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Abstract 

Data mining is of great importance in the overall process of knowledge 
discovery. In this dissertation we focused our attention in the part of discovery-
oriented methods and especially classification algorithms.  

Class-Association Rules (CAR) algorithms have a special place within the 
family of classification algorithms. This type of classifiers offers a number of 
advantages: efficiency of the training regardless of the training set; easy 
handling with high dimensionality; very fast classification; high accuracy; 
classification model easily comprehensible for humans. The main classification 
workflow of CAR algorithms usually involves three phases: generating the rules, 
pruning, and recognition.  

The mining of association rules is a typical data mining task that works in an 
unsupervised manner. A major advantage of association rules is that they are 
theoretically capable to reveal all interesting relationships in a database. But for 
practical applications the number of mined rules is usually too large to be 
exploited entirely. Hence, a pruning phase is applied in order to build accurate 
and compact classifiers. The pruning can be applied during preprocessing, 
simultaneously to the association rules mining, or during post-processing. 
Different rule quality measures and rule ordering schemes can be applied in the 
process of rule selection. There are also different options which can be 
considered for the recognition phase – e.g. to use a simple rule or to use a set of 
rules with different types of ordering schemas. 

On the other hand, the process of creating classification models inevitably 
touches upon the use of appropriate access methods which facilitate access to 
different kinds of structures used in such algorithms. 

Our effort had been focused on the memory organization called Multi-
dimensional numbered information spaces which allows to operate with context-
free multidimensional data structures. The program realization of such 
structures is named ArM 32. Multi-Domain Information Model (MDIM) and 
respectively Arm 32 are based on the process of replacing names by numbers 
which allows to use mathematical functions and addressing vectors for accessing 
the information.  

Our approach is to use such structures and operations in the implementation 
of one class association rule classifier in order to provide evidence on the vitality 
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of the idea of using context-free multidimensional data structures and direct 
access as a powerful tool for knowledge discovery. We have proposed two 
classification algorithms – Pyramidal Growing Networks (PGN) and Multi-layer 
Pyramidal Growing Networks (MPGN). 

PGN creates association rules, optimized for maximal accuracy of produced 
rules. One of the main characteristics of PGN is that it is a parameter-free 
classifier. The association rule mining is executed from the longest rules to the 
shorter ones until no intersections between patterns in the classes are possible. 
In the pruning phase the contradictions and inconsistencies of more general 
rules are cleared, after that the pattern set is compacted excluding all more 
concrete rules within the classes. 

PGN is introduced as a useful tool for questioning the support-first principle 
used by many associative classifiers when mining for association rules. PGN 
reverses the common approach and focuses primarily on the confidence of the 
association rules and only in a later stage on the support of the rules. The main 
purpose is twofold: to provide a proof of concept for this new approach and to 
gather evidence on its potential. 

MPGN is based on multilayer structure. It involves possibility to escape 
combinatorial explosion using smart disposing of the information in the 
multilayer structures called "pyramids". These structures can be easily 
implemented using ArM-structures. 

These algorithms are implemented in the data mining environment PaGaNe, 
developed by the team from the Institute of Mathematics and Informatics – 
Bulgarian Academy of Sciences; Iliya Mitov and Krassimira Ivanova are the 
principal developers. PaGaNe incorporates different types of statistical analysis 
methods, discretization algorithms, association rule miner, as well as 
classification algorithms, which all are based on the use of multi-dimensional 
numbered information spaces. 

The Lenses dataset is used as a test example to illustrate the specifics of the 
proposed algorithms, the process of creating classification models as well as the 
process of recognition. We demonstrate that PGN produces the pattern set that 
is both minimal and complete for covering the learning set, which is an indicator 
for expectation that PGN will produce tight model and good accuracy results. In 
the case of MPGN we have demonstrated the process of creating main 
construction elements. We also have illustrated the functionality which allows to 
visualize how the pyramids are being created and how the queries are being 
recognized. 

We carried out experiments with 25 datasets from the UCI machine learning 
repository [Frank and Asuncion, 2010]. The experiments had been conducted 
using the data mining environment PaGaNe, the knowledge analysis system 
Weka, and LUCS-KDD Repository. A comparison between PGN, MPGN and some 
other CAR algorithms, as well as decision tree and decision rule classifiers which 
have similar behavior of creating the task model, had been done. 
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One series of experiments aimed to study what accuracy had been obtained 
while preprocessing real data with different discretizators realized in PaGaNe. 
We found that in general PGN-classifier trained on data preprocessed by Chi-
merge with 95% significance level achieves lower classification error than those 
trained on data preprocessed by the other discretization methods. The main 
reason for this is that using Chi-square statistical measure as criterion for class 
dependency in adjacent intervals of a feature results in good separation between 
class labels. 

A second set of experiments studied the process of growing the learning sets 
and how this reflects on the classification model and the accuracy of PGN and 
MPGN; more specifically, we studied the critical point of the amount of the 
learning set in which classification model is relatively compact and the received 
accuracy stabilizes. Of course this critical point highly depends on the choice of 
dataset. 

A third set of experiments were focused on analyzing different exit points of 
MPGN. The received results showed that in a lot of cases the build constructs 
lead to excluding only one class as best competitor. Other cases usually fall into 
competition between classes, where different strategies for ordering the 
competitors can be applied. A very few cases fall into the way where MPGN-
algorithm did not work and alternative choice is given. 

A fourth set of experiments aimed to analyze the dependencies of classifiers' 
behaviors when the noise rush in the dataset attributes; for this set we used the 
Monks1 dataset. The experiments demonstrated that noising in the dataset 
worsens considerably the accuracy of PGN which had been designed to perform 
well in clear datasets. However, experiments with other existing classifiers 
showed that they also were not been able to resist noising attacks. 

We made the comparison of overall accuracy between PGN, MPGN (with two 
recognition strategies – S1 and S2), CMAR, OneR, JRip, J48 and REPTree. The 
Friedman test showed statistical difference between tested classifiers. The 
post-hoc Nemenyi test showed that our PGN has best overall performance 
between examined classifiers and MPGN is competitive with CMAR, J48, JRip and 
REPTree.  

The experimental results are very positive and show that PGN is competitive 
with classification methods that build similar classification behavior. At the same 
time, it has an essential advantage over the other classifiers being parameter 
free. Furthermore, the empirical results showed that PGN is slightly more 
sensitive to noise than techniques such as C4.5 and RIPPER. However, its overall 
accuracy was still very good compared to these classifiers. In general, the 
results provide evidence that the confidence-first approach yields interesting 
opportunities for knowledge discovery.  
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1 Introduction 

1.1 Class Association Rules 

Over the past few centuries, the quantity of accumulated information in 
analogue and now in digital form is constantly growing. Because of the rapid 
development in all areas of human activity in modern society, the production, 
economic and social processes have become more complex. Most organizations 
using information technology resources collect and store large amounts of data. 
The challenge that all those organizations face today is, not how to collect and 
store the data needed, but how to derive meaningful conclusions from this 
massive volume of information. The solution is in the technology of data mining 
and, in particular, in the use of association rules.  

The main objective of association rules mining is to discover regularities in 
the incoming data. Arising from the field of market basket analysis to generate 
interesting rules from large collections of data [Agrawal et al, 1993], the 
association rule mining prove to be a feasible approach to model relationships 
between class labels and features from a training set [Bayardo, 1998]. Since 
then, many associative classifiers were proposed, mainly differing in the 
strategies used to select rules for classification and in the heuristics used for 
pruning rules.  

Associative classification offers a new alternative to classification schemes by 
producing rules based on conjunctions of attribute-value pairs that occur 
frequently in datasets. Frequent patterns and their corresponding associations or 
correlation rules characterize interesting relationships between attribute 
conditions and class labels, and thus have been recently used for more effective 
classification. The main purpose is that we can search for strong associations 
between frequent patterns (conjunctions of attribute-value pairs) and class 
labels. The association rules explore highly confident associations among 
multiple attributes.  

Association rules are mined in a two-step process consisting of frequent item-
set mining, followed by rule generation. The first step searches for patterns of 
attribute-value pairs that occur repeatedly in a dataset, where each attribute-
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value pair is considered an item. The resulting attribute value pairs form 
frequent item-sets. The second step analyzes the frequent item-sets in order to 
develop association rules using certain criteria for measuring the significance of 
the rule.  

1.2 Multi-Dimensional Numbered Information Spaces as 
Memory Structures for Intelligent Data Processing 

An overview of available algorithms and used information structures shows 
the variety of decisions in association rule mining. As we can see, graph 
structures, hash tables, different kind of trees, bit matrices, arrays, etc., are 
used for storing and retrieving the information. Each kind of data structure 
brings some benefits but also has disadvantages. [Liu et al, 2003] discuss such 
questions and provides a comparison between tree structures and arrays 
demonstrating that tree-based structures are capable of reducing traversal cost 
because duplicated transactions can be merged and different transactions can 
share the storage of their prefixes. However, they incur high construction cost 
especially when the dataset is sparse and large. On the other hand, array-based 
structures demand little construction cost but they need much more traversal 
cost because the traversal cost of different transactions cannot be shared.  

Hence, the memory organization we decided to use in this research was 
based on numbering as a main approach. Replacing the names by numbers 
permits to use mathematical functions and address vectors for accessing the 
information instead of search engines.  

In addition, numbering has the advantage of using the same addressing 
mechanism for the external memory as the one used for the main computer 
memory. Our approach allows one to build high dimensional information 
structures. Practically we can use a great number of dimensions as well as the 
number of elements on given dimension.  

This type of memory organization is called "Multi-Dimensional Numbered 
Information Spaces". Its advantages have been demonstrated in multiple real-
life implementations over twenty-five years [Markov, 1984], [Markov, 2004], 
[Markov, 2005]. In the same time, this kind of memory organization has not 
been implemented in the area of the Artificial Intelligence and especially for 
intelligent systems’ memory structuring.  

In summary, the advantages of numbered information spaces are: 
− the possibility to build growing space hierarchies of information 

elements; 
− the great power for building interconnections between information 

elements stored in the information base.  
The main idea is to replace the (symbol or real; point or interval) values of 

the objects' attributes with integer numbers of the elements of corresponding 
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ordered sets. Thus each object is described by a vector of integer values, which 
may be used as co-ordinate address in the multi-dimensional information space.  

1.3 Objectives of the Dissertation 

The goals of this thesis are two-fold: 
− to introduce a parameter-free class association rule algorithm, which 

focuses primarily on the confidence of the association rules and only in a 
later stage on the support of the rules. We expect that this approach will 
ensure implementing high-quality recognition especially within 
unbalanced and multi-class datasets. The nature of such a classifier is 
more oriented to having characteristic rules; 

− to show the advantages of using multidimensional numbered information 
spaces for developing memory structuring in data mining processes on 
the example of implementation of the proposed class association rule 
algorithms.  

To achieve these goals we develop a pyramidal multi-dimensional model for 
memory organization in classification systems. Further, we will implement 
the corresponding experimental classification system, and finally, we conduct 
experiments and evaluation of the results in order to test the hypothesis we 
have made. 

1.4 Outline 

The dissertation is structured in nine chapters and an Appendix as follows: 
1. Introduction. 
2. Data Mining and Knowledge Discovery. 
3. CAR Algorithms. 
4. Multi-Dimensional Numbered Information Spaces. 
5. PGN and MPGN Algorithms. 
6. Program Realization. 
7. Example of Lenses Dataset. 
8. Sensitivity Analysis. 
9. Conclusions and Future Work. 
A brief overview of the content is given below. 
Chapter 2 introduces data mining and its importance in a global process of 

knowledge discovery. A taxonomy of data mining methods is provided with 
special focus on classification methods. A brief overview of main types of 
classifiers and ensemble methods is made followed by a succinct description of 
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the process of discretization which is an important part of the process of 
preparing data in the global frame of knowledge discovery. Furthermore, this 
chapter presents existing open source data mining software. Finally we discuss 
the growing importance of standardization and interoperability within the 
software development of data mining algorithms and environments, and the 
possibilities of built-in additional online analytical processing systems, decision-
support systems, etc. 

Chapter 3 provides an overview of the field of CAR-classifiers. Here we have 
presented all the steps, which are typical in the classification process of CAR 
algorithms: generating the rules, pruning and recognizing. Several techniques 
are suggested for the phase of generating the rules. Pruning, an important step 
in the learning process of CAR algorithms, is applied as a preprocessing step, in 
parallel with the association rule mining or after it. Further, we present several 
rule quality measures and rule ordering schemes, used in CAR algorithms. 
During the recognition phase we also need to make a final decision using simple 
rule or set of rules with different types of ordering schemas. Finally, using a 
proposed frame, typical for CAR algorithms, we analyze twelve representatives 
of CAR algorithms, showing a wide variety of proposed techniques.  

Chapter 4 is focused on the different kinds of existing methods for data 
management in the field of data mining and knowledge discovery. In this 
chapter we present a particular type of memory organization, called "Multi-
Dimensional Numbered Information Spaces", as well as its program realization 
ArM 32. Their main structures and functions are described. 

Chapter 5 contains a description of the proposed classification algorithms – 
PGN and MPGN. 

Chapter 6 considers the implementation of proposed algorithms. It provides 
a short description of an experimental data mining environment – PaGaNe, 
which is the result of collaborative work of researchers from Bulgaria, Belgium, 
Armenia and Ukraine. 

Chapter 7 reveals the specific steps which pass PGN and MPGN algorithms 
on the example of the Lenses dataset. 

Chapter 8 is focused on presenting several experiments made with the use 
of already developed tools. Special attention is paid to the sensitivity analysis of 
the results. Comparison between PGN, MPGN and some decision tree and 
decision rule classifiers, which have similar behavior of creating the task model, 
is made. 

Finally, chapter 9 provides conclusions and an overview of directions for 
future research.  

In the Appendix additional experiments, showing the comparison of PGN and 
MPGN with a wide range of different kinds of classifiers, realized in Weka, are 
included. 

The work contains 35 tables, 46 figures, and 106 references. 
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2 Data Mining and Knowledge 
Discovery 

 
Abstract: 
In this chapter we start with a brief overview of the field of data mining and 

its importance in the global process of knowledge discovery.  
A taxonomy of data mining methods is shown with particular focus on the 

classification methods. Adding to that, we give a short explanation of the main 
types of classifiers. 

The chapter also includes a brief overview of the process of discretization as 
an important preprocessing step for most of the classification algorithms.  

Several existing open source data mining software systems are described. 
Finally we have included a discussion about the increasing necessity of 

standardization and interoperability within the software implementation of data 
mining algorithms and environments, and the possibilities of additional built-in 
online analytical processing systems, decision-support systems, etc. 

 

2.1 Knowledge Discovery 

Data Mining is a part of the overall process of Knowledge Discovery in 
databases (KDD) [Fayyad et al, 1996]. While Knowledge Discovery is defined as 
the process of seeking new knowledge about an application domain [Klosgen 
and Zytkow, 1996], data mining is concerned with the application (by humans) 
of algorithms designed to analyze data or to extract pattern in specific 
categories of data. The knowledge discovery process consists of many steps, 
with data mining being one of them. 

The Knowledge Discovery in Databases (KDD) process had been defined by 
many authors. For instance [Fayyad et al, 1996] define it as "the nontrivial 
process of identifying valid, novel, potentially useful, and ultimately 
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understandable patterns in data". [Friedman, 1997] considers the KDD process 
as an automatic exploratory data analysis of large databases.  

The KDD process has been formed by different stages, which iteratively 
interact with each other. During the years, several models have been proposed 
(for instance in [Fayyad et al, 1996]). Generally, the process of knowledge 
discovery can be divided into following stages [Han and Kamber, 2006]: 

1. Data cleaning (the removal of noise and inconsistent data). 
2. Data integration (combining multiple data sources). 
3. Data selection (retrieval of data relevant to the analysis task from the 

database). 
4. Data transformation (transformation or consolidation of data suited for 

mining; this can be done, for example by performing summary or 
aggregation operations). 

5. Data mining (an essential process where intelligent methods are applied in 
order to extract data patterns). 

6. Pattern evaluation (used to identify the most interesting patterns 
representing knowledge based on some interestingness measures). 

7. Knowledge presentation (use of visualization and knowledge 
representation techniques to present the mined knowledge to the user). 

Data mining, which is discussed further over the next part of the chapter, is 
an essential part in the global process of knowledge discovery. 

2.2 Data Mining 

Data Mining is the process of analyzing a large set of raw data in order to 
extract hidden information which can be predicted. It is a discipline, which is at 
the confluence of artificial intelligence, data bases, statistics, and machine 
learning. The questions related to data mining present several aspects, the main 
being: classification, clustering, association and regularities. Technically, data 
mining is the process of analyzing data from many different dimensions or sides, 
and summarizing the relationships identified [Kouamou, 2011].  

The data mining methods are divided essentially in two main types: 
− verification-oriented (the system verifies the user's hypothesis); 
− discovery-oriented (the system finds new rules and patterns 

autonomously) [Fayyad et al, 1996].  
One taxonomy of data mining methods is given in [Maimon and Rokach, 

2005]. In Figure 1, we give one widened variation focusing on the different 
classification schemes, used in data mining. 

Verification methods deal with the evaluation of a hypothesis proposed by an 
external source. These methods include the most common approaches of 
traditional statistics, like goodness-of-fit test, t-test of means, and analysis of 
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variance. Such methods are not usually associated with data mining because 
most data mining problems are concerned with the establishment of a 
hypotheses rather than testing a known one.  

 
Figure 1. Detailed taxonomy of data mining methods, 

based on [Maimon and Rokach, 2005] 

Discovery methods are methods that automatically identify patterns in the 
data. The discovery method branch consists of prediction approaches versus the 
description ones.  

Description-oriented data mining methods focus on understanding how the 
underlying data operates. The main orientations of these methods are 
clustering, summarization and visualization. 

Clustering is the process of grouping the data into classes or clusters, in a 
way that objects within a cluster have high similarity in comparison to one 
another but are very different to objects in other clusters. Dissimilarities are 
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assessed based on the attribute values describing the objects, using various 
approaches in distance measures. 

Summarization is the process of reducing a text document or a larger corpus 
of multiple documents into a paragraph that conveys the main purpose of the 
text. There are two fundamental methods for this: extraction and abstraction. 
Extractive methods aim to select a subset of existing words, phrases, or 
sentences in the original text to form a summary. Unlike abstractive methods, 
where an internal semantic representation is built and then natural language 
generation techniques are used to create a summary that is more similar to one 
generated by a human. Such summary might contain words which are not 
explicitly present in the original text. 

Visualization in data mining can be split into data visualization, mining result 
visualization, mining process visualization, and visual data mining. The variety, 
quality, and flexibility of visualization tools may strongly influence the usability, 
interpretability, and attractiveness of a data mining system. 

Prediction-oriented methods aim to build a behavioral model that can create 
new and unobserved samples and is able to predict the values of one or more 
variables related to the sample. 

Of course, the difference between description-oriented methods and 
prediction-oriented methods is very fuzzy. 

Most of the discovery-oriented techniques are based on inductive learning 
[Mitchell, 1997], where a model is constructed explicitly or implicitly by 
generalizing from a sufficient number of training examples. The underlying 
assumption, derived from the inductive approach, is that the trained model is 
applicable to future examples, that have not yet been observed.  

There are two main discovery-oriented techniques: classification and 
estimation. These two types of data analysis are used to extract models that 
describe important data classes or to predict future data trends. The main 
difference between classification and estimation is that classification maps the 
input space into predefined classes, while estimation models maps the input 
space into a real-valued domain. 

Estimation models are used to construct a continuous-valued function, or 
ordered value, which are used as for estimation. The most commonly used 
techniques are different types of regression models (involving single predictor 
variable, or two or more predictor variables; linear or non-linear regression, 
etc.), while other models are also used (such as log-linear models that 
approximate discrete multidimensional probability distributions using logarithmic 
transformations). Some of the classifier models can also be tuned to be used for 
estimation (such as Decision Trees, Neural Networks, etc.) [Han and Kamber, 
2006]. 

Classification models predict categorical (discrete, unordered) labels. 
Different kinds of classification models will be discussed later. 
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2.3 The "World" of Patterns 

The word "instance" defined in a more general sense is that there can be a 
denotation of a real physical object, a process, a situation, etc.  

The "attribute" describes a specific feature in an observed object or process, 
etc. Thus an instance is presented as a set of concrete values, which belong to a 
variety attributes. These attributes can be categorical or continuous. In our 
approach they must be discretized first. 

Everything that characterizes instances and can be used in such logic 
operations as extraction, recognition, identification, etc. relates to the attributes. 
However, it should be noted that separation of attributes on "essential" and 
"unessential" is substantially conditional and depends on problems for which 
decision they are used. 

In processes of recognition and production of models, the pattern is used as 
a Boolean function of the attributes, having the value "true" for instances from 
volume of pattern and "false" in other cases. 

The pattern is usually defined in logic as a "concept", i.e. an idea that reflects 
essence of instances. Most of the used patterns are result of generalization of 
attributes that characterizes the instances of the class. The generalization is 
based on extraction of regularities from interconnected instances and/or 
patterns of the given class. The same idea may be extended for the regularities 
between classes. 

From a philosophical point of view [Wagner, 1973] [Wille, 1982], the 
"pattern" ("concept") consists of two parts – extensional and intentional. The 
extensional part covers all instances belonging to this pattern, but the 
intentional part includes all the attributes that are representative for these 
instances. Relationships between instances and their attributes play an 
important role in determining the hierarchical relationship between patterns and 
attributes. The set of instances generalized in the pattern constitute its volume. 

2.4 Pattern Recognition 

The process of extracting patterns from datasets is called pattern recognition. 
Pattern recognition algorithms generally aim to provide a reasonable answer 

for all possible inputs and to do "fuzzy" matching of inputs. This is opposed to 
pattern matching algorithms, which look for exact matches in the input with pre-
existing patterns (typical example of which is regular expression matching). 

Pattern recognition undergoes an important developing for many years. This 
is not a uni-modular research domain such as the classical mathematical 
sciences, it has a long history of establishment. The theoretical development in 
this domain include a number of sub disciplines such as feature selection, object 
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and feature ranking, analogy measuring, sequence labeling, parsing, clustering, 
supervised and unsupervised classification, etc. In the same time pattern 
recognition is indeed an integrated theory studying object descriptions and their 
classification models. This is a collection of mathematical, statistical, heuristic 
and inductive techniques of fundamental role in executing the intellectual tasks, 
typical for a human being – but on computers [Aslanyan and Sahakyan, 2010]. 

Classification is a typical example of pattern recognition; it aims to assign 
each input value to one from a given set of classes. Other examples are 
regression, which assigns a real-valued output to each input; sequence labeling, 
which assigns a class to each member of a sequence of values; and parsing, 
which assigns a parse tree to an input sentence, describing the syntactic 
structure of the sentence. 

While the goals of data mining and pattern recognition appear to be similar, 
pattern recognition, which is split into the supervised learning (classification) 
and unsupervised learning (cluster analysis), can be interpreted in terms of rules 
like data mining. The main difference is in a scope of learning examples that are 
used within the process. Regular pattern recognition supposes satisfactory 
learning set able to determine the shapes of classes learned. There are many 
techniques focused on knowledge discovery based on a few examples, because 
the application area cannot provide enough learning examples [Arakelyan et al, 
2009]. This is the case of High Dimensional Small Sample Size Data Analysis. 
Data Mining like the cluster analysis in pattern recognition can work without a 
given learning set. Instead, the rule template is given like the association rule 
template or a frequent fragment template. The commonsense reasoning is that 
Data Mining deals within large databases or on data flows. 

2.5 Classification Algorithms 

Classification is the task of identifying the sub-population to which new 
observations belong where the identity of the sub-population is unknown, on the 
basis of a training set of data containing observations with a known sub-
population. The new individual items are placed into groups based on 
quantitative information on one or more measurements, traits or characteristics, 
etc.), and based on the training set in which previously decided groupings are 
already established. 

In order to increase the obtained accuracy, ensemble methods, or so called 
meta-classifiers as upper stage, are used. 
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2.5.1 Classifiers 

The variety of classification algorithms mainly can be grouped to: Bayesian 
Methods, Support Vector Machines, Decision Trees, Decision Rules, Class 
Association Rules, Lazy Learners, Neural Networks, and Genetic Algorithms. 

 Bayesian Methods 

Bayesian classifiers are statistical classifiers which can predict class 
membership probabilities, such as the probability that a given instance belongs 
to a particular class. Bayesian classification is based on Bayes' theorem [Bayes, 
1763] that shows the relation between two conditional probabilities which are 
the reverse of each other. Bayesian classifiers have exhibited high accuracy and 
speed when applied to large databases [Han and Kamber, 2006]. 

Naïve Bayesian classifiers assume that the effect of an attribute value on a 
given class is independent of the values of the other attributes. This assumption 
is called class conditional independence. Bayesian belief networks are graphical 
models that can also be used for classification, which allow the representation of 
dependencies among subsets of attributes. 

 Support Vector Machines 

The Support Vector Machines (SVM) [Boser et al, 1992] use a nonlinear 
mapping to transform the original training data into a higher dimension. Within 
this new dimension, it searches for the linear optimal separating hyperplane. 
With an appropriate nonlinear mapping to a sufficiently high dimension, data 
from two classes can always be separated by a hyperplane. The SVM finds this 
hyperplane using support vectors ("essential" training instances) and margins 
(defined by the support vectors). 

Although the training of even the fastest SVMs can be extremely time 
consuming, they are highly accurate, owing to their ability to model complex 
nonlinear decision boundaries. They are much less prone to over-fitting than 
other methods. The support vectors found also provide a compact description of 
the learned model.  

 Decision Trees 

Decision tree induction is the learning of decision trees from class-labeled 
training instances. A decision tree is a flowchart-like tree structure, where each 
internal node (non-leaf node) denotes a test on an attribute, each branch 
represents an outcome of the test, and each leaf node (or terminal node) holds 
a class label. The topmost node in a tree is the root node. 

Given a question Q , for which the associated class label is unknown, the 

attribute values are tested against the decision tree. A path is traced from the 
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root to a leaf node, which holds the class prediction for Q . Decision trees can 

easily be converted to classification rules. 
The construction of decision tree classifiers does not require any domain 

knowledge or parameter setting; they can handle high dimensional data; their 
representation in tree form is intuitive and generally is easy to understand by 
human users. The learning and classification steps of decision tree induction are 
simple and fast, and usually achieve good accuracy values. 

One of the oldest tree classification methods is CHAID (acronym of Chi-
squared Automatic Interaction Detector) [Kass, 1980]. CHAID builds non-binary 
trees making series of split operations, based on chi-square measure.  

Other representative of this group was ID3 (Iterative Dichotomiser), 
developed by Ross Quinlan [Quinlan, 1986], after expanded to C4.5 [Quinlan, 
1993]. Most algorithms for decision tree induction follow proposed ideas in ID3 
and C4.5 for using a greedy approach in which decision trees are constructed in 
a top-down recursive divide-and-conquer manner. The top-down approach starts 
with a training set of instances and their associated class labels. The training set 
is recursively partitioned into smaller subsets as the tree is being built. J48 is a 
Weka implementation of C4.5 [Witten and Frank, 2005]. 

Representative Tree (shortly named REPTree) is an extension of C4.5 [Witten 
and Frank, 2005], which builds a decision tree using information gain reduction 
and prunes it using reduced-error pruning. Optimized for speed, it only sorts 
values for numeric attributes once. It deals with missing values by splitting 
instances into pieces, as C4.5 does. The algorithm has parameters – maximum 
tree depth and number of folds for pruning, which can be used when REPTree 
participates as classifier in ensemble schema. 

 Decision Rules 

In the rule-based classifiers the learned model is represented as a set of IF-
THEN rules. The "IF"-part of a rule is known as the rule antecedent. The "THEN"-
part is the rule consequent. In the rule antecedent, the condition consists of one 
or more attribute tests (such as age = youth, student = yes) that are connected 
with logical function "AND". The rule's consequent contains a class label.  

The rule induction is similar to tree induction but tree induction is breadth-
first, as well as rule induction is depth-first (which means generating one rule at 
a time until all positive examples are covered) [Alpaydin, 2010]. 

One typical representative of a decision rules classifier is OneR [Holte, 1993]. 
OneR takes as input a set of examples, each with several attributes and a class. 
The aim is to infer a rule that predicts the class given the values of the 
attributes. The OneR algorithm chooses the most informative single attribute 
and bases the rule on this attribute alone. Shortly algorithm consists of creating 
the rules with antecedent each possible value of each attribute and consequent 
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corresponded class label, after that for each class label find the rule with 
maximal accuracy. 

Another well-known classifier from this group is JRip. It is a Weka 
implementation of RIPPER (Repeated Incremental Pruning to Produce Error 
Reduction), proposed by William Cohen [Cohen, 1995]. RIPPER attempts to 
increase the accuracy of rules by replacing or revising individual rules. It uses 
reduced error pruning in order to decide when to stop adding more conditions to 
a rule; this reduces the amount of training data. RIPPER uses a heuristic based 
on the minimum description length principle as a stop-criterion. Rule induction is 
followed by a post-processing step that revises the rules in order to approximate 
what would have been obtained by a global pruning strategy. 

 Class Association Rules 

Association rules show strong relations between attribute-value pairs (or 
items) that occur frequently in a given dataset. The general idea is to search for 
strong associations between frequent patterns (conjunctions of attribute-value 
pairs) and class labels. Association rules explore highly confident associations 
among multiple attributes. This approach helps to overcome some constraints 
introduced by decision-tree induction, which considers only one attribute at a 
time. Class Association Rules (CAR) algorithms will be discussed in more details 
in the next chapter. 

 Lazy Learners 

All classifiers which had been already described belong to the so-called eager 
learners. Eager learners give a set of training instances and construct 
classification model before receiving query to classify.  

Lazy classifiers are at the opposite side. They give training instances and only 
store them without any or with a. When a query is submitted, the classifier 
performs generalization in order to classify the query based on its similarity to 
the stored training instances. 

Contrary to the eager learning methods, lazy learners do less work in the 
training phase and more work in the recognition phase.  

The weak point of lazy classifiers is their computational expensiveness of the 
recognition process. On the other hand, they are well-suited to implementation 
on parallel hardware. They naturally support incremental learning.  

There are two main groups of lazy learners: k-nearest-neighbor classifiers 
and case-based reasoning. 

 k-Nearest-Neighbor Classifiers 

Nearest-neighbor classifiers are based on learning by analogy, that is by 
comparing a given query with training instances similar to it. The training 
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instances are described by n attributes and are represented as points in a 
n-dimensional pattern space. Recognition consists of searching the pattern space 
for the k training instances ("k nearest neighbors") that are closest to the query. 
"Closeness" is defined in terms of a distance metric, such as Euclidean distance. 
Typical examples are IB1 and IBk [Aha and Kibler, 1991]. One interesting 
exception here is the KStar classifier which uses an entropy-based distance 
function [Cleary and Trigg, 1995]. 

 Case-Based Reasoning 

Case-based reasoning classifiers use databases of problem solutions to solve 
new problems. Unlike nearest-neighbor classifiers, which store training instances 
as points in Euclidean space, a CBR would store instances as complex symbolic 
descriptions. When given a new case to classify, a case-based reasoner will first 
check if an identical training case exists. If one is found, then the accompanying 
solution to that case is returned. If no identical case is found, then the case-
based reasoner will search for training cases having components that are similar 
to those of the new case. Conceptually, these training cases may be considered 
as neighbors of the new case. If cases are represented as graphs, this involves 
searching for subgraphs that are similar to subgraphs within the new case. The 
case-based reasoner tries to combine the solutions of the neighboring training 
cases in order to propose a solution for the new case. The case-based reasoner 
may employ background knowledge and problem-solving strategies in order to 
propose a feasible combined solution [Han and Kamber, 2006]. 

 Neural Networks 

The field of neural networks was originally conceived by psychologists and 
neurobiologists who sought to develop and test computational analogues of 
neurons. A neural network is a set of connected input/output units in which each 
connection has a weight associated with it. During the learning phase, the 
network learns by adjusting the weights so as to be able to predict the correct 
class label of the input instances.  

Long training times; a great number of parameters that are typically best 
determined empirically; as well as poor interpretability are amongst the 
weaknesses of neural networks.  

Advantages of neural networks, however, include their high tolerance to 
noisy data as well as their ability to classify patterns on which they have not 
been trained. They can be used when you may have little knowledge of the 
relationships between attributes and classes. They are well-suited for 
continuous-valued inputs and outputs, unlike most decision tree algorithms. 
Neural network algorithms are inherently parallel; parallelization techniques can 
be used to speed up the computation process. 
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In our experiments we have used Multi-Layer Perceptron, realized in Weka, 
for the representative of this class of algorithms. 

 Genetic Algorithms 

Genetic algorithms attempt to incorporate in classification tasks the principles 
of natural evolution. An initial population is created consisting of randomly 
generated rules. Each rule can be represented by a string of bits. As a simple 
example, suppose that samples in a given training set are described by two 
Boolean attributes 1A  and 2A  and that there are two class labels coded by "0" 

and "1". The rule "if 1A  and not 2A  then 0" can be encoded as the bit string 

"100," where the two leftmost bits represent attributes 1A  and 2A  and the 

rightmost bit represents the class. For attributes/classes that have 2k >  values 
k  bits are used to encode the attribute's values. 

Based on the notion of survival of the fittest, a new population is formed to 
consist of the fittest rules in the current population, as well as offspring of these 
rules. Typically, the fitness of a rule is assessed by its classification accuracy on 
a set of training samples. Offsprings are created by applying genetic operators 
such as crossover and mutation. In crossover, substrings from pairs of rules are 
swapped to form new pairs of rules. In mutation, randomly selected bits in a 
rule's string are inverted. The process of generating new populations based on 
prior populations of rules continues until a population P  evolves where each 
rule in P  satisfies a the specified fitness threshold. 

The weak point of genetic algorithms is their time consuming learning 
process. However, genetic algorithms are easily parallelizable and have been 
used for classification as well as other optimization problems. In data mining, 
they may be used to evaluate the fitness of other algorithms [Han and Kamber, 
2006]. 

2.5.2 Ensemble Methods 

Ensemble methods combine a series of k  learned models, 1,... kM M , with 

the aim of creating an improved composite model *M . The main strategies here 
are bagging and boosting [Han and Kamber, 2006], as well as stacking [Witten 
and Frank, 2005]. 

 Bagging 

The term bagging denotes "bootstrap aggregation". Given a set D  of d  
instances, bagging works as follows. For the iteration , 1,...,i i k=  a training set 
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iD  is sampled with replacement [StatTrek, 2011] from the original set D . 

Because sampling with replacement is used, some of the original tuples of D  
may not be included in iD , where as others may occur more than once. A 

classifier model iM  is learned for each training set iD . To classify a query Q  

each classifier iM  returns its class prediction which counts as one vote. The 

bagged classifier *M  counts the votes and assigns the class with the most votes 
to Q  [Breiman, 1996]. 

The bagged classifier often has significantly greater accuracy than a single 
classifier derived from the original training data. It is also more robust to the 
effects of noisy data. The increased accuracy occurs because the composite 
model reduces the variance of the individual classifiers.  

 Boosting 

In boosting, weights are assigned to each training instance. A series of k  
classifiers is iteratively learned. After a classifier iM  is learned, the weights are 

updated to allow the subsequent classifier 1iM +  aggravating training instances 

that were misclassified by iM . The final boosted classifier *M  combines the 

votes of each individual classifier, where the weight of each classifier's vote is a 
function of its accuracy.  

 Stacking 

Stacked generalization or stacking, is an alternative method for combining 
multiple models. Unlike bagging and boosting, stacking is not used to combine 
models of the same type. Instead it is applied to models built by various learning 
algorithms (for example a decision tree inducer, a Naïve Bayes learner and an 
instance-based learning method). The usual procedure would be to estimate the 
expected error for each algorithm by cross-validating and then to choose the 
most appropriate one in order to form a model which can be used for prediction 
on future data combining outputs by voting. However voting criteria is not 
reliable enough. The problem is that it is not clear which classifier can be trusted 
(there are several types of classifiers which can be used). Stacking introduces 
the concept of the meta-learner which replaces the voting procedure. Stacking 
attempts to learn which classifiers are reliable using a different learning 
algorithm – the meta-learner – to discover what is the best way to combine the 
output from the base learners [Witten and Frank, 2005]. 
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2.6 Discretization 

The discretization process is known to be one of the most important data 
preprocessing tasks in data mining. Many machine learning techniques can only 
be applied to datasets which have been composed from the categorical 
attributes. However, in the real world, many attributes are naturally continuous, 
for example: height, weight, length, temperature, speed, etc. It is essential for a 
practical data mining system to be able to handle attributes of this sort. 
Although it would be possible to treat a continuous attribute as a categorical one 
using primary values, this is very unlikely to prove satisfactory. If the 
continuous attribute consists of a large number of different values in the training 
set, it is very likely that any particular value will only occur a small number of 
times, perhaps even only once, and rules that include tests for specific values 
will probably be of very little importance for a prediction [Bramer, 2007]. A 
solution to this problem would be to partition numeric variables into a number of 
sub-ranges and treat each sub-range as a category. This process of partitioning 
continuous variables into categories is usually termed as discretization.  

There are several advantages of data discretization, which have been listed 
below: 

− the experts usually describe the parameters using linguistic terms 
instead of exact values. In some ways, discretization can provide a 
better acknowledgement of attributes; 

− it provides regularization because it is less prone to variation in the 
estimation of small fragmented data;  

− the amount of data can be greatly reduced because of redundant data 
which can be identified and removed;  

− it enables better performance for rule extraction. 
Primary methods can be defined as: 
− Supervised or Unsupervised [Dougherty et al, 1995]: If we look at 

unsupervised methods, continuous ranges are divided into sub-ranges 
by a user specified parameter – for instance, equal width (specifying 
range of values), equal frequency (number of instances in each interval), 
clustering algorithms – like k-means – (specifying a number of clusters). 
These methods may not be giving good results in cases where the 
distribution of the continuous values is not consistent and the outliers 
significantly affect the ranges. Of course, if there is not a class 
information available, unsupervised discretization is the only possible 
choice. In supervised discretization methods, class information is used to 
find the proper intervals which have been caused by cut-points. Different 
methods have been developed to use this class information for finding 
meaningful intervals in continuous attributes. Supervised discretization 
can be further characterized as error-based, entropy-based or statistics-
based according to whether the intervals have been selected using 
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metrics based on error on the training data, entropy of the intervals, or 
a statistical measure; 

− Hierarchical or Non-hierarchical: Hierarchical discretization selects cut 
points in an incremental process, forming an implicit hierarchy over the 
value range. The procedure can be Split or (and) Merge [Kerber, 1992]. 
There are methods which are non-hierarchical: for example: the 
methods used for scanning the ordered values only once and 
sequentially forming intervals; 

− Top-down or Bottom-up, or in other words Split or Merge [Hussain et al, 
1999]: Top-down methods start with one interval and split intervals in 
the process of discretization. Bottom-up methods start with the 
complete list of all the continuous values from the feature as cut-points 
and remove some of them by "merging" intervals as a discretization 
progresses. Different thresholds for stopping criteria are used; 

− Static or Dynamic: In the static approach, discretization is done prior to 
the classification task (during the pre-processing phase). A dynamic 
method would discretize the continuous values while a classifier is being 
built, like illustrated in C4.5 [Quinlan, 1993]. Dynamic methods are 
mutually connected with a corresponding classification method, where 
the algorithm can work with real attributes; 

− Parametric or Non-parametric: Parametric discretization requires input 
from the user, such as the maximum number of discretized intervals. 
Non-parametric discretization only uses information from data and does 
not need input from the user; 

− Global or Local [Dougherty et al, 1995]: A local method would discretize 
in a localized region of the instance space (i.e. a subset of instances) 
while a global discretization method will use the entire instance space to 
discretize. Therefore a local method is usually associated with a dynamic 
discretization method where only a region of instance space is used for 
discretization; 

− Univariate or Multivariate [Bay, 2000]: Univariate discretization 
quantifies one continuous feature at a time while multivariate 
discretization considers multiple features simultaneously.  

In the experiments we conducted, the focus is on representatives of 
supervised methods. We have chosen two methods, which are different from the 
point of view of both the hierarchical direction and the forming of interval 
criteria. The first is Fayyad-Irani top-down method which is based on the 
optimization of the local measurement of the entropy and as stopping criterion – 
the Minimum Description Length (MDL) principle is used [Fayyad and Irani, 
1993]. The second is Chi-merge – a bottom-up method based on the chi-square 
statistics measure.  



2. Data Mining and Knowledge Discovery 41

2.7 Existing Data Mining Software Systems 

There are several well-known data mining open-source systems which are 
aiming to support the study and research of the field of data mining, as well as 
the implication of some modules in real tasks. 

 Weka 

Weka (http://www.cs.waikato.ac.nz/~ml/weka/) 
(Waikato Environment for Knowledge Analysis) is 
developed by the University of Waikato, New Zealand 
since 1993. 

Weka is well-known suite for machine learning software that supports several 
typical data mining tasks, particularly data preprocessing, clustering, 
classification, regression, visualization, and feature selection.  

 
Figure 2. Weka knowledge flow interface 

Weka is written in Java and it provides access to SQL databases utilizing Java 
Database Connectivity and it is also able to process the results returned by a 
database query. The main user interface is the Explorer, but the same 
functionality can be accessed from through the command line interface or the 
component-based Knowledge Flow interface (Figure 2). 

In 2005, Weka received the SIGKDD Data Mining and Knowledge Discovery 
Service Award. In 2006, Pentaho Corporation acquired an exclusive license to 
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use Weka for business intelligence. It forms the data mining and predictive 
analytics component of the Pentaho business intelligence suite. 

In the experimental part of this dissertation, we make comparison of other 
classifiers using the Weka environment. Figure 2 is a screenshot of the 
knowledge flow task, used in our experiments with various datasets. 

 LUCS-KDD Repository 

The LUCS-KDD Repository (http://www.csc.liv.ac.uk/~frans/KDD/) (Liverpool 
University of Computer Science – Knowledge Discovery in Data) has been 
developed and maintained by the Department of Computer Science, University 
of Liverpool, UK since 1997. This repository provides a common environment for 
research tasks and comparison between different algorithms, some of which are 
a product of the group that supports repository. A number of algorithms were 
developed since the work on LUCS-KDD commenced; they are released as open 
access and serve different applications. The team adopted several algorithms: 
association rule mining (Apriori-T and TFP) and class association rules 
algorithms (TFPC) featuring preprocessing of the data and set-enumeration tree 
structures (the P-tree and the T-tree) to facilitate search.  

The experiments with CMAR classifier are made using its program realization 
in LUCS-KDD Repository. 

 Orange 

Orange (http://www.ailab.si/orange) is developed and 
maintained at the Faculty of Computer and Information 
Science, University of Ljubljana, Slovenia. 

Orange is an open component-based data mining and 
machine learning software suite that features friendly yet 
powerful, fast and versatile visual programming front-end for data analysis and 
visualization, and Python bindings and libraries for scripting.  

It is written in C++ and Python, and its graphical user interface is based on 
the cross-platform Qt framework. 

It includes a comprehensive set of components for data preprocessing, 
feature scoring and filtering, modeling, model evaluation and exploration 
techniques.  

 RapidMiner 

RapidMiner (http://rapidminer.com/), formerly called 
YALE (Yet Another Learning Environment), is created and 
maintained by Rapid-I GMBH, Germany. It is a machine 
learning and data mining environment written in Java 
which is utilized for both research and real-world data mining tasks. It enables 
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experiments to be made up of a huge number of arbitrarily nestable operators, 
which are detailed in XML files and are made with RapidMiner’s graphical user 
interface. RapidMiner provides more than 500 operators for all main machine 
learning procedures; it also combines learning schemes and attribute evaluators 
of the Weka learning environment. It is available as a stand-alone tool for data 
analysis and as a data-mining engine that can be integrated into other products. 

 jHepWork 

Designed for scientists, engineers and students, 
jHepWork (http://jwork.org/jhepwork/) is a multiplatform 
free and open-source Java-based data analysis framework 
created as an attempt to develop a data analysis 
environment using open-source packages with a 
comprehensible user interface which would be competitive to commercial 
software. It is specifically made for interactive scientific plots in 2D and 3D and 
includes numerical scientific libraries implemented in Java for mathematical 
functions, random numbers, and other data mining algorithms. jHepWork is 
based on a high-level programming language Jython, but Java coding can also 
be used to call jHepWork numerical and graphical libraries. 

The jHepWork is a collective effort of many people dedicated to open-source 
scientific software, coordinated by Sergei Chekanov since 2005. 

 SIPINA 

SIPINA (http://eric.univ-lyon2.fr/~ricco/sipina.html), 
has been developed at the University of Lyon, France 
since 1995. It is an open data mining software which 
implements a number of supervised learning paradigms, 
but mainly classification tree software (it specializes on 
Classification Trees algorithms such as ID3, CHAID, and C4.5, but other 
supervised methods e.g. k-NN, Multilayer Perceptron, Naive Bayes, etc. are also 
available.  

SIPINA can handle both continuous and discrete attributes. SIPINA 
theoretical limitations are 16,384 attributes and 500,000,000 examples. 
Because it loads the complete dataset in the memory before the learning 
process, the true limitation is the capacity of the computer memory available.  

SIPINA allows feature transformations (discretizing an attribute, coding a set 
of attributes from a discrete attribute, etc.), feature selection using "filter 
methods" (selecting the best predictive attributes independently of the 
supervised algorithms used prior to induction) or "wrapper methods" (where a 
supervised algorithm selects the best attributes), error evaluation and 
classification. 
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 TANAGRA 

The TANAGRA project is a successor of SIPINA 
(http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html) 
[Rakotomalala, 2005]. It combines several data mining 
methods from the domains of exploratory data analysis, 
statistical learning, machine learning and databases.  

TANAGRA implements various supervised learning algorithms, more 
specifically an interactive and visual construction of decision trees. TANAGRA 
contains some supervised learning but also other paradigms such as clustering, 
factorial analysis, parametric and nonparametric statistics, association rule, etc. 

The primary goal of the TANAGRA project is to make available to researchers 
and students an easy-to-use data mining software, conforming to the present 
norms of the software development in this domain, and allowing to analyze 
either real or synthetic data.  

A further goal of TANAGRA is to offer researchers an architecture allowing 
them to easily add their own data mining methods, which would allow to 
compare performances and establish benchmarks.  

The last goal targeting novice developers is to disseminate a possible 
methodology for the development of this kind of software. Developers can take 
advantage of free access to source code and can see how this sort of software is 
built and what problems to avoid; they also can observe what are the main 
stages of the implementation project, and which tools and code libraries to use. 
Thus TANAGRA can be considered as a pedagogical tool for learning 
programming techniques.  

 KNIME 

KNIME (http://www.knime.org/) (Konstanz Information 
Miner), maintained by KNIME GMBH, Germany, is a user 
friendly, intelligible, and comprehensive open-source data 
integration, processing, analysis, and exploration 
platform. It gives users the ability to visually create data 
flows or pipelines, selectively execute some or all analysis steps, and later study 
the results, models, and interactive views. KNIME is written in Java, and it is 
based on Eclipse and makes use of its extension method to support plugins thus 
providing additional functionality. Through plugins, users can add modules for 
text, image, and time series processing and can integrate a range of open 
source projects, such as R programming language, Weka, the Chemistry 
Development Kit, and LibSVM. 

KNIME has been selected by Gartner as Cool Vendor 2010 in the key 
technology areas Analytics, Business Intelligence, and Performance 
Management. 
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 AlphaMiner 

AlphaMiner 
(http://www.eti.hku.hk/alphaminer/index.html) is 
developed by the E-Business Technology Institute of the 
University of Hong Kong. 

The technology of Business Intelligence (BI) helps 
companies to improve business decision making. Over the past decade, 
international companies in the banking, telecommunications, insurances, retails 
and e-business sectors have successfully used BI to solve numerous business 
problems in marketing, customer service, cross selling, customer retention, 
fraud detection and risk management. BI solutions are costly and only large 
enterprises can afford them. AlphaMiner data mining system provides affordable 
BI technologies by leveraging existing open source technologies and empowers 
small companies with the capability to make better decisions in the fast 
changing business environment. Plug-able component architecture provides 
extensibility for adding new BI capabilities in data import and export, data 
transformations, modeling algorithms, model assessment and deployment. 
Versatile data mining functions offer powerful analytics to conduct industry 
specific analysis including customer profiling and clustering, product association 
analysis, classification and prediction.  

 ELKI 

ELKI (http://www.dbs.ifi.lmu.de/research/KDD/ELKI/) 
(Environment for DeveLoping KDD-Applications Supported 
by Index-Structures), developed by the Institute for 
Computer Science of University of Munich, Germany 
[Achtert et al, 2010], is a data mining software framework 
with a focus on clustering and outlier detection methods written in Java. 

As discussed above, data mining research makes use of multiple algorithms 
for similar tasks. A fair and useful comparison of these algorithms is difficult due 
to several reasons:  

− most of the software tools are commercial and their implementations are 
not easily available; 

− even when different software implementations are available, an 
evaluation in terms of efficiency is biased to evaluate the efforts of 
different authors in efficient programming instead of evaluating 
algorithmic merits. Probably this is influenced by the fact that usability 
evaluations could be performed easier than an objective evaluation of 
the algorithms. 

On the other hand, efficient data management tools like index-structures can 
show considerable impact on data mining tasks and are therefore useful for a 
broad variety of algorithms.  
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In ELKI, data mining algorithms and data management tasks are separated 
and allow for separate evaluation. This distinguishes ELKI among data mining 
frameworks like Weka framework for index structures like GiST. At the same 
time, ELKI is open to arbitrary data types, distance or similarity measures, or 
file formats. The fundamental approach applied in ELKI is the independence of 
file parsers or database connections, data types, distances, distance functions, 
and data mining algorithms. Helper classes, e.g. for algebraic or analytic 
computations, are available for all algorithms on equal terms. 

 R 

R (http://www.r-project.org/) is a programming 
language and software environment for statistical 
computing and graphics. The R language is widely used 
for statistical software development and data analysis. 

R is an implementation of the S programming language 
combined with lexical scoping semantics inspired by Scheme. R was created by 
Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand, 
and is now developed by the R Development Core Team.  

R is part of the GNU project. Its source code is freely available under the GNU 
General Public License, and pre-compiled binary versions are provided for 
various operating systems. R uses a command line interface, however several 
graphical user interfaces are available for use with R. 

The capabilities of R are extended through user-submitted packages, which 
allow specialized statistical techniques, graphical devices, as well as 
import/export capabilities to many external data formats. The "Task Views" page 
(http://cran.r-project.org/web/views/) on the CRAN website lists the wide range 
of applications (Finance, Genetics, Machine Learning, Medical Imaging, Social 
Sciences and Spatial statistics) to which R has been applied and for which 
packages are available. For instance, the "arules" package allows extracting 
association rules with R 
(http://cran.univ‐lyon1.fr/web/packages/arules/index.html).  

 Rattle 

Rattle (the R Analytical Tool To Learn Easily) 
(http://rattle.togaware.com/), created and supported by 
Togaware Pty Ltd., Australia, is a open-source data mining 
toolkit used to analyze very large collections of data 
[Williams, 2009].  

Rattle presents statistical and visual summaries of data, transforms data into 
forms that can be readily modeled, builds both unsupervised and supervised 
models from the data, presents the performance of models graphically, and 
scores new datasets.  
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The scientific blog DecisionStats (29.04.2010) listed Rattle as one of the top 
10 graphical user interfaces in statistical software.  

Through a simple and logical graphical user interface based on Gnome, Rattle 
can be used by itself to deliver data mining projects. Rattle also provides an 
entry into sophisticated data mining using the open source and free statistical 
language R.  

Rattle runs under GNU/Linux, Macintosh OS/X, and MS/Windows. The aim is 
to provide an intuitive interface that takes you through the basic steps of data 
mining, as well as illustrating the R code that is used to achieve this. Whilst the 
tool itself may be sufficient for all of a user's needs, it also provides a stepping 
stone to more sophisticated processing and modeling.  

2.8 Standardization and Interoperability 

With the advancement of modern information technologies and the boost in 
data mining, the use of knowledge discovery becomes an everyday practice. 
Business Intelligence, Web Mining, Medical Diagnostics, Drives and Controls, 
GPS Systems, Global Monitoring for Environment and Security, etc. are only few 
of the application areas where data mining is a core component. 

Data mining gradually became an emergent technology across multiple 
industries and sectors. Such expanded and enlarged use means that it is 
necessary to design a data mining environment which meets the following 
requirements: 

− data interoperability (currently each system uses its own notation for 
data entry, for instance C4.5-standard, arff-standard, etc.); 

− openness for adding new algorithms to the environment; 
− modularity in order to allow combining of different techniques that 

became a part of a global process; 
− the modules must allow use by different systems, not only a closed use 

within their own environment; 
− user flexibility and possibility to guide the entire data mining process. 

Kouamou described in 2011 the logical structure of data mining environment 
[Kouamou, 2011]. The author suggests that integration and interoperability of 
modern data mining environments are achieved by application of modern 
industrial standards, such as XML-based languages.  

Notably, such systems are able to import and export models in PMML 
(Predictive Model Markup Language), which provides a standard way to 
represent data mining models which allows sharing between different statistical 
applications. PMML is an XML-based language developed by the Data Mining 
Group, an independent group of numerous data mining companies. 
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The adoption of standards in this discipline already made it possible to 
develop procedures of data exchange between various platforms. At the same 
time there are reflections on the standardization of a data mining process 
model. The presentation of these efforts demonstrated that the challenge for the 
future is to develop and popularize widely accepted standards in data mining 
environment; if developed and adopted, such a standard will stimulate major 
industry growth and interest. It would also promote development and delivery of 
solutions that use business language, resulting in performing projects faster, 
cheaper, more manageably, and more reliably. 

 
 
Conclusion 
In this chapter we made an overview of data mining and knowledge 

discovery. Looking at the taxonomy of the main types of data mining methods 
we focus our attention on the segment of discovery-oriented methods and more 
specifically on classification algorithms. 

We observed the wide family of classification algorithms, dividing into 
following main categories: Bayesian Methods, Support Vector Machines, Decision 
Trees, Decision Rules, Class Association Rules, Lazy Learners, Neural Networks 
and Genetic Algorithms.  

We also presented the ensemble methods such as Bagging, Boosting and 
Stacking used to increase classification accuracy,. Such methods can be used as 
a more advanced stage on the primary classifiers. 

Most of the classification algorithms deal with categorical attributes. Because 
of this, we made a brief overview of discretization methods as important 
preprocessing step for such algorithms. 

Further we looked at several well-known open-source systems aimed to 
support research work, or having significant influence on real work in the field of 
data mining.. We provided brief descriptions of the following existing open-
source data mining software systems: Weka, LUCS-KDD Repository, Orange, 
RapidMiner, JHepWork, SIPINA, TANAGRA, KNIME, AlphaMiner, ELKI, R, and 
Rattle. 

In this context the issues of standardization and interoperability are 
becoming crucial. We elaborated on several aspects that gained importance 
lately: data interoperability; opening for adding new algorithms to existing 
environments; allowing combination of different techniques using module 
approach of separate elements; user flexibility and possibility to guide the entire 
data mining process.  
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3 CAR Algorithms 

 
Abstract 
In this chapter we discuss in detail CAR algorithms. 
We present the main types of algorithms for association rule mining, pruning 

techniques, quality rule measures and rule ordering strategies. 
We also describe a number of specific CAR algorithms. 
 

3.1 Introduction 

Association rule mining quickly became a popular instrument to model 
relationships between class labels and features from a training set [Bayardo, 
1998]. It appeared initially within the field of market basket analysis for 
discovering interesting rules from large data collections [Agrawal et al, 1993]. 
Since then, many associative classifiers were proposed, mainly differing in the 
strategies used to select rules for classification and in the heuristics used for 
pruning rules. "Class association rules" (CAR) algorithms have its important 
place in the family of classification algorithms.  

Zaïane and Antonie suggested that the five major advantages of associative 
classifiers are the following [Zaïane and Antonie, 2005]: 

− the training is very efficient regardless of the size of the training set; 
− training sets with high dimensionality can be handled with ease and no 

assumptions are made on dependence or independence of attributes; 
− the classification is very fast; 
− classification based on association methods presents higher accuracy 

than traditional classification methods [Liu et al, 1998] [Li et al, 2001] 
[Thabtah et al, 2005] [Yin and Han, 2003]; 

− the classification model is a set of rules easily interpreted by human 
beings and can be edited [Sarwar et al, 2001]. 
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Within the data mining community, research on classification techniques has 
a long and fruitful history. However, classification techniques based on 
association rules, are relatively new. The first associative classifier CBA was 
introduced by [Liu et al, 1998]. During the last decade, various other associative 
classifiers were introduced, such as CMAR [Li et al, 2001], ARC-AC and ARC-BC 
[Zaïane and Antonie, 2002], CPAR [Yin and Han, 2003], CorClass [Zimmermann 
and De Raedt, 2004], ACRI [Rak et al, 2005], TFPC [Coenen and Leng, 2005], 
HARMONY [Wang and Karypis, 2005], MCAR [Thabtah et al, 2005], CACA [Tang 
and Liao, 2007], ARUBAS [Depaire et al, 2008], etc. 

CAR-algorithms are based on a relatively simple idea. Given a training set 
with transactions where each transaction contains all features of an object in 
addition to the class label of the object, the association rules are constructed, 
which have as consequent a class label. Such association rules are named "class 
association rules" (CARs).  

Generally the structure of CAR-algorithms consists of three major data 
mining steps:  

1. Association rule mining. 
2. Pruning (optional). 
3. Recognition.  
The mining of association rules is a typical data mining task that works in an 

unsupervised manner. A major advantage of association rules is that they are 
theoretically capable of revealing all interesting relationships in a database. But 
for practical applications the number of mined rules is usually too large to be 
exploited entirely. This is why the pruning phase is stringent in order to build 
accurate and compact classifiers. The smaller the number of rules a classifier 
needs to approximate the target concept satisfactorily, the more human-
interpretable is the result. 

3.2 Association Rule Mining 

Association rule mining was first introduced in [Agrawal et al, 1993]. It aims 
to extract interesting correlations, frequent patterns, associations, or casual 
structures among sets of instances in the transaction databases or other data 
repositories.  

Association rule mining itself has a wide range of application domains such as 
market basket analysis, medical diagnosis/research, Website navigation 
analysis, homeland security and so on. In parallel, it participates as a step in the 
training process of CAR classifiers. 

The datasets can be represented in two forms: 
− transactional datasets; 
− rectangular datasets. 
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In transactional datasets each record (transaction) can contain different 
number of items and order of the items can be arbitrary.  

In rectangular datasets each record has the same number of attributes and 
position of the attribute value is fixed and corresponds to the attribute. 

These differences are not particularly difficult to address since there is an 
easy way of converting transactional to binary rectangular dataset by ordering 
all possible items and pointing the presence of a concrete item with 1 (true) and 
respectively the absence with 0 (false). 

The rectangular dataset also become transactional representation using 
attribute-value pairs in description of each record. 

The description of the problem of association rule mining is firstly presented 
in [Agrawal et al, 1993]. The description of the problem provided below follows 
the one given in [Goethals, 2002]. 

Let D  be a set of items.  

A set 1{ ,..., }kX i i= ⊆ D  is called an itemset or a k-itemset if it contains k 

items. 
A transaction over D  is a couple ( , )T tid I=  where tid  is the transaction 

identifier and I  is an itemset. A transaction ( , )T tid I=  is said to support an 

itemset X ⊆ D  if X I⊆ . 

A transaction database D  over D  is a set of transactions over D . 
The cover of an itemset X  in D  consists of the set of transaction identifiers 

of transactions in D  that support X : ( , ) : { | ( , ) , }cover X D tid tid I D X I= ∈ ⊆ . 

The support of an itemset X  in D  is the number of transactions in the cover 

of X  in D : ( , ) : ( , )support X D cover X D= . Note that ({}, )D support D= .  

An itemset is called frequent if its support is no less than a given absolute 
minimal support threshold MinSup , with 0 MinSup D≤ ≤ . 

Let D  be a transaction database over a set of items D , and MinSup  a 

minimal support threshold. The collection of frequent itemsets in D  with respect 
to MinSup  is denoted by ( , ) : { | ( , ) }F D MinSup X support X D MinSup= ⊆ ≥D . 

An association rule is an expression of the form X Y⇒ , where X  and Y  
are itemsets, and {}X Y∩ = . Such a rule expresses the association that if a 

transaction contains all items in X , then that transaction also contains all items 
in Y . X  is called the body or antecedent, and Y  is called the head or 
consequent of the rule. 

The support of an association rule X Y⇒  in D , is the support of X Y∪  in 
D . An association rule is called frequent if its support exceeds a given minimal 
support threshold MinSup . 



3. CAR Algorithms 52

The confidence or accuracy of an association rule X Y⇒  in D  is the 
conditional probability of having Y  contained in a transaction, given that X  is 
contained in that transaction: 

( , )( , ) : ( | )
( , )

support X Y D
confidence X Y D P Y X

support X D

∪
⇒ = = . 

The rule is called confident if ( | )P Y X  exceeds a given minimal confidence 

threshold MinConf , with 0 1MinConf≤ ≤ . 

Especially in the case of classification association rules the head consists of 
only one attribute-value pair. In the case of rectangular data one of the columns 
contains class labels that divide the dataset into separate extensional parts. 

Generally, an association rules mining algorithm consists of the following 
steps: 

1. The set of candidate k-item-sets is generated by 1-extensions of the large 
(k-1)-item-sets generated in the previous iteration. 

2. Supports for the candidate k-item-sets are generated by a pass over the 
database. 

3. Item-sets that do not have the minimum support are discarded and the 
remaining item-sets are called large (frequent) k-item-sets. 

4. This process is repeated until no more large item-sets are found to 
generate association rules from those large item-sets with the constraints 
of minimal confidence.  

In many cases, the algorithms generate an extremely large number of 
association rules, often in thousands or even millions; in addition to this the 
association rules are sometimes very large. It is nearly impossible for the end-
users to comprehend or validate such large number of complex association 
rules, thereby limiting the usefulness of the data mining results. Several 
researchers suggested strategies aimed at reducing the number of association 
rules: 

− extracting of rules based on user-defined templates or instance 
constraints [Baralis and Psaila, 1997] [Ashrafi et al, 2004]; 

− developing interestingness measures to select only interesting rules 
[Hilderman and Hamilton, 2002]. For instance [Jaroszewicz and 
Simovici, 2002] proposed a solution to the problem using the Maximum 
Entropy approach; 

− proposing inference rules or inference systems to prune redundant rules 
and thus present smaller, and usually more understandable sets of 
association rules to the user [Cristofor and Simovici, 2002]; 

− creating new frameworks for mining association rule to find association 
rules with different formats or properties [Brin et al, 1997]. 
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Depending of the specificity of the observed problem many additional 
question arise. For instance [Liu et al, 1999] present an approach to the rare 
instance problem. The dilemma that arises in the rare instance problem is that 
searching for rules that involve infrequent (i.e., rare) instances requires a low 
support but using a low support will typically generate many rules that are of no 
interest. Using a high support typically reduces the number of rules mined but 
will eliminate the rules with rare instances. The authors attack this problem by 
allowing users to specify different minimum supports for the various instances in 
their mining algorithm.  

For filtering out the interesting rules also sometimes the lift measure is used 
[Brin et al, 1997], which shows how many times more often two items occur 
together than expected if they where statistically independent.  

The computational cost of association rules mining can be reduced by 
sampling the database, by adding extra constraints on the structure of patterns, 
or through parallelization. 

Techniques for association rule discovery have gradually been adapted to 
parallel systems in order to take advantage of the higher speed and greater 
storage capacity that they offer. The transition to a distributed memory system 
requires the partitioning of the database among the processors, a procedure that 
is generally carried out indiscriminately. [Parthasarathy et al, 2001] wrote an 
excellent survey on parallel association rule mining with shared memory 
architecture covering most trends, challenges, and approaches adopted for 
parallel data mining. 

3.2.1 Creating Association Rules 

During the first stage, several techniques for creating association rules are 
used, which mainly are based on: 

− Apriori algorithm [Agrawal and Srikant, 1994] (CBA, ARC-AC, ARC-BC, 
ACRI, ARUBAS); 

− FP-tree algorithm [Han and Pei, 2000] (CMAR); 
− FOIL algorithm [Quinlan and Cameron-Jones, 1993] (CPAR); 
− Morishita & Sese Framework [Morishita and Sese, 2000] (CorClass). 

Generating association rules can be made from all training transactions 
together (such it is in ARC-AC, CMAR, CBA) or can be made for transactions 
grouped by class label (as it is in ARC-BC), which offers small classes a chance 
to have representative classification rules.  

We provide a brief overview of some distinctive algorithms created during the 
recent years, which are used or can be implemented at the step of creating the 
pattern set of CAR algorithms. 
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 AIS 

The AIS algorithm [Agrawal et al, 1993] was the first algorithm proposed for 
mining association rule in the early 90s, when a task for emulating the biological 
immune system in the real world scenarios became actual. AIS algorithm uses 
candidate generation to detect the frequent item-sets. The candidates are 
generated on the fly and are compared with previously found frequent item-sets. 
In this algorithm only one instance of consequent association rules are 
generated, which means that the consequent of those rules only contain one 
instance, for example we only generate rules like X Y Z∩ ⇒  but not those 
rules as X Y Z⇒ ∩ . The main drawbacks of the AIS algorithm are too many 
passes over the whole database and too many candidate item-sets that finally 
turned out to be small are generated, which requires considerable memory and 
involves significant effort that turned out to be useless.  

 Apriori 

The Apriori [Agrawal and Srikant, 1994] is the most popular algorithm for 
producing association rules. It created new opportunities to mine the data. Since 
its inception, many scholars have improved and optimized the Apriori algorithm 
and have presented new Apriori-like algorithms. Apriori uses pruning techniques 
to avoid measuring certain item-sets, while guaranteeing completeness. These 
are the item-sets that the algorithm can prove will not turn out to be large.  

However, there are two bottlenecks of the Apriori algorithm. One is the 
complex candidate generation process that uses most of the time and memory 
because of the multiple scans of the database. Based on the Apriori algorithm, 
many new algorithms were designed with some modifications or improvements. 

The Apriori algorithm for finding frequent item-sets makes multiple passes 
over the data. In the k -th pass it finds all item-sets having k instances called 
the k-item-sets. Each pass consists of two phases. Let kF  represent the set of 

frequent k-item-sets, and kC  the set of candidate k-item-sets (potentially 

frequent item-sets). The candidate generation phase where the set of all 
frequent (k-1)-item-sets, 1kF − , found in the ( 1k − )-th pass is applied first and it 

is used to generate the candidate item-sets kC . The candidate generation 

procedure ensures that kC  is a superset of the set of all frequent k-item-sets. A 

specialized hash-tree data structure is used to store kC . Then, data is scanned 

in the support counting phase. For each transaction, the candidates in kC  

contained in the transaction are determined using the hash-tree data structure 
and their support count is incremented. At the end of the pass, kC  is examined 
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to determine which of the candidates are frequent, yielding kF . The algorithm 

terminates when kF  or 1kC +  becomes empty. 

Several optimizations of Apriori algorithm are available, such as: 
− PASCAL [Bastide et al, 2000], which introduces the notions of key 

patterns and use inference of other frequent patterns from the key 
patterns without access to the database; 

− Category-based Apriori algorithm [Do et al, 2003], which reduces the 
computational complexity of the mining process by bypassing most of 
the subsets of the final item-sets; 

− Apriori-T [Coenen et al, 2004], which makes use of a "reverse" set 
enumeration tree where each level of the tree is defined in terms of an 
array (i.e. the T-tree data structure is a form of Trie); 

− FDM [Cheung et al, 1996], which is a parallelization of Apriori for shared 
machines, each with its own partition of the database. At every level and 
on each machine, the database scan is performed independently on the 
local partition. Then a distributed pruning technique is employed. 

 FP-Tree 

FP-Tree [Han and Pei, 2000] is another milestone in the development of 
association rule mining, which breaks the main bottlenecks of Apriori [Kotsiantis 
and Kanellopoulos, 2006]. The frequent item-sets are generated with only two 
passes over the database and without any candidate generation process. FP-tree 
is an extended prefix-tree structure storing crucial, quantitative information 
about frequent patterns. Only frequent length-1 instances will have nodes in the 
tree, and the tree nodes are arranged in such a way that more frequently 
occurring nodes will have better chances of sharing nodes than less frequently 
occurring ones. FP-Tree scales much better than Apriori because as the support 
threshold goes down, the number as well as the length of frequent item-sets 
increase dramatically. The frequent patterns generation process includes two 
sub processes: constructing the FT-Tree, and generating frequent patterns from 
the FP-Tree. The mining result is the same with Apriori series algorithms. 

To sum up, the efficiency of FP-Tree algorithm accounts for three reasons:  
1. The FP-Tree is a compressed representation of the original database 

because only those frequent instances are used to construct the tree, 
other irrelevant information are pruned.  

2. This algorithm only scans the database twice.  
3. FP-Tree uses a divide and conquers method that considerably reduced the 

size of the subsequent conditional FP-Tree.  
Every algorithm has his limitations, for FP-Tree it is difficult to be used in an 

interactive mining system. Another limitation is that FP-Tree is that it is not 
suitable for incremental mining. 
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 TreeProjection 

The innovation brought by TreeProjection [Agarwal et al, 2000] is the use of 
a lexicographic tree, which requires substantially less memory than a hash tree. 
The number of nodes in its lexicographic tree is exactly that of the frequent 
item-sets. The support of the frequent item-sets is counted by projecting the 
transactions onto the nodes of this tree. This improves the performance of 
counting the number of transactions that have frequent item-sets. The 
lexicographic tree is traversed in a top-down fashion. The efficiency of 
TreeProjection can be explained by two main factors:  

1. the transaction projection limits the support counting in a relatively small 
space. 

2. the lexicographical tree facilitates the management and counting of 
candidates and provides the flexibility of picking efficient strategy during 
the tree generation and transaction projection phrases. 

 Matrix Algorithm 

The Matrix Algorithm [Yuan and Huang, 2005] generates a matrix, which 
entries 1 or 0 by passing over the database only once, and then the frequent 
candidate sets are obtained from the resulting matrix. Finally, association rules 
are mined from the frequent candidate sets. Experimental results confirm that 
the proposed algorithm is more effective than Apriori Algorithm. 

 Sampling Algorithms 

For obtaining associations, several algorithms use sampling. Some examples 
are provided below:  

− Toivonen's sampling algorithm [Toivonen, 1996]. This approach is a 
combination of two phases. During phase 1 a sample of the database is 
obtained and all associations in the sample are found. These results are 
then validated against the entire database. To maximize the 
effectiveness of the overall approach, the author makes use of lowered 
minimum support on the sample. Since the approach is probabilistic (i.e. 
dependent on the sample containing all the relevant associations) not all 
the rules may be found in this first pass. Those associations that were 
deemed not frequent in the sample but were actually frequent in the 
entire dataset are used to construct the complete set of associations in 
phase 2; 

− Progressive sampling [Parthasarathy, 2002] is yet another approach; it 
relies on a novel measure of model accuracy (self-similarity of 
associations across progressive samples), the identification of a 
representative class of frequent item-sets that mimic (extremely 
accurately) the self-similarity values across the entire set of 
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associations, and an efficient sampling methodology that hides the 
overhead of obtaining progressive samples by overlapping it with useful 
computation; 

− Sampling Error Estimation algorithm [Chuang et al, 2005] aims to 
identify an appropriate sample size for mining association rules. It has 
two advantages. First, it is highly efficient because an appropriate 
sample size can be determined without the need of executing association 
rules. Second, the identified sample size is very accurate, meaning that 
association rules can be highly efficiently executed on a sample of this 
size to obtain a sufficiently accurate result; 

− Sampling large datasets with replacement [Li and Gopalan, 2004] is 
used when data comes as a stream flowing at a faster rate than can be 
processed. Li and Gopalan derive the sufficient sample size based on 
central limit theorem for sampling large datasets with replacement. 

 Partition 

Partition [Savasere et al, 1995] is fundamentally different from other 
algorithms because it reads the database at most two times to generate all 
significant association rules. In the first scan of the database, it generates a set 
of all potentially large item-sets by scanning the database once and dividing it in 
a number of non-overlapping partitions. This set is a superset of all frequent 
item-sets so it may contain item-sets that are not frequent. During the second 
scan, counters for each of these item-sets are set up and their actual support is 
measured. 

 FOIL 

FOIL (First Order Inductive Learner) is an inductive learning algorithm for 
generating classification association rules (CARs) developed by Quinlan and 
Cameron-Jones in 1993 [Quinlan and Cameron-Jones, 1993] and further 
developed by Yin and Han to produce the PRM (Predictive Rule Mining) CAR 
generation algorithm [Yin and Han 2003]. PRM was then further developed, by 
Yin and Han, to produce CPAR (Classification based on Predictive Association 
Rules). 

FOIL is a sequential covering algorithm that learns first-order logic rules. It 
learns new rules one at a time, removing the positive examples covered by the 
latest rule before attempting to learn the next rule.  

The hypothesis space search performed by FOIL is best understood by 
viewing it hierarchically. Each iteration through FOIL'S outer loop adds a new 
rule to its disjunctive hypothesis. The effect of each new rule is to generalize the 
current disjunctive hypothesis (i.e., to increase the number of instances it 
classifies as positive), by adding a new disjunct. Viewed at this level, the search 
is a specific-to-general search through the space of hypotheses, beginning with 
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the most specific empty disjunction and terminating when the hypothesis is 
sufficiently general to cover all positive training examples. The inner loop of 
FOIL performs a finer-grained search to determine the exact definition of each 
new rule. This inner loop searches a second hypothesis space, consisting of 
conjunctions of literals, to find a conjunction that will form the preconditions for 
the new rule. FOIL employs a specific performance FOIL Gain that differs from 
the entropy measure. This difference follows from the need to distinguish 
between different bindings of the rule variables and from the fact that FOIL 
seeks only rules that cover positive examples [Mitchell, 1997]. 

 Morishita & Sese Framework  

This framework [Morishita and Sese, 2000] efficiently computes significant 
association rules according to common statistical measures such as a chi-
squared value or correlation coefficient. Because of anti-monotonicity of these 
statistical metrics, Apriori algorithm is not suitable for association rule 
generation. Morishita and Sese present a method of estimating a tight upper 
bound on the statistical metric associated with any superset of an item-set, as 
well as the novel use of the resulting information of upper bounds to prune 
unproductive supersets while traversing item-set lattices.  

3.2.2 Rule Quality Measures 

The process of generating association rules usually creates an extremely big 
number of patterns. This bottleneck imposes the necessity of measuring the 
significance, respectively redundancy of the generated rules and ordering using 
different criteria. 

Here we will mention some examples of used ranking of association rules. 

For a rule P  and a class-labeled dataset { | 1,..., }iD R i n= =  several kinds of 

rule quality measures and combinations of them are used: 
− The time of generation of the rule. This is a weak restriction used when 

all constrains before order two rules in equal places; 
− ( )ncovers P : the number of instances covered by P    

(i.e. : ( ) ( )i iR body P body R⊆ );  

− ( )pos P : the number of instances correctly classified by P    

(i.e. : ( ) ( ) and ( ) ( )i i iR body P body R head P head R⊆ = ); 

− ( )neg P : the number of negative instances covered by P    

(i.e. : ( ) ( ) and ( ) ( )i i iR body P body R head P head R⊆ ≠ ); 

− D : the number of instances in D ; 
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− Coverage: 
( )( ) ncovers P

coverage P
D

= ; 

− Accuracy: 
( )( ) pos P

accuracy P
ncovers

= ; 

− Cardinality: ( ) ( )card P body P= ; 

− Pessimistic error rate: 
( ) 1( )

( ) ( ) 2
neg P

PER P
neg P pos P

+
=

+ +
 

− ip  is the probability of class ic  in D ; 

− Expected information: 2
1

( ) * log ( )
m

i i
i

Info D p p
=

= −∑ ; 

− Information gain: 
1

( ) ( ) ( )
v

j

j
j

D
InfoGain D Info D Info D

D=

= − ×∑ ; 

− FOIL gain (it favors rules that have high accuracy and cover many 
positive instances):    

2 2
( ') ( )( , ') ( ') log log

( ') ( ') ( ) ( )
pos P pos P

FOILGain P P pos P
pos P neg P pos P neg P

⎛ ⎞
= × −⎜ ⎟+ +⎝ ⎠

; 

Further measures can be defined but those listed above are the most basic 
ones. 

3.2.3 Pruning 

In order to reduce the produced association rules, pruning in parallel with 
(pre-pruning) or after (post-pruning) creating association rules is performed. 
Different heuristics for pruning during rule generation are used, mainly based on 
minimum support, minimum confidence and different kinds of error pruning 
[Kuncheva, 2004]. In post-pruning phase, criteria such as data coverage (ACRI) 
or correlation between consequent and antecedent (CMAR) are also used. 

During the pruning phase or in classification stage, different ranking criteria 
for ordering the rules are used. The most common ranking mechanisms are 
based on the support, confidence and cardinality of the rules, but other 
techniques such as the cosine measure and coverage measure (ACRI) also exist; 
we can mention amongst them:  

− Pruning by confidence: retain more general rules with higher accuracy: 

1 2R R<  and 1 2( ) ( )conf R conf R< , than 1R  is pruned (used in ARC-AC, 

ARC-BC); 
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− Pruning by precedence: special kind of ordering using "precedence" (CBA 
and MCAR); 

− Correlation pruning: statistical measuring of the rule significance using 

weighted 2χ  (CMAR). 

3.3 Recognition 

In the recognition stage, three different approaches can be discerned 
[Depaire et al, 2008]: 

1. using a single rule. 
2. using a subset of rules. 
3. using all rules.  
An example which uses a single rule is CBA. It classifies an instance by using 

the single best rule covering the instance.  
CPAR uses a subset of rules. It first gathers all rules covering the new 

instance and selects the best n  rules per class. Next, it calculates the average 
Laplace accuracy per class and predicts the class with the highest average 
accuracy. 

Additionally to support, coverage and confidence, ACRI uses also the cosine 
measure.  

CMAR uses all rules covering a class to calculate an average score per class.  

CMAR selects the rule with the highest 2χ  measure from the candidate set.  

ARC-AC and ARC-BC use the sum of confidences as score statistics.  
A different approach is proposed in TFPC, which suggests to consider the size 

of the antecedent and to favor long rules before making an allowance for 
confidence and support.  

When a subset or all rules is being used, several order-based combined 
measures can be applied: 

− Select all matching rules; 
− Group rules per class value;  
− Order rules per class value according to criterion; 
− Calculate combined measure for best Z rules;  
− Laplace Accuracy (CPAR): if k  is the number of class values then 

( ) 1
( ( ))

support R
LA

support body R k

+
=

+
. 
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3.4 Some Representatives of CAR Algorithms 

In this subsection we present briefly several representatives of the CAR 
Algorithm. 

 CBA  

In CBA [Liu et al, 1998], Apriori is applied to create the association rules. 
For measuring the significance of the rules a special "precedence" definition is 

given: 
1 2P Pf  (rule 1P  precedes rule 2P ) if: 

1. 1 2( ) ( )confidence P confidence P> ; 

2. 1 2( ) ( )confidence P confidence P=  but 1 2( ) ( )support P support P> ; 

3. 1 2( ) ( )confidence P confidence P= , 1 2( ) ( )support P support P= , but 1P  is 

generated earlier than 2P . 
Pruning is based on the pessimistic error rate based pruning method in C4.5. 
Condition 1. Each training case is covered by the rule with the highest 

precedence among the rules that can cover the case. 
Condition 2. Every rule correctly classifies at least one remaining training 

case when it is chosen. 
The key point is instead of making one pass over the remaining data for each 

rule, the algorithm to find the best rule to cover each case. 
During the recognition CBA just searches in the pruned and ordered list for 

the first rule that covers the instance to be classified. The prediction is the class 
label of that classification rule. If no rule covers the instance, CBA uses the 
default class calculated during pruning. If the decision list is empty, the majority 
class of the training instance will be assigned to each test instance as default. 

 CMAR  

CMAR [Li et al, 2001] employs a novel data structure, CR-tree, to compactly 
store and efficiently retrieve a large number of rules for classification. CR-tree is 
a prefix tree structure to explore the sharing among rules, which achieves 
substantial compactness. 

In the phase of rule generation, CMAR computes the complete set of rules. 
CMAR prunes some rule and only selects a subset of high quality rules for 
classification. CMAR adopts a variant of FP-growth method, which is much faster 
than Apriori-like methods, especially in the situations where large datasets, low 
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support threshold, and long patterns exist. The specificity of CMAR is also that it 
finds frequent pattern and generates rules in one step. 

For every pattern, CMAR maintains the distribution of various class labels 
among data objects matching the pattern. This is done without any overhead in 
the procedure of counting (conditional) databases. On the other hand, CMAR 
uses class label distribution to prune. Once a rule is generated, it is stored in a 
CR-tree. 

The number of rules generated by class-association rule mining can be huge. 
To make the classification effective and also efficient, we need to prune rules to 
delete redundant and noisy information. According to the facility of rules on 
classification, a global order of rules is composed. CMAR employs the following 
methods for rule pruning. 

1. Using general and high-confidence rule to prune more specific and lower 
confidence ones. 

2. Selecting only positively correlated rules. 
3. Pruning rules based on database cover. 
In the phase of classification, for a given data object, CMAR selects a small 

set of high confidence matching the object, highly related rules and analyzes the 
correlation among those rules. 

 ARC-AC and ARC-BC  

In 2002, Zaïane and Antonie offered new associative classifiers for text 
categorization – ARC-AC and ARC-BC [Zaïane and Antonie, 2002]. For building 
association rules they used Apriori-like algorithm. They have considered two 
different approaches for extracting term-category association rules and for 
combining those rules to generate a text classifier. 

In the first approach ARC-BC (Association Rule-based Categorizer by 
Category), each category is considered as a separate collection and the 
association rule mining applied to it. Once the frequent item-sets are discovered, 
the rules are simply generated by making each frequent item-set the antecedent 
of the rule and the current category the consequent. 

The ARC-AC (Association Rule-based Categorizer for All Categories) considers 
all categories at whole. In this case one antecedent can be found with different 
consequents. During the recognition they introduce "dominant factor", which is 
the proportion of rules of the most dominant category in the applicable rules to 
the query. 

 CPAR  

A greedy associative classification algorithm called CPAR was proposed in [Yin 
and Han, 2003]. CPAR adopts FOIL [Quinlan and Cameron-Jones, 1993] strategy 
in generating the rules from datasets. It seeks for the best rule condition that 
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brings the most gain among the available ones in the dataset. Once the 
condition is identified, the weights of the positive examples associated with it 
will be deteriorated by a multiplying factor, and the process will be repeated 
until all positive examples in the training dataset are covered. 

The searching process for the best rule condition is time consuming process 
for CPAR since the gain for every possible item needs to be calculated in order to 
determine the best item gain. Thus, CPAR uses an efficient data structure, i.e. 
PN Array, to store all the necessary information for calculation of the items gain. 
In the rules generation process, CPAR derives not only the best condition but all 
close similar ones since there are often more than one attribute items with 
similar gain. 

 CorClass  

CorClass [Zimmermann and De Raedt, 2004] directly finds the best 
correlated associations rules for classification by employing a branch-and-bound 
algorithm, using so called Morishita & Sese Framework [Morishita and Sese, 
2000]. It follows the strategy in which calculating the upper bounds on the 
values attainable by specializations of the rule currently considered. The upper 
bound finally allows dynamic rising of the pruning threshold, differing from the 
fixed minimal support used in existing techniques. This will result in earlier 
termination of the mining process. Since the quality criterion for rules is used 
directly for pruning, no post-processing of the discovered rule set is necessary. 

The algorithm uses two strategies for classifying a new object 
1. Decision List: Rank all the rules (rules are ranked by quality according to 

some criterion) and use the first rule satisfied by an example for 
classification. 

2. Weighted Combination: The general way to do this is to collect all such 
rules, assign each one a specific weight and for each class predicted by at 
least one rule sum up the weights of corresponding rules. The class value 
having the highest value is returned. 

 ACRI  

The task of ACRI (Associative Classifier with Reoccurring Items) [Rak et al, 
2005] is to combine the associative classification with the problem of recurrent 
items. 

A delicate issue with associative classifiers is the use of a subtle parameter: 
support. Support is a difficult threshold to set, inherited from association rule 
mining. It is known in the association rule mining field that the support 
threshold is not obvious to tune in practice. The accuracy of the classifier can be 
very sensitive to this parameter. 

The algorithm for mining associations in ACRI is based on earlier work of the 
authors Apriori-based MaxOccur [Zaiane et al, 2000]. The building of the 
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classification model follows their previous ARC-BC approach. The rational is 
based on the efficiency of this method in the case of non-evenly distributed class 
labels. MaxOccur run on transactions from each known class separately makes 
the core of the rule generator module. It mines the set of rules with reoccurring 
items from the training set. 

These rules associate a condition set with a class label such that the condition 
set may contain items preceded by a repetition counter. The classification 
process might be considered as plain matching of the rules in the model to the 
features of an object to classify. Different classification rules may match, thus 
the classifier module applies diverse strategies to select the appropriate rules to 
use. 

In addition, simple matching is sometimes not possible because there is no 
rule that has the antecedent contained in the feature set extracted from the 
object to classify. With other associative classifiers, a default rule is applied, 
either the rule with the highest confidence in the model or simply assigning the 
label of the dominant class. The ACRI approach has a different strategy allowing 
partial matching or closest matching by modeling antecedents of rules and new 
objects in a vector space.  

 TFPC 

TFPC (Total From Partial Classification) [Coenen and Leng, 2005] is a 
classification association rule mining algorithm founded on the TFP (Total From 
Partial) association rule mining algorithm; which, in turn, is an extension of the 
Apriori-T (Apriori Total). 

TFP (Total From Partial) algorithm builds a set enumeration tree structure, 
the P-tree, that contains an incomplete summation of support-counts for 
relevant sets. Using the P-tree, the algorithm uses an Apriori-like procedure to 
build a second set enumeration tree, the T-tree, that finally contains all the 
frequent sets (i.e. those that meet the required threshold of support), with their 
support-counts. The T-tree is built level by level, the first level comprising all the 
single items (attribute-values) under consideration. In the first pass, the support 
of these items is counted, and any that fail to meet the required support 
threshold are removed from the tree. Candidate-pairs are then generated from 
remaining items, and appended as child nodes. The process continues, as with 
Apriori, until no more candidate sets can be generated. 

The class-competition is solved by using support and confidence measures. 

 HARMONY  

HARMONY [Wang and Karypis, 2005] directly mines for each training instance 
one of the highest confidence classification rules that it supports and satisfies a 
user specified minimum support constraint, and builds the classification model 
from the union of these rules over the entire set of instances. Thus HARMONY 
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employs an instance-centric rule generation framework and mines the covering 
rules with the highest confidence for each instance, which can achieve better 
accuracy. Moreover, since each training instance usually supports many of the 
discovered rules, the overall classifier can better generalize to new instances and 
thus achieve better classification performance. 

To achieve high computational efficiency, HARMONY mines the classification 
rules for all the classes simultaneously and directly mines the final set of 
classification rules by pushing deeply some effective pruning methods into the 
projection-based frequent item-set mining framework. All these pruning 
methods preserve the completeness of the resulting rule-set in the sense that 
they only remove from consideration rules that are guaranteed not to be of high 
quality.  

 MCAR  

MCAR (Multi-class Classification based on Association Rule) [Thabtah et al, 
2005] uses an efficient technique for discovering frequent items and employs a 
rule ranking method which ensures detailed rules with high confidence. 

During the rules generation MCAR scans the training dataset to discover 
frequent single items, and then recursively combines the items generated to 
produce items involving more attributes. After that the rules are used to 
generate a classifier by considering their effectiveness on the training dataset, 
using expanded definition of "precedence": 

1 2P Pf  (rule 1P  precedes rule 2P ) if: 

1. 1 2( ) ( )confidence P confidence P> ; 

2. 1 2( ) ( )confidence P confidence P=  but 1 2( ) ( )support P support P> ; 

3. 1 2( ) ( )confidence P confidence P= , 1 2( ) ( )support P support P= ,   

but 1 2( ) ( )ActAcc P ActAcc P= ; 

4. All conditions before are the same, but 1 2( ) ( )card P card P< ; 

5. Last condition: 1P  is generated earlier than 2P . 

 CACA  

The following innovations are integrated in CACA [Tang and Liao, 2007]:  
− use the class-based strategy to cut down the searching space of 

frequent pattern;  
− design a structure call Ordered Rule Tree (OR-Tree) to store the rules 

and their information which may also prepare for the synchronization of 
the two steps;  
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− redefine the compact set so that the compact classifier is unique and not 
sensitive to the rule reduction;  

− synchronize the rule generation and building classifier phases. 
Class-based strategy: Given a training dataset D  with k  classes, the 

principle idea of class based rule mining is to divide the single attribute value set 

allC  for all classes into k  smaller ones for every class, that is, to limit the 

searching in k  low dimensional spaces other than a high dimensional one. 
OR-Tree: To facilitate they design a structure, called Ordered-Rule-Tree 

(OR-Tree), under the inspiration of CR-Tree used in CMAR to store and rank 
rules. It is composed with a tree structure and an ordered list. When a rule 

1( | ,..., )i i i i
nP c a a=  satisfying the support and confidence thresholds is generated, 

attribute values 1 ,...,i i
na a  are stored as nodes in this tree according to their 

frequency in D  in descending order. The last node points to an information 
node storing the rule's information such as class label, support and confidence. 
Each rule can and only can have one information node. The ordered list is 
designed to organize all rules in the tree. Each node in the chain points to a 
certain rule. Nodes pointing to the rules with higher priority are closer to the 
head node, while those pointing to the rules with lower priority are farther from 
the head node.  

The ranking rule criteria are as follows: 
1 2P Pf  ( 1P  precedes 2P ) if: 

1. 1 2( ) ( )confidence P confidence P> ; 

2. 1 2( ) ( )confidence P confidence P=  but 1 2( ) ( )support P support P> ; 

3. 1 2( ) ( )confidence P confidence P=  and 1 2( ) ( )support P support P=  but 
1 2( ) ( )card P card P<  ( 1P  is more general than 2P ); 

4. Equal previous conditions, but 1P  is generated earlier then 2P . 
To ensure compact classifier to be unique and not sensitive to the rule 

reduction, the redundant rules are defined as follows: 

Definition of redundant rule: Given 1P , 2P  and 3P , that belong to rule set 
R , 2P  is redundant if: 

− 1 1 1 1
1 1( | ,..., )kP c a a= , 2 2 2 2

1 2( | ,..., )kP c a a= :   
1 2c c≠ , 1 1 2 2

1 1 1 2( ,..., ) ( ,..., )k ka a a a⊆ , 1 2P Pf ; 

− 1 1 1 1
1 1( | ,..., )kP c a a= , 2 2 2 2

1 2( | ,..., )kP c a a= :   
1 2c c= , 1 1 2 2

1 1 1 2( ,..., ) ( ,..., )k ka a a a⊂ , 1 2P Pf ; 
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− 1 1 1 1
1 1( | ,..., )kP c a a= , 2 2 2 2

1 2( | ,..., )kP c a a= , 3 3 3 3
1 3( | ,..., )kP c a a= :   

1 2 3c c c= ≠ , 1 1 2 2
1 1 1 2( ,..., ) ( ,..., )k ka a a a⊂ , 1 1 3 3

1 1 1 3( ,..., ) ( ,..., )k ka a a a⊂ , 
1 2 3P P Pf f . 

Definition of compact rule set: For rule set R , if R ' R⊂ , any redundant rule 
R 'P∉  and R '  is unique, then R '  is the compact set of R . 

CACA technically combined the rule generation and the building classifier 
phases together. Once a new rule is generated, the algorithm visits the OR-Tree 
partially to recognize its redundancy, stores it in the OR-Tree and ranks it in the 
rule set. Not only can the synchronization simplify the procedure of associative 
classification but also apply the pruning skill to shrink the rule mining space and 
raise the efficiency. 

 ARUBAS  

In contrast with many existing associative classifiers, ARUBAS [Depaire et al, 
2008] uses class association rules to transform the feature space and uses 
instance-based reasoning to classify new instances. The framework allows the 
researcher to use any association rule mining algorithm to produce the class 
association rules. Five different fitness measures are used for classification 
purposes. 

The main idea behind the ARUBAS framework, is transformation of the 
original feature space into a more powerful feature space. The original feature 
space is called the attribute space, where each record 1( | ,..., )i i i i

nR c a a=  is 

coded as a set of attribute values and a class value. 
In attribute space, each dimension consists of a single attribute. In the new 

feature space, which we will call pattern space, each dimension will consist of a 
combination of attributes, also called a pattern, which is denoted as 

1 1( , ),..., ( , )p i i ik ikP A a A a= . For achieving more power for the feature space, only 

combinations of attributes (or patterns) which are strongly associated with a 
single class value is given. 

The first step in the ARUBAS framework is to use any CAR mining technique 
to find a set of CARs, which is used to transform the feature space. The 
antecedent of each CAR, which represents an item-set, will become a pattern pP  

and hence a dimension in the new feature space. The value of an instance iR  
for a pattern dimension pP  is 1 (if the instance contains the pattern) or 0 (if it 

doesn't). 
The instance similarity is used for classifying new instances. To measure the 

similarity between a new instance iR  and a known training instance tR  ARUBAS 
focuses on the patterns contained by both instances and how many patterns 
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both instances have in common, but on those patterns coming from the CARs 
which predicted the class value of the training instance tR .  

The main idea behind the association rule based similarity framework is that 
classification is based on similarity between a new instance and an entire class. 
This similarity is not measured in the original attribute space, but in the pattern 
space, which is constructed by means of CARs. 

 
 
Conclusion 
This chapter provided an overview of the area of CAR-classifiers. CAR 

algorithms have its important place in the family of classification algorithms with 
several advantages, such as: efficiency of the training regardless of the training 
set; easy handling with high dimensionality; very fast classification; high 
accuracy; human comprehensible classification model. 

We observed all typical steps in the whole classification process of CAR 
algorithms: generating the rules, pruning, and recognition. 

In the phase of generating the rules several techniques are observed: the 
pioneer AIS, most used Apriori, alternative FP-Tree, TreeProjection, Matrix 
Algorithm, Sampling Algorithms, Partition, FOIL and Morishita & Sese 
Framework.  

The pruning is important step in the learning process of CAR algorithms, 
applied as preprocessing step, in parallel of association rule mining or after it. 
Here we made a brief observation of several rule quality measures and rule 
ordering schemes, used in CAR algorithms.  

In the recognition phase we also observed different types of choosing final 
decision – using simple rule or set of rules with different types of ordering 
schemas. 

Finally, using the proposed framework, typical for CAR algorithms, we 
analyze the some representatives of CAR algorithms: CBA, CMAR, ARC-AC and 
ARC-BC, CPAR, CorClass, ACRI, TFPC, HARMONY, MCAR, CACA, ARUBAS, 
showing wide variety of proposed techniques.  
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4 Multi-Dimensional Numbered 
Information Spaces 

 
Abstract 
This chapter presents the advance of different types of access methods 

developed in the last years and used in data mining processes in order to 
facilitate access to the different kinds of structures. 

A special attention is paid to a memory organization, called "Multi-
dimensional numbered information spaces" which allows to operate with 
context-free multidimensional data structures. 

The software implementation of such structure is named Multi-Domain Access 
Method ArM 32. The implementation of the memory organization and available 
functional operations are presented.  

The purpose is to use such structures and operations in the implementation 
of one class association rule classifier in order to show the vitality of the idea of 
using context-free multidimensional data structures and direct access as a 
powerful tool for knowledge discovery. 

 

4.1 Memory Management 

Memory management is a complex field of computer science. Over the years, 
many techniques have been developed to make it more efficient [Ravenbrook, 
2010]. Memory management usually addresses three areas: hardware, 
operating system, and application, although the distinctions are a little fuzzy. In 
most computer systems, all three are present to some extent, forming layers 
between the user's program and the actual memory hardware: 

− memory management at the hardware level is concerned with the 
electronic devices that actually store data. This includes the use of RAM 
and memory caches; 
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− memory in the operating system must be allocated to user programs, 
and reused by other programs when it is no longer required. The 
operating system can pretend that the computer has more memory than 
it actually does, and that each program has the machine's memory to 
itself. Both of these are features of virtual memory systems; 

− application memory management involves supplying the memory 
needed for a program's objects and data structures from the limited 
resources available, and recycling that memory for reuse when it is no 
longer required. Because in general, application programs cannot predict 
in advance how much memory they are going to require, they need 
additional code to handle their changing memory requirements. 

Application memory management combines two related tasks: 
− allocation: when the program requests a block of memory, the memory 

manager must allocate that block out of the larger blocks it has received 
from the operating system. The part of the memory manager that does 
this is known as the allocator; 

− recycling: when memory blocks have been allocated, but the data they 
contain is no longer required by the program, the blocks can be recycled 
for reuse. There are two approaches to recycling memory: either the 
programmer must decide when memory can be reused (known as 
manual memory management); or the memory manager must be able 
to work it out (known as automatic memory management). 

The progress in memory management gives the possibility to allocate and 
recycle not directly blocks of the memory but structured regions or fields 
corresponding to some types of data. In such case we talk about corresponded 
"access methods". 

4.2 Access Methods 

Access Methods (AM) have been available from the beginning of the 
development of computer peripheral devices. There are multiple possibilities for 
developing different AM. In the beginning, the AM were functions of the 
Operational Systems Core or so called Supervisor, and were executed via 
corresponding macro-commands in the assembler languages [Stably, 1970] or 
via corresponding input/output operators in the high level programming 
languages like FORTRAN, COBOL, PL/I, etc.  

The establishment of the first databases in the sixties of the previous century 
caused gradually accepting the concepts "physical" as well as "logical" 
organization of the data [CODASYL, 1971], [Martin, 1975]. In 1975, the 
concepts "access method", "physical organization" and "logical organization" 
became clearly separated.  

In the same time, Christopher Date noted:  
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"The Database Management System (DBMS) does not know anything about: 
− how physical records (blocks) are disposed;  
− how the stored fields are integrated in the records (nevertheless that in 

many cases it is obvious because of their physical disposition);  
− how the sorting is realized (for instance it may be realized on the base of 

physical sequence, using an index or by a chain of pointers);  
− how the direct access is realized (i.e. by index, sequential scanning or 

hash addressing).  
This information is a part of the structures for data storing but it is used by 

the access method but not by the DBMS" [Date, 1975]. 
Every access method presumes an exact organization of the file, which it is 

operating with and is not related to the interconnections between the files, 
respectively – between the records of one file and that in the others files. These 
interconnections are controlled by the physical organization of the DBMS. 

Therefore, in the DBMS we may distinguish four levels:  
1. Access methods at the core (supervisor) of the operation system. 
2. Specialized access methods which upgrade these at the core of the 

operating system. 
3. Physical organization of the DBMS. 
4. Logical organization of the DBMS. 
During the 80s, the overall progress in research and developments in the 

information technologies, and more specifically in image processing, data mining 
and mobile support boosted impetuous progress of designing convenient "spatial 
information structures" and "spatial-temporal information structures" and 
corresponding access methods. From different points of view, this period has 
been presented in [Ooi et al, 1993], [Gaede and Günther, 1998], [Arge, 2002], 
[Mokbel et al, 2003], [Moënne-Loccoz, 2005]. Usually the "one-dimensional" 
(linear) AM are used in the classical applications, based on the alphanumerical 
information, whereas the "multi-dimensional" (spatial) methods are aimed to 
serve the work with graphical, visual, multimedia information.  

4.2.1 Interconnections between Raised Access Methods 

One of the most popular analyses is given in [Gaede and Günther, 1998]. The 
authors presented a scheme of the genesis of the basic multi-dimensional AM 
and theirs modifications. This scheme firstly was proposed in [Ooi et al, 1993] 
and it was expanded in [Gaede and Günther, 1998]. An extension in direction to 
the multi-dimensional spatio-temporal access methods was given in 
[Mokbel et al, 2003].  
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Figure 3. Genesis of the Access Methods and their modifications 

extended variant of [Gaede and Günther, 1998] and [Mokbel et al, 2003] 
presented in [Markov et al, 2008] 
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The survey [Markov et al, 2008] presents a new variant of this scheme 
(Figure 3), where the new access methods, created after 1998, are added. A 
comprehensive bibliography of corresponded articles, where the methods are 
firstly presented is given. 

4.2.2 The Taxonomy of the Access Methods 

From the point of view of the served area, the access methods, presented on 
Figure 3, can be classified as follows (Figure 4): One-dimensional AM; 
Multidimensional Spatial AM; Metric Access Methods; High Dimensional Access 
Methods; and Spatio-Temporal Access Methods. 

 
Figure 4. Taxonomy of the access methods 

 One-Dimensional Access Methods 

One-dimensional AM are based on the concept "record". The "record" is a 
logical sequence of fields, which contain data eventually connected to unique 
identifier (a "key"). The identifier (key) is aimed to distinguish one sequence 
from another [Stably, 1970]. The records are united in the sets, called "files". 
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There exist three basic formats of the records – with fixed, variable, and 
undefined length.  

In the context-free AM, the storing of the records is not connected to their 
content and depends only on external factors – the sequence, disk address, or 
position in the file. The necessity of stable file systems in the operating systems 
does not allow a great variety of the context-free AM. There are three main 
types well known from sixties and seventies: Sequential Access Method; Direct 
Access Method and Partitioned Access Method [IBM, 1965-68]. 

The main idea of the context-depended AM is that a part of the record is 
selected as a key, which is used for making decision where to store the record 
and how to search it. This way the content of the record influences the access to 
the record. 

Historically, from the sixties of the previous century on, the majority of 
research and development is directed mainly to this type of AM. Modern DBMS 
are built using context-depended AM such as: unsorted sequential files with 
records with keys; sorted files with fixed record length; static or dynamic hash 
files; index file and files with data; clustered indexed tables [Connolly and 
Begg, 2002]. 

 Multidimensional Spatial Access Methods 

Multidimensional Spatial Access Methods are developed to serve information 
about spatial objects, approximated with points, segments, polygons, 
polyhedrons, etc. The implementations are numerous and include traditional 
multi-attributive indexing, geographical and/or GMES information systems, and 
spatial databases, content indexing in multimedia databases, etc. 

From the point of view of the spatial databases, access methods can be split 
into two main classes of access methods – Point Access Methods and Spatial 
Access Methods [Gaede and Günther, 1998]. 

Point Access Methods are used for organizing multidimensional point objects. 
Typical instances are traditional records, where every attribute of the relation 
corresponds to one dimension. These methods can be separated in three basic 
groups: 

− Multidimensional Hashing (for instance Grid File and its varieties, 
EXCELL, Twin Grid File, MOLPHE, Quantile Hashing, PLOP-Hashing, Z-
Hashing, etc); 

− Hierarchical Access Methods (includes such methods as KDB-Tree, LSD-
Tree, Buddy Tree, BANG File, G-Tree, hB-Tree, BV-Tree, etc.); 

− Space Filling Curves for Point Data (like Peano curve, N-trees, Z-
Ordering, etc). 

Spatial Access Methods are used for work with objects which have an 
arbitrary form. The main idea of the spatial indexing of non-point objects is to 
use an approximation of the geometry of the examined objects as more simple 
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forms. The most used approximation is Minimum Bounding Rectangle (MBR), i.e. 
minimal rectangle, which sides are parallel of the coordinate axes and 
completely include the object. There exist approaches for approximation with 
Minimum Bounding Spheres (SS Tree) or other polytopes (Cell Tree), as well as 
their combinations (SR-Tree). 

The common problem in operating with spatial objects is their overlapping. 
There are different techniques to avoid this problem. From the point of view of 
the techniques for the organization of the spatial objects, Spatial Access 
Methods fall into four main groups: 

− Transformation: this technique uses transformation of spatial objects to 
points in the space with more or less dimensions. Most of them spread 
out the space using space filling curves (Peano Curves, z-ordering, 
Hibert curves, Gray ordering, etc.) and then use some point access 
method upon the transformed dataset;  

− Overlapping Regions: here the datasets are separated in groups; 
different groups can occupy the same part of the space, but every space 
object associates with only one of the groups. The access methods of 
this category operate with data in their primary space (without any 
transformations) eventually in overlapping segments. Methods which use 
this technique include R-Tree, R-link-Tree, Hilbert R-Tree, R*-Tree, 
Sphere Tree, SS-Tree, SR-Tree, TV-Tree, X-Tree, P-Tree of Schiwietz, 
SKD-Tree, GBD-Tree, Buddy Tree with overlapping, PLOP-Hashing, etc.; 

− Clipping: this technique uses the clipping of one object to several sub-
objects, which will be stored. The main goal is to escape overlapping 
regions. However, this advantage can lead to the tearing of the objects, 
extending the resource expenses, and decreasing the productivity of the 
method. Representatives of this technique are R+-Tree, Cell-Tree, 
Extended KD-Tree, Quad-Tree, etc.; 

− Multiple Layers: this technique can be considered as a variant of the 
techniques of Overlapping Regions, because the regions from different 
layers can overlap. Nevertheless, there exist some important 
differences: first – the layers are organized hierarchically; second – 
every layer splits the primary space in a different way; third – the 
regions of one layer never overlaps; fourth – the data regions are 
separated from the space extensions of the objects. Instances for these 
methods are Multi-Layer Grid File, R-File, etc. 

 Metric Access Methods 

Metric Access Methods deal with relative distances of data points to chosen 
points, named anchor points, vantage points or pivots [Moënne-Loccoz, 2005]. 
These methods are designed to limit the number of distance computation, 
calculating first distances to anchors, and then finding the searched point in a 
narrowed region. These methods are preferred when the distance is highly 
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computational, as e.g. for the dynamic time warping distance between time 
series. Representatives of these methods are: Vantage Point Tree (VP Tree), 
Bisector Tree (BST-Tree), Geometric Near-Neighbor Access Tree (GNNAT), as 
well as the most effective from this group – Metric Tree (M-Tree) [Chavez et al, 
2001]. 

 High Dimensional Access Methods 

Increasing the dimensionality strongly aggravates the qualities of the 
multidimensional access methods. Usually these methods exhaust their 
possibilities at dimensions around 15. Only X-Tree reaches the boundary of 25 
dimensions, after which this method gives worse results then sequential 
scanning [Chakrabarti, 2001]. 

A possible solution is based on the data approximation and query 
approximation in sequential scan. These methods form a new group of access 
methods – High Dimensional Access Methods. 

Data approximation is used in VA-File, VA+-File, LPC-File, IQ-Tree, A-Tree, 
P+-Tree, etc. 

For query approximation, two strategies can be used: 
− examine only a part of the database, which is more probably to contain 

the resulting set – as a rule these methods are based on the clustering 
of the database. Some of these methods are: DBIN, CLINDEX, PCURE; 

− splitting the database to several spaces with fewer dimensions and 
searching in each of them. Here two main methods are used:  

1. Random Lines Projection: representatives of this approach are 
MedRank, which uses B+-Tree for indexing every arbitrary projection 
of the database, and PvS Index, which consist of combination of 
iterative projections and clustering. 

2. Locality Sensitive Hashing: based on the set of local-sensitive hashing 
functions [Moënne-Loccoz, 2005]. 

 Spatio-Temporal Access Methods 

The Spatio-Temporal Access Methods have additional defined time dimension 
[Mokbel et al, 2003]. They operate with objects which change their form and/or 
position across time. According to position of time interval in relation to present 
moment, the Spatio-Temporal Access Methods are divided to: 

− indexing the past: these methods operate with historical spatio-temporal 
data. The problem here is the continuous increase of the information 
over time. To overcome the overflow of the data space two approaches 
are used – sampling the stream data at certain time position or updating 
the information only when data is changed. Representatives of this 
group are: RT-Tree, 3DR-Tree, STR-Tree, MR-Tree, HR-Tree, HR+-Tree, 
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MV3R-Tree, PPR-Tree, TB-Tree, SETI, SEB-Tree. Spatio-temporal 
indexing schemes for historical data can be split in three categories:  
- the first category includes methods which are integrating both spatial 

and temporal aspects into already existing spatial methods;  
- the second category can be described as using snapshots of the 

spatial information in each time instance; 
- the third category focuses on trajectory-oriented queries, while 

spatial dimension remains in the background.  
− indexing the present: in contrast to previous methods, where all 

movements are known, here the current positions are neither stored nor 
queried. Some of the methods, which answer the questions of the 
current position of the objects are 2+3R-Tree, 2-3TR-Tree, LUR-Tree, 
Bottom-Up Updates, etc.; 

− indexing the future: these methods have to represent the current and 
predict the future position of a moving object – here are embraced the 
methods like PMR-Quadtree for moving objects, Duality Transformation, 
SV-Model, PSI, PR-Tree, TPR-Tree, TPR*-tree, NSI, VCIR-Tree, STAR-
Tree, REXP-Tree. 

The survey of the access methods suggests that the context-free multi-
dimensional access methods practically are not available. A step in developing 
such methods is the Multi-domain Information Model and corresponding Multi-
domain Access Method introduced in [Markov, 1984] [Markov, 2004]. It is 
presented further in this chapter. 

4.3 Multi-Dimensional Numbered Information Spaces 

The proposed external memory structure is based on the numbering as a 
main approach. The idea consists in replacing the (symbol or real; point or 
interval) values of the objects' attributes with integer numbers of the elements 
of corresponding ordered sets. This way, each object will be described by a 
vector of integer values, which may be used as the co-ordinate address in the 
multi-dimensional information space. 

In other words, the process of replacing the names by numbers permits the 
use of mathematical functions and address vectors for accessing the information 
instead of search engines.  

This type of memory organization is called "Multi-dimensional numbered 
information spaces". Its advantages have been demonstrated in multiple 
practical implementations during more than twenty-five years [Markov, 1984], 
[Markov, 2004], [Markov, 2005]. In the recent years, it had been implemented 
in the area of intelligent systems memory structuring for several data mining 
tasks and especially in the area of association rules mining. 
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4.3.1 Multi-Domain Information Model (MDIM) 

The independence of dimensionality limitations is very important for 
developing new intelligent systems aimed to process high-dimensional data. To 
achieve this one needs information models and corresponding access method to 
cross the boundary of the dimensional limitations and to obtain the possibility to 
work with information spaces with practically unlimited number of dimensions. 
The first step is to establish context free multi-dimensional models and based on 
it to develop high-level context depended applications. Examining the state of 
the art in this area shows that the context-free multi-dimensional information 
models and access methods practically are not available. One attempt in this 
direction is establishing the Multi-Domain Information Model (MDIM) [Markov, 
2004] and the corresponding Multi-domain Access Method. Their possibilities for 
operating with context-free multidimensional data structures will be presented 
below. 

 Basic Structures of MDIM 

Basic structures of MDIM are basic information elements, information spaces, 
indexes and metaindexes, and aggregates. The definitions of these structures 
are given below: 

 Basic Information Element 

The basic information element ( BIE ) of МDIМ is an arbitrary long string of 
machine codes (bytes). When it is necessary, the string may be parceled out by 
lines. The length of the lines may be variable. 

Let the universal set UBIE  be the set of all BIE . 

Let 1E  be a set of basic information elements:  

1 1{ | , 1,..., }i iE e e UBIE i m= ∈ = . 

Let 1μ  be а function, which defines а biunique correspondence between 

elements of the set 1E  and elements of the set 1C  of positive integer numbers: 

1 1{ | , 1,..., }i iC c c i m= ∈ =N , 

i.e. 1 1 1:E Cμ ↔ . 

The elements of 1C  are said to be numbers (co-ordinates) of the elements 

of 1E .  
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 Information Spaces 

The triple 1 1 1 1( , , )S E Cμ=  is said to be а numbered information space of 
range 1 (one-dimensional or one-domain information space). 

The triple 2 2 2 2( , , )S E Cμ=  is said to be а numbered information space of 

range 2 iff 2E  is a set whose elements are numbered information spaces of 

range 1 and 2μ  is а function which defines а biunique correspondence between 

elements of 2E  and elements of the set 2C  of positive integer numbers: 

2 2{ | , 1,..., }j jC c c j m= ∈ =N , 

i.e. 2 2 2:E Cμ ↔ . 

The triple ( , , )n n n nS E Cμ=  is said to be а numbered information space of 

range n (n-dimensional or multi-domain information space) iff nE  is a set 

whose elements are information spaces of range 1n −  and nμ  is а function, 

which defines а biunique correspondence between elements of nE  and elements 

of the set nC  of positive integer numbers: 

{ | , 1,..., }n k k nC c c k m= ∈ =N , 

i.e. :n n nE Cμ ↔ . 

Every basic information element "e" is considered as an information space 

0S  of range 0. It is clear that the information space 0 0 0 0( , , )S E Cμ= , is 

constructed in the same manner as all others: 

− the machine codes (bytes) 0, 1,...,ib i m=  are considered as elements of 

0E ; 

− the position ,ip i∈N  of ib  in the string e  is considered as co-ordinate 

of ib , i.e. 0 0{ | , 1,..., }l lC p p l m= ∈ =N ; 

− function 0μ  is defined by the physical order of bi in e and we have:  

0 0 0:E Cμ ↔  

In this way, the string 0S  may be considered as a set of sub-elements 

(sub-strings). The number and length of the sub-elements may be variable. 
This option is very helpful but it closely depends on the concrete realizations and 
it is not considered as a standard characteristic of MDIM. 

The information space nS , which contains all information spaces of a given 
application is called the information base of range n . Usually, the concept 
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information base without indication of the range is used as generalized concept 
to denote all available information spaces. 

 Indexes and Metaindexes 

The sequence 1 1( , ,..., )n nA c c c−=  where , 1,...,i ic C i n∈ =  is called the 
multidimensional space address of range n  of a basic information element. 
Every space address of range m , m n< , can be extended to space address of 
range n  by adding leading n m−  zero codes. Every sequence of space 
addresses 1 2, ,..., kA A A , where k  is arbitrary positive number, is said to be a 

space index. 
A special kind of space index is the projection, which is the analytically 

given space index. There are two types of projections: 
− hierarchical projection – where the top part of coordinates is fixed and 

the low part vary for all possible values of coordinates, where non-empty 
elements exist; 

− arbitrary projection – in this case, it is possible to fix coordinates in 
arbitrary positions and the other coordinates vary for all possible values 
of coordinates, where non-empty elements exist. 

Every index may be considered as a basic information element, i.e. as a 
string, and may be stored in a point of any information space. In such case, it 
will have a multidimensional space address, which may be pointed in the other 
indexes, and, this way, we may build a hierarchy of indexes. Therefore, every 
index, which points only to indexes, is called meta-index. 

The approach of representing the interconnections between elements of the 
information spaces using (hierarchies) of meta-indexes is called 
polyindexation. 

 Aggregates 

Let { | 1,..., }iG S i m= =  be a set of numbered information spaces.  

Let { : | , 1,..., }ij i jS S i const j mτ ν= → = =  be a set of mappings of one "main" 

numbered information space ,iS G i const⊂ = , into the others 

, 1,...,jS G j m⊂ = , and, in particular, into itself.  

The couple: ( , )D G τ=  is said to be an "aggregate".  

It is clear that we can build m  aggregates using the set G  because every 
information space , 1,...,jS G j m⊂ = , may be chosen as a main information 

space. 
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 Operations in the MDIM 

After defining the information structures, we need to present the operations, 
which are admissible in the model.  

It is clear that the operations are closely connected to the defined structures.  
In MDIM, we assume that all information elements of all information spaces 

exist. If for any :i i iS E C=∅∧ =∅ , than it is called empty. Usually, most of 

the information elements and spaces are empty. This is very important for 
practical implementations. 

 Operation with Basic Information Elements 

Because of the rule that all the structures given above must exist, we only 
need two operations: (1) updating and (2) getting the value of BIE. 

For both types of operations, we need two service operations: (1) getting the 
length and (2) the positioning in the BIE. 

Updating, or simply – writing the element, has several modifications with 
obvious meaning: writing a BIE as a whole, appending/inserting in a BIE, 
cutting/replacing a part of a BIE and deleting a BIE. 

There is only one operation for getting the value of a BIE, i.e. Read a portion 
from a BIE starting from given position. We may receive the whole BIE if the 
starting position is the beginning of BIE and the length of the portion is equal to 
the BIE length.  

 Operation with Spaces 

With a single space, we may do only one operation – clearing (deleting) the 
space, i.e. replacing all BIE of the space with empty BIE – ∅. After this 
operation, all BIE of the space will have zero length. Really, the space is cleared 
via replacing it with empty space. 

With two spaces, we may provide two operations with two modifications 
both: (1) copying and (2) moving the first space in the second. 

The modifications define how the BIE in the recipient space are processed. 
We may have: copy/move with clear and copy/move with merge. 

The "clear" modifications first clear the recipient space and after that provide 
a copy or move operation.  

The merge modifications offer two types of processing: destructive or 
constructive. The destructive merging may be "conservative" or "alternative". 
In the conservative approach, the recipient space BIE remains in the result if it 
is with none zero length. In the other approach the donor space BIE remains in 
the result. In the constructive merging the result is any composition of the 
corresponding BIE of the two spaces. 

Of course, the move operation deletes the donor space after the operation. 
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 Operation with Indexes and Metaindexes 

The indexes are the main approach for describing the interconnections 
between the structures. 

We may receive the space address of the next or previous, empty or 
non-empty elements of the space starting from any given co-ordinate. This 
corresponds to the processing of given hierarchical projections. 

By analogy, we may receive the space address of the nextproj or 
previousproj non-empty elements of the space for the current address in 
operation with a given arbitrary projection. 

The possibility to count the number of non-empty elements of a given 
projection is useful for practical realizations. 

The operations with indexes are based on usual logical operations between 
sets. The difference from usual sets is that the information spaces are built by 
the interconnection between two main sets: the set of co-ordinates and the set 
of information elements. 

This way the operations with indexes may be classified in two main types: 
context-free and context-depended operations. 

The context-free operations defined in the MDIM are based on the 
classical logical operations – intersection, union, and supplement, but these 
operations are not trivial. Because of the complexity of the structure of the 
information spaces, these operations have at least two principally different 
realizations based on: 

− co-ordinates; 
− information elements. 

The operations based on co-ordinates are determined by the existence of the 
corresponding space information elements. Therefore, the values of the co-
ordinates of the existing information elements determine the operations. 

In the other case, the existing BIE values determine the logical operations. 
In both cases, the result of the logical operations is an index. 
The context-dependent operations need special implementations for 

concrete purposes.  
The main information operation is creating the indexes and meta-indexes. 

The main purpose of the MDIM is to provide the possibility for access to the 
practically unlimited information space and easy approach for building 
interconnection between its elements. The goal of the concrete applications is to 
build tools for creating and operating with the indexes and meta-indexes and to 
implement these tools in the realization of user requested systems. 

For instance, such tools may realize the transfer from one structure to 
another, information search, sorting, making reports, more complicated 
information processing, etc. The information operations can be grouped into four 
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sets according to the main information structures involved: basic information 
elements, information spaces and index or meta-index structures. 

 Operations with Aggregates 

Theory of aggregates may be assumed as an extension of the Relation theory 
because the relation in the sense of the model of Codd [Codd, 1970] may be 
represented by the aggregate. It is easy to see that if the aggregation mappings 
are one-one mappings it will be relation in the sense of the model of Codd. So, 
we may say that the aggregate is a more universal structure than the relation 
and the operations with aggregates include those of relation theory. The relation 
algebra is a very good starting point to understand the algebra of aggregates. 
The new element is that the mappings of different aggregates may be not one-
one mappings. This field is not investigated until now. 

4.3.2 Multi-Domain Access Method ArM 32 

The program realization of MDIM is called Multi-Domain Access Method. For a 
long period, it has been used as a basis for the organization of various 
information bases. There exist several realizations of MDIM for different 
hardware and/or software platforms. The most resent one is the FOI Archive 
Manager – ArM. One of the first goals of the development of ArM was to 
represent the digitalized military defense situation, which is characterized by a 
variety of complex objects and events, which occur in the space and time and 
have a long period of variable existence. The high number of layers, aspects, 
and interconnections of the real situation may be represented only by 
information space hierarchy. In addition, the different types of users with 
individual access rights and needs insist on the realization of a special tool for 
organizing such information base. Over the years, the efficiency of ArM is proved 
in wide areas of information service of enterprise managements and accounting. 
Organizing the datum in appropriate multi-dimensional information space model 
permits omitting the heavy work of creating of OLAP structures [Markov, 2005]. 

The newest ArM Version No.9, called ArM32, is developed for MS Windows 
and realizes the proposed algorithms.  

The ArM32 elements are organized in numbered information spaces with 
variable ranges. There is no limit for the ranges of the spaces. Every element 
may be accessed by a corresponding multidimensional space address 
(coordinates) given via coordinate array of type cardinal. At the first place of this 
array, the space range needs to be given. Therefore, we have two main 
constructs of the physical organizations of ArM32 – numbered information 
spaces and elements. 
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In ArM32, the length of the string may vary from 0 up to 1G bytes. There is 
no limit for the number of strings in an archive but their total length plus 
internal indexes could not exceed 4G bytes in a single file. 

The main ArM32 operations with basic information elements are:  
− ArmRead (reading a part or a whole element);  
− ArmWrite (writing a part or a whole element);  
− ArmAppend (appending a string to an element);  
− ArmInsert (inserting a string into an element);  
− ArmCut (removing a part of an element);  
− ArmReplace (replacing a part of an element);  
− ArmDelete (deleting an element);  
− ArmLength (returning the length of the element in bytes). 

The operations over the spaces are:  
− DelSpace (deleting the space);  
− CopySpace and MoveSpace (copying/moving the first space in the 

second in the frame of one file);  
− ExportSpace (copying one space from one file the other space, which is 

located in other file). 
The operations, aimed to serve the hierarchical projections are:  
− ArmNextPresent and ArmPrevPresent (traversing of existing elements); 
− ArmNextEmpty and ArmPrevEmpty (finding neighbor empty element).  

For arbitrary projections the operations are: ArmNextProj and ArmPrevProj. 
The operations, which create indexes, are:  
− ArmSpaceIndex (returns the space index of the non-empty structures in 

the given information space;  
− ArmProjIndex (gives the space index of basic information elements of a 

given hierarchical or arbitrary projection).  
The service operations for counting non-empty elements or subspaces are 

correspondingly:  
− ArmSpaceCount (returning the number of the non-empty structures in 

given information space);  
− ArmProjCount (calculating the number of elements of given (hierarchical 

or arbitrary) projection).  
The ArM32 logical operations defined in the multi-domain information model 

are based on the classical logical operations – intersection, union, and 
supplement, but these operations are not so trivial. Because of complexity of the 
structure of the spaces these operations have at least two principally different 
realizations based on codes of the information spaces' elements and on contents 
of those elements. 
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The ArM32 information operations can be grouped into four sets 
corresponding to the main information structures: elements, spaces, 
aggregates, and indexes. Information operations are context depended and 
need special realizations for concrete purposes. Such well-known operations are 
for instance transferring from one structure to another, information search, 
sorting, making reports, etc. 

Finally, several operations, which serve information exchange between ArM32 
archives (files) such as copying and moving spaces from one to another archive 
exist.  

4.3.3 Advantages of Multi-Dimensional Numbered Information 
Spaces 

We need to discuss shortly the main concept we use – the information space. 
Its main structure is an ordered set of numbered information elements. These 
elements may be information spaces or terminal elements. Of course, the 
hierarchical structures are well-known. The new aspect of this model is the 
possibility to connect elements from different spaces and levels of the hierarchy 
using poly-indexation and in this way to create very large and complex networks 
with a co-ordinate hierarchical basis.  

The variety of interconnections is the characteristic, which permits us to call 
the ordered set of numbered information elements "Information Space". In the 
information space, different information structures may exist at the same time in 
the same set of elements. In addition, the creation and destruction of the link's 
structures do not change the basic set of elements. The elements and spaces 
always exist but, in any cases, they may be "empty". At the end, the possibility 
to use coordinates is good for well-structured models where it is possible to 
replace search with addressing.  

Hence, the advantages of the numbered information spaces are: 
− the possibility to build growing space hierarchies of information 

elements; 
− the great power for building interconnections between information 

elements stored in the information base;  
− the practically unlimited number of dimensions (this is the main 

advantage of the numbered information spaces for well-structured tasks 
where it is possible "to address, not to search");  

− the possibility to create effective and useful tools, in particular for 
association rule mining.  

In the next chapter we demonstrate the advantages of using such memory 
structuring in the field of data mining on the example of realization of one class 
association rule classifier, called MPGN. 
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Conclusion 
Here we made an overview of data structures used for presenting information 

in different fields of data mining and pattern recognition. 
A special kind of data organization called "Multi-dimensional numbered 

information spaces", allowing context-free access to high dimension points, 
where different kind of data structures can be stored was discussed. 

The idea to use the process of replacing the names by numbers, which 
permits using of mathematical functions and addressing vectors for accessing 
the information instead of search engines is established in Multi-Domain 
Information Model (MDIM) and the corresponding Multi-domain Access Method.  

The program realization of this method, called ArM 32 was outlined. The main 
structures and operations with them are discussed. 
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5 PGN and MPGN Algorithms 

 
Abstract 
In this chapter the algorithms of two classifiers– PGN and MPGN – are 

described.  
PGN creates association rules, striving for maximal accuracy of produced 

rules. 
MPGN employs multilayer structure. It offers the possibility to escape 

combinatorial explosion using smart disposing of the information. 
A coding convention is introduced first, followed by the description of the PGN 

and MPGN algorithms. 
 

5.1 Coding Convention 

Usually in classification tasks rectangular datasets are used. They are a set of 

instances { , 1,..., }iR i r= ∈R . Each instance represent a set of attribute-value 

pairs 1 1{ , ,..., }n nR C c A a A a= = = = . Because in the rectangular datasets the 

positions of class and attributes are fixed, the instances are written as vectors, 
which contain only values of attributes. For increasing the readability class value 
(first position) is separated with "|": 1( | ,..., )nR c a a= . 

Every instance has the same quantity of attributes, but some of the values 
may be omitted. First attribute is the class variable denoted c ; the input 
attributes are denoted ka . In the remainder of the text, we will simply refer to 

them as "attributes". 
Attribute positions of a given instance, which can take arbitrary values from 

the attribute domain, are denoted as "-".  
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Thus each instance (record) is presented as: 1( | ,..., )nR c a a= ; where n  is 

the number of attributes (feature space dimension), Nc∈ ; Nka ∈  or " "ka = − , 

[1,..., ]k n∈ . 

More precisely, the class values and attribute values receive values, which 
are natural numbers from 1 to some maximal value (specific for each attribute), 
i.e. [1,..., ]cc M∈ , [1,..., ]

kk aa M∈ . 

Pattern is denoted P  and has similar structure as instances. A pattern is a 
subset of an instance. 

1

1

( | ,..., )   
( | ,..., )   

 or " "

n

n

i i i

P c a a

R c b b P R

a b a

= ⎫
⎪= ⊆⎬
⎪= = − ⎭

.  

For example 1(2 | 3,2, ,2) (2 | 3,2,1,2)P R= − ⊆ = . 

In 1( | ,..., )nP c a a=  usually ( )c  is called head of a pattern and 1( ,..., )na a  is 

called its body. 
Each pattern defines a rule in a following manner: if some attributes have 

given specified values (looking non-arbitrary values of the body of the pattern), 
than (in some degree of accuracy) we can say that the observed object belongs 
to the class, pointed in the head of the pattern. 

The cardinality of one pattern is defined as number of "non-arbitrary" 
attribute values: 

number of " "kP a= ≠ − ; P n≤ . 

For the set of patterns { , 1,..., }iP i m= ∈P  we can define maximal cardinality 

as maximum of cardinalities of patterns in the set. 

1,...,
( ) max i

i m
MaxCard P

∈
=P . 

The intersection between iP  and jP  is the result of matching of these 
patterns.  

1
::

( | ,..., ) :   and  
" ":" ":

ji ii i j
k k ki j l l l l l

n k jii j
k k

a a ac c c
P P c a a c a

a ac c

⎧⎧ ==⎪ ⎪∩ = = =⎨ ⎨
− ≠− ≠⎪ ⎪⎩ ⎩

. 

If 0i jP P∩ >  and i jc c= , then i jP P P= ∩  is a pattern. P  is successor 

of iP  and jP . And from other side, iP  and jP  is called predecessors of P .  
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For example, the successor of 1 (2 | 3,2,1,2)R =  and 3 (2 | 3,2,2,2)R =  is 

(2 | 3,2, ,2)P = − . 

Between patterns that belong to different classes different situations can 
exist. We are interested in two cases: 

− exception pattern versus general pattern; 
− contradictory patterns. 

One pattern becomes an exception pattern for other ones if the body of 
second pattern (more general) is a subset of the body of first pattern (more 
concrete), but they belong to different classes. 

1( | ,..., )i i i i
nP c a a=  is an exception pattern of 1( | ,..., )j j j j

nP c a a=  if 

1 1( ,..., ) ( ,..., )i i j j
n na a a a⊃  and i jc c≠ . 

The contradictory situation means that the patterns have equal attributes 
(equal bodies) but belong to different classes (different heads). 

iP  contradicts to jP  if 1( | ,..., )i i
nP c a a=  and 1( | ,..., )j j

nP c a a= , but 

i jc c≠ . 
Hence the attributes at hand or the information available are not able to 

discriminate between the two classes.  
Both situations can occur when: 
− we have missing attributes; 
− the class values are ill defined (exceptions); 
− or the class/attributes values cannot be measured as required (noise, 

error). 
The query instance Q  (or only query) is similar to a pattern, but the class 

value is unknown. It is denoted 1(? | ,..., )nQ b b= . 

The intersection size between pattern P  and query Q  is defined as 

( , )
P Q

IntersectionSize P Q
P

∩
= . Let's mention that this operation is not 

symmetric, i.e. ( , ) ( , )IntersectionSize P Q IntersectionSize Q P≠ .  

The intersection percentage is calculated as 
( , ) 100* ( , )IntersectPerc P Q IntersectSize P Q= .  

The intersection percentage is 100% in the case when P  became a subset of 
pattern 'Q , which has the head of the pattern P  and the body of the query Q . 

1
1

1

( | ,..., )
 if  ' ( | ,..., ) then  ( , ) 100%

(? | ,..., )
n

n
n

P c a a
P Q c b b IntersectPerc P Q

Q b b

= ⎫
⊆ = =⎬= ⎭

. 
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For the set of patterns { , 1,..., }iP i m= ∈P  we can define maximal percentage 

as maximum of intersection percentages of patterns in the set. 

1,...,
( , ) max ( , )i

i m
MaxIPerc Q IntersectPerc P Q

∈
=P . 

The support of a pattern P  in a dataset { , 1,..., }iR i r= ∈R  is the number of 

instances for which P  became their subset. 

( , ) number of : ,  , 1,...,i i iSupp P R P R R i r= ⊆ ∈ ∈R R . 

The confidence of a pattern 1( | ,... )nP c a a=  in a dataset { , 1,..., }iR i r= ∈R  is 

equal to the ratio between support of the pattern and support of the body of the 
pattern in the dataset. 

1

( , )( , )
(( | ,... ), )n

Supp P
conf P

Supp a a
=

−
RR

R
. 

5.2 PGN Classifier 

Here we propose a CAR algorithm, named PGN. One of the main specifics of 
PGN is that it is a parameter free classifier. Let mention that in classical CAR 
algorithms users have to provide the support and confidence level. 

The association rule mining goes from longest rules (instances) to the shorter 
ones until no intersections between patterns in the classes are possible. In the 
pruning phase the contradictions and inconsistencies of more general rules are 
cleared, after that the pattern set is compacted throwing all more concrete rules 
within the classes. 

The remainder of the text contains the description of the algorithm of PGN 
classifier.  

As example, a simple dataset is used, including the following instances: 
 

R1: (1| 1, 2, 4, 1)  
R2: (1| 1, 2, 3, 1)  
R3: (1| 3, 1, 3, 2)  
R4: (1| 3, 1, 4, 2)  
R5: (1| 1, 2, 4, 1) Equal to R1
R6: (1| 3, 1, 4, 2) Equal to R4
R7: (2| 3, 1, 1, 2)  
R8: (2| 2, 1, 1, 2)  
R9: (2| 3, 1, 2, 2)  
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5.2.1 Training Process 

The training process consists of several steps: 
− generalization – the process of association rule mining; 
− pruning – the process of clearing exceptions between classes and 

lightening the pattern set; 
− searching patterns with unique attributes. This step is optional as well as 

it not typical CAR strategy and from other side it created very powerful 
patterns, which is good for some dataset, but not for the others. 

 Step 1: Generalization 

The step of creating the pattern set consists of two sub-steps: 
1. Adding instances to the pattern set. 
2. Creating all possible intersection patterns between patterns within the 

class. 

 Sub-step 1.1: Adding Instances 

The instances of the learning set { }iLS R= , 1,...,i t=  are added to the 

pattern set as initial patterns. All patterns are separated in accordance of their 
classes (Figure 5).  

 

 
Figure 5. Adding instances in the pattern set 

 Sub-step 1.2: Adding Intersections 

For each class every combination of two patterns is intersected. If a new 
pattern exists, it would be added to the pattern set. If the patterns-candidates 
to be written into the pattern set (instances as well as patterns) are already in 
it, then they would not be duplicated; however the set of instances that are 
possible creators of the pattern would be expanded.  

The process goes iteratively until no intersections are possible. 
Figure 6 shows the process of creating the pattern set on the example 

dataset. 
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Figure 6. Adding intersections in the pattern set 

Thus, after this step, the pattern set consists of these objects: 

{ }lPS P= , 
 

:
;   , , ; 0

l
l

l i j i j i j l

R LS
P

P P P P PS P PS c c P

⎧ ∈⎪
⎨

= ∩ ∈ ∈ = >⎪⎩
. 

 Step 2: Pruning 

In this step some patterns are removed from the pattern set using two sub-
steps: 

1. Deleting contradictory patterns as well as general patterns that have 
exception patterns in some other class.  

2. Removing more concrete patterns within the classes. This step ensures 
compactness of the pattern set that can be used in the recognition stage. 

 Sub-step 2.1: Clearing Contradictions and General-
Exception Patterns between Classes 

In this sub-step the patterns, belonging to different classes are paired. If one 
pattern matches another pattern (but they have a different class value), then 
the more general is removed. If two patterns match each other then both of 
them are removed. 

, ,  :i j i jP P PS c c∈ ≠  

: remove 

: remove 

: remove ,

   

   

i

j

i j

i j i j

i j j i

i j i j

P

P

P P

P P P P

P P P P

P P P P

= <

= <

= =

⎧ ∩
⎪
⎪ ∩⎨
⎪

∩⎪⎩

 

If a dataset does not contain missing values, then all instances have equal 
R n=  and all other patterns will have smaller sizes. This means that checking 
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up for data consistency can be done with comparison of patterns only with the 
instances but not with all patterns from other classes. 

This sub-step tries to supply the maximum confidence of the resulting rules. 
This operation removes the patterns that do not formulate a representative 

for a given class combination, because in another class there exists pattern with 
an equal or more concrete combination of the same values of attributes, which 
can pretend to recognize the request.  

Furthermore, by removing incorrect patterns (records with equal attributes, 
which belongs to different classes) this operation ignores the possible 
inconsistencies in the learning set. 

It should be noted that the idea of supplying a confidence threshold of 100% 
can result in an empty pattern set for noisy datasets. 

 
Figure 7. Supplying maximum confidence of the rules 

Figure 7 illustrates the first pruning sub-step for example dataset. 
This process passes in two steps: labeling followed by removing. 

 Sub-step 2.2: Retain Most General Rules in the Classes 

This sub-step is provided again within the classes. Patterns from equal 
classes are compared and, conversely to the previous step, more concrete 
patterns are deleted, i.e. the larger pattern is removed. 

, ,  i j i jP P PS c c∈ = : 
: remove 

: remove 

j

i

i j i j

i j j i

P

P

P P P P

P P P P

= <

= <

⎧ ∩⎪
⎨

∩⎪⎩
 

The rationale behind is that after first sub-step in the pattern set remains 
only patterns that are not exceptions to the other class. Because of this, we can 
make lighter the pattern set by removing patterns for which other patterns are 
subsets. 

Figure 8 illustrates lightening the pattern set for example dataset. 
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Figure 8. Retain most general rules 

As a result outcome of this step in the pattern set remain only patterns that 
are general for the class that they belong and their bodies are not subsets of the 
bodies of patterns in other classes. 

In the example dataset the pattern set contains following patterns with 
corresponded support: 

 
 Pattern set Support Support set 

 Class 1   
P8 (1| 1, 2, -, 1) 3 {R1,R2,R5} 
P9 (1| -, -, 4, -) 4 {R1,R4,R5,R6}
P10 (1| -, -, 3, -) 2 {R2,R3} 
 Class 2   

P7 (2| 3, 1, 2, 2) 1 {R9} 
P12 (2| -, 1, 1, 2) 2 {R7,R8} 

 

5.2.2 Recognition Process 

The record to be recognized is given by the values of its attributes 

1 2(? | , ,..., )nQ a a a= . Some of the features may be omitted.  

We try to find the best fit between the query and the patterns from the 
recognition model. 

The idea is that in the recognition model at the same time there are patterns 
that are very global (only a few non-arbitrary attributes) and some patterns that 
are concrete (with more / a lot of non-arbitrary attributes). The global patterns 
have a short size, but they are very powerful for the class. They contain only a 
few attributes, but trustworthy for recognizing this class. In parallel, the 
concrete patterns remains because more global combinations were killed by 
other classes – so, it means that maybe there are no such kind of very specific 
attributes and only complex combination of them characterizes the class. 

So, we affirm that intersection percentage can make some kind of alignment 
between short and long patterns. Of course, the intersection percentage suffers 
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from some kind of inequality when is not 100%; in this case short patterns 
became lower value then the longer ones. But, we argue that this preceding of 
the more concrete rules when there are not total matching with the query is 
better because more features are equal. 

These assumptions we implemented in the algorithm of recognition as 

follows: During the recognition stage all patterns lP PS∈ , which have maximal 
intersection percentage (size) with request Q  build a list of patterns of potential 

answers. The list consists of triplets containing the number of the class, the 
coverage and the position of the pattern. While traversing the patterns, 
dynamically the highest intersection percentage (size) is held. As potential 
answers only these patterns are retained that have such intersection percentage 
(size). Finally, the class, which has maximal sum of supports of patterns of this 
class, belonging to the list of potential answer, is given as answer.  

 
Let's see two examples on the tested dataset. 
 

For the query (? | 2,1, ,2)Q = − : 
 Pattern set P Q∩  ( , )IntSize P Q Support Support set 

 Class 1     
P8 (1| 1, 2, -, 1) (?| -, -, -, -) 0 3 {R1,R2,R5} 
P9 (1| -, -, 4, -) (?| -, -, -, -) 0 4 {R1,R4,R5,R6} 
P10 (1| -, -, 3, -) (?| -, -, -, -) 0 2 {R2,R3} 
 Class 2     

P7 (2| 3, 1, 2, 2) (?| -, 1, -, 2) 0.50 1 {R9} 
P12 (2| -, 1, 1, 2) (?| -, 1, -, 2) 0.667 2 {R7,R8} 

 

The maximal intersection size between patterns and query is 0.667 and only 
one pattern from class 2 has such intersection size. Class 2 is given as answer. 

 

For the query (? |1,2,1,2)Q = : 
 Pattern set P Q∩  ( , )IntSize P Q Support Support set 

 Class 1     
P8 (1| 1, 2, -, 1) (?| 1, 2, -, -) 0.667 3 {R1,R2,R5} 
P9 (1| -, -, 4, -) (?| -, -, -, -) 0 4 {R1,R4,R5,R6} 
P10 (1| -, -, 3, -) (?| -, -, -, -) 0 2 {R2,R3} 
 Class 2     

P7 (2| 3, 1, 2, 2) (?| -, -, -, 2) 0.250 1 {R9} 
P12 (2| -, 1, 1, 2) (?| -, -, 1, 2) 0.667 2 {R7,R8} 

 

The maximal intersection size between patterns and query is 0.667. 
There are two patterns from both classes for which ( , ) 0.667IntSize P Q = , i.e. 

there are two sets of potential answers: 1:{ 8}class P  and  2 :{ 12}class P . In 

this case the set of patterns of class 1 has higher support 3. Because of this 
class 1 is given as answer. 
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5.3 MPGN Algorithm 

The PGN classifier has several advantages and as we can see in the chapter 
with experiments shows very good benefits. It possesses all advantages of CAR 
classifiers, such as creating compact pattern set, used in the recognition stage, 
easy interpretation of the results, and very good accuracy for clear datasets. 

In parallel, during the program realization one disadvantage is seen, 
connected with exponential growth of operations during the process of creating 
the pattern set. 

In order to overcome this bottleneck, as well as to quickly find the potential 
answer in the recognition stage MPGN algorithm is created.  

MPGN is abbreviation from "Multi-layer Pyramidal Growing Networks of 
information spaces", which is kind of CAR algorithm that uses advantages of 
numbered information spaces. The main goal is to extend the possibilities of 
network structures by using a special kind of multi-layer memory structures 
called "pyramids", which permits defining and realizing of new opportunities. 

The basic ideas in PGN and MPGN are similar. The main differences are 
connected with: 

− MPGN extends PGN structures for presenting patterns in the pattern set 
using multi-layer memory structures, called pyramids; 

− the possibility to save all patterns in an efficient manner, using multi-
dimensional numbered information spaces, allows to keep all patterns in 
the pattern set, because of this the pruning step is different – only 
contradictory patterns are removed; 

− such pattern set contains possibilities to be implemented different kind 
of algorithm in the recognition stage, searching for maximal cardinality 
with 100% intersection percentage down to the constructed pyramids. 

It should be noted that multi-layer memory structures can be easily 
implemented in PGN. In practice, the steps of creating the pattern set use 
theoretically the same algorithms in both classifiers and can be realized using 
common tools. 

5.3.1 Training Process 

The training process in MPGN consists of: 
− preprocessing step; 
− generalization step; 
− pruning step. 
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 Preprocessing Step 

MPGN deals with instances and patterns separately for each class. This allows 
the MPGN algorithm to be implemented for use on parallel computers which 
could be particularly helpful within the current trend of using cloud services and 
grid infrastructures. 

The preprocessing step is aimed to convert the learning set in a standard 
form for further steps. It consists of: 

− discretization of numerical attributes [Mitov et al, 2009b]; 
− numbering the values of attributes. 

The instances are converted to numerical vectors after discretization and the 
juxtaposing positive integers to nominal values had been made. 

 Generalization Step 

The process of generalization is a chain of creating the patterns of upper 
layer as intersection between patterns from lower layer until new patterns are 
generated. For each class, the process starts from the layer 1 that contains the 
instances of the training set. Patterns, generated as intersections between 
instances of the training set are stored in layer 2. Layer N is formed by patterns 
generated as intersections between patterns of the layer N-1. This process 
continues until further intersections are not possible. 

During generalization, for every class a separate pyramidal network structure 
is built. The process of generalization creates "vertical" interconnections 
between patterns from neighborhood layers. These interconnections for every 
pattern are represented by a set of "predecessors" and a set of "successors". 

The predecessors' set of a concrete pattern contains all patterns from the 
lower layer which were used in the process of its generalization. Thus in cases of 
different intersections generating the same pattern in the final outcome all 
patterns appearing in the intersection would be united as predecessors of the 
resulting pattern. 

The predecessors sets for instances of layer one are empty.  
The successors' set of a concrete pattern contains the patterns from upper 

layer, which are created from it.  
The successors' sets of patterns on the top of the pyramid are empty. These 

patterns are called "vertexes" of the corresponded pyramids.  
One pattern may be included in more than one pyramid, but the vertex 

pattern belongs only to one pyramid. 
It is possible for any pyramid to contain only one instance. 
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Figure 9. MPGN – the process of generalization of one class 

Figure 9 presents the block scheme of the process of generalization for one 
class. 

 
Here, as example we will use following dataset:  
 

Class 1  
R1: (1|5,5,5,5) 
R2: (1|5,3,5,4) 
R3: (1|5,4,5,3) 
R4: (1|1,1,1,1) 
R5: (1|4,1,3,1) 
R6: (1|1,2,1,1) 
R7: (1|1,2,2,2) 
R8: (1|4,2,4,1) 
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Class 2  
R9: (2|4,2,3,1) 

R10: (2|3,2,3,1) 
R11: (2|2,1,2,1) 
R12: (2|4,1,2,1) 
R13: (2|2,2,2,1) 

 
Separating of two classes are made only for increasing the readability. 
We will use this dataset for showing different steps of MPGN algorithm. 

 
Figure 10. MPGN – Result of generalization step on the example dataset 

Figure 10 illustrates the result of the generalization step of MPGN for example 
dataset. For simplifying the texts in the figures here and later patterns are 
presented only with value attributes. The class label is omitted as it is known 
from the pyramids in which pattern belongs. Light points denote vertexes of the 
created pyramids. 

 Pruning Steps 

The pruning steps combines two different processes: 
− pre-pruning – in parallel with the generalization; 
− post-pruning – pruning the contradictions. 

 Pre-pruning 

During the generalization a huge amount of combinations arises in big 
datasets. To restrict the combinatorial explosure different techniques can be 
applied. We use three different mechanisms for solving which of created 
patterns to be included in the process of generalization.  

The first mechanism allows to be excluded the patterns that are generated by 
little number of patterns from the lower layer. This is similar to support but here 
is taken into account not the primary instances while the direct predecessors. 
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The other one tries to exclude the very general patterns from the beginning 
layers, using the presumption that these patterns will be arisen again in the 
upper layers. For this purpose, the ratio between the cardinality of the 
generated patterns and the cardinality of the predecessor patterns can be used 
as restriction.  

 Post-pruning 

Post-pruning is the process of iterative analysis of vertex patterns of all 
pyramids from different classes and removing all contradictory vertex patterns. 
The algorithm is presented on Figure 11. 

As a result, some of the most general patterns are deleted, because the 
vertexes with the same bodies were available in other classes (and they also are 
deleted). The primary pyramids are decomposed to several sub-pyramids with 
lower number of layers. 

The vertexes of such pyramids do not contradict with vertexes of pyramids of 
other classes. 

 
Figure 11. MPGN – post-pruning 

Here we will give the visual explanation of the pruning the contradictions in 
already made pyramids of the example dataset. 
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Figure 12. Post-pruning – starting process 

 
Figure 12 shows the start of the process, where vertexes of pyramids of class 

1 and class 2 are compared and contradictory vertexes as well as all successor 
equal patterns are destroyed. 

 

 
Figure 13. Post-pruning – continuing the process 

 
The process of destroying of contradictory vertexes cause the arising of new 

vertexes from the patterns of corresponding pyramids. For new vertexes the 
search and destroying of contradictory patterns are applied again.  

Figure 13 shows this next step on the example dataset. The process 
continues iteratively since no contradictions between vertexes of pyramids are 
found. In our case after second traversing no new contradictions were found and 
process of destroying pyramids stops. 
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Figure 14. Final result of post-pruning 

 
Figure 14 shows the final result of the post-pruning. In grey we show the 

destroyed parts of pyramids. 
 

5.3.2 Recognition Process 

The instance to be recognized is given by the values of its attributes 

1(? | ,..., )nQ b b= . Some of the values may be omitted. If some attributes are 

numerical, the values of these attributes are replaced with the number of 
corresponded discretized interval, where the value belongs. The categorical 
attributes also is recoded with the corresponded number values. 

Initially the set of classes, which represent potential answers CS includes all 
classes: CS { | 1,..., }c c Mc= = . 

The recognition process consists of two main steps: 
− creating recognition set for every class separately; 
− analyzing resulting recognition sets from all classes and making decision 

which class to be given as answer. 

 Creating Recognition Set for Each Class 

At this stage each class is processed separately.  
The goal is to create for each class the recognition set, which contains all 

patterns with maximal cardinality that have 100% intersection percentage with 
the query. 
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Figure 15. MPGN – creating recognition set for one class 

The process starts from the vertexes of all pyramids that belong to examined 
class. Using the predecessor sets of the patterns in the recognition set each 
pattern is replaced with the set of their predecessor that have 100% intersection 
percentage with the query, if this set is not empty. After lighting the recognition 
set keeping only patterns with maximal coverage the process is iteratively 
repeated down to the layers until no new patterns became in the recognition set. 
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Figure 15 shows the block-scheme of this process. 
The process of creation of recognition set for each class also can be 

implemented on parallel computers. 

 Analyzing Results and Make Final Decision 

Figure 16 shows the general schema of this step. 

 
Figure 16. MPGN – comparative analysis between classes 

The result of the first step processing are the recognition sets for all classes 
RSc , [1,..., ]cc M∈ , which contain the patterns with maximal cardinality for this 

class (RS )MaxCard c , [1,..., ]cc M∈  that have 100% intersection percentage 

with Q .  

The goal is to find the class, which contains the patterns with highest 
cardinality in its recognition set. 

For this purpose, first the maximum of all maximal cardinalities of the 
recognition sets of classes from CS  is discovered. 

CS
max (RS )
c

MaxCr MaxCard c
∈

=  
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All classes that have not such maximal cardinality are excluded from the set 
CS . 

CS { : (RS ) }c MaxCard c MaxCr= =  

After this step, if only one class remains in CS , then this class is given as an 
answer (End 1). 

 
Let us see the recognition process over the example dataset for query 

Q=(?|5,2,3,1) , showed in Figure 17. 

Each class is examined separately. 
Only vertex (1|_,2,_,_)  of class 1 matches the query. From its predecessors 

the pattern (1|_,2,_,1)  match the query and has bigger cardinality equal to 2. 

No matching is found in its predecessors and process for class 1 stops. 
In the case of class 2 the vertex (2|_,2,_,1)  matches the query and its 

predecessor (2|_,2,3,1)  also matches and has bigger cardinality equal to 3. 

As result of comparison of maximal cardinalities between classes class 2 is 
given as answer. 

 
Figure 17. Example of recognition in MPGN – Exit Point 1 

In the case when several classes exist with maximal cardinality MaxCr  (i.e. 
(CS)>1Card ), different strategies can be used to choose the best competitor. 

Here we will discuss two basic options: 
− S1: choose from each class a single rule with maximal confidence within 

the class and compare with others; 
− S2: find "confidence of recognition set", i.e. the number of instances 

that are covered of patterns from recognition set of this class over the 
number of all instances of this class and compare results. 
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 Variant Multiple Classes-Candidates: S1 

The algorithm for the S1-option can be summarized as follows (Figure 18): 
Find the pattern with maximal confidence of each of recognition sets of the 

classes in CS : 

RS
( RS ) max ( ( ))

P c
MaxConf P c Conf P

∈
∈ = . 

We find the maximum of received numbers from all classes: 

CS
max ( RS )
c

MaxCn MaxConf P c
∈

= ∈  

Again we make lightening of CS  retaining only classes that have such 
maximum: 

CS { : (RS )  and ( RS ) }c MaxCard c MaxCr MaxConf P c MaxCn= = ∈ =  

If only one class has such a maximum, this class is given as an answer. In 
the other case, the class with maximal support from CS  is given as answer. 

 

 
Figure 18. Recognition strategy S1: using 1 rule with maximal confidence 

Let us see the behavior of MPGN recognition: S1 strategy (Figure 19) on the 
case of query Q=(?|5,2,5,1) .  
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For class 1 patterns that matched the query with maximal cardinality 2 are 
(1|5,_,5,_)  and (1|_,2,_,1) . For class 2 pattern that matched the query with 

maximal cardinality again 2 is (2|_,2,_,1) .  

 

 
Figure 19. Example of recognition in MPGN – Exit Point 2: Strategy S1 

 
Because of the equality of the maximal cardinality we continue with finding 

the rule with maximal confidence within each class.  
For class 1 the confidence of the pattern (1|5,_,5,_)  is 3/8 (maximal for this 

class). For class 2 (2|_,2,_,1)  has confidence 3/5. Following strategy S1 class 2 

is given as answer. 
 

 Variant Multiple Classes-Candidates: S2 

This algorithm is similar to the previous (Figure 20).  
The main difference is that instead of finding the pattern with maximal 

confidence of each of recognition sets, here the "confidence of recognition set" is 
evaluated, i.e. the number of instances that are covered by patterns from the 
recognition set of this class over the number of all instances of this class and 
then results are compared. 

The rationale behind this is to take into account how many instances had 
been covered by all patterns from the recognition set. 

In practice this is the disjunction of the predecessors' sets of Layer 1 (not 
direct predecessors) of the patterns that belong to RSc . 
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Figure 20. Recognition strategy S2: using confidences of the recognition sets 

Let us see the behavior of MPGN recognition: S2 strategy (Figure 21) on the 
case of the same query Q=(?|5,2,5,1) .  

 
Figure 21. Example of recognition in MPGN – Exit Point 2: Strategy S2 

Following strategy S2 we found the confidences of the set of patterns that 
matches query with maximal cardinality. They are correspondingly: 
3/8+2/8=0.625 for class 1 and 3/5=0.600 for class 2. As a result class 1 is 
given as answer. 
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 Variant: Empty Recognition Sets 

The worst case is when all recognition sets were empty. 

 
Figure 22. Variant of recognition when 100% intersection percentage gives not 

result 

Here we create new recognition sets, including instances with maximal 
intersection percentage with the query. 

RS
(RS , ) max ( ( , ))

R c
MaxIPerc c Q IntersectPerc R Q

∈
= ; 

RS { : ( , )) (RS )}c R IntersectPerc R Q MaxIPerc c= = . 

Find 
RS

(RS )
{instances of class }

c
Conf c

c
=  

The class that contains the set with maximal confidence is given as an 
answer. The reason is that a higher confidence is received because the rules are 
more inherent to this class. If two or more classes have equal confidence, than 
the class with maximal support is given as answer (End 4). 

This process is presented on Figure 22. 
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An analysis of the results from the previous step is made at this step; it is 
performed simultaneously over all classes simultaneously. The parallelization of 
this process is not explicitly shown (it is not inherent to algorithm). The 
parallelization can be implemented during the process of cross-comparison of 
the results from all the classes. 

 
 
Conclusion 
In this chapter we provided a description of PGN and MPGN algorithms. 
PGN creates association rules, striving for maximal accuracy of produced 

rules. One of the main specifics of PGN is that it is a parameter free classifier. 
The association rule mining goes from longest rules (instances) to the shorter 
ones until no intersections between patterns in the classes are possible. In the 
pruning phase the contradictions and inconsistencies of more general rules are 
cleared, after that the pattern set is compacted throwing all more concrete rules 
within the classes. 

MPGN employs multilayer structure. It offers a possibility to escape 
combinatorial explosion using smart disposing of the information in so called 
multilayer structures "pyramids". Later these structures easy can be realized 
using ArM-structures. 

In the case of MPGN the process of association rule mining and part of the 
pruning step are made in parallel, which allows to overcome the bottleneck of 
exponential growth of created rules. The other pruning step is connected with 
the process of clearing the contradictions between vertex patterns of all 
pyramids from different classes.  

The recognition process in MPGN first creates the recognition sets for each 
class, after that analyzes the results in order to make a final decision. In this 
step different options can be observed: only one class is class-candidate; 
multiple classes are classes-candidates (in this case two different strategies are 
proposed: S1 – to use the most powerful rule, or S2 – to analyze the normalized 
support of the whole recognition set of each class), or worst case scenario when 
recognition sets are empty. The possible actions in the case of each of those 
different options had been presented and discussed. 
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6 Program Realization 

 
Abstract 
The realization of the proposed algorithms PGN and MPGN were made in a 

common data mining analysis environment PaGaNe. It contains a variety of 
statistical and data mining tools. PaGaNe uses ArM 32 as a basic access method 
and all algorithms are fine-tuned to use the advantages given by such memory 
structure environment. 

For these purposes preprocessing steps, creating bijective functions between 
attribute values and natural numbers, as well as converting input information 
into numerical vectors is implemented. 

Taking into account the fact that most of CAR algorithms work with 
categorical data, several known discretization methods for partitioning the 
attribute space had been implemented and presented. 

The basic structure used for keeping created patterns in the pattern sets of 
proposed algorithms are the so called pyramids – multi-layer structures, 
containing vertical connections between patterns.  

The algorithm for realizing smart storing and extracting of patterns from 
these structures, using advantages of context-free access method, realized in 
ArM 32, is proposed. 

 

6.1 Common Environment 

An international joint research group has been working on the design of a 
data mining analysis environment called "PaGaNe". It integrates a number of 
data mining algorithms, such as association rule miners, class association rule 
(CAR) algorithms, etc. [Mitov et al, 2009a/b]. 

A distinguished feature of PaGaNe is that it uses the advantages of multi-
dimensional numbered information spaces [Markov, 2004], provided by the 
access method ArM 32, such as: 
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− the possibility to build growing space hierarchies of information 
elements; 

− the great power for building interconnections between information 
elements stored in the information base; 

− the possibility to change searching with direct addressing in well-
structured tasks. 

An important feature of the approaches used in PaGaNe, is the replacement 
of the symbolic values of the objects' features with integer numbers of the 
elements of corresponding ordered sets. Thus all instances or patterns can be 
represented by a vector of integer values, which may be used as co-ordinate 
address in the corresponding multi-dimensional information space. 

The program realization of PGN and MPGN are implemented within this 
environment.  

6.2 Preprocessing Step 

The preprocessing step is aimed to convert the learning set in a standard 
form for further steps. It consists of: 

− discretization of numerical attributes; 
− numbering the values of attributes; 
− attribute subset selection. 

6.2.1 Input Data 

The data can be entered directly, but usually files, containing the datasets 
are used. Standard ".csv"-files, that contain rectangular datasets can be used as 
input files. For assuring compatibility with WEKA ".arff"-files also can be used as 
an input format. The user can use different files for a learning set and examining 
set, or splitting incoming file into learning set and examining set in a particular 
proportion. Cross-validation also can be applied. 

6.2.2 Discretization 

Discretization methods from different classes had been selected in order to 
examine which of them supplies more convenient discretization for PGN 
Classification Method. 

 Fayyad-Irani Discretization 

Fayyad-Irani Discretization method [Fayyad and Irani, 1993] is supervised 
hierarchical split method, which uses the class information entropy of candidate 
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partitions to select boundaries for discretization. Class information entropy is a 
measure of purity and it measures the amount of information which would be 
needed to specify to which class an instance belongs. It considers one big 
interval containing all known values of a feature and then recursively partitions 
this interval into smaller subintervals until MDL criterion or an optimal number of 
intervals is achieved.  

The MDL Principle states that the best hypothesis is the one with minimal 
description length. As partitioning always decreases the value of the entropy 
function, considering the description lengths of the hypotheses allows balancing 
the information gain and eventually accepting the null hypothesis. Performing 
recursive bipartitions with this criterion leads to a discretization of the 
continuous explanatory attribute at hand. Fayyad-Irani Discretizator evaluates 
as a candidate cut point the midpoint between each successive pair of the sorted 
values. For each evaluation of a candidate cut point, the data are discretized into 
two intervals and the resulting class information entropy is calculated. A binary 
discretization is determined by selecting the cut point for which the entropy is 
minimal amongst all candidate cut points. This binary discretization is applied 
recursively, always selecting the best cut point. A MDL criterion is applied to 
decide when to stop discretization. It has been shown that optimal cut points for 
entropy minimization must lie between examples of different classes.  

This method does not need additional parameters to be chosen by the user. 

 Chi-Merge Discretization 

Chi-merge [Kerber, 1992] is a supervised hierarchical bottom-up (merge) 
method that locally exploits the chi-square criterion to decide whether two 
adjacent intervals are similar enough to be merged; 

Chi-square ( 2χ ) is a statistical measure that conducts a significance test on 

the relationship between the values of a feature and the class. Kerber argues 
that in an accurate discretization, the relative class frequencies should be fairly 
consistent within an interval but two adjacent intervals should not have similar 

relative class frequency. The 2χ  statistic determines the similarity of adjacent 

intervals based on some significance level. It tests the hypothesis that two 
adjacent intervals of a feature are independent of the class. If they are 
independent, they should be merged; otherwise they should remain separate.  

The bottom-up method based on chi-square is ChiMerge. It searches for the 
best merge of adjacent intervals by minimizing the chi-square criterion applied 
locally to two adjacent intervals: they are merged if they are statistically similar. 
The stopping rule is based on a user-defined Chi-square threshold to reject the 
merge if the two adjacent intervals are insufficiently similar. No definite rule is 
given to choose this threshold. 
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The stopping rule is based on a Chi-square threshold, which depends of 
degrees of freedom (in our case – the number of possible values of class minus 
one) and the significance level (commonly used significance levels are 90%, 
95%, 99%). The chi-square threshold table in the system is adopted from 
[Bramer, 2007]. 

At the pre-processing step, the system builds a mapping function for the real 
values of each attribute to a number that correspond to the interval in which the 
value belongs to; this is a result of implementing a discretization method..  

Figure 23 presents a screenshot from the experimental system "PaGaNe", 
which visualizes the results of discretization process using "Chi-merge" with 
parameter 90% significance level for attribute "sepal length" for "Iris" dataset 
from UCI repository [Frank and Asuncion, 2010]. Five intervals which had been 
formed as well as the distribution of different class values in the intervals can be 
seen. The right part of the screen is used to list the cut-points from each 
interval, the number of instances of the learning set and correspondences 
belonging to the class values of these instances. 

 

 
Figure 23. A Screenshot of visualizing discretization  

of attribute "sepal length in cm" 
of Iris database using Chi-merge discretizator 

The system uses these intervals to find the corresponding nominal values for 
real attributes in learning and examining sets. This conversion of real data to 
categorical values gives the opportunity of PGN-classifier to be implemented on 
databases with the real values of attributes. 

6.2.3 Converting Primary Instances into Numerical Vectors 

At this stage, the bijective functions between primary values and positive 
integers are generated. 
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After that, the input instances are coded into numerical vectors, replacing 
attribute values with their corresponded numbers.  

For example, during the input of instances of "Lenses" database the following 
mapping functions (numbering) is created: 

 
class  Age  prescription  astigmatic  tears 
hard 1  pre-presbyopic 1  hypermetrope 1  no 1  normal 1 
none 2  presbyopic 2  myope 2  yes 2  reduced 2 
soft 3  young 3          

 
and here is given the numerical representation of some instances: 
 

Object;class;age;prescription;astigmatic;tears  Numerical representations of 
instances 

1;none;young;myope;no;reduced R1= (2|3,2,1,2) 
2;soft;young;myope;no;normal R2= (3|3,2,1,1) 
3;none;young;myope;yes;reduced R3= (2|3,2,2,2) 
4;hard;young;myope;yes;normal R4= (1|3,2,2,1) 
5;none;young;hypermetrope;no;reduced R5= (2|3,1,1,2) 

 
The idea is to prepare data for direct use as addresses in the multi-

dimensional numbered information spaces. 

6.2.4 Attribute Subset Selection 

The statistical observations on PaGaNe performance over the dataset can 
show that some attributes give no important information and the environment 
allows to point such attributes not to participate in further processing.  

The automatic subset selection is an open part of the PaGaNe realization and 
it is in the front of current and near-future investigation [Aslanyan and 
Sahakyan, 2010]. 

6.3 PGN Program Realization 

The first realization of the PGN algorithm did not use the added capacity of 
multi-layer structures. The patterns, created during the first phase, were kept 
sequentially. In this implementation the combinatorial explosion for big datasets 
was limited with examining only intersections between primary instances.  

The good results, received by the experiments enforced further research in 
two directions: 

− to find a way to overcome the bottleneck of exponential combinatorial 
growth of intersections; 
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− to investigate other possibilities within CAR algorithms in different steps 
of the process. 

Here we will not present in detail the implementation of the PGN classifier. 
We will mention only that, using appropriate parameters for changing pruning 
step and recognition criterion, the realization of MPGN covers the PGN algorithm. 

6.4 MPGN Program Realization 

The main focus here is to show the advantages of multi-dimensional 
numbered information spaces in the process of realization of multi-layer 
structure of MPGN.  

6.4.1 Training Process 

Very important aspect is that for each class there exists separate class space, 
which has multilayer structure called "pyramids". All layers have equal structure 
and consist of "pattern-set" and "link-space". For each class space a "vertex-set" 
also is kept, which is used in the recognition stage. 

 Construction Elements 

 The Pattern-Set 

Each pattern belongs to a definite class c  and layer l . The full denotation of 
pattern should be ( , )P c l  in order to be clear in which class this pattern belongs 
to (note that c  is class value of the pattern). We omit c  whenever it is clear 
from the context and will denote ( )P l . When l  is also clear from the context we 

will denote only P . 
All patterns of the class c , which belongs to layer l  form theirs pattern-set: 

,( , ) { ( , ) | 1,..., }i
c lPS c l P c l i n= = . Each pattern ( , )P c l  from ( , )PS c l  have 

identifiers ( , , )pid P c l  or shortly ( )pid P  where it is clear, which are natural 

numbers. The identifiers are created in increasing order of incoming the patterns 
into pattern-set.  

The process of generalization creates "vertical" interconnections between 
patterns from different (neighborhood) layers. These interconnections for every 
pattern are represented by two sets of "predecessors" and "successors". 
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The predecessors' set ( )iPredS P  contains the identifiers of patterns from the 

lower layer, which were used in the process of receiving this pattern. The 
predecessors sets for instances of layer one are empty.  

The successors' set ( )iSuccS P  contains the identifiers of patterns from the 

upper layer, which are created by this pattern. The successors' sets of patterns 
on the top of the pyramid are empty. These patterns are called "vertexes" of the 
corresponded pyramids. 

One pattern may be included in more than one pyramid. The vertex pattern 
belongs only to one pyramid (they became top of the pyramids). 

 The Link-Space 

The goal of the Link-space is to describe all regularities between attributes 
which are available in the classes. Links to the patterns, which contain it, are 
created for every value of each attribute thus allowing to create a hierarchy of 
sets. The structure of this hierarchy is as follows: 

− attribute value set: a set of class sets for given value of given attribute; 
− attribute set: a set of attribute value sets for given attribute; 
− link-space (one): a set of all possible attribute sets. 

Creation of link-space uses the advantages of multi-dimensional numbered 
information spaces, especially the possibility to overcome searching by using 
direct pointing via coordinate addresses.  

Below we will focus our attention on the link-space, which becomes a key 
element of accelerating the creation of new patterns as well as searching 
patterns satisfying the queries. 

Let c  be a number of examined class and l  be the number of given layer of 
c : 

− attribute value set ( , , , )VS c l t v , 1,..., tv n=  is a set of all identifiers of 

instances/patterns for class c , layer l , which have value v  for the 

attribute t : ( , , , ) { ( , , ),  0,.., | }i i
tVS c l t v pid P c l i x a v= = = ; 

− attribute set ( , , )AS c l a  for concrete attribute 1,...,a n=  is a set of 

attribute value sets for class c , layer l  and attribute t : 
( , , ) { ( , , ,1),..., ( , , , )}tAS c l t VS c l t VS c l t n= , where tn  is the number of 

values of attribute t ; 

− link-space ( , )LS c l  is a set of all possible attribute sets for class c  and 

layer l : ( , ) { ( , ,1),..., ( , , )}LS c l AS c l AS c l n= . 

In Figure 24, the visualization of class 3 of the "Lenses" dataset during 
creation of the patterns is shown. 
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Such information is stored in 
ArM-structures by a very simple 
convention – the attribute value 
sets ( , , , )VS c l t v  is stored in the 

points of ArM-archive using the 
corresponding address (4, , , , )c l t v , 

where 4 is the dimension of ArM 
space, c  is the number of the 
class, l  is the number of the layer, 
t  is the number of the attribute 
and v  is the number of the 
corresponding values of the given 
attribute. The disposition of link-
spaces in ArM-structures allows 
very fast extraction of available 
patterns in the corresponding layer 
and class.  

 
Figure 24. Visualization of link-spaces 

 Vertex-Set 

The vertex-set contains information about the patterns that have not 
successors in the pyramids of the corresponded class. 

, max( ) { ( , , ) | 1,..., ; 1,..., : ( ) }i i
c lVrS c pid P c l i n l l SuccS P= = = =∅ . 

 Generation of the Rules 

The process of rules generation is a chain of creating the patterns of the 
upper layer as an intersection between patterns from lower layer until new 
patterns are generated.  

Each instance 1( | ,..., )nR c a a=  from the learning set is included into the 

pattern-set of the first layer of its class c : ( ,1)R PS c∈ .  

Starting from layer 2l =  the following steps are made: 

1. Creating the link-space of the lower layer 1l −  of class c  with adding the 

identifiers of patterns ( , 1)iP PS c l∈ − , , 11,..., c li n −=  in the attribute value 

sets of the values: ( ) ( , 1, , ),  1,...,i i i
kpid P VS c l k a k n∈ − = . Let remark that 

this sets became ordered during creation; 
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2. The set of patterns, which are intersections of the patterns of the lower 

layer i jP P∩ , , ( , 1)i jP P PS c l∈ − , , 1, 1,..., c li j k −= , i j≠  is created. The 

algorithm of creating of this set is given below; 
3. If patterns are not generated (i.e. ( , ) {}PS c l = ), then the process of 

generation the rules for this class stops; 
4. On the basis of receiving a set of patterns, the pattern-set ( , )PS c l  of 

layer l  is created.  

- Each pattern from the receiving set of patterns is checked for 
existence in the ( , )PS c l ; 

- If this pattern does not exist in ( , )PS c l , it receives an identifier 

which is equal to the next number of identifiers of the patterns in the 
pattern-set; the pattern is added at the end of the pattern-set; and 

its predecessor-set is created with two pairs { ( ( ), 1)ipid P l − , 

( ( ), 1)jpid P l − }; 

- If this pattern already exists in ( , )PS c l , its predecessor-set is formed 

as union of existent predecessor-set and { ( ( ), 1)ipid P l − , 

( ( ), 1)jpid P l − }. 

5. For each pattern from layer l  check for existence the same pattern in 
lower layers (from layer 1l −  to layer 2). If such pattern exists, then it is 
removed from the pattern-set and corresponded link-space of lower layer 
and the predecessor-set of current pattern is enriched with predecessor-
set of removed pattern (by union). 

6. Incrementing layer l  and repeating the process. 
As a result, for every class a separate pyramidal network structure is built. 

Each pyramid is described by a predecessor-set and a successor-set of patterns 
in neighbor layers. 

 Generating the Set of Patterns, which are Intersections of 
Patterns from the Lower Level 

For restriction the exponential growth of intersections in program realization 
there are included two parameters: 

− L1 (from 0 to 100) – percentage of reduced patterns per layer; 
− L2 (from 0 to 100) – minimal ratio in percent between cardinality of the 

generated pattern toward maximal cardinality of patterns in lower layer.  
 



6. Program Realization 120 

The process of generation the intersections of the patterns from given 

pattern-set ( , )PS c l  loops each pattern ( , )iP PS c l∈ .  

For this pattern 1( | ,..., )i i i
nP c a a=  the generation of possible patterns is: 

1. An empty set of resulting patterns is created; 

2. For all attribute values 1,...,i i
na a  different from "-" of iP  we take 

corresponding attribute-value-sets ( , , , ),  1,...,i i
kVS c l k a i n= . The numbers 

of identifiers of the patterns in these sets are ordered. 
3. All extracted attribute-value-sets are activated. 
4. From each of them the first identifier is given. 
5. While at least one attribute-value-set is active, the following steps are 

made: 
- Assign the initial values of the resulting pattern: ( | , ,..., )V c= − − − ; 

- Locate minimal identifier ( )jpid P  from all active attribute-value-

sets; 

- If ( ) ( )j ipid P pid P= , then this attribute-value-set is deactivated; 

- All active attribute-value-sets ,( , , , ),  1,...,jj
c lkVS c l k a j k= , for which 

( )jpid P  is current identifier, cause filling of corresponded attribute 

value i
ka  of thk  attribute in V . For these sets the next identifier is 

given; 

- If 0V >  and min , 2
i j

V V
L

P P

⎛ ⎞
⎜ ⎟ >⎜ ⎟⎜ ⎟
⎝ ⎠

 this pattern is included into the 

set of resulting patterns with additional information, containing 

( )ipid P  and ( )jpid P . 

This process is illustrated in Figure 25. 
 
At the end the patterns in the created pattern set are sorted by the number 

of their predecessors and L1% of them with lower number of predecessors are 
removed.  
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Generating process, started from P3 (2| 3, 1, 1, 2) 

 

 values of P3 activated attribute-value-sets 

A1:age 3: young {P1,P2,P3,P4} 
A2:prescription 1: 

hypermetrope 
{P3,P4,P7,P8,P9,P13,P14,P15} 

A3:astigmatic 1: no {P1,P3,P5,P7,P10,P11,P13} 
A4:tears 2: reduced {P1,P2,P3,P4,P5,P6,P7,P8,P10,P12,P13,P14} 

 
 3:young  1:hyperm.  1:no  2:reduced  
 
 

 

P1  P3  
 

P1  
 

 

P1  
P2 P4 P3 P2  
P3 P7 P5 P3  
P4 P8 P7 P4  

 P9 P10 P5  
 P13 P11 P6  
 P14 P13 P7  
 P15  P8  
   P10  
   P12  
   P13  
   P14  

 
The following resulting vectors are created: 

(2| 3, -, 1, 2) {intersection between P1 and P3} 
(2| 3, -, -, 2) {intersection between P2 and P3} 

Pointers point P3 – the process is finished. 
 

Figure 25. Visualization of process of generating a set of patterns 

6.4.2 Recognition Process 

The record to be recognized is represented by the values of its attributes 

1(? | ,..., )nQ b b= . Some of the features may be omitted. The classification stage 

consists of several steps: 
1. Using the service attribute-values-space, the system takes corresponded 

attribute value sets for all attributes 1,..., nb b  as well as the attribute value 

sets for "-" as a value of each attribute.  

2. The union of these sets gives a set of possible classes 1{ ,..., }yc c , which 

the record may belong to. This approach decreases the amount of the 
information, needed for pattern recognition.  

3. All classes, which are presented in this union 1{ ,..., }yc c  are scanned in 

parallel. For each class xc  and for each layer of class space of xc  the 

following steps are done: 
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- For all attribute values 1,..., nb b  different from "-" of Q  we obtain the 

corresponding attribute value sets from link-space of class xc  of 

current layer; 
- The intersection between all these sets is made. As a result a 

recognition set of candidate patterns is created. If this set is empty, 
the target class is class with maximal support; 

- For each pattern P , which is a member of the recognition set, 
calculate ( , )IntersectPerc P Q . 

4. From all recognition sets of the classes and layers the patterns with 
maximal cardinality are found. 

5. These recognition sets are lightened with excluding the patterns, which 
cardinality are less than maximal cardinality. The new set of classes-
potential answers 1 '{ ,..., }yc c  contains only classes, which recognition sets 

are not empty. 
6. If only one class is in the set of classes-potential answers, then this is the 

target class and the process stops. 
7. Otherwise, if this set is empty, we give again primary set of classes-

potential answers 1 '{ ,..., }yc c = 1{ ,..., }yc c  and the process continues with 

examining this set. 

8. Examine 1 '{ ,..., }yc c : 

- for each class which is a member of this set, the number of instances 
with maximal intersection percentage with the query is found and the 
ratio between these number and all instances in the class is 
calculated; 

- the maximum of intersection percentages from all classes is 
determinate and in the set 1 '{ ,..., }yc c  only classes with this maximal 

percentage and maximal ratio is remained; 

- if 1 '{ ,..., }yc c  contains only one class – the class is given as answer. 

Otherwise the class of 1 '{ ,..., }yc c  with maximal instances is given as 

an answer. And the process stops. 
We can assume that the possibilities to keep in a manageable way numerous 

created patterns allows to use this environment to test different kinds of 
recognition models. 

Here the algorithm of recognition strategy S1 was described. The algorithm 
for strategy S2 differs only in points 4 and 5, where the criteria for selection of 
classes-candidates are so called "confidence of recognition set".  
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Conclusion 
We presented the structure and functionality of the software realization of 

MPGN algorithm.  
The realization of the proposed algorithms PGN and MPGN were made in a 

common data mining analysis environment PaGaNe.  
Because PGN and MPGN deal with categorical attributes, different 

discretization methods are implemented as a preprocessing step. 
The basic construction elements, used in the realization of MPGN, which keep 

vertical connections between patterns: the pattern-set, the vertex-set and the 
link-space have been presented. 

In addition, the algorithm which realizes smart storing and extracting of 
patterns from these structures, using advantages of context-free access method, 
realized in ArM 32 have been discussed. 
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7 Example on Lenses Dataset 

 
Abstract 
This chapter provides examples of the use of PGN and MPGN algorithms on 

the "Lenses" dataset. 
 

7.1 Lenses Dataset 

Lenses dataset is provided from the UCI machine learning repository as the 
simplest example which can be used to illustrate the steps in the data mining 
algorithms. 

 
Object class age prescription astigmatic tears 
1 none young myope no reduced 
2 soft young myope no normal 
3 none young myope yes reduced 
4 hard young myope yes normal 
5 none young hypermetrope no reduced 
6 soft young hypermetrope no normal 
7 none young hypermetrope yes reduced 
8 hard young hypermetrope yes normal 
9 none pre-presbyopic myope no reduced 
10 soft pre-presbyopic myope no normal 
11 none pre-presbyopic myope yes reduced 
12 hard pre-presbyopic myope yes normal 
13 none pre-presbyopic hypermetrope no reduced 
14 soft pre-presbyopic hypermetrope no normal 
15 none pre-presbyopic hypermetrope yes reduced 
16 none pre-presbyopic hypermetrope yes normal 
17 none presbyopic myope no reduced 
18 none presbyopic myope no normal 
19 none presbyopic myope yes reduced 
20 hard presbyopic myope yes normal 
21 none presbyopic hypermetrope no reduced 
22 soft presbyopic hypermetrope no normal 
23 none presbyopic hypermetrope yes reduced 
24 none presbyopic hypermetrope yes normal 
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During the input of instances of "Lenses" database, the following numbering 
is created: 

 
class  age  prescription  astigmatic  tears 
hard 1  pre-presbyopic 1  hypermetrope 1  no 1  normal 1 
none 2  presbyopic 2  myope 2  yes 2  reduced 2 
soft 3  young 3          

 
As a result, instances are presented as numerical vectors juxtaposing each 

attribute value with the corresponding number.  
For example, the instance (none|young,myope,no,reduced) is converted to 

(2|3,2,1,2). For more readability we use "|" for separating class label from other 
attributes. 

7.2 PGN 

Here we will present the behavior of training and recognition processes in 
PGN on the example of Lenses dataset. 

The description of Lenses dataset in UCI repository [Frank and Asuncion, 
2010] argues that the dataset is complete (all possible combinations of 
attribute-value pairs are represented), each instance is complete and correct 
and 9 rules cover the training set. 

Our goal is to show that PGN extracts these 9 rules. 

7.2.1 Training Process in PGN 

The training process in PGN consists of two steps that are usual for CAR 
classifiers. 

- generalization; 
- pruning. 

In PGN pruning is post-processing phase after generalization. 

 Step 1: Generalization 

The step of generalization tries to extract each possible intersections between 
instances and patterns within the class. 

 Sub-step 1.1: Adding Instances 

In this sub-step the instances are added incrementally into pattern set as 
primary patterns.  
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( )pid R R  
[  1] (2|  3,  2,  1,  2)
[  2] (3|  3,  2,  1,  1)
[  3] (2|  3,  2,  2,  2)
[  4] (1|  3,  2,  2,  1)
[  5] (2|  3,  1,  1,  2)
[  6] (3|  3,  1,  1,  1)
[  7] (2|  3,  1,  2,  2)
[  8] (1|  3,  1,  2,  1)
[  9] (2|  1,  2,  1,  2)
[ 10] (3|  1,  2,  1,  1)
[ 11] (2|  1,  2,  2,  2)
[ 12] (1|  1,  2,  2,  1)
[ 13] (2|  1,  1,  1,  2)
[ 14] (3|  1,  1,  1,  1)
[ 15] (2|  1,  1,  2,  2)
[ 16] (2|  1,  1,  2,  1)
[ 17] (2|  2,  2,  1,  2)
[ 18] (2|  2,  2,  1,  1)
[ 19] (2|  2,  2,  2,  2)
[ 20] (1|  2,  2,  2,  1)
[ 21] (2|  2,  1,  1,  2)
[ 22] (3|  2,  1,  1,  1)
[ 23] (2|  2,  1,  2,  2)
[ 24] (2|  2,  1,  2,  1)

 

 Sub-step 1.2: Intersections within the Classes 

In this sub-step the intersections between each two patterns that belong to 
the same class are made.  

If a new pattern is created it is added into the pattern set. For example, the 
intersection between 1 (2 | 3,2,1,2)R =  and 3 (2 | 3,2,2,2)R =  creates a new 

pattern 25 (2 | 3,2, _,2)R = . 

If the pattern already exists, only the set of instances that are possible 
creators of the pattern is expanded. For example, 

1 17(2 | 3,2,1,2) (2 | 2,2,1,2)R R= ∩ =  creates a pattern 28 (2 | _,2,1,2)R =  already 

created by 1 9(2 | 3,2,1,2) (2 |1,2,1,2)R R= ∩ = . 

It is possible the intersection does not to produce a pattern when all attribute 
values in two patterns differs. It is seen in the case of 

1 16(2 | 3,2,1,2) (2|1,1,2,1)=R R= ∩ = ∅ . 

 

1( )pid P  1P   2( )pid P 2P  1 2( )pid P P∩ 1 2P P∩  

[  1] (2|  3,  2,  1,  2)  [  3] (2|  3,  2,  2,  2) [ 25] (2|  3,  2,  _,  2) 
[  1] (2|  3,  2,  1,  2)  [  5] (2|  3,  1,  1,  2) [ 26] (2|  3,  _,  1,  2) 
[  1] (2|  3,  2,  1,  2)  [  7] (2|  3,  1,  2,  2) [ 27] (2|  3,  _,  _,  2) 
[  1] (2|  3,  2,  1,  2)  [  9] (2|  1,  2,  1,  2) [ 28] (2|  _,  2,  1,  2) 
[  1] (2|  3,  2,  1,  2)  [ 11] (2|  1,  2,  2,  2) [ 29] (2|  _,  2,  _,  2) 
[  1] (2|  3,  2,  1,  2)  [ 13] (2|  1,  1,  1,  2) [ 30] (2|  _,  _,  1,  2) 
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[  1] (2|  3,  2,  1,  2)  [ 15] (2|  1,  1,  2,  2) [ 31] (2|  _,  _,  _,  2) 
[  1] (2|  3,  2,  1,  2)  [ 16] (2|  1,  1,  2,  1) [   ] 0 
[  1] (2|  3,  2,  1,  2)  [ 17] (2|  2,  2,  1,  2) [ 28] (2|  _,  2,  1,  2) 
[  1] (2|  3,  2,  1,  2)  [ 18] (2|  2,  2,  1,  1) [ 32] (2|  _,  2,  1,  _) 
[  1] (2|  3,  2,  1,  2)  [ 19] (2|  2,  2,  2,  2) [ 29] (2|  _,  2,  _,  2) 
[  1] (2|  3,  2,  1,  2)  [ 21] (2|  2,  1,  1,  2) [ 30] (2|  _,  _,  1,  2) 
[  1] (2|  3,  2,  1,  2)  [ 23] (2|  2,  1,  2,  2) [ 31] (2|  _,  _,  _,  2) 
[  1] (2|  3,  2,  1,  2)  [ 24] (2|  2,  1,  2,  1) [   ] 0 
[  2] (3|  3,  2,  1,  1)  [  6] (3|  3,  1,  1,  1) [ 33] (3|  3,  _,  1,  1) 
[  2] (3|  3,  2,  1,  1)  [ 10] (3|  1,  2,  1,  1) [ 34] (3|  _,  2,  1,  1) 
[  2] (3|  3,  2,  1,  1)  [ 14] (3|  1,  1,  1,  1) [ 35] (3|  _,  _,  1,  1) 
[  2] (3|  3,  2,  1,  1)  [ 22] (3|  2,  1,  1,  1) [ 35] (3|  _,  _,  1,  1) 
[  3] (2|  3,  2,  2,  2)  [  5] (2|  3,  1,  1,  2) [ 27] (2|  3,  _,  _,  2) 
[  3] (2|  3,  2,  2,  2)  [  7] (2|  3,  1,  2,  2) [ 36] (2|  3,  _,  2,  2) 
[  3] (2|  3,  2,  2,  2)  [  9] (2|  1,  2,  1,  2) [ 29] (2|  _,  2,  _,  2) 
[  3] (2|  3,  2,  2,  2)  [ 11] (2|  1,  2,  2,  2) [ 37] (2|  _,  2,  2,  2) 
[  3] (2|  3,  2,  2,  2)  [ 13] (2|  1,  1,  1,  2) [ 31] (2|  _,  _,  _,  2) 
[  3] (2|  3,  2,  2,  2)  [ 15] (2|  1,  1,  2,  2) [ 38] (2|  _,  _,  2,  2) 
[  3] (2|  3,  2,  2,  2)  [ 16] (2|  1,  1,  2,  1) [ 39] (2|  _,  _,  2,  _) 
[  3] (2|  3,  2,  2,  2)  [ 17] (2|  2,  2,  1,  2) [ 29] (2|  _,  2,  _,  2) 
[  3] (2|  3,  2,  2,  2)  [ 18] (2|  2,  2,  1,  1) [ 40] (2|  _,  2,  _,  _) 
[  3] (2|  3,  2,  2,  2)  [ 19] (2|  2,  2,  2,  2) [ 37] (2|  _,  2,  2,  2) 
[  3] (2|  3,  2,  2,  2)  [ 21] (2|  2,  1,  1,  2) [ 31] (2|  _,  _,  _,  2) 
[  3] (2|  3,  2,  2,  2)  [ 23] (2|  2,  1,  2,  2) [ 38] (2|  _,  _,  2,  2) 
[  3] (2|  3,  2,  2,  2)  [ 24] (2|  2,  1,  2,  1) [ 39] (2|  _,  _,  2,  _) 
[  4] (1|  3,  2,  2,  1)  [  8] (1|  3,  1,  2,  1) [ 41] (1|  3,  _,  2,  1) 
[  4] (1|  3,  2,  2,  1)  [ 12] (1|  1,  2,  2,  1) [ 42] (1|  _,  2,  2,  1) 
[  4] (1|  3,  2,  2,  1)  [ 20] (1|  2,  2,  2,  1) [ 42] (1|  _,  2,  2,  1) 
[  5] (2|  3,  1,  1,  2)  [  7] (2|  3,  1,  2,  2) [ 43] (2|  3,  1,  _,  2) 
[  5] (2|  3,  1,  1,  2)  [  9] (2|  1,  2,  1,  2) [ 30] (2|  _,  _,  1,  2) 
[  5] (2|  3,  1,  1,  2)  [ 11] (2|  1,  2,  2,  2) [ 31] (2|  _,  _,  _,  2) 
[  5] (2|  3,  1,  1,  2)  [ 13] (2|  1,  1,  1,  2) [ 44] (2|  _,  1,  1,  2) 
[  5] (2|  3,  1,  1,  2)  [ 15] (2|  1,  1,  2,  2) [ 45] (2|  _,  1,  _,  2) 
[  5] (2|  3,  1,  1,  2)  [ 16] (2|  1,  1,  2,  1) [ 46] (2|  _,  1,  _,  _) 
[  5] (2|  3,  1,  1,  2)  [ 17] (2|  2,  2,  1,  2) [ 30] (2|  _,  _,  1,  2) 
[  5] (2|  3,  1,  1,  2)  [ 18] (2|  2,  2,  1,  1) [ 47] (2|  _,  _,  1,  _) 
[  5] (2|  3,  1,  1,  2)  [ 19] (2|  2,  2,  2,  2) [ 31] (2|  _,  _,  _,  2) 
[  5] (2|  3,  1,  1,  2)  [ 21] (2|  2,  1,  1,  2) [ 44] (2|  _,  1,  1,  2) 
[  5] (2|  3,  1,  1,  2)  [ 23] (2|  2,  1,  2,  2) [ 45] (2|  _,  1,  _,  2) 
[  5] (2|  3,  1,  1,  2)  [ 24] (2|  2,  1,  2,  1) [ 46] (2|  _,  1,  _,  _) 
[  6] (3|  3,  1,  1,  1)  [ 10] (3|  1,  2,  1,  1) [ 35] (3|  _,  _,  1,  1) 
[  6] (3|  3,  1,  1,  1)  [ 14] (3|  1,  1,  1,  1) [ 48] (3|  _,  1,  1,  1) 
[  6] (3|  3,  1,  1,  1)  [ 22] (3|  2,  1,  1,  1) [ 48] (3|  _,  1,  1,  1) 
[  7] (2|  3,  1,  2,  2)  [  9] (2|  1,  2,  1,  2) [ 31] (2|  _,  _,  _,  2) 
[  7] (2|  3,  1,  2,  2)  [ 11] (2|  1,  2,  2,  2) [ 38] (2|  _,  _,  2,  2) 
[  7] (2|  3,  1,  2,  2)  [ 13] (2|  1,  1,  1,  2) [ 45] (2|  _,  1,  _,  2) 
[  7] (2|  3,  1,  2,  2)  [ 15] (2|  1,  1,  2,  2) [ 49] (2|  _,  1,  2,  2) 
[  7] (2|  3,  1,  2,  2)  [ 16] (2|  1,  1,  2,  1) [ 50] (2|  _,  1,  2,  _) 
[  7] (2|  3,  1,  2,  2)  [ 17] (2|  2,  2,  1,  2) [ 31] (2|  _,  _,  _,  2) 
[  7] (2|  3,  1,  2,  2)  [ 18] (2|  2,  2,  1,  1) [   ] 0 
[  7] (2|  3,  1,  2,  2)  [ 19] (2|  2,  2,  2,  2) [ 38] (2|  _,  _,  2,  2) 
[  7] (2|  3,  1,  2,  2)  [ 21] (2|  2,  1,  1,  2) [ 45] (2|  _,  1,  _,  2) 
[  7] (2|  3,  1,  2,  2)  [ 23] (2|  2,  1,  2,  2) [ 49] (2|  _,  1,  2,  2) 
[  7] (2|  3,  1,  2,  2)  [ 24] (2|  2,  1,  2,  1) [ 50] (2|  _,  1,  2,  _) 
[  8] (1|  3,  1,  2,  1)  [ 12] (1|  1,  2,  2,  1) [ 51] (1|  _,  _,  2,  1) 
[  8] (1|  3,  1,  2,  1)  [ 20] (1|  2,  2,  2,  1) [ 51] (1|  _,  _,  2,  1) 
[  9] (2|  1,  2,  1,  2)  [ 11] (2|  1,  2,  2,  2) [ 52] (2|  1,  2,  _,  2) 
[  9] (2|  1,  2,  1,  2)  [ 13] (2|  1,  1,  1,  2) [ 53] (2|  1,  _,  1,  2) 
[  9] (2|  1,  2,  1,  2)  [ 15] (2|  1,  1,  2,  2) [ 54] (2|  1,  _,  _,  2) 
[  9] (2|  1,  2,  1,  2)  [ 16] (2|  1,  1,  2,  1) [ 55] (2|  1,  _,  _,  _) 
[  9] (2|  1,  2,  1,  2)  [ 17] (2|  2,  2,  1,  2) [ 28] (2|  _,  2,  1,  2) 
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[  9] (2|  1,  2,  1,  2)  [ 18] (2|  2,  2,  1,  1) [ 32] (2|  _,  2,  1,  _) 
[  9] (2|  1,  2,  1,  2)  [ 19] (2|  2,  2,  2,  2) [ 29] (2|  _,  2,  _,  2) 
[  9] (2|  1,  2,  1,  2)  [ 21] (2|  2,  1,  1,  2) [ 30] (2|  _,  _,  1,  2) 
[  9] (2|  1,  2,  1,  2)  [ 23] (2|  2,  1,  2,  2) [ 31] (2|  _,  _,  _,  2) 
[  9] (2|  1,  2,  1,  2)  [ 24] (2|  2,  1,  2,  1) [   ] 0 
[ 10] (3|  1,  2,  1,  1)  [ 14] (3|  1,  1,  1,  1) [ 56] (3|  1,  _,  1,  1) 
[ 10] (3|  1,  2,  1,  1)  [ 22] (3|  2,  1,  1,  1) [ 35] (3|  _,  _,  1,  1) 
[ 11] (2|  1,  2,  2,  2)  [ 13] (2|  1,  1,  1,  2) [ 54] (2|  1,  _,  _,  2) 
[ 11] (2|  1,  2,  2,  2)  [ 15] (2|  1,  1,  2,  2) [ 57] (2|  1,  _,  2,  2) 
[ 11] (2|  1,  2,  2,  2)  [ 16] (2|  1,  1,  2,  1) [ 58] (2|  1,  _,  2,  _) 
[ 11] (2|  1,  2,  2,  2)  [ 17] (2|  2,  2,  1,  2) [ 29] (2|  _,  2,  _,  2) 
[ 11] (2|  1,  2,  2,  2)  [ 18] (2|  2,  2,  1,  1) [ 40] (2|  _,  2,  _,  _) 
[ 11] (2|  1,  2,  2,  2)  [ 19] (2|  2,  2,  2,  2) [ 37] (2|  _,  2,  2,  2) 
[ 11] (2|  1,  2,  2,  2)  [ 21] (2|  2,  1,  1,  2) [ 31] (2|  _,  _,  _,  2) 
[ 11] (2|  1,  2,  2,  2)  [ 23] (2|  2,  1,  2,  2) [ 38] (2|  _,  _,  2,  2) 
[ 11] (2|  1,  2,  2,  2)  [ 24] (2|  2,  1,  2,  1) [ 39] (2|  _,  _,  2,  _) 
[ 12] (1|  1,  2,  2,  1)  [ 20] (1|  2,  2,  2,  1) [ 42] (1|  _,  2,  2,  1) 
[ 13] (2|  1,  1,  1,  2)  [ 15] (2|  1,  1,  2,  2) [ 59] (2|  1,  1,  _,  2) 
[ 13] (2|  1,  1,  1,  2)  [ 16] (2|  1,  1,  2,  1) [ 60] (2|  1,  1,  _,  _) 
[ 13] (2|  1,  1,  1,  2)  [ 17] (2|  2,  2,  1,  2) [ 30] (2|  _,  _,  1,  2) 
[ 13] (2|  1,  1,  1,  2)  [ 18] (2|  2,  2,  1,  1) [ 47] (2|  _,  _,  1,  _) 
[ 13] (2|  1,  1,  1,  2)  [ 19] (2|  2,  2,  2,  2) [ 31] (2|  _,  _,  _,  2) 
[ 13] (2|  1,  1,  1,  2)  [ 21] (2|  2,  1,  1,  2) [ 44] (2|  _,  1,  1,  2) 
[ 13] (2|  1,  1,  1,  2)  [ 23] (2|  2,  1,  2,  2) [ 45] (2|  _,  1,  _,  2) 
[ 13] (2|  1,  1,  1,  2)  [ 24] (2|  2,  1,  2,  1) [ 46] (2|  _,  1,  _,  _) 
[ 14] (3|  1,  1,  1,  1)  [ 22] (3|  2,  1,  1,  1) [ 48] (3|  _,  1,  1,  1) 
[ 15] (2|  1,  1,  2,  2)  [ 16] (2|  1,  1,  2,  1) [ 61] (2|  1,  1,  2,  _) 
[ 15] (2|  1,  1,  2,  2)  [ 17] (2|  2,  2,  1,  2) [ 31] (2|  _,  _,  _,  2) 
[ 15] (2|  1,  1,  2,  2)  [ 18] (2|  2,  2,  1,  1) [   ] 0 
[ 15] (2|  1,  1,  2,  2)  [ 19] (2|  2,  2,  2,  2) [ 38] (2|  _,  _,  2,  2) 
[ 15] (2|  1,  1,  2,  2)  [ 21] (2|  2,  1,  1,  2) [ 45] (2|  _,  1,  _,  2) 
[ 15] (2|  1,  1,  2,  2)  [ 23] (2|  2,  1,  2,  2) [ 49] (2|  _,  1,  2,  2) 
[ 15] (2|  1,  1,  2,  2)  [ 24] (2|  2,  1,  2,  1) [ 50] (2|  _,  1,  2,  _) 
[ 16] (2|  1,  1,  2,  1)  [ 17] (2|  2,  2,  1,  2) [   ] 0 
[ 16] (2|  1,  1,  2,  1)  [ 18] (2|  2,  2,  1,  1) [ 62] (2|  _,  _,  _,  1) 
[ 16] (2|  1,  1,  2,  1)  [ 19] (2|  2,  2,  2,  2) [ 39] (2|  _,  _,  2,  _) 
[ 16] (2|  1,  1,  2,  1)  [ 21] (2|  2,  1,  1,  2) [ 46] (2|  _,  1,  _,  _) 
[ 16] (2|  1,  1,  2,  1)  [ 23] (2|  2,  1,  2,  2) [ 50] (2|  _,  1,  2,  _) 
[ 16] (2|  1,  1,  2,  1)  [ 24] (2|  2,  1,  2,  1) [ 63] (2|  _,  1,  2,  1) 
[ 17] (2|  2,  2,  1,  2)  [ 18] (2|  2,  2,  1,  1) [ 64] (2|  2,  2,  1,  _) 
[ 17] (2|  2,  2,  1,  2)  [ 19] (2|  2,  2,  2,  2) [ 65] (2|  2,  2,  _,  2) 
[ 17] (2|  2,  2,  1,  2)  [ 21] (2|  2,  1,  1,  2) [ 66] (2|  2,  _,  1,  2) 
[ 17] (2|  2,  2,  1,  2)  [ 23] (2|  2,  1,  2,  2) [ 67] (2|  2,  _,  _,  2) 
[ 17] (2|  2,  2,  1,  2)  [ 24] (2|  2,  1,  2,  1) [ 68] (2|  2,  _,  _,  _) 
[ 18] (2|  2,  2,  1,  1)  [ 19] (2|  2,  2,  2,  2) [ 69] (2|  2,  2,  _,  _) 
[ 18] (2|  2,  2,  1,  1)  [ 21] (2|  2,  1,  1,  2) [ 70] (2|  2,  _,  1,  _) 
[ 18] (2|  2,  2,  1,  1)  [ 23] (2|  2,  1,  2,  2) [ 68] (2|  2,  _,  _,  _) 
[ 18] (2|  2,  2,  1,  1)  [ 24] (2|  2,  1,  2,  1) [ 71] (2|  2,  _,  _,  1) 
[ 19] (2|  2,  2,  2,  2)  [ 21] (2|  2,  1,  1,  2) [ 67] (2|  2,  _,  _,  2) 
[ 19] (2|  2,  2,  2,  2)  [ 23] (2|  2,  1,  2,  2) [ 72] (2|  2,  _,  2,  2) 
[ 19] (2|  2,  2,  2,  2)  [ 24] (2|  2,  1,  2,  1) [ 73] (2|  2,  _,  2,  _) 
[ 21] (2|  2,  1,  1,  2)  [ 23] (2|  2,  1,  2,  2) [ 74] (2|  2,  1,  _,  2) 
[ 21] (2|  2,  1,  1,  2)  [ 24] (2|  2,  1,  2,  1) [ 75] (2|  2,  1,  _,  _) 
[ 23] (2|  2,  1,  2,  2)  [ 24] (2|  2,  1,  2,  1) [ 76] (2|  2,  1,  2,  _) 
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As a result of step 1, in the pattern set the following patterns are created and 
corresponded sets of instances, creators of these patterns, are gathered: 

 
( )pid P  P  set of instances-creators of the pattern { ( )}ipid R  

[  1] (2|  3,  2,  1,  2) {1} 
[  2] (3|  3,  2,  1,  1) {2} 
[  3] (2|  3,  2,  2,  2) {3} 
[  4] (1|  3,  2,  2,  1) {4} 
[  5] (2|  3,  1,  1,  2) {5} 
[  6] (3|  3,  1,  1,  1) {6} 
[  7] (2|  3,  1,  2,  2) {7} 
[  8] (1|  3,  1,  2,  1) {8} 
[  9] (2|  1,  2,  1,  2) {9} 
[ 10] (3|  1,  2,  1,  1) {10} 
[ 11] (2|  1,  2,  2,  2) {11} 
[ 12] (1|  1,  2,  2,  1) {12} 
[ 13] (2|  1,  1,  1,  2) {13} 
[ 14] (3|  1,  1,  1,  1) {14} 
[ 15] (2|  1,  1,  2,  2) {15} 
[ 16] (2|  1,  1,  2,  1) {16} 
[ 17] (2|  2,  2,  1,  2) {17} 
[ 18] (2|  2,  2,  1,  1) {18} 
[ 19] (2|  2,  2,  2,  2) {19} 
[ 20] (1|  2,  2,  2,  1) {20} 
[ 21] (2|  2,  1,  1,  2) {21} 
[ 22] (3|  2,  1,  1,  1) {22} 
[ 23] (2|  2,  1,  2,  2) {23} 
[ 24] (2|  2,  1,  2,  1) {24} 
[ 25] (2|  3,  2,  _,  2) {1, 3} 
[ 26] (2|  3,  _,  1,  2) {1, 5} 
[ 27] (2|  3,  _,  _,  2) {1, 3, 5, 7} 
[ 28] (2|  _,  2,  1,  2) {1, 9, 17} 
[ 29] (2|  _,  2,  _,  2) {1, 3, 9, 11, 17, 19} 
[ 30] (2|  _,  _,  1,  2) {1, 5, 9, 13, 17, 21} 
[ 31] (2|  _,  _,  _,  2) {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23} 
[ 32] (2|  _,  2,  1,  _) {1, 9, 18} 
[ 33] (3|  3,  _,  1,  1) {2, 6} 
[ 34] (3|  _,  2,  1,  1) {2, 10} 
[ 35] (3|  _,  _,  1,  1) {2, 6, 10, 14, 22} 
[ 36] (2|  3,  _,  2,  2) {3, 7} 
[ 37] (2|  _,  2,  2,  2) {3, 11, 19} 
[ 38] (2|  _,  _,  2,  2) {3, 7, 11, 15, 19, 23} 
[ 39] (2|  _,  _,  2,  _) {3, 11, 16, 19, 24} 
[ 40] (2|  _,  2,  _,  _) {3, 11, 18} 
[ 41] (1|  3,  _,  2,  1) {4, 8} 
[ 42] (1|  _,  2,  2,  1) {4, 12, 20} 
[ 43] (2|  3,  1,  _,  2) {5, 7} 
[ 44] (2|  _,  1,  1,  2) {5, 13, 21} 
[ 45] (2|  _,  1,  _,  2) {5, 7, 13, 15, 21, 23} 
[ 46] (2|  _,  1,  _,  _) {5, 13, 16, 21, 24} 
[ 47] (2|  _,  _,  1,  _) {5, 13, 18} 
[ 48] (3|  _,  1,  1,  1) {6, 14, 22} 
[ 49] (2|  _,  1,  2,  2) {7, 15, 23} 
[ 50] (2|  _,  1,  2,  _) {7, 15, 16, 23, 24} 
[ 51] (1|  _,  _,  2,  1) {8, 12, 20} 
[ 52] (2|  1,  2,  _,  2) {9, 11} 
[ 53] (2|  1,  _,  1,  2) {9, 13} 
[ 54] (2|  1,  _,  _,  2) {9, 11, 13, 15} 
[ 55] (2|  1,  _,  _,  _) {9, 16} 
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[ 56] (3|  1,  _,  1,  1) {10, 14} 
[ 57] (2|  1,  _,  2,  2) {11, 15} 
[ 58] (2|  1,  _,  2,  _) {11, 16} 
[ 59] (2|  1,  1,  _,  2) {13, 15} 
[ 60] (2|  1,  1,  _,  _) {13, 16} 
[ 61] (2|  1,  1,  2,  _) {15, 16} 
[ 62] (2|  _,  _,  _,  1) {16, 18} 
[ 63] (2|  _,  1,  2,  1) {16, 24} 
[ 64] (2|  2,  2,  1,  _) {17, 18} 
[ 65] (2|  2,  2,  _,  2) {17, 19} 
[ 66] (2|  2,  _,  1,  2) {17, 21} 
[ 67] (2|  2,  _,  _,  2) {17, 19, 21, 23} 
[ 68] (2|  2,  _,  _,  _) {17, 18, 23, 24} 
[ 69] (2|  2,  2,  _,  _) {18, 19} 
[ 70] (2|  2,  _,  1,  _) {18, 21} 
[ 71] (2|  2,  _,  _,  1) {18, 24} 
[ 72] (2|  2,  _,  2,  2) {19, 23} 
[ 73] (2|  2,  _,  2,  _) {19, 24} 
[ 74] (2|  2,  1,  _,  2) {21, 23} 
[ 75] (2|  2,  1,  _,  _) {21, 24} 
[ 76] (2|  2,  1,  2,  _) {23, 24} 

 

 Step 2: Pruning 

Here the process of clearing exceptions between classes and lightening the 
pattern set is made. 

 Sub-step 2.1: Check up for Data Consistency 

In this sub-step the patterns, belonging to different classes are paired. If one 
pattern matches another pattern (but they have a different class value), then 
the more general one is removed. If two patterns match each other then both of 
them are removed. 

 

1( )pid P  1P   2( )pid P 2P   Pattern to be removed  

[  2] (3|  3,  2,  1,  1)  [ 32] (2|  _,  2,  1,  _) [ 32] (2|  _,  2,  1,  _)  
[  2] (3|  3,  2,  1,  1)  [ 40] (2|  _,  2,  _,  _) [ 40] (2|  _,  2,  _,  _)  
[  2] (3|  3,  2,  1,  1)  [ 47] (2|  _,  _,  1,  _) [ 47] (2|  _,  _,  1,  _)  
[  2] (3|  3,  2,  1,  1)  [ 62] (2|  _,  _,  _,  1) [ 62] (2|  _,  _,  _,  1)  
[  4] (1|  3,  2,  2,  1)  [ 39] (2|  _,  _,  2,  _) [ 39] (2|  _,  _,  2,  _)  
[  6] (3|  3,  1,  1,  1)  [ 46] (2|  _,  1,  _,  _) [ 46] (2|  _,  1,  _,  _)  
[  8] (1|  3,  1,  2,  1)  [ 50] (2|  _,  1,  2,  _) [ 50] (2|  _,  1,  2,  _)  
[  8] (1|  3,  1,  2,  1)  [ 63] (2|  _,  1,  2,  1) [ 63] (2|  _,  1,  2,  1)  
[ 10] (3|  1,  2,  1,  1)  [ 55] (2|  1,  _,  _,  _) [ 55] (2|  1,  _,  _,  _)  
[ 12] (1|  1,  2,  2,  1)  [ 58] (2|  1,  _,  2,  _) [ 58] (2|  1,  _,  2,  _)  
[ 14] (3|  1,  1,  1,  1)  [ 60] (2|  1,  1,  _,  _) [ 60] (2|  1,  1,  _,  _)  
[ 16] (2|  1,  1,  2,  1)  [ 51] (1|  _,  _,  2,  1) [ 51] (1|  _,  _,  2,  1)  
[ 18] (2|  2,  2,  1,  1)  [ 34] (3|  _,  2,  1,  1) [ 34] (3|  _,  2,  1,  1)  
[ 18] (2|  2,  2,  1,  1)  [ 35] (3|  _,  _,  1,  1) [ 35] (3|  _,  _,  1,  1)  
[ 20] (1|  2,  2,  2,  1)  [ 68] (2|  2,  _,  _,  _) [ 68] (2|  2,  _,  _,  _)  
[ 20] (1|  2,  2,  2,  1)  [ 69] (2|  2,  2,  _,  _) [ 69] (2|  2,  2,  _,  _)  
[ 20] (1|  2,  2,  2,  1)  [ 71] (2|  2,  _,  _,  1) [ 71] (2|  2,  _,  _,  1)  
[ 20] (1|  2,  2,  2,  1)  [ 73] (2|  2,  _,  2,  _) [ 73] (2|  2,  _,  2,  _)  
[ 22] (3|  2,  1,  1,  1)  [ 70] (2|  2,  _,  1,  _) [ 70] (2|  2,  _,  1,  _)  
[ 22] (3|  2,  1,  1,  1)  [ 75] (2|  2,  1,  _,  _) [ 75] (2|  2,  1,  _,  _)  
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 Sub-step 2.2: Retain Most General Rules 

This sub-step is provided again within the classes. Patterns from equal 
classes are compared and, conversely to the previous step, more concrete 
patterns are deleted, i.e. the larger pattern is removed. 

 

 1( )pid P  1P   2( )pid P 2P   Pattern to be removed 

 [  1] (2|  3,  2,  1,  2)  [ 25] (2|  3,  2,  _,  2) [  1] (2|  3,  2,  1,  2) 
 [  2] (3|  3,  2,  1,  1)  [ 33] (3|  3,  _,  1,  1) [  2] (3|  3,  2,  1,  1) 
 [  3] (2|  3,  2,  2,  2)  [ 25] (2|  3,  2,  _,  2) [  3] (2|  3,  2,  2,  2) 
 [  4] (1|  3,  2,  2,  1)  [ 41] (1|  3,  _,  2,  1) [  4] (1|  3,  2,  2,  1) 
 [  5] (2|  3,  1,  1,  2)  [ 26] (2|  3,  _,  1,  2) [  5] (2|  3,  1,  1,  2) 
 [  6] (3|  3,  1,  1,  1)  [ 33] (3|  3,  _,  1,  1) [  6] (3|  3,  1,  1,  1) 
 [  7] (2|  3,  1,  2,  2)  [ 27] (2|  3,  _,  _,  2) [  7] (2|  3,  1,  2,  2) 
 [  8] (1|  3,  1,  2,  1)  [ 41] (1|  3,  _,  2,  1) [  8] (1|  3,  1,  2,  1) 
 [  9] (2|  1,  2,  1,  2)  [ 28] (2|  _,  2,  1,  2) [  9] (2|  1,  2,  1,  2) 
 [ 10] (3|  1,  2,  1,  1)  [ 56] (3|  1,  _,  1,  1) [ 10] (3|  1,  2,  1,  1) 
 [ 11] (2|  1,  2,  2,  2)  [ 29] (2|  _,  2,  _,  2) [ 11] (2|  1,  2,  2,  2) 
 [ 12] (1|  1,  2,  2,  1)  [ 42] (1|  _,  2,  2,  1) [ 12] (1|  1,  2,  2,  1) 
 [ 13] (2|  1,  1,  1,  2)  [ 30] (2|  _,  _,  1,  2) [ 13] (2|  1,  1,  1,  2) 
 [ 14] (3|  1,  1,  1,  1)  [ 48] (3|  _,  1,  1,  1) [ 14] (3|  1,  1,  1,  1) 
 [ 15] (2|  1,  1,  2,  2)  [ 31] (2|  _,  _,  _,  2) [ 15] (2|  1,  1,  2,  2) 
 [ 16] (2|  1,  1,  2,  1)  [ 61] (2|  1,  1,  2,  _) [ 16] (2|  1,  1,  2,  1) 
 [ 17] (2|  2,  2,  1,  2)  [ 28] (2|  _,  2,  1,  2) [ 17] (2|  2,  2,  1,  2) 
 [ 18] (2|  2,  2,  1,  1)  [ 64] (2|  2,  2,  1,  _) [ 18] (2|  2,  2,  1,  1) 
 [ 19] (2|  2,  2,  2,  2)  [ 29] (2|  _,  2,  _,  2) [ 19] (2|  2,  2,  2,  2) 
 [ 20] (1|  2,  2,  2,  1)  [ 42] (1|  _,  2,  2,  1) [ 20] (1|  2,  2,  2,  1) 
 [ 21] (2|  2,  1,  1,  2)  [ 30] (2|  _,  _,  1,  2) [ 21] (2|  2,  1,  1,  2) 
 [ 22] (3|  2,  1,  1,  1)  [ 48] (3|  _,  1,  1,  1) [ 22] (3|  2,  1,  1,  1) 
 [ 23] (2|  2,  1,  2,  2)  [ 31] (2|  _,  _,  _,  2) [ 23] (2|  2,  1,  2,  2) 
 [ 24] (2|  2,  1,  2,  1)  [ 76] (2|  2,  1,  2,  _) [ 24] (2|  2,  1,  2,  1) 
 [ 25] (2|  3,  2,  _,  2)  [ 27] (2|  3,  _,  _,  2) [ 25] (2|  3,  2,  _,  2) 
 [ 26] (2|  3,  _,  1,  2)  [ 27] (2|  3,  _,  _,  2) [ 26] (2|  3,  _,  1,  2) 
 [ 27] (2|  3,  _,  _,  2)  [ 31] (2|  _,  _,  _,  2) [ 27] (2|  3,  _,  _,  2) 
 [ 27] (2|  3,  _,  _,  2)  [ 36] (2|  3,  _,  2,  2) [ 36] (2|  3,  _,  2,  2) 
 [ 27] (2|  3,  _,  _,  2)  [ 43] (2|  3,  1,  _,  2) [ 43] (2|  3,  1,  _,  2) 
 [ 28] (2|  _,  2,  1,  2)  [ 29] (2|  _,  2,  _,  2) [ 28] (2|  _,  2,  1,  2) 
 [ 29] (2|  _,  2,  _,  2)  [ 31] (2|  _,  _,  _,  2) [ 29] (2|  _,  2,  _,  2) 
 [ 29] (2|  _,  2,  _,  2)  [ 37] (2|  _,  2,  2,  2) [ 37] (2|  _,  2,  2,  2) 
 [ 29] (2|  _,  2,  _,  2)  [ 52] (2|  1,  2,  _,  2) [ 52] (2|  1,  2,  _,  2) 
 [ 29] (2|  _,  2,  _,  2)  [ 65] (2|  2,  2,  _,  2) [ 65] (2|  2,  2,  _,  2) 
 [ 30] (2|  _,  _,  1,  2)  [ 31] (2|  _,  _,  _,  2) [ 30] (2|  _,  _,  1,  2) 
 [ 30] (2|  _,  _,  1,  2)  [ 44] (2|  _,  1,  1,  2) [ 44] (2|  _,  1,  1,  2) 
 [ 30] (2|  _,  _,  1,  2)  [ 53] (2|  1,  _,  1,  2) [ 53] (2|  1,  _,  1,  2) 
 [ 30] (2|  _,  _,  1,  2)  [ 66] (2|  2,  _,  1,  2) [ 66] (2|  2,  _,  1,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 38] (2|  _,  _,  2,  2) [ 38] (2|  _,  _,  2,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 45] (2|  _,  1,  _,  2) [ 45] (2|  _,  1,  _,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 49] (2|  _,  1,  2,  2) [ 49] (2|  _,  1,  2,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 54] (2|  1,  _,  _,  2) [ 54] (2|  1,  _,  _,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 57] (2|  1,  _,  2,  2) [ 57] (2|  1,  _,  2,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 59] (2|  1,  1,  _,  2) [ 59] (2|  1,  1,  _,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 67] (2|  2,  _,  _,  2) [ 67] (2|  2,  _,  _,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 72] (2|  2,  _,  2,  2) [ 72] (2|  2,  _,  2,  2) 
 [ 31] (2|  _,  _,  _,  2)  [ 74] (2|  2,  1,  _,  2) [ 74] (2|  2,  1,  _,  2) 
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The resulting set after this step is: 
 

( )pid P  P  set of instances-creators of the pattern { ( )}ipid R  

[ 31] (2|  _,  _,  _,  2) {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23} 
[ 33] (3|  3,  _,  1,  1) {2, 6} 
[ 41] (1|  3,  _,  2,  1) {4, 8} 
[ 42] (1|  _,  2,  2,  1) {4, 12, 20} 
[ 48] (3|  _,  1,  1,  1) {6, 14, 22} 
[ 56] (3|  1,  _,  1,  1) {10, 14} 
[ 61] (2|  1,  1,  2,  _) {15, 16} 
[ 64] (2|  2,  2,  1,  _) {17, 18} 
[ 76] (2|  2,  1,  2,  _) {23, 24} 

 

These patterns correspond to following rules: 
 

P  rule 

(2|  _,  _,  _,  2) Class=none,Tears=reduced 
(3|  3,  _,  1,  1) Class=soft,Age=young,Astigmatic=no,Tears=normal 
(1|  3,  _,  2,  1) Class=hard,Age=young,Astigmatic=yes,Tears=normal 
(1|  _,  2,  2,  1) Class=hard,Prescription=myope,Astigmatic=yes,Tears=normal 
(3|  _,  1,  1,  1) Class=soft,Prescription=hypermetrope,Astigmatic=no,Tears=normal 
(3|  1,  _,  1,  1) Class=soft,Age=pre-presbyopic,Astigmatic=no,Tears=normal 

(2|  1,  1,  2,  _) 
Class=none,Age=pre-
presbyopic,Prescription=hypermetrope,Astigmatic=yes 

(2|  2,  2,  1,  _) Class=none,Age=presbyopic,Prescription=myope,Astigmatic=no 
(2|  2,  1,  2,  _) Class=none,Age=presbyopic,Prescription=hypermetrope,Astigmatic=yes 

 

Thus, we have achieved 9 rules that are equal to the sufficient set of rules for 
total description of the Lenses dataset given in [Cendrowska, 1987]. 

7.2.2 Recognition Process in PGN 

We take the instance (age=young, prescription=myope, astigmatic=no, 
tears=reduced) as a query. In practice this instance belongs to the class "none". 

The corresponded numerical vector of the query is (? | 3,2,1,2)Q = . 
 

P  ( , )IntersectionSize P Q  

(2|  _,  _,  _,  2) 1 
(3|  3,  _,  1,  1) 2/3 
(1|  3,  _,  2,  1) 1/3 
(1|  _,  2,  2,  1) 1/3 
(3|  _,  1,  1,  1) 1/3 
(3|  1,  _,  1,  1) 1/3 
(2|  1,  1,  2,  _) 0 
(2|  2,  2,  1,  _) 2/3 
(2|  2,  1,  2,  _) 0 

 
The list with highest intersection size (1) contains only the first pattern, 

which belongs to class 2. Class "2: none" is given as answer. 
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7.3 MPGN 

The focus in the construction and realization of MPGN is to show the 
advantages of multi-layer structures that can be easily stored in ArM archives. 

Because of this, here we will point our attention in this direction using as 
example Lenses dataset. 

7.3.1 Training Process of MPGN 

The training process of MPGN consists of generalization and pruning.  
The step of generalization is similar to the generalization of PGN, but uses 

multi-layer disposing of patterns, which decrease the number of intersections 
and allows to operate with patterns in more structured manner. 

The main focus of MPGN is just on this step, because on the base of already 
created pattern set, different kinds of consequent steps can be examined. 

The pruning step in MPGN differs from pruning of PGN, deleting vertexes of 
pyramids that contradict each other. 

 Generalization 

After generalization of each class the multi-layer structures, containing 
patterns with corresponded predecessor sets and successor sets are created.  

Each pattern P  is named ( )pid P  in the following manner: 

[ / / ]nclass nlayer number , where nclass  and nlayer  are the class and the layer, 

in which the pattern belongs and number  is unique number of the pattern within 
chosen class and layer. 

For alleviating the writing in the predecessors' and successors' sets only 
unique number of the pattern is written. The class of these patterns is the same. 
The layer in the predecessors' set is 1nlayer −  and correspondingly the layer in 

the successors' set is 1nlayer + . 

We should remember that predecessors' sets of the instances (patterns in 
layer 1) are empty and successors' sets of vertexes are also empty. The 
vertexes can belongs to different layers. 

Using the predecessors' sets and successors' sets, graphical representations 
of created pyramids for each class are made. 
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 Class 1: "hard" 

The generalization of class "hard" created 3 layers, containing 4 instances in 
layer 1, 3 intermediate patterns in layer 2 and one vertex in the upper layer. 

 
( )pid P  P  Predecessor set Successor set 

  Layer = 1 
[1/1/1] ( 1| 3, 2, 2, 1) {} {1,2,3,1,2,3} 
[1/1/2] ( 1| 3, 1, 2, 1) {} {2,3,2,3} 
[1/1/3] ( 1| 1, 2, 2, 1) {} {1,2,1,2} 
[1/1/4] ( 1| 2, 2, 2, 1) {} {1,2,1,2} 
    
  Layer = 2 
[1/2/1] ( 1| _, 2, 2, 1) {1,3,4} {1} 
[1/2/2] ( 1| _, _, 2, 1) {1,2,3,4} {1} 
[1/2/3] ( 1| 3, _, 2, 1) {1,2} {1} 
    
  Layer = 3 
[1/3/1] ( 1| _, _, 2, 1) {1,2,3} {} 

 
Corresponding link-spaces of class 1 are: 
 

Layer No: Attribute Attribute value          pid set 
Layer 1 1 age 1   pre-presbyopic      : {P3} 

2   presbyopic          : {P4} 
3   young               : {P1,P2} 

 2 prescription 1   hypermetrope        : {P2} 
2   myope               : {P1,P3,P4} 

 3 astigmatic 1   no                  : {} 
2   yes                 : {P1,P2,P3,P4} 

 4 tears 1   normal              : {P1,P2,P3,P4} 
2   reduced             : {} 

Layer 2 1 age 1   pre-presbyopic      : {} 
2   presbyopic          : {} 
3   young               : {P3} 

 2 prescription 1   hypermetrope        : {} 
2   myope               : {P1} 

 3 astigmatic 1   no                  : {} 
2   yes                 : {P1,P2,P3} 

 4 tears 1   normal              : {P1,P2,P3} 
2   reduced             : {} 

Layer 3 1 age 1   pre-presbyopic      : {} 
2   presbyopic          : {} 
3   young               : {} 

 2 prescription 1   hypermetrope        : {} 
2   myope               : {} 

 3 astigmatic 1   no                  : {} 
2   yes                 : {P1} 

 4 tears 1   normal              : {P1} 
2   reduced             : {} 
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Figure 26. MPGN pyramid for class "hard" of Lenses dataset 

Figure 26 shows the pyramid for class "hard". 

 Class 2: "none" 

The class "none" starts with more instances (15) and combinations between 
them create more patterns. During the generalization four layers are created. 

 
( )pid P  P  Predecessor set Successor set 

  Layer = 1  
[2/1/1] (2|3,2,1,2)  {} {1,3,4,11,13,17,18,19,38,42,1,3,4,1

1,13,17,18,19,38,42} 
[2/1/2] (2|3,2,2,2)  {} {1,2,4,8,12,13,17,37,42,1,2,4,8,12,

13,17,37,42} 
[2/1/3] (2|3,1,1,2)  {} {1,3,5,7,10,13,18,35,38,1,3,5,7,10,

13,18,35,38} 
[2/1/4] (2|3,1,2,2)  {} {1,2,5,6,7,8,9,13,35,37,1,2,5,6,7,8

,9,13,35,37} 
[2/1/5] (2|1,2,1,2)  {} {1,3,4,11,16,17,18,19,32,36,43,1,3,

4,11,16,17,18,19,32,36,43} 
[2/1/6] (2|1,2,2,2)  {} {1,2,4,8,12,16,17,33,36,43,44,1,2,4

,8,12,16,17,33,36,43,44} 
[2/1/7] (2|1,1,1,2)  {} {1,3,5,7,10,16,18,32,34,39,43,1,3,5

,7,10,16,18,32,34,39,43} 
[2/1/8] (2|1,1,2,2)  {} {1,2,5,6,7,8,9,16,33,34,39,40,43,44

,1,2,5,6,7,8,9,16,33,34,39,40,43,44
} 

[2/1/9] (2|1,1,2,1)  {} {6,7,8,30,39,40,41,43,44,6,7,8,30,3
9,40,41,43,44} 

[2/1/10] (2|2,2,1,2)  {} {1,3,4,11,14,15,17,18,19,20,21,22,2
3,31,1,3,4,11,14,15,17,18,19,20,21,
22,23,31} 

[2/1/11] (2|2,2,1,1)  {} {15,17,18,19,21,23,27,31,41,15,17,1
8,19,21,23,27,31,41} 

[2/1/12] (2|2,2,2,2)  {} {1,2,4,8,12,14,15,17,20,23,24,28,1,
2,4,8,12,14,15,17,20,23,24,28} 

[2/1/13] (2|2,1,1,2)  {} {1,3,5,7,10,14,15,18,21,22,25,29,1,
3,5,7,10,14,15,18,21,22,25,29} 

[2/1/14] (2|2,1,2,2)  {} {1,2,5,6,7,8,9,14,15,24,25,26,28,29
,1,2,5,6,7,8,9,14,15,24,25,26,28,29
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} 
[2/1/15] (2|2,1,2,1)  {} {6,7,8,15,24,25,26,27,30,41,6,7,8,1

5,24,25,26,27,30,41} 
    
  Layer = 2  
[2/2/1] (2|_,_,_,2)  {1,2,3,4,5,6,7,8,10,12,13,14} {1} 
[2/2/2] (2|_,_,2,2)  {2,4,6,8,12,14} {1,3} 
[2/2/3] (2|_,_,1,2)  {1,3,5,7,10,13} {1,7} 
[2/2/4] (2|_,2,_,2)  {1,2,5,6,10,12} {1,6,12} 
[2/2/5] (2|_,1,_,2)  {3,4,7,8,13,14} {1,2} 
[2/2/6] (2|_,1,2,_) {4,8,9,14,15} {2,3,5} 
[2/2/7] (2|_,1,_,_) {3,4,7,8,9,13,14,15} {2} 
[2/2/8] (2|_,_,2,_) {2,4,6,8,9,12,14,15} {3} 
[2/2/9] (2|_,1,2,2)  {4,8,14} {1,2,3,5} 
[2/2/10] (2|_,1,1,2)  {3,7,13} {1,2,7} 
[2/2/11] (2|_,2,1,2)  {1,5,10} {1,6,7,11,12} 
[2/2/12] (2|_,2,2,2)  {2,6,12} {1,3,6,12} 
[2/2/13] (2|3,_,_,2)  {1,2,3,4} {1} 
[2/2/14] (2|2,_,_,2)  {10,12,13,14} {1,4} 
[2/2/15] (2|2,_,_,_) {10,11,12,13,14,15} {4} 
[2/2/16] (2|1,_,_,2)  {5,6,7,8} {1} 
[2/2/17] (2|_,2,_,_) {1,2,5,6,10,11,12} {6} 
[2/2/18] (2|_,_,1,_) {1,3,5,7,10,11,13} {7} 
[2/2/19] (2|_,2,1,_) {1,5,10,11} {6,7,11} 
[2/2/20] (2|2,2,_,2)  {10,12} {1,4,6,9,12} 
[2/2/21] (2|2,_,1,_) {10,11,13} {4,7,10} 
[2/2/22] (2|2,_,1,2)  {10,13} {1,4,7,10} 
[2/2/23] (2|2,2,_,_) {10,11,12} {4,6,9} 
[2/2/24] (2|2,_,2,_) {12,14,15} {3,4} 
[2/2/25] (2|2,1,_,_) {13,14,15} {2,4} 
[2/2/26] (2|2,1,2,_) {14,15} {2,3,4,5} 
[2/2/27] (2|2,_,_,1)  {11,15} {4,8} 
[2/2/28] (2|2,_,2,2)  {12,14} {1,3,4} 
[2/2/29] (2|2,1,_,2)  {13,14} {1,2,4} 
[2/2/30] (2|_,1,2,1)  {9,15} {2,3,5,8} 
[2/2/31] (2|2,2,1,_) {10,11} {4,6,7,9,10,11} 
[2/2/32] (2|1,_,1,2)  {5,7} {1,7} 
[2/2/33] (2|1,_,2,2)  {6,8} {1,3} 
[2/2/34] (2|1,1,_,2)  {7,8} {1,2} 
[2/2/35] (2|3,1,_,2)  {3,4} {1,2} 
[2/2/36] (2|1,2,_,2)  {5,6} {1,6,12} 
[2/2/37] (2|3,_,2,2)  {2,4} {1,3} 
[2/2/38] (2|3,_,1,2)  {1,3} {1,7} 
[2/2/39] (2|1,1,_,_) {7,8,9} {2} 
[2/2/40] (2|1,1,2,_) {8,9} {2,3,5} 
[2/2/41] (2|_,_,_,1)  {9,11,15} {8} 
[2/2/42] (2|3,2,_,2)  {1,2} {1,6,12} 
[2/2/43] (2|1,_,_,_) {5,6,7,8,9} {} 
[2/2/44] (2|1,_,2,_) {6,8,9} {3} 
    
  Layer = 3  
[2/3/1] (2|_,_,_,2)  {1,2,3,4,5,9,10,11,12,13,14,16,20,22,

28,29,32,33,34,35,36,37,38,42} 
{} 

[2/3/2] (2|_,1,_,_) {5,6,7,9,10,25,26,29,30,34,35,39,40} {3} 
[2/3/3] (2|_,_,2,_) {2,6,8,9,12,24,26,28,30,33,37,40,44} {4} 
[2/3/4] (2|2,_,_,_) {14,15,20,21,22,23,24,25,26,27,28,29,

31} 
{2} 

[2/3/5] (2|_,1,2,_) {6,9,26,30,40} {3,4} 
[2/3/6] (2|_,2,_,_) {4,11,12,17,19,20,23,31,36,42} {1} 
[2/3/7] (2|_,_,1,_) {3,10,11,18,19,21,22,31,32,38} {} 
[2/3/8] (2|_,_,_,1)  {27,30,41} {} 
[2/3/9] (2|2,2,_,_) {20,23,31} {1,2} 
[2/3/10] (2|2,_,1,_) {21,22,31} {2} 
[2/3/11] (2|_,2,1,_) {11,19,31} {1} 
[2/3/12] (2|_,2,_,2)  {4,11,12,20,36,42} {1} 
    
  Layer = 4  
[2/4/1] (2|_,2,_,_) {6,9,11,12} {} 
[2/4/2] (2|2,_,_,_) {4,9,10} {} 
[2/4/3] (2|_,1,_,_) {2,5} {} 
[2/4/4] (2|_,_,2,_) {3,5} {} 
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Corresponded link-spaces of class 2 are: 
 

Layer: attribute Attribute value          pid set 
Layer 1 1 age 1 pre-presbyopic: {P5,P6,P7,P8,P9} 

2 presbyopic    : {P10,P11,P12,P13,P14,P15} 
3 young         : {P1,P2,P3,P4} 

 2 prescription 1 hypermetrope  : {P3,P4,P7,P8,P9,P13,P14,P15} 
2 myope         : {P1,P2,P5,P6,P10,P11,P12} 

 3 astigmatic 1 no            : {P1,P3,P5,P7,P10,P11,P13} 
2 yes           : {P2,P4,P6,P8,P9,P12,P14,P15} 

 4 tears 1 normal        : {P9,P11,P15} 
2 reduced       : {P1,P2,P3,P4,P5,P6,P7,P8,P10,P12,P13,P14} 

Layer 2 1 age 1 pre-presbyopic: {P16,P32,P33,P34,P36,P39,P40,P43,P44} 
2 presbyopic    : 
{P14,P15,P20,P21,P22,P23,P24,P25,P26,P27,P28,P29,P31} 
3 young         : {P13,P35,P37,P38,P42} 

 2 prescription 1 hypermetrope  : 
{P5,P6,P7,P9,P10,P25,P26,P29,P30,P34,P35,P39,P40} 
2 myope         : {P4,P11,P12,P17,P19,P20,P23,P31,P36,P42} 

 3 astigmatic 1 no            : {P3,P10,P11,P18,P19,P21,P22,P31,P32,P38} 
2 yes           : 
{P2,P6,P8,P9,P12,P24,P26,P28,P30,P33,P37,P40,P44} 

 4 tears 1 normal        : {P27,P30,P41} 
2 reduced       : {P1,P2,P3,P4,P5,P9,P10,P11,P12,P13,P14,P16, 
P20,P22,P28,P29,P32,P33,P34,P35,P36,P37,P38,P42} 

Layer 3 1 age 1   pre-presbyopic: {} 
2   presbyopic    : {P4,P9,P10} 
3   young         : {} 

 2 prescription 1   hypermetrope  : {P2,P5} 
2   myope         : {P6,P9,P11,P12} 

 3 astigmatic 1   no            : {P7,P10,P11} 
2   yes           : {P3,P5} 

 4 tears 1   normal        : {P8} 
2   reduced       : {P1,P12} 

Layer 4 1 age 1   pre-presbyopic: {} 
2   presbyopic    : {P2} 
3   young         : {} 

 2 prescription 1   hypermetrope  : {P3} 
2   myope         : {P1} 

 3 astigmatic 1   no            : {} 
2   yes           : {P4} 

 4 tears 1   normal        : {} 
2   reduced       : {} 
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Figure 27. MPGN pyramid for class "none" of Lenses dataset 

Figure 27 shows the graphical representation of the class "none". The 
possibility for one class to have several vertexes can be observed here. It is also 
notable that vertexes can belongs to different layers. Here we have one vertex 
in layer 2, three vertexes in layer 3 and four vertexes in the upper layer 4. 

 Class 3: "soft" 

The generalization of class 3 "soft" creates also 3 layer pyramid with one 
vertex. 

 
( )pid P  P  Predecessor set Successor set 

  Layer = 1 
[3/1/1] ( 3| 3, 2, 1, 1) {} {1,4,5} 
[3/1/2] ( 3| 3, 1, 1, 1) {} {1,2,5} 
[3/1/3] ( 3| 1, 2, 1, 1) {} {1,3,4} 
[3/1/4] ( 3| 1, 1, 1, 1) {} {1,2,3} 
[3/1/5] ( 3| 2, 1, 1, 1) {} {1,2} 
    
  Layer = 2 
[3/2/1] ( 3| _, _, 1, 1) {1,2,3,4,5} {1} 
[3/2/2] ( 3| _, 1, 1, 1) {2,4,5} {1} 
[3/2/3] ( 3| 1, _, 1, 1) {3,4} {1} 
[3/2/4] ( 3| _, 2, 1, 1) {1,3} {1} 
[3/2/5] ( 3| 3, _, 1, 1) {1,2} {1} 
    
  Layer = 3 
[3/3/1] ( 3| _, _, 1, 1) {1,2,3,4,5} {} 
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Corresponding link-spaces of class 3 are: 
 

Layer: attribute Attribute value         pid set
Layer 1 1 age   1   pre-presbyopic      : {P3,P4} 

  2   presbyopic          : {P5} 
  3   young               : {P1,P2} 

 2 prescription   1   hypermetrope        : {P2,P4,P5} 
  2   myope               : {P1,P3} 

 3 astigmatic   1   no                  : {P1,P2,P3,P4,P5} 
  2   yes                 : {} 

 4 tears   1   normal              : {P1,P2,P3,P4,P5} 
  2   reduced             : {} 

Layer 2 1 age   1   pre-presbyopic      : {P3} 
  2   presbyopic          : {} 
  3   young               : {P5} 

 2 prescription   1   hypermetrope        : {P2} 
  2   myope               : {P4} 

 3 astigmatic   1   no                  : {P1,P2,P3,P4,P5} 
  2   yes                 : {} 

 4 tears   1   normal              : {P1,P2,P3,P4,P5} 
  2   reduced             : {} 

Layer 3 1 age   1   pre-presbyopic      : {} 
  2   presbyopic          : {} 
  3   young               : {} 

 2 prescription   1   hypermetrope        : {} 
  2   myope               : {} 

 3 astigmatic   1   no                  : {P1} 
  2   yes                 : {} 

 4 tears   1   normal              : {P1} 
  2   reduced             : {} 

 
Figure 28. MPGN pyramid for class "soft" of Lenses dataset 

Figure 28 shows the pyramid for the class "soft". 

 Pruning 

The vertexes of pyramids of the three classes do not contradict. Because of 
this the pyramids remains unchanged. 
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7.3.2 Recognition Process in MPGN 

We take again the same instance (age=young, prescription=myope, 
astigmatic=no, tears=reduced) as a query. The numerical vector of the query is 

(? | 3,2,1,2)Q = . 

The first phase of recognition traverses each class individually. 

The vertex of the class "hard" is 1/ 3/1 (1| _, _,2,1)P = . The intersection 

percentage is 0%. The recognition set of the first class is empty. 

The vertex of the class "soft" is 3 / 3 /1 (3 | _, _,1,1)P = . The intersection 

percentage is 50%. The recognition set of the first class is empty, because only 
patterns with 100% intersection percentage are included in the set. 

For the class "none" the vertex 2 / 4 /1 (2 | _,2, _, _)P =  has 100% intersection 

percentage and initial recognition set { 2 / 4 /1P } is created.  

The predecessors' set of 2 / 4 /1P  is { 2 / 3 / 6P , 2 / 3 / 9P , 2 / 3 /11P , 2 / 3 /12P }. 

 
( )pid P  P  P  ( , )IntersectionPercentage P Q  Predecessors' set 

[2/3/6] ( 2| _, 2, _, 
_,  

1 100% {4,11,12,17,19,20,23,31,36,42} 

[2/3/9] ( 2| 2, 2, _, 
_,  

2 50% {20,23,31} 

[2/3/11] ( 2| _, 2, 1, 
_,  

2 100% {11,19,31} 

[2/3/12] ( 2| _, 2, _, 
2)  

2 100% {4,11,12,20,36,42} 

 
Maximal cardinality is 2 and the set of patterns that have such cardinality and 

100% intersection percentage is { 2 / 3 /11P , 2 / 3 /12P }. This set replace pattern 

2 / 4 /1P  in the recognition set. 

The analysis of the predecessors' set of 2 / 3 /11P  and 2 / 3 /12P  shows the 

following results. 

For 2 / 3 /11P : 

 
( )pid P  P  P  ( , )IntersectionPercentage P Q  Predecessors' set 

[2/2/11] ( 2| _, 2, 1, 2) 3 100% {1,5,10} 
[2/2/19] ( 2| _, 2, 1, _, 2 100% {1,5,10,11} 
[2/2/31] ( 2| 2, 2, 1, _, 3 66.66% {10,11} 

 

Maximal cardinality is 3 and 2 / 2 /11P  replaces 2 / 3 /11P  in the recognition set.  
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For 2 / 3 /12P : 

 
( )pid P  P  P  ( , )IntersectionPercentage P Q  Predecessors' set 

[2/2/4] ( 2| _, 2, _, 2) 2 100% {1,2,5,6,10,12} 
[2/2/11] ( 2| _, 2, 1, 2) 3 100% {1,5,10} 
[2/2/12] ( 2| _, 2, 2, 2) 3 66.66% {2,6,12} 
[2/2/20] ( 2| 2, 2, _, 2) 3 66.66% {10,12} 
[2/2/36] ( 2| 1, 2, _, 2) 3 66.66% {5,6} 
[2/2/42] ( 2| 3, 2, _, 2) 3 66.66% {1,2} 

 

Again the maximal cardinality is 3 and 2 / 2 /11P , which fulfill both conditions is 

a candidate to replace 2 / 3 /12P  in the recognition set. 2 / 3 /12P  is removed, 

because the new set is not empty. The new recognition set is { 2 / 2 /11P }, which 

had already been included in the previous step. 

 
Figure 29. The process of recognition in MPGN 

From the instances 2 /1/1 (2 | 3,2,1,2)P = , 2 /1/ 5 (2 |1,2,1,2)P = , 

2 /1/10 (2 | 2,2,1,2)P = , which are in the predecessors' set of 2 / 2 /11P .the first fully 

covers the query. There is a parameter which can mark the first layer not to be 
given in the recognition process. Figure 29 shows the recognition process when 
this first layer is excluded. 

In the second phase, the recognition sets from all classes are compared and 
maximal cardinality is estimated. Because two of the classes have empty 
recognition sets and only one class gives some hypothesis, the class "none" is 
given as an answer. 



7. Example on Lenses Data Set 143 

 
 
Conclusion 
Here we have shown the behavior of PGN and MPGN and results from its 

processing on the example of Lenses dataset. 
We traversed all stages of PGN-classifier and we have demonstrated that PGN 

produces the pattern set that is minimal and complete for covering the learning 
set. 

In the case of MPGN we showed the process of creating the main construction 
elements on the example of the Lenses dataset. 

Also we showed the possibilities for visualizing the processes of creating the 
pyramids and the recognizing the queries. 
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8 Sensitivity Analysis 

 
Abstract 
We made different experiments for studying the specific behavior of the 

proposed algorithms and for comparing our results with results from other 
classifiers. 

Because PGN and MPGN as well as most of other classifiers deal with 
categorical attributes we studied different discretizators in order to choose the 
more convenient for our classifiers. 

Further experiments follow the process of growing the learning sets and how 
this reflects to the classification model and the accuracy of PGN and MPGN. 

One particular study addressed the analysis of exit points of MPGN in order to 
examine the significance of different branches of the recognition phase. 

Other experiments analyzed the classifiers' behaviors when there is a noise 
rush in the dataset attributes. 

The overall accuracy and the F-measures in particular obtained from different 
classifiers are compared and analyzed. 

 

8.1 Global Frame of the Experiments 

We will first discuss the main components in our experiments: chosen 
datasets; the processes (such as cross-validation, noising, etc.); analyzed 
constructs (classification models, accuracies, confusion matrices, etc.). 

8.1.1 The Experimental Datasets 

We have provided experiments with datasets from UCI Machine Learning 
Repository [Frank and Asuncion, 2010].  
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In these experiments the following datasets were used – Audiology, 
Balance scale, Blood transfusion, Breast cancer wo, Car, CMC, Credit, Ecoli, 
Forestfires, Glass, Haberman, Hayes-roth, Hepatitis, Iris, Lenses, Monks1, 
Monks2, Monks3, Post operative, Soybean, TAE, Tic tac toe, Wine, Winequality-
red, and Zoo. The description of the used datasets is provided in Table 1.  

Table 1. Datasets' Description 

Dataset 
Number of
attributes

Number of
classes 

Number of 
instances

Type of attributes 

audiology 69 24 200 Categorical 
balance_scale 4 3 624 Categorical 
blood_transfusion 3 2 748 Real 
breast_cancer_wo 9 2 699 Categorical 
car 6 4 1728 Categorical 
cmc 9 3 1473 Categorical, Integer 
credit 15 2 690 Categorical, Integer, Real 
ecoli 7 8 336 Real 
forestfires 12 2 517 Real 
glass 9 6 214 Real 
haberman 3 2 306 Integer 
hayes-roth 4 3 132 Categorical 
hepatitis 19 2 155 Categorical, Integer, Real 
iris 4 3 150 Real 
lenses 4 3 24 Categorical 
monks1 6 2 432 Categorical 
monks2 6 2 601 Categorical 
monks3 6 2 554 Categorical 
post-operative 8 3 90 Categorical, Integer 
soybean 35 19 307 Categorical 
tae 5 3 151 Categorical, Integer 
tic_tac_toe 9 2 958 Categorical 
wine 13 3 178 Integer, Real 
winequality-red 11 6 1599 Real 
zoo 16 7 101 Categorical, Integer 

 
Some of the datasets contain numerical values of attributes, which cause 

additional questions of choosing appropriate discretization algorithm. As we have 
already mentioned, discretization as pre-processing step is realized in PaGaNe. 
We used Fayyad-Irani and Chi-square methods.  

8.1.2 The Experiments 

In order to receive more stable results we applied k -fold cross validation. 

The process of cross validation in PaGaNe randomizes the input dataset, after 
that creates k  folds in which sequentially puts the instances from the dataset 
until all instances are included in one of the folds. After that, k  variants of the 
learning set and examining set are created, each time using succession fold as 
examining set and the set of other folds as learning set. 
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PaGaNe has a functionality to export the learning sets and examining sets as 
"arff"-files, which is an appropriate format for the knowledge environment of 
Weka. We used the exported learning set and examining set by PaGaNe as input 
files in Weka in order to achieve equality of the data in learning and recognition 
processes for all classifiers that are compared. 

In the part of analysis of preprocessing discretizing step we make 3k =  fold 
cross validation. In this way the proportion between learning and examining 
sub-sets were respectively 2:1 (66.67%). For these experiments we use primary 
variants of the datasets, choosing only the datasets with real parameters (Blood 
transfusion, Ecoli, Forest fires, Glass, and Iris). 

PGN and MPGN deal with nominal attributes. Consequently, in the 
experiments we first discretize the numerical attributes using Chi-merge with 
95% significance level. Here, again, in order to achieve equal condition for the 
experiments with different classifiers, we used already discretized learning set 
and examining set as input files in Weka. 

In the part where we study the appropriate size of the learning set we made 
experiments with 2,3,4,5k =  fold cross validation in order to receive different 
kinds of splitting between learning and examining set. 

All other experiments are made using 5k =  fold cross validation (the 
proportion between learning and examining set – 4:1, i.e. 80%).  

We made comparison with CMAR [Li et al, 2001] as representative of other 
CAR-classifiers. We used the program realization of CMAR in the LUCS-KDD 
Repository. CMAR is used with support threshold 1% and confidence threshold to 
50%. The parameters are used as they are proposed by the experimental part of 
the paper that firstly present CMAR [Li et al, 2001]. 

Also, the following classifiers, implemented in Weka, representatives of most 
similar recognition models to CAR algorithms are used for comparison: 

− Rules: 
- OneR: one-level decision tree expressed in the form of a set of rules 

that all test one particular attribute [Holte, 1993]; 
- JRip: implementation a propositional rule learner, Repeated 

Incremental Pruning to Produce Error Reduction (RIPPER) [Cohen, 
1995]; 

− Trees: 
- J48 – a Weka implementation of C4.5 [Quinlan, 1993] that produces 

a decision tree;  
- REPTree – an extension of C4.5 [Witten and Frank, 2005], which 

builds a decision tree using information gain reduction and prunes it 
using reduced-error pruning. 

The ratio of this choice is that CAR-classifiers, Rules and Trees have a similar 
model representation language. 
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8.1.3 The Analyzed Constructs 

The most popular metric for comparing models created as a result of the 
learning procedures in such types of classifiers as class association rules, 
decision trees and decision rules is the number of the rules. 

Especially for the MPGN algorithm there are four different exit points of the 
recognition stage, each of them connected with a different part of the algorithm. 
Gathering such statistics is realized in PaGaNe in order to do sensitivity analysis 
and to study the behavior of the algorithm MPGN. 

The confusion matrix is usually applied as a basis for analyzing the results of 
the classifiers. The confusion matrix is m m×  matrix (Table 2), where m  is the 
number of class labels. The rows indicate the class where the test query actually 
belongs to. The columns show the class label assigned to the query by the 
classifier. The numbers of correctly recognized instances are represented on the 
diagonal. 

Table 2. The structure of confusion matrix 

 Cl.1 Cl.2 … Cl.m  

Cl.1 
Correctly 
recognized queries 
of Cl.1 

Number of queries, 
which are actually 
of Cl.1, but were 
predicted as Cl.2 

… 

Number of queries, 
which are actually 
of Cl.1, but were 
predicted as Cl.m 

Actual 
number of 
queries of 
Cl.1 

Cl.2 

Number of queries, 
which are actually 
of Cl.2, but were 
predicted as Cl.1 

Correctly 
recognized queries 
of Cl.2 

 

Number of queries, 
which are actually 
of Cl.2, but were 
predicted as Cl.m 

Actual 
number of 
queries of 
Cl.2 

… …  … … … 

Cl.m 

Number of queries, 
which are actually 
of Cl.m, but were 
predicted as Cl.1 

Number of queries, 
which are actually 
of Cl.m, but were 
predicted as Cl.2 

… 
Correctly 
recognized queries 
of Cl.m 

Actual 
number of 
queries of 
Cl.m 

 
Predicted number of 
queries of Cl.1 

Predicted number of 
queries of Cl.2 

 
Predicted number of 
queries of Cl.m 

Total 
number of 
queries 

 
Mainly classifiers usually are compared on the base of received accuracy. The 

accuracy is the number of correct answers over the total number of the test 
instances (queries). 

More detailed analysis is made for each class label separately, using Recall, 
Precision and F-Measure. 

Recall for a given class label is the number of correct answers over the actual 
number of the test instances (queries), or if we use the terms of confusion 
matrix it is the diagonal value over the sum by row. 

Precision for a given class label is the number of correct answers over the 
predicted number of the test instances, i.e. the diagonal value over the sum by 
column. 
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F-measure is a parameter, which aims to accumulate information both for 
precision and recall. There are different formulas for calculating F-measure. Here 
F-measure is calculated as a harmonic mean of precision and recall:   

2* *precision recall
F

precision recall
=

+
. 

For more global analysis we use average values of these measures, which 
characterize the dataset and classifier as a whole (not each class separately). 

We use the Friedman test to detect statistically significant differences 
between the classifiers in terms of average accuracy [Friedman, 1940]. The 
Friedman test is a non-parametric test, based on the ranking of the algorithms 
on each dataset instead of the true accuracy estimates. We use Average Ranks 
ranking method, which is a simple ranking method, inspired by Friedman's 
statistic [Neave and Worthington, 1992]. For each dataset the algorithms are 
ordered according to the corresponded measure (accuracy, precision, etc.) and 
are assigned ranks accordingly. The best algorithm receives rank 1, the second 
– 2, etc. If two or more algorithms have equal value, they receive equal rank 
which is mean of the virtual positions that had to receive such number of 
algorithms if they were ordered consecutively each by other. 

Let n  is the number of observed datasets, k  is the number of algorithms. 

Let i
jr  be the rank of algorithm j  on dataset i . The average rank for each 

algorithm is calculated as 
1

1 k
i

j j
i

R r
n =

= ∑ . Under the null-hypothesis, which states 

that all the algorithms are equivalent and so their ranks jR  should be equal, the 

Friedman statistic 
2

2 2

1

12 ( 1)
( 1) 4

k

F j
j

n k k
R

k k
χ

=

⎡ ⎤+
= −⎢ ⎥

+ ⎢ ⎥⎣ ⎦
∑   

is distributed according to 2
Fχ  with 1k −  degrees of freedom.  

The quantile values for 1k −  degrees of freedom and probability α  is give on 
Table 3 [Korn and Korn, 1961]. 

Table 3. The quantile values of 2χ distribution for 1k −  degrees of 

freedom and probability α  

Number of  

classifiers k  
2 3 4 5 6 7 8 9 10 

0.05α =  3.841 5.991 7.815 9.488 11.070 12.592 14.067 15.507 16.919 

0.10α =  2.706 4.605 6.251 7.779 9.236 10.645 12.017 13.362 14.684 
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When null-hypothesis is rejected, we can proceed with the Nemenyi test 

[Nemenyi, 1963] which is used when all classifiers are compared to each other. 
The performance of two classifiers is significantly different if the corresponding 
average ranks differ by at least the critical difference 

( 1)
6

k k
CD q

nα
+

=   

where critical values qα  are based on the Studentized range statistic divided by 

2 . Some of the values of qα  is given in Table 4 [Demsar, 2006]. 

Table 4. Critical values for the two tailed Nemenyi test 

Number of 
classifiers 

2 3 4 5 6 7 8 9 10 

0.05q  1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164 

0.10q  1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920 

 
The results of the Nemenyi test are shown by means of critical difference 

diagrams.  
Our comparisons are based on the work of [Demsar, 2006]; he made a study 

of different kinds of used techniques for comparisons between classifiers over 
multiple datasets and recommended a set of simple, yet safe and robust non-
parametric tests for statistical comparisons of classifiers. 

8.2 Choosing an Appropriate Discretizator 

In our evaluation we made experiments with the following datasets which 
contain real attributes – Blood transfusion, Ecoli, Forest fires, Glass, and Iris, 
using three fold cross-validation. In these experiments primary variants of the 
datasets (as they are in UCI repository) are used.  

Chi-merge was examined with 90%, 95% and 99% significance level.  
Fayyad-Irani is a non-parametric method. 
 
Table 5 and Table 6 summarize the obtained overall accuracy in percentages 

(Table 5), and in ranking (Table 6). 
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Table 5. PGN accuracy (in percentage) for different discretization 
methods  

Accuracy Chi-merge: 90.00 Chi-merge: 95.00 Chi-merge: 99.00 Fayyad-Irani 

blood_transfusion 66.44 60.55 72.86 76.21 
ecoli 76.49 78.87 76.49 77.08 
forestfires 56.47 57.06 53.77 54.54 
glass 69.14 69.15 64.96 61.72 
iris 96.00 96.00 94.67 94.67 

Table 6. Ranking of PGN accuracy for different discretization 
methods 

Accuracy Chi-merge: 90.00 Chi-merge: 95.00 Chi-merge: 99.00 Fayyad-Irani 

blood_transfusion 3 4 2 1 
ecoli 3.5 1 3.5 2 
forestfires 2 1 4 3 
glass 2 1 3 4 
iris 1.5 1.5 3.5 3.5 

average 2.4 1.7 3.2 2.7 

 

The Friedman test in this cases shows 2 3.54Fχ = , 0.05 6.251α = , which 

means that the difference is not statistically distinctive.  
Accuracy does not provide sufficient information to predict the separate class 

labels. Because of this we continue the analysis using average recall, which 
reflects more qualitative information for the received accuracy for each class 
label. Table 7 (in percentage) and Table 8 (ranking results) show the obtained 
average recalls for the examined datasets. 

Table 7. PGN average recall (in percentage) for different 
discretization methods 

aver. Recall Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani 

blood_transf. 57.233 57.167 58.933 50.000 
ecoli 48.033 53.100 52.267 52.067 
forestfires 56.467 57.167 53.633 54.633 
glass 56.600 59.333 52.567 54.733 
iris 96.500 96.567 93.967 95.267 

Table 8. Ranking of PGN average recall for different discretization 
methods 

aver. Recall Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani 

blood_transf. 2 3 1 4 
ecoli 4 1 2 3 
forestfires 2 1 4 3 
glass 2 1 4 3 
iris 2 1 4 3 

average 2.4 1.4 3 3.2 
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On the other hand, the precision gives more concrete information as so called 

"measure of exactness". Table 9 (in percentage) and Table 10 (ranking results) 
show the obtained average precision values for the examined datasets. 

Table 9. PGN average precision (in percentages) for different 
discretization methods  

aver. Precision Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani 

blood_transf. 56.367 56.067 46.567 38.100 
ecoli 44.067 51.200 50.433 52.233 
forestfires 56.533 57.200 53.667 54.667 
glass 68.633 63.667 55.200 62.367 
iris 95.767 95.667 95.233 94.900 

Table 10. Ranking of PGN average precision for different 
discretization methods  

aver. Precision Chi-merge:90 Chi-merge:95 Chi-merge:99 Fayyad-Irani 

blood_transf. 1 2 3 4 
ecoli 4 2 3 1 
forestfires 2 1 4 3 
glass 1 2 4 3 
iris 1 2 3 4 

average 1.8 1.8 3.4 3 

 
In a classification task, a precision value of 100% for a class label C means 

that every item labeled as belonging to C does indeed belong to C, but says 
nothing about the number of items from C that were not labeled correctly. 
Contrary to that, a recall of 100% means that every item from class C was 
labeled as belonging to class C, but says nothing about how many other items 
were incorrectly also labeled as belonging to class C. In order to receive the 
complex measure that reflects both aspects, we also examine F-measure, which 
is harmonic mean of two measures above. The received F-measure is presented 
respectively in Table 11 (percentages) and Table 12 (ranking values). 

Table 11. PGN average F-measure (in percentages) for different 
discretization methods  

aver. F-measure Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani 

blood_transf. 53.833 52.733 50.233 43.200 
ecoli 44.033 50.367 49.067 50.133 
forestfires 56.200 56.933 53.500 54.333 
glass 58.300 58.400 52.267 54.033 
iris 95.900 95.900 94.000 94.633 
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Table 12. Ranking of PGN average F-measure for different 
discretization methods 

aver. F-measure Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani 

blood_transf. 1 2 3 4 
ecoli 4 1 3 2 
forestfires 2 1 4 3 
glass 2 1 4 3 
iris 1.5 1.5 4 3 

average 2.1 1.3 3.6 3 

 

 
Figure 30. Comparison of different discretization methods 

The analysis of the received results shows that Chi-merge discretization 
method with 95% significance level gives the best results for all examined 
measures. Close to it are the results from Chi-merge with 90% significance 
level. Chi-merge with 99% significance level gave worse results because of the 
significant fragmentation of the intervals. Fayyad-Irani method gives in some 
cases very good results, but fails in other databases.  

The overall experiments help to make the conclusion that it is best to use 
Chi-merge discretization method with 95% significance level as the appropriate 
discretizator for the next experiments. 
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8.3 Studying the Size of the Learning Set 

The aim of this part is to study the dependence of recognition accuracy from 
the size of the learning set. 

For instance, one of the experiments was made over the Iris dataset (Table 
13 and Figure 31). As we can see half of the instances are enough to receive 
stable good recognition for Iris dataset. The created model consists of about 
eight patterns. 

Table 13. The number of patterns and accuracy from PGN-classifier 
for different split between learning set and examining set – 
Iris dataset 

Split 
LS:ES 

LS ES Patterns 
(av.number) 

Accuracy 
(%) 

1:4 30 120 6.0 90.50 

1:3 37.5 112.5 6.0 92.46 
1:2 50 100 6.3 93.33 
1:1 75 75 7.5 94.67 
2:1 100 50 8.0 94.67 
3:1 112.5 37.5 8.3 94.65 
4:1 120 30 8.4 94.67 

 
Figure 31. The number of patterns and accuracy from PGN-classifier for different 

split between learning set and examining set – Iris dataset 

We conducted another experiment over the Glass dataset (Table 14 and 
Figure 32). For this dataset, good recognition with relatively small number of 
patterns is achieved in the case of about 140 instances. Increasing the number 
of learning instances did not receive better accuracy and in parallel superfluously 
expanded the pattern set. 
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The number of instances in the learning set that is enough to achieve good 
accuracy and tight pattern set highly would depend on the specific dataset.  

 

Table 14. The number of patterns and accuracy from PGN-classifier 
for different split between learning set and examining set – 
Glass dataset 

Split 
LS:ES 

LS ES Patterns 
(av.number) 

Accuracy 
(%) 

1:4 42.8 171.2 29.6 67.17 
1:3 53.5 160.5 35.5 63.08 
1:2 71.3 142.7 44.7 73.13 
1:1 107 107 68.0 74.30 
2:1 142.7 71.3 84.0 77.12 
3:1 160.5 53.5 88.3 76.21 
4:1 171.2 42.8 95.2 77.10 

 
Figure 32. The number of patterns and accuracy from PGN-classifier for different 

split between learning set and examining set – Glass dataset 

PGN is a parameter free method, but it is advisable for the user to run it with 
different training-learning splits in order to view the trade-off with size 
(simplicity) and accuracy of the model. For future research we could develop a 
wrapper procedure that solves this trade-off problem by using the minimum 
description length principle. We observed that accuracy stabilizes for some 
datasets but that the number of patterns increases. This is an indication that in 
future research we could improve the pruning part of PGN.  
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8.4 Examining the Exit Points of MPGN 

During the design of MPGN we believe that the pyramidal network contains 
enough information to classify. So we expect that a majority of unseen cases 
can be classified by using the structure. In other words we expect that in the 
recognition phase only few cases will have an empty recognition set. We are also 
interested in how many cases have a recognition set with one class and how 
many cases have multiple conflicting classes. The latter cases can be classified 
on the basis of confidence or support. At the second step of the recognition 
phase MPGN can fail in different situations: 

− only one class is class-candidate – we sign this case as Exit point 1; 
− several classes are class-candidates. In this case two strategies are 

suggested in order to choose the best competitor: S1: from each class 
choose single rule with maximal confidence within the class and compare 
with others; and S2: find "confidence of recognition set", i.e. the number 
of instances that are covered of patterns from recognition set of this 
class over the number of all instances of this class and compare results. 
In both strategies cases are classified based on maximal confidence (Exit 
point 2) or maximal support (Exit point 3); 

− empty recognition sets – in this case another algorithm is used – the 
Exit point 4. 

Firstly we will analyze the three groups: one class (Exit point 1), multiple 
classes (Exit points 2 and 3) and no classes (Exit point 4). Secondly we will 
examine more into detail the two strategies for multiple classes (exit points 2 
and 3).  

In Table 15 and Table 16 the obtained results – number of cases and number 
of correct answers in cases, are presented respectively for the S1 and S2 
recognition strategy. 

Figure 33 and Figure 34 illustrate the percentage of different kinds of exits 
for S1, respectively S2 recognition strategy. The unbroken line signs 
percentages of different kinds of exits, the dashed line signs percentage of 
correct ones (the number of correct exits divided by total number of queries). 

As we can see the difference between two variants are not significant 
because of the common constructions in the previous stages. In most cases the 
recognition leads to exit 1, which means that applying of the MPGN is 
worthwhile. 
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Table 15. The exit points – total and correct answers for MPGN – 
S1 recognition strategy 

 
One  

class 
Multiple  
classes 

No  
classes 

One  
class 

Multiple  
classes 

No  
classes 

dataset 
Exit 
1 

Exit 
2 

Exit
3 

Exit 
4 

Correct
1 

Correct
2 

Correct 
3 

Correct 
4 

audiology 74.50 0.00 0.00 25.50 65.00 0.00 0.00 4.00 
balance_scale 48.72 23.08 28.04 0.16 48.24 15.38 17.63 0.16 
blood_transfusion 5.75 0.00 0.00 94.25 3.74 0.00 0.00 71.93 
breast_cancer_wo 93.99 0.72 5.29 0.00 90.84 0.57 1.43 0.00 
car 73.32 6.71 19.97 0.00 70.60 3.30 8.97 0.00 
cmc 49.22 23.35 27.29 0.14 25.39 8.62 11.88 0.14 
credit 90.14 5.22 4.64 0.00 79.86 3.48 2.32 0.00 
ecoli 76.38 11.49 12.13 0.00 66.38 4.04 6.38 0.00 
forestfires 66.34 14.89 18.76 0.00 38.10 7.74 10.06 0.00 
glass 85.98 8.41 5.14 0.47 72.90 3.27 3.74 0.47 
haberman 38.89 0.98 1.63 58.50 29.08 0.33 1.31 42.48 
hayes-roth 74.24 4.55 21.21 0.00 57.58 3.03 3.79 0.00 
hepatitis 96.13 1.94 1.94 0.00 78.71 1.94 1.29 0.00 
iris 85.33 4.67 9.33 0.67 82.67 3.33 8.00 0.00 
lenses 87.50 4.17 8.33 0.00 79.17 4.17 0.00 0.00 
monks1 63.89 20.83 15.28 0.00 62.04 20.37 0.46 0.00 
monks2 76.71 20.80 2.50 0.00 70.22 8.15 2.16 0.00 
monks3 77.80 5.96 16.25 0.00 75.45 0.36 14.62 0.00 
post-operative 72.22 23.33 4.44 0.00 45.56 4.44 2.22 0.00 
soybean 92.12 2.17 2.45 3.26 81.25 1.09 0.54 0.00 
tae 72.19 8.61 17.22 1.99 42.38 5.96 4.64 0.00 
tic_tac_toe 84.34 0.73 14.93 0.00 82.78 0.63 12.73 0.00 
wine 92.70 3.37 3.93 0.00 91.01 0.56 0.56 0.00 
winequality-red 74.11 13.70 8.19 4.00 48.78 5.07 3.81 1.69 
zoo 86.14 0.00 0.00 13.86 86.14 0.00 0.00 2.97 

 
Figure 33. The exit points for MPGN – S1 recognition strategy 
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Table 16. The exit points – total and correct answers for MPGN – 
S2 recognition strategy 

 One  
class 

Multiple  
classes 

No  
classes 

One  
class 

Multiple  
classes 

No  
classes 

dataset Exit 
1 

Exit 
2 

Exit
3 

Exit 
4 

Correct
1 

Correct
2 

Correct 
3 

Correct 
4 

audiology 74.50 0.00 0.00 25.50 65.00 0.00 0.00 4.00 
balance_scale 48.72 22.44 28.69 0.16 48.24 16.19 18.91 0.16 
blood_transfusion 5.75 0.00 0.00 94.25 3.74 0.00 0.00 71.93 
breast_cancer_wo 93.99 2.00 4.01 0.00 90.84 1.57 1.14 0.00 
car 73.32 9.38 17.30 0.00 70.60 6.02 9.09 0.00 
cmc 49.22 22.40 28.24 0.14 25.39 8.55 12.56 0.14 
credit 90.14 4.78 5.07 0.00 79.86 3.48 2.75 0.00 
ecoli 76.38 11.70 11.91 0.00 66.38 4.26 6.38 0.00 
forestfires 66.34 15.09 18.57 0.00 38.10 7.93 10.06 0.00 
glass 85.98 8.41 5.14 0.47 72.90 3.27 3.74 0.47 
haberman 38.89 0.98 1.63 58.50 29.08 0.33 1.31 42.48 
hayes-roth 71.21 9.85 18.94 0.00 55.30 7.58 4.55 0.00 
hepatitis 96.13 1.94 1.94 0.00 78.71 1.94 1.29 0.00 
iris 85.33 4.67 9.33 0.67 82.67 3.33 8.00 0.00 
lenses 87.50 4.17 8.33 0.00 79.17 4.17 0.00 0.00 
monks1 63.89 22.92 13.19 0.00 62.04 22.92 0.93 0.00 
monks2 76.71 18.64 4.66 0.00 70.22 7.32 3.49 0.00 
monks3 77.80 3.61 18.59 0.00 75.45 0.72 17.33 0.00 
post-operative 72.22 20.00 7.78 0.00 45.56 2.22 4.44 0.00 
soybean 92.12 2.17 2.45 3.26 81.25 1.09 0.54 0.00 
tae 72.19 9.27 16.56 1.99 42.38 5.96 4.64 0.00 
tic_tac_toe 84.34 3.34 12.32 0.00 82.78 1.67 11.17 0.00 
wine 92.70 3.93 3.37 0.00 91.01 1.69 1.12 0.00 
winequality-red 74.11 13.20 8.69 4.00 48.78 4.88 4.25 1.69 
zoo 86.14 0.00 0.00 13.86 86.14 0.00 0.00 2.97 

 
Figure 34. The exit points for MPGN – S2 recognition strategy 
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Table 17 and Table 18 present the results of coverage and accuracy by each 
case, respectively for S1 and S2 recognition strategy. 

Table 17. The coverage and accuracy by exit points MPGN-S1 
recognition strategy 

 Coverage Accuracy 
dataset Exit 

1 
Exit 

2 or 3 
Exit 
4 

Exit 
1 

Exit 
2 or 3 

Exit  
4 

audiology 74.50 0.00 25.50 87.25 0.00 15.69 
balance_scale 48.72 51.12 0.16 99.01 64.58 100.00 
blood_transfusion 5.75 0.00 94.25 65.12 0.00 76.31 
breast_cancer_wo 93.99 6.01 0.00 96.65 33.33 0.00 
car 73.32 26.68 0.00 96.29 45.99 0.00 
cmc 49.22 50.64 0.14 51.59 40.48 100.00 
credit 90.14 9.86 0.00 88.59 58.82 0.00 
ecoli 76.38 23.62 0.00 86.91 44.14 0.00 
forestfires 66.34 33.66 0.00 57.43 52.87 0.00 
glass 85.98 13.55 0.47 84.78 51.72 100.00 
haberman 38.89 2.61 58.50 74.79 62.50 72.63 
hayes-roth 74.24 25.76 0.00 77.55 26.47 0.00 
hepatitis 96.13 3.87 0.00 81.88 83.33 0.00 
iris 85.33 14.00 0.67 96.88 80.95 0.00 
lenses 87.50 12.50 0.00 90.48 33.33 0.00 
monks1 63.89 36.11 0.00 97.10 57.69 0.00 
monks2 76.71 23.29 0.00 91.54 44.29 0.00 
monks3 77.80 22.20 0.00 96.98 67.48 0.00 
post-operative 72.22 27.78 0.00 63.08 24.00 0.00 
soybean 92.12 4.62 3.26 88.20 35.29 0.00 
tae 72.19 25.83 1.99 58.72 41.03 0.00 
tic_tac_toe 84.34 15.66 0.00 98.14 85.33 0.00 
wine 92.70 7.30 0.00 98.18 15.38 0.00 
winequality-red 74.11 21.89 4.00 65.82 40.57 42.19 
zoo 86.14 0.00 13.86 100.00 0.00 21.43 

Table 18. The coverage and accuracy by exit points MPGN-S2 
recognition strategy 

dataset Coverage Accuracy 
 Exit 

1 
Exit 

2 or 3 
Exit 
4 

Exit 
1 

Exit 
2 or 3 

Exit  
4 

audiology 74.50 0.00 25.50 87.25 0.00 15.69 
balance_scale 48.72 51.12 0.16 99.01 68.65 100.00 
blood_transfusion 5.75 0.00 94.25 65.12 0.00 76.31 
breast_cancer_wo 93.99 6.01 0.00 96.65 45.24 0.00 
car 73.32 26.68 0.00 96.29 56.62 0.00 
cmc 49.22 50.64 0.14 51.59 41.69 100.00 
credit 90.14 9.86 0.00 88.59 63.24 0.00 
ecoli 76.38 23.62 0.00 86.91 45.05 0.00 
forestfires 66.34 33.66 0.00 57.43 53.45 0.00 
glass 85.98 13.55 0.47 84.78 51.72 100.00 
haberman 38.89 2.61 58.50 74.79 62.50 72.63 
hayes-roth 71.21 28.79 0.00 77.66 42.11 0.00 
hepatitis 96.13 3.87 0.00 81.88 83.33 0.00 
iris 85.33 14.00 0.67 96.88 80.95 0.00 
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lenses 87.50 12.50 0.00 90.48 33.33 0.00 
monks1 63.89 36.11 0.00 97.10 66.03 0.00 
monks2 76.71 23.29 0.00 91.54 46.43 0.00 
monks3 77.80 22.20 0.00 96.98 81.30 0.00 
post-operative 72.22 27.78 0.00 63.08 24.00 0.00 
soybean 92.12 4.62 3.26 88.20 35.29 0.00 
tae 72.19 25.83 1.99 58.72 41.03 0.00 
tic_tac_toe 84.34 15.66 0.00 98.14 82.00 0.00 
wine 92.70 7.30 0.00 98.18 38.46 0.00 
winequality-red 74.11 21.89 4.00 65.82 41.71 42.19 
zoo 86.14 0.00 13.86 100.00 0.00 21.43 

 
From the coverage percentages we can seen that in the majority of cases the 

recognition set contains one or multiple classes. Figure 35 gives the scatter plot 
of the coverage for one class (X axis) and the coverage of multiple classes (Y 
axis). 

 
Figure 35. The scatterplot of the coverages for one class and multiple classes 

There are four outliers: the datasets Audiology, Blood transfusion, Haberman 
and Zoo. The analysis of the Blood transfusion dataset shows that from one side 
there are contradictions between classes (6.4%) and from other side the 
attribute values are very sparse and during the pruning phase almost all 
patterns are pruned. Because of this the algorithm fall into Exit point 4. Similar 
situation is for part of Haberman dataset. The distribution of the coverages of 
datasets Audiology and Zoo have a different pattern. There are no cases with 
multiple classes in the recognition sets. The cases with an empty recognition set 
are representative and the accuracy of Exit point 4 is low.  
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Figure 36. Scatter plot of Coverages and Accuracies for Exit point 1 

The initial analysis is to check how good in terms of accuracy the different 
exits are performing. Figure 36 gives the scatter plot with coverage on the X 
axis and accuracy on the Y axis for Exit point 1. A general observation which can 
be made is that the accuracies are high.  

Figure 37 presents the scatter plot of coverages and accuracies for the cases 
with multiple classes in the recognition set (Exit points 2 and 3). The accuracies 
are as expected lower than for the cases with one class in the recognition set. 
However in the corner "low accuracy, high coverage" there are no points 
(datasets). 

 
Figure 37. Scatter plot of Coverages and Accuracies for Exit points 2 and 3 
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In this part of the recognition phase we are using support and confidence. In 
future development we can extend our algorithm to become cost sensitive by 
manipulating confidence or support.  

In section 8.6 we will compare accuracies with other classifiers; here we will 
consider the performance of the different exit points or recognition parts and 
especially the difference between one class and multiple classes. Figure 38 
illustrates the relative performance: the accuracy of the recognition part divided 
by the mean accuracy of all classifiers. 

Except for the post-operative dataset, the recognition based on one class 
recognition set does a high quality job. The relative performance is higher than 
one and as noted before the coverage is high or most datasets. Two lessons can 
be learned from this. First, it is worthwhile to examine whether MPGN can be 
used for ranking problems and campaign applications. Here we could only use 
cases classified by the one class recognition set. Second, to improve accuracy 
we should focus the recognition part with multiple classes. This influenced our 
decision to try two different strategies (see section 5.3.2).  

 
Figure 38. Relative performance of the recognition parts 

over the mean accuracy of all classifiers 

Figure 39 presents the scatter plot of the obtained accuracies for both 
strategies. 

We can conclude that Strategy 2 has a mean accuracy of 49% and Strategy 1 
has a mean accuracy of 46%. In further research we could examine whether 
other methods/classifiers outperform these two strategies. If so we could adapt 
our recognition method here. 
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The Friedman test shows 2 2.56Fχ = , 0.05 1.960α = , which means that the 

MPGN-S2 statistically outperforms MPGN-S1. 

 
Figure 39. Scatter plot of the obtained accuracies for MPGN-S1 and MPGN-S2 

In conclusion, the analysis of different recognition parts learned us that the 
initial idea of the PaGaNe algorithms works well and that for many cases the 
recognition set contains only one and the correct class. Some datasets have a 
specific distribution.  

8.5 Noise in the Datasets 

In the pruning phase we deleted patterns when there are contradictory cases 
without looking at noise, outliers or confidence. This can be too rudimentary 
when there is noise in the dataset. Therefore it is interesting to analyze the 
performance of algorithms against noise. The received accuracy is determined 
by two important factors:  

− the inductive bias of the learning algorithm; 
− the quality of the training data. 

Given a learning algorithm, it is obvious that its classification accuracy 
depends on the quality of the training data. Generally, there are two types of 
noise sources [Wu, 1995]:  

− attribute noise (the errors that are introduced in the attribute values of 
the instances); 
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− class noise (contradictory examples, i.e., the same examples with 
different class labels; or misclassifications, i.e. instances labeled with 
wrong classes).  

Here we make experiments with artificial noising of datasets in order to study 
the robustness of PGN and MPGN classifier. 

The noising of the datasets has been introduced by choosing random instance 
and attribute and replacing the value with arbitrary chosen possible for this 
attribute value. The system keeps the information for the instances and position 
when such changes are already made and does not make repetitive changing of 
the same positions. Such replacing are made until a desired percentage of 
noising is achieved.  

We selected Monks1 dataset, which is a clear dataset with uniform class 
distribution and made 5, 10, 15 and 20 % noising of the attributes. 

Noising within attributes reflects to noising of class labels because of the 
appearance of contradictory instances. Table 19 shows the resulting noise in 
class labels (appearing contradictory instances). 

Table 19. Resulting noise in class labels after noising the attributes 
in Monks1 dataset 

Percentage 
of noising in attributes 

Resulting noise 
between class labels 

0% 0.00 % 
5% 6.00 % 
10% 12.50 % 
15% 17.25 % 
20% 22.45 % 

 PGN Behavior 

We processed the clear dataset and noisy datasets over the 5-fold cross-
validation of PGN and checked the amount of the pattern sets and the obtained 
accuracy, see Table 20. 

Table 20. The number of patterns and accuracy from PGN-classifier 
for noising datasets based on Monks1 dataset 

Percentage 
of noising in attributes 

Patterns 
(av.number) 

Accuracy 
(%) 

0% 59.4 100.00 
5% 108.8 92.36 
10% 145.2 79.62 
15% 153.8 71.77 
20% 145.0 66.67 
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Figure 40. The number of patterns and accuracy from PGN-classifier for noising 

datasets based on Monks1 dataset 

Table 20 and Figure 40 show the behavior of the amount of classification 
model (number of patterns in the pattern set) and the accuracy of the PGN 
classifier as a result of noising of Monsk1 dataset. The graphic affirms the 
expectation that when the noise in the dataset has been increased the number 
of rules would grow while the accuracy would decrease. The architecture of the 
PGN classifier makes it sensitive of the available noise – the patterns become 
more detailed and their number increases. The decrease in the number of 
patterns in the case of 20% noising can be explained with the fact that the 
dataset is quite different from the original and class labels have to conform to 
quite different rules. 

 MPGN Behavior 

We made similar experiments with MPGN structure. 
Table 21 and Figure 41 show the results for the MPGN classifier. The 

expectation were that noising the datasets will cause deeper distortion of the 
pyramids as a result of appearing more often of contradictory vertexes between 
class labels. The graphic shows that for 5% and 10% the number of pruned 
vertexes increase. The decrease after that maybe is by the same reason as in 
PGN – the class labels change their profiles as a result of changing the dataset. 

Table 21. The number of pruned vertexes and accuracy from MPGN-
classifier for noising datasets based on Monks1 dataset 

Percentage 
of noising in attributes 

Vertexes 
(av.number) 

Accuracy 
MPGN-S1 (%) 

Accuracy  
MPGN-S2 (%) 

0% 782 82.900 85.916 
5% 859 78.948 81.736 
10% 1020 72.934 74.078 
15% 937 64.374 66.690 
20% 879 65.288 65.286 
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Figure 41. The number of pruned vertexes and accuracy from MPGN-classifiers 

for noising datasets based on Monks1 dataset 

 Accuracy of Different Tested Classifiers for Noisy Datasets 

The same dataset has been tested with other classifiers in order to study 
their accuracy. 

Table 22. The accuracy from different classifiers for noising datasets 
based on Monks1 dataset 

 PGN MPGN-S1 MPGN-S2 CMAR OneR JRip J48 REPTree 

0% 100.00 82.90 85.92 100.00 74.98 87.53 94.68 88.91 
5% 92.36 78.95 81.74 95.14 72.67 83.37 86.79 81.96 
10% 79.62 72.93 74.08 87.27 68.73 75.73 81.92 77.06 
15% 71.77 64.37 66.69 80.79 68.05 71.80 77.33 74.06 
20% 66.67 65.29 65.29 74.31 65.96 66.02 71.30 65.72 

 
Figure 42. The accuracy for different classifiers for noising datasets based on 

Monks1 
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Table 22 and Figure 42 show that all classifiers have relatively similar 
decreasing of accuracy when noise in the datasets arises. The best performing 
method in this experiment is CMAR. Also very stable is J48. The PGN and MPGN 
are most sensitive to noise, which confirms our hypothesis that confidence-
prioritising approach has its disadvantages in noising datasets. 

 

8.6 Comparison with Other Classifiers 

We compared the proposed classifiers with some of those implemented in 
Weka. We conducted the experiments with PGN, MPGN (with two recognition 
strategies S1 and S2), CMAR as representative of CAR-classifiers, OneR and JRip 
as representatives of decision rules classifiers, and J48 and REPTree as 
representatives of decision trees. 

The comparisons are two-fold measuring:  
− overall accuracy; 
− F-measure results. 

8.6.1 Comparison with Overall Accuracy 

In Table 23 the obtained results for the overall accuracy are shown. 

Table 23. Percentage of overall accuracy of examined datasets for 
PGN, MPGN-S1, MPGN-S2, CMAR, OneR, JRip, J48, and 
REPTree 

Datasets PGN MPGN-S1 MPGN-S2 CMAR OneR JRip J48 REPTree 

audiology 75.50 69.00 69.00 59.18 47.00 69.50 72.00 62.50 
balance_scale 77.89 81.41 83.49 86.70 60.10 71.95 66.18 67.15 
breast_cancer_wo 96.43 92.85 93.56 93.85 91.85 93.28 94.28 93.99 
car 92.59 82.87 85.71 81.77 70.03 86.75 90.80 88.20 
cmc 49.90 46.03 46.64 53.16 47.25 50.38 51.60 50.17 
credit 87.54 85.65 86.09 87.10 85.51 85.07 85.36 85.07 
haberman 55.27 73.21 73.21 71.90 72.88 73.21 73.21 74.20 
hayes-roth 81.94 65.22 67.49 83.42 50.77 78.12 68.23 73.53 
hepatitis 80.65 81.94 81.94 84.52 81.94 77.42 79.36 79.36 
lenses 74.00 83.00 83.00 88.00 62.00 83.00 83.00 80.00 
monks1 100.00 82.9 85.92 100.00 74.98 87.53 94.68 88.91 
monks2 73.06 80.52 81.02 59.74 65.73 58.73 59.90 63.90 
monks3 98.56 90.43 93.50 98.92 79.97 98.92 98.92 98.92 
post-operative 66.67 52.22 52.22 51.11 68.89 70.00 71.11 71.11 
soybean 93.15 84.00 84.00 78.48 37.44 85.35 87.64 78.18 
tae 52.94 52.88 52.88 35.74 45.76 34.43 46.97 40.43 
tic_tac_toe 88.93 96.13 95.62 98.75 69.93 98.02 84.23 80.37 
wine 96.09 92.19 93.87 91.70 78.63 90.45 87.03 88.16 
winequality-red 64.98 59.35 59.60 56.29 55.54 53.72 58.22 57.03 
zoo 98.10 89.24 89.24 94.19 73.29 88.19 94.14 82.19 
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In order to apply Friedman’s test to measure statistical dissimilarity of 

different classifiers we ranked the results (Table 24). 

Table 24. Ranking by accuracy of PGN, MPGN-S1, MPGN-S2, CMAR, 
OneR, JRip, J48, and REPTree 

Datasets PGN MPGN-S1 MPGN-S2 CMAR OneR JRip J48 REPTree 

audiology 1 4.5 4.5 7 8 3 2 6 
balance_scale 4 3 2 1 8 5 7 6 
breast_cancer_wo 1 7 5 4 8 6 2 3 
car 1 6 5 7 8 4 2 3 
cmc 5 8 7 1 6 3 2 4 
credit 1 4 3 2 5 7.5 6 7.5 
haberman 8 3.5 3.5 7 6 3.5 3.5 1 
hayes-roth 2 7 6 1 8 3 5 4 
hepatitis 5 3 3 1 3 8 6.5 6.5 
lenses 7 3.5 3.5 1 8 3.5 3.5 6 
monks1 1.5 7 6 1.5 8 5 3 4 
monks2 3 2 1 7 4 8 6 5 
monks3 5 7 6 2.5 8 2.5 2.5 2.5 
post-operative 5 6.5 6.5 8 4 3 1.5 1.5 
soybean 1 4.5 4.5 6 8 3 2 7 
tae 1 2.5 2.5 7 5 8 4 6 
tic_tac_toe 5 3 4 1 8 2 6 7 
wine 1 3 2 4 8 5 7 6 
winequality-red 1 3 2 6 7 8 4 5 
zoo 1 4.5 4.5 2 8 6 3 7 

average 2.975 4.625 4.075 3.85 6.8 4.85 3.925 4.9 

 
The Friedman test shows as follows: 
− the number of the datasets are 20n = ; 

− the number of classifiers are 8k = ;  

− the degree of freedom is 1 7k − = ; 
− for this degree of freedom the null hypothesis critical values are 

respectively – 0.05 14.067α =  0.10 12.017α = ; 

− in our case 2 29.492Fχ =  which means that the null-hypothesis is 

rejected, i.e. the classifiers are statistically different. 
 
This indicates that there are statistically significant differences in accuracy 

among these classifiers. The rejecting of null-hypothesis of Friedman test gives 
the assurance to make post-hoc Nemenyi test. In our case *0.611CD qα= , 

0.10 2.780q = , 0.05 3.031q = , i.e. 0.10 2.153CD = , 0.05 2.348CD = . 
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In Table 25 the average ranks of the classifiers are shown. The classifiers are 
ordered by average ranks. It should be noticed that PGN has best performance 
from examined classifiers. 

Table 25. Average ranks of the classifiers and distance to the 
average rank of the first one 

classifier Average rank 
Distance between average rank of the classifier  

and average rank of the first one 

PGN 2.975 0 
CMAR 3.850 0.875 
J48 3.925 0.950 
MPGN-S2 4.075 1.100 
MPGN-S1 4.625 1.650 
Jrip 4.850 1.875 
REPTree 4.900 1.925 
OneR 6.800 3.825 

 
Figure 43. Visualisation of Nemenyi test results – 20 datasets 

Figure 43 visualizes the results of the Nemenyi test ( 0.10 2.153CD = ). All 

groups of classifiers that are not significantly different are connected. From 
these results we see that PGN has best overall performance between examined 
classifiers and MPGN is competitive with J48, JRip and REPTree. The first four 
classifiers (PGN, CMAR, J48, and MPGN-S2) significantly outperform OneR. 
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8.6.2 Analyzing F-measures on Some Multi-class Datasets 

The overall accuracy of a particular accuracy may be good in some cases, 
and yet if might not be able to recognize some of the class labels for different 
reasons – small percentage of presence of given class label, mixing with other 
one, etc. 

We present below the obtained results for F-measure in order to see more 
detailed performance of different classifiers. 

We make the experiments over datasets with two particular characteristics – 
too many class labels, and unbalanced support of different class labels.  

We make the analysis over Glass, Winequality-red, and Soybean datasets 
from UCI-repository. 

We choose F-measure as harmonic mean of recall (measure of completeness) 
and precision (measure of exactness). 

 Detailed Performance for Glass Dataset 

Glass dataset has 6 class labels with very uneven distribution between them 
(Table 26). 

Table 26. Percentage of instances belonging to corresponded class 
labels in Glass dataset 

Class label 
in Glass dataset 

Percentage 
of presence 

2# 35.51 
1# 32.71 
7# 13.55 
3# 7.94 
5# 6.07 
6# 4.21 

 
Table 27 and Figure 44 present the F-measure for each class label from 

different classifiers.  

Table 27. Percentage of F-measure from tested classifiers 
for Glass dataset 

Class labels PGN MPGN-S1 MPGN-S2 OneR CMAR Jrip J48 REPTree 

2# (35.5%) 80.3 81.6 82.2 57.5 79.7 67.9 78.1 75.2 
1# (32.7%) 80.3 81.1 81.1 64.4 80.5 69.0 76.5 70.1 
7# (13.6%) 89.7 89.7 89.7 53.8 90.3 85.7 84.2 67.8 
3# (7.9%) 51.9 59.5 57.9 0.0 38.5 16.0 29.6 34.5 
5# (6.1%) 58.1 69.2 69.2 0.0 64.0 53.8 64.5 21.1 
6# (4.2%) 88.9 94.1 94.1 0.0 77.8 60.0 55.6 80.0 
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Figure 44. F-measure for examined classifiers for class-labels of Glass dataset 

As we can see PGN and MPGN have good performance for each of the class 
labels. For instance low-presented class label "3#" is not good performed by 
CMAR, OneR, JRip, J48 and REPTree; "5#" – from OneR and REPTree; "6#" – 
from OneR (F-measures are less than 50%).  

 

 Detailed Performance for Winequality-red Dataset 

Winequality-red dataset has 6 class labels with a variety of distribution (Table 
28). 

Table 28. Percentage of instances belonging to corresponded class 
labels in Winequality-red dataset 

Class label 
in Winequality-red dataset 

Percentage 
of presence 

5# 42.59 
6# 39.90 
7# 12.45 
4# 3.32 
8# 1.13 
3# 0.63 

 
Table 29 and Figure 45 show F-measure for each class label from different 

classifiers.  
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Table 29. Percentage of F-measure from tested classifiers 
for Winequality-red dataset 

Class labels PGN MPGN-S1 MPGN-S2 CMAR OneR Jrip J48 REPTree 

5# 74.7 26.7 66.7 70.2 65.7 65.7 68.9 65.8 
6# 61.9 24.7 51.4 44.0 56.5 47.4 56.7 57.3 
7# 48.6 46.3 44.9 40.6 0.0 28.9 36.1 35.9 
4# 0.0 3.2 0.0 0.0 0.0 0.0 0.0 2.9 
8# 20.0 12.5 14.3 0.0 0.0 0.0 0.0 0.0 
3# 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 
Figure 45. F-measure for examined classifiers for Winequality-red dataset 

Practically, the class labels with few training instances are recognized only by 
PGN and MPGN; class "4#" is recognized by REPTree also. The least presented 
class cannot be detected by any algorithm. 

 

 Detailed Performance for Soybean Dataset 

Soybean dataset has 19 class labels with different groups of distribution 
(Table 30). 

Table 30. Percentage of instances belonging to corresponded class 
labels in Soybean dataset 

Class label 
in Soybean dataset 

Percentage 
of presence 

alternarialeaf-spot 13.029 
brown-spot 13.029 
frog-eye-leaf-spot 13.029 
phytophthora-rot 13.029 
anthracnose 6.515 
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brown-stem-rot 6.515 
bacterial-blight 3.257 
bacterial-pustule 3.257 
charcoal-rot 3.257 
diaporthe-stem-canker 3.257 
downy-mildew 3.257 
phyllosticta-leaf-spot 3.257 
powdery-mildew 3.257 
purple-seed-stain 3.257 
rhizoctonia-root-rot 3.257 
cyst-nematode 1.954 
diaporthe-pod-&-stem-blight 1.954 
herbicide-injury 1.303 
2-4-d-injury 0.326 

 
Table 31 and Figure 46 show F-measure for each class label from different 

classifiers.  
Here the class with lowest support "2-4-d-injury" is not recognized by any 

classifier because of the very low presence (1 instance) – it falls or in the 
learning set either in the examining set. 

As we can see PGN recognizes successfully all other class labels instead of 
differences of their support. J48 also recognizes well but fails in low presented 
classes. MPGN has relatively well behavior. 

 

Table 31. Percentage of F-measure from tested classifiers 
for Soybean dataset 

Class labels PGN MPGN-
S1 

MPGN-
S2 

CMAR OneR Jrip J48 REPTree 

alternarialeaf-spot 86.7 77.4 77.4 93.0 35.8 62.3 89.2 50.7 
brown-spot 91.8 74.7 74.7 73.4 38.2 71.9 87.5 58.2 
frog-eye-leaf-spot 83.8 75.7 75.7 51.6 69.6 61.7 87.8 52.3 
phytophthora-rot 100.0 100.0 100.0 91.9 71.2 76.8 95.2 73.3 
anthracnose 100.0 93.0 93.0 94.7 76.9 81.1 89.5 75.0 
brown-stem-rot 100.0 97.4 97.4 70.3 0.0 100.0 88.4 54.9 
bacterial-blight 90.0 75.0 75.0 73.3 0.0 0.0 90.0 30.8 
bacterial-pustule 90.0 85.7 85.7 80.0 0.0 75.0 85.7 42.9 
charcoal-rot 100.0 100.0 100.0 100.0 28.6 94.7 100.0 57.1 
diaporthe-stem-canker 100.0 88.9 88.9 100.0 41.7 84.2 88.9 42.9 
downy-mildew 100.0 100.0 100.0 95.2 0.0 82.4 100.0 0.0 
phyllosticta-leaf-spot 70.6 42.9 42.9 100.0 0.0 33.3 82.4 0.0 
powdery-mildew 100.0 100.0 100.0 16.7 0.0 75.0 90.0 0.0 
purple-seed-stain 95.2 100.0 100.0 100.0 0.0 88.9 82.4 46.2 
rhizoctonia-root-rot 100.0 75.0 75.0 100.0 0.0 75.0 100.0 46.2 
cyst-nematode 100.0 100.0 100.0 100.0 0.0 50.0 92.3 0.0 
diaporthe-pod-&-stem-
blight 100.0 90.9 90.9 57.1 50.0 66.7 66.7 54.5 
herbicide-injury 88.9 40.0 40.0 82.4 0.0 57.1 75.0 40.0 
2-4-d-injury 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Figure 46. F-measure for examined classifiers for Soybean dataset 

 
Looking at the results of the overall accuracy as well as refined analysis of 

the behavior of classifiers over multi-classes non-uniform distributed datasets 
we can conclude that our expectations that PGN-strategy for focusing more to 
the confidence than to support has a potential to create vivid classification 
algorithms. 

 
 
Conclusion 
We made experiments with 25 datasets from UCI machine learning 

repository. The experiments were performed using data mining environment 
PaGaNe and the knowledge analysis system Weka and LUCS-KDD Repository. 

One series of experiments focused on the obtained accuracy when 
preprocessing real data with different discretizators, realized in PaGaNe. We 
made experiments with Blood transfusion, Ecoli, Forest fires, Glass, and Iris 
datasets. We found that in general PGN-classifier trained on data preprocessed 
by Chi-merge achieves lower classification.  

Other experiments studied the process of growing the learning sets and how 
this reflects to the classification model and the accuracy of PGN and MPGN. In 
the case of Iris and Glass dataset we studied the critical point of the amount of 
the learning set, in which classification model is relatively compact and the 
received accuracy stands relatively equal with the accuracy, received from 
bigger learning set. Of course this critical point highly depends on the dataset 
and is different for different ones. 



8. Sensitivity Analysis 175 

The analysis of exit points of MPGN showed that in most cases the build 
constructs lead to excluding only one class as best competitor. 

Another experiment was aimed to analyze the depending of classifiers' 
behaviors when the noise rush in the dataset attributes on the case of Monks1 
dataset. We showed that noising in the dataset significantly worsens the 
accuracy of PGN, which by its construction keeps well in clear datasets. 
However, experiments with other classifiers show that they did not resist noising 
attacks also. 

We made the comparison of overall accuracy between PGN, MPGN (two 
recognition strategies – S1 and S2), CMAR, OneR, JRip, J48 and REPTree. The 
Friedman test showed statistical difference between tested classifiers. The 
post-hoc Nemenyi test showed that our PGN has best overall performance 
amongst examined classifiers and MPGN is competitive with J48, JRip and 
REPTree. The first four classifiers (PGN, CMAR, J48, and MPGN-S2) significantly 
outperform OneR. 

The analysis of F-measures for different datasets with multiple classes and 
non-uniform distribution show that PGN and MPGN have not only good 
recognition accuracy for the chosen dataset, but also they recognize small 
classes controversy to the other classifiers (for instance OneR), which cannot 
construct recognition model for small class labels. 
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9 Conclusions and Future Work 

9.1 Conclusions 

 
The goals of this thesis were two-fold: 
− to introduce a parameter-free class association rule algorithm, which 

focuses primarily on the confidence of the association rules and only in a 
later stage on the support of the rules. The main purpose is to provide a 
proof of concept for this new approach and collect evidence about its 
potential; 

− to show the advantages of using multidimensional numbered information 
spaces for memory structuring in data mining processes on the example 
of realization of proposed class association rule algorithms.  

 
In order to achieve these goals, several tasks were solved: 
1. An introduction and survey of the scientific area of Data Mining and 

Knowledge Discovery and especially of the CAR Algorithms is made. 
Because most of examined classification models focus on categorical 
attributes, a short examination of discretization methods is made. A brief 
overview of already existing open source data mining environments 
aimed to support research work, as well as implications on real work, is 
presented. 

2. An overview of different kinds of access methods is made. A taxonomy 
of access methods defining clearly the place of Multi-Dimensional 
Numbered Information Spaces in the frame of this taxonomy is shown. 
A comprehensive analysis of the possibilities of Multi-Dimensional 
Numbered Information Spaces, their main elements and functions is 
presented. 

3. Two specialized algorithms, PGN and MPGN, are developed and a 
detailed theoretical description is provided. 
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4. A software of the proposed algorithms within the frame of the global 
data mining environment PaGaNe has been developed. 

5. A comprehensive example, based on the Lenses Dataset, which 
illustrates the work of the algorithms, was shown. 

6. A sensitivity analysis of the PGN and MPGN algorithms was made. We 
have carried out experiments with 25 datasets from UCI machine 
learning repository. The experiments were made using data mining 
environment PaGaNe, knowledge analysis system Weka, and LUCS-KDD 
Repository. 

7. The experiments that study received accuracy when preprocess real data 
with different discretizators show Chi-merge with 95% significance level 
as best appropriate. 

8. The analysis of exit points of MPGN showed that in most cases the build 
constructs lead to excluding only one class as best competitor. 
Comparing the results of strategies S1 and S2 shows the preference of 
choosing rule-set criterion against one rule in the competition. 

9. The analysis of dependency of classifiers' behaviors when the noise rush 
in the dataset attributes shows that noising in the dataset significantly 
worsens the accuracy of PGN, which by its construction performs well in 
clear datasets. But experiments with the other classifiers show that they 
also did not behave well under noising attacks. 

10. The comparison of overall accuracy between PGN, MPGN (two 
recognition strategies – S1 and S2), CMAR, OneR, JRip, J48 and REPTree 
using Friedman test showed statistical difference between tested 
classifiers. The post-hoc Nemenyi test showed that PGN has best overall 
performance between examined classifiers and MPGN is competitive with 
J48, JRip and REPTree. The first four classifiers (PGN, CMAR, J48, and 
MPGN-S2) significantly outperform OneR. 

11. The analysis of F-measures for multi-classes datasets showed that PGN 
and MPGN have not only good recognition accuracy, but also they 
recognize small classes controversy better in comparison to other 
classifiers (for instance OneR) which fail to construct recognition model 
for small class labels. 

12. Additional comparisons of PGN and MPGN with already examined as well 
as other types of classifiers, such as CAR-classifiers (CMAR), Rules 
(OneR, JRip), Trees (J48; REPTree), Lazy (Ibk, KStar), Bayes (BayesNet, 
NaiveBayes), Ensemble – Bagging (RandomForest), Support Vector 
Machines (SMO), Neural Networks (MultilayerPreceptron) is conducted 
and given in the Appendix.  
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Main contributions can be summarized as:  
− a new CAR-classifier PGN that questions the common approach to 

prioritize the support over the confidence and focuses on confidence first 
by retaining only 100% confidence rules has been elaborated; 

− a method for effective building and storing of pattern set in multi-layer 
structure MPGN during the process of associative rule mining using the 
possibilities of multidimensional numbered information spaces has been 
developed; 

− software of proposed algorithms and structures has been implemented 
in the frame of data mining environment system PaGaNe; 

− the conducted experiments prove the vividness of proposed approaches 
showing the good performance of PGN and MPGN in comparison with 
other classifiers from CAR, rules and trees, and especially in the case of 
multi-class datasets with uneven distribution of the class labels. 

 

9.2 Directions for Future Research  

This work highlighted some possible directions for further research which 
could tackle areas such as: 

− implementing PGN pruning and recognition ideas over pyramidal 
structures of MPGN;  

− improving the pruning part of PGN in order to accommodate phenomena 
that for some datasets increasing the amount of learning set leads to 
increasing of the number of pattern set but without increasing of 
accuracy; 

− analyzing different variants of pruning and recognition algorithms based 
on statistical evidence, structured over already created pyramidal 
structures of patterns in order to achieve better recognition results; 

− proposing different techniques for rule quality measure taking into 
account confidence of the rule in order to overcome the process of 
rejecting one rule preferring other one, rarely observed in the dataset; 

− expanding the functionalities of the data mining environment PaGaNe for 
automatic subset selection; 

− testing the possibilities of MPGN using exit-1 recognition in the field of 
campaign management; 

− applying the established algorithms PGN and MPGN in different 
application areas such as business intelligence or global monitoring. 
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10 Appendix 

10.1 Results of 5-fold Cross Validation 
for Different Classifiers 

The results of 5-fold cross-validation for following classifiers: 
− PGN group – PGN, MPGN-S1, MPGN-S2; 
− CARs – CMAR; 
− Rules – OneR, JRip; 
− Trees – J48; REPTree; 
− Lazy – Ibk, KStar; 
− Bayes – BayesNet, NaiveBayes; 
− Others – RandomForest (Ensemble – Bagging), SMO (Support Vector 

Machines), MultilayerPreceptron (Neural Networks) 
 

Table 32. The accuracy of 5-fold cross-validation for classifiers, 
representatives of PGN-group, CARs, Rules, Trees, Lazy, 
Bayes, SVM, and Neural Networks 

 PGN 
MPGN-
S1 

MPGN-
S2 

CMAR One R Jrip J48 
REP 
Tree 

IB k K Star
Bayes 
Net 

Naïve 
Bayes

Random 
Forest 

SMO 
Multil. 
Perc. 

audiology01 77.50 67.5 67.5 35.9 45.00 67.50 70.00 57.50 80.00 72.50 67.50 60.00 77.50 72.50 77.50 
audiology02 82.50 72.5 72.5 72.5 50.00 80.00 85.00 65.00 85.00 85.00 82.50 67.50 67.50 82.50 85.00 
audiology03 65.00 57.5 57.5 50 50.00 60.00 55.00 62.50 65.00 70.00 55.00 57.50 70.00 70.00 62.50 
audiology04 75.00 72.5 72.5 70 47.50 67.50 77.50 65.00 77.50 77.50 75.00 70.00 80.00 77.50 85.00 
audiology05 77.50 75 75 67.5 42.50 72.50 72.50 62.50 75.00 75.00 75.00 67.50 72.50 80.00 82.50 
audiology 75.50 69.00 69.00 59.18 47.00 69.50 72.00 62.50 76.50 76.00 71.00 64.50 73.50 76.50 78.50 
balance_scale01 80.65 81.45 83.06 87.10 59.68 70.16 65.32 66.13 86.29 85.48 87.10 87.10 75.81 87.10 100.00 
balance_scale02 72.00 74.40 76.80 82.40 56.00 69.60 67.20 67.20 79.20 81.60 87.20 87.20 74.40 88.00 100.00 
balance_scale03 80.00 84.80 87.20 87.20 61.60 72.80 68.80 71.20 88.00 89.60 92.80 92.80 73.60 90.40 98.40 
balance_scale04 81.60 84.80 88.00 90.40 64.00 72.80 64.00 68.00 91.20 92.00 94.40 94.40 82.40 90.40 99.20 
balance_scale05 75.20 81.60 82.40 86.40 59.20 74.40 65.60 63.20 81.60 84.80 91.20 91.20 71.20 91.20 96.00 
balance_scale 77.89 81.41 83.49 86.70 60.10 71.95 66.18 67.15 85.26 86.70 90.54 90.54 75.48 89.42 98.72 
blood_transfusion01 57.05 73.15 73.15 74.50 77.18 74.50 75.17 77.18 75.84 76.51 75.17 75.84 75.17 76.51 75.17 
blood_transfusion02 63.76 78.52 78.52 79.20 78.52 79.19 79.19 79.19 75.17 78.52 76.51 76.51 77.18 78.52 76.51 
blood_transfusion03 70.67 78.67 78.67 78.67 79.33 78.67 78.67 79.33 77.33 79.33 70.67 72.67 77.33 79.33 71.33 
blood_transfusion04 70.00 66.67 66.67 66.67 66.00 66.67 66.67 66.00 67.33 66.67 65.33 65.33 66.67 66.67 64.67 
blood_transfusion05 66.67 81.33 81.33 81.33 82.00 81.33 81.33 82.00 82.00 82.00 78.00 78.00 82.00 82.00 82.00 
blood_transfusion 65.63 75.67 75.67 76.07 76.61 76.07 76.21 76.74 75.53 76.61 73.14 73.67 75.67 76.61 73.94 
breast_cancer_wo01 97.12 94.24 94.96 94.24 93.53 92.81 92.81 94.24 96.40 96.40 97.12 97.12 96.40 93.53 98.56 
breast_cancer_wo02 99.29 95.71 96.43 96.43 95.00 95.71 97.86 97.86 97.14 97.14 99.29 99.29 96.43 99.29 99.29 
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breast_cancer_wo03 96.43 92.14 92.86 93.57 90.71 92.86 92.86 92.86 94.29 93.57 95.71 95.71 94.29 95.00 93.57 
breast_cancer_wo04 94.29 88.57 90 90.71 87.86 90.71 92.14 90.71 92.86 92.14 95.71 95.71 94.29 95.00 93.57 
breast_cancer_wo05 95.00 93.57 93.57 94.29 92.14 94.29 95.71 94.29 98.57 97.14 97.86 97.86 95.71 97.14 96.43 
breast_cancer_wo 96.43 92.85 93.56 93.85 91.85 93.28 94.28 93.99 95.85 95.28 97.14 97.14 95.42 95.99 96.28 
car01 93.04 83.19 87.25 85.8 73.33 89.57 92.75 89.86 95.36 89.86 87.54 87.54 95.65 92.75 100.00 
car02 94.20 82.9 86.96 80.87 71.88 82.90 89.86 87.83 93.04 88.70 86.38 86.38 91.30 95.07 100.00 
car03 92.77 84.68 86.42 82.37 68.79 89.02 91.62 89.02 91.33 85.55 84.39 84.10 93.35 91.62 100.00 
car04 90.75 81.21 83.82 78.9 65.90 85.55 89.88 86.71 92.20 84.68 82.95 82.66 94.51 91.62 99.42 
car05 92.20 82.37 84.1 80.92 70.23 86.71 89.88 87.57 92.77 85.26 85.26 85.26 92.77 91.91 99.71 
car 92.59 82.87 85.71 81.77 70.03 86.75 90.80 88.20 92.94 86.81 85.30 85.19 93.52 92.59 99.83 
cmc01 52.38 50 50 61.22 50.00 56.12 59.18 57.82 53.06 55.44 55.10 55.44 53.40 60.88 49.32 
cmc02 48.64 41.5 42.52 48.98 47.28 48.64 50.00 46.94 42.18 46.26 53.40 53.40 47.96 51.36 47.96 
cmc03 44.41 41.02 43.39 48.81 44.07 49.83 47.46 46.78 44.41 45.08 44.07 44.41 45.76 48.47 42.37 
cmc04 49.83 47.12 47.46 51.19 45.08 46.44 50.17 46.78 48.14 53.22 49.83 49.83 49.15 51.53 47.12 
cmc05 54.24 50.51 49.83 55.59 49.83 50.85 51.19 52.54 47.80 51.53 49.15 49.15 47.12 55.25 51.86 
cmc 49.90 46.03 46.64 53.16 47.25 50.38 51.60 50.17 47.12 50.31 50.31 50.45 48.68 53.50 47.73 
credit01 87.68 85.51 86.23 87.68 86.23 84.78 84.78 86.23 82.61 85.51 85.51 84.78 85.51 89.86 89.13 
credit02 89.86 85.51 86.23 86.23 82.61 82.61 82.61 82.61 78.99 81.16 89.13 89.13 85.51 88.41 85.51 
credit03 86.96 86.96 86.96 86.23 86.96 87.68 88.41 86.96 84.78 84.78 86.23 85.51 84.78 84.06 84.06 
credit04 87.68 84.06 84.78 87.68 84.06 84.78 83.33 81.88 81.16 84.78 84.78 86.23 86.23 83.33 88.41 
credit05 85.51 86.23 86.23 87.68 87.68 85.51 87.68 87.68 86.96 87.68 86.23 86.23 85.51 84.06 83.33 
credit 87.54 85.65 86.09 87.10 85.51 85.07 85.36 85.07 82.90 84.78 86.38 86.38 85.51 85.94 86.09 
ecoli01 76.12 76.12 77.61 74.63 55.22 76.12 71.64 77.61 76.12 76.12 79.10 77.61 76.12 80.60 76.12 
ecoli02 83.58 79.10 79.10 85.07 65.67 80.59 77.61 76.12 80.59 79.11 83.58 88.06 80.59 88.06 77.61 
ecoli03 77.61 80.60 80.60 83.58 58.21 83.58 82.09 83.58 80.59 85.07 91.04 91.04 80.59 86.57 86.57 
ecoli04 79.11 76.12 76.12 85.07 64.18 85.08 77.62 82.09 83.58 83.58 89.55 88.06 86.57 86.57 86.57 
ecoli05 82.36 66.18 66.18 77.94 58.82 75.00 76.47 76.47 77.94 77.94 79.41 79.41 77.94 79.41 76.47 
ecoli 79.76 75.62 75.92 81.26 60.42 80.07 77.09 79.17 79.76 80.36 84.54 84.84 80.36 84.24 80.67 
forestfires01 57.28 59.22 57.28 66.02 53.39 59.22 51.46 46.60 62.14 61.17 56.31 56.31 64.08 65.05 54.37 
forestfires02 59.22 56.31 59.22 59.22 55.34 58.25 51.46 52.43 54.37 53.40 56.31 56.31 61.17 56.31 55.34 
forestfires03 53.40 56.31 52.43 53.4 50.49 57.28 56.31 53.40 61.17 56.31 54.37 55.34 54.37 53.40 54.37 
forestfires04 56.73 61.54 62.5 64.42 55.76 50.00 58.65 61.54 56.73 59.62 60.58 59.62 55.77 63.46 63.46 
forestfires05 61.54 46.15 49.04 50.96 51.92 49.04 51.92 55.77 49.04 52.88 63.46 62.50 56.73 67.31 62.50 
forestfires 57.63 55.91 56.09 58.80 53.38 54.76 53.96 53.95 56.69 56.68 58.21 58.02 58.42 61.11 58.01 
glass01 80.95 83.33 83.33 78.57 54.76 76.19 76.19 66.67 80.95 83.33 83.33 80.95 80.95 80.95 78.57 
glass02 76.74 79.07 79.07 79.07 53.49 58.14 74.42 69.77 79.07 79.07 74.42 74.42 76.74 79.07 79.07 
glass03 81.40 79.07 76.74 79.07 53.49 69.77 79.07 65.12 79.07 76.74 72.09 72.09 72.09 76.74 69.77 
glass04 76.74 81.4 81.4 74.42 46.51 62.79 65.12 62.79 74.42 76.74 67.44 67.44 74.42 72.09 67.44 
glass05 76.74 79.07 81.4 79.07 65.12 65.12 72.09 72.09 81.40 79.07 74.42 76.74 76.74 76.74 76.74 
glass 78.51 80.39 80.39 78.04 54.67 66.40 73.38 67.29 78.98 78.99 74.34 74.33 76.19 77.12 74.32 
haberman01 49.18 72.13 72.13 72.13 72.13 72.13 72.13 72.13 73.77 72.13 80.32 80.33 73.77 72.13 80.33 
haberman02 47.54 68.85 68.85 68.85 70.49 70.49 70.49 72.13 72.13 73.77 72.13 72.13 72.13 70.49 72.13 
haberman03 78.69 78.69 78.69 75.41 78.69 81.97 78.69 81.97 80.33 80.33 81.97 80.33 78.69 81.97 80.33 
haberman04 57.38 75.41 75.41 72.13 72.13 72.13 75.41 75.41 80.33 78.69 80.33 80.33 78.69 72.13 80.33 
haberman05 43.55 70.97 70.97 70.97 70.97 69.35 69.35 69.35 70.97 72.58 70.97 70.97 74.19 69.35 74.19 
haberman 55.27 73.21 73.21 71.90 72.88 73.21 73.21 74.20 75.51 75.50 77.14 76.82 75.49 73.21 77.46 
hayes-roth01 96.15 76.92 76.92 92.31 50.00 92.31 76.92 88.46 69.23 65.38 88.46 88.46 76.92 88.46 92.31 
hayes-roth02 84.62 73.08 76.92 88.46 53.85 84.62 69.23 76.92 76.92 69.23 92.31 92.31 84.62 88.46 88.46 
hayes-roth03 80.77 53.85 57.69 80.77 50.00 69.23 65.38 61.54 50.00 53.85 84.62 84.62 80.77 80.77 84.62 
hayes-roth04 74.07 55.56 55.56 77.78 48.15 70.37 59.26 59.26 48.15 48.15 81.48 81.48 66.67 81.48 74.07 
hayes-roth05 74.07 66.67 70.37 77.78 51.85 74.07 70.37 81.48 74.07 70.37 81.48 81.48 74.07 77.78 77.78 
hayes-roth 81.94 65.22 67.49 83.42 50.77 78.12 68.23 73.53 63.67 61.40 85.67 85.67 76.61 83.39 83.45 
hepatitis01 70.97 74.19 74.19 77.42 80.65 74.19 74.19 77.42 83.87 77.42 80.65 80.65 87.10 67.74 70.97 
hepatitis02 77.42 83.87 83.87 83.87 80.65 77.42 80.65 70.97 80.65 80.65 87.10 87.10 77.42 80.65 87.10 
hepatitis03 83.87 80.65 80.65 87.1 83.87 83.87 90.32 83.87 83.87 80.65 83.87 87.10 83.87 80.65 80.65 
hepatitis04 83.87 90.32 90.32 90.32 80.65 77.42 80.65 83.87 80.65 83.87 93.55 96.77 83.87 83.87 87.10 
hepatitis05 87.10 80.65 80.65 83.87 83.87 74.19 70.97 80.65 77.42 80.65 80.65 80.65 83.87 74.19 80.65 
hepatitis 80.65 81.94 81.94 84.52 81.94 77.42 79.36 79.36 81.29 80.65 85.16 86.45 83.23 77.42 81.29 
iris01 96.67 96.67 96.67 90.00 96.67 90.00 96.67 90.00 90.00 90.00 90.00 90.00 96.67 90.00 96.67 
iris02 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 
iris03 93.33 93.33 93.33 90.00 93.33 90.00 93.33 93.33 93.33 93.33 90.00 90.00 93.33 93.33 93.33 
iris04 80.00 86.67 86.67 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 
iris05 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
iris 92.67 94.00 94.00 92.67 94.67 92.67 94.67 93.33 93.33 93.33 92.67 92.67 94.67 93.33 94.67 
lenses01 50.00 75.00 75.00 100.00 50.00 75.00 75.00 100.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 
lenses02 80.00 80.00 80.00 80.00 60.00 80.00 80.00 80.00 100.00 100.00 80.00 80.00 80.00 80.00 80.00 
lenses03 60.00 60.00 60.00 60.00 20.00 60.00 60.00 60.00 80.00 80.00 60.00 60.00 60.00 60.00 60.00 
lenses04 80.00 100.00 100.00 100.00 100.00 100.00 100.00 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
lenses05 100.00 100.00 100.00 100.00 80.00 100.00 100.00 80.00 60.00 60.00 60.00 60.00 80.00 60.00 80.00 
lenses 74.00 83.00 83.00 88.00 62.00 83.00 83.00 80.00 78.00 78.00 70.00 70.00 74.00 70.00 74.00 
monks101 100.00 94.19 93.02 100.00 67.44 100.00 90.70 94.19 98.84 98.84 67.44 67.44 98.84 67.44 100.00 
monks102 100.00 77.91 83.72 100.00 75.58 75.58 100.00 79.07 97.67 97.67 75.58 75.58 91.86 75.58 100.00 
monks103 100.00 89.53 97.67 100.00 74.42 100.00 93.02 100.00 100.00 100.00 74.42 74.42 100.00 74.42 100.00 
monks104 100.00 75.86 78.16 100.00 82.76 87.36 100.00 85.06 96.55 96.55 82.76 82.76 94.25 82.76 100.00 
monks105 100.00 77.01 77.01 100.00 74.71 74.71 89.66 86.21 96.55 96.55 74.72 74.71 96.55 74.71 100.00 
monks1 100.00 82.90 85.92 100.00 74.98 87.53 94.68 88.91 97.92 97.92 74.98 74.98 96.30 74.98 100.00 
monks201 77.50 77.50 80.00 62.50 66.67 62.50 66.67 67.50 72.50 80.00 63.33 63.33 68.33 66.67 100.00 
monks202 71.67 80.83 79.17 63.33 64.17 54.17 50.00 65.83 73.33 77.50 62.50 63.33 68.33 64.17 100.00 
monks203 75.00 81.67 83.33 65.00 68.33 59.17 65.00 66.67 71.67 78.33 61.67 61.67 62.50 68.33 100.00 
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monks204 75.00 77.50 77.50 54.17 65.83 54.17 54.17 56.67 71.67 74.17 62.50 62.50 61.67 65.83 100.00 
monks205 66.12 85.12 85.12 53.72 63.64 63.64 63.64 62.81 68.60 74.38 56.20 56.20 66.12 63.64 100.00 
monks2 73.06 80.52 81.02 59.74 65.73 58.73 59.90 63.90 71.55 76.88 61.24 61.41 65.39 65.73 100.00 
monks301 99.09 90.00 94.55 99.09 83.64 99.09 99.09 99.09 98.18 98.18 96.36 96.36 98.18 96.36 99.09 
monks302 100.00 94.59 97.30 100.00 81.08 100.00 100.00 100.00 100.00 100.00 98.20 98.20 99.10 98.20 100.00 
monks303 96.40 90.09 90.09 98.20 81.08 98.20 98.20 98.20 96.40 96.40 96.40 96.40 96.40 98.20 98.20 
monks304 99.10 90.99 93.69 99.10 79.28 99.10 99.10 99.10 98.20 98.20 97.30 97.30 98.20 97.30 99.10 
monks305 98.20 86.49 91.89 98.20 74.77 98.20 98.20 98.20 95.50 96.40 93.69 93.69 98.20 93.69 98.20 
monks3 98.56 90.43 93.50 98.92 79.97 98.92 98.92 98.92 97.66 97.84 96.39 96.39 98.02 96.75 98.92 
post-operative01 61.11 55.56 50.00 38.89 77.78 77.78 77.78 77.78 66.67 72.22 72.22 72.22 61.11 77.78 66.67 
post-operative02 55.56 38.89 44.44 50.00 61.11 61.11 61.11 61.11 61.11 61.11 61.11 61.11 55.56 61.11 55.56 
post-operative03 77.78 66.67 66.67 72.22 77.78 77.78 77.78 77.78 77.78 77.78 83.33 83.33 83.33 77.78 61.11 
post-operative04 66.67 50.00 50.00 38.89 61.11 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 61.11 
post-operative05 72.22 50.00 50.00 55.56 66.67 66.67 72.22 72.22 66.67 66.67 66.67 66.67 55.56 66.67 55.56 
post-operative 66.67 52.22 52.22 51.11 68.89 70.00 71.11 71.11 67.78 68.89 70.00 70.00 64.45 70.00 60.00 
soybean01 95.08 88.52 88.52 83.61 37.70 90.16 90.16 81.97 93.44 93.44 88.52 81.97 93.44 91.80 91.80 
soybean02 91.80 77.05 77.05 78.69 36.07 85.25 90.16 80.33 91.80 93.44 85.25 86.89 90.16 90.16 91.80 
soybean03 90.16 75.41 75.41 67.21 32.79 81.97 86.89 73.77 85.25 88.52 88.52 85.25 86.89 86.89 91.80 
soybean04 93.55 91.94 91.94 87.10 41.94 88.71 91.94 77.42 91.94 93.55 83.87 80.65 91.94 96.77 93.55 
soybean05 95.16 87.10 87.10 75.81 38.71 80.65 79.03 77.42 91.94 90.32 85.48 79.03 87.10 88.71 91.94 
soybean 93.15 84.00 84.00 78.48 37.44 85.35 87.64 78.18 90.87 91.85 86.33 82.76 89.91 90.87 92.18 
tae01 50.00 46.67 46.67 40.00 43.33 43.33 43.33 40.00 56.67 53.33 46.67 46.67 43.33 53.33 50.00 
tae02 53.33 50.00 50.00 30.00 50.00 30.00 40.00 30.00 53.33 46.67 43.33 46.67 36.67 46.67 53.33 
tae03 50.00 40.00 40.00 26.67 43.33 26.67 46.67 40.00 50.00 50.00 40.00 36.67 40.00 43.33 50.00 
tae04 53.33 60.00 60.00 43.33 56.67 36.67 50.00 56.67 56.67 63.33 53.33 53.33 63.33 56.67 60.00 
tae05 58.06 67.74 67.74 38.71 35.48 35.48 54.84 35.48 70.97 64.52 48.39 51.61 61.29 58.06 61.29 
tae 52.94 52.88 52.88 35.74 45.76 34.43 46.97 40.43 57.53 55.57 46.34 46.99 48.92 51.61 54.92 
tic_tac_toe01 85.86 94.76 94.24 99.48 65.45 97.38 85.34 83.77 98.43 95.29 69.11 68.59 90.58 98.43 96.34 
tic_tac_toe02 89.53 95.81 96.86 100 68.59 99.48 81.15 70.68 97.38 95.81 68.59 68.59 92.67 100.00 98.96 
tic_tac_toe03 86.98 95.31 92.71 98.44 68.23 98.96 82.29 79.69 96.88 94.27 68.23 68.23 92.19 98.96 98.96 
tic_tac_toe04 89.58 98.96 98.44 97.4 71.88 96.35 82.81 82.81 95.83 95.31 72.92 72.92 89.58 96.35 96.35 
tic_tac_toe05 92.71 95.83 95.83 98.44 75.52 97.92 89.58 84.90 98.44 95.83 78.13 78.13 90.63 97.92 98.44 
tic_tac_toe 88.93 96.13 95.62 98.75 69.93 98.02 84.23 80.37 97.39 95.30 71.40 71.29 91.13 98.33 97.81 
wine01 97.14 100.00 100.00 97.14 68.57 97.14 82.86 85.71 100.00 100.00 100.00 100.00 94.29 100.00 100.00 
wine02 100.00 94.29 97.14 97.14 85.71 82.86 82.86 82.86 100.00 100.00 100.00 100.00 97.14 100.00 97.14 
wine03 94.44 86.11 86.11 83.33 86.11 91.67 91.67 86.11 88.89 88.89 97.22 94.44 91.67 97.22 97.22 
wine04 88.89 83.33 88.89 80.89 66.67 88.89 88.89 91.67 94.44 94.44 100.00 100.00 91.67 94.44 97.22 
wine05 100.00 97.22 97.22 100.00 86.11 91.67 88.89 94.44 97.22 97.22 100.00 100.00 97.22 100.00 97.22 
wine 96.09 92.19 93.87 91.70 78.63 90.45 87.03 88.16 96.11 96.11 99.44 98.89 94.40 98.33 97.76 
winequality-red01 63.32 56.74 57.37 57.68 57.37 52.35 58.62 55.17 64.26 63.95 57.99 57.99 63.95 59.25 67.40 
winequality-red02 65.63 60.31 60.94 53.75 56.88 54.38 56.25 54.69 68.75 66.88 58.44 58.75 68.13 60.31 63.13 
winequality-red03 66.25 62.19 60.31 53.44 51.25 50.63 55.31 57.81 63.44 62.50 56.88 58.13 65.00 56.56 67.50 
winequality-red04 66.56 60.63 61.56 60.31 57.81 58.13 60.94 62.81 65.31 67.50 59.06 58.13 62.81 59.69 60.63 
winequality-red05 63.13 56.88 57.81 56.25 54.38 53.13 60.00 54.69 59.69 62.50 60.00 60.00 61.88 59.38 61.56 
winequality-red 64.98 59.35 59.60 56.29 55.54 53.72 58.22 57.03 64.29 64.67 58.47 58.60 64.35 59.04 64.04 
zoo01 100.00 90.00 90.00 95.00 70.00 85.00 95.00 80.00 100.00 100.00 95.00 95.00 95.00 100.00 100.00 
zoo02 100.00 95.00 95.00 95.00 70.00 75.00 95.00 75.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 
zoo03 100.00 90.00 90.00 100.00 80.00 100.00 95.00 85.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00 
zoo04 100.00 95.00 95.00 100.00 75.00 100.00 100.00 90.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00 
zoo05 90.48 76.19 76.19 80.95 71.43 80.95 85.71 80.95 85.71 85.71 90.48 90.48 90.48 95.24 85.71 
zoo 98.10 89.24 89.24 94.19 73.29 88.19 94.14 82.19 96.14 96.14 96.10 94.10 96.10 98.05 96.14 
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10.2 Confusion Matrices, Recall, Precision and F-measure 
for Some Multi-class Datasets 

Here is given the precise information for the results of examined classifiers 
for following datasets: 

− Glass; 
− Soybean; 
− Winequality-red. 

The class labels are ordered by decreasing of the support and alphabetically 
for class labels with equal support. The class labels and their supports are given 
respectively in Table 26, Table 28, and Table 30. 

Table 33. Confusion matrices, recalls, precisions and F-measures 
for Glass dataset 

PGN 2# 1# 7# 3# 5# 6# actual  recall precision f-measure 
2# 61 7 0 1 7 0 76  0.803 0.803 0.803 
1# 10 57 1 2 0 0 70  0.814 0.792 0.803 
7# 0 1 26 0 1 1 29  0.897 0.897 0.897 
3# 3 7 0 7 0 0 17  0.412 0.700 0.519 
5# 2 0 2 0 9 0 13  0.692 0.500 0.581 
6# 0 0 0 0 1 8 9  0.889 0.889 0.889 

predicted 76 72 29 10 18 9 214     
            

MPGN-S1 2# 1# 7# 3# 5# 6# actual  recall precision f-measure 
2# 60 8 1 3 4 0 76  0.789 0.845 0.816 
1# 6 58 1 5 0 0 70  0.829 0.795 0.811 
7# 1 1 26 1 0 0 29  0.897 0.897 0.897 
3# 1 5 0 11 0 0 17  0.647 0.550 0.595 
5# 3 0 1 0 9 0 13  0.692 0.692 0.692 
6# 0 1 0 0 0 8 9  0.889 1.000 0.941 

predicted 71 73 29 20 13 8 214     
            

MPGN-S2 2# 1# 7# 3# 5# 6# actual  recall precision f-measure 
2# 60 8 1 3 4 0 76  0.789 0.857 0.822 
1# 5 58 1 6 0 0 70  0.829 0.795 0.811 
7# 1 1 26 1 0 0 29  0.897 0.897 0.897 
3# 1 5 0 11 0 0 17  0.647 0.524 0.579 
5# 3 0 1 0 9 0 13  0.692 0.692 0.692 
6# 0 1 0 0 0 8 9  0.889 1.000 0.941 

predicted 70 73 29 21 13 8 214     
            

CMAR 2# 1# 7# 3# 5# 6# actual  recall precision f-measure 
2# 59 8 2 2 3 2 76  0.776 0.819 0.797 
1# 8 60 0 2 0 0 70  0.857 0.759 0.805 
7# 0 1 28 0 0 0 29  0.966 0.848 0.903 
3# 2 10 0 5 0 0 17  0.294 0.556 0.385 
5# 3 0 2 0 8 0 13  0.615 0.667 0.640 
6# 0 0 1 0 1 7 9  0.778 0.778 0.778 

predicted 72 79 33 9 12 9 214     
            

OneR 2# 1# 7# 3# 5# 6# actual  recall precision f-measure 
2# 46 26 4 0 0 0 76  0.605 0.548 0.575 
1# 11 57 2 0 0 0 70  0.814 0.533 0.644 
7# 12 3 14 0 0 0 29  0.483 0.609 0.538 
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3# 7 10 0 0 0 0 17  0.000 0.000 0.000 
5# 4 6 3 0 0 0 13  0.000 0.000 0.000 
6# 4 5 0 0 0 0 9  0.000 0.000 0.000 

predicted 84 107 23 0 0 0 214     
            

JRip 2# 1# 7# 3# 5# 6# actual  recall precision f-measure 
2# 54 13 1 2 3 3 76  0.711 0.651 0.679 
1# 15 49 1 4 0 1 70  0.700 0.681 0.690 
7# 3 0 24 0 2 0 29  0.828 0.889 0.857 
3# 7 7 0 2 0 1 17  0.118 0.250 0.160 
5# 4 1 1 0 7 0 13  0.538 0.538 0.538 
6# 0 2 0 0 1 6 9  0.667 0.545 0.600 

predicted 83 72 27 8 13 11 214     
            

J48 2# 1# 7# 3# 5# 6# actual  recall precision f-measure 
2# 57 9 3 2 3 2 76  0.750 0.814 0.781 
1# 9 57 0 4 0 0 70  0.814 0.722 0.765 
7# 1 1 24 0 2 1 29  0.828 0.857 0.842 
3# 1 12 0 4 0 0 17  0.235 0.400 0.296 
5# 1 0 1 0 10 1 13  0.769 0.556 0.645 
6# 1 0 0 0 3 5 9  0.556 0.556 0.556 

predicted 70 79 28 10 18 9 214     
            

REPTree 2# 1# 7# 3# 5# 6# actual  recall precision f-measure 
2# 56 12 3 3 2 0 76  0.737 0.767 0.752 
1# 8 55 3 4 0 0 70  0.786 0.632 0.701 
7# 4 3 20 0 2 0 29  0.690 0.667 0.678 
3# 2 10 0 5 0 0 17  0.294 0.417 0.345 
5# 2 7 2 0 2 0 13  0.154 0.333 0.211 
6# 1 0 2 0 0 6 9  0.667 1.000 0.800 

predicted 73 87 30 12 6 6 214     

 

Table 34. Confusion matrices, recalls, precisions and F-measures 
for Winequality-red dataset 

PGN 5# 6# 7# 4# 8# 3# actual  recall precision f-measure 
5# 559 119 2 1 0 0 681  0.821 0.685 0.747 
6# 198 398 40 2 0 0 638  0.624 0.615 0.619 
7# 17 102 80 0 0 0 199  0.402 0.615 0.486 
4# 36 16 1 0 0 0 53  0.000 0.000 0.000 
8# 0 9 7 0 2 0 18  0.111 1.000 0.200 
3# 6 3 0 1 0 0 10  0.000 0.000 0.000 
predicted 816 647 130 4 2 0 1599     
            
MPGN-S1 5# 6# 7# 4# 8# 3# actual  recall precision f-measure 
6# 182 329 115 5 5 2 638  0.285 0.252 0.267 
5# 493 156 23 3 1 5 681  0.229 0.269 0.247 
7# 14 71 107 1 6 0 199  0.538 0.407 0.463 
4# 28 18 5 1 0 1 53  0.019 0.100 0.032 
8# 1 6 9 0 2 0 18  0.111 0.143 0.125 
3# 5 1 4 0 0 0 10  0.000 0.000 0.000 
predicted 723 581 263 10 14 8 1599     
            
MPGN-S2 5# 6# 7# 4# 8# 3# actual  recall precision f-measure 
5# 505 157 14 1 0 4 681  0.742 0.606 0.667 
6# 241 301 91 2 2 1 638  0.472 0.564 0.514 
7# 46 54 92 1 6 0 199  0.462 0.436 0.449 
4# 31 16 5 0 0 1 53  0.000 0.000 0.000 
8# 4 5 7 0 2 0 18  0.111 0.200 0.143 
3# 7 1 2 0 0 0 10  0.000 0.000 0.000 
predicted 834 534 211 4 10 6 1599     
            
CMAR 5# 6# 7# 4# 8# 3# actual  recall precision f-measure 
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5# 591 80 10 0 0 0 681  0.868 0.590 0.702 
6# 323 232 83 0 0 0 638  0.364 0.556 0.440 
7# 38 84 77 0 0 0 199  0.387 0.428 0.406 
4# 38 14 1 0 0 0 53  0.000 0.000 0.000 
8# 4 6 8 0 0 0 18  0.000 0.000 0.000 
3# 8 1 1 0 0 0 10  0.000 0.000 0.000 
predicted 1002 417 180 0 0 0 1599     
            
OneR 5# 6# 7# 4# 8# 3# actual  recall precision f-measure 
5# 456 225 0 0 0 0 681  0.670 0.645 0.657 
6# 206 432 0 0 0 0 638  0.677 0.485 0.565 
7# 18 181 0 0 0 0 199  0.000 0.000 0.000 
4# 23 29 0 0 1 0 53  0.000 0.000 0.000 
8# 1 16 0 1 0 0 18  0.000 0.000 0.000 
3# 3 7 0 0 0 0 10  0.000 0.000 0.000 
predicted 707 890 0 1 1 0 1599     
            
JRip 5# 6# 7# 4# 8# 3# actual  recall precision f-measure 
5# 531 143 7 0 0 0 681  0.780 0.568 0.657 
6# 312 286 39 1 0 0 638  0.448 0.504 0.474 
7# 45 111 42 0 1 0 199  0.211 0.457 0.289 
4# 34 18 0 0 0 1 53  0.000 0.000 0.000 
8# 7 7 4 0 0 0 18  0.000 0.000 0.000 
3# 6 3 0 1 0 0 10  0.000 0.000 0.000 
predicted 935 568 92 2 1 1 1599     
            
J48 5# 6# 7# 4# 8# 3# actual  recall precision f-measure 
5# 488 179 11 3 0 0 681  0.717 0.663 0.689 
6# 194 383 53 4 3 1 638  0.600 0.536 0.567 
7# 17 119 60 1 2 0 199  0.302 0.451 0.361 
4# 32 19 1 0 1 0 53  0.000 0.000 0.000 
8# 0 9 8 1 0 0 18  0.000 0.000 0.000 
3# 5 5 0 0 0 0 10  0.000 0.000 0.000 
predicted 736 714 133 9 6 1 1599     
            
REPTree 5# 6# 7# 4# 8# 3# actual  recall precision f-measure 
5# 442 223 5 11 0 0 681  0.649 0.668 0.658 
6# 175 413 46 3 1 0 638  0.647 0.514 0.573 
7# 15 126 56 0 2 0 199  0.281 0.496 0.359 
4# 24 27 0 1 1 0 53  0.019 0.063 0.029 
8# 1 10 6 1 0 0 18  0.000 0.000 0.000 
3# 5 5 0 0 0 0 10  0.000 0.000 0.000 
predicted 662 804 113 16 4 0 1599     

 

Table 35. Confusion matrices, recalls, precisions and F-measures 
for Soybean dataset 

PGN a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas. 
a)alt.-leaf-spot 36 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 40 0.900 0.837 0.867 
b)brown-spot 0 39 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.975 0.867 0.918 
c)frog-eye-leaf-spot 7 1 31 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 40 0.775 0.912 0.838 
d)phytophthora-rot 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 1.000 1.000 
e)anthracnose 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 1.000 1.000 
f)brown-stem-rot 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 1.000 1.000 
g)bacterial-blight 0 0 0 0 0 0 9 1 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.900 0.900 
h)bacterial-pustule 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.900 0.900 
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
j)diap.-stem-canker 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
l)phyll.-leaf-spot 0 4 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 10 0.600 0.857 0.706 
m)powdery-mildew 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 1.000 1.000 1.000 
n)purple-seed-stain 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.000 0.909 0.952 
o)rhizoctonia-root-rot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 1.000 1.000 1.000 
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p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 1.000 1.000 1.000 
q)diap.pod-&-st.blight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6 1.000 1.000 1.000 
r)herbicide-injury 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 1.000 0.800 0.889 
s)2-4-d-injury 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.000 0.000 0.000 
predicted 43 45 34 40 20 20 10 10 10 10 10 7 10 11 10 6 6 5 0 307    
                        
MPGN-S1 a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas. 
a)alt.-leaf-spot 36 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.900 0.679 0.774 
b)brown-spot 3 34 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 40 0.850 0.667 0.747 
c)frog-eye-leaf-spot 8 4 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.700 0.824 0.757 
d)phytophthora-rot 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 1.000 1.000 
e)anthracnose 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 0.870 0.930 
f)brown-stem-rot 0 1 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.950 1.000 0.974 
g)bacterial-blight 0 1 1 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 10 0.600 1.000 0.750 
h)bacterial-pustule 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.818 0.857 
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
j)diap.-stem-canker 0 2 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 10 0.800 1.000 0.889 
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
l)phyll.-leaf-spot 4 2 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 10 0.300 0.750 0.429 
m)powdery-mildew 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 1.000 1.000 1.000 
n)purple-seed-stain 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.000 1.000 1.000 
o)rhizoctonia-root-rot 1 0 0 0 3 0 0 0 0 0 0 0 0 0 6 0 0 0 0 10 0.600 1.000 0.750 
p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 1.000 1.000 1.000 
q)diap.pod-&-st.blight 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 6 0.833 1.000 0.909 
r)herbicide-injury 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0.250 1.000 0.400 
s)2-4-d-injury 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000 
predicted 53 51 34 40 23 19 6 11 10 8 10 4 10 10 6 6 5 1 0 307    
                        
MPGN-S2 a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas. 
a)alt.-leaf-spot 36 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.900 0.679 0.774 
b)brown-spot 3 34 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 40 0.850 0.667 0.747 
c)frog-eye-leaf-spot 8 4 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.700 0.824 0.757 
d)phytophthora-rot 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 1.000 1.000 
e)anthracnose 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 0.870 0.930 
f)brown-stem-rot 0 1 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.950 1.000 0.974 
g)bacterial-blight 0 1 1 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 10 0.600 1.000 0.750 
h)bacterial-pustule 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.818 0.857 
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
j)diap.-stem-canker 0 2 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 10 0.800 1.000 0.889 
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
l)phyll.-leaf-spot 4 2 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 10 0.300 0.750 0.429 
m)powdery-mildew 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 1.000 1.000 1.000 
n)purple-seed-stain 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.000 1.000 1.000 
o)rhizoctonia-root-rot 1 0 0 0 3 0 0 0 0 0 0 0 0 0 6 0 0 0 0 10 0.600 1.000 0.750 
p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 1.000 1.000 1.000 
q)diap.pod-&-st.blight 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 6 0.833 1.000 0.909 
r)herbicide-injury 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0.250 1.000 0.400 
s)2-4-d-injury 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000 
predicted 53 51 34 40 23 19 6 11 10 8 10 4 10 10 6 6 5 1 0 307    
                        
CMAR a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas. 
a)alt.-leaf-spot 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 0.870 0.930 
b)brown-spot 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 0.580 0.734 
c)frog-eye-leaf-spot 0 11 16 0 0 2 10 0 0 0 0 0 1 0 0 0 0 0 0 40 0.400 0.727 0.516 
d)phytophthora-rot 0 3 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.850 1.000 0.919 
e)anthracnose 0 0 0 0 9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0.900 1.000 0.947 
f)brown-stem-rot 0 5 5 0 0 26 4 0 0 0 0 0 0 0 0 0 0 0 0 40 0.650 0.765 0.703 
g)bacterial-blight 0 3 1 0 0 3 33 0 0 0 0 0 0 0 0 0 0 0 0 40 0.825 0.660 0.733 
h)bacterial-pustule 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 6 0.667 1.000 0.800 
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
j)diap.-stem-canker 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 0.909 0.952 
l)phyll.-leaf-spot 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
m)powdery-mildew 3 2 0 0 0 0 3 0 0 0 0 0 1 0 0 0 1 0 0 10 0.100 0.500 0.167 
n)purple-seed-stain 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.000 1.000 1.000 
o)rhizoctonia-root-rot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 6 1.000 1.000 1.000 
p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 1.000 1.000 1.000 
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q)diap.pod-&-st.blight 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 0.500 0.667 0.571 
r)herbicide-injury 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 7 0 10 0.700 1.000 0.824 
s)2-4-d-injury 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000 
predicted 23 69 22 17 9 34 50 4 10 10 11 10 2 10 6 10 3 7 0 307    
                        
OneR a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas. 
a)alt.-leaf-spot 24 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.600 0.255 0.358 
b)brown-spot 18 21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.525 0.300 0.382 
c)frog-eye-leaf-spot 12 2 24 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 40 0.600 0.828 0.696 
d)phytophthora-rot 0 0 0 37 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 40 0.925 0.578 0.712 
e)anthracnose 2 1 0 0 15 0 0 0 0 0 0 0 0 0 0 0 2 0 0 20 0.750 0.789 0.769 
f)brown-stem-rot 7 5 0 5 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 20 0.000 0.000 0.000 
g)bacterial-blight 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
h)bacterial-pustule 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
i)charcoal-rot 0 0 0 4 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 10 0.300 0.273 0.286 
j)diap.-stem-canker 0 0 0 2 0 0 0 0 3 5 0 0 0 0 0 0 0 0 0 10 0.500 0.357 0.417 
k)downy-mildew 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
l)phyll.-leaf-spot 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
m)powdery-mildew 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
n)purple-seed-stain 5 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
o)rhizoctonia-root-rot 0 0 0 5 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
p)cyst-nematode 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0.000 0.000 0.000 
q)diap.pod-&-st.blight 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 0 0 6 0.500 0.500 0.500 
r)herbicide-injury 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0.000 0.000 0.000 
s)2-4-d-injury 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000 
predicted 94 70 29 64 19 0 0 0 11 14 0 0 0 0 0 0 6 0 0 307    
                        
JRip a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas. 
a)alt.-leaf-spot 19 5 15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.475 0.905 0.623 
b)brown-spot 0 32 6 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 40 0.800 0.653 0.719 
c)frog-eye-leaf-spot 0 2 37 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.925 0.463 0.617 
d)phytophthora-rot 0 1 1 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.950 0.644 0.768 
e)anthracnose 0 0 1 4 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.750 0.882 0.811 
f)brown-stem-rot 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 1.000 1.000 
g)bacterial-blight 1 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
h)bacterial-pustule 0 0 2 2 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 10 0.600 1.000 0.750 
i)charcoal-rot 0 0 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 10 0.900 1.000 0.947 
j)diap.-stem-canker 1 0 1 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 10 0.800 0.889 0.842 
k)downy-mildew 0 0 3 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 10 0.700 1.000 0.824 
l)phyll.-leaf-spot 0 2 3 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 10 0.200 1.000 0.333 
m)powdery-mildew 0 1 3 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 10 0.600 1.000 0.750 
n)purple-seed-stain 0 1 1 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 10 0.800 1.000 0.889 
o)rhizoctonia-root-rot 0 0 2 2 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 10 0.600 1.000 0.750 
p)cyst-nematode 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 6 0.333 1.000 0.500 
q)diap.pod-&-st.blight 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 6 0.500 1.000 0.667 
r)herbicide-injury 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0.500 0.667 0.571 
s)2-4-d-injury 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.000 0.000 0.000 
predicted 21 49 80 59 17 20 0 6 9 9 7 2 6 8 6 2 3 3 0 307    
                        
J48 a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas. 
a)alt.-leaf-spot 37 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.925 0.860 0.892 
b)brown-spot 3 35 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.875 0.875 0.875 
c)frog-eye-leaf-spot 3 1 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.900 0.857 0.878 
d)phytophthora-rot 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 0.909 0.952 
e)anthracnose 0 0 0 2 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.850 0.944 0.895 
f)brown-stem-rot 0 0 1 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.950 0.826 0.884 
g)bacterial-blight 0 0 1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.900 0.900 
h)bacterial-pustule 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.818 0.857 
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
j)diap.-stem-canker 0 0 0 0 1 1 0 0 0 8 0 0 0 0 0 0 0 0 0 10 0.800 1.000 0.889 
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000 
l)phyll.-leaf-spot 0 3 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 10 0.700 1.000 0.824 
m)powdery-mildew 0 0 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 10 0.900 0.900 0.900 
n)purple-seed-stain 0 0 0 0 0 1 0 1 0 0 0 0 1 7 0 0 0 0 0 10 0.700 1.000 0.824 
o)rhizoctonia-root-rot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 1.000 1.000 1.000 
p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 1.000 0.857 0.923 
q)diap.pod-&-st.blight 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 6 0.500 1.000 0.667 
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r)herbicide-injury 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 4 0.750 0.750 0.750 
s)2-4-d-injury 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.000 0.000 0.000 
predicted 43 40 42 44 18 23 10 11 10 8 10 7 10 7 10 7 3 4 0 307    
                        
REPTree a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas. 
a)alt.-leaf-spot 17 8 11 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.425 0.630 0.507 
b)brown-spot 0 32 5 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.800 0.457 0.582 
c)frog-eye-leaf-spot 1 1 34 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.850 0.378 0.523 
d)phytophthora-rot 0 1 6 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.825 0.660 0.733 
e)anthracnose 0 1 3 1 12 1 0 0 0 0 0 0 0 0 0 0 2 0 0 20 0.600 1.000 0.750 
f)brown-stem-rot 0 2 3 0 0 14 0 0 0 1 0 0 0 0 0 0 0 0 0 20 0.700 0.452 0.549 
g)bacterial-blight 1 4 2 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 10 0.200 0.667 0.308 
h)bacterial-pustule 0 4 2 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 10 0.300 0.750 0.429 
i)charcoal-rot 1 0 3 1 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 10 0.400 1.000 0.571 
j)diap.-stem-canker 0 1 5 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 10 0.300 0.750 0.429 
k)downy-mildew 1 4 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
l)phyll.-leaf-spot 0 5 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
m)powdery-mildew 5 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000 
n)purple-seed-stain 0 1 1 2 0 1 1 1 0 0 0 0 0 3 0 0 0 0 0 10 0.300 1.000 0.462 
o)rhizoctonia-root-rot 0 4 2 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 10 0.300 1.000 0.462 
p)cyst-nematode 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0.000 0.000 0.000 
q)diap.pod-&-st.blight 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 6 0.500 0.600 0.545 
r)herbicide-injury 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0.250 1.000 0.400 
s)2-4-d-injury 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000 
predicted 27 70 90 50 12 31 3 4 4 4 0 0 0 3 3 0 5 1 0 307    
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