PL
#

, Asn, His, Phe, Ser 

36 4,0010 3,9810 C3H2 in glycerol backbone of PL
#

, Asn, His, Phe, Ser 

37 3,9810 3,9590 Creatine, Asn, His, Tyr, Ser 

38 3,9590 3,8330 Glucose, Asp, Met, Ser, Tyr 

39 3,8330 3,8100 Glucose, Ala, Ser 

40 3,8100 3,7956 Glucose, Ala, Gln, Glu 

41 3,7956 3,7820 Glucose, Ala, Gln, Glu, Leu, Lys 

42 3,7820 3,7550 Glucose, Ala, Gln, Glu, Leu, Lys 

43 3,7550 3,7390 Glucose, Ala, Leu 

44 3,7390 3,7141 Glucose 

45 3,7141 3,6680 O-CH2-CH2-N+(CH3)3 of PC and SM
#

, glycerol, Ile 

46 3,6680 3,6500 Glycerol 

47 3,6500 3,6376 Glycerol, Val 

48 3,6376 3,6240 Val 

49 3,6240 3,6097 Thr 

50 3,6097 3,5914 Thr 

51 3,5914 3,5649 Glucose, glycerol, Gly, Thr 

52 3,5649 3,5510 Glucose 

53 3,5510 3,5360 Glucose, acetoacetate, Pro 

54 3,5360 3,3980 Glucose, acetoacetate, Pro 
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Table 2.2. continued.  

Variable Start ppm End ppm Metabolite 

55 3,3980 3,3765 Methanol, NI 

56 3,3765 3,3430 Pro 

57 3,3430 3,3230 Phe, Pro 

58 3,3230 3,2186 O-CH2-CH2-N+(CH3)3 of PC and SM
#

, glucose, His, Phe, Tyr 

59 3,2186 3,1930 Tyr 

60 3,1930 3,1760 NI 

61 3,1760 3,1462 NI 

62 3,1462 3,1090 His, Phe 

63 3,1090 3,0860 Lys, Tyr 

64 3,0860 3,0716 Creatinine, Lys, Tyr 

65 3,0716 3,0640 Creatinine, creatine, Lys 

66 3,0640 2,9950 α-ketoglutarate, Lys 

67 2,9950 2,8860 Lipids: =CH-CH2-CH= in FAC
#

, Asn 

68 2,8860 2,8550 Lipids: =CH-CH2-CH= in FAC
#

, Asn, Asp  

69 2,8550 2,7500 Lipids: =CH-CH2-CH= in FAC
#

, Asn, Asp  

70 2,7500 2,7360 Citrate, Asp  

71 2,7360 2,6600 Citrate, Asp, Met 

72 2,6600 2,6300 Met 

73 2,5960 2,5340 Citrate 

74 2,5340 2,5150 NI 

75 2,5150 2,4920 Gln 

76 2,4920 2,4500 α-ketoglutarate, β-hydroxybutyrate, Gln 

77 2,4500 2,4324 α-ketoglutarate, β-hydroxybutyrate, succinate 

78 2,4324 2,4148 β-hydroxybutyrate, Pro 

79 2,4148 2,4050 β-hydroxybutyrate, Pro, Glu 

80 2,4050 2,3990 Pyruvate, Pro, Glu 

81 2,3990 2,3640 β-hydroxybutyrate, Pro, Glu 

82 2,3640 2,3500 β-hydroxybutyrate, Pro, Glu 

83 2,3500 2,3380 β-hydroxybutyrate, Pro, Val 

84 2,3380 2,3170 β-hydroxybutyrate, acetoacetate, Pro, Val 

85 2,3170 2,3040 β-hydroxybutyrate, acetoacetate, Val 

86 2,3040 2,2915 Lipids: -CH2-C=O or -CH2-CH=CH- in FAC
#

, β-hydroxybutyrate, 

Val 

87 2,2915 2,2690 Lipids: -CH2-C=O or -CH2-CH=CH- in FAC
#

, Met, Val 

88 2,2690 2,2300 Lipids: -CH2-C=O or -CH2-CH=CH- in FAC
#

, aceton, Met, Val 

89 2,2180 2,1970 Glu, Met 

90 2,1970 2,1230 Gln, Glu, Met, Pro 

91 2,1230 1,9720 Lipids: -CH2-CH=CH- in FAC
#

, CH3 of NAG
$
, Glu, Ile, Met, Pro 

92 1,9720 1,9240 Acetate, Ile, Lys 

93 1,9240 1,8800 Ile, Lys 

94 1,8060 1,6860 Leu, Lys 

95 1,6860 1,5600 Lipids: -CH2-CH2-C=O or -CH2-CH2-CH=CH- in FAC
#

, Lys 
96 1,5400 1,4900 Ala, Ile, Lys  

97 1,4900 1,4200 Ile, Leu, Lys 

98 1,4200 1,3740 Lactate 

99 1,3740 1,3450 Lactate, Thr 

100 1,3450 1,2458 Lipids: CH3-(CH2)n- in FAC
#

, Ile, Thr 

101 1,2458 1,2180 β-hydroxybutyrate, Ile 

102 1,2180 1,1300 NI 

103 1,0930 1,0610 Val 

104 1,0610 1,0400 Ile 

105 1,0400 1,0220 Ile, Val 

106 1,0220 1,0020 Ile, Leu, Val 

107 1,0020 0,9860 Ile, Leu 

108 0,9860 0,9760 Ile, Leu 
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Table 2.2. continued.  

Variable Start ppm End ppm Metabolite 

109 0,9760 0,9660 Ile 

110 0,9660 0,8000 Lipids: CH3-(CH2)n- in FAC
#

 

Some assignments are slightly adapted based on additional information obtained from spiking 

experiments on a 900 MHz NMR spectrometer (see Chapter 3). 
#

The assignment of the lipid signals is 

based on literature (9, 23, 24). 
$
The assignment of signals of N-acetylated glycoproteins is based on 

literature (25). Noisy variables with a coefficient of variation larger than the optimal threshold, i.e. 15%, 

are indicated in grey (see below). Amino acids are presented by their 3-letter code. FAC: fatty acid chain; 

NAG: N-acetylated glycoproteins; NI: non-identified; PC: phosphatidylcholine; PL: phospholipids; ppm: 

parts per million, SM: sphingomyelin; TG: triglycerides.  

Application of the analysis procedure in a case-control training 

and validation study  

In order to evaluate the analysis procedure, a multivariate statistical analysis was 

performed on a case-control dataset consisting of 53 breast cancer patients 

(female, mean age: 58 ± 12 years) and 52 controls (female, mean age: 63 ± 14 

years). After identifying and excluding five outliers (4 controls and 1 breast cancer 

patient), a statistical classifier was built by means of OPLS-DA. By using all 

variables (the normalized integration values of the fixed 110 integration regions), 

the model was able to discriminate between breast cancer patients and controls 

with a sensitivity and specificity of 79% and 94%, respectively. This model 

explains 68.3% of the variation observed within the groups (R2X(cum)) and 

52.6% of the variation observed between the groups (R2Y(cum)) (Figure 2.2A 

and Table 2.3). In addition, the predictive accuracy of this model was evaluated 

by classifying an independent cohort consisting of 20 women with breast cancer 

(mean age: 57 ± 11 years) and 20 controls (female, mean age: 66 ± 12 years), 

resulting in a correct classification of 80% of the breast cancer patients and 70% 

of the controls. Subject characteristics of the case-control training and validation 

cohorts, as well as histopathology, stage and hormone receptor status of the 

breast tumors are presented in Table 2.4. 
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Table 2.3. The number of latent variables, the total explained variation in X and Y (R2X(cum) 

and R2Y(cum)), predictive ability (Q2(cum), and sensitivity and specificity levels for OPLS-DA 

models constructed with a decreasing number of variables. 

 Threshold for CV 

 None 30% 25% 20% 15% 10% 

Remaining variables 110 89 83 80 70 59 

LV 3 3 3 3 3 2 

R2X(cum) 0.683 0.695 0.697 0.699 0.706 0.674 

R2Y(cum) 0.526 0.523 0.522 0.516 0.515 0.263 

Q2(cum) 0.416 0.418 0.417 0.414 0.419 0.078 

Sensitivity, % 79 81 81 81 83 77 

Specificity, % 94 94 94 94 94 67 

A decreasing threshold limit for the coefficient of variation, from 30% to 10%, was used as an exclusion 

criterion for noisy variables. CV: coefficient of variation; LV: latent variable. 
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Table 2.4. Subject characteristics of the case-control training and validation cohorts, together 

with histopathology, stage and hormone receptor status of the breast tumors. 

 Training cohort Validation cohort 

 BC C BC C 

Number of female 

subjects, n 

53 52 20 20 

Age, yrs 

(range) 

59 ± 12 

(35–85) 

63 ± 14 

(23–84) 

57 ± 11 

(40–78) 

66 ± 12 

(49–89) 

BMI, kg/m2 

(range) 

25.9 ± 5.2 

(18.6–43.7) 

26.8 ± 5.6 

(16.5-41.1) 

25.3 ± 4.5 

(16.2-35.0) 

27.3 ± 4.9 

(18.7-35.9) 

Smoking habits     

 Non-smoker, n (%) 40 (75) 42 (81) 18 (90) 18 (90) 

 Smoker, n (%) 10 (19) 10 (19) 2 (10) 2 (10) 

 Unknown, n (%) 3 (6) 0 (0) 0 (0) 0 (0) 
Histopathology     

 IDA, n (%) 46 (87)  15 (75)  

 ILA, n (%) 6 (11)  5 (25)  

 DCIS, n (%) 1 (2)  0 (0)  

Stage     

 0, n (%) 1 (2)  0 (0)  

 I, n (%) 18 (34)  10 (50)  

 IIA, n (%) 21 (40)  7 (35)  

 IIB, n (%) 6 (11)  0 (0)  
 IIIA, n (%) 4 (8)  3 (15)  

 IIIC, n (%) 3 (6)  0 (0)  

Receptor status     

 ER     

 Positive, n (%) 45 (82)  17 (85)  

 Negative, n (%) 10 (18)  3 (15)  

 PR     

 Positive, n (%) 37 (67)  15 (75)  

 Negative, n (%) 18 (23)  5 (25)  

Data are presented as means ± standard deviation (SD) and range. BC: breast cancer patients; BMI: 

body mass index; C: controls; DCIS; ductal carcinoma in situ; ER: estrogen receptor; IDA: invasive ductal 

adenocarcinoma; ILA: invasive lobular adenocarcinoma; PR: progesterone receptor. 

Identification and influence of noisy variables  

Although the discriminative power of the model built by using all variables is 

already fairly good, we have to keep in mind that experimental data are always 

subjected to a certain degree of noise. In a fixed NMR set-up (with a defined 

magnetic field strength and probe-head), the signal-to-noise ratio (S/N) mainly 

depends on the chosen plasma concentration and the number of accumulations 

(number of excitations by the radiofrequency-pulse) to acquire the spectrum. 

Although a higher plasma concentration will result in a higher S/N, starting from 

a certain level it will unfortunately also reduce the spectral resolution (an increase 

of line-broadening due to a decrease of the T2-relaxation decay times with 

increasing concentration). So, once the plasma concentration is chosen in the 

analysis protocol (in our study 200 µl plasma diluted with 600 µl D2O) the S/N will 

be determined by the number of accumulations. However, also a reasonable time 
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frame per sample has to be taken into account, especially if a high sample 

throughput is desirable as for metabolomics. In our analysis protocol, we have 

chosen to acquire 96 accumulations per sample, resulting in an acquisition time 

of 7’44’’. The fact that some degree of noise can never be excluded from 

experimental data and that noisy variables can complicate the multivariate data 

analysis, explains our effort to implement a protocol that allows to identify and 

classify noisy variables and subsequently to study the impact of their removal 

from the dataset on group differentiation.  

In order to identify noisy variables, the following three series of 1H-NMR 

experiments were performed by using three aliquots of the reference plasma pool: 

(1) series A: five consecutive measurements on a sample prepared from a first 

aliquot (after initial spectrometer conditioning, i.e. locking, shimming and 

optimization of water suppression); (2) series B: five similar measurements at 

another time point using a second aliquot and (3) series C: five measurements 

using a third aliquot but with full spectrometer conditioning before each 

acquisition, i.e. sample insertion, locking, shimming and optimization of water 

suppression. For each series of acquisitions, the data analysis was accomplished 

by three independent researchers familiar with 1H-NMR metabolomics. This 

results, for each of the series, in 15 normalized integration values for all (110) 

variables by means of which the coefficients of variation (%) were determined. 

For the three series A-C, Figure 2.1A-C presents a plot of the resulting 

coefficients of variation for all variables which are, for clarity, divided into 3 groups 

on the basis of their mean normalized integration value, i.e. between 1-20 (60 

variables); 20-100 (40 variables) and 100-1000 (10 variables). Based on these 

plots, five visual thresholds were defined, i.e. coefficients of variation below 10, 

15, 20, 25 and 30%. If a variable exceeded the predefined threshold in at least 

two of the three series it was assigned as ‘noisy’. A variable for which the 

coefficient of variation was higher than the threshold in only one of the series was 

classified as noisy only if the variation was not the result of a single outlier. 

Remark that these threshold settings might be dependent on the NMR set-up, and 

consequently can be even lower for higher magnetic field strengths or when cryo-

probes are used.  
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Figure 2.1. Coefficient of variation (%) for the 110 variables which are divided into three groups on the basis of their mean normalized integration 

values, i.e. those with a mean normalized integration value between 1-20, between 20-100 and between 100-1000. In order to determine the 

coefficients of variation, three series (A-C) of NMR measurements were accomplished using samples prepared from three different aliquots of a reference plasma 

pool: (A) 5 consecutive measurements (after initial spectrometer conditioning, i.e. locking, shimming and optimization of water suppression); (B) 5 similar 

measurements at another time point and (C) 5 measurements with full spectrometer conditioning before the acquisition, i.e. sample insertion, locking, shimming 

and optimization of water suppression. Data analysis of each series by three independent researchers resulted in 15 normalized integration values for each 

variable, from which the coefficients of variation (%) were determined. 
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By means of this information, the influence of noisy variables on the classification 

was investigated. Hereto, OPLS-DA classifiers were built and compared after 

removal of the noisy variables according the above defined criteria. An overview 

of the results is presented in Table 2.3 and Figure 2.2. Table 2.3 shows that 

removing variables with a coefficient of variation above 15% has a beneficial effect 

on group differentiation. In more detail, deleting 30 variables with a coefficient of 

variation above 20% (Figure 2B-D) results in an increase of the sensitivity with 

2% (to 81%) as compared to the classifier constructed with all 110 variables 

(Figure 2.2A and Table 2.3) while the specificity remains unchanged. If the 

allowed coefficient of variation was further reduced to 15%, 70 variables remained 

and the sensitivity further increased with 2% (to 83%), again with no change in 

specificity (Figure 2.2E and Table 2.3). This is an indication that the 

discriminating power of the remaining 70 variables, and so constituting 

metabolites, is very strong. However, when the allowed coefficient of variation 

was further reduced to 10%, only 59 variables remained and the discriminative 

power of the OPLS-DA model declined strongly to a specificity of 67% and a 

sensitivity of 77% (Figure 2.2F and Table 2.3). This loss of discriminative power 

also becomes clear from the other model parameters: while R2X(cum), R2Y(cum) 

and Q2(cum) improve or remain quasi stable in going from a threshold setting of 

30% to 15%, they strongly decline upon setting the threshold to 10%. This severe 

loss of discriminative power can be explained by the fact that only about half of 

the variables (59 out of 110) still contribute to the model and indicates that the 

11 variables, which were additionally removed in going from a threshold setting 

of 15% to 10%, are important for group differentiation. All above indicates that a 

threshold of 15% for the coefficient of variation is optimal for the identification 

and exclusion of noisy variables. In a next step, the influence of removing these 

noisy variables on the predictive accuracy of the classification was examined in an 

independent validation cohort. Although the size of the cohort is still limited, 

removal of the noisy variables leads to an increase in sensitivity from 80% to 85% 

while the specificity slightly drops from 70% to 65%. Moreover, and as also 

observed for the training cohort, a further lowering of the threshold for the 

coefficient of variation to 10% results in a strong decline in discriminative power.  
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Figure 2.2. OPLS-DA score plots of the models built with all 110 variables (A), with 89 variables 

(B), with 83 variables (C), with 80 variables (D), with 70 variables (E) and with 59 variables 

(F). Variables exceeding a predefined threshold for the coefficient of variation, i.e. 30% (B), 25% (C), 

20% (D), 15% (E) and 10% (F) were assigned as ‘noisy’ and excluded for the building of the classifier. 

Breast cancer patients are marked as ● and controls as ○. 
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To double check that none of the 40 excluded variables are highly important for 

group differentiation, they were also excluded one by one, i.e. 40 OPLS-DA 

classifiers were built with the remaining 109 variables, and evaluated. The 

resulting classifiers performed evenly or even slightly better than the one 

constructed with all 110 variables. This result confirms that the 40 variables with 

a coefficient of variation above 15% can be defined as noisy and that they are not 

important for group differentiation. Important to notice is that these noisy 

variables, marked in gray in Table 2.2, all represent very low intensity signals. 

Among them, 11 are not identified, 13 are specific for a single metabolite, and 16 

are specific for 2 or more metabolites. Despite of this reduction in variables, all 

metabolites are still represented, either via a unique signal or via a composite 

signal. 
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Conclusions 

By spiking 37 aliquots of a reference human plasma pool with known metabolites, 

the chemical shift values of these metabolites were determined with high accuracy 

in the biofluid under study. Hereby, the 1H-NMR spectrum of human blood plasma 

could be rationally divided into 110 well-defined integration regions, paving the 

way towards a better understanding of disturbances in the underlying biochemical 

pathways. After removal of noisy variables, defined as variables exceeding a 

premised threshold for the coefficient of variation, the proposed methodology 

allowed to discriminate a case-control dataset of 53 breast cancer patients and 52 

controls with a sensitivity and specificity of respectively 83% and 94% using 

OPLS-DA multivariate statistics. In addition, we applied the methodology to a 

small but independent validation cohort for which the same trends are observed.  
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Abstract 

Accurate identification and quantification of human plasma metabolites and 

subsequent interpretation of underlying, disease disturbed, biochemical pathways 

can be challenging in crowded NMR regions with severe signal overlap. Therefore, 

this study describes metabolite spiking experiments on the basis of which the NMR 

spectrum can be rationally segmented into well-defined integration regions, and 

this for magnetic field strengths corresponding to 400 MHz and 900 MHz 

spectrometers. The integration data of a case-control dataset of 69 lung cancer 

patients and 74 controls were then used to train a multivariate statistical 

classification model for the data at both field strengths. In this way, the 

advantages/disadvantages of high versus medium magnetic field strengths could 

be evaluated. On the one hand, the discriminative power of the integration data 

collected at both magnetic field strengths is rather similar, i.e. a sensitivity and 

specificity of 94% and 97% respectively by means of the 400 MHz data versus 

90% and 100% for the 900 MHz data. Taking the housing and the cost of a high-

field spectrometer into account, a medium-field 400-600 MHz NMR spectrometer 

looks to be most appropriate for clinical metabolomics. On the other hand, the 

increased spectral resolution and signal-to-noise ratio of 900 MHz spectra allow a 

more accurate delineation of the integration regions, resulting in an increased 

number of integration regions that represent a single metabolite, being beneficial 

for the understanding of the underlying biochemical pathways.  
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Introduction  

Metabolomics is a powerful discipline which allows to detect hundreds to 

thousands of metabolites in biological samples such as plasma or urine (1, 2). The 

two major high-throughput analytical platforms used for metabolite analysis are 

mass spectrometry (MS) and proton-nuclear magnetic resonance (1H-NMR) 

spectroscopy (3). Subsequently, the large amount of resulting data is analyzed by 

multivariate pattern recognition methods in an effort to reduce the complexity of 

the data and to recover diagnostic information regarding diseases and to identify 

disturbed biochemical pathways (4-6). Although 1H-NMR spectroscopy is less 

sensitive than MS, it offers various distinct advantages. More specifically, it allows 

to identify and quantify metabolites in biological samples in a non-destructive 

manner with minimal sample preparation as well as an exceptional analytical 

reproducibility (± 98%) (3, 7, 8).  

The application of 1H-NMR-based metabolomics in the search for cancer 

biomarkers has increased enormously over the past decade (9-15). Most of these 

studies used NMR spectrometers with a magnetic field strength between 400 and 

600 MHz to study the disturbed metabolism of cancer cells (9, 11, 13-15). 

However, in the past two years, high-field NMR spectrometers up to 800 MHz have 

also been employed in this research field (10, 12). Although NMR spectra obtained 

at these high field strengths have improved spectral resolution and signal-to-noise 

ratio (S/N), the cost and housing facilities also raise strongly (16).  

Recently, our research group has performed metabolite spiking experiments on a 

400 MHz spectrometer in order to rationally segment the human plasma 1H-NMR 

spectrum into 110 variable-sized integration regions, whereby the latter integrals 

are the variables for multivariate statistics and represent the metabolic phenotype 

(17). However, it has to be taken into account that accurate identification and 

quantification of metabolites can be challenging on a 400 MHz spectrometer in 

crowded regions with severe signal overlap (18, 19).  

In the present study, spiking experiments were performed on a high-field 900 

MHz spectrometer in order to rationally divide the spectrum into well-defined 

integration regions. The 900 MHz spectra have less signal overlap, an increased 

S/N and a reduced integration error as compared to the 400 MHz spectra. 
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Moreover, the integration data of a case-control dataset of 69 lung cancer patients 

and 74 controls were used to train a classifier in differentiating between both 

groups, and this for the 400 MHz as well as for the 900 MHz data in order to find 

out the advantages and disadvantages of both magnetic field strengths.  
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Patients and Methods  

Subjects 

Lung cancer patients (n=69) were included in the Limburg Positron Emission 

Tomography center (Hasselt, Belgium) from March 2011 to January 2012. The 

diagnosis of lung cancer was confirmed by a pathological biopsy or a clinician 

specialized in interpreting radiological and clinical lung cancer data. Clinical 

staging of the tumors was performed according to the 7th edition of the tumor, 

node, metastasis classification of malignant tumors (20) and independently 

checked by two of the authors (EL and KV). Controls (n=74) were patients with 

non-cancer diseases who were included at Ziekenhuis Oost-Limburg (Genk, 

Belgium) between December 2011 and April 2012. 

Exclusion criteria were: 1) not fasted for at least 6 h; 2) fasting blood glucose 

concentration ≥ 200 mg/dl; 3) medication intake on the morning of blood 

sampling and 4) treatment or history of cancer in the past 5 years. The study was 

conducted in accordance with the ethical rules of the Helsinki Declaration and 

Good Clinical Practice and was approved by the ethical committees of Ziekenhuis 

Oost-Limburg and Hasselt University (Hasselt, Belgium). All study participants 

provided written informed consent.  

Blood sampling and processing 

See Chapter 2: Blood sampling and processing.  

NMR sample preparation and analysis 

NMR sample preparation was performed as described in Chapter 2: NMR sample 

preparation and analysis. 1H-NMR measurements were performed at 21.2°C on a 

400 MHz spectrometer (9.4 Tesla; Varian Inova; Agilent Technologies Inc.) and a 

900 MHz spectrometer (21.1 Tesla; Bruker Avance; Bruker Biospin). The 400 MHz 

spectrometer is equipped with an Agilent OneNMR 5mm probe, whereas the 900 

MHz spectrometer has a triple resonance cryoprobe. Slightly T2-weighted spectra 

were acquired using the Carr-Purcell-Meiboom-Gill pulse sequence (total spin-

echo time of 32 ms), preceded by presaturation for water suppression. Other 

parameters were: a spectral width of 6,000 Hz/14,423 Hz (400 MHz/900 MHz), a 

preparation delay of 3.5 s, and 96/64 scans (400 MHz/900 MHz). Each free 
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induction decay was zero-filled to 65 K points and multiplied by a 0.7 Hz 

exponential line-broadening function prior to Fourier transformation.  

Signal assessment by spiking reference plasma with known 

metabolites on the 400 MHz and 900 MHz spectrometer 

Fasting venous blood was collected from a healthy 44-year-old female. The 

plasma was obtained and processed as described above, and further referred to 

as reference plasma. Stock solutions for spiking were prepared by dissolving 1 mg 

of a known metabolite in 100 µl reference plasma. In a next step, 10 µl stock 

solution was added to a standard NMR sample (200 µl reference plasma and 600 

µl D2O containing TSP) and subsequently analyzed on the 400 MHz and 900 MHz 

spectrometer as described above. This procedure was repeated for 37 

metabolites, i.e. alanine, arginine, asparagine, aspartate, cysteine, glutamine, 

glutamate, glycine, histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, glucose, 

myo-inositol, acetate, acetoacetate, α-ketoglutarate, β-hydroxybutyrate, citrate, 

lactate, pyruvate, succinate, creatine, creatinine, aceton, betaine, choline, 

glycerol and methanol (17).  

Spectral processing of 400 MHz spectra 

See Chapter 2: Spectral processing.  

Spectral processing of 900 MHz spectra 

Spectra were phased, baseline corrected and referenced to TSP (δ=0.015 ppm). 

Based on the metabolite spiking, the 1H-NMR spectra were segmented into 105 

variable-sized spectral regions for integration, excluding the water region (4.7-

5.1 ppm) and TSP (-0.3-0.3 ppm). Two sections of the 1H-NMR spectrum (between 

7.1-7.3 ppm and 3.45-3.9 ppm) were always checked with respect to the 

integration settings. The integrated regions were then normalized relatively to the 

total integrated area of all regions (except water and TSP), resulting in 105 

normalized integration values, being the variables for multivariate statistics. 

Statistical analysis 

Multivariate statistics was performed using SIMCA-P+ (Version 14, Umetrics, 

Umea, Sweden). After mean-centering and Pareto scaling of both 400 MHz and 
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900 MHz integration data, supervised orthogonal partial least squares discriminant 

analysis (OPLS-DA) was used to train a classification model in discriminating 

between lung cancer patients and controls (21). The robustness of the 

classification models trained by means of the 400 and 900 MHz integration data 

respectively was further evaluated using receiver operating characteristic curve 

explorer & tester (22). Via an S-plot, the most discriminating variables of the 

models were identified together with their corresponding variable importance for 

the projection (VIP) values (23).  
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Results and Discussion 

Figure 3.1 shows 1H-NMR spectra of a representative plasma sample acquired on 

a 400 MHz and a 900 MHz spectrometer. An improved spectral resolution as well 

as S/N can be observed for the 900 MHz spectrum compared to the 400 MHz 

spectrum. To assign the resonance signals in both spectra, spiking experiments 

were performed with known metabolites. Our research group already reported the 

spiking of reference plasma with 37 different metabolites in relevant 

concentrations in order to assign the signals and rationally divide the 400 MHz 

spectrum into 110 well-defined integration regions (Table 3.1, right half) (17). 

In this study, reference plasma was spiked with the same metabolites in relevant 

concentrations and analyzed on a 900 MHz spectrometer. The resulting 

information allows to rationally divide the 900 MHz spectrum into 105 well-defined 

integration regions (Table 3.1, left half). On the basis of the spiking experiments 

and even despite of the improved S/N of a 900 MHz spectrometer, it can be 

concluded that the plasma levels of arginine, betaine, choline, cysteine, 

tryptophan and myo-inositol are below the detection limit, explaining why they 

are not taken up in Table 3.1. Furthermore, the increased spectral resolution and 

S/N of the 900 MHz spectra enable to define the integration regions more 

accurately, resulting in a larger number of integration regions that represent a 

single metabolite, thereby contributing to the identification of the most 

discriminating metabolites and to the understanding of the underlying disturbed 

biochemical pathways of disease.  
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Figure 3.1. Zoom-in between 0.80-1.10 ppm of the 1H-NMR spectrum of human plasma 

acquired at 900 (top) and 400 MHz (bottom). Remark that the J-coupling is independent of the field 

strength when expressed in Hz (see marked resonance frequencies in the figure), but not when expressed 

in ppm. ppm: parts per million. 
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Table 3.1. Overview of the 105 rationally defined integration regions of the 900 MHz NMR 

spectrum and their contributing metabolites (left half) versus the 110 rationally defined 

integration regions and contributing metabolites of the 400 MHz NMR spectrum (right half).  

900 MHz 400 MHz 

VAR VIP 
Contributing 

metabolites 
Start End VAR VIP 

Contributing 

metabolites 

1  NI 8,4914 8,4796    

2  Formate 8,3702 8,3602    

3  NI 8,2601 8,2500    

4  NI 8,2300 8,2050    

5  NI 7,8561 7,8104 1*i 0.68 NI 

     2  His 

6 
 

 
His 7,7812 7,7544 

3  NI 

4*i 0.53 His 

     5  NI 

     6  NI 

     7  NI 

7  Phe 7,4677 7,4380 
8  Phe 

8  Phe, NI 7,4162 7,3755 

9  Phe 7,3675 7,3484 9  Phe, NI 

10  NI 7,3484 7,3227 10  NI 

     11  NI 

     12  Tyr, NI 

11  Tyr 7,2327 7,2046 13  Tyr, NI 

12  NI 7,1894 7,1591    

13  His 7,0792 7,0597 14  His 

14  NI 7,0201 6,9652    

15  Tyr 6,9355 6,9056 15  Tyr 

     16  NI 

16  NI 6,7460 6,7004 17  NI 

17*d 1.62 Lipids: -CH=CH- in FAC
#

 5,4422 5,2833 18*d 1.96 Lipids: -CH=CH- in FAC
#

 

18*i 0.88 Glucose 5,2751 5,2542 19*i 0.73 Glucose 

19  
C2H in glycerol backbone 

of PL and TG
#

 
5,2542 5,2301 

20  
C2H in glycerol backbone 

of PL and TG
#

 
20  

C2H in glycerol backbone 

of PL and TG
#

 
5,2186 5,2038 

21  NI 5,1525 5,1187    

22*i 0.98 Glucose 4,7088 4,6421 21*i 1.00 Glucose 

     22  NI 

     23*i 0.79 NI 

23 
 

 

C1H and C3H in glycerol 

backbone of TG
#

 
4,3579 4,2902 24*i 0.70 

C1H and C3H in glycerol 

backbone of TG
#

 

24 
 

 

O-CH2-CH2-N+(CH3)3 of 

PC and SM
#

, Thr 
4,2852 4,2536 25 0.73 

O-CH2-CH2-N+(CH3)3
 of 

PC and SM
#

, Thr 

25  β-hydroxybutyrate 4,2000 4,1607 

26  β-hydroxybutyrate, Pro 

27  
β-hydroxybutyrate, 

lactate, Pro 
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Table 3.1. continued.  

VAR VIP 
Contributing 

metabolites 
Start End VAR VIP 

Contributing 

metabolites 

26*d 1.47 

C1H and C3H in glycerol 

backbone of PL and TG
#

, 

lactate 

4,1570 4,1276 28*d 1.49 

C1H and C3H in glycerol 

backbone of PL and TG
#

, 

lactate 

27*d 0.54 NI 4,1276 4,0942 
29*d 0.83 NI 

30  NI 

28  Creatinine 4,0904 4,0780 31  
Creatinine 

 

     32  NI 

     33  His, Ser 

29 

 

 

 

 

C3H2 in glycerol backbone 

of PL
#

, Asn, His, Phe, Ser 
4,0400 3,9913 

34  Asn, His, Phe, Ser 

35  
C3H2 in glycerol backbone 

of PL
#

, Asn, His, Phe, Ser 

36*i 1.01 
C3H2 in glycerol backbone 

of PL
#

, Asn, His, Phe, Ser 

30*i 0.74 Asn, His, Ser, Tyr 3,9903 3,9644 
37*i 1.34 

Creatine, Asn, His, Tyr, 

Ser 31*i 0.51 Creatine 3,9644 3,9586 

32  Tyr 3,9586 3,9527 

38*i 3.61 
Glucose, Asp, Met, Ser, 

Tyr 

33*i 2.14 Glucose 3,9527 3,9120 

34*i 1.16 Glucose 3,9120 3,8957 

35*i 1.84 Glucose 3,8881 3,8306 

36 
 

 

Glucose, Ala, Gln, Glu, 

Ser 
3,8286 3,8097 

39*i 0.90 Glucose, Ala, Ser 

40*d 0.60 Glucose, Ala, Gln, Glu 

37*i 1.21 Glucose, Ala, Gln 3,8097 3,7794 41*i 0.55 
Glucose, Ala, Gln, Glu, 

Leu, Lys 

38*i 1.90 Glucose 3,7776 3,7275 

42*i 1.69 
Glucose, Ala, Gln, Glu, 

Leu, Lys 

43*i 1.11 Glucose, Ala, Leu 

44*i 1.38 Glucose 

39*i 2.29 Glycerol 3,7204 3,6453 

45*i 1.93 
O-CH2-CH2-N+(CH3)3 of 

PC and SM
#

, glycerol, Ile 

46*i 0.96 Glycerol 

47*i 0.51 Glycerol, Val 

40*i 0.74 Val 3,6453 3,6212 48*i 0.87 Val 

41*i 1.16 Thr 3,6163 3,5861 
49*i 0.89 Thr 

50*i 0.90 Thr 

42  Glycerol 3,5861 3,5771 51*i 1.18 
Glucose, glycerol, Gly, 

Thr 

43*i 1.02 Glucose 3,5771 3,5481 52*i 0.53 
Glucose 

 

     53*i 0.78 
Glucose, 

acetoacetate, Pro 

44*i 1.76 Glucose 3,5355 3,4798 

54*i 2.17 
Glucose, 

acetoacetate, Pro 

 

45  Pro 3,4772 3,4576 

46*i 1.45 Glucose 3,4576 3,4093 

47  Methanol 3,3964 3,3924 
55*d 0.52 Methanol, NI 

48  NI 3,3924 3,3746 

49  Pro 3,3746 3,3465 56  Pro 

     57  Phe, Pro 
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Table 3.1. continued.  

VAR VIP 
Contributing 

metabolites 
Start End VAR VIP 

Contributing 

metabolites 

50  Phe 3,3256 3,3132 

58*d 2.55 

O-CH2-CH2-N+(CH3)3 of 

PC and SM
#

, glucose, 

His, Phe, Tyr 

51  Phe, NI 3,3132 3,3030 

52  NI 3,3030 3,2956 

53  NI 3,2956 3,2909 

54*i 1.11 Glucose 3,2909 3,2616 

55*d 2.21 
O-CH2-CH2-N+(CH3)3 of 

PC and SM
#

 
3,2616 3,2085 

56  Tyr, NI 3,2085 3,1895 59  Tyr, NI 

57  NI 3,1881 3,1821 
60  NI 

58  NI 3,1821 3,1724 

59  NI 3,1707 3,1571 61  NI 

60  His, Phe 3,1541 3,1378 62*d 0.51 His, Phe 

61  Tyr 3,0921 3,0769 63*d 0.55 Lys, Tyr 

62  Creatinine 3,0769 3,0699 64*d 0.56 Creatinine, Lys, Tyr 

63  Creatine 3,0699 3,0635 65  Creatinine, creatine, Lys 

64*i 0.64 α-ketoglutrate, Lys 3,0635 3,0047 66*i 0.84 α-ketoglutarate, Lys 

65 
 

 

Lipids: =CH-CH2-CH= in 

FAC
#

 
3,0047 2,9655 

67*d 1.00 
Lipids: =CH-CH2-CH= in 

FAC
#

, Asn 
66*d 0.50 Asn 2,9597 2,9201 

67 
 

 
Asn, Asp 2,8874 2,8465 68*d 0.60 

Lipids: =CH-CH2-CH= in 

FAC
#

, Asn, Asp 

68*d 0.55 
Lipids: =CH-CH2-CH= in 

FAC
#

 
2,8465 2,7623 69*d 1.35 

Lipids: =CH-CH2-CH= in 

FAC
#

, Asn, Asp 

69  Citrate 2,7571 2,7493 
70  Citrate, Asp 

70  NI 2,7472 2,7390 

71  Citrate 2,7368 2,7251 
71*i 0.55 Citrate, Asp, Met 

72*i 0.76 Asp 2,7237 2,6768 

73  Met 2,6768 2,6597 72*i 0.52 Met 

74*d 0.52 Citrate 2,5865 2,5426 73*d 0.75 Citrate 

     74  NI 

75*d 
 

0.76 
Gln 2,5183 2,4428 

75  Gln 

76  
β-hydroxybutyrate, 

 α-ketoglutarate, Gln 

76  β-hydroxybutyrate 2,4428 2,4280 77  
β-hydroxybutyrate,  

α-ketoglutarate, succinate 

     78  β-hydroxybutyrate, Pro 

     79  
β-hydroxybutyrate, Glu, 

Pro 

77  Pyruvate 2,4060 2,3978 80  Pyruvate, Pro, Glu 

78  Glu 2,3978 2,3648 81  
β-hydroxybutyrate, Pro, 

Glu 

     82  
β-hydroxybutyrate, Pro, 

Glu 

79  β-hydroxybutyrate 2,3540 2,3194 83  
β-hydroxybutyrate, Pro, 

Val 

     84  
β-hydroxybutyrate, 

acetoacetate, Pro, Val 
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Table 3.1. continued.  

VAR VIP 
Contributing 

metabolites 
Start End VAR VIP 

Contributing 

metabolites 

80  Acetoacetate 2,3134 2,3067 85  
β-hydroxybutyrate, 

acetoacetate, Val 

81*d 0.64 
Lipids: -CH2-C=O or  

-CH2-CH=CH- in FAC
#

 
2,3067 2,2630 

86 
 

 

Lipids: -CH2-C=O or  

-CH2-CH=CH- in FAC
#

,  

β-hydroxybutyrate, Val 

87*d 0.84 

Lipids: -CH2-C=O or 

 -CH2-CH=CH- in FAC
#

, 

Met, Val 

82 
 

 
Aceton 2,2630 2,2563 

88*d 0.66 

Lipids: -CH2-C=O or 

-CH2-CH=CH- in FAC
#

, 

aceton, Met, Val      

     89  Glu, Met 

83  NI 2,1975 2,1814 

90*i 0.81 Gln, Glu, Pro, Met 
84  Gln 2,1777 2,1670 

85  Met 2,1670 2,1919 

86*i 0.89 Gln 2,1619 2,1311 

87*i 1.80 
Lipids: -CH2-CH=CH- in 

FAC
#

 
2,1289 2,0993 

91*i 2.72 

Lipids: -CH2-CH=CH- in 

FAC
#

, CH3 of 

NAG
$
, Glu, Ile, Met, Pro 

 
88*i 2.70 

Lipids: -CH2-CH=CH- in 

FAC
#

, CH3 of 

NAG
$
 

2,0993 1,9889 

89  Acetate 1,9547 1,9421 
92  Acetate, Ile, Lys 

90  Lys 1,9421 1,9028 
93*i 0.50 Ile, Lys 

91*i 1.06 Leu 1,8006 1,6758 94*i 0.84 Leu, Lys 

92 
 

 

Lipids: -CH2-CH2-C=O or 

-CH2-CH2-CH=CH- in 

FAC
#

 

1,6530 1,5770 95*d 1.36 

Lipids: -CH2-CH2-C=O or 

-CH2-CH2-CH=CH- in 

FAC
#

, Lys 

93*d 0.56 Ala 1,5226 1,4919 96*d 0.85 Ala, Ile, Lys 

94*i 0.75 Lys 1,4587 1,4201 97  Ile, Leu, Lys 

95*d 1.50 Lactate 1,4169 1,3675 98*d 1.60 Lactate 

96*d 2.80 Lactate 1,3675 1,3516 99*d 3.11 Lactate, Thr 

97*d 4.52 
Lipids: -CH3-(CH2)n- in 

FAC
#

 
1,3516 1,2366 100*d 3.54 

Lipids: CH3-(CH2)n- in 

FAC
#

, Ile, Thr 

98*i 0.76 β-hydroxybutyrate 1,2366 1,2240 101*i 0.64 β-hydroxybutyrate, Ile 

99*i 1.99 NI 1,2240 1,1766 102  NI 

100  Val 1,0860 1,0592 103  Val 

101*i 0.56 Ile 1,0513 1,0340 104  Ile 

102*i 
 

0.78 

 

Val 1,0396 1,0106 
105  Ile, Val 

106  Ile, Leu, Val 

103*i 0.72 Leu 1,0083 0,9766 
107  Ile, Leu 

108  Ile, Leu 

104*i 0.68 Ile 0,9766 0,9663 109*i 0.54 Ile 

105*d 2.34 
Lipids: CH3-(CH2)n- in 

FAC
#

 
0,9663 0,7961 110*d 2.39 

Lipids: CH3-(CH2)n- in 

FAC
#

 

The assignment of the resonance signals present in the 400 MHz spectra was based on spiking 

experiments (17). Nonetheless, some assignments are slightly adapted based on additional information 



High-field (900 MHz) vs. medium-field (400 MHz) NMR metabolomics 

110 

 

obtained from spiking experiments on the 900 MHz spectrometer. 
#

The assignment of the lipid signals is 

based on literature (24-26). 
$
The assignment of signals of N-acetylated glycoproteins is based on 

literature (27). Amino acids are presented by their 3-letter code. *d: Variables with a VIP value exceeding 

0.5 and which are decreased in plasma of lung cancer patients, *i: Variables with a VIP value exceeding 

0.5 and which are increased in plasma of lung cancer patients. FAC: fatty acid chain; NAG: N-acetylated 

glycoproteins; NI: non-identified; PC: phosphatidylcholine; PL: phospholipids; ppm: parts per million; 

SM: sphingomyelin; TG: triglycerides; VAR: variable; VIP: variable importance for the projection.  

An interesting example is VAR58 of the 400 MHz spectrum, which can be divided 

into 6 regions (ranging from VAR50-55) in the 900 MHz spectrum, revealing that 

the plasma concentration of glucose (VAR54) is increased whereas the level of 

sphingomyelin and phosphatidylcholine (VAR55) is decreased for lung cancer 

patients. Remark that sphingomyelin and phosphatidylcholine can be 

discriminated from the other lipids on the basis of the strong singlet NMR signal 

of the nine protons of the three methyl groups of the choline head group. On the 

other hand, adjacent regions which encompass the same dominant metabolite are 

combined into a single integration region, e.g. VAR42-44 in the 400 MHz spectrum 

(composed of very strong signals of glucose next to very weak signals of the α-

CH group of several amino acids) is replaced by VAR38 (a single glucose signal) 

in the 900 MHz spectrum. Taken together, 68% of the variables in the 900 MHz 

spectrum (71 out of the 105) represent a single metabolite as opposed to only 

24% in the 400 MHz spectrum (26 out of 110). The number of non-identified 

signals however is rather independent of the applied magnetic field strength, i.e. 

20% (21 out of 105) of the variables in the 900 MHz spectrum and 17% (19 out 

of 110) in the 400 MHz spectrum.  

Application of the analysis protocols in a case-control dataset 

In order to investigate the discriminative power of plasma metabolic phenotyping 

data derived from the integration data collected at different magnetic field 

strengths, a case-control dataset of 69 lung cancer patients and 74 controls was 

analyzed on a 400 MHz and a 900 MHz spectrometer. Subject characteristics of 

the case-control dataset are presented in Table 3.2. Supervised OPLS-DA 

analysis was conducted to train robust classification models in discriminating 

between lung cancer patients and controls. Using the 400 MHz integration data, 

the best model having 1 predictive and 4 orthogonal components allows to classify 

94% (65 out of 69) of the lung cancer patients and 97% (72 out of 74) of the 
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controls correctly with an area under the curve (AUC) of 0.93 (Figure 3.2A-B, 

Table 3.3). By means of the 900 MHz integration data, the model having 1 

predictive and 4 orthogonal components allows to classify 86% (59 out of 69) of 

the lung cancer patients and 95% (70 out of 74) of the controls correctly (Table 

3.3). However, the discriminative power of the 900 MHz model still increases 

significantly when 9 orthogonal components were used to train the model, 

resulting in a sensitivity of 90%, a specificity of 100% and an AUC of 0.90 (Figure 

3.2C-D, Table 3.3). 

Table 3.2. Characteristics of the subjects included in the study.  

 LC C 

Number of subjects, n 69 74 

Gender, n (%)   

 Male 46 (66.7) 44 (59.5) 

 Female 23 (33.3) 30 (40.5) 

Age, yrs 

(range) 

68 ± 10 

(36 – 88) 

64 ± 13 

(23 – 84) 

BMI, kg/m2 

(range) 
25.3 ± 4.6 

(17.5 – 38.5) 
26.3 ± 4.6 

(16.5 – 39.0) 

Smoking habits   

 Smoker, n (%) 40 (58.0) 19 (25.7) 

 Ex-smoker, n (%) 26 (37.7) 28 (37.8) 

 Non-smoker, n (%) 3 (4.3) 27 (36.5) 

 Pack years 

 (range) 

34 ± 21 

(0-125) 

18 ± 28 

(0-175) 

Laterality   

 Left, n (%) 23 (33.3)  

 Right, n (%) 39 (56.5)  
 Bilateral, n (%) 5 (7.2)  

 Unknown, n (%) 2 (2.9)  

Amount of tumors, n 74  

Histological subtype   

 NSCLC-Adenocarcinoma, n (%) 27 (36.5)  

 NSCLC-Spinocellular carcinoma, n (%) 18 (24.3)  

 NSCLC-Adenosquamous carcinoma, n (%) 3 (4.1)  

 NSCLC-Carcinoid, n (%) 1 (1.3)  

 NSCLC-NOS, n (%) 3 (4.1)  
 SCLC, n (%) 12 (16.2)  

 Unknown 10 (13.5)  

Clinical stage according to 7th TNM edition    

 IA, n (%)  18 (24.3)  

 IB, n (%) 5 (6.7)  

 IIA, n (%) 4 (5.4)  

 IIB, n (%) 2 (2.7)  

 IIIA, n (%) 15 (20.3)  

 IIIB, n (%) 11 (14.9)  

 IV, n (%) 19 (25.7)  

Data are presented as mean ± standard deviation and range, unless otherwise indicated. BMI: body mass 

index; C: controls; LC: lung cancer; NOS: not otherwise specified; NSCLC: non-small cell lung cancer; 

SCLC: small cell lung cancer; TNM: tumor, node; metastasis.  
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Figure 3.2. (A) OPLS-DA score plot derived from the 400 MHz data, (B) receiver operating 

characteristic curve derived from the 400 MHz data, (C) OPLS-DA score plot derived from the 

900 MHz data, (D) receiver operating characteristic curve derived from the 900 MHz data. AUC: 

area under the curve; C: controls; LC: lung cancer patients; OPLS-DA: orthogonal partial least squares 

discriminant analysis. 

Table 3.3. Characteristics of the trained OPLS-DA classification models resulting from the 400 

MHz and 900 MHz data.  

 LV (P+O) R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

Sens (%) Spec (%) AUC 

LC vs. C (400 MHz) 5 (1+4) 0.83 0.67 0.54 94 97 0.93 

LC vs. C (900 MHz) 5 (1+4) 0.81 0.58 0.38 86 95 / 

 10 (1+9) 0.90 0.75 0.49 90 100 0.90 

AUC: area under the curve; C: controls; LC: lung cancer patients; LV: latent variable; MHz: megahertz; 

O: number of orthogonal components; OPLS-DA: orthogonal partial least squares discriminant analysis; 

P: number of predictive components; R2X(cum): total explained variation in X; R2Y(cum): total explained 

variation in Y; Sens: sensitivity; Spec: specificity; Q2(cum): predicted variation.  
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When a closer look is taken at the model characteristics (Table 3.3), it can be 

concluded that on the one hand, the best 900 MHz model contains twice as much 

latent variables, clarifying why this model explains 90% of the intra-group 

variation (R2X(cum)) relatively to 83% in the 400 MHz model. In addition, the 900 

MHz model explains 75% of the inter-group variation (R2Y(cum)) compared to 

67% in the 400 MHz model. On the other hand, the predictive ability of the 400 

MHz model is slightly better, i.e. 54% relatively to 49%. Taken all above in 

consideration, it can be concluded that the discriminative power of the models 

obtained on the basis of the 400 MHz data and the 900 MHz data is comparable. 

This finding is in line with the results of Bertram et al., who examined the impact 

of varying magnetic field strengths, i.e. 250, 400, 500 and 800 MHz, on the 

urinary metabolic phenotype before and after a dietary intervention (16). They 

concluded that although the power of the urinary metabolic phenotype to 

discriminate between pre- and post-intervention samples significantly improved 

when increasing the magnetic field strength from 250 to 500 MHz, it remained 

quasi stable when the magnetic field strength was further increased from 500 to 

800 MHz.  

In order to explain the disturbed biochemical pathways in lung cancer, only 

variables with a VIP value exceeding 0.5 were considered. This corresponds to 

49% (54 out of 110) and 41% (43 out of 105) of the variables for the 400 MHz 

and 900 MHz data, respectively. All these variables (indicated with an asterisk in 

Table 3.1) are situated far out on the wings of the respective S-plots as 

demonstrated in Figure 3.3A-B. For both 400 MHz and 900 MHz data and with 

respect to the controls, the plasma concentration of aspartate, β-hydroxybutyrate, 

creatine, glutamine, glucose, glycerol, isoleucine, leucine, lysine, N-acetylated 

glycoproteins, threonine and valine is increased, whereas the concentration of 

alanine, asparagine, citrate, lactate, non-cholinated lipids, phosphatidylcholine 

and sphingomyelin is decreased. Only a few (4) additional altered variables were 

found for the 400 MHz data, but all of them with low VIP values between 0.5 and 

0.6. Similar findings were reported by Bertram et al., demonstrating that the same 

variables were found in the discrimination between pre- and post-intervention 

samples at different magnetic field strengths (16).  
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Figure 3.3. (A) S-plot of the OPLS-DA model derived from the 400 MHz data showing the 

variables contributing most to group discrimination. Variables situated at the right end are 

increased in the plasma of controls, while those situated at the left end are increased for the lung cancer 

patients, (B) S-plot of the OPLS-DA model derived from the 900 MHz data. Variables used to 

explain the disturbed biochemical pathways in lung cancer (VIP > 0.5) are marked (●). Var: variable; 

VIP: variable importance for the projection.  

Advantages and disadvantages of high (900 MHz) versus medium 

(400 MHz) field strengths 

High-field spectra (e.g. 900 MHz spectra) have an increased spectral resolution 

and S/N compared to 400 MHz spectra, allowing a more accurate setting of the 

integration regions, resulting in an increase in integration regions which represent 

a single metabolite and thereby facilitate the explanation of the underlying 

disturbed biochemical pathways. However, high-field spectrometers also have 

some disadvantages: i) they need an isolated environment, i.e. a separate 

building, making them less practical for clinical practice and ii) the cost of the 

instrumentation raises strongly with the magnetic field strength. Taking all into 

account, medium-field (400-600 MHz) spectrometers seem to be most suitable 

for clinical metabolomics. 
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Conclusions 

On the basis of the information obtained from spiking experiments, 400 MHz and 

900 MHz spectra of human blood plasma were rationally divided into 110 and 105 

well-defined integration regions, respectively. The increased spectral resolution 

and S/N of the 900 MHz spectra enable to define the integration regions more 

accurately, resulting in a larger number of integration regions that represent a 

single metabolite. In this way, it becomes more convenient to unravel the 

underlying disturbed biochemical pathways. Nonetheless, when the integration 

data collected at a 400 MHz and a 900 MHz spectrometer were applied to classify 

a case-control dataset of 69 lung cancer patients and 74 controls, the 

discriminative power was quasi comparable. Therefore, it can be concluded that 

medium-field NMR spectrometers, as a 400 MHz, are satisfactory if group 

discrimination is the only aim. High-field NMR spectrometers on the other hand 

are indispensable if the goal includes the unraveling of the disturbed biochemical 

pathways. The global findings of this study indicate that medium-field (400-600 

MHz) spectrometers, commonly available in research institutes, are most suitable 

for clinical metabolomics studies as the increase in spectral resolution and S/N 

does not outweigh the rise in equipment, housing and maintenance costs.  
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Abstract 

Variations in sample collection, processing and storage within the field of clinical 

metabolomics might hamper its effective implementation. In this study, the 

impact of relevant preanalytical conditions on the plasma 1H-NMR metabolic 

profile was examined. The biobanking community recently developed a method 

for coding preanalytical conditions called the Standard PREanalytical Code 

(SPREC). It is envisaged that SPREC will ultimately identify which samples are fit 

for a particular analysis, based on prior validation by a panel of experts in the 

respective field. In an effort to validate SPREC for 1H-NMR plasma metabolomics, 

we have coded the conditions used here, when possible, according to SPREC and 

evaluated its power to identify preanalytical conditions that affect the plasma 1H-

NMR metabolic profile. From all preanalytical conditions studied, only prolonged 

processing delays (3 h and 8 h) have a significant impact on the plasma 1H-NMR 

metabolic profile as compared to the reference condition (30 min). Principal 

component analysis shows a clear systematic shift as a function of increasing 

processing delay. Nevertheless, the inter-individual variation is clearly much 

larger than this preanalytical variation, indicating that the impact on multivariate 

group classification will be minimal. Nonetheless, we recommend to keep the time 

gap between blood collection and centrifugation similar for all samples within a 

study. The implementation of SPREC within clinical metabolomics allows for an 

appropriate sample encoding and exclusion of samples that were subjected to 

unwanted, interfering preanalytical conditions. Without doubt, it will contribute to 

the validation of 1H-NMR metabolomics in clinical, biobank and multicenter 

research settings. 

 

 

 

 

 

 

 



CHAPTER 4 

121 

 

Introduction 

Metabolomics is a powerful tool to detect metabolites in biological samples. It has 

great promise for the discovery of novel clinical biomarkers and the elucidation of 

disease-specific pathways to improve prognosis, diagnosis and therapy (1-5). 

Metabolomics research is mainly based on mass spectrometry (MS) and/or nuclear 

magnetic resonance (NMR) spectroscopy combined with multivariate statistics in 

order to understand and interpret the resulting data (6-8). NMR-based 

metabolomics has several advantages which make it highly suitable for clinical 

implementation. First, it can be used to study biofluids (e.g. plasma, serum or 

urine) and second, requires only limited sample preparation and processing (9). 

While serum traditionally makes up the majority of samples in clinical laboratories, 

plasma is preferentially used in laboratory medicine because it is more time-

saving, has a higher yield and prevents coagulation-induced interferences (10). 

Moreover, lithium-heparin (LiHe) is described as the most suitable anticoagulant 

for proton (1H)-NMR analysis (11, 12).  

Nevertheless, due to the nature of the clinical setting, samples can be subjected 

to preanalytical variations in collection, processing and storage procedures. 

Additionally, the high number of samples needed for discovery and validation 

metabolomics is often gathered from multiple research centers, clinics or 

biobanks, increasing the likelihood of discrepancies between sample handling (9). 

It has been described for liquid chromatography-MS-based metabolomics in 

particular that preanalytical changes can have a major impact on the quality of 

samples, impeding interpretation of analytical results and decreasing the 

credibility of research outcomes (13-17). As this can potentially affect clinical 

implementation of metabolomics, it is clear that the impact of clinical sources of 

preanalytical bias on the plasma 1H-NMR metabolome needs to be elucidated.  

Although efforts are currently made within the field of metabolomics to move 

towards defining standard operation procedures for preanalytical handling (18), 

complete standardization of the preanalytical processing is not yet feasible 

between and within clinical settings. Alternatively, application of a preanalytical 

sample code that traces and manages these variations would allow sample 

harmonization. Hereto, the Standard PREanalytical Code (SPREC) was developed 

within the field of biobanking (19, 20). This is an easy to implement and 
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comprehensive tool, consisting of seven elements that document the critical 

preanalytical details of biospecimens. However, its value within clinical 

metabolomics remains to be evaluated.  

To investigate the potential of metabolomics for implementation in the clinic, we 

examined the impact of relevant preanalytical conditions on the plasma 1H-NMR 

metabolic profile. The preanalytical protocols used in this study were encoded 

according to SPREC in order to evaluate their power with respect to the 

identification of preanalytical conditions that affect the plasma 1H-NMR metabolic 

profile. This was done in order to contribute to the validation of SPREC in clinical 

metabolomics. 
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Materials and Methods 

Subjects 

Twenty volunteers (8 males and 12 females) aged between 21 and 72 (median 

age: 32) were included in the study. The study participants consisted of university 

staff and controls, who were recruited in 2013 participating in another 

metabolomics study conducted at Ziekenhuis Oost-Limburg (Genk, Belgium). All 

subjects had fasted at least 12 h before blood collection. The study was conducted 

in accordance with the ethical rules of the Helsinki Declaration and Good Clinical 

Practice, and was approved by the ethical committees of Jessa Hospital and 

Hasselt University. All participants gave written informed consent prior to inclusion 

in the study.  

Sample collection, preparation and storage 

Blood samples were collected into 10 ml LiHe tubes at 9 am according to the World 

Health Organization guidelines on drawing blood (21). An overview of the entire 

study protocol is presented in Figure 4.1. The reference processing protocol 

consisted of keeping the freshly drawn blood for 5 min at room temperature (RT), 

followed by a 30 min incubation on ice, 15 min centrifugation at 1,600 g at 4°C 

and subsequent storage at -80°C in 1 ml cryovials as 350 µl aliquots (Figure 4.1).  

In study group 1 (n=6), a double concentration of LiHe was obtained by drawing 

only 5 ml blood in the 10 ml tube. Short-term exposure to an oxidative 

atmosphere was acquired by transferring blood from the primary tube to another. 

Blood samples subjected to both preanalytical conditions were also subjected to a 

subsequent 3 h and 8 h processing delay at 4°C to determine potential cumulative 

effects. In study group 2 (n=6), hemolysis grade 1 (moderate) and 2 (strong) was 

induced by putting the blood samples directly on dry ice for three and six minutes, 

respectively (22). The free hemoglobin concentration was determined on a 

Roche/Hitachi MODULAR P analyzer (D-BIL Cobas, Roche Diagnostics, Mannheim, 

Germany). Hemolysis grade 1 corresponds to a free hemoglobin concentration ≥ 

10 mg/dl and hemolysis grade 2 to a concentration ≥ 100 mg/dl (H index, manual 

MODULAR P analyzer). The effect of a variable processing delay was examined as 

described for study group 1. To examine the effect of centrifugation temperature, 

blood samples were centrifuged at 4°C or RT after a standard processing delay of 
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30 min on ice. To examine freezing procedure effects, plasma was aliquoted into 

1 ml cryovials and immediately stored at -80°C or kept for 8 h on dry ice before 

storage at -80°C or kept in liquid nitrogen (LN2) for 8 h before storage at -80°C. 

The effect of plasma storage duration at -80°C in study group 3 (n=10) was 

determined by storing the samples at -80°C for 2 and 10 months.  
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Figure 4.1. Overview of the study protocol. Fasting blood samples were obtained and handled according to the reference protocol (grey boxes) or subjected 

to several preanalytical conditions: (1) a double LiHe concentration or an oxidative atmosphere, in combination with a processing delay of 3 h or 8 h at 4°C was 

investigated in study group 1 (n=6); (2) hemolysis grade 1 and 2, a processing delay of 3 h and 8 h at 4°C, centrifugation at RT, and 8 h freezing on dry ice or 

in LN2 was examined in study group 2 (n=6); (3) storage of plasma aliquots during 10 months at -80°C was studied in study group 3 (n=10). SPREC annotations 

that are different from the reference are indicated in bold and are underlined. LiHe: lithium-heparin; LN2: liquid nitrogen; mths: months; SPREC: Standard 

PREanalytical Code; RT: room temperature. 
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NMR sample preparation and analysis 

To account for experimental variability, samples were measured in random order 

and in duplicate. To exclude inter-operator variability, samples were prepared, 

measured and post-processed by the same operator. NMR sample preparation and 

1H-NMR analysis was performed as described in Chapter 2: NMR sample 

preparation and analysis.  

Spectral processing 

See Chapter 2: Spectral processing.  

Statistical analysis 

Multivariate statistics was performed on the average value of the variables 

obtained from plasma analyses in duplicate (SIMCA-P+; Version 13.0.3, Umetrics, 

Umea, Sweden). After mean-centering and Pareto scaling of the variables, 

unsupervised principal component analysis (PCA) was performed to identify 

patterns or clusters. The variance structure of the data is explained through linear 

combinations of the variables, i.e. the so-called principal components (PCs). The 

first PC explains the largest variance within the dataset, followed by the second 

and third PCs. This multivariate analysis was performed by means of the 110 

integration values (variables) which were defined and numbered as previously 

described in literature (23). Additionally, as 40 of these 110 variables were 

assigned as ‘noisy’, i.e. having a coefficient of variation exceeding 15% (23), the 

multivariate analysis was also performed by using only the remaining 70 variables. 

However, no significant differences were detected as can be seen, for the 

processing delay as an example, in Figure 4.2. Therefore, multivariate analyses 

were performed by using all 110 variables.  

To explore the discriminating variables more in detail, univariate statistics was 

performed on data obtained from all measurements, and not on average values 

of the duplo measurements (IBM SPSS Statistics; Version 22, IBM Corp., Armonk, 

NY, USA). Since univariate statistics is more prone to noise compared to 

multivariate statistics, the 40 noisy variables were excluded. The analysis was 

accomplished by non-parametric testing (Kruskal-Wallis test for more than two 

groups or Mann-Whitney U test for two groups, p<0.05).
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Figure 4.2. PCA score plots showing the influence of processing delay (time between blood collection and centrifugation) and made by using 

(A) all 110 integration values and (B) only the 70 ‘non-noisy’ integration values of the plasma 1H-NMR spectra. Plasma samples originating from 

blood processed after a delay of 30 min (B; ○, reference), 3 h (B; ●) and 8 h (B; ●). No significant differences are observed between the two plots. PC: principal 

component. 
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Results and Discussion 

Nowadays, the powerful combination of analytical techniques and multivariate 

statistics is increasingly used to study differences between healthy and diseased 

subjects and to discover disease-related biomarkers in clinical metabolomics (24). 

Because clinical metabolomics seems to shed new light on (1) biochemical 

pathways involved in the etiology of diseases, (2) disease diagnosis and (3) new 

markers to judge therapy response (25), it is crucial to ensure its robustness, i.e. 

its reproducibility and accuracy. In other words, the variability should be under 

tight control in a clinical setting, ensuring that differences in the metabolic profile 

are resulting from the physiological status and not from differences in 

preanalytical sampling conditions such as collection, preparation and storage 

procedures (16, 26, 27). Preanalytical conditions which induce variation 

surpassing the inter-individual variation should be avoided (or samples collected 

under such conditions removed from the study).  

Impact of a double LiHe concentration on the plasma metabolome 

Due to time constraints or incorrect blood drawing in routine clinical practice, 

blood collection tubes can be under-filled leading to an increased concentration of 

the anticoagulant in the blood. To our knowledge, a possible influence on the 

plasma metabolome has not been investigated before. To this end, 1H-NMR 

spectra of plasma obtained from half-filled blood tubes (double LiHe 

concentration) were compared with those from plasma obtained via a reference 

protocol (reference plasma) as described in Figure 4.1. Furthermore, we 

investigated a possible confounding time-dependent effect by subjecting both the 

reference and conditioned sample to a processing delay of 3 h and 8 h at 4°C. As 

shown in the PCA score plots of Figure 4.3A, the plasma metabolome of blood 

subjected to a double LiHe concentration could not be discriminated from that of 

reference plasma, also not after a processing delay of 8 h. As the inter-individual 

variation is clearly exceeding this preanalytical variation, it can be concluded that 

plasma samples originating from blood collected in LiHe tubes which are only half-

filled are still reliable for 1H-NMR metabolomics. On the other hand, a clear and 

systematic change is observed as a function of increasing processing delay which 
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can be attributed to alterations in the concentration of pyruvate and lactate (see 

below).  

Impact of short-term exposure of blood to an oxidative 

atmosphere on the plasma metabolome 

While blood collection using a vacuum collection tube holder is standard practice, 

it sometimes cannot be applied (e.g. in pediatric setting). Consequently, blood will 

be exposed to an oxidative atmosphere during transfer from syringe to tube, 

which might initiate specific enzymatic/chemical reactions (18). Here, we 

examined whether a short-term exposure of blood to an oxidative atmosphere 

induces changes in the plasma metabolome as compared to reference plasma 

(Figure 4.1). Furthermore, we investigated a possible confounding time-

dependent effect by subjecting both the reference and conditioned sample to a 

processing delay of 3 h and 8 h at 4°C. As shown in the PCA score plots of Figure 

4.3B, the plasma metabolome of blood subjected to an oxidative atmosphere 

could not be discriminated from that of reference plasma, also not after a 

processing delay of 8 h. As the inter-individual variation is clearly exceeding this 

preanalytical variation, it can be concluded that a short exposure of blood to an 

oxidative atmosphere does not affect the plasma 1H-NMR metabolic profile. On 

the other hand, again a clear and systematic change is observed as a function of 

increasing processing delay which can be attributed to alterations in the 

concentration of pyruvate and lactate (see below).  
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Figure 4.3. PCA score plots showing the influence of a double lithium-heparin (LiHe) concentration (A) and oxidative atmosphere (B), made by 

the 110 integration regions of the plasma 1H-NMR spectra of study group 1 (n=6). Plasma samples originating from blood exposed to a double 

concentration of LiHe or oxidative atmosphere (∆) as compared to reference plasma (○). Blood samples processed after a processing delay of 30 min (white; 

reference), 3 h (grey) and 8 h (black). PC: principal component. 
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Effect of hemolysis on the plasma metabolome 

Hemolysis frequently occurs in clinical routine because of incorrect blood drawing 

techniques, e.g. improper choice of venipuncture site, prolonged tourniquet time, 

blood collection through a peripheral IV catheter or exposure to excessive heat or 

cold (22, 28, 29). The release of hemoglobin and intracellular species in the 

plasma due to red blood cell lysis affects several biochemical laboratory tests (30-

32). Nevertheless, the effect on the human plasma 1H-NMR metabolome has to 

our knowledge not yet been investigated. Hereto, moderate hemolysis (grade 1) 

and severe hemolysis (grade 2) were induced by exposing blood to excessive cold 

and the degree of hemolysis was defined on the basis of the concentration of free 

hemoglobin. No significant differences were observed between the reference and 

hemolytic plasma metabolomes (Figure 4.4A). This in contrast to Yin et al. who 

found 69 species to be significantly altered in moderate and severe hemolytic 

plasma by non-targeted LC-MS (16). However, as LC-MS requires a more 

extensive sample preparation and has increased sensitivity compared to NMR (16, 

33, 34), it is consequently also more prone to preanalytical variation. In summary, 

we can conclude that hemolysis does not affect the plasma 1H-NMR metabolic 

profile.  

Impact of processing delay on the plasma metabolome 

Because of clinical sample flow, it is often not possible to process blood 

immediately after collection. Moreover, samples have to be transferred to on- or 

offsite laboratories for analysis, which can take up to several hours. Therefore, 

the effect of an increasing processing delay between blood collection and 

centrifugation was examined, i.e. delays of 3 h and 8 h at 4°C were compared to 

the reference protocol (i.e. 30 min on ice). The PCA score plot shows a clear and 

systematic change as a function of increasing processing delay (Figure 4.4B), 

which was already observed previously (cfr. Figure 4.3A and 4.3B). In order to 

find out which metabolites are responsible, univariate statistics was performed of 

which the outcome demonstrates that processing after 3 h instead of 30 min 

results in a significant decrease of the pyruvate signal between 2.405-2.399 ppm 

(VAR80: p = 0.023) (Figure 4.5). Processing after 8 h induces an additional rise 

of lactate signals between 4.175-4.111 ppm (VAR28: p = 0.019 and VAR29: p = 

0.028) and between 1.374-1.345 ppm (VAR99: p = 0.016) next to a downward 
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trend in the glucose signal between 3.536-3.398 ppm (VAR54: p = 0.049). 

Presumably, these changes are attributable to a continued anaerobic cell 

metabolism due to contact with erythrocytes (35). For serum, Fliniaux et al. report 

no impact when blood is kept at 4°C during a processing delay from 4 h to 24 h 

but report changes in lactate and glucose concentrations upon storage at RT (26). 

In agreement with our findings, Bernini et al. report a decreased plasma 

concentration of pyruvate when blood is kept at 4°C and further confirm that 

preservation at 4°C causes less profound changes as compared to RT (18).  

Nevertheless our results show that increasing the processing delay affects lactate, 

pyruvate and glucose concentrations, the inter-individual variation is clearly much 

larger than this preanalytical variation, indicating that the impact of a processing 

delay at 4°C of up to 8 h on multivariate cluster analysis will be minimal (for a 

variable to contribute significantly to the differentiating power of a statistical 

classifier which differentiates between groups of healthy and diseased subjects, 

its variation between the groups has to be larger than this within the groups). 

Nonetheless, we recommend to keep the time gap between blood collection and 

centrifugation similar for all samples within a study. 
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Figure 4.4. PCA score plots showing the influence of hemolysis (A) and processing delay (B), made by the 110 integration regions of the plasma 

1H-NMR spectra from study group 2 (n=6). Plasma samples without hemolysis (A; ○, reference), with hemolysis grade 1 (A; ♦) and hemolysis grade 2 (A; 

♦). Plasma samples originating from blood processed after a delay of 30 min (B; ○, reference), 3 h (B; ●) and 8 h (B; ●). PC: principal component.  
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Figure 4.5. Relative concentrations of lactate, pyruvate and glucose in plasma originating from 

a cooled blood sample which is processed after 30 min, 3 h and 8 h. The mean value, obtained 

from all measurements per condition, are presented with an error bar 95% CI. §Relative concentrations 

of lactate (VAR29) and pyruvate (VAR80) were multiplied by 10 for a better representation. VAR: variable. 

* P < 0.05; ** P = 0.005. 

Effect of centrifugation temperature on the plasma metabolome  

To slow down enzymatic activity, it is standard practice in metabolomics to cool 

samples around 4°C during processing (18). However, since a refrigerated 

centrifuge is not always accessible, the impact of centrifugation at RT was 

examined. No significant difference was found between centrifugation at RT or 

4°C (Figure 4.6A), indicating that 15 min centrifugation time is too short to 

induce changes in pre-cooled samples and therefore has no significant impact on 

the plasma 1H-NMR metabolic profile.  

Impact of freezing procedure on the plasma metabolome 

In metabolomics, it is common practice to store plasma aliquots immediately at -

80°C to ensure a quench of the metabolism and to allow 1H-NMR measurements 

in larger sample series. However, since not all laboratories have a -80°C freezer, 

samples are often transported to another laboratory for processing and storage. 

Hereto, plasma samples are kept temporarily on dry ice (-78.5°C) or in LN2 (-

196°C). Alternatively, it is common practice in biobanks to snap-freeze plasma 

samples in LN2 to quickly attenuate biochemical activity and to preserve structural 
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integrity (20). Nevertheless, and to our knowledge, the effect of different freezing 

conditions on the plasma 1H-NMR metabolic profile has not been examined before. 

As shown in Figure 4.6B, our experimental data show no significant differences 

between plasma samples immediately stored at -80°C (reference plasma) and 

samples kept for 8 h on dry ice or in LN2 before storage at -80°C.  
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Figure 4.6. PCA score plots showing the influence of centrifugation temperature (A) and initial plasma freezing on dry ice or in LN2 (B), 

made by the 110 integration regions of the plasma 1H-NMR spectra from study group 2 (n=6). Plasma samples originating from blood 

centrifuged at 4°C (A; ○, reference) or at RT (A; ∆). Plasma samples stored directly at -80°C (B; ○, reference), and after a delay of 8 h on dry ice (B; 

) or 8 h in LN2 (B; ). PC: principal component. 
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Effect of storage duration at -80°C on the plasma metabolome 

Often, the delay between sample storage and effective measurement can exceed 

several months, especially when samples are stored in biobanks. However, long-

term storage might modify interactions between macromolecules and small 

molecules and consequently affect their plasma 1H-NMR signals, introducing non-

disease related artefacts (36). Additionally, long-term storage might induce a shift 

of some of the metabolite signals due to a change in pH (36). To investigate 

whether the duration of plasma storage at -80°C has an impact on 1H-NMR results, 

we compared plasma of 10 controls stored at -80°C for two and ten months, 

respectively. No significant differences were detected as shown in Figure 4.7, 

indicating that plasma is stable at -80°C for at least 10 months, being in line with 

the findings of Deprez et al. (36) who demonstrated that rat plasma is stable for 

up to 6 months at -80°C. Furthermore, Pinto et al. showed that human plasma is 

stable for up to 30 months when stored at -80°C (27). 
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Figure 4.7. PCA score plots showing the influence of storage duration at -80°C, made by the 110 integration regions of the plasma 1H-NMR spectra 

from study group 3 (n=10). Plasma samples stored for maximum 2 months (○, reference) and for 10 months (■) at -80°C. PC: principal component. 
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Evaluation of SPREC to document preanalytical variation in clinical 

1H-NMR-based metabolomics 

SPREC was developed within the biobank environment to facilitate documentation 

and communication of the most important preanalytical quality parameters for 

different types of research biospecimens (19, 20). It allows to exclusively select 

samples that are fit for the purpose aimed for, while excluding samples that were 

subjected to unwanted, interfering preanalytical conditions. While it has become 

a standard within the biobank field, it is relatively unknown in other clinical 

settings and its usefulness therein remains to be determined. However, its 

implementation in clinical laboratories is rather straightforward as the 7 elements 

of SPREC can easily be extracted from the Laboratory Information Management 

System. 

We annotated the samples from our study with SPREC version 2 and evaluated if 

this is in agreement with our experimental findings and of practical value in clinical 

metabolomics (20). As shown in Figure 4.1 and Table 4.1, the reference 

condition is translated as single spun plasma samples – primary container with 

LiHe (without gel) – pre-centrifugation delay 2-10°C < 2 h – centrifugation at 2-

10°C 10-15 min < 3000 g (with braking) – no second centrifugation – post-

centrifugation delay < 1 h 2-10°C – long-term storage in cryovial 1 to 2 ml at -

85°C to -65°C, which is encoded as PL1-HEP-B-D-N-A-D. Hemolysis, exposure to 

oxygen and insufficient tube filling (or increased LiHe concentration) are not 

contained within the current version of SPREC, resulting in an identical code as 

the reference condition. This is not disadvantageous, however, as these variations 

did not introduce significant differences in the plasma 1H-NMR metabolic profile. 

Differences in centrifugation temperature and freezing method are encoded within 

SPREC version 2, but also did not induce differences in the 1H-NMR metabolome. 

Interestingly, the processing delays of 3 h and 8 h, which induce a systematic 

variation in the plasma metabolome, are discriminated by the SPREC codes, i.e. 

PL1-HEP-D-D-N-A-D and PL1-HEP-F-D-N-A-D, respectively. This means that 

SPREC allows to select plasma samples with a known time gap between blood 

collection and centrifugation for metabolomics applications. To further test the 

potential of SPREC, we expanded this evaluation to samples which were subjected 

to other preanalytical conditions as described by Pinto et al. (27). Again, SPREC 
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identifies the conditions that affect the plasma 1H-NMR metabolic profile (Table 

4.1). In addition to plasma, Fliniaux et al. previously introduced SPREC into the 

field of serum 1H-NMR analysis for biobanks (26). These combined plasma and 

serum studies clearly illustrate the value of SPREC to encode relevant 

preanalytical conditions and fully support its implementation in clinical 

metabolomics. 
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Table 4.1. SPREC annotation for preanalytical conditions tested in plasma samples by 1H-NMR spectroscopy. 

Condition SPREC Impact on profile? 

Reference sample PL1-HEP-B-D-N-A-D No 

Double LiHe concentration  PL1-HEP-B-D-N-A-D No 

Oxygen exposure PL1-HEP-B-D-N-A-D No 

Hemolysis PL1-HEP-B-D-N-A-D No 

Processing delay 3 h at 4°C PL1-HEP-D-D-N-A-D Yes 

Processing delay 8 h at 4°C PL1-HEP-F-D-N-A-D Yes 

Centrifugation at RT PL1-HEP-B-B-N-A-D No 

Freezing on dry ice PL1-HEP-B-D-N-Z-D No 

Freezing in LN2 PL1-HEP-B-D-N-Z-D No 

Storage at -80°C (for 10 months) PL1-HEP-B-D-N-A-D No (storage time$) 

Reference sample Pinto et al.* PL1-HEP-A1-D-N-X-A2 No 

EDTA additive PL1-SED-A1-D-N-X-A2 Yes 

Processing delay 2,5 h - 21 h at RT* PL1-HEP-C/E/G/I-D-N-X- A2 Yes 

Storage at -20°C (for 1 month)* PL1-HEP-A1-D-N-X-B2 Yes: storage temperature (storage time$) 

Freeze/thaw cycles* PL1-HEP-A1-D-N-X-A2 Yes$  

Non-fasting donor* PL1-HEP-A1-D-N-X-A2 No$ 

*: conditions obtained from Pinto et al. (27); 1: assumption preprocessing delay at RT; 2: assumption storage in standard polypropylene tube; $: beyond scope 

of SPREC as no true preanalytical condition; impacting elements of SPREC are indicated in bold. EDTA: ethylenediaminetetraacetic acid; LiHe: lithium-heparin; 

LN2: liquid nitrogen; RT: room temperature; SPREC: Standard PREanalytical Code.
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Conclusions 

Since metabolomics is gaining increasing interest for clinical biomarker research, 

knowledge of its sensitivity to variations in sample collection, processing and 

storage becomes essential in the discussions regarding its clinical implementation. 

Regarding human blood plasma, our results show no significant impact of a double 

LiHe concentration, a short-term exposure to an oxidative atmosphere, hemolysis, 

centrifugation temperature, freezing procedure and storage duration at -80°C on 

the 1H-NMR metabolic profile. Only increasing the processing delay from 30 min 

to 3 h and 8 h has a significant impact on the plasma concentration of pyruvate, 

lactate and glucose. Nevertheless, as the inter-individual variation is much larger 

than this preanalytical variation, the impact on multivariate group classification 

will be minimal. Nonetheless, we recommend to keep the time gap between blood 

collection and centrifugation similar for all samples within a study. Hereto, the 

implementation of SPREC within clinical metabolomics allows for an appropriate 

sample encoding and exclusion of samples that were subjected to unwanted, 

interfering preanalytical conditions. Without doubt, it will contribute to the 

validation of 1H-NMR metabolomics in clinical, biobank and multicenter research 

settings. 
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Abstract 

Background. Lung cancer constitutes a major public health problem. Low-dose 

computed tomography, the currently used tool for lung cancer screening, is 

characterized by a high rate of false positive results. Accumulating evidence has 

shown that cancer cell metabolism differs from that of normal cells. Therefore, 

this study aims to evaluate whether the metabolic phenotype of blood plasma 

allows to detect lung cancer. 

Patients and methods. The proton nuclear magnetic resonance spectrum of 

plasma is divided into 110 integration regions, representing the metabolic 

phenotype. These integration regions reflect the relative metabolite 

concentrations and were used to train a classification model in discriminating 

between 233 lung cancer patients and 226 controls. The validity of the model was 

examined by permutation testing and by classifying an independent validation 

cohort of 98 lung cancer patients and 89 controls.  

Results. The model allows to classify 78% of the lung cancer patients and 92% 

of the controls correctly with an area under the curve of 0.88. Important moreover 

is that the model is convincing which is demonstrated by validation in the 

independent cohort with a sensitivity of 71%, a specificity of 81% and an area 

under the curve of 0.84. The most discriminating variables indicate that the 

disturbed biochemical pathways include i) an elevated hepatic glycogenolysis, 

gluconeogenesis and ketogenesis, ii) an impaired Krebs cycle in hepatocytes and 

cancer cells and iii) an enhanced membrane synthesis in cancer cells. The limited 

number of patients in the subgroups does not (yet) enable to differentiate between 

histological subtypes and tumor stages. 

Conclusion. Metabolic phenotyping of plasma allows to detect lung cancer and to 

identify the metabolic changes involved.  
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Introduction  

Lung cancer is the leading cause of cancer death worldwide with an overall five-

year survival of only circa 15%, mainly because it is often only diagnosed in a late 

stage of the disease course (1-4). This highlights the importance of screening 

tools that allow to detect lung cancer as early as possible. A promising screening 

tool is low-dose computed tomography (LDCT), which has been shown to reduce 

lung cancer mortality by 20% as compared to chest radiography screening (5). 

However, LDCT screening has some disadvantages such as the high cost 

associated with screening all patients at risk according to current risk models, 

radiation exposure and the low positive predictive value (PPV) (4, 6). Because of 

these limitations, other non-invasive detection platforms are being evaluated, all 

with their advantages and shortcomings (7).  

This study aims to evaluate the role of metabolomics, an upcoming tool in the 

field of oncology, in the diagnosis of lung cancer (8-10). Over the past decade, 

accumulating evidence has shown that cancer cell metabolism differs from that of 

normal cells (11-13). More specifically, the entire metabolism of cancer cells is 

reprogrammed to promote cell proliferation and survival. Metabolic 

reprogramming during cancer development is driven by aberrant signaling 

pathways induced by the activation of oncogenes or the inactivation of tumor 

suppressor genes (14). One of the main adaptations of cancer cells is that, even 

in the presence of normal oxygen levels, they rely on anaerobic energy production 

through glycolysis, a hallmark known as the Warburg effect (15). The main 

advantage of predominantly relying on glycolysis for production of energy and 

essential building blocks is that many glycolytic intermediates can be shunted to 

anabolic pathways, thereby preserving cancer cell proliferation (13). As 

metabolites are the end products of cellular processes, changes in their 

concentration reflect alterations in the metabolic phenotype (16). This explains 

the interest in metabolites as attractive cancer biomarkers (17). Proton nuclear 

magnetic resonance (1H-NMR) spectroscopy allows a fast (<10 min), non-invasive 

identification and quantification of complex mixtures of metabolites, as appearing 

in plasma (9, 10, 18).  

The present study aims to 1) investigate whether the 1H-NMR derived metabolic 

phenotype of blood plasma allows to discriminate between lung cancer patients 
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and controls, 2) evaluate the predictive accuracy of the trained classification 

model in an independent cohort, 3) improve the understanding of the disturbed 

biochemical pathways in lung cancer and 4) examine whether the metabolic 

phenotype allows to discriminate between histological subtypes and clinical tumor 

stages.  
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Materials and Methods  

Subjects 

Lung cancer patients (n=357) were included in the Limburg Positron Emission 

Tomography center (n=273) (Hasselt, Belgium) and at the Department of 

Respiratory Medicine of University Hospitals Leuven (n=84) (Leuven, Belgium) 

from March 2011 to June 2014. The diagnosis was confirmed by a pathological 

biopsy or a clinician specialized in interpreting radiological and clinical lung cancer 

data. Clinical staging of the tumors was performed according to the 7th edition of 

the tumor, node, metastasis classification (19). Controls (n=347) were patients 

with non-cancer diseases who were included at Ziekenhuis Oost-Limburg (Genk, 

Belgium) between March 2012 and June 2014. For both groups, blood sampling 

and sample preparation was done according to a fixed protocol and by trained 

staff. 

Exclusion criteria were: 1) not fasted for at least 6 h; 2) fasting blood glucose 

concentration ≥ 200 mg/dl; 3) medication intake on the morning of blood 

sampling and 4) treatment or history of cancer in the past 5 years. The study was 

conducted in accordance with the ethical rules of the Helsinki Declaration and 

Good Clinical Practice and was approved by the ethical committees of Ziekenhuis 

Oost-Limburg, Hasselt University (Hasselt, Belgium) and University Hospitals 

Leuven. All study participants provided written informed consent. The study is 

registered at clinical trials.gov (NCT02024113). 

Both groups were subdivided into a training cohort and a validation cohort (Figure 

5.1). More specifically, 250 out of the 357 lung cancer patients and 250 out of the 

347 controls were randomly assigned to the training cohort, leaving a validation 

cohort of 107 lung cancer patients and 97 controls. Forty-one statistical outliers 

of the training cohort (17 lung cancer patients and 24 controls) and 17 of the 

validation cohort (9 lung cancer patients and 8 controls) were excluded. According 

to their medical files, they showed abnormal concentrations of glucose, lipids or 

ketone bodies. The individuals with high glucose level were diagnosed with 

diabetes or had an increased fasting glucose while those with high lipid levels 

suffered from obesity, hyperlipidemia or took cholesterol-lowering medication. 

Most of the individuals with high ketone body levels had a low BMI.  
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Figure 5.1. CONSORT diagram of the study.
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Blood sampling and processing 

See Chapter 2: Blood sampling and processing.  

NMR sample preparation and analysis 

See Chapter 2: NMR sample preparation and analysis.  

Spectral processing 

 See Chapter 2: Spectral processing. 

Statistical analysis 

Multivariate statistics was performed using SIMCA-P+ (Version 14, Umetrics, 

Umea, Sweden). After mean-centering and Pareto scaling of the variables, 

unsupervised principal component analysis (PCA) was performed to identify 

outliers by means of a Hotelling’s T2 range test and a distance to model plot. After 

removing outliers, supervised orthogonal partial least squares discriminant 

analysis (OPLS-DA) was used to train a classification model (20). The validity of 

the model was confirmed by i) permutation testing, ii) classifying an independent 

cohort with a classification cut-off value of 0.5, iii) receiver operating characteristic 

curve explorer & tester (21) and last but not least by comparison with the outcome 

of an independent model constructed by means of partial least squares 

discriminant analysis (PLS-DA) (R Version 3.1.2, Vienna, Austria). Via an S-plot, 

the most discriminating variables and their variable importance for the projection 

(VIP) values were identified (22). Variables with a VIP value exceeding 0.5 were 

used to describe the disturbed biochemical pathways. Additionally, a student t-

test with correction for multiple testing by the Benjamini-Hochberg method (23) 

was applied (IBM SPSS Version 22.0, Chicago, Illinois, USA). Note that noisy 

variables, which were identified in Chapter 2, were not excluded since none of 

the noisy variables had a VIP value exceeding 0.5 and therefore, were not selected 

to explain the disturbed biochemical pathways. 
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Results  

Multivariate OPLS-DA statistics was used to train a classification model (classifier) 

in discriminating between lung cancer patients and controls based on data input 

from their metabolic phenotype. The resulting model was validated in an 

independent cohort. Table 5.1 shows the characteristics of the training and 

validation cohorts. However, before starting with the OPLS-DA statistics, a PCA 

analysis was conducted to look for possible confounders. Figure 5.2 shows PCA 

score plots stained for disease (A), gender (B), smoking habits (C) and chronic 

obstructive pulmonary disease (COPD) (D), demonstrating that smoking habits 

and gender are no confounders. Regarding COPD, the PCA results cannot be 

interpreted straightforward but OPLS-DA confirmed that it is no confounder either 

(see later). 
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Table 5.1. Characteristics of the subjects included in the study (without outliers). 

 Training cohort Validation cohort 

 C LC C LC 

Number of subjects, n 226 233 89 98 

Gender, n (%)     

 Male 119 (53) 160 (69) 44 (49) 66 (67) 

 Female 107 (47) 73 (31) 45 (51) 32 (33) 

Age, yrs 

(range) 

67 ± 11 

(38-88) 

68 ± 10 

(36-88) 

69 ± 10 

(47-89) 
 

64 ± 9 

(45-83) 

BMI, kg/m2  

(range) 

28.3 ± 5.0 

(18.7-

46.7) 

25.8 ± 4.5 

(17.5-

41.8) 

28.4 ± 5.7 

(16.2-

52.0) 

26.2 ± 4.7 

(16.8-

38.5) 

COPD, n (%) 39 (17) 119 (51) 9 (10) 35 (36) 

Taking lipid-lowering medication, n (%) 124 (55) 122 (52) 56 (63) 39 (40) 

Diabetes, n (%) 23 (10) 40 (17) 20 (22) 12 (12) 

Smoking habits     

 Smoker, n (%) 47 (21) 113 (49) 15 (17) 48 (49) 

 Ex-smoker, n (%) 102 (45) 110 (47) 36 (40) 46 (47) 
 Non-smoker, n (%) 77 (34) 10 (4) 38 (43) 4 (4) 

 Pack years 

 (range) 

16 ± 24 

(0-175) 

33 ± 21 

(0-125) 

13 ± 18 

(0-60) 

38 ± 21  

(0-150) 

Laterality     

 Left, n (%)  103 (44)  40 (41) 

 Right, n (%)  119 (51)  54 (55) 

 Bilateral, n (%)  6 (3)  4 (4) 

 Unknown, n (%)  5 (2)  0 (0) 

Amount of tumors, n  239  102 
Histological subtype     

 NSCLC-Adenocarcinoma, n (%)  91 (38)  46 (45) 

 NSCLC-Spinocellular carcinoma, n (%)  66 (28)  29 (28) 

 NSCLC-Adenosquamous carcinoma, n (%)  5 (2)  1 (1) 

 NSCLC-Carcinoid, n (%)  5 (2)  0 (0) 

 NSCLC-NOS, n (%)  8 (3)  6 (6) 

 SCLC, n (%)  30 (13)  15 (15) 

 Unknown, n (%)  34 (14)  5 (5) 

Clinical stage according to 7th TNM 

edition  

    

 IA, n (%)   55 (23)  12 (12) 

 IB, n (%)  21 (9)  5 (5) 

 IIA, n (%)  11 (5)  7 (7) 

 IIB, n (%)  15 (6)  4 (4) 

 IIIA, n (%)  48 (20)  17 (16) 

 IIIB, n (%)  26 (11)  12 (12) 

 IV, n (%)  63 (26)  45 (44) 

Data are presented as mean ± standard deviation and range, unless otherwise indicated. The outliers (41 

of the training cohort and 24 of the validation cohort) are not included in this table. BMI: body mass 

index; C: controls; COPD, chronic obstructive pulmonary disease; LC: lung cancer; NOS: not otherwise 

specified; NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; TNM: tumor, node, 

metastasis. 
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Figure 5.2. PCA score plot of all subjects (357 lung cancer patients and 347 controls) stained for (A) disease, (B) gender, (C) smoking habits, 

and (D) COPD. C: controls; COPD: chronic obstructive pulmonary disease; F: females; LC: lung cancer; M: males; PC: principal component.
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Applying OPLS-DA statistics on the training set resulted in a model that allows to 

classify 78% of the 233 lung cancer patients and 92% of the 226 controls correctly 

(Figure 5.3A-B). An independent permutation test confirms that the classification 

is not due to overfitting (Figure 5.4). The predictive accuracy of the model was 

assessed by applying it to the independent validation cohort consisting of 98 lung 

cancer patients and 89 controls (Figure 5.3B-C), resulting in a sensitivity of 71% 

and a specificity of 81%. The sensitivity, specificity, area under the curve (AUC), 

positive predictive value (PPV) and negative predictive value (NPV) of this model 

as well as all other models are shown in Table 5.2. To further confirm, the dataset 

was analyzed independently (by the research group of biostatistics) using PLS-

DA. The resulting classifier permits to classify 82% of the lung cancer patients and 

89% of the controls correctly. Regarding the independent validation, the classifier 

was able to discriminate between the lung cancer patients and controls with a 

sensitivity of 75% and a specificity of 82%. In order to exclude COPD as a 

confounder, an OPLS-DA model was trained in discriminating between subjects 

with (n=158) and without (n=301) COPD (Figure 5.5). The extremely poor 

predictive accuracy of the resulting model (Q2: 0.08) confirms that COPD is no 

confounder.  

Table 5.2. Characteristics of the trained (O)PLS-DA classification models.  

 LV 

(P+O) 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

Sens 

(%) 

Spec 

(%) 

PPV 

(%) 

NPV 

(%) 

AUC 

 Training cohort 

LC vs. C 

(OPLS-DA) 

6  

(1+5) 

0.864 0.477 0.391 78 92 91 80 0.88 

LC vs. C 

(PLS-DA) 

6 

(1+5) 

/ / / 82 89 89 82 / 

Stage I LC 

vs. C 

3 

(1+2) 

0.651 0.378 0.286 74 78 75 77 0.79 

 Validation cohort 

LC vs. C 

(OPLS-DA) 

/ / / / 71 81 80 72 0.84 

LC vs. C 

(PLS-DA)  

/ / / / 75 82 82 75 / 

AUC: area under the curve; C: controls; LC: lung cancer; LV: latent variable; NPV: negative predictive 

value; O: number of orthogonal components; OPLS-DA: orthogonal partial least squares-discriminant 

analysis; P: number of predictive components; PLS-DA: partial least squares-discriminant analysis; PPV: 

positive predictive value; R2X(cum): total explained variation in X; R2Y(cum): total explained variation in 

Y; Sens: sensitivity; Spec: specificity; Q2(cum): predicted variation as determined by 7-fold cross-

validation. 
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Figure 5.3. (A) OPLS-DA score plot derived from the training cohort of 226 controls and 233 lung cancer patients, (B) ROC curves showing for 

the cross-validation (CV) of the training cohort as well as for the independent validation the high predictive accuracy of the OPLS-DA model. 

Regarding the CV, sub-sampling CV was used, i.e. 2/3 of the observations were used for model training and the remaining 1/3 of the observations 

were used for validation. This procedure was repeated 50 times. (C) OPLS-DA score plot for the classification of the independent cohort of 89 

controls and 98 lung cancer patients by means of the trained classifier. AUC: area under the curve; C: controls; CV: cross-validation; LC: lung cancer; 

PS: predicted scores. 
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Figure 5.4. Result of the permutation test demonstrating that the obtained classification model 

is not the result of overfitting. All resulting R2 and Q2 values (at the left) are lower than these of the 

model (at the right), indicative for a valid model. R2: explained variation; Q2: predicted variation as 

determined by 7-fold cross-validation. 

Figure 5.5. OPLS-DA score plot of patients with and without COPD. COPD: chronic obstructive 

pulmonary disease.  

In an attempt to explain the disturbed biochemical pathways in lung cancer, only 

the 45 most discriminating variables, i.e. these having a VIP value exceeding 0.5, 

were selected (Figure 5.6). Tables 5.3 and 5.4 show the variables (and 

contributing metabolites) which are increased versus decreased for lung cancer 

patients together with their univariate p-value and corresponding fold change 

(FC). A positive/negative FC denotes a relatively higher/lower concentration in 

plasma of lung cancer patients. The metabolites of which the concentration is 

increased are glucose, glycerol, N-acetylated glycoproteins, β-hydroxybutyrate, 

leucine, tyrosine, threonine, glutamine, valine and aspartate whereas the 

metabolites of which the concentration is decreased include alanine, lactate, 

sphingomyelin and phosphatidylcholine (and other cholinated phospholipids), 
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citrate and other phospholipids. Remark that sphingomyelin and 

phosphatidylcholine can be discriminated from the other phospholipids on the 

basis of the strong singlet signal in the NMR spectrum of the nine protons of the 

three methyl groups of the choline head group.  

Figure 5.6. S-plot of the OPLS-DA model showing the variables contributing most to group 

discrimination. Variables situated at the right end are increased in the plasma of controls, whereas 

those situated at the left end are increased for the lung cancer patients. Variables used to explain the 

disturbed biochemical pathways (VIP > 0.5) in lung cancer are marked (●). Var: variable; VIP: variable 

importance for the projection.  
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Table 5.3. Integration regions (variables) with a VIP value > 0.5 which are increased in the NMR spectra of blood plasma of lung cancer patients.  

VAR Integration region 

(ppm) 

VIP p-value FC Contributing metabolites Assignment 

38
#

 3.9590 – 3.8330 3.34 1.01x10-14 1.15 Asp, Met, Ser, Tyr, glucose Glucose 

54
#

 3.5360 – 3.3980 2.46 4.09x10-4 1.08 Glucose, Pro, acetoacetate Glucose 

45
*
 3.7141 – 3.6680 2.16 4.05x10-28 1.27 Ile, glycerol,  

 CH2-N+(CH3)3 of SM & PC 

Glycerol 

91
*
 2.1230 – 1.9720 2.05 2.59x10-10 1.05 Glu, Met, Pro, Ile, CH3 of NAG, lipids$ CH3 of NAG 

44 3.7390 – 3.7141  1.56 1.00x10-16 1.17 Glucose Glucose 

42
#

 3.7820 – 3.7550 1.53 4.86x10-8 1.10 Ala, Glu, Gln, Leu, Lys, glucose Glucose 

101

* 

1.2458 – 1.2180 1.26 7.18x10-12 1.16 Ile, β-hydroxybutyrate β-hydroxybutyrate 

43
#

 3.7550 – 3.7390 1.23 3.85x10-8 1.11 Ala, Leu, glucose Glucose 

102 1.2180 – 1.1300 1.16 1.34x10-11 1.20 NI NI 

 
21 4.6940 – 4.6620 1.15 1.01x10-4 1.09 Glucose Glucose 

51
*
 3.5914 – 3.5649 1.11 1.40x10-9 1.11 Glycerol, Gly, Thr, glucose Glycerol 

 
46 3.6680 – 3.6500 1.04 3.63x10-26 1.29 Glycerol Glycerol 

 39
#

 3.8330 – 3.8100 0.98 1.38x10-11 1.13 Ala, Ser, glucose Glucose 

50 3.6097 – 3.5914 0.96 1.34x10-22 1.24 Thr Thr 

 
49 3.6240 – 3.6097 0.94 7.38x10-27 1.29 Thr Thr 

66 3.0640 – 2.9950 0.90 1.90x10-2 1.04 Lys, α-ketoglutarate ? 

19 5.2752 – 5.2526 0.89 4.31x10-5 1.07 Glucose Glucose 

94
*
 1.8060 – 1.6860 0.86 4.76x10-4 1.07 Leu, Lys Leu 
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Table 5.3 continued.  

VAR Integration region 

(ppm) 

VIP p-value FC Contributing metabolites Assignment 

71
*
 2.7360 – 2.6600 0.83 1.70x10-9 1.12 Asp, Met, citrate Asp 

48 3.6376 – 3.6240 0.79 2.98x10-25 

 

1.25 Val Val 

37 3.9810 – 3.9590 0.78 1.80x10-11 1.18 Asn, His, Ser, Tyr, creatine ? 

90
*
 2.1970 – 2.1230 0.76 4.57x10-2 1.03 Glu, Gln, Pro, Met Gln 

53
#

 3.5510 – 3.5360 0.72 1.19x10-5 1.10 Glucose, Pro, acetoacetate Glucose 

67 2.9950 – 2.8860 0.69 7.85x10-1 1.01 Asn, lipids$ ? 

47
*
 3.6500 – 3.6376 0.68 1.56x10-22 1.23 Val, glycerol Glycerol 

40
#

 3.8100 – 3.7956 0.63 3.80x10-5 1.08 Ala, Glu, Gln, glucose Glucose 

59 3.2186 – 3.1930 0.61 4.63x10-5 1.17 Tyr Tyr 

52 3.5649 – 3.5510 0.55 6.16x10-6 1.09 Glucose Glucose 

76
*
 2.4920 – 2.4500 0.54 4.85x10-1 1.01 Gln, α-ketoglutarate, β-hydroxybutyrate Gln 

106

* 

1.0220 – 1.0020 0.54 4.11x10-2 1.04 Val, Ile, Leu Val 

41
#

 3.7956 – 3.7820 0.52 2.31x10-2 1.04 Ala, Glu, Gln, Leu, Lys, glucose Glucose 

107

* 

1.0020 – 0.9860 0.51 2.56x10-2 1.03 Ile, Leu Leu 

#
It can be deduced that these composite regions (variables) emanate from glucose, because variables 19, 21, 44 and 52 representing a unique signal of glucose, 

are also increased. 
*
The assignment of metabolites in crowded regions with signal overlap was improved by measuring plasma samples spiked with known 

metabolites in relevant concentrations on a 900 MHz NMR spectrometer (Lille, France), having a higher spectral resolution and signal-to-noise ratio. 
$
Common 

signals for all lipids. Amino acids are presented by their 3-letter code. FC: fold change; NAG: N-acetylated glycoproteins; NI: non-identified; PC: 

phosphatidylcholine; ppm: parts per million; SM: sphingomyelin; VAR: variable; VIP: variable importance for the projection.  
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Table 5.4. Integration regions (variables) with a VIP value > 0.5 which are decreased in the NMR spectra of blood plasma of lung cancer patients.  

VAR  Integration region 

(ppm) 

VIP p-value FC Contributing metabolites Assignment 

100

# 

1.3450 – 1.2458 4.28 1.21x10-5 -1.08 Thr, Ile, lipids
$
 Lipids

$
 

99
*
 1.3740 – 1.3450 2.95 1.47x10-10 -1.12 Lactate, Thr 

 

Lactate 

98 1.4200 – 1.3740 2.47 7.70x10-12 -1.27 Lactate Lactate 

110 0.9660 – 0.8000 2.26 2.41x10-5 -1.04 Lipids$ Lipids
$
 

 
58

*
 3.3230 – 3.2186 2.06 6.89x10-1 -1.01 His, Phe, Tyr, glucose,  

N+(CH3)3 of SM & PC 

N+(CH3)3 of SM & PC 

95
#

 1.6860 – 1.5600 2.00 2.20x10-11 -1.24 Lys, lipids
$
 

 

Lipids
$
 

18 5.4300 – 5.2752 1.68 7.10x10-6 -1.08 Lipids
$
 

 

Lipids
$
  

87
#

 2.2915 – 2.2690 1.08 6.84x10-7 -1.18 Met, Val, lipids
$
 

 

Lipids
$
 

 
96

*
 1.5400 – 1.4900 0.87 1.91x10-5 -1.11 Ala, Ile, Lys 

 

Ala 

88
#

 2.2690 – 2.2300 0.73 2.77x10-3 -1.08 Met, Val, aceton, lipids
$
 

 

Lipids
$
 

 
69

#
 2.8550 – 2.7500 0.67 1.57x10-2 -1.04 Lipids

$
, Asn, Asp Lipids

$
 

 
86

#
 2.3040 – 2.2915 0.61 3.08x10-7 -1.15 Val, β-hydroxybutyrate, lipids

$
 

 

Lipids
$
 

73 2.5960 – 2.5340 0.59 3.14x10-8 -1.19 Citrate Citrate 

#
It can be deduced that these composite regions (variables) emanate from lipids, because variables 18 and 110 representing a unique signal of lipids, are also 

decreased. 
*
The assignment of metabolites in crowded regions with signal overlap was improved by measuring plasma samples spiked with known metabolites 

in relevant concentrations on a 900 MHz NMR spectrometer (Lille, France), having a higher spectral resolution and signal-to-noise ratio. 
$
Common signals for all 

lipids. Amino acids are presented by their 3-letter code. FC: fold change; ppm: parts per million; VAR: variable; VIP: variable importance for the projection.



Lung cancer detection by metabolic changes in plasma 

 

162 
 

In a next step, it was evaluated whether histological subtypes and tumor stages 

can be discriminated based on the metabolic phenotype. PCA is not able to cluster 

the histological subtypes and the same holds for OPLS-DA (Figure 5.7). Since 

adenocarcinomas (n=91) and spinocellular carcinomas (n=66) are the most 

common histological subtypes (Table 5.1), an OPLS-DA model was trained in 

discriminating between them. The resulting model classifies 81% of the 

adenocarcinomas correctly but only 38% of the spinocellular carcinomas (Figure 

5.8). Moreover, the predictive ability of the model was extremely poor (Q2: 0.04). 

Concerning tumor stage, no significant clustering was obtained by PCA nor by 

OPLS-DA (Figure 5.9). In an attempt to further discriminate between early stage 

patients (stage I, n=76) and metastatic patients (stage IV, n=63), a model was 

trained which classifies 79% of the early stage patients and 52% of the metastatic 

patients correctly (Figure 5.10A), but the predictive ability of this model was 

very low (Q2: 0.06). On the other hand, an OPLS-DA model was able to 

discriminate between early stage patients (stage I, n=76) and a randomly 

selected equally populated group of controls (n=76) with a sensitivity of 74% and 

a specificity of 78% (Figure 5.10B). Most of the discriminating variables of this 

model were also found for the full model.  
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Figure 5.7. Discrimination according to histological subtype. (A) PCA score plot, (B) OPLS-DA score plot. Adeno: adenocarcinoma; Adenosq:adenosquamous 

carcinoma; C: controls; NOS: not otherwise specified; NSCLC: non-small cell lung cancer; PC: principal component; Spino: spinocellular carcinoma. 

 

Figure 5.8. Discrimination according to histological subtype. OPLS-DA score plot of patients with an adenocarcinoma (n=91) and a spinocellular carcinoma 

(n=66). Adeno: adenocarcinoma; Spino: spinocellular carcinoma.
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Figure 5.9. Discrimination according to tumor stage. (A) PCA score plot, (B) OPLS-DA score plot. Abbreviations: C: controls; PC: principal component.  

 
Figure 5.10. Discrimination according to tumor stage. (A) OPLS-DA score plot of early stage patients (n=76) and metastatic patients (n=63), (B) OPLS-DA 

score plot of early stage patients (n=76) and a randomly chosen but equally populated group of controls (n=76). C: controls. 
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Discussion  

This study demonstrates that 1) the model allows to classify 78% of the lung 

cancer patients and 92% of the controls correctly with an AUC of 0.88; 2) the 

model discriminates between lung cancer patients and controls of the independent 

cohort with a sensitivity of 71%, a specificity of 81% and an AUC of 0.84; 3) 

plasma of lung cancer patients is characterized by increased levels of glucose, 

glycerol, N-acetylated glycoproteins, β-hydroxybutyrate, leucine, tyrosine, 

threonine, glutamine, valine and aspartate and decreased levels of alanine, lactate 

and 4) the limited numbers of patients in the subgroups do not (yet) allow to 

discriminate between histological subtypes and clinical tumor stages, but it looks 

that stage I patients can be reasonably well differentiated from controls.  

The metabolic phenotype, which is represented by the relative abundance of 

plasma metabolites, has to be seen as a single biomarker that cannot be defined 

based on a cut-off value. It is demonstrated that the combination of a series of 

subtle metabolic alterations (metabolites of which the plasma concentration is in- 

or decreased in lung cancer patients compared to controls), detected by means of 

1H-NMR spectroscopy and presented by OPLS-DA, enables to diagnose lung 

cancer. 

Recently, many studies have explored lung cancer metabolism, but mostly by 

mass spectrometry (MS) techniques rather than by 1H-NMR spectroscopy (24-26). 

Although MS is without doubt more sensitive, 1H-NMR spectroscopy requires no 

invasive extraction procedures, and so minimal sample preparation (18). Both 

techniques are therefore complementary and of importance in the field of 

metabolomics. Moreover, most published NMR studies focused on the metabolic 

composition of the lung cancer tissue notwithstanding the fact that metabolic 

phenotyping of blood plasma has the advantage to assess more directly the 

complex interaction between tumor and host (27, 28). According to a review of 

Duarte et al. (29), only Rocha et al. investigated lung cancer-induced metabolic 

alterations in plasma by 1H-NMR spectroscopy, demonstrating a discrimination 

between 85 lung cancer patients and 78 controls with a sensitivity and specificity 

of approximately 90% (30). However, the findings were not validated in an 

independent cohort.  
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1H-NMR metabolic phenotyping of plasma as a complementary 

tool to identify high-risk individuals 

Currently, low-dose computed tomography (LDCT) is the most studied tool to 

screen for lung cancer. The NELSON trial demonstrates that LDCT screening has 

a sensitivity of 84.6% and a specificity of 98.6% in comparison to no screening, 

(31). However, a major limitation of LDCT is the low PPV ranging from 3.8% in 

the National Lung Screening Trial to 40.4% in the NELSON trial. This means that 

more than half of the study participants were referred for further investigations, 

being not without cost and risk, on the basis of false-positive results (5, 31). A 

recent cost-effectiveness analysis of LDCT screening showed a cost of $81,000 

per quality-adjusted life-year gained (32). By means of current risk models, many 

patients are selected as eligible for LDCT screening. Strengthening of these 

models by incorporating (fast and cheap) metabolic phenotype information might 

be the way to better identify patients eligible for screening, leading moreover to 

a strong decrease of the financial burden. In this respect, 1H-NMR-based 

metabolomics seems to be reasonably able to discriminate between early stage 

patients and a randomly selected equally populated group of controls. This 

indicates that the metabolic alterations present in the initial phase of cancer 

development can already be detected by 1H-NMR-based metabolomics. Although 

these results look promising, the number of early stage patients evidently needs 

to be increased to confirm. 

Looking at the disturbed metabolism associated with lung cancer 

Because cancer cells often outgrow the surrounding vasculature, they have 

adopted an oxygen-independent metabolism to produce sufficient energy for 

proliferation. Even in the presence of normal oxygen levels, cancer cells prefer to 

convert glucose into lactate rather than oxidizing it via oxidative phosphorylation, 

a hallmark known as the Warburg effect or “aerobic glycolysis” (15). This latter 

term is somewhat confusing, because oxygen is not involved in the fermentation 

of pyruvate to lactate. Due to the Warburg effect, a decreased glucose level and 

increased lactate level could be expected in plasma of lung cancer patients. 

However, it should be kept in mind that the human body has an intrinsic tendency 

to maintain anabolic and catabolic pathways in balance. Owing to the elevated 

glycolytic rate in cancer cells, other cells are deprived from the fuels normally 
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provided by glucose-derived carbon. In response to this, the body will attempt to 

maintain homeostasis and provide healthy cells with an adequate energy supply 

to survive.  

This study reveals that lung cancer metabolism is characterized by increased 

plasma levels of glucose and decreased levels of alanine and lactate, in line with 

the inherent nature of the body to supply all tissues with sufficient metabolic fuel 

to function properly. More specifically, liver glycogen will be degraded in response 

to the Warburg effect in order to compensate for the lack of glucose as energy 

source for the normal cells. But once depleted, gluconeogenic substrates will be 

fed into the corresponding pathway. Consequently, less oxaloacetate is available 

to condense with acetyl-CoA, so the latter is diverted to form ketone bodies rather 

than fueling oxidative phosphorylation via the Krebs cycle (33). The metabolic 

state of ketosis in lung cancer patients is confirmed by increased plasma levels of 

the ketone body β-hydroxybutyrate and the ketogenic amino acid leucine. The 

decreased levels of alanine and lactate and the increased levels of glucose and β-

hydroxybutyrate are in line with the findings of Chen et al., who examined the 

serum metabolome of lung cancer patients by means of MS (Table 5.5) (25). 

Table 5.5. Overview of the reported concentration change of glucose, lactate and lipids in 

studies which investigated the disturbed lung cancer metabolism in plasma/serum.  

Authors Technique Body 

fluid 

Glucose Lactate Lipids 

Louis et al. 1H-NMR spectroscopy Plasma    

Rocha et al. 1H-NMR spectroscopy Plasma    HDL 

 VLDL  

 LDL 

 TG 

Chen et al. LC-MS and GC-MS Serum    

1H-NMR; proton-nuclear magnetic resonance; LC: liquid chromatography; LDL: low-density lipoprotein; 

GC: gas chromatography; HDL: high-density lipoprotein; MS: mass spectrometry; TG: triglycerides; 

VLDL: very-low density lipoprotein.  

Although the increased gluconeogenesis in lung cancer patients is in accordance 

with the decreased levels of alanine and lactate, a lower concentration of the 

gluconeogenic precursor pyruvate could not be confirmed since the pyruvate 

signal coincides with one of the β-hydroxybutyrate signals in the 1H-NMR 

spectrum. Since another, free-lying signal of β-hydroxybutyrate is increased 

(Table 5.3), the increased β-hydroxybutyrate level might mask the decrease of 

pyruvate. In contrast with our findings, Rocha and co-workers reported increased 



Lung cancer detection by metabolic changes in plasma 

168 
 

lactate and decreased glucose levels in plasma of lung cancer patients (Table 

5.5) (30). A possible explanation might be found in that the majority of patients 

in their study had early stage lung cancer, whereas in our study, patients in early 

stage as well as in more advanced stages are included. This might indicate that 

gluconeogenesis and glycogenolysis, which counteract the Warburg effect 

occurring in cancer cells, are more pronounced in advanced stages. 

Besides hepatocytes, which display an impaired Krebs cycle in response to the 

Warburg effect, also cancer cells are characterized by a disturbed Krebs cycle 

(34). This lung cancer-induced metabolic derangement is affirmed by decreased 

levels of citrate and further supported by increased levels of amino acids which 

normally would be consumed for the production of Krebs cycle intermediates 

(aspartate, threonine, valine, glutamine and tyrosine) (35). The plasma 

concentration of citrate is decreased since, once it is shuttled to the cytoplasm, it 

becomes converted to acetyl-CoA, being a critical precursor of fatty acids and 

cholesterol, i.e. fatty acids and cholesterol are synthesized from the carbons 

provided by acetyl-CoA (36). After conversion to phospholipids, the fatty acids are 

incorporated in the plasma membrane of new daughter cells together with 

cholesterol. Our study confirms an enhanced synthesis of membranes in cancer 

cells by measuring decreased plasma levels of sphingomyelin and 

phosphatidylcholine and of other phospholipids. Note that although the increased 

plasma levels of glycerol seem to be in contrast with the enhanced synthesis of 

membranes in cancer cells, this discrepancy might be explained by the fact that 

cancer cells do not use glycerol obtained from plasma to synthesize their 

membranes but rather glycerol derived from the glycolytic pathway. Finally, blood 

plasma of lung cancer patients is characterized by increased levels of N-acetylated 

glycoproteins. This finding is in line with emerging evidence which reveals that the 

enzyme catalyzed addition of N-acetylglucosamine to serine or threonine residues 

of proteins plays a role in the metabolic reprogramming of cancer cells (37).  
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Conclusions 

This paper validates 1H-NMR derived metabolic phenotyping of blood plasma as a 

complementary tool to discriminate between lung cancer patients and controls. 

Our findings indicate that metabolic alterations can already be detected in an early 

stage. Remark however that our intent is not to use the metabolome as a separate 

screening tool but to complement current risk models with additional parameters 

which reflect the metabolic phenotype to better identify and select high-risk 

individuals eligible for LDCT screening. As a result, it might be anticipated that the 

PPV of LDCT screening will increase, thereby improving its cost-effectiveness. Due 

to the limited subgroup numbers, it is not possible yet to decide whether metabolic 

phenotyping can further discriminate between histological subtypes or clinical 

tumor stages.  
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Abstract 

Background. Accumulating evidence has shown that cancer cell metabolism 

differs from that of normal cells. However, up to now it is not clear whether 

different cancer types are characterized by a specific metabolite profile. Therefore, 

this study aims to evaluate whether the plasma metabolic phenotype allows to 

discriminate between lung and breast cancer. 

Patients and methods. The proton nuclear magnetic resonance spectrum of 

plasma is divided into 110 integration regions, representing the metabolic 

phenotype. These integration regions reflect the relative metabolite 

concentrations and were used to train a classification model in discriminating 

between 80 female breast cancer patients and 54 female lung cancer patients, all 

with an adenocarcinoma. The validity of the model was examined by permutation 

testing and by classifying an independent validation cohort of 60 female breast 

cancer patients and 81 male lung cancer patients, all with an adenocarcinoma.  

Results. The model allows to classify 99% of the breast cancer patients and 93% 

of the lung cancer patients correctly with an area under the curve of 0.96 and can 

be validated in the independent cohort with a sensitivity of 89%, a specificity of 

82% and an area under the curve of 0.94. The most discriminating variables 

indicate that the disturbed biochemical pathways in lung cancer as compared to 

breast cancer include i) a more pronounced hepatic glycogenolysis, 

gluconeogenesis and ketogenesis, ii) a more impaired Krebs cycle in hepatocytes 

and lung cancer cells and iii) an enhanced membrane synthesis. 

Conclusion. Metabolic phenotyping of plasma allows to discriminate between 

lung and breast cancer, indicating that the metabolite profile reflects more than a 

common cancer marker.  
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Introduction  

The application of metabolomics in the search for cancer biomarkers has increased 

enormously over the past years (1-3). This discipline comprises the simultaneous 

and comprehensive analysis of metabolites within a biological system (4). Since 

metabolites constitute the end products of cellular processes, changes in their 

concentration reflect alterations in the metabolic phenotype (5). Metabolomics 

combines analytical characterization tools such as proton nuclear magnetic 

resonance (1H-NMR) spectroscopy and multivariate statistics to retrieve diagnostic 

information regarding diseases and to identify disease-related changes in 

biochemical pathways (6). 1H-NMR spectroscopy allows a fast (< 10 min), non-

invasive identification and quantification of complex mixtures of metabolites, as 

appearing in plasma (4, 7). 

Over the past decade, accumulating evidence has shown that cancer cell 

metabolism differs from that of normal cells (8-10). More specifically, the entire 

metabolism of cancer cells is reprogrammed to promote cell proliferation and 

survival and is driven by aberrant signaling pathways induced by the activation of 

oncogenes or the inactivation of tumor suppressor genes (11). One of the main 

adaptations of cancer cells is that, even in the presence of normal oxygen levels, 

they rely on anaerobic energy production through glycolysis, a hallmark known as 

the Warburg effect (12). The main advantage of predominantly relying on 

glycolysis for production of energy and essential building blocks is that many 

glycolytic intermediates can be shunted to anabolic pathways, thereby preserving 

cancer cell proliferation (10). 

Previously, we revealed that metabolic phenotyping of plasma enables to 

discriminate between breast cancer patients and controls (13). Furthermore, 

ongoing research of our group is demonstrating, for a large cohort of 450 subjects, 

that the metabolic phenotype allows differentiate between lung cancer patients 

and controls (14). Nevertheless, up to now it is not clear whether the metabolic 

phenotype reflects a common cancer marker or whether different cancer types 

have characteristic profiles. Therefore, this study aims to 1) investigate whether 

the plasma metabolic phenotype allows to discriminate between lung and breast 

cancer, 2) evaluate the predictive accuracy of the trained classification model in 
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an independent cohort and 3) improve the understanding of the disturbed 

biochemical pathways.  
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Patients and methods 

Subjects 

Lung cancer patients with an adenocarcinoma (n=145; 55 female and 90 male) 

were included in the Limburg Positron Emission Tomography (PET) center (n=105) 

(Hasselt, Belgium) and at the Department of Respiratory Medicine of University 

Hospitals Leuven (n=40) (Leuven, Belgium) from March 2011 to May 2014. The 

diagnosis of adenocarcinoma was confirmed by a pathological biopsy. Clinical 

staging of the adenocarcinomas was performed according to the 7th edition of the 

tumor, nodes and metastases classification of malignant tumors (15). Breast 

cancer patients with an adenocarcinoma (n=147) were included at the day of 

primary surgery at the Department of Gynaecology of Ziekenhuis Oost-Limburg 

(Genk, Belgium) between March 2010 and August 2012. The diagnosis of 

adenocarcinoma was confirmed by a core needle biopsy. The stage of the 

adenocarcinomas was defined by the revised staging system for breast cancer 

(16). For both patients groups, blood sampling and sample preparation was done 

according to a fixed protocol and by trained staff. 

Exclusion criteria were: 1) not fasted for at least 6 h; 2) fasting blood glucose 

concentration ≥ 200 mg/dl; 3) medication intake on the morning of blood 

sampling and 4) treatment or history of cancer in the past 5 years. The study was 

conducted in accordance with the ethical rules of the Helsinki Declaration and 

Good Clinical Practice and was approved by the ethical committees of Ziekenhuis 

Oost-Limburg, Hasselt University (Hasselt, Belgium) and University Hospitals 

Leuven. All study participants provided written informed consent. The study is 

registered at clinical trials.gov (NCT02362776). 

Both patient groups were subdivided into a training cohort and a validation cohort 

(Figure 6.1). More specifically, the 55 female lung cancer patients were assigned 

to the training cohort, whereas the 90 male lung cancer patients were allocated 

to the validation cohort in order to examine the confounding effect of gender. 

Regarding the breast cancer patients, 84 were allocated to the training cohort and 

63 to the validation cohort. Five statistical outliers of the training cohort (1 lung 

cancer patient and 4 breast cancer patients) and 12 of the validation cohort (9 

lung cancer patients and 3 breast cancer patients) were excluded. According to 
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their medical files, they showed abnormal concentrations of glucose, lipids or 

ketone bodies. The individuals with high glucose levels were diagnosed with 

diabetes or had an increased fasting glucose while those with high lipid levels 

suffered from obesity, hyperlipidemia or took cholesterol-lowering medication. 

Most of the individuals with high ketone body levels had a low BMI. Notice that in 

order to explain the disturbed biochemical pathways, it was decided to train an 

OPLS-DA classification model with the 135 lung cancer patients and the 140 breast 

cancer patients who remained after excluding the outliers instead of dividing both 

patient groups into a training and a validation cohort (Figure 6.1). 
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Figure 6.1. CONSORT diagram of the study. F: females; M: males.  
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Blood sampling and processing 

See Chapter 2: Blood sampling and processing.  

NMR sample preparation and analysis 

See Chapter 2: NMR sample preparation and analysis.  

Spectral processing 

See Chapter 2: Spectral processing. 

Statistical analysis 

Multivariate statistics was performed using SIMCA-P+ (Version 14, Umetrics, 

Umea, Sweden). After mean-centering and Pareto scaling of the variables, 

unsupervised principal component analysis (PCA) was performed to identify 

outliers by means of a Hotelling’s T2 range test and a distance to model plot. After 

removing outliers, orthogonal partial least squares discriminant analysis (OPLS-

DA) was used to train a classification model (17). The validity of the model was 

confirmed by i) permutation testing, ii) classifying an independent cohort with a 

classification cut-off value of 0.5 and iii) receiver operating characteristic curve 

explorer & tester (18). Via an S-plot, the most discriminating variables and their 

variable importance for the projection (VIP) values were identified (19). Variables 

with a VIP exceeding 0.5 were used to describe the biochemical pathways. 

Additionally, a student t-test with correction for multiple testing by the Benjamini-

Hochberg method (20) was applied (IBM SPSS Version 22, Chicago, Illinois, USA). 

Note that noisy variables, which were identified in Chapter 2, were not excluded 

since none of the noisy variables had a VIP value exceeding 0.5 and therefore, 

were not selected to explain the biochemical pathways. 
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Results 

Multivariate OPLS-DA statistics was used to train a classification model (classifier) 

in discriminating between breast and lung cancer based on data input from their 

metabolic phenotype. The resulting model was validated in an independent patient 

cohort. Table 6.1 shows the characteristics of the training and validation cohorts. 

However, before starting with the OPLS-DA statistics, a PCA analysis was 

conducted to look for possible confounders. Figure 6.2 shows PCA score plots 

stained for disease type (A), smoking habits (B) and tumor stage (C). The plots 

demonstrate that smoking habits and tumor stage are no confounders.  

Table 6.1. Characteristics of the subjects included in the study (without outliers). 

 Training cohort Validation cohort 

 BC LC BC LC 

Number of subjects, n 80 F 54 F 60 F 81 M 

Age, yrs 

(range) 

58 ± 11 

(24-86) 

61 ± 10 

(43-88) 

60 ± 12 

(40-84)  

 

66 ± 9  

(46-83) 

BMI, kg/m2 

(range) 

27 ± 5 

(20-44) 

25 ± 5 

(17-42) 

26 ± 5 

(18-43) 

26 ± 4 

(19-39) 

Smoking habits     

 Non-smoker, n (%) 55 (69) 28 (52) 49 (82) 44 (54) 

 Smoker, n (%) 18 (22) 26 (48) 9 (15) 37 (46) 

 Unknown, n (%) 7 (9) 0 (0) 2 (3) 0 (0) 

Menopause     

 Post-menopausal, n (%) 62 (78) 44 (81) 41 (68)  

 Pre-menopausal, n (%) 18 (22) 10 (19) 19 (32)  

Histological subtype     

 Adenocarcinoma, n (%) 80 (100) 54 (100) 60 (100) 81 (100) 
Tumor stage     

 I, n (%) 29 (36) 11 (20) 23 (38) 16 (20) 

 II, n (%) 44 (55) 6 (11) 33 (55) 8 (10) 

 III, n (%) 7 (9) 17 (32) 3 (5) 26 (32) 

 IV, n (%) 0 (0) 20 (37) 1 (2) 31 (38) 

Receptor status     

 ER     

 Positive, n (%) 64 (80)  51 (85)  

 Negative, n (%) 16 (20)  9 (15)  

 PR     
 Positive n (%) 56 (70)  46 (82)  

 Negative, n (%) 24 (30)  14 (18)  

HER2 status     

 Positive, n (%) 14 (17)  11 (18)  

 Negative, n (%) 66 (83)  49 (82)  

Data are presented as mean ± standard deviation and range, unless otherwise indicated. The outliers (5 

of the training cohort and 12 of the validation cohort) are not included in this table. BC: breast cancer; 

BMI: body mass index; ER: estrogen receptor; F: females; HER2: human epidermal growth factor 

receptor; LC: lung cancer; M: males; PR: progesterone receptor.  
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Figure 6.2. PCA score plot of all subjects (145 lung cancer patients and 147 breast cancer patients) stained for (A) disease type, (B) smoking 

habits and (C) tumor stage. BC: breast cancer; LC: lung cancer; PC: principal component. 
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Applying OPLS-DA statistics on the training set resulted in a model that allows to 

classify 93% of the 54 female lung cancer patients and 99% of the 80 female 

breast cancer patients correctly with an area under the curve (AUC) of 0.96 (Table 

6.2, Figure 6.3A-B). An independent permutation test confirms that the 

classification is not due to overfitting (Figure 6.4). The predictive accuracy of the 

model was assessed by applying it to the independent validation cohort consisting 

of 60 female breast cancer patients and 81 male lung cancer patients (Table 6.2, 

Figure 6.3B-C), resulting in a sensitivity of 89% (89% of the lung cancer patients 

are correctly classified), a specificity of 82% (82% of the breast cancer patients 

are correctly classified) and an AUC of 0.94.  

Table 6.2. Characteristics of the trained OPLS-DA classification models. 

 LV (P+O) R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

Sens  

(%) 

Spec  

(%) 

AUC 

 Training cohort 

80 LC vs. 54 BC 5 (1+4) 0.82 0.73 0.63 93 99 0.96 

135 LC vs. 140 BC 7 (1+6) 0.85 0.74 0.68 96 94 / 

Stage I LC vs. Stage I BC 8 (1+7) 0.89 0.80 0.52 93 100 / 

LC vs. TN BC 6 (1+5) 0.85 0.72 0.42 98 95 / 

 Validation cohort 

LC vs. BC / / / / 89 82 0.94 

AUC: area under the curve; BC: breast cancer; LC: lung cancer; LV: latent variable; O: number of 

orthogonal components; P: number of predictive components; R2X(cum): total explained variation in X; 

R2Y(cum): total explained variation in Y; TN: triple negative; Sens: sensitivity; Spec: specificity; Q2(cum): 

predicted variation as determined by 7-fold cross-validation.
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Figure 6.3. (A) OPLS-DA score plot derived from the training cohort of 80 breast cancer patients and 54 lung cancer patients, (B) Receiver 

operating characteristic curves showing for the cross-validation (CV) of the training cohort as well as for the independent validation the high 

predictive accuracy of the OPLS-DA model. Regarding the CV, sub-sampling CV was used, i.e. 2/3 of the observations were used for model training 

and the remaining 1/3 of the observations were used for validation. This procedure was repeated 50 times.  (C) OPLS-DA score plot for the 

classification of the independent cohort of 81 lung cancer patients and 60 breast cancer patients by means of the trained classifier. AUC: area 

under the curve; BC: breast cancer; CV: cross-validation; LC: lung cancer; PS: predicted scores.
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Figure 6.4. Result of the permutation test demonstrating that the obtained classification model 

is not the result of overfitting. All resulting R2 and Q2 values (at the left) are lower than these of the 

model (at the right), indicative for a valid model. R2: explained variation; Q2: predicted variation as 

determined by 7-fold cross-validation.  

Although PCA showed that tumor stage is no confounder, an OPLS-DA model was 

trained in discriminating between stage I lung cancer patients (n=27) and stage 

I breast cancer patients (n=52) to confirm this finding. The resulting model 

classifies 93% of the stage I lung cancer patients and 100% of the stage I breast 

cancers patients correctly (Figure 6.5, Table 6.2). Hence, it can be definitively 

concluded that tumor stage is no confounder. 

Figure 6.5. OPLS-DA score plot of stage I lung cancer patients (n=27) and stage I breast cancer 

patients (n=52). BC: breast cancer; LC: lung cancer.  

Besides tumor stage, it could be argued that the discrimination is attributable to 

the fact that most of the breast tumors are estrogen receptor positive (ER+) and 

progesterone receptor positive (PR+, Table 6.1). To investigate whether group 

discrimination is not due to the predominantly positive hormone receptor status 
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of the breast tumors, the PCA score plot of breast cancer patients was stained for 

ER and PR status (Figure 6.6). Since ER+ and PR+ breast tumors do not cluster, 

the contribution of hormone receptor status to group discrimination can be 

excluded. To further affirm this finding, an OPLS-DA model was trained in 

discriminating between lung cancer patients (n=54) and patients with triple 

negative breast cancer (n=19, ER-, PR- and human epidermal growth factor 

receptor- (HER2-)). The obtained model classifies 98% of the lung cancer patients 

and 95% of the patients with triple negative breast cancer correctly (Figure 6.7, 

Table 6.2). Therefore, it can be concluded that hormone receptor status is no 

confounder.  
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Figure 6.6. (A) PCA class score plot of breast cancer patients stained for estrogen receptor status, (B) PCA class score plot of breast cancer 

patients stained for progesterone receptor status. BC: breast cancer; ER: estrogen receptor; PC: principal component; PR: progesterone receptor. 

 

Figure 6.7. OPLS-DA score plot of lung cancer patients (n=54) and patients with triple negative breast cancer (n=19). BC: breast cancer; LC: lung 

cancer; TN: triple negative.  
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In an attempt to explain the disturbed biochemical pathways, a classification 

model was trained in discriminating between the 135 lung cancer patients and the 

140 breast cancer patients who remained after the exclusion of outliers rather 

than dividing both patient groups into a training and a validation cohort (Figure 

6.8, Table 6.2). Only the 50 variables having a VIP value exceeding 0.5 were 

selected as shown in Figure 6.9. Tables 6.3 and 6.4 show the variables (and 

contributing metabolites) which are respectively increased or decreased for lung 

cancer patients together with their univariate p-value and corresponding fold 

change (FC). A positive/negative FC denotes a relatively higher/lower 

concentration for lung cancer.  

 

Figure 6.8. OPLS-DA score plot derived from the training cohort of 140 breast cancer patients 

and 135 lung cancer patients. BC: breast cancer; LC: lung cancer. 
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Figure 6.9. S-plot of the OPLS-DA model showing the variables contributing most to group 

discrimination. Variables situated at the right end are increased in the plasma of lung cancer patients, 

whereas those situated at the left end are increased in the plasma of breast cancer patients. Variables 

used to explain the disturbed biochemical pathways (VIP > 0.5) are marked (●). Var: variable; VIP: 

variable importance for the projection.  

The metabolites of which the concentration is increased for lung cancer are 

glucose, glycerol, tyrosine, aspartate, threonine, leucine, valine, histidine, 

methionine, N-acetylated glycoproteins, β-hydroxybutyrate and phospholipids 

with long, saturated fatty acid chains. Furthermore, the metabolites of which the 

concentration is decreased for lung cancer include alanine, glutamine, creatinine, 

citrate, sphingomyelin and phosphatidylcholine (and other cholinated 

phospholipids), lactate and phospholipids with short, unsaturated fatty acid 

chains.



Metabolic phenotype to discriminate between cancer types? 

190 

 

Table 6.3. Integration regions (variables) with a VIP value > 0.5 which are increased in the plasma spectra of lung cancer patients.  

VAR Integration region 

(ppm) 

VIP p-value FC Contributing metabolites Assignment 

100
*
 1.3450 – 1.2458 3.41 2.14x10-1 1.03 Thr, Ile, lipids:  

CH3-(CH2)n- in FAC 
 

Lipids:  

CH3-(CH2)n- in FAC 
 

 91
*
 2.1230 – 1.9720 2.98 5.53x10-13 1.07 Glu, Met, Pro, Ile, CH3 of N-acetylated 

glycoproteins, lipids: -CH2-CH=CH- in FAC 

 

CH3 of NAG 

 

38
°
 3.9590 – 3.8330 2.34 4.31x10-3 1.06 Asp, Met, Ser, Tyr, glucose 

 
Glucose 

45
§
 3.7141 – 3.6680 2.32 8.35x10-15 1.24 Ile, glycerol,  

CH2-N+(CH3)3 of SM & PC  

Glycerol 

44 3.7390 – 3.7141 1.22 1.05x10-4 1.08 Glucose 

 

Glucose 

 
42

°
 3.7820 – 3.7550 1.15 6.28x10-2 1.04 Ala, Glu, Gln, Leu, Lys, glucose Glucose 

25
*
 4.3159 – 4.2332 1.10 8.22x10-18 1.28 Thr, O-CH2-CH2-N+(CH3)3 of SM & PC 

 

Thr 

 

 
48 3.6376 – 3.6240 1.00 1.17x10-19 1.29 Val Val 
20 5.2526 – 5.2030 0.97 3.16x10-8 1.38 C2H in glycerol backbone of TG & PL C2H in glycerol backbone of TG & PL 

28
§
 4.1750 – 4.1260 0.95 6.57x10-3 1.09 Lactate, C1H & C3H in glycerol backbone of 

TG & PL 

C1H & C3H in glycerol backbone of TG & PL 

46 3.6680 – 3.6500 0.92 7.80x10-5 1.34 Glycerol 

 

Glycerol 

 21 4.6940 – 4.6620 0.87 5.90x10-1 1.01 Glucose Glucose 

43
°
 3.7550 – 3.7390 0.84 1.33x10-1 1.03 Ala, Leu, glucose Glucose 

59 3.2186 – 3.1930 0.81 1.90x10-3 1.23 Tyr Tyr 

49 3.6240 – 3.6097 0.78 2.94x10-8 1.16 Thr 
 

Thr 

101
*
 1.2458 – 1.2180 0.78 2.38x10-1 1.04 Ile, β-hydroxybutyrate 

 

β-hydroxybutyrate 

19 5.2752 – 5.2526 0.74 6.17x10-2 1.03 Glucose Glucose 

94
*
 1.8060 – 1.6860 0.74 4.96x10-1 1.02 Leu, Lys 

 

Leu 

47 3.6500 – 3.6376 0.73 2.70x10-12 1.21 Glycerol Glycerol 

51
§
 3.5914 – 3.5649 0.73 2.38x10-1 1.02 Glycerol, Gly, Thr, glucose Glycerol 

37 3.9810 – 3.9590 0.69 1.17x10-3 1.11 Asn, His, Ser, Tyr, creatine 

 

? 

50 3.6097 – 3.5914 0.69 1.52x10-5 1.11 Thr Thr 

24 4.4100 – 4.3159 0.65 1.14x10-3 1.09 C1H & C3H in glycerol backbone of TG 

 

C1H & C3H in glycerol backbone of TG 

 
71

*
 2.7360 – 2.6600 0.65 1.42x10-2 1.06 Asp, Met, citrate 

 

Asp 

39
°
 3.8330 – 3.8100 0.62 1.52x10-1 1.03 Ala, Ser, glucose Glucose 

61
*
 3.1760 – 3.1462 0.56 1.03x10-2 1.19 NI NI 

53
°
 3.5510 – 3.5360 0.52 9.06x10-1 1.01 Glucose, acetoacetate, Pro Glucose 
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Table 6.3. continued. 

VAR Integration region 

(ppm) 

VIP p-value FC Contributing metabolites Assignment 

4 7.7780 – 7.7480 0.52 6.23x10-8 1.47 His His 

72 2.6600 – 2.6300 0.52 1.22x10-7 1.55 Met Met 

106
*
 1.0220 – 1.0020 0.52 1.28x10-1 1.03 Val, Ile, Leu Val 

°
It can be deduced that these composite regions (variables) emanate from glucose because variable 19, 21 and 44 which represent a unique signal of glucose, 

are also increased in blood plasma of lung cancer patients. 
§
It can be deduced that these composite regions (variables) emanate from glycerol because variable 

20, 24, 46 and 47 which represent a unique signal of glycerol, are also increased in blood plasma of lung cancer patients. 
*
The assignment of metabolites in 

crowded regions with signal overlap was improved by spiking plasma samples with known metabolites in relevant concentrations on a 900 MHz NMR spectrometer 

(Lille, France), having a higher spectral resolution and signal-to-noise ratio. Amino acids are presented by their 3-letter code. FAC: fatty acid chain; FC: fold 

change; NAG: N-acetylated glycoproteins; NI: non-identified; PC: phosphatidylcholine; ppm: parts per million; PL: phospholipids; SM: sphingomyelin; TG: 

triglycerides; VAR: variable; VIP: variable importance for the projection. 
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Table 6.4. Integration regions (variables) with a VIP value > 0.5 which are decreased in the plasma spectra of lung cancer patients.  

VAR Integration 

region (ppm) 

VIP P value FC Contributing metabolites Assignment 

110 0.9660 – 0.8000 3.92 4.56x10-13 -1.08 Lipids: CH3-(CH2)n- in FAC 

 

Lipids: CH3-(CH2)n- in FAC 

 

 

58
*
 3.3230 – 3.2186 3.64 1.21x10-6 -1.13 His, Phe, Tyr, N+(CH3)3 of SM & PC, 

glucose 

N+(CH3)3 of SM & PC 

99
*
 1.3740 – 1.3450 2.05 6.08x10-1 -1.01 Lactate, Thr 

 

Lactate 

54 3.5460 – 3.3980 2.03 3.17x10-1 -1.02 Pro, glucose, acetoacetate 

 

? 

98 1.4200 – 1.374 1.93 4.32x10-3 -1.13 Lactate Lactate 

18 5.4300 – 5.2752 1.22 9.12x10-1 -1.01 Lipids: -CH=CH- in FAC  
 

Lipids: -CH=CH- in FAC 

95
#

 1.6860 – 1.5600 1.21 4.53x10-1 -1.03 Lys, lipids: -CH2-CH2-C=O and -CH2-

CH2-CH=CH in FAC  

Lipids: -CH2-CH2-C=O and -CH2-CH2-

CH=CH in FAC 

 

73 2.5960 – 2.5340 1.06 5.26x10-16 -1.41 Citrate Citrate 

96
*
 1.5400 – 1.4900 1.05 1.87x10-4 -1.12 Ala, Ile, Lys 

 

Ala 

90
*
 2.1970 – 2.1230 0.93 1.00x10-2 -1.05 Gln, Glu, Pro, Met 

 

Gln 

66 3.0640 – 2.9950 0.85 1.22x10-1 -1.03 Lys, α-ketoglutarate ? 

67 2.9950 – 2.8860 0.81 5.28x10-2 -1.05 Asn, lipids: 
=CH-CH2-CH= in FAC 

? 

75 2.5150 – 2.4920 0.75 3.83x10-10 -1.21 Gln Gln 

102 1.2180 – 1.1300 0.71 9.11x10-1 -1.01 NI NI 

76
*
 2.4920 – 2.4500 0.66 9.46x10-3 -1.07 Gln, α-ketoglutarate, β-hydroxybutyrate Gln 

69
#

 2.8550 – 2.7500 0.64 1.51x10-1 -1.02 Asn, Asp, lipids: 

=CH-CH2-CH= in FAC 

Lipids: 

=CH-CH2-CH= in FAC 

40 3.8100 – 3.7956 0.56 9.32x10-2 -1.04 Ala, Glu, glucose, Gln ? 

64
*
 3.0860 – 3.0716 0.55 7.98x10-3 -1.07 Tyr, Lys, creatinine 

 

Creatinine 

41 3.7956 – 3.7820 0.54 1.45x10-1 -1.03 Ala, Glu, glucose, Gln, Leu, Lys 

 

? 

92 1.9720 – 1.9240 0.53 7.50x10-4 -1.08 Ile, Lys, acetate ? 

#It can be deduced that these composite regions (variables) emanate from lipids because variable 18 and 110 which represent a unique signal of lipids are also 

increased in blood plasma of breast cancer patients. *The assignment of metabolites in crowded regions with signal overlap was improved by spiking plasma 

samples with known metabolites in relevant concentrations on a 900 MHz NMR spectrometer (Lille, France), having a higher spectral resolution and signal-to-

noise ratio. Amino acids are presented by their 3-letter code. FAC: fatty acid chain; FC: fold change; PC: phosphatidylcholine; ppm: parts per million; SM: 

sphingomyelin; VAR: variable; VIP: variable importance for the projection. 
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Discussion 

The rapidly expanding field of metabolomics has been making progress in the area 

of oncology (21-23) and studies have explored the disturbed metabolism of lung 

or breast cancer by means of 1H-NMR spectroscopy (13, 24-27). However, to our 

knowledge, this is the first report which examines whether cancer types have 

specific profiles. Hereto, a homogenous study population of cancer patients 

suffering with an adenocarcinoma was selected. Furthermore, since all breast 

cancer patients were females, only females were included in the training cohort in 

order to exclude gender as a confounder. This study demonstrates that the 

metabolic phenotype allows to classify 93% of the female lung cancer patients 

and 99% of the female breast cancer patients correctly with an AUC of 0.96. 

Additionally, male lung cancer patients and female breast cancer patients of an 

independent cohort were classified by the trained classification model with a 

sensitivity of 89%, a specificity of 82% and an AUC of 0.94, confirming that gender 

is no confounder.  

Investigation of the underlying disturbed metabolism demonstrates that plasma 

of lung cancer patients is characterized by increased levels of glucose, glycerol, 

tyrosine, aspartate, threonine, leucine, valine, histidine, methionine, N-acetylated 

glycoproteins, β-hydroxybutyrate and phospholipids with long, saturated fatty 

acid chains and by decreased levels of alanine, glutamine, creatinine, citrate, 

sphingomyelin and phosphatidylcholine, lactate and phospholipids with short, 

unsaturated fatty acid chains. Note that the increase/decrease in concentrations 

of plasma metabolites is always expressed for lung cancer as compared to breast 

cancer. The increase of phospholipids with long, saturated fatty acid chains can 

be derived from variable 100, i.e. the integration value of the region between 

1.25-1.35 ppm in the 1H-NMR spectrum representing CH2 groups that are 

separated by at least two carbons from a double bond, and so mainly reflects the 

relative concentration of phospholipids with long, saturated fatty acid chains. In 

contrast, variable 110 represents the CH3 groups and so rather reflects the relative 

concentration of phospholipids with short, unsaturated fatty acid chains.  

Because cancer cells often outgrow the surrounding vasculature, they have 

adopted an oxygen-independent metabolism to produce sufficient energy for 

proliferation. Even in the presence of normal oxygen levels, cancer cells prefer to 



Metabolic phenotype to discriminate between cancer types? 

194 

 

convert glucose into lactate rather than oxidizing it via oxidative phosphorylation, 

a hallmark known as the Warburg effect or “aerobic glycolysis” (12). This latter 

term is somewhat confusing, because oxygen is not involved in the fermentation 

of pyruvate to lactate. Concerning the elevated glycolytic rate in cancer cells, 

literature reports that the degree of uptake of the radioactive fluorodeoxyglucose 

(18F-FDG) tracer as measured by PET/CT is correlated with metabolic activity and 

long-term prognosis (28-30). Lung tumors display a higher 18F-FDG uptake than 

breast tumors, indicating that lung tumors are metabolically more active and by 

implication more aggressive.  

An ongoing study of our research group in a large cohort of 233 lung cancer 

patients and 226 controls reveals increased plasma levels of glucose and 

decreased levels of lactate for lung cancer (14). These metabolic alterations 

demonstrate that measurements of the metabolite profile in blood plasma are 

reflecting the response of the body to the Warburg effect, i.e. hepatic 

glycogenolysis and gluconeogenesis, rather than the Warburg effect itself (as 

occurring in the cancer cells) (14). Since lung tumors are metabolically more 

active than breast tumors, it is expected that the body response to the Warburg 

effect will be more prominent. Note that this study compares metabolite 

concentrations between different cancer types and that a decrease of a specific 

metabolite in lung cancer patients as compared to breast cancer patients might 

still represent an increase relative to controls and vice versa.  

In more detail, this study reveals that lung cancer patients have increased plasma 

levels of glucose and decreased levels of alanine and lactate, in line with the fact 

that lung tumors are metabolically more active as compared to breast cancer. 

More specifically, the response of the body to compensate for the lack of glucose 

as energy and carbon source for normal cells will be more prominent in the lung 

cancer patients. As a result, less oxaloacetate will be available to condense with 

acetyl-CoA and the Krebs cycle and subsequent oxidative phosphorylation in the 

liver will be more hampered. Therefore, the conversion of acetyl-CoA to ketone 

bodies will be more pronounced. The increased hepatic synthesis of ketone bodies 

is confirmed by the increased levels of the ketone body β-hydroxybutyrate and 

the ketogenic amino acid leucine.  
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Besides hepatocytes, which display an impaired Krebs cycle due to the 

compensating gluconeogenesis in response to the Warburg effect, also cancer cells 

are characterized by a disturbed Krebs cycle (31). Since lung tumors are 

metabolically more active, the Krebs cycle is expected to be more hampered, 

which is affirmed by decreased levels of citrate and further supported by increased 

levels of amino acids which normally would be consumed for the production of 

Krebs cycle intermediates (aspartate, threonine, valine, histidine, methionine, 

tyrosine) (32). The plasma concentration of citrate is decreased since, once it is 

shuttled to the cytoplasm, it becomes converted to acetyl-CoA, being a critical 

precursor of fatty acids and cholesterol, i.e. fatty acids and cholesterol are 

synthesized from the carbons provided by acetyl-CoA (33). After conversion to 

phospholipids, the fatty acids are incorporated in the plasma membrane of new 

daughter cells together with cholesterol. In order to maintain fatty acid and 

cholesterol synthesis, citrate is replenished via the glutaminolysis, i.e. a salvage 

pathway in which glutamine is converted to α-ketoglutarate (31). This α-

ketoglutarate is subsequently reduced to isocitrate which can be converted to 

citrate (33). Since lung tumors are metabolically more active and consequently 

need more anabolic precursors for their increased proliferation, lipogenesis and 

subsequent membrane synthesis will be more pronounced. All the above is 

affirmed by decreased levels of glutamine, citrate and sphingomyelin and 

phosphatidylcholine. Since long, saturated fatty acid chains have very strong Van 

der Waals interactions, the increased plasma levels of phospholipids with long, 

saturated fatty chains and the decreased levels of phospholipids with short, 

unsaturated fatty acid chains indicate that the cell membrane of lung tumors is 

more rigid and less sensitive to lipid peroxidation (34). Notice that although the 

increased plasma levels of glycerol seem to be in contrast with the enhanced 

lipogenesis and subsequent membrane synthesis in lung cancer cells, this 

discrepancy might be explained by the fact that cancer cells do not use glycerol 

obtained from plasma to create their membranes but rather glycerol derived from 

the glycolytic pathway. Finally, plasma of lung cancer patients is characterized by 

increased levels of N-acetylated glycoproteins. Since the enzyme catalyzed 

addition of N-acetylglucosamine to serine or threonine residues of proteins plays 

a role in the metabolic reprogramming of cancer cells (35) and since lung tumors 

seem to be metabolically more active, this is rather expected. 



Metabolic phenotype to discriminate between cancer types? 

196 

 

Conclusions 

This study reveals that the plasma metabolic phenotype allows to discriminate 

between lung and breast cancer, indicating that the plasma metabolite profile 

reflects more than a common cancer marker, i.e. the cancer types studied are 

characterized by their own, specific metabolite profile. To the best of our 

knowledge, this has never been published before.  
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The 1H-NMR-derived metabolic phenotype of 

plasma enables to differentiate between lung, 

breast and colorectal cancer  

 

 

 

 

 

Based on: 

Robby Louis, Evelyne Louis, Kirsten Stinkens, Liesbet Mesotten, Eric de Jonge, 

Michiel Thomeer, Philip Caenepeel, Peter Adriaensens. The metabolic phenotype 

of blood plasma allows to discrimininate between colorectal cancer, breast cancer 

and lung cancer. Under review.  
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Abstract 

Although many studies have demonstrated that plasma metabolic phenotyping 

allows to discriminate between cancer patients and controls, it has not yet been 

thoroughly investigated whether different cancer types elicit distinguishable 

metabolic signatures. Therefore, the present study was designed to examine 

whether metabolic phenotyping of blood plasma by proton nuclear magnetic 

resonance (1H-NMR) spectroscopy allows to discriminate between 37 colorectal 

cancer, 37 breast cancer and 37 lung cancer patients. Hereto, plasma 1H-NMR 

spectra were rationally divided into 110 integration regions defined on the basis 

of spiking experiments with known metabolites. The normalized integration values 

of these 110 regions, which represent the metabolic phenotype, were used as 

statistical variables to construct a classification model which enables to 

discriminate between the three aforementioned cancer types. The resulting model 

allows to classify 78% of the colorectal cancer patients, 95% of the breast cancer 

patients and 84% of the lung cancer patients correctly. Although the number of 

cancer patients in each group has to be increased and an independent validation 

study has to be performed in order to confirm these findings, the present study 

provides preliminary evidence that the plasma metabolic phenotype has potential 

to become a complementary diagnostic tool to differentiate between cancer types 

in addition to known common cancer biomarkers.  
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Introduction 

It is widely accepted that cancer cells exhibit a major reprogramming of their 

energy metabolism in order to fulfill the high metabolic demands that are 

associated with increased cell proliferation and survival (1). Because the metabolic 

alterations in cancer cells provoke changes in the metabolic phenotype of the 

patient, metabolites might serve as attractive biomarkers for facilitating the 

diagnosis of cancer. Complex mixtures of metabolites in biofluids, such as plasma, 

serum or urine, can be mined for diagnostic biomarkers by means of the 

metabolomics approach. This discipline represents a relatively new ‘-omics’ 

science downstream of genomics, transcriptomics and proteomics that uses an 

analytical platform in conjunction with multivariate pattern recognition 

approaches in order to discover and monitor metabolic changes in patient 

biospecimens related to disease status or in response to a medical or external 

intervention (2). Since metabolites are the end products of all cellular regulatory 

processes, their levels can be regarded as the ultimate response of biological 

systems to genetic, biological and/or environmental perturbations (3). More 

specifically, alterations in the concentrations of metabolites are the net result of 

epigenetic changes, genetic variation and changes in the activity and/or levels of 

enzymes (4). The metabolome, i.e. the complete set of metabolites present in the 

human body, is therefore the most closely related to the observed phenotype and 

provides the most accurate representation of the functional status of the patient 

when compared with the genome, transcriptome and proteome (5). Consequently, 

metabolomics holds great promise for early cancer detection as the concentrations 

of metabolites are sensitive to subtle changes in the pathological status of the 

patient, such as the early onset of tumor growth (6). 

One of the main analytical tools that is commonly used in metabolomics to identify 

and quantify a wide range of metabolites in biological samples is proton nuclear 

magnetic resonance (1H-NMR) spectroscopy. This technique only requires minimal 

sample preparation, needs no chemical derivatization, can be easily automated 

and is fast, non-destructive, highly reproducible and relatively cheap on a per 

sample basis, making it a promising platform for performing high-throughput 

diagnostic analyses on a large scale (5, 7). In the past decade, a growing interest 

in the diagnostic utility of 1H-NMR-based metabolomics of blood plasma has 
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emerged in the field of oncology, and various studies have already established the 

potential of this methodology to detect various cancer types (8, 9). However, since 

the majority of these studies only compared the plasma metabolic phenotype of 

cancer patients with that of controls, it remains unclear whether different tumors 

share the same metabolic perturbations or whether certain metabolic alterations 

are specific for certain cancer types. Recently, our research group has 

demonstrated that metabolic phenotyping of plasma by 1H-NMR spectroscopy 

allows to discriminate between breast and lung cancer, classifying 99% of 80 

female breast cancer patients and 93% of 54 female lung cancer patients 

correctly. These results were successfully validated in an independent cohort in 

which 82% of 60 female breast cancer patients and 89% of 81 male lung cancer 

patients were correctly classified (10). In order to further explore the ability of 

the plasma metabolic phenotype to differentiate between cancer types, the 

present study aims to investigate whether the 1H-NMR-derived metabolic 

phenotype of blood plasma allows to discriminate between colorectal cancer 

patients, breast cancer patients and lung cancer patients.  
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Materials and methods 

Subjects 

Thirty-seven colorectal cancer patients and an equal number of breast cancer and 

lung cancer patients, all with an adenocarcinoma, were randomly selected in order 

to construct a classification model which permits to discriminate between the 

different cancer types based on the metabolic phenotype of blood plasma. The 

colorectal cancer patients were included in the Limburg Positron Emission 

Tomography (PET) Center (Hasselt, Belgium), at the Gastroenterology 

Department of Ziekenhuis Oost-Limburg (Campus Sint-Jan, Genk, Belgium) and 

in the Center for Specialized Medicine (Reumacentrum, Genk, Belgium). The 

diagnosis of colorectal adenocarcinoma was confirmed by histopathological 

examination of biopsies taken during endoscopy. The lung cancer patients were 

recruited in the Limburg PET center and at the Department of Respiratory Medicine 

of University Hospital Leuven (Campus Gasthuisberg, Leuven, Belgium). The 

diagnosis of lung adenocarcinoma was confirmed by means of a pathological 

biopsy or by a medical doctor specialized in the interpretation of radiological and 

clinical data regarding lung cancer. The stage of both the colorectal and lung 

tumors was defined according to the 7th edition of the tumor, nodes and 

metastases classification of malignant tumors. The breast cancer patients were 

included at the day of primary surgery at the Gynaecology Department of 

Ziekenhuis Oost-Limburg (Campus Sint-Jan). The diagnosis of breast 

adenocarcinoma was confirmed by a core needle biopsy and the stage of the 

tumors was defined by the revised staging system for breast cancer (11). For each 

group of cancer patients, blood collection and sample preparation were performed 

according to a fixed protocol and by trained staff. Furthermore, for each group, 

the following exclusion criteria were defined: 1) poorly controlled diabetes (fasting 

blood glucose ≥ 200 mg/dl), 2) any inflammatory condition, 3) any other cancer 

type besides colorectal, breast or lung cancer, 4) history or treatment of cancer 

during the past five years, 5) medication intake on the morning of blood sampling 

and 6) no fasting for at least six hours prior to blood sampling. All procedures 

were conducted in accordance with the ethical rules of the Helsinki declaration 

and Good Clinical Practice and the study protocols were approved by the Medical 

Ethics Committees of Ziekenhuis Oost-Limburg, Hasselt University (Campus 
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Diepenbeek, Hasselt, Belgium) and University Hospital Leuven. All participants 

provided written informed consent prior to their inclusion. The studies in which 

the patients were enrolled are registered at clinicaltrials.gov (NCT02364154 and 

NCT02362776). 

Blood sampling and processing 

See Chapter 2: Blood sampling and processing.  

NMR sample preparation and analysis 

See Chapter 2: NMR sample preparation and analysis.  

Spectral processing 

See Chapter 2: Spectral processing. 

Statistical analysis 

Multivariate statistics were performed using SIMCA-P+ (version 14.0, Umetrics, 

Umea, Sweden). After the variables had been subjected to mean centering and 

Pareto scaling, orthogonal partial least squares discriminant analysis (OPLS-DA) 

was performed to construct a classification model which discriminates between 

the colorectal cancer, breast cancer and lung cancer patients based on their 

metabolic phenotype (12). The validity of the established model was evaluated 

based on 1) the total amount of variation between and within the three groups 

explained by the model (denoted as R2Y(cum) and R2X(cum), respectively) and 

2) the predictive ability of the model as determined by sevenfold cross-validation 

(denoted as Q2(cum)). Furthermore, permutation testing was performed to ensure 

that the discrimination between the three cancer types was not due to overfitting 

of the data. Additionally, principal component analysis (PCA) was carried out to 

identify possible confounding effects of age, gender, BMI or tumor stage on group 

discrimination. 
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Results and discussion 

Subject characteristics 

The demographical and clinical characteristics of the colorectal cancer, breast 

cancer and lung cancer patients are displayed in Table 7.1. All breast cancer 

patients were female, while the majority of colorectal cancer patients (70%) and 

lung cancer patients (57%) were male. However, PCA revealed that there was no 

apparent clustering with respect to gender in the entire patient cohort, indicating 

that the discrepancy in gender among the three different groups of cancer patients 

is not a confounding factor (Figure 7.1A). Additionally, there were no clusters 

observed when PCA score plots of the entire patient cohort were stained according 

to age, BMI or tumor stage, thereby confirming that none of these factors have a 

confounding effect on the discrimination between colorectal cancer, breast cancer 

and lung cancer patients (Figure 7.1B-D).  

Table 7.1. Characteristics of the subjects included in the study.  

 CRC  BC  LC  

Number of subjects, n 37 37 37 
Gender, n (%)    

 Male 26 (70) 0 (0) 21 (57) 

 Female 11 (30) 37 (100) 16 (43) 

Age, yrs 65 ± 10  57 ± 10  65 ± 10  

(range) (45-86) (42-78) (43-88) 

BMI, kg/m2 26.9 ± 4.5 25.7 ± 3.1 25.6 ± 4.8 

(range) (21.4-40.8) (20.2-35.4) (17.0-35.8) 

Smoking habits    

 Smokers, n (%) 4 (11) 8 (22) 18 (49) 

 Ex-smoker, n (%) 20 (54) 0 (0) 16 (43) 
 Non-smoker, n (%) 10 (27) 0 (0) 3 (8) 

 Unknown, n (%) 3 (8) 29 (78) 0 (0) 

Amount of tumors, n 40 39 37 

Histological subtype    

 Adenocarcinoma, n (%) 40 (100) 39 (100) 37 (100) 

Tumor stage    

 0, n (%) 1 (2) 0 (0) 0 (0) 

 I, n (%) 10 (25) 22 (56) 8 (21) 

 II, n (%) 8 (20) 16 (41) 4 (11) 
 III, n (%) 13 (33) 1 (3) 11 (30) 

 IV, n (%) 6 (15) 0 (0) 14 (38) 

 Unknown, n (%) 2 (5) 0 (0) 0 (0) 

Data are presented as mean ± standard deviation and range, unless otherwise indicated. BC: breast 

cancer patients; BMI: body mass index; CRC: colorectal cancer patients; LC: lung cancer patients. 
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Figure 7.1. Search for possible confounding factors in the discrimination between colorectal, 

breast and lung cancer based on the metabolic phenotype of blood plasma determined by 1H-

NMR spectroscopy. PCA score plots of the entire patient cohort stained according to A) gender, B) age, 

C) body mass index and D) tumor stage. PC: principal component.  

Discrimination between colorectal, breast and lung cancer based 

on the plasma metabolic phenotype  

The OPLS-DA model that was established to discriminate between the three 

groups of cancer patients allows to classify 29 out of 37 colorectal cancer patients 

(78%), 35 out of 37 breast cancer patients (95%) and 31 out of 37 lung cancer 

patients (84%) correctly (R2X(cum): 0.875 and R2Y(cum): 0.561) (Figure 7.2A). 

The predictive ability of the model is relatively high (Q2(cum) = 0.387), indicating 

that the discrimination between the three cancer types based on the metabolic 

phenotype is valid. The validity of the OPLS-DA model was also confirmed by 

permutation testing, which demonstrated that the R2(cum) and Q2(cum) values of 

the actual model are higher than those of twenty permuted models (Figure 

7.2B). Although the number of subjects included in this study is still limited, these 
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results strongly suggest that colorectal cancer, breast cancer and lung cancer 

patients display different metabolic alterations in blood plasma, independent of 

tumor stage. Future perspectives aim to increase the number of cancer patients 

in each group in order to confirm these findings and unravel the underlying 

metabolic perturbations responsible for the discrimination between colorectal, 

breast and lung cancer. In addition, a validation study should be performed in an 

independent patient cohort to ensure that the ability to differentiate between the 

aforementioned cancer types by 1H-NMR-based metabolomics is reproducible and 

therefore valid.  

 

Figure 7.2. Discrimination between colorectal, breast, and lung cancer based on the 1H-NMR-

derived metabolic phenotype of blood plasma. A) OPLS-DA score plot discriminating between 37 

colorectal cancer patients and an equal number of breast cancer patients and lung cancer patients based 

on their metabolic phenotype. The model has two predictive components, which describe the variation 

between the three groups, and five orthogonal components, which display the variation within the 

different groups, B) Permutation plot comparing the goodness of fit of the constructed OPLS-DA model 

with that of twenty permuted models. The R2(cum) and Q2(cum) values of the actual model are located 

at the right, whereas those of the permuted models are located at the left. R2(cum) denotes the variation 

explained by the model, while Q2(cum) is the predictive ability of the model as determined by 7-fold 

cross-validation. BC: breast cancer patients; CRC: colorectal cancer patients; LC: lung cancer patients.  
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Conclusions 

The present study demonstrates that metabolic phenotyping of plasma by 1H-NMR 

spectroscopy allows to discriminate between the three most common cancer types 

worldwide, i.e. lung cancer, breast cancer and colorectal cancer, respectively. 

Although it has already been demonstrated for several types of malignancies that 

cancer patients can be differentiated from controls on the basis of their plasma 

metabolic phenotype (8, 9), the present study indicates that, in addition, different 

cancer types display distinct metabolic characteristics rather than a common 

cancer metabolome. Keeping in mind that the sample size in this study is still 

limited, the number of patients in each group should be increased and an 

independent validation study should be performed in order to confirm the validity 

of the presented findings. Nevertheless, this study provides preliminary evidence 

that metabolic phenotyping of plasma has potential to become a diagnostic tool 

to differentiate between cancer types rather than a common cancer detection 

method. This, in turn, offers additional incentives to further investigate the 

diagnostic utility of 1H-NMR-based metabolomics of plasma for many different 

cancer types in large-scale clinical trials.  
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Lung cancer constitutes a major public health problem, which accounts for 

approximately 20% of all cancer-related deaths worldwide (1). In order to achieve 

a significant decline in lung cancer mortality, this disease needs to be detected at 

the time that treatment is the most effective, namely before patients experience 

clinical symptoms (2, 3). In the past decade, low-dose computed tomography 

(LDCT) has renewed interest in lung cancer screening (4, 5). This technique allows 

to detect lung cancer with a high sensitivity and to reduce lung cancer mortality 

(6-9). However, the main challenge of LDCT screening is the high rate of false 

positive results accompanied by unnecessary and possibly harmful follow-up 

diagnostic tests, which put a massive financial burden on the health care system 

(10). Therefore, there is an increasing interest in improving the accuracy of 

current risk models by including lung cancer risk-related biomarkers in order to 

better select high-risk individuals eligible for LDCT screening, thereby decreasing 

the false positive rate and the corresponding financial burden (11, 12).  

A promising biomarker for risk prediction should be low-cost, highly sensitive and 

specific and accessible in a non-invasive manner (13, 14). A blood-based 

diagnostic biomarker signifies an attractive possibility to complement current risk 

models for LDCT screening as blood samples can be obtained in a non-invasive 

way and with minimal risk for the patient (15-17). Cellular elements which are 

currently examined as blood-based biomarkers for facilitating the diagnosis of 

cancer include DNA and RNA, proteins and metabolites (18). Although it has been 

demonstrated that the concentration of serum proteins is linked to the presence 

of lung cancer, their sensitivity and specificity were insufficient to warrant their 

use as diagnostic tools in clinical practice (19). Because of the disappointing 

performance of single biomarkers, several studies focused on the development of 

biomarker panels in an attempt to attain superior levels of sensitivity and 

specificity (19, 20). Recent technological advances in genomics, epigenomics, 

transcriptomics and proteomics have facilitated the search for signatures that 

allow to differentiate between cancer patients and controls (21, 22). In particular, 

Nolen et al. (19) discovered a three-biomarker protein panel consisting of 

macrophage migration inhibition factor, prolactin and thrombospondin which 

classifies 74% of 62 lung cancer patients and 90% of 142 controls in the training 

cohort correctly. Moreover, the predictive accuracy of the protein panel was 

validated in an independent cohort of 30 lung cancer patients and 30 controls with 



CHAPTER 8 

213 

  

a sensitivity of 70% and a specificity of 90%. In addition, the research group of 

Boeri et al. (20) found a signature of 15 microRNA’s present in blood which allows 

to detect lung cancer with a sensitivity of 80% and a specificity of 90%.  

Besides genomics and proteomics, new –omics sciences, like transciptomics and 

metabolomics, are gaining increased attention in the search for cancer diagnostic 

biomarkers (23). Although all –omics sciences are considered complementary, 

metabolomics has some particular benefits: 1) small alterations in gene 

expression (the genome and transcriptome) and individual enzyme concentrations 

and activities (the proteome) have little impact on metabolic fluxes, but do have 

a significant effect on metabolite concentrations and 2) the metabolome is further 

down the line from gene to function and is the most closely related to the 

phenotype of the patient (24-26). Furthermore, metabolomics platforms are high-

throughput and relatively low-cost compared to other -omics (27). Obviously, a 

biomarker which detects lung cancer in an early stage is more valuable than one 

which only identifies metastatic lung cancer (28). Metabolomics holds great 

promise for early cancer detection as metabolic changes occur before clinical 

symptoms manifest (29). 1H-NMR spectroscopy, one of the main analytical 

platforms used in metabolomics studies, is a very reproducible tool which permits 

a fast and non-invasive identification and quantification of complex mixtures of 

metabolites, as in blood plasma, with minimal sample preparation and relatively 

low costs on a per sample basis (30, 31). Hence, 1H-NMR-based metabolomics of 

plasma represents an attractive tool in the search for blood-based diagnostic 

biomarkers to complement current risk models for LDCT screening.  

Optimization of a 1H-NMR analysis protocol to quantitatively determine 

the plasma metabolites 

In order to permit a correct implementation of 1H-NMR-based metabolomics of 

plasma in this doctoral thesis, a 1H-NMR analysis protocol needed to be optimized. 

The assignment of metabolite signals in 1H-NMR spectra is often based on 

chemical shift values reported in literature (32). However, reported chemical shift 

values for metabolites are dependent of the biofluid under study and the applied 

experimental measuring conditions such as temperature and pH (33, 34). In order 

to accurately assign metabolite signals present in 1H-NMR spectra of human blood 

plasma, it was spiked with 37 known metabolites in relevant concentrations and 
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analyzed on a 400 MHz NMR spectrometer (Chapter 2). Based on the metabolite 

spiking, the 400 MHz plasma spectrum could be rationally divided into 110 well-

defined variable-sized integration regions (variables), representing the metabolic 

phenotype. The main advantage of using spiking experiments compared to fixed 

spectral binning is that splitting of peaks between adjacent bins is avoided, 

resulting in a more accurate data interpretation (35).  

An additional concern regarding accurate data interpretation is the occurrence of 

spectral noise. Noisy integration regions (or variables) in the 1H-NMR spectrum 

can be defined as signals showing unpredictable variation in intensity from 

moment to moment and under identical experimental conditions. In order to not 

complicate subsequent multivariate statistics, noisy variables, defined according 

to a specified threshold for the coefficient of variation, needed to be removed (36). 

Hence, we identified noisy variables in the plasma 1H-NMR spectrum, classified 

those according predefined thresholds and studied the impact of their removal on 

multivariate group classification of a small group of 53 breast cancer patients and 

52 controls. For our fixed hardware NMR set-up, a threshold of 15% for the 

coefficient of variation appeared to be the most optimal, i.e. removing variables 

with a coefficient of variation above 15% had a beneficial effect on multivariate 

classification of this small study population. However, in meantime, we observed 

that when a larger study population was recruited, exclusion of noisy variables 

had no impact anymore on the discriminative power of the classification model 

owing to the fact that all noisy variables had a low variable importance for the 

projection (VIP) value and therefore were not important for group discrimination. 

Moreover, the low VIP value of the noisy variables (<0.5) explains why they were 

not selected to explain the disturbed biochemical pathways. 

A 1H-NMR analysis protocol was optimized in order to accurately assign 

the signals present in 1H-NMR spectra of human blood plasma to the 

corresponding metabolites. On the basis of metabolite spiking 

experiments, the 400 MHz 1H-NMR spectrum of plasma could be rationally 

divided into 110 well-defined integration regions (variables), 

representing the metabolic phenotype. 

Further sophistication of the 1H-NMR analysis protocol was required to further 

improve the assignment of human plasma metabolites in crowded regions of the 
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400 MHz spectra with severe signal overlap, thereby facilitating the interpretation 

of the underlying, disease disturbed, biochemical pathways. Hereto, human blood 

plasma was spiked with the same metabolites and analyzed on a 900 MHz 

spectrometer (Chapter 3). The 900 MHz spectra have less signal overlap, an 

enhanced spectral resolution and enhanced signal-to noise ratio (S/N) compared 

to the 400 MHz spectra, enabling to assign the signals better and to define the 

integration regions more accurately. This results in a larger number of integration 

regions that represent a single metabolite (68% in the 900 MHz spectrum versus 

24% in the 400 MHz spectrum), thereby facilitating the interpretation of the 

underlying, disease disturbed, biochemical pathways. On the basis of the spiking 

information, the 900 MHz plasma spectrum could be rationally divided into 105 

well-defined variable-sized integration regions, representing the metabolic 

phenotype.  

The 1H-NMR analysis protocol was optimized further via spiking 

experiments on a high-field 900 MHz spectrometer in order to improve 

the assignment of plasma metabolite signals in crowded NMR regions 

with severe signal overlap. 900 MHz spectra have an enhanced spectral 

resolution and S/N, allowing to assign the signals better and to delineate 

the integration regions more accurately. This results in a larger number 

of integration regions (variables) that represent a single metabolite, 

thereby facilitating the interpretation of the underlying, disease 

disturbed, biochemical pathways. 

In order to further evaluate advantages/disadvantages of high (900 MHz) versus 

medium (400 MHz) magnetic field strengths, the integration data collected at 400 

and 900 MHz were applied to classify 69 lung cancer patients and 74 controls. It 

was demonstrated that the discriminative power of the models obtained on the 

basis of the 400 MHz and 900 MHz data is quasi comparable, i.e. a sensitivity of 

94% and a specificity of 97% using the 400 MHz data versus 90% and 100% 

using the 900 MHz data (Chapter 3). In line with our findings, Bertram et al. have 

shown that although the discriminative power of the urinary metabolic phenotype 

significantly improved when augmenting the magnetic field strength from 250 to 

500 MHz, the discriminative power remained quasi constant upon further 

increasing the magnetic field strength from 500 to 800 MHz (37). In conclusion, 
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high-field 900 MHz NMR spectra are indispensable at the start of a study to 

accurately assign the signals of the plasma metabolites in regions with several 

signal overlap in 400 MHz spectra and this specially if the unraveling of the 

disturbed metabolism is aimed for. Nevertheless, the increase in spectral 

resolution and S/N of the 900 MHz spectra does not outweigh the exponential rise 

in cost and housing facilities and medium-field spectrometers provide sufficient 

information to discriminate between groups. Hence, we suggest that medium-field 

400-600 MHz spectrometers are most suitable for clinical metabolomics studies. 

Although the enhanced spectral resolution and S/N of 900 MHz spectra is 

indispensable to unravel disease disturbed biochemical pathways, 

medium-field spectrometers (400-600 MHz) provide sufficient 

information to discriminate between groups, suggesting that they are 

most suitable for clinical metabolomics studies from a point of view of 

general cost.  

 
Development of a standardized protocol regarding sample handling to 

enable implementation of 1H-NMR-based plasma metabolomics in clinical 

practice 

In order to allow the implementation of 1H-NMR-based metabolomics in clinical 

practice, the impact of preanalytical variation in collection, processing, freezing 

and storage procedures on the plasma metabolome was investigated (Chapter 

4). Preanalytical changes can have a major influence on the quality of plasma 

samples, hindering accurate interpretation of results and reducing the reliability 

of study findings (38, 39). From all preanalytical conditions studied, only 

increasing the processing delay between blood collection and centrifugation from 

30 min to 3 h and 8 h at 4°C had a significant impact on the plasma metabolome. 

More specifically, the concentration of glucose and pyruvate decreased whereas 

the concentration of lactate increased. These alterations might be attributed to a 

continued anaerobic cell metabolism (i.e. glycolysis) in the collected blood sample 

owing to the ongoing contact of the metabolites with erythrocytes (40). In 

agreement with our findings, Bernini et al. reported decreased plasma levels of 

glucose and pyruvate as well as increased levels of lactate when whole blood is 

preserved during 4 h at 4°C (41). However, the inter-individual variation for these 
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variables was much larger than the preanalytical variation due to the increased 

processing delay. Accordingly, the impact of this preanalytical variation on 

multivariate cluster analysis will be minimal. Nevertheless, we recommend to keep 

the time gap between blood collection and centrifugation similar for all samples 

within a study. Note that in the studies reported in this thesis, blood samples were 

centrifuged within 8 h after collection (preservation at 4°C). As a result, since 

blood samples of both cancer patients and controls were processed in the same 

way (i.e. within 8 h storage at 4°C), the impact of the processing delay on 

multivariate group classification will be negligible.  

The impact of relevant preanalytical conditions on the plasma 

metabolome was evaluated in order to explore the potential of 

implementing 1H-NMR-based metabolomics in the clinic. From all 

preanalytical conditions studied, only increasing the processing delay 

from 30 min to 3 h and 8 h at 4°C had a significant impact on the plasma 

metabolome. However, the inter-individual variation was much larger 

than the preanalytical variation induced by increasing the processing 

delay. Nevertheless, we recommend to keep the time gap between blood 

collection and centrifugation comparable for all samples within a study. 

 
Although efforts are currently made within the field of metabolomics to move 

towards defining standard operation procedures for preanalytical handling (41), 

complete standardization of preanalytical processing is yet not feasible between 

and within clinical settings. However, the introduction of a preanalytical sample 

code that traces preanalytical variations would already allow some useful sample 

management. To this end, the biobank community recently has developed the 

Standard PREanalytical Code (SPREC) in order to encode preanalytical conditions 

(42, 43). In an effort to validate SPREC for 1H-NMR-based plasma metabolomics, 

we encoded the preanalytical conditions examined in our study according to 

SPREC and evaluated its potential to identify preanalytical conditions which 

significantly affect the plasma metabolome (Chapter 4). Our results demonstrate 

that SPREC enables to identify such plasma metabolome-affecting conditions. 

Consequently, it can be concluded that the implementation of SPREC could 

contribute to the validation of plasma 1H-NMR-based metabolomics in clinical, 

biobank and multicenter research settings. 
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The recently developed SPREC allows to identify the plasma metabolome-

affecting conditions. Therefore, its implementation is of utmost 

importance for a straightforward interpretation and validation of 1H-

NMR-based metabolomics in clinical, biobank and multicenter research 

settings.  

 
Can 1H-NMR-based plasma metabolomics be used as a tool to detect lung 

cancer? 

In Chapter 5, the optimized 1H-NMR analysis protocol (see Chapter 2 and 3) 

was implemented in a prospective study including lung cancer patients and 

controls in order to evaluate whether 1H-NMR-based metabolomics of plasma 

allows to detect lung cancer. To the best of our knowledge, only the study of 

Rocha et al. utilized 1H-NMR-based metabolomics to examine whether the 

metabolic phenotype of plasma permits to detect lung cancer, showing that lung 

cancer patients and controls can be differentiated with a sensitivity and specificity 

of nearly 90% (44, 45). Important drawbacks of their study were the relatively 

small sample size (i.e. 85 lung cancer patients and 78 controls) and the fact that 

the findings were not validated in an independent cohort. In contrast, our study 

shows in a large cohort consisting of 233 lung cancer patients and 226 controls 

that the multivariate statistical model (classifier) constructed by means of the 

plasma metabolic phenotype allows to classify 78% of the lung cancer patients 

and 92% of the controls correctly. Moreover, the predictive accuracy of the 

metabolic phenotype was confirmed in an independent validation cohort, 

demonstrating that 98 lung cancer patients can be discriminated from 89 controls 

with a sensitivity of 71% and a specificity of 81%.  

In a next step, the underlying metabolic changes were identified in an attempt to 

improve the understanding of the disturbed metabolism of lung cancer. The 

variables responsible for group discrimination indicate that plasma of lung cancer 

patients is characterized by increased levels of glucose, glycerol, N-acetylated 

glycoproteins, β-hydroxybutyrate, leucine, lysine, tyrosine, threonine, glutamine, 

valine and aspartate and by decreased levels of alanine, lactate, sphingomyelin 

and phosphatidylcholine, citrate and other phospholipids. The decreased levels of 

citrate, of sphingomyelin and phosphatidylcholine and of other phospholipids point 
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to an increased lipogenesis and subsequent synthesis of membranes in lung 

cancer cells, in line with the metabolic transformation of cancer cells in order to 

support the creation of new daughter cells (46, 47). Surprisingly, the other 

metabolic alterations do not seem to reflect the Warburg effect in cancer cells (see 

Chapter 1) (48). Instead, the plasma metabolite profile seems to express the 

counteraction of the body to the Warburg effect. This seems to be a plausible 

theorem, since investigations of plasma attempt to elucidate the complex 

interaction between cancer cells and host. However, our findings and 

accompanying theorem should be independently confirmed by more dedicated 

biochemical studies. In contrast to our results, Rocha and co-workers reported 

decreased glucose levels and increased lactate levels in plasma of lung cancer 

patients, findings which are in line with the Warburg effect (44). A highly possible 

explanation for these apparently discrepant results might be that most patients in 

their study had early (stage I and stage II) lung cancer (81%) and no metastatic 

(stage IV) lung cancer, while our study population included lung cancer patients 

with disease stages ranging from stage I to stage IV. This most probably 

demonstrates that the counteraction of the body to the Warburg effect is more 

prominent at more advanced stages of lung cancer.  

1H-NMR-based metabolomics of plasma allows to classify 78% of the 233 

lung cancer patients and 92% of the 226 controls correctly. Moreover, 

the predictive accuracy of the metabolic phenotype-based classifier was 

validated in an independent cohort, showing that 98 lung cancer patients 

and 89 controls can be discriminated with a sensitivity of 71% and a 

specificity of 81%. The underlying metabolic changes point to an 

increased lipogenesis and subsequent synthesis of phospholipid 

membranes in cancer cells, in line with the metabolic transformation of 

cancer cells. Remarkably, the other metabolic changes seem to reflect the 

counteraction of the body to the Warburg effect. 

 
Does the plasma metabolic phenotype allow to detect lung cancer in an 

early stage? 

Besides investigating whether 1H-NMR-based metabolomics of plasma allows to 

detect lung cancer, it is also indispensable to evaluate whether it permits to detect 
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lung cancer before patients experience clinical symptoms and when curative 

treatment is still possible, thereby increasing life expectancy and quality of life (3, 

49). Although the number of early stage lung cancer patients in our cohort was 

still limited, preliminary data showed that the plasma metabolic phenotype allows 

to classify 74% of the 76 early stage (stage I) lung cancer patients and 78% of 

the 76 controls correctly (Chapter 5). These findings seem to indicate that the 

metabolic changes present in the initial phase of cancer development can already 

be detected by 1H-NMR-based metabolomics. Although these results look 

promising, the number of early stage lung cancer patients needs to be expanded 

to further investigate the potential of 1H-NMR-based metabolomics to detect lung 

cancer in an early stage. 

1H-NMR-based metabolomics of plasma allows to classify 74% of the 76 

early stage (stage I) lung cancer patients and 78% of the 76 controls 

correctly. These preliminary results look very promising. They indicate 

that the metabolic alterations present in the initial phase of cancer 

development can be detected. However, the number of early stage lung 

cancer patients need to be expanded to confirm our findings in a larger 

cohort. 

 
Does 1H-NMR-based metabolomics of plasma permit to discriminate 

between breast and lung cancer? 

While the prospective study, described in Chapter 5, has established the potential 

of 1H-NMR-based metabolomics of plasma to differentiate between lung cancer 

patients and controls, the question arose whether the plasma metabolic 

phenotype reflects a common cancer marker or whether different cancer types 

are characterized by their own, specific metabolite profile. For that reason, the 

plasma metabolic phenotype of lung cancer was compared with that of breast 

cancer, the most common cancers in men and in women worldwide, respectively 

(1) (Chapter 6). Although several studies, including ours, already have explored 

the disturbed metabolism of lung or breast cancer by means of 1H-NMR-based 

metabolomics of body fluids (44, 50-54), to the best of our knowledge, we are the 

first to apply this methodology to examine whether lung and breast cancer are 

characterized by a specific metabolite profile and so can be differentiated from 
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each other. To this end, a homogenous study population of cancer patients with 

the histological subtype adenocarcinoma was chosen and, as all breast cancer 

patients were females, only female patients were included in the training cohort 

in order to exclude gender as a confounding factor in the discrimination between 

lung and breast cancer. As a result, it was shown that the plasma metabolic 

phenotype allows to classify 93% of the 54 female lung cancer patients and 99% 

of the 80 female breast cancer patients correctly. Furthermore, the validity of the 

metabolic phenotype-based statistical classifier was affirmed in an independent 

cohort, showing that 60 female breast cancer patients and 81 male lung cancer 

patients can be differentiated with a sensitivity of 89% (signifying that 89% of the 

lung cancer patients were correctly classified) and a specificity of 82% (meaning 

that 82% of the breast cancer patients were correctly classified). This indicates 

that the plasma metabolite profile reflects more than a common cancer marker, 

i.e. that breast and lung cancer are characterized by their own, specific metabolite 

profile.  

Subsequently, the metabolic changes responsible for group discrimination were 

identified in an attempt to explain the differences in the disturbed biochemical 

pathways between both cancer types. The corresponding metabolites of which the 

concentration is increased for lung cancer encompass glucose, tyrosine, aspartate, 

threonine, leucine, valine, histidine, methionine, N-acetylated glycoproteins, β-

hydroxybutyrate and phospholipids with long, saturated fatty acid chains. 

Likewise, the metabolites of which the concentration is decreased for lung cancer 

comprise alanine, glutamine, α-ketoglutarate, creatinine, citrate, sphingomyelin 

and phosphatidylcholine, lactate and phospholipids with short, unsaturated fatty 

acid chains. The decreased concentration of glutamine, α-ketoglutarate, citrate 

and of sphingomyelin and phosphatidylcholine indicate that the lipogenesis and 

the following membrane synthesis is more pronounced in lung cancer cells as 

compared to breast cancer cells, in line with the fact that lung tumors are 

metabolically more active than breast tumors. Since long, saturated fatty acid 

chains have very strong Van der Waals interactions, the increased plasma levels 

of phospholipids with long, saturated fatty chains and the decreased levels of 

phospholipids with short, unsaturated fatty acid chains indicate that the cell 

membrane of lung tumors is more rigid and less sensitive to lipid peroxidation 

(46). In Chapter 5, describing the study of lung cancer patients and controls, it 
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was stated that the plasma metabolite profile reflects the counteraction of the 

body to the Warburg effect rather than the Warburg effect, as present in cancer 

cells, itself. Similarly, all metabolic alterations in this study seem to point to a 

more pronounced counteraction of the body to the Warburg effect for lung as 

compared to breast cancer. Nevertheless, our findings should be independently 

affirmed by more dedicated biochemical studies. 

1H-NMR-based metabolomics of plasma allows to classify 93% of the 54 

female lung cancer patients and 99% of the 80 female breast cancer 

patients correctly. Additionally, the validity of the metabolic phenotype-

derived classifier was confirmed in an independent cohort, showing that 

60 female breast cancer patients and 81 male lung cancer patients could 

be differentiated with a sensitivity of 89% and a specificity of 82%. The 

underlying metabolic changes point to an increased lipogenesis and 

following membrane synthesis in lung cancer cells, in line with the higher 

metabolic activity of lung tumors as compared to breast tumors. The 

other metabolic alterations seem to reflect a more pronounced 

counteraction of the body to the Warburg effect in lung as compared to 

breast cancer. 

 
Does the plasma metabolome represent a specific diagnostic tool or 

rather a common cancer biomarker? 

Although the findings of Chapter 6 already demonstrate the potential of 1H-NMR-

based plasma metabolomics to discriminate between lung and breast cancer, 

additional research was accomplished to further examine whether the three most 

frequently occurring cancer types worldwide (1), i.e. lung, breast and colorectal 

cancer, can be differentiated (Chapter 7). Preliminary results are showing that 

the plasma metabolic phenotype allows to classify 78% of the 37 colorectal cancer 

patients, 95% of the 37 breast cancer patients and 84% of the 37 lung cancer 

patients correctly. Although the number of subjects included is still somewhat 

limited, the study provides preliminary indications that 1H-NMR-based 

metabolomics of plasma has potential to become a tool to diagnose specific cancer 

types rather than to detect only a common cancer marker. Future studies should 

focus on increasing the number of colorectal cancer patients in order to gain more 
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statistically reliable insights regarding whether 1H-NMR-based metabolomics of 

plasma enables to differentiate between lung, breast and colorectal cancer and to 

unravel the differentiating metabolic perturbations between lung, breast and 

colorectal cancer. Moreover, an independent validation study should be performed 

in order to ensure the validity of our preliminary study findings.  

1H-NMR-based metabolomics of plasma allows to classify 78% of the 37 

colorectal cancer patients, 95% of the 37 breast cancer patients and 84% 

of the 37 lung cancer patients correctly. These preliminary results 

indicate that 1H-NMR-based metabolomics of plasma has potential to 

become a tool to diagnose specific cancer types rather than a common 

cancer marker. Future studies should focus on increasing the number of 

colorectal cancer patients in order to strengthen the reliability of these 

insights, and to unravel the differentiating metabolic perturbations 

between lung, breast and colorectal cancer as well as to validate our 

study findings in an independent patient cohort.  

 

In this doctoral thesis, it is demonstrated that the proposed methodology of 1H-

NMR-based metabolomics enables to detect lung cancer and to differentiate 

between lung and breast cancer. Moreover, preliminary evidence is provided 

regarding the ability of the methodology to discriminate between lung, breast and 

colorectal cancer.
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Implications for clinical practice 

The main challenge of low-dose computed tomography (LDCT), which is currently 

the most studied tool for lung cancer screening, is the high rate of false positive 

results. This leads to excessive and possibly harmful follow-up investigations, 

which put an enormous financial burden on our health care system (10, 55). 

Hence, complementary tools, which reinforce current risk models and thereby 

improve lung cancer diagnosis, are urgently needed. 1H-NMR-based metabolomics 

represents an appealing methodology to complement risk models for LDCT 

screening by addition of complementary data and thereby improve lung cancer 

diagnosis. It is a highly reproducible tool which enables a fast and non-invasive 

identification and quantification of complex mixtures of metabolites, as in blood 

plasma, with minimal sample preparation and relatively low costs on a per sample 

basis. We have chosen to examine the metabolic composition of blood plasma 

since a blood-based screening test is relatively non-invasive and inexpensive. 

Furthermore, the collection of blood samples takes little time from the patient and 

is already well-accepted in routine clinical practice, making it ideally suitable for 

attaining high participation rates in the general population (29).  

Our research group has joined forces with the Interuniversity Institute for 

Biostatistics and statistical Bioinformatics in order to investigate whether the 

addition of parameters which reflect the plasma metabolic phenotype to current 

risk models, which only take epidemiological and clinical data into account, has 

potential to improve the identification of high-risk individuals eligible for LDCT 

screening. Preliminary results from this collaboration have revealed that the 

addition of NMR metabolic phenotype data (i.e. 102 normalized NMR integration 

values) to a risk model, which only contains the clinical parameters age, body 

mass index, presence of chronic obstructive pulmonary disease (COPD), number 

of smoking pack years, smoking habits and intake of anti-arrhytmetic and anti-

coagulants medication, improves its misclassification error from 24% to 19%. In 

this analysis only 102 out of the 110 normalized NMR integration values were 

used, since 8 integration values had more than 10% missing values. Furthermore, 

the variable importance for the projection plot of this risk model shows that 26 

out of 30 of the most discriminating variables constitute normalized NMR 

integration values. Besides the number of smoking pack years, the presence of 
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COPD and smoking habits, the concentration of threonine (VAR49 and 50), 

glycerol (VAR45 and 46) and valine (VAR48) contribute the most to the 

discriminative power of the risk model (Figure 8.1). 

 

Figure 8.1. Variable importance for the projection plot demonstrating the contribution of 

clinical, epidemiological and metabolic phenotype data to the discriminative power of the risk 

model. BMI: body mass index; COPD: chronic obstructive pulmonary disease; VIP: variable importance 

for the projection.  

These findings are comparable to those of earlier studies where the addition of 

genetic risk markers/DNA repair capacity and mutagen sensitivity data improved 

the performance of certain risk models which only contain epidemiological and 

clinical data (11, 12). Our findings indicate that the plasma metabolic phenotype 

has potential to improve the identification of high-risk individuals eligible for LDCT 

screening, thereby reducing the false positive rate of LDCT screening and the 

corresponding financial burden. Thus, the plasma metabolic phenotype can be 

used as an adjunct to LDCT screening, thereby improving its cost-effectiveness. 

Note that our findings were achieved in a cohort consisting of patients with a 

known diagnosis of lung cancer and controls and that they need to be confirmed 

in asymptomatic individuals who are eligible for LDCT screening.  
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Besides diagnosis and screening, 1H-NMR-based metabolomics of plasma can be 

applied in other segments of cancer patient care. In particular, it has great 

potential in the emerging area of personalized medicine, i.e. the development of 

an individually tailored approach, by stratifying patients based on their plasma 

metabolic phenotype (29, 56). More specifically, the plasma metabolic phenotype 

enables to identify individuals that will most likely respond to a particular drug 

and to recognize patients that are prone to develop resistance or to suffer from 

drug toxicities (pharmacometabolomics) (17). Selecting the right drug for the 

right patient on the basis of the plasma metabolic phenotype should result in a 

more effective treatment (reduced occurrence and intensity of adverse events), 

reduced pain and a decreased financial burden for the health care system (29, 

57). Furthermore, 1H-NMR-based plasma metabolomics might assist in the 

identification of biochemical pathways that could serve as new drug targets (57, 

58). Moreover, the plasma metabolic phenotype can be measured before and 

periodically during treatment to evaluate whether the tumor is responding to 

treatment. Likewise, the plasma metabolic phenotype can be measured after the 

end of treatment to check whether the cancer has returned (29).  

Although results of current studies are encouraging, some obstacles have to be 

overcome before 1H-NMR-based metabolomics of plasma can gain widespread 

clinical use in the field of oncology, i.e. educating medical doctors and medical 

technologists in the acquisition, analysis and interpretation of 1H-NMR-based 

metabolomics data, and manufacture user-friendly NMR instruments with all the 

features required for optimal use (59). Moreover, our study findings need to be 

independently validated in large-scale prospective screening studies with 

asymptomatic, high-risk individuals who are eligible for LDCT screening before 1H-

NMR-based plasma metabolomics can be applied in routine clinical practice (18, 

60). 
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Avenues for future research 

The findings obtained during this doctoral project reveal that 1H-NMR-based 

metabolomics of plasma allows to i) detect lung cancer and ii) discriminate 

between lung and breast cancer. Nonetheless, large-scale validation studies 

should be conducted to confirm these findings and to further explore the potential 

of 1H-NMR-based plasma metabolomics as a complementary screening tool for 

lung cancer.  

Due to the heterogeneity of lung tumors, the number of lung cancer patients 

should be increased in order to investigate whether the plasma metabolic 

phenotype can further discriminate between histological subtypes and disease 

stages. Future studies also need to address whether the plasma metabolic 

phenotype enables to differentiate between lung cancer patients and individuals 

with benign pulmonary lesions such as tuberculosis and sarcoidosis. Moreover, 

although our findings have already shown that 1H-NMR-based metabolomics of 

plasma permits to discriminate between lung and breast cancer, additional 

research is required in order to further examine whether the plasma metabolic 

phenotype represents a specific diagnostic tool rather than a common cancer 

biomarker. Preliminary evidence has shown that 1H-NMR-based metabolomics of 

plasma enables to discriminate between lung, breast and colorectal cancer. 

However, the number of colorectal cancer patients should be expanded in order 

to gain statistically reliable insights and to enable validation of our study findings 

in an independent patient cohort. The final step in evaluating the potential of 1H-

NMR-based metabolomics of plasma as a complementary screening tool for lung 

cancer will be to examine whether it allows to identify lung cancer patients among 

asymptomatic individuals who are eligible for LDCT screening. To this end, large-

scale prospective screening studies with lung cancer mortality as a primary 

endpoint have to be performed in the target population. 

Future studies might combine different analytical platforms (i.e. 1H-NMR 

spectroscopy and mass spectrometry) in order to expand the number of 

metabolites which can be identified in plasma (61, 62). Last but not least, study 

findings regarding the disturbed metabolism should be confirmed by alternative 

approaches, e.g. enzyme catalytic studies or NMR studies in which 13C-labeled 

glucose is used.  
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Lung cancer is a major public health concern, accounting for approximately 20% 

of all cancer-related deaths worldwide. The main challenge of low-dose computed 

tomography (LDCT) screening, the tool which is currently studied for lung cancer 

screening, is the high rate of false positive results. Hence, there is an increasing 

interest in improving the accuracy of current risk models by incorporating lung 

cancer risk-related biomarkers in order to better select high-risk individuals 

eligible for LDCT screening. Metabolomics holds great potential for cancer 

diagnosis as the metabolome reflects alterations in the observed metabolic 

phenotype. 1H-NMR spectroscopy enables a fast and non-invasive identification of 

complex mixtures of metabolites with minimal sample preparation and relatively 

low costs. Therefore, 1H-NMR-based metabolomics represents an appealing option 

in the search for blood-based diagnostic biomarkers in order to complement 

current risk models for LDCT screening, thereby decreasing the false positive rate 

and the corresponding financial burden.  

First, a 1H-NMR analysis protocol was optimized via metabolite spiking 

experiments on a medium-field 400 and a high-field 900 MHz spectrometer. Next, 

a standardized protocol regarding sample handling, which enables the 

implementation of 1H-NMR-based metabolomics in clinical practice, was 

developed. Subsequently, it was evaluated whether 1H-NMR-based metabolomics 

of plasma can be used as a tool to detect lung cancer. It was shown that the 

plasma metabolic phenotype allows to classify 78% of 233 lung cancer patients 

and 92% of 226 controls correctly. Moreover, the predictive accuracy of the 

plasma metabolic phenotype-based classifier was validated in an independent 

cohort, showing that 98 lung cancer patients and 89 controls can be differentiated 

with a sensitivity of 71% and a specificity of 81%. The underlying metabolic 

alterations were identified in an attempt to improve the understanding of the 

disturbed metabolism of lung cancer. The decreased levels of phospholipids 

indicate an increased lipogenesis and following membrane synthesis in lung cancer 

cells, in agreement with the metabolic transformation of cancer cells in order to 

support the creation of new daughter cells. Surprisingly, the other metabolic 

changes do not seem to reflect the Warburg effect in cancer cells, but rather the 

counteraction of the body to the Warburg effect. Although this appears to be a 

plausible theorem, it should be independently confirmed by more dedicated 

biochemical studies.  
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In a next step, it was examined whether the plasma metabolic phenotype enables 

to differentiate between lung and breast cancer. It was demonstrated that the 

plasma metabolic phenotype enables to classify 93% of 54 female lung cancer 

patients and 99% of 80 female breast cancer patients correctly. Additionally, the 

validity of the plasma metabolic phenotype-derived statistical classifier was 

confirmed in an independent cohort, demonstrating that 60 female breast cancer 

patients and 81 male lung cancer patients can be discriminated with a sensitivity 

of 89% (89% of the lung cancer patients were correctly classified) and a specificity 

of 82% (82% of the breast cancer patients were correctly classified), indicating 

that breast and lung cancer are characterized by their own, specific metabolite 

profile. The metabolic alterations responsible for group discrimination were 

identified in an attempt to explain the differences in the disturbed biochemical 

pathways between both cancer types. The decreased concentration of 

sphingomyelin and phosphatidylcholine indicate that the lipogenesis and 

subsequent membrane synthesis is more pronounced in lung cancer cells as 

compared to breast cancer cells. These findings are in line with the fact that lung 

tumors display a higher uptake of the radioactive fluorodeoxyglucose tracer as 

measured by positron emission tomography, indicating that lung tumors are 

metabolically more active than breast tumors. Since long, saturated fatty acid 

chains have very strong Van der Waals interactions, the increased plasma levels 

of phospholipids with long, saturated fatty acid chains and the decreased plasma 

levels of phospholipids with short, unsaturated fatty acid chains indicate that the 

cell membrane of lung tumors is more rigid (less fluid) and less sensitive to lipid 

peroxidation than that of breast tumors.  

Afterwards, it was examined whether the plasma metabolome permits to 

differentiate between lung, breast and colorectal cancer. Preliminary results have 

shown that the plasma metabolic phenotype-based classifier allows to classify 

78% of 37 colorectal cancer patients, 95% of 37 breast cancer patients and 84% 

of 37 lung cancer patients correctly. Although the number of patients included in 

this study is still limited, this study provides preliminary evidence that 1H-NMR-

based metabolomics of plasma has potential to become a complementary tool to 

diagnose specific cancer types rather than a common cancer marker
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Finally, preliminary results of a collaboration between our research group and the 

group of Biostatistics have shown that the incorporation of plasma metabolic 

phenotype data in risk models, which only take epidemiological and clinical data 

into account, reduces the misclassification error of the risk model from 24% to 

19%. These findings suggest that the plasma metabolic phenotype has potential 

to enhance the identification of high-risk individuals eligible for LDCT screening, 

thereby lowering the false positive rate of LDCT screening and the corresponding 

financial burden. However, before 1H-NMR-based plasma metabolomics can be 

applied in routine clinical practice, the study findings need to be independently 

validated in large-scale studies with asymptomatic, high-risk individuals who are 

eligible for LDCT screening. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Samenvatting 

237 

  

Longkanker is een belangrijke aandoening die verantwoordelijk is voor ongeveer 

20% van alle sterfgevallen ten gevolge van kanker wereldwijd. Het voornaamste 

nadeel van lage dosis computertomografie (LDCT), de methode die op dit moment 

bestudeerd wordt voor longkankerscreening, is het hoge aantal vals positieve 

resultaten. Daarom is er steeds meer interesse om de nauwkeurigheid van huidige 

risicomodellen te verbeteren door biomerkers toe te voegen die verband houden 

met het risico op longkanker. Op deze manier kunnen individuen die een verhoogd 

risico op longkanker hebben en aldus in aanmerking komen voor LDCT screening 

beter geselecteerd worden. Metabolomics heeft veel potentieel om kanker te 

diagnosticeren omdat het metaboloom een weerspiegeling is van de wijzigingen 

die gebeuren in het geobserveerde metabole fenotype. Met behulp van 1H-NMR 

spectroscopie kunnen complexe mengsels van metabolieten op een snelle en niet-

invasieve wijze geïdentificeerd worden zonder een uitgebreide staalvoorbereiding 

en hoge kosten. Daarom is 1H-NMR metabolomics een aantrekkelijke keuze om 

op zoek te gaan naar diagnostische biomerkers in het bloed die nodig zijn om 

huidige risicomodellen voor LDCT screening te versterken. Op deze manier zouden 

het aantal vals positieve resultaten en de overeenkomstige kosten voor de 

maatschappij gereduceerd kunnen worden. 

Eerst werd een protocol geoptimaliseerd om bloedplasma te analyseren met 1H-

NMR spectroscopie. Hiervoor werden spike experimenten uitgevoerd met gekende 

metabolieten op een spectrometer met een gemiddelde veldsterkte (400MHz) 

enerzijds en een spectrometer met een hoge veldsterkte anderzijds (900 MHz). 

Daarnaast werd een gestandaardiseerd protocol met betrekking tot 

staalverwerking ontwikkeld om de implementatie van 1H-NMR metabolomics in de 

klinische praktijk toe te laten. Vervolgens werd nagegaan of 1H-NMR plasma 

metabolomics gebruikt kan worden om longkanker op te sporen. Er werd 

aangetoond dat het metabole plasma fenotype toelaat om 78% van 233 

longkankerpatiënten en 92% van 226 controles correct te classificeren. Bovendien 

werd de predictieve nauwkeurigheid van het metabole plasma fenotype 

gevalideerd in een onafhankelijk cohort. Er werd aangetoond dat 98 

longkankerpatiënten en 89 controles onderscheiden konden worden met een 

sensitiviteit van 71% en een specificiteit van 81%. De onderliggende metabole 

wijzigingen werden geïdentificeerd om het verstoorde longkankermetabolisme 

beter te kunnen begrijpen. De verlaagde fosfolipidenconcentratie wijst op een 
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verhoogde lipogenese en daaropvolgende membraansynthese in longtumoren. 

Deze bevindingen kunnen gelinkt worden aan de metabole transformatie die 

plaatsvindt in tumorcellen om de aanmaak van nieuwe dochtercellen te 

ondersteunen. Tegen de verwachting in lijken de andere metabole wijzigingen niet 

overeen te komen met het Warburg effect dat plaatsvindt in tumorcellen. In de 

plaats daarvan lijken ze de tegenreactie van het lichaam op het Warburg effect te 

weerspiegelen. Hoewel deze verklaring aannemelijk lijkt, moet ze onafhankelijk 

bevestigd worden door meer gerichte biochemische studies.  

In een volgende stap werd onderzocht of het metabole plasma fenotype toelaat 

om een onderscheid te maken tussen long- en borstkanker. Hierbij werd 

aangetoond dat het metabole plasma fenotype toelaat om 93% van 54 vrouwelijke 

longkankerpatiënten en 99% van 80 vrouwelijke borstkankerpatiënten correct te 

classificeren. Daarnaast werd de validiteit van het metabole plasma fenotype 

bevestigd in een onafhankelijk cohort. Er werd aangetoond dat er een onderscheid 

gemaakt kan worden tussen 60 vrouwelijke borstkankerpatiënten en 81 

mannelijke longkankerpatiënten met een sensitiviteit van 89% (89% van de 

longkankerpatiënten worden correct geclassificeerd) en een specificiteit van 82% 

(82% van de borstkankerpatiënten worden correct geclassificeerd). Deze 

resultaten tonen aan dat borst- en longkanker gekenmerkt worden door hun 

eigen, specifiek metaboliet profiel. Vervolgens werden de metabole wijzigingen 

die verantwoordelijk zijn voor het onderscheid tussen beide groepen 

geïdentificeerd om de verschillen in de verstoorde biochemische paden tussen 

beide kankertypes te verklaren. De verlaagde concentraties van sfingomyeline en 

fosfatidylcholine tonen aan dat de lipogenese en daaropvolgende 

membraansynthese meer uitgesproken is bij longtumoren dan bij borsttumoren. 

Deze bevindingen komen overeen met het feit dat longtumoren een hogere 

opname vertonen van de radioactieve tracer fluorodeoxyglucose op een positron 

emissie tomografie-scan en bevestigen aldus dat longtumoren metabool meer 

actief zijn dan borsttumoren. Aangezien lange, verzadigde vetzuurketens zeer 

sterke Van der Waals interacties hebben, tonen de verhoogde plasmaconcentratie 

van fosfolipiden met lange, verzadigde vetzuurketens en de verlaagde 

plasmaconcentratie van fosfolipiden met korte, onverzadigde vetzuurketens aan 
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dat het celmembraan van longtumoren steviger is (lagere fluiditeit) en zodus 

minder gevoelig is aan lipidenperoxidatie dan het celmembraan van borsttumoren.  

Bovendien werd bestudeerd of het plasma metaboloom toelaat om long-, borst-, 

en dikkedarmkanker van elkaar te onderscheiden. Preliminaire resultaten hebben 

aangetoond dat het metabole plasma fenotype toelaat om 78% van 37 

dikkedarmkankerpatiënten, 95% van 37 borstkankerpatiënten en 84% van 37 

longkankerpatiënten correct te classificeren. Hoewel het aantal patiënten in deze 

studie nog beperkt is, tonen deze preliminaire resultaten aan dat 1H-NMR plasma 

metabolomics potentieel heeft om een complementaire tool te worden die het 

mogelijk maakt om specifieke kankertypes te diagnosticeren.  

Ten slotte tonen preliminaire resultaten van een samenwerking met de 

onderzoeksgroep Biostatistiek aan dat het toevoegen van plasma metaboliet data 

aan risicomodellen, die voordien enkel rekening hielden met epidemiologische en 

klinische gegevens, de misclassificatiefout van het risicomodel verlaagt van 24% 

naar 19%. Deze bevindingen tonen aan dat het metabole fenotype van 

bloedplasma potentieel heeft om de identificatie van individuen met een verhoogd 

risico op longkanker, die aldus in aanmerking komen voor LDCT screening, te 

verbeteren. Op deze manier zou het aantal vals positieve resultaten van LDCT 

screening en de overeenkomstige kosten voor de maatschappij verminderd 

kunnen worden. Alvorens 1H-NMR plasma metabolomics toegepast kan worden in 

de routine klinische praktijk moeten bovenstaande studieresultaten echter nog 

onafhankelijk gevalideerd worden in grootschalige studies met asymptomatische 

individuen die een verhoogd risico hebben op longkanker en bijgevolg in 

aanmerking komen voor LDCT screening. 
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“Don’t cry because it’s over, smile because it happened.” 

 

Dr. Seuss 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 


