

DOCTORAATSPROEFSCHRIFT
2011 | Faculteit Wetenschappen

Class association rule mining using multidimensional
numbered information spaces

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, te verdedigen door:

Iliya MITOV

 Promotor: prof. dr. Koen VANHOOF (UHasselt)

 Copromotor: prof. dr. Krassimir MARKOV
 (Institute of Mathematics and Informatics,
 Bulgarije)

D/2011/2451/50

Hasselt University
Faculty of Science
November 2011

Class Association Rule Mining
Using Multi-Dimensional Numbered
Information Spaces

A thesis submitted for the degree of Doctor of Science by:

Iliya Mitov

Promoter: Prof. Dr. Koen Vanhoof
Co-promoter: Assoc. Prof. Dr. Krassimir Markov

 3

Abstract

Data mining is of great importance in the overall process of knowledge
discovery. In this dissertation we focused our attention in the part of discovery-
oriented methods and especially classification algorithms.

Class-Association Rules (CAR) algorithms have a special place within the
family of classification algorithms. This type of classifiers offers a number of
advantages: efficiency of the training regardless of the training set; easy
handling with high dimensionality; very fast classification; high accuracy;
classification model easily comprehensible for humans. The main classification
workflow of CAR algorithms usually involves three phases: generating the rules,
pruning, and recognition.

The mining of association rules is a typical data mining task that works in an
unsupervised manner. A major advantage of association rules is that they are
theoretically capable to reveal all interesting relationships in a database. But for
practical applications the number of mined rules is usually too large to be
exploited entirely. Hence, a pruning phase is applied in order to build accurate
and compact classifiers. The pruning can be applied during preprocessing,
simultaneously to the association rules mining, or during post-processing.
Different rule quality measures and rule ordering schemes can be applied in the
process of rule selection. There are also different options which can be
considered for the recognition phase – e.g. to use a simple rule or to use a set of
rules with different types of ordering schemas.

On the other hand, the process of creating classification models inevitably
touches upon the use of appropriate access methods which facilitate access to
different kinds of structures used in such algorithms.

Our effort had been focused on the memory organization called Multi-
dimensional numbered information spaces which allows to operate with context-
free multidimensional data structures. The program realization of such
structures is named ArM 32. Multi-Domain Information Model (MDIM) and
respectively Arm 32 are based on the process of replacing names by numbers
which allows to use mathematical functions and addressing vectors for accessing
the information.

Our approach is to use such structures and operations in the implementation
of one class association rule classifier in order to provide evidence on the vitality

 4

of the idea of using context-free multidimensional data structures and direct
access as a powerful tool for knowledge discovery. We have proposed two
classification algorithms – Pyramidal Growing Networks (PGN) and Multi-layer
Pyramidal Growing Networks (MPGN).

PGN creates association rules, optimized for maximal accuracy of produced
rules. One of the main characteristics of PGN is that it is a parameter-free
classifier. The association rule mining is executed from the longest rules to the
shorter ones until no intersections between patterns in the classes are possible.
In the pruning phase the contradictions and inconsistencies of more general
rules are cleared, after that the pattern set is compacted excluding all more
concrete rules within the classes.

PGN is introduced as a useful tool for questioning the support-first principle
used by many associative classifiers when mining for association rules. PGN
reverses the common approach and focuses primarily on the confidence of the
association rules and only in a later stage on the support of the rules. The main
purpose is twofold: to provide a proof of concept for this new approach and to
gather evidence on its potential.

MPGN is based on multilayer structure. It involves possibility to escape
combinatorial explosion using smart disposing of the information in the
multilayer structures called "pyramids". These structures can be easily
implemented using ArM-structures.

These algorithms are implemented in the data mining environment PaGaNe,
developed by the team from the Institute of Mathematics and Informatics –
Bulgarian Academy of Sciences; Iliya Mitov and Krassimira Ivanova are the
principal developers. PaGaNe incorporates different types of statistical analysis
methods, discretization algorithms, association rule miner, as well as
classification algorithms, which all are based on the use of multi-dimensional
numbered information spaces.

The Lenses dataset is used as a test example to illustrate the specifics of the
proposed algorithms, the process of creating classification models as well as the
process of recognition. We demonstrate that PGN produces the pattern set that
is both minimal and complete for covering the learning set, which is an indicator
for expectation that PGN will produce tight model and good accuracy results. In
the case of MPGN we have demonstrated the process of creating main
construction elements. We also have illustrated the functionality which allows to
visualize how the pyramids are being created and how the queries are being
recognized.

We carried out experiments with 25 datasets from the UCI machine learning
repository [Frank and Asuncion, 2010]. The experiments had been conducted
using the data mining environment PaGaNe, the knowledge analysis system
Weka, and LUCS-KDD Repository. A comparison between PGN, MPGN and some
other CAR algorithms, as well as decision tree and decision rule classifiers which
have similar behavior of creating the task model, had been done.

 5

One series of experiments aimed to study what accuracy had been obtained
while preprocessing real data with different discretizators realized in PaGaNe.
We found that in general PGN-classifier trained on data preprocessed by Chi-
merge with 95% significance level achieves lower classification error than those
trained on data preprocessed by the other discretization methods. The main
reason for this is that using Chi-square statistical measure as criterion for class
dependency in adjacent intervals of a feature results in good separation between
class labels.

A second set of experiments studied the process of growing the learning sets
and how this reflects on the classification model and the accuracy of PGN and
MPGN; more specifically, we studied the critical point of the amount of the
learning set in which classification model is relatively compact and the received
accuracy stabilizes. Of course this critical point highly depends on the choice of
dataset.

A third set of experiments were focused on analyzing different exit points of
MPGN. The received results showed that in a lot of cases the build constructs
lead to excluding only one class as best competitor. Other cases usually fall into
competition between classes, where different strategies for ordering the
competitors can be applied. A very few cases fall into the way where MPGN-
algorithm did not work and alternative choice is given.

A fourth set of experiments aimed to analyze the dependencies of classifiers'
behaviors when the noise rush in the dataset attributes; for this set we used the
Monks1 dataset. The experiments demonstrated that noising in the dataset
worsens considerably the accuracy of PGN which had been designed to perform
well in clear datasets. However, experiments with other existing classifiers
showed that they also were not been able to resist noising attacks.

We made the comparison of overall accuracy between PGN, MPGN (with two
recognition strategies – S1 and S2), CMAR, OneR, JRip, J48 and REPTree. The
Friedman test showed statistical difference between tested classifiers. The
post-hoc Nemenyi test showed that our PGN has best overall performance
between examined classifiers and MPGN is competitive with CMAR, J48, JRip and
REPTree.

The experimental results are very positive and show that PGN is competitive
with classification methods that build similar classification behavior. At the same
time, it has an essential advantage over the other classifiers being parameter
free. Furthermore, the empirical results showed that PGN is slightly more
sensitive to noise than techniques such as C4.5 and RIPPER. However, its overall
accuracy was still very good compared to these classifiers. In general, the
results provide evidence that the confidence-first approach yields interesting
opportunities for knowledge discovery.

 6

 7

Acknowledgements:

This work was supported by Hasselt University under the Project R-1876

"Intelligent systems' memory structuring using multidimensional numbered
information spaces" and by the Bulgarian National Science Fund under the
Project D002-308 "Automated Metadata Generating for e-Documents
Specifications and Standards".

I would like to express my gratitude to Hasselt University, Belgium and
Institute of Mathematics and Informatics, Bulgaria for ensuring the right
conditions for establishing this work.

I am grateful to my advisor Prof. Koen Vanhoof from Hasselt University,
Belgium, for his guidance throughout my doctoral studies and all the time and
effort he put in the development of me and my work.

I am also indebted to my co-promoter Assoc. Prof. Krassimir Markov from
Institute of Mathematics and Informatics, Bulgaria. We have been working
together for over twenty years on implementing the paradigm of multi-
dimensional numbered information spaces in different practical domains.

I would send my special thanks to Benoit Depaire, who helped me in
studying, establishing and implementing of data mining techniques.

This thesis benefitted further from the stimulating and enjoyable discussions
with Prof. Levon Aslanyan and Prof. Hasmik Sahakyan from the Institute for
Informatics and Automation Problems of NAS, Armenia and Prof. Victor Gladun
and Prof. Vitalii Velychko from the Glushkov Institute of Cybernetics, Ukraine
who encouraged and supported my research. Our collaboration in the field of
attribute subset selection and pyramidal structures helped to contextualize this
thesis better.

I also would like to thank Emilia Todorova from Glasgow Caledonian
University for her assistance with language revision.

Finally, I am very much in debt for the unconditional support, endless
patience and constant encouragement I have received from my companion
in life, Valeria.

 8

 9

Table of Contents

Abstract ... 3
Table of Contents .. 9
List of Figures ... 13
List of Tables... 17
List of Abbreviations .. 21
1 Introduction ... 23

1.1 Class Association Rules ... 23
1.2 Multi-Dimensional Numbered Information Spaces as

Memory Structures for Intelligent Data Processing 24
1.3 Objectives of the Dissertation .. 25
1.4 Outline .. 25

2 Data Mining and Knowledge Discovery ... 27
2.1 Knowledge Discovery .. 27
2.2 Data Mining ... 28
2.3 The "World" of Patterns ... 31
2.4 Pattern Recognition .. 31
2.5 Classification Algorithms .. 32

2.5.1 Classifiers ... 33
2.5.2 Ensemble Methods ... 37

2.6 Discretization ... 39
2.7 Existing Data Mining Software Systems ... 41
2.8 Standardization and Interoperability ... 47

3 CAR Algorithms ... 49
3.1 Introduction ... 49
3.2 Association Rule Mining ... 50

3.2.1 Creating Association Rules .. 53
3.2.2 Rule Quality Measures .. 58
3.2.3 Pruning .. 59

3.3 Recognition .. 60

 10

3.4 Some Representatives of CAR Algorithms 61
4 Multi-Dimensional Numbered Information Spaces 69

4.1 Memory Management .. 69
4.2 Access Methods .. 70

4.2.1 Interconnections between Raised Access Methods................ 71
4.2.2 The Taxonomy of the Access Methods 73

4.3 Multi-Dimensional Numbered Information Spaces 77
4.3.1 Multi-Domain Information Model (MDIM) 78
4.3.2 Multi-Domain Access Method ArM 32 83
4.3.3 Advantages of Multi-Dimensional Numbered

Information Spaces .. 85
5 PGN and MPGN Algorithms ... 87

5.1 Coding Convention ... 87
5.2 PGN Classifier .. 90

5.2.1 Training Process .. 91
5.2.2 Recognition Process ... 94

5.3 MPGN Algorithm ... 96
5.3.1 Training Process .. 96
5.3.2 Recognition Process ..102

6 Program Realization ...111
6.1 Common Environment ..111
6.2 Preprocessing Step ..112

6.2.1 Input Data ...112
6.2.2 Discretization ...112
6.2.3 Converting Primary Instances into Numerical

Vectors ...114
6.2.4 Attribute Subset Selection ...115

6.3 PGN Program Realization ..115
6.4 MPGN Program Realization ..116

6.4.1 Training Process ...116
6.4.2 Recognition Process ..121

7 Example on Lenses Dataset ...125
7.1 Lenses Dataset ..125
7.2 PGN ...126

7.2.1 Training Process in PGN ...126
7.2.2 Recognition Process in PGN ..133

7.3 MPGN ...134
7.3.1 Training Process of MPGN ..134

 11

7.3.2 Recognition Process in MPGN ...141
8 Sensitivity Analysis...145

8.1 Global Frame of the Experiments ...145
8.1.1 The Experimental Datasets ..145
8.1.2 The Experiments ..146
8.1.3 The Analyzed Constructs ...148

8.2 Choosing an Appropriate Discretizator ..150
8.3 Studying the Size of the Learning Set ..154
8.4 Examining the Exit Points of MPGN ..156
8.5 Noise in the Datasets ...163
8.6 Comparison with Other Classifiers..167

8.6.1 Comparison with Overall Accuracy167
8.6.2 Analyzing F-measures on Some Multi-class

Datasets ..170
9 Conclusions and Future Work ...177

9.1 Conclusions ..177
9.2 Directions for Future Research ..179

10 Appendix ..181
10.1 Results of 5-fold Cross Validation for Different Classifiers181
10.2 Confusion Matrices, Recall, Precision and F-measure for

Some Multi-class Datasets ..184
References ...191
Curriculum Vitae ...199

 12

 13

List of Figures

Figure 1. Detailed taxonomy of data mining methods, based on
[Maimon and Rokach, 2005] .. 29

Figure 2. Weka knowledge flow interface .. 41

Figure 3. Genesis of the Access Methods and their modifications
extended variant of [Gaede and Günther, 1998] and
[Mokbel et al, 2003] presented in [Markov et al, 2008] 72

Figure 4. Taxonomy of the access methods ... 73

Figure 5. Adding instances in the pattern set ... 91

Figure 6. Adding intersections in the pattern set .. 92

Figure 7. Supplying maximum confidence of the rules 93

Figure 8. Retain most general rules .. 94

Figure 9. MPGN – the process of generalization of one class 98

Figure 10. MPGN – Result of generalization step on the example
dataset ... 99

Figure 11. MPGN – post-pruning ...100

Figure 12. Post-pruning – starting process ...101

Figure 13. Post-pruning – continuing the process ..101

Figure 14. Final result of post-pruning ...102

Figure 15. MPGN – creating recognition set for one class103

Figure 16. MPGN – comparative analysis between classes104

Figure 17. Example of recognition in MPGN – Exit Point 1105

Figure 18. Recognition strategy S1: using 1 rule with maximal
confidence ..106

Figure 19. Example of recognition in MPGN – Exit Point 2: Strategy S1107

 14

Figure 20. Recognition strategy S2: using confidences of the
recognition sets ..108

Figure 21. Example of recognition in MPGN – Exit Point 2: Strategy S2108

Figure 22. Variant of recognition when 100% intersection percentage
gives not result ...109

Figure 23. A Screenshot of visualizing discretization of attribute "sepal
length in cm" of Iris database using Chi-merge
discretizator ...114

Figure 24. Visualization of link-spaces ...118

Figure 25. Visualization of process of generating a set of patterns121

Figure 26. MPGN pyramid for class "hard" of Lenses dataset136

Figure 27. MPGN pyramid for class "none" of Lenses dataset139

Figure 28. MPGN pyramid for class "soft" of Lenses dataset140

Figure 29. The process of recognition in MPGN ...142

Figure 30. Comparison of different discretization methods153

Figure 31. The number of patterns and accuracy from PGN-classifier for
different split between learning set and examining set –
Iris dataset ...154

Figure 32. The number of patterns and accuracy from PGN-classifier for
different split between learning set and examining set –
Glass dataset ..155

Figure 33. The exit points for MPGN – S1 recognition strategy157

Figure 34. The exit points for MPGN – S2 recognition strategy158

Figure 35. The scatterplot of the coverages for one class and multiple
classes ...160

Figure 36. Scatter plot of Coverages and Accuracies for Exit point 1161

Figure 37. Scatter plot of Coverages and Accuracies for Exit points 2
and 3 ...161

Figure 38. Relative performance of the recognition parts over the mean
accuracy of all classifiers ..162

Figure 39. Scatter plot of the obtained accuracies for MPGN-S1 and
MPGN-S2 ...163

Figure 40. The number of patterns and accuracy from PGN-classifier for
noising datasets based on Monks1 dataset165

 15

Figure 41. The number of pruned vertexes and accuracy from MPGN-
classifiers for noising datasets based on Monks1 dataset166

Figure 42. The accuracy for different classifiers for noising datasets
based on Monks1 ..166

Figure 43. Visualisation of Nemenyi test results – 20 datasets169

Figure 44. F-measure for examined classifiers for class-labels of Glass
dataset ..171

Figure 45. F-measure for examined classifiers for Winequality-red
dataset ..172

Figure 46. F-measure for examined classifiers for Soybean dataset174

 16

 17

List of Tables

Table 1. Datasets' Description ...146

Table 2. The structure of confusion matrix ..148

Table 3. The quantile values of 2χ distribution for 1k − degrees of

freedom and probability α ...149

Table 4. Critical values for the two tailed Nemenyi test150

Table 5. PGN accuracy (in percentage) for different discretization
methods ..151

Table 6. Ranking of PGN accuracy for different discretization
methods ..151

Table 7. PGN average recall (in percentage) for different
discretization methods ...151

Table 8. Ranking of PGN average recall for different discretization
methods ..151

Table 9. PGN average precision (in percentages) for different
discretization methods ...152

Table 10. Ranking of PGN average precision for different
discretization methods ...152

Table 11. PGN average F-measure (in percentages) for different
discretization methods ...152

Table 12. Ranking of PGN average F-measure for different
discretization methods ...153

Table 13. The number of patterns and accuracy from PGN-classifier
for different split between learning set and examining set –
Iris dataset ...154

 18

Table 14. The number of patterns and accuracy from PGN-classifier
for different split between learning set and examining set –
Glass dataset ..155

Table 15. The exit points – total and correct answers for MPGN – S1
recognition strategy ..157

Table 16. The exit points – total and correct answers for MPGN – S2
recognition strategy ..158

Table 17. The coverage and accuracy by exit points MPGN-S1
recognition strategy ..159

Table 18. The coverage and accuracy by exit points MPGN-S2
recognition strategy ..159

Table 19. Resulting noise in class labels after noising the attributes
in Monks1 dataset ...164

Table 20. The number of patterns and accuracy from PGN-classifier
for noising datasets based on Monks1 dataset164

Table 21. The number of pruned vertexes and accuracy from MPGN-
classifier for noising datasets based on Monks1 dataset165

Table 22. The accuracy from different classifiers for noising datasets
based on Monks1 dataset ...166

Table 23. Percentage of overall accuracy of examined datasets for
PGN, MPGN-S1, MPGN-S2, CMAR, OneR, JRip, J48, and
REPTree ...167

Table 24. Ranking by accuracy of PGN, MPGN-S1, MPGN-S2, CMAR,
OneR, JRip, J48, and REPTree ...168

Table 25. Average ranks of the classifiers and distance to the
average rank of the first one ..169

Table 26. Percentage of instances belonging to corresponded class
labels in Glass dataset ...170

Table 27. Percentage of F-measure from tested classifiers for Glass
dataset ..170

Table 28. Percentage of instances belonging to corresponded class
labels in Winequality-red dataset ..171

Table 29. Percentage of F-measure from tested classifiers for
Winequality-red dataset ...172

Table 30. Percentage of instances belonging to corresponded class
labels in Soybean dataset ...172

 19

Table 31. Percentage of F-measure from tested classifiers for
Soybean dataset ...173

Table 32. The accuracy of 5-fold cross-validation for classifiers,
representatives of PGN-group, CARs, Rules, Trees, Lazy,
Bayes, SVM, and Neural Networks ...181

Table 33. Confusion matrices, recalls, precisions and F-measures for
Glass dataset ..184

Table 34. Confusion matrices, recalls, precisions and F-measures for
Winequality-red dataset ...185

Table 35. Confusion matrices, recalls, precisions and F-measures for
Soybean dataset ...186

 20

 21

List of Abbreviations

ACRI Associative Classifier with Reoccurring Items
ADTree Alternating Decision Tree
AIS ARM algorithm abbreviated from the families of the creators:

Agrawal, Imielinski, Swami
AM Access Method
AODE Averaged One-Dependence Estimators
ARC-AC Association Rule-based Categorizer for All Categories
ARC-BC Association Rule-based Categorizer by Category
ArM 32 FOI Archive Manager 32
ARUBAS Association Rule Based Similarity
BIE Basic Information Element
C4.5 Decision tree classifier, successor of ID3
CACA Class-based Associative Classification Approach
CAR Class Association Rules
CBA Classification Based on Associations
CBR Case-based reasoning
CHAID CHi-squared Automatic Interaction Detector
CMAR Classification Based on Multiple CARs
CODASYL Conference on Data Systems Languages
CorClass Correlated Association Rule Mining
CPAR Classification based on Predictive Association Rules
CRAN The Comprehensive R Archive Network
DBMS Database Management System
ELKI Environment for DeveLoping KDD-Applications Supported by

Index-Structures
FDM Fast Distributed Mining of association rules
FOIL First Order Inductive Learner
FP-Tree Frequent Pattern Tree
FWI Fire Weather Index
GMES Global Monitoring for Environment and Security
GNNAT Geometric Near-Neighbor Access Tree
GNU Recursive acronym "GNU's Not Unix"
GPS Global Positioning System
GUI Graphical User Interface

 22

HNB Hidden Naïve Bayes
IB1 Instance Based algorithm, used 1-nearest neighbors classification
IBk Instance Based algorithm, used k-nearest neighbors classification
ID3 Iterative Dichotomiser
J48 Weka implementation of Quinlan's C4.5 algorithm
jHepWork J – from Jython; Hep – from High-energy physics (HEP) examples
JRip Weka implementation of RIPPER
Jython an implementation of the Python programming language written in

Java
KDD Knowledge Discovery in Databases
KNIME Konstanz Information Miner
k-NN k-Nearest Neighbors
LADTree multi-class Alternating Decision tree using the LogitBoost strategy
LibSVM Library for Support Vector Machines
LUCS-KDD Liverpool University of Computer Science – Knowledge Discovery in

Data
MBR Minimum Bounding Rectangle
MCAR Multi-class Classification based on Association Rule
MDIM Multi-Domain Information Model
MDL Minimum Description Length
MPGN Multi-Layer PGN
PGN Pyramidal Growing Networks
PMML Predictive Model Markup Language
PRM Predictive Rule Mining
R language Programming language and statistical software environment
Rattle R Analytical Tool To Learn Easily
RIPPER Repeated Incremental Pruning to Produce Error Reduction
S language Statistical programming language
SIGKDD Special Interest Group on Knowledge Discovery in Databases
SMO Sequential Minimal Optimization
SQL Structured Query Language
SVM Support Vector Machines
TFP Total From Partial
TFPC Total From Partial Classification
UCI University of Carolina Irvine
Weka Waikato Environment for Knowledge Analysis
XML eXtensible Markup Language
YALE Yet Another Learning Environment

1. Introduction 23

1 Introduction

1.1 Class Association Rules

Over the past few centuries, the quantity of accumulated information in
analogue and now in digital form is constantly growing. Because of the rapid
development in all areas of human activity in modern society, the production,
economic and social processes have become more complex. Most organizations
using information technology resources collect and store large amounts of data.
The challenge that all those organizations face today is, not how to collect and
store the data needed, but how to derive meaningful conclusions from this
massive volume of information. The solution is in the technology of data mining
and, in particular, in the use of association rules.

The main objective of association rules mining is to discover regularities in
the incoming data. Arising from the field of market basket analysis to generate
interesting rules from large collections of data [Agrawal et al, 1993], the
association rule mining prove to be a feasible approach to model relationships
between class labels and features from a training set [Bayardo, 1998]. Since
then, many associative classifiers were proposed, mainly differing in the
strategies used to select rules for classification and in the heuristics used for
pruning rules.

Associative classification offers a new alternative to classification schemes by
producing rules based on conjunctions of attribute-value pairs that occur
frequently in datasets. Frequent patterns and their corresponding associations or
correlation rules characterize interesting relationships between attribute
conditions and class labels, and thus have been recently used for more effective
classification. The main purpose is that we can search for strong associations
between frequent patterns (conjunctions of attribute-value pairs) and class
labels. The association rules explore highly confident associations among
multiple attributes.

Association rules are mined in a two-step process consisting of frequent item-
set mining, followed by rule generation. The first step searches for patterns of
attribute-value pairs that occur repeatedly in a dataset, where each attribute-

1. Introduction 24

value pair is considered an item. The resulting attribute value pairs form
frequent item-sets. The second step analyzes the frequent item-sets in order to
develop association rules using certain criteria for measuring the significance of
the rule.

1.2 Multi-Dimensional Numbered Information Spaces as
Memory Structures for Intelligent Data Processing

An overview of available algorithms and used information structures shows
the variety of decisions in association rule mining. As we can see, graph
structures, hash tables, different kind of trees, bit matrices, arrays, etc., are
used for storing and retrieving the information. Each kind of data structure
brings some benefits but also has disadvantages. [Liu et al, 2003] discuss such
questions and provides a comparison between tree structures and arrays
demonstrating that tree-based structures are capable of reducing traversal cost
because duplicated transactions can be merged and different transactions can
share the storage of their prefixes. However, they incur high construction cost
especially when the dataset is sparse and large. On the other hand, array-based
structures demand little construction cost but they need much more traversal
cost because the traversal cost of different transactions cannot be shared.

Hence, the memory organization we decided to use in this research was
based on numbering as a main approach. Replacing the names by numbers
permits to use mathematical functions and address vectors for accessing the
information instead of search engines.

In addition, numbering has the advantage of using the same addressing
mechanism for the external memory as the one used for the main computer
memory. Our approach allows one to build high dimensional information
structures. Practically we can use a great number of dimensions as well as the
number of elements on given dimension.

This type of memory organization is called "Multi-Dimensional Numbered
Information Spaces". Its advantages have been demonstrated in multiple real-
life implementations over twenty-five years [Markov, 1984], [Markov, 2004],
[Markov, 2005]. In the same time, this kind of memory organization has not
been implemented in the area of the Artificial Intelligence and especially for
intelligent systems’ memory structuring.

In summary, the advantages of numbered information spaces are:
− the possibility to build growing space hierarchies of information

elements;
− the great power for building interconnections between information

elements stored in the information base.
The main idea is to replace the (symbol or real; point or interval) values of

the objects' attributes with integer numbers of the elements of corresponding

1. Introduction 25

ordered sets. Thus each object is described by a vector of integer values, which
may be used as co-ordinate address in the multi-dimensional information space.

1.3 Objectives of the Dissertation

The goals of this thesis are two-fold:
− to introduce a parameter-free class association rule algorithm, which

focuses primarily on the confidence of the association rules and only in a
later stage on the support of the rules. We expect that this approach will
ensure implementing high-quality recognition especially within
unbalanced and multi-class datasets. The nature of such a classifier is
more oriented to having characteristic rules;

− to show the advantages of using multidimensional numbered information
spaces for developing memory structuring in data mining processes on
the example of implementation of the proposed class association rule
algorithms.

To achieve these goals we develop a pyramidal multi-dimensional model for
memory organization in classification systems. Further, we will implement
the corresponding experimental classification system, and finally, we conduct
experiments and evaluation of the results in order to test the hypothesis we
have made.

1.4 Outline

The dissertation is structured in nine chapters and an Appendix as follows:
1. Introduction.
2. Data Mining and Knowledge Discovery.
3. CAR Algorithms.
4. Multi-Dimensional Numbered Information Spaces.
5. PGN and MPGN Algorithms.
6. Program Realization.
7. Example of Lenses Dataset.
8. Sensitivity Analysis.
9. Conclusions and Future Work.
A brief overview of the content is given below.
Chapter 2 introduces data mining and its importance in a global process of

knowledge discovery. A taxonomy of data mining methods is provided with
special focus on classification methods. A brief overview of main types of
classifiers and ensemble methods is made followed by a succinct description of

1. Introduction 26

the process of discretization which is an important part of the process of
preparing data in the global frame of knowledge discovery. Furthermore, this
chapter presents existing open source data mining software. Finally we discuss
the growing importance of standardization and interoperability within the
software development of data mining algorithms and environments, and the
possibilities of built-in additional online analytical processing systems, decision-
support systems, etc.

Chapter 3 provides an overview of the field of CAR-classifiers. Here we have
presented all the steps, which are typical in the classification process of CAR
algorithms: generating the rules, pruning and recognizing. Several techniques
are suggested for the phase of generating the rules. Pruning, an important step
in the learning process of CAR algorithms, is applied as a preprocessing step, in
parallel with the association rule mining or after it. Further, we present several
rule quality measures and rule ordering schemes, used in CAR algorithms.
During the recognition phase we also need to make a final decision using simple
rule or set of rules with different types of ordering schemas. Finally, using a
proposed frame, typical for CAR algorithms, we analyze twelve representatives
of CAR algorithms, showing a wide variety of proposed techniques.

Chapter 4 is focused on the different kinds of existing methods for data
management in the field of data mining and knowledge discovery. In this
chapter we present a particular type of memory organization, called "Multi-
Dimensional Numbered Information Spaces", as well as its program realization
ArM 32. Their main structures and functions are described.

Chapter 5 contains a description of the proposed classification algorithms –
PGN and MPGN.

Chapter 6 considers the implementation of proposed algorithms. It provides
a short description of an experimental data mining environment – PaGaNe,
which is the result of collaborative work of researchers from Bulgaria, Belgium,
Armenia and Ukraine.

Chapter 7 reveals the specific steps which pass PGN and MPGN algorithms
on the example of the Lenses dataset.

Chapter 8 is focused on presenting several experiments made with the use
of already developed tools. Special attention is paid to the sensitivity analysis of
the results. Comparison between PGN, MPGN and some decision tree and
decision rule classifiers, which have similar behavior of creating the task model,
is made.

Finally, chapter 9 provides conclusions and an overview of directions for
future research.

In the Appendix additional experiments, showing the comparison of PGN and
MPGN with a wide range of different kinds of classifiers, realized in Weka, are
included.

The work contains 35 tables, 46 figures, and 106 references.

2. Data Mining and Knowledge Discovery 27

2 Data Mining and Knowledge
Discovery

Abstract:
In this chapter we start with a brief overview of the field of data mining and

its importance in the global process of knowledge discovery.
A taxonomy of data mining methods is shown with particular focus on the

classification methods. Adding to that, we give a short explanation of the main
types of classifiers.

The chapter also includes a brief overview of the process of discretization as
an important preprocessing step for most of the classification algorithms.

Several existing open source data mining software systems are described.
Finally we have included a discussion about the increasing necessity of

standardization and interoperability within the software implementation of data
mining algorithms and environments, and the possibilities of additional built-in
online analytical processing systems, decision-support systems, etc.

2.1 Knowledge Discovery

Data Mining is a part of the overall process of Knowledge Discovery in
databases (KDD) [Fayyad et al, 1996]. While Knowledge Discovery is defined as
the process of seeking new knowledge about an application domain [Klosgen
and Zytkow, 1996], data mining is concerned with the application (by humans)
of algorithms designed to analyze data or to extract pattern in specific
categories of data. The knowledge discovery process consists of many steps,
with data mining being one of them.

The Knowledge Discovery in Databases (KDD) process had been defined by
many authors. For instance [Fayyad et al, 1996] define it as "the nontrivial
process of identifying valid, novel, potentially useful, and ultimately

2. Data Mining and Knowledge Discovery 28

understandable patterns in data". [Friedman, 1997] considers the KDD process
as an automatic exploratory data analysis of large databases.

The KDD process has been formed by different stages, which iteratively
interact with each other. During the years, several models have been proposed
(for instance in [Fayyad et al, 1996]). Generally, the process of knowledge
discovery can be divided into following stages [Han and Kamber, 2006]:

1. Data cleaning (the removal of noise and inconsistent data).
2. Data integration (combining multiple data sources).
3. Data selection (retrieval of data relevant to the analysis task from the

database).
4. Data transformation (transformation or consolidation of data suited for

mining; this can be done, for example by performing summary or
aggregation operations).

5. Data mining (an essential process where intelligent methods are applied in
order to extract data patterns).

6. Pattern evaluation (used to identify the most interesting patterns
representing knowledge based on some interestingness measures).

7. Knowledge presentation (use of visualization and knowledge
representation techniques to present the mined knowledge to the user).

Data mining, which is discussed further over the next part of the chapter, is
an essential part in the global process of knowledge discovery.

2.2 Data Mining

Data Mining is the process of analyzing a large set of raw data in order to
extract hidden information which can be predicted. It is a discipline, which is at
the confluence of artificial intelligence, data bases, statistics, and machine
learning. The questions related to data mining present several aspects, the main
being: classification, clustering, association and regularities. Technically, data
mining is the process of analyzing data from many different dimensions or sides,
and summarizing the relationships identified [Kouamou, 2011].

The data mining methods are divided essentially in two main types:
− verification-oriented (the system verifies the user's hypothesis);
− discovery-oriented (the system finds new rules and patterns

autonomously) [Fayyad et al, 1996].
One taxonomy of data mining methods is given in [Maimon and Rokach,

2005]. In Figure 1, we give one widened variation focusing on the different
classification schemes, used in data mining.

Verification methods deal with the evaluation of a hypothesis proposed by an
external source. These methods include the most common approaches of
traditional statistics, like goodness-of-fit test, t-test of means, and analysis of

2. Data Mining and Knowledge Discovery 29

variance. Such methods are not usually associated with data mining because
most data mining problems are concerned with the establishment of a
hypotheses rather than testing a known one.

Figure 1. Detailed taxonomy of data mining methods,

based on [Maimon and Rokach, 2005]

Discovery methods are methods that automatically identify patterns in the
data. The discovery method branch consists of prediction approaches versus the
description ones.

Description-oriented data mining methods focus on understanding how the
underlying data operates. The main orientations of these methods are
clustering, summarization and visualization.

Clustering is the process of grouping the data into classes or clusters, in a
way that objects within a cluster have high similarity in comparison to one
another but are very different to objects in other clusters. Dissimilarities are

2. Data Mining and Knowledge Discovery 30

assessed based on the attribute values describing the objects, using various
approaches in distance measures.

Summarization is the process of reducing a text document or a larger corpus
of multiple documents into a paragraph that conveys the main purpose of the
text. There are two fundamental methods for this: extraction and abstraction.
Extractive methods aim to select a subset of existing words, phrases, or
sentences in the original text to form a summary. Unlike abstractive methods,
where an internal semantic representation is built and then natural language
generation techniques are used to create a summary that is more similar to one
generated by a human. Such summary might contain words which are not
explicitly present in the original text.

Visualization in data mining can be split into data visualization, mining result
visualization, mining process visualization, and visual data mining. The variety,
quality, and flexibility of visualization tools may strongly influence the usability,
interpretability, and attractiveness of a data mining system.

Prediction-oriented methods aim to build a behavioral model that can create
new and unobserved samples and is able to predict the values of one or more
variables related to the sample.

Of course, the difference between description-oriented methods and
prediction-oriented methods is very fuzzy.

Most of the discovery-oriented techniques are based on inductive learning
[Mitchell, 1997], where a model is constructed explicitly or implicitly by
generalizing from a sufficient number of training examples. The underlying
assumption, derived from the inductive approach, is that the trained model is
applicable to future examples, that have not yet been observed.

There are two main discovery-oriented techniques: classification and
estimation. These two types of data analysis are used to extract models that
describe important data classes or to predict future data trends. The main
difference between classification and estimation is that classification maps the
input space into predefined classes, while estimation models maps the input
space into a real-valued domain.

Estimation models are used to construct a continuous-valued function, or
ordered value, which are used as for estimation. The most commonly used
techniques are different types of regression models (involving single predictor
variable, or two or more predictor variables; linear or non-linear regression,
etc.), while other models are also used (such as log-linear models that
approximate discrete multidimensional probability distributions using logarithmic
transformations). Some of the classifier models can also be tuned to be used for
estimation (such as Decision Trees, Neural Networks, etc.) [Han and Kamber,
2006].

Classification models predict categorical (discrete, unordered) labels.
Different kinds of classification models will be discussed later.

2. Data Mining and Knowledge Discovery 31

2.3 The "World" of Patterns

The word "instance" defined in a more general sense is that there can be a
denotation of a real physical object, a process, a situation, etc.

The "attribute" describes a specific feature in an observed object or process,
etc. Thus an instance is presented as a set of concrete values, which belong to a
variety attributes. These attributes can be categorical or continuous. In our
approach they must be discretized first.

Everything that characterizes instances and can be used in such logic
operations as extraction, recognition, identification, etc. relates to the attributes.
However, it should be noted that separation of attributes on "essential" and
"unessential" is substantially conditional and depends on problems for which
decision they are used.

In processes of recognition and production of models, the pattern is used as
a Boolean function of the attributes, having the value "true" for instances from
volume of pattern and "false" in other cases.

The pattern is usually defined in logic as a "concept", i.e. an idea that reflects
essence of instances. Most of the used patterns are result of generalization of
attributes that characterizes the instances of the class. The generalization is
based on extraction of regularities from interconnected instances and/or
patterns of the given class. The same idea may be extended for the regularities
between classes.

From a philosophical point of view [Wagner, 1973] [Wille, 1982], the
"pattern" ("concept") consists of two parts – extensional and intentional. The
extensional part covers all instances belonging to this pattern, but the
intentional part includes all the attributes that are representative for these
instances. Relationships between instances and their attributes play an
important role in determining the hierarchical relationship between patterns and
attributes. The set of instances generalized in the pattern constitute its volume.

2.4 Pattern Recognition

The process of extracting patterns from datasets is called pattern recognition.
Pattern recognition algorithms generally aim to provide a reasonable answer

for all possible inputs and to do "fuzzy" matching of inputs. This is opposed to
pattern matching algorithms, which look for exact matches in the input with pre-
existing patterns (typical example of which is regular expression matching).

Pattern recognition undergoes an important developing for many years. This
is not a uni-modular research domain such as the classical mathematical
sciences, it has a long history of establishment. The theoretical development in
this domain include a number of sub disciplines such as feature selection, object

2. Data Mining and Knowledge Discovery 32

and feature ranking, analogy measuring, sequence labeling, parsing, clustering,
supervised and unsupervised classification, etc. In the same time pattern
recognition is indeed an integrated theory studying object descriptions and their
classification models. This is a collection of mathematical, statistical, heuristic
and inductive techniques of fundamental role in executing the intellectual tasks,
typical for a human being – but on computers [Aslanyan and Sahakyan, 2010].

Classification is a typical example of pattern recognition; it aims to assign
each input value to one from a given set of classes. Other examples are
regression, which assigns a real-valued output to each input; sequence labeling,
which assigns a class to each member of a sequence of values; and parsing,
which assigns a parse tree to an input sentence, describing the syntactic
structure of the sentence.

While the goals of data mining and pattern recognition appear to be similar,
pattern recognition, which is split into the supervised learning (classification)
and unsupervised learning (cluster analysis), can be interpreted in terms of rules
like data mining. The main difference is in a scope of learning examples that are
used within the process. Regular pattern recognition supposes satisfactory
learning set able to determine the shapes of classes learned. There are many
techniques focused on knowledge discovery based on a few examples, because
the application area cannot provide enough learning examples [Arakelyan et al,
2009]. This is the case of High Dimensional Small Sample Size Data Analysis.
Data Mining like the cluster analysis in pattern recognition can work without a
given learning set. Instead, the rule template is given like the association rule
template or a frequent fragment template. The commonsense reasoning is that
Data Mining deals within large databases or on data flows.

2.5 Classification Algorithms

Classification is the task of identifying the sub-population to which new
observations belong where the identity of the sub-population is unknown, on the
basis of a training set of data containing observations with a known sub-
population. The new individual items are placed into groups based on
quantitative information on one or more measurements, traits or characteristics,
etc.), and based on the training set in which previously decided groupings are
already established.

In order to increase the obtained accuracy, ensemble methods, or so called
meta-classifiers as upper stage, are used.

2. Data Mining and Knowledge Discovery 33

2.5.1 Classifiers

The variety of classification algorithms mainly can be grouped to: Bayesian
Methods, Support Vector Machines, Decision Trees, Decision Rules, Class
Association Rules, Lazy Learners, Neural Networks, and Genetic Algorithms.

 Bayesian Methods

Bayesian classifiers are statistical classifiers which can predict class
membership probabilities, such as the probability that a given instance belongs
to a particular class. Bayesian classification is based on Bayes' theorem [Bayes,
1763] that shows the relation between two conditional probabilities which are
the reverse of each other. Bayesian classifiers have exhibited high accuracy and
speed when applied to large databases [Han and Kamber, 2006].

Naïve Bayesian classifiers assume that the effect of an attribute value on a
given class is independent of the values of the other attributes. This assumption
is called class conditional independence. Bayesian belief networks are graphical
models that can also be used for classification, which allow the representation of
dependencies among subsets of attributes.

 Support Vector Machines

The Support Vector Machines (SVM) [Boser et al, 1992] use a nonlinear
mapping to transform the original training data into a higher dimension. Within
this new dimension, it searches for the linear optimal separating hyperplane.
With an appropriate nonlinear mapping to a sufficiently high dimension, data
from two classes can always be separated by a hyperplane. The SVM finds this
hyperplane using support vectors ("essential" training instances) and margins
(defined by the support vectors).

Although the training of even the fastest SVMs can be extremely time
consuming, they are highly accurate, owing to their ability to model complex
nonlinear decision boundaries. They are much less prone to over-fitting than
other methods. The support vectors found also provide a compact description of
the learned model.

 Decision Trees

Decision tree induction is the learning of decision trees from class-labeled
training instances. A decision tree is a flowchart-like tree structure, where each
internal node (non-leaf node) denotes a test on an attribute, each branch
represents an outcome of the test, and each leaf node (or terminal node) holds
a class label. The topmost node in a tree is the root node.

Given a question Q , for which the associated class label is unknown, the

attribute values are tested against the decision tree. A path is traced from the

2. Data Mining and Knowledge Discovery 34

root to a leaf node, which holds the class prediction for Q . Decision trees can

easily be converted to classification rules.
The construction of decision tree classifiers does not require any domain

knowledge or parameter setting; they can handle high dimensional data; their
representation in tree form is intuitive and generally is easy to understand by
human users. The learning and classification steps of decision tree induction are
simple and fast, and usually achieve good accuracy values.

One of the oldest tree classification methods is CHAID (acronym of Chi-
squared Automatic Interaction Detector) [Kass, 1980]. CHAID builds non-binary
trees making series of split operations, based on chi-square measure.

Other representative of this group was ID3 (Iterative Dichotomiser),
developed by Ross Quinlan [Quinlan, 1986], after expanded to C4.5 [Quinlan,
1993]. Most algorithms for decision tree induction follow proposed ideas in ID3
and C4.5 for using a greedy approach in which decision trees are constructed in
a top-down recursive divide-and-conquer manner. The top-down approach starts
with a training set of instances and their associated class labels. The training set
is recursively partitioned into smaller subsets as the tree is being built. J48 is a
Weka implementation of C4.5 [Witten and Frank, 2005].

Representative Tree (shortly named REPTree) is an extension of C4.5 [Witten
and Frank, 2005], which builds a decision tree using information gain reduction
and prunes it using reduced-error pruning. Optimized for speed, it only sorts
values for numeric attributes once. It deals with missing values by splitting
instances into pieces, as C4.5 does. The algorithm has parameters – maximum
tree depth and number of folds for pruning, which can be used when REPTree
participates as classifier in ensemble schema.

 Decision Rules

In the rule-based classifiers the learned model is represented as a set of IF-
THEN rules. The "IF"-part of a rule is known as the rule antecedent. The "THEN"-
part is the rule consequent. In the rule antecedent, the condition consists of one
or more attribute tests (such as age = youth, student = yes) that are connected
with logical function "AND". The rule's consequent contains a class label.

The rule induction is similar to tree induction but tree induction is breadth-
first, as well as rule induction is depth-first (which means generating one rule at
a time until all positive examples are covered) [Alpaydin, 2010].

One typical representative of a decision rules classifier is OneR [Holte, 1993].
OneR takes as input a set of examples, each with several attributes and a class.
The aim is to infer a rule that predicts the class given the values of the
attributes. The OneR algorithm chooses the most informative single attribute
and bases the rule on this attribute alone. Shortly algorithm consists of creating
the rules with antecedent each possible value of each attribute and consequent

2. Data Mining and Knowledge Discovery 35

corresponded class label, after that for each class label find the rule with
maximal accuracy.

Another well-known classifier from this group is JRip. It is a Weka
implementation of RIPPER (Repeated Incremental Pruning to Produce Error
Reduction), proposed by William Cohen [Cohen, 1995]. RIPPER attempts to
increase the accuracy of rules by replacing or revising individual rules. It uses
reduced error pruning in order to decide when to stop adding more conditions to
a rule; this reduces the amount of training data. RIPPER uses a heuristic based
on the minimum description length principle as a stop-criterion. Rule induction is
followed by a post-processing step that revises the rules in order to approximate
what would have been obtained by a global pruning strategy.

 Class Association Rules

Association rules show strong relations between attribute-value pairs (or
items) that occur frequently in a given dataset. The general idea is to search for
strong associations between frequent patterns (conjunctions of attribute-value
pairs) and class labels. Association rules explore highly confident associations
among multiple attributes. This approach helps to overcome some constraints
introduced by decision-tree induction, which considers only one attribute at a
time. Class Association Rules (CAR) algorithms will be discussed in more details
in the next chapter.

 Lazy Learners

All classifiers which had been already described belong to the so-called eager
learners. Eager learners give a set of training instances and construct
classification model before receiving query to classify.

Lazy classifiers are at the opposite side. They give training instances and only
store them without any or with a. When a query is submitted, the classifier
performs generalization in order to classify the query based on its similarity to
the stored training instances.

Contrary to the eager learning methods, lazy learners do less work in the
training phase and more work in the recognition phase.

The weak point of lazy classifiers is their computational expensiveness of the
recognition process. On the other hand, they are well-suited to implementation
on parallel hardware. They naturally support incremental learning.

There are two main groups of lazy learners: k-nearest-neighbor classifiers
and case-based reasoning.

 k-Nearest-Neighbor Classifiers

Nearest-neighbor classifiers are based on learning by analogy, that is by
comparing a given query with training instances similar to it. The training

2. Data Mining and Knowledge Discovery 36

instances are described by n attributes and are represented as points in a
n-dimensional pattern space. Recognition consists of searching the pattern space
for the k training instances ("k nearest neighbors") that are closest to the query.
"Closeness" is defined in terms of a distance metric, such as Euclidean distance.
Typical examples are IB1 and IBk [Aha and Kibler, 1991]. One interesting
exception here is the KStar classifier which uses an entropy-based distance
function [Cleary and Trigg, 1995].

 Case-Based Reasoning

Case-based reasoning classifiers use databases of problem solutions to solve
new problems. Unlike nearest-neighbor classifiers, which store training instances
as points in Euclidean space, a CBR would store instances as complex symbolic
descriptions. When given a new case to classify, a case-based reasoner will first
check if an identical training case exists. If one is found, then the accompanying
solution to that case is returned. If no identical case is found, then the case-
based reasoner will search for training cases having components that are similar
to those of the new case. Conceptually, these training cases may be considered
as neighbors of the new case. If cases are represented as graphs, this involves
searching for subgraphs that are similar to subgraphs within the new case. The
case-based reasoner tries to combine the solutions of the neighboring training
cases in order to propose a solution for the new case. The case-based reasoner
may employ background knowledge and problem-solving strategies in order to
propose a feasible combined solution [Han and Kamber, 2006].

 Neural Networks

The field of neural networks was originally conceived by psychologists and
neurobiologists who sought to develop and test computational analogues of
neurons. A neural network is a set of connected input/output units in which each
connection has a weight associated with it. During the learning phase, the
network learns by adjusting the weights so as to be able to predict the correct
class label of the input instances.

Long training times; a great number of parameters that are typically best
determined empirically; as well as poor interpretability are amongst the
weaknesses of neural networks.

Advantages of neural networks, however, include their high tolerance to
noisy data as well as their ability to classify patterns on which they have not
been trained. They can be used when you may have little knowledge of the
relationships between attributes and classes. They are well-suited for
continuous-valued inputs and outputs, unlike most decision tree algorithms.
Neural network algorithms are inherently parallel; parallelization techniques can
be used to speed up the computation process.

2. Data Mining and Knowledge Discovery 37

In our experiments we have used Multi-Layer Perceptron, realized in Weka,
for the representative of this class of algorithms.

 Genetic Algorithms

Genetic algorithms attempt to incorporate in classification tasks the principles
of natural evolution. An initial population is created consisting of randomly
generated rules. Each rule can be represented by a string of bits. As a simple
example, suppose that samples in a given training set are described by two
Boolean attributes 1A and 2A and that there are two class labels coded by "0"

and "1". The rule "if 1A and not 2A then 0" can be encoded as the bit string

"100," where the two leftmost bits represent attributes 1A and 2A and the

rightmost bit represents the class. For attributes/classes that have 2k > values
k bits are used to encode the attribute's values.

Based on the notion of survival of the fittest, a new population is formed to
consist of the fittest rules in the current population, as well as offspring of these
rules. Typically, the fitness of a rule is assessed by its classification accuracy on
a set of training samples. Offsprings are created by applying genetic operators
such as crossover and mutation. In crossover, substrings from pairs of rules are
swapped to form new pairs of rules. In mutation, randomly selected bits in a
rule's string are inverted. The process of generating new populations based on
prior populations of rules continues until a population P evolves where each
rule in P satisfies a the specified fitness threshold.

The weak point of genetic algorithms is their time consuming learning
process. However, genetic algorithms are easily parallelizable and have been
used for classification as well as other optimization problems. In data mining,
they may be used to evaluate the fitness of other algorithms [Han and Kamber,
2006].

2.5.2 Ensemble Methods

Ensemble methods combine a series of k learned models, 1,... kM M , with

the aim of creating an improved composite model *M . The main strategies here
are bagging and boosting [Han and Kamber, 2006], as well as stacking [Witten
and Frank, 2005].

 Bagging

The term bagging denotes "bootstrap aggregation". Given a set D of d
instances, bagging works as follows. For the iteration , 1,...,i i k= a training set

2. Data Mining and Knowledge Discovery 38

iD is sampled with replacement [StatTrek, 2011] from the original set D .

Because sampling with replacement is used, some of the original tuples of D
may not be included in iD , where as others may occur more than once. A

classifier model iM is learned for each training set iD . To classify a query Q

each classifier iM returns its class prediction which counts as one vote. The

bagged classifier *M counts the votes and assigns the class with the most votes
to Q [Breiman, 1996].

The bagged classifier often has significantly greater accuracy than a single
classifier derived from the original training data. It is also more robust to the
effects of noisy data. The increased accuracy occurs because the composite
model reduces the variance of the individual classifiers.

 Boosting

In boosting, weights are assigned to each training instance. A series of k
classifiers is iteratively learned. After a classifier iM is learned, the weights are

updated to allow the subsequent classifier 1iM + aggravating training instances

that were misclassified by iM . The final boosted classifier *M combines the

votes of each individual classifier, where the weight of each classifier's vote is a
function of its accuracy.

 Stacking

Stacked generalization or stacking, is an alternative method for combining
multiple models. Unlike bagging and boosting, stacking is not used to combine
models of the same type. Instead it is applied to models built by various learning
algorithms (for example a decision tree inducer, a Naïve Bayes learner and an
instance-based learning method). The usual procedure would be to estimate the
expected error for each algorithm by cross-validating and then to choose the
most appropriate one in order to form a model which can be used for prediction
on future data combining outputs by voting. However voting criteria is not
reliable enough. The problem is that it is not clear which classifier can be trusted
(there are several types of classifiers which can be used). Stacking introduces
the concept of the meta-learner which replaces the voting procedure. Stacking
attempts to learn which classifiers are reliable using a different learning
algorithm – the meta-learner – to discover what is the best way to combine the
output from the base learners [Witten and Frank, 2005].

2. Data Mining and Knowledge Discovery 39

2.6 Discretization

The discretization process is known to be one of the most important data
preprocessing tasks in data mining. Many machine learning techniques can only
be applied to datasets which have been composed from the categorical
attributes. However, in the real world, many attributes are naturally continuous,
for example: height, weight, length, temperature, speed, etc. It is essential for a
practical data mining system to be able to handle attributes of this sort.
Although it would be possible to treat a continuous attribute as a categorical one
using primary values, this is very unlikely to prove satisfactory. If the
continuous attribute consists of a large number of different values in the training
set, it is very likely that any particular value will only occur a small number of
times, perhaps even only once, and rules that include tests for specific values
will probably be of very little importance for a prediction [Bramer, 2007]. A
solution to this problem would be to partition numeric variables into a number of
sub-ranges and treat each sub-range as a category. This process of partitioning
continuous variables into categories is usually termed as discretization.

There are several advantages of data discretization, which have been listed
below:

− the experts usually describe the parameters using linguistic terms
instead of exact values. In some ways, discretization can provide a
better acknowledgement of attributes;

− it provides regularization because it is less prone to variation in the
estimation of small fragmented data;

− the amount of data can be greatly reduced because of redundant data
which can be identified and removed;

− it enables better performance for rule extraction.
Primary methods can be defined as:
− Supervised or Unsupervised [Dougherty et al, 1995]: If we look at

unsupervised methods, continuous ranges are divided into sub-ranges
by a user specified parameter – for instance, equal width (specifying
range of values), equal frequency (number of instances in each interval),
clustering algorithms – like k-means – (specifying a number of clusters).
These methods may not be giving good results in cases where the
distribution of the continuous values is not consistent and the outliers
significantly affect the ranges. Of course, if there is not a class
information available, unsupervised discretization is the only possible
choice. In supervised discretization methods, class information is used to
find the proper intervals which have been caused by cut-points. Different
methods have been developed to use this class information for finding
meaningful intervals in continuous attributes. Supervised discretization
can be further characterized as error-based, entropy-based or statistics-
based according to whether the intervals have been selected using

2. Data Mining and Knowledge Discovery 40

metrics based on error on the training data, entropy of the intervals, or
a statistical measure;

− Hierarchical or Non-hierarchical: Hierarchical discretization selects cut
points in an incremental process, forming an implicit hierarchy over the
value range. The procedure can be Split or (and) Merge [Kerber, 1992].
There are methods which are non-hierarchical: for example: the
methods used for scanning the ordered values only once and
sequentially forming intervals;

− Top-down or Bottom-up, or in other words Split or Merge [Hussain et al,
1999]: Top-down methods start with one interval and split intervals in
the process of discretization. Bottom-up methods start with the
complete list of all the continuous values from the feature as cut-points
and remove some of them by "merging" intervals as a discretization
progresses. Different thresholds for stopping criteria are used;

− Static or Dynamic: In the static approach, discretization is done prior to
the classification task (during the pre-processing phase). A dynamic
method would discretize the continuous values while a classifier is being
built, like illustrated in C4.5 [Quinlan, 1993]. Dynamic methods are
mutually connected with a corresponding classification method, where
the algorithm can work with real attributes;

− Parametric or Non-parametric: Parametric discretization requires input
from the user, such as the maximum number of discretized intervals.
Non-parametric discretization only uses information from data and does
not need input from the user;

− Global or Local [Dougherty et al, 1995]: A local method would discretize
in a localized region of the instance space (i.e. a subset of instances)
while a global discretization method will use the entire instance space to
discretize. Therefore a local method is usually associated with a dynamic
discretization method where only a region of instance space is used for
discretization;

− Univariate or Multivariate [Bay, 2000]: Univariate discretization
quantifies one continuous feature at a time while multivariate
discretization considers multiple features simultaneously.

In the experiments we conducted, the focus is on representatives of
supervised methods. We have chosen two methods, which are different from the
point of view of both the hierarchical direction and the forming of interval
criteria. The first is Fayyad-Irani top-down method which is based on the
optimization of the local measurement of the entropy and as stopping criterion –
the Minimum Description Length (MDL) principle is used [Fayyad and Irani,
1993]. The second is Chi-merge – a bottom-up method based on the chi-square
statistics measure.

2. Data Mining and Knowledge Discovery 41

2.7 Existing Data Mining Software Systems

There are several well-known data mining open-source systems which are
aiming to support the study and research of the field of data mining, as well as
the implication of some modules in real tasks.

 Weka

Weka (http://www.cs.waikato.ac.nz/~ml/weka/)
(Waikato Environment for Knowledge Analysis) is
developed by the University of Waikato, New Zealand
since 1993.

Weka is well-known suite for machine learning software that supports several
typical data mining tasks, particularly data preprocessing, clustering,
classification, regression, visualization, and feature selection.

Figure 2. Weka knowledge flow interface

Weka is written in Java and it provides access to SQL databases utilizing Java
Database Connectivity and it is also able to process the results returned by a
database query. The main user interface is the Explorer, but the same
functionality can be accessed from through the command line interface or the
component-based Knowledge Flow interface (Figure 2).

In 2005, Weka received the SIGKDD Data Mining and Knowledge Discovery
Service Award. In 2006, Pentaho Corporation acquired an exclusive license to

2. Data Mining and Knowledge Discovery 42

use Weka for business intelligence. It forms the data mining and predictive
analytics component of the Pentaho business intelligence suite.

In the experimental part of this dissertation, we make comparison of other
classifiers using the Weka environment. Figure 2 is a screenshot of the
knowledge flow task, used in our experiments with various datasets.

 LUCS-KDD Repository

The LUCS-KDD Repository (http://www.csc.liv.ac.uk/~frans/KDD/) (Liverpool
University of Computer Science – Knowledge Discovery in Data) has been
developed and maintained by the Department of Computer Science, University
of Liverpool, UK since 1997. This repository provides a common environment for
research tasks and comparison between different algorithms, some of which are
a product of the group that supports repository. A number of algorithms were
developed since the work on LUCS-KDD commenced; they are released as open
access and serve different applications. The team adopted several algorithms:
association rule mining (Apriori-T and TFP) and class association rules
algorithms (TFPC) featuring preprocessing of the data and set-enumeration tree
structures (the P-tree and the T-tree) to facilitate search.

The experiments with CMAR classifier are made using its program realization
in LUCS-KDD Repository.

 Orange

Orange (http://www.ailab.si/orange) is developed and
maintained at the Faculty of Computer and Information
Science, University of Ljubljana, Slovenia.

Orange is an open component-based data mining and
machine learning software suite that features friendly yet
powerful, fast and versatile visual programming front-end for data analysis and
visualization, and Python bindings and libraries for scripting.

It is written in C++ and Python, and its graphical user interface is based on
the cross-platform Qt framework.

It includes a comprehensive set of components for data preprocessing,
feature scoring and filtering, modeling, model evaluation and exploration
techniques.

 RapidMiner

RapidMiner (http://rapidminer.com/), formerly called
YALE (Yet Another Learning Environment), is created and
maintained by Rapid-I GMBH, Germany. It is a machine
learning and data mining environment written in Java
which is utilized for both research and real-world data mining tasks. It enables

2. Data Mining and Knowledge Discovery 43

experiments to be made up of a huge number of arbitrarily nestable operators,
which are detailed in XML files and are made with RapidMiner’s graphical user
interface. RapidMiner provides more than 500 operators for all main machine
learning procedures; it also combines learning schemes and attribute evaluators
of the Weka learning environment. It is available as a stand-alone tool for data
analysis and as a data-mining engine that can be integrated into other products.

 jHepWork

Designed for scientists, engineers and students,
jHepWork (http://jwork.org/jhepwork/) is a multiplatform
free and open-source Java-based data analysis framework
created as an attempt to develop a data analysis
environment using open-source packages with a
comprehensible user interface which would be competitive to commercial
software. It is specifically made for interactive scientific plots in 2D and 3D and
includes numerical scientific libraries implemented in Java for mathematical
functions, random numbers, and other data mining algorithms. jHepWork is
based on a high-level programming language Jython, but Java coding can also
be used to call jHepWork numerical and graphical libraries.

The jHepWork is a collective effort of many people dedicated to open-source
scientific software, coordinated by Sergei Chekanov since 2005.

 SIPINA

SIPINA (http://eric.univ-lyon2.fr/~ricco/sipina.html),
has been developed at the University of Lyon, France
since 1995. It is an open data mining software which
implements a number of supervised learning paradigms,
but mainly classification tree software (it specializes on
Classification Trees algorithms such as ID3, CHAID, and C4.5, but other
supervised methods e.g. k-NN, Multilayer Perceptron, Naive Bayes, etc. are also
available.

SIPINA can handle both continuous and discrete attributes. SIPINA
theoretical limitations are 16,384 attributes and 500,000,000 examples.
Because it loads the complete dataset in the memory before the learning
process, the true limitation is the capacity of the computer memory available.

SIPINA allows feature transformations (discretizing an attribute, coding a set
of attributes from a discrete attribute, etc.), feature selection using "filter
methods" (selecting the best predictive attributes independently of the
supervised algorithms used prior to induction) or "wrapper methods" (where a
supervised algorithm selects the best attributes), error evaluation and
classification.

2. Data Mining and Knowledge Discovery 44

 TANAGRA

The TANAGRA project is a successor of SIPINA
(http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html)
[Rakotomalala, 2005]. It combines several data mining
methods from the domains of exploratory data analysis,
statistical learning, machine learning and databases.

TANAGRA implements various supervised learning algorithms, more
specifically an interactive and visual construction of decision trees. TANAGRA
contains some supervised learning but also other paradigms such as clustering,
factorial analysis, parametric and nonparametric statistics, association rule, etc.

The primary goal of the TANAGRA project is to make available to researchers
and students an easy-to-use data mining software, conforming to the present
norms of the software development in this domain, and allowing to analyze
either real or synthetic data.

A further goal of TANAGRA is to offer researchers an architecture allowing
them to easily add their own data mining methods, which would allow to
compare performances and establish benchmarks.

The last goal targeting novice developers is to disseminate a possible
methodology for the development of this kind of software. Developers can take
advantage of free access to source code and can see how this sort of software is
built and what problems to avoid; they also can observe what are the main
stages of the implementation project, and which tools and code libraries to use.
Thus TANAGRA can be considered as a pedagogical tool for learning
programming techniques.

 KNIME

KNIME (http://www.knime.org/) (Konstanz Information
Miner), maintained by KNIME GMBH, Germany, is a user
friendly, intelligible, and comprehensive open-source data
integration, processing, analysis, and exploration
platform. It gives users the ability to visually create data
flows or pipelines, selectively execute some or all analysis steps, and later study
the results, models, and interactive views. KNIME is written in Java, and it is
based on Eclipse and makes use of its extension method to support plugins thus
providing additional functionality. Through plugins, users can add modules for
text, image, and time series processing and can integrate a range of open
source projects, such as R programming language, Weka, the Chemistry
Development Kit, and LibSVM.

KNIME has been selected by Gartner as Cool Vendor 2010 in the key
technology areas Analytics, Business Intelligence, and Performance
Management.

2. Data Mining and Knowledge Discovery 45

 AlphaMiner

AlphaMiner
(http://www.eti.hku.hk/alphaminer/index.html) is
developed by the E-Business Technology Institute of the
University of Hong Kong.

The technology of Business Intelligence (BI) helps
companies to improve business decision making. Over the past decade,
international companies in the banking, telecommunications, insurances, retails
and e-business sectors have successfully used BI to solve numerous business
problems in marketing, customer service, cross selling, customer retention,
fraud detection and risk management. BI solutions are costly and only large
enterprises can afford them. AlphaMiner data mining system provides affordable
BI technologies by leveraging existing open source technologies and empowers
small companies with the capability to make better decisions in the fast
changing business environment. Plug-able component architecture provides
extensibility for adding new BI capabilities in data import and export, data
transformations, modeling algorithms, model assessment and deployment.
Versatile data mining functions offer powerful analytics to conduct industry
specific analysis including customer profiling and clustering, product association
analysis, classification and prediction.

 ELKI

ELKI (http://www.dbs.ifi.lmu.de/research/KDD/ELKI/)
(Environment for DeveLoping KDD-Applications Supported
by Index-Structures), developed by the Institute for
Computer Science of University of Munich, Germany
[Achtert et al, 2010], is a data mining software framework
with a focus on clustering and outlier detection methods written in Java.

As discussed above, data mining research makes use of multiple algorithms
for similar tasks. A fair and useful comparison of these algorithms is difficult due
to several reasons:

− most of the software tools are commercial and their implementations are
not easily available;

− even when different software implementations are available, an
evaluation in terms of efficiency is biased to evaluate the efforts of
different authors in efficient programming instead of evaluating
algorithmic merits. Probably this is influenced by the fact that usability
evaluations could be performed easier than an objective evaluation of
the algorithms.

On the other hand, efficient data management tools like index-structures can
show considerable impact on data mining tasks and are therefore useful for a
broad variety of algorithms.

2. Data Mining and Knowledge Discovery 46

In ELKI, data mining algorithms and data management tasks are separated
and allow for separate evaluation. This distinguishes ELKI among data mining
frameworks like Weka framework for index structures like GiST. At the same
time, ELKI is open to arbitrary data types, distance or similarity measures, or
file formats. The fundamental approach applied in ELKI is the independence of
file parsers or database connections, data types, distances, distance functions,
and data mining algorithms. Helper classes, e.g. for algebraic or analytic
computations, are available for all algorithms on equal terms.

 R

R (http://www.r-project.org/) is a programming
language and software environment for statistical
computing and graphics. The R language is widely used
for statistical software development and data analysis.

R is an implementation of the S programming language
combined with lexical scoping semantics inspired by Scheme. R was created by
Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand,
and is now developed by the R Development Core Team.

R is part of the GNU project. Its source code is freely available under the GNU
General Public License, and pre-compiled binary versions are provided for
various operating systems. R uses a command line interface, however several
graphical user interfaces are available for use with R.

The capabilities of R are extended through user-submitted packages, which
allow specialized statistical techniques, graphical devices, as well as
import/export capabilities to many external data formats. The "Task Views" page
(http://cran.r-project.org/web/views/) on the CRAN website lists the wide range
of applications (Finance, Genetics, Machine Learning, Medical Imaging, Social
Sciences and Spatial statistics) to which R has been applied and for which
packages are available. For instance, the "arules" package allows extracting
association rules with R
(http://cran.univ‐lyon1.fr/web/packages/arules/index.html).

 Rattle

Rattle (the R Analytical Tool To Learn Easily)
(http://rattle.togaware.com/), created and supported by
Togaware Pty Ltd., Australia, is a open-source data mining
toolkit used to analyze very large collections of data
[Williams, 2009].

Rattle presents statistical and visual summaries of data, transforms data into
forms that can be readily modeled, builds both unsupervised and supervised
models from the data, presents the performance of models graphically, and
scores new datasets.

2. Data Mining and Knowledge Discovery 47

The scientific blog DecisionStats (29.04.2010) listed Rattle as one of the top
10 graphical user interfaces in statistical software.

Through a simple and logical graphical user interface based on Gnome, Rattle
can be used by itself to deliver data mining projects. Rattle also provides an
entry into sophisticated data mining using the open source and free statistical
language R.

Rattle runs under GNU/Linux, Macintosh OS/X, and MS/Windows. The aim is
to provide an intuitive interface that takes you through the basic steps of data
mining, as well as illustrating the R code that is used to achieve this. Whilst the
tool itself may be sufficient for all of a user's needs, it also provides a stepping
stone to more sophisticated processing and modeling.

2.8 Standardization and Interoperability

With the advancement of modern information technologies and the boost in
data mining, the use of knowledge discovery becomes an everyday practice.
Business Intelligence, Web Mining, Medical Diagnostics, Drives and Controls,
GPS Systems, Global Monitoring for Environment and Security, etc. are only few
of the application areas where data mining is a core component.

Data mining gradually became an emergent technology across multiple
industries and sectors. Such expanded and enlarged use means that it is
necessary to design a data mining environment which meets the following
requirements:

− data interoperability (currently each system uses its own notation for
data entry, for instance C4.5-standard, arff-standard, etc.);

− openness for adding new algorithms to the environment;
− modularity in order to allow combining of different techniques that

became a part of a global process;
− the modules must allow use by different systems, not only a closed use

within their own environment;
− user flexibility and possibility to guide the entire data mining process.

Kouamou described in 2011 the logical structure of data mining environment
[Kouamou, 2011]. The author suggests that integration and interoperability of
modern data mining environments are achieved by application of modern
industrial standards, such as XML-based languages.

Notably, such systems are able to import and export models in PMML
(Predictive Model Markup Language), which provides a standard way to
represent data mining models which allows sharing between different statistical
applications. PMML is an XML-based language developed by the Data Mining
Group, an independent group of numerous data mining companies.

2. Data Mining and Knowledge Discovery 48

The adoption of standards in this discipline already made it possible to
develop procedures of data exchange between various platforms. At the same
time there are reflections on the standardization of a data mining process
model. The presentation of these efforts demonstrated that the challenge for the
future is to develop and popularize widely accepted standards in data mining
environment; if developed and adopted, such a standard will stimulate major
industry growth and interest. It would also promote development and delivery of
solutions that use business language, resulting in performing projects faster,
cheaper, more manageably, and more reliably.

Conclusion
In this chapter we made an overview of data mining and knowledge

discovery. Looking at the taxonomy of the main types of data mining methods
we focus our attention on the segment of discovery-oriented methods and more
specifically on classification algorithms.

We observed the wide family of classification algorithms, dividing into
following main categories: Bayesian Methods, Support Vector Machines, Decision
Trees, Decision Rules, Class Association Rules, Lazy Learners, Neural Networks
and Genetic Algorithms.

We also presented the ensemble methods such as Bagging, Boosting and
Stacking used to increase classification accuracy,. Such methods can be used as
a more advanced stage on the primary classifiers.

Most of the classification algorithms deal with categorical attributes. Because
of this, we made a brief overview of discretization methods as important
preprocessing step for such algorithms.

Further we looked at several well-known open-source systems aimed to
support research work, or having significant influence on real work in the field of
data mining.. We provided brief descriptions of the following existing open-
source data mining software systems: Weka, LUCS-KDD Repository, Orange,
RapidMiner, JHepWork, SIPINA, TANAGRA, KNIME, AlphaMiner, ELKI, R, and
Rattle.

In this context the issues of standardization and interoperability are
becoming crucial. We elaborated on several aspects that gained importance
lately: data interoperability; opening for adding new algorithms to existing
environments; allowing combination of different techniques using module
approach of separate elements; user flexibility and possibility to guide the entire
data mining process.

3. CAR Algorithms 49

3 CAR Algorithms

Abstract
In this chapter we discuss in detail CAR algorithms.
We present the main types of algorithms for association rule mining, pruning

techniques, quality rule measures and rule ordering strategies.
We also describe a number of specific CAR algorithms.

3.1 Introduction

Association rule mining quickly became a popular instrument to model
relationships between class labels and features from a training set [Bayardo,
1998]. It appeared initially within the field of market basket analysis for
discovering interesting rules from large data collections [Agrawal et al, 1993].
Since then, many associative classifiers were proposed, mainly differing in the
strategies used to select rules for classification and in the heuristics used for
pruning rules. "Class association rules" (CAR) algorithms have its important
place in the family of classification algorithms.

Zaïane and Antonie suggested that the five major advantages of associative
classifiers are the following [Zaïane and Antonie, 2005]:

− the training is very efficient regardless of the size of the training set;
− training sets with high dimensionality can be handled with ease and no

assumptions are made on dependence or independence of attributes;
− the classification is very fast;
− classification based on association methods presents higher accuracy

than traditional classification methods [Liu et al, 1998] [Li et al, 2001]
[Thabtah et al, 2005] [Yin and Han, 2003];

− the classification model is a set of rules easily interpreted by human
beings and can be edited [Sarwar et al, 2001].

3. CAR Algorithms 50

Within the data mining community, research on classification techniques has
a long and fruitful history. However, classification techniques based on
association rules, are relatively new. The first associative classifier CBA was
introduced by [Liu et al, 1998]. During the last decade, various other associative
classifiers were introduced, such as CMAR [Li et al, 2001], ARC-AC and ARC-BC
[Zaïane and Antonie, 2002], CPAR [Yin and Han, 2003], CorClass [Zimmermann
and De Raedt, 2004], ACRI [Rak et al, 2005], TFPC [Coenen and Leng, 2005],
HARMONY [Wang and Karypis, 2005], MCAR [Thabtah et al, 2005], CACA [Tang
and Liao, 2007], ARUBAS [Depaire et al, 2008], etc.

CAR-algorithms are based on a relatively simple idea. Given a training set
with transactions where each transaction contains all features of an object in
addition to the class label of the object, the association rules are constructed,
which have as consequent a class label. Such association rules are named "class
association rules" (CARs).

Generally the structure of CAR-algorithms consists of three major data
mining steps:

1. Association rule mining.
2. Pruning (optional).
3. Recognition.
The mining of association rules is a typical data mining task that works in an

unsupervised manner. A major advantage of association rules is that they are
theoretically capable of revealing all interesting relationships in a database. But
for practical applications the number of mined rules is usually too large to be
exploited entirely. This is why the pruning phase is stringent in order to build
accurate and compact classifiers. The smaller the number of rules a classifier
needs to approximate the target concept satisfactorily, the more human-
interpretable is the result.

3.2 Association Rule Mining

Association rule mining was first introduced in [Agrawal et al, 1993]. It aims
to extract interesting correlations, frequent patterns, associations, or casual
structures among sets of instances in the transaction databases or other data
repositories.

Association rule mining itself has a wide range of application domains such as
market basket analysis, medical diagnosis/research, Website navigation
analysis, homeland security and so on. In parallel, it participates as a step in the
training process of CAR classifiers.

The datasets can be represented in two forms:
− transactional datasets;
− rectangular datasets.

3. CAR Algorithms 51

In transactional datasets each record (transaction) can contain different
number of items and order of the items can be arbitrary.

In rectangular datasets each record has the same number of attributes and
position of the attribute value is fixed and corresponds to the attribute.

These differences are not particularly difficult to address since there is an
easy way of converting transactional to binary rectangular dataset by ordering
all possible items and pointing the presence of a concrete item with 1 (true) and
respectively the absence with 0 (false).

The rectangular dataset also become transactional representation using
attribute-value pairs in description of each record.

The description of the problem of association rule mining is firstly presented
in [Agrawal et al, 1993]. The description of the problem provided below follows
the one given in [Goethals, 2002].

Let D be a set of items.

A set 1{ ,..., }kX i i= ⊆ D is called an itemset or a k-itemset if it contains k

items.
A transaction over D is a couple (,)T tid I= where tid is the transaction

identifier and I is an itemset. A transaction (,)T tid I= is said to support an

itemset X ⊆ D if X I⊆ .

A transaction database D over D is a set of transactions over D .
The cover of an itemset X in D consists of the set of transaction identifiers

of transactions in D that support X : (,) : { | (,) , }cover X D tid tid I D X I= ∈ ⊆ .

The support of an itemset X in D is the number of transactions in the cover

of X in D : (,) : (,)support X D cover X D= . Note that ({},)D support D= .

An itemset is called frequent if its support is no less than a given absolute
minimal support threshold MinSup , with 0 MinSup D≤ ≤ .

Let D be a transaction database over a set of items D , and MinSup a

minimal support threshold. The collection of frequent itemsets in D with respect
to MinSup is denoted by (,) : { | (,) }F D MinSup X support X D MinSup= ⊆ ≥D .

An association rule is an expression of the form X Y⇒ , where X and Y
are itemsets, and {}X Y∩ = . Such a rule expresses the association that if a

transaction contains all items in X , then that transaction also contains all items
in Y . X is called the body or antecedent, and Y is called the head or
consequent of the rule.

The support of an association rule X Y⇒ in D , is the support of X Y∪ in
D . An association rule is called frequent if its support exceeds a given minimal
support threshold MinSup .

3. CAR Algorithms 52

The confidence or accuracy of an association rule X Y⇒ in D is the
conditional probability of having Y contained in a transaction, given that X is
contained in that transaction:

(,)(,) : (|)
(,)

support X Y D
confidence X Y D P Y X

support X D

∪
⇒ = = .

The rule is called confident if (|)P Y X exceeds a given minimal confidence

threshold MinConf , with 0 1MinConf≤ ≤ .

Especially in the case of classification association rules the head consists of
only one attribute-value pair. In the case of rectangular data one of the columns
contains class labels that divide the dataset into separate extensional parts.

Generally, an association rules mining algorithm consists of the following
steps:

1. The set of candidate k-item-sets is generated by 1-extensions of the large
(k-1)-item-sets generated in the previous iteration.

2. Supports for the candidate k-item-sets are generated by a pass over the
database.

3. Item-sets that do not have the minimum support are discarded and the
remaining item-sets are called large (frequent) k-item-sets.

4. This process is repeated until no more large item-sets are found to
generate association rules from those large item-sets with the constraints
of minimal confidence.

In many cases, the algorithms generate an extremely large number of
association rules, often in thousands or even millions; in addition to this the
association rules are sometimes very large. It is nearly impossible for the end-
users to comprehend or validate such large number of complex association
rules, thereby limiting the usefulness of the data mining results. Several
researchers suggested strategies aimed at reducing the number of association
rules:

− extracting of rules based on user-defined templates or instance
constraints [Baralis and Psaila, 1997] [Ashrafi et al, 2004];

− developing interestingness measures to select only interesting rules
[Hilderman and Hamilton, 2002]. For instance [Jaroszewicz and
Simovici, 2002] proposed a solution to the problem using the Maximum
Entropy approach;

− proposing inference rules or inference systems to prune redundant rules
and thus present smaller, and usually more understandable sets of
association rules to the user [Cristofor and Simovici, 2002];

− creating new frameworks for mining association rule to find association
rules with different formats or properties [Brin et al, 1997].

3. CAR Algorithms 53

Depending of the specificity of the observed problem many additional
question arise. For instance [Liu et al, 1999] present an approach to the rare
instance problem. The dilemma that arises in the rare instance problem is that
searching for rules that involve infrequent (i.e., rare) instances requires a low
support but using a low support will typically generate many rules that are of no
interest. Using a high support typically reduces the number of rules mined but
will eliminate the rules with rare instances. The authors attack this problem by
allowing users to specify different minimum supports for the various instances in
their mining algorithm.

For filtering out the interesting rules also sometimes the lift measure is used
[Brin et al, 1997], which shows how many times more often two items occur
together than expected if they where statistically independent.

The computational cost of association rules mining can be reduced by
sampling the database, by adding extra constraints on the structure of patterns,
or through parallelization.

Techniques for association rule discovery have gradually been adapted to
parallel systems in order to take advantage of the higher speed and greater
storage capacity that they offer. The transition to a distributed memory system
requires the partitioning of the database among the processors, a procedure that
is generally carried out indiscriminately. [Parthasarathy et al, 2001] wrote an
excellent survey on parallel association rule mining with shared memory
architecture covering most trends, challenges, and approaches adopted for
parallel data mining.

3.2.1 Creating Association Rules

During the first stage, several techniques for creating association rules are
used, which mainly are based on:

− Apriori algorithm [Agrawal and Srikant, 1994] (CBA, ARC-AC, ARC-BC,
ACRI, ARUBAS);

− FP-tree algorithm [Han and Pei, 2000] (CMAR);
− FOIL algorithm [Quinlan and Cameron-Jones, 1993] (CPAR);
− Morishita & Sese Framework [Morishita and Sese, 2000] (CorClass).

Generating association rules can be made from all training transactions
together (such it is in ARC-AC, CMAR, CBA) or can be made for transactions
grouped by class label (as it is in ARC-BC), which offers small classes a chance
to have representative classification rules.

We provide a brief overview of some distinctive algorithms created during the
recent years, which are used or can be implemented at the step of creating the
pattern set of CAR algorithms.

3. CAR Algorithms 54

 AIS

The AIS algorithm [Agrawal et al, 1993] was the first algorithm proposed for
mining association rule in the early 90s, when a task for emulating the biological
immune system in the real world scenarios became actual. AIS algorithm uses
candidate generation to detect the frequent item-sets. The candidates are
generated on the fly and are compared with previously found frequent item-sets.
In this algorithm only one instance of consequent association rules are
generated, which means that the consequent of those rules only contain one
instance, for example we only generate rules like X Y Z∩ ⇒ but not those
rules as X Y Z⇒ ∩ . The main drawbacks of the AIS algorithm are too many
passes over the whole database and too many candidate item-sets that finally
turned out to be small are generated, which requires considerable memory and
involves significant effort that turned out to be useless.

 Apriori

The Apriori [Agrawal and Srikant, 1994] is the most popular algorithm for
producing association rules. It created new opportunities to mine the data. Since
its inception, many scholars have improved and optimized the Apriori algorithm
and have presented new Apriori-like algorithms. Apriori uses pruning techniques
to avoid measuring certain item-sets, while guaranteeing completeness. These
are the item-sets that the algorithm can prove will not turn out to be large.

However, there are two bottlenecks of the Apriori algorithm. One is the
complex candidate generation process that uses most of the time and memory
because of the multiple scans of the database. Based on the Apriori algorithm,
many new algorithms were designed with some modifications or improvements.

The Apriori algorithm for finding frequent item-sets makes multiple passes
over the data. In the k -th pass it finds all item-sets having k instances called
the k-item-sets. Each pass consists of two phases. Let kF represent the set of

frequent k-item-sets, and kC the set of candidate k-item-sets (potentially

frequent item-sets). The candidate generation phase where the set of all
frequent (k-1)-item-sets, 1kF − , found in the (1k −)-th pass is applied first and it

is used to generate the candidate item-sets kC . The candidate generation

procedure ensures that kC is a superset of the set of all frequent k-item-sets. A

specialized hash-tree data structure is used to store kC . Then, data is scanned

in the support counting phase. For each transaction, the candidates in kC

contained in the transaction are determined using the hash-tree data structure
and their support count is incremented. At the end of the pass, kC is examined

3. CAR Algorithms 55

to determine which of the candidates are frequent, yielding kF . The algorithm

terminates when kF or 1kC + becomes empty.

Several optimizations of Apriori algorithm are available, such as:
− PASCAL [Bastide et al, 2000], which introduces the notions of key

patterns and use inference of other frequent patterns from the key
patterns without access to the database;

− Category-based Apriori algorithm [Do et al, 2003], which reduces the
computational complexity of the mining process by bypassing most of
the subsets of the final item-sets;

− Apriori-T [Coenen et al, 2004], which makes use of a "reverse" set
enumeration tree where each level of the tree is defined in terms of an
array (i.e. the T-tree data structure is a form of Trie);

− FDM [Cheung et al, 1996], which is a parallelization of Apriori for shared
machines, each with its own partition of the database. At every level and
on each machine, the database scan is performed independently on the
local partition. Then a distributed pruning technique is employed.

 FP-Tree

FP-Tree [Han and Pei, 2000] is another milestone in the development of
association rule mining, which breaks the main bottlenecks of Apriori [Kotsiantis
and Kanellopoulos, 2006]. The frequent item-sets are generated with only two
passes over the database and without any candidate generation process. FP-tree
is an extended prefix-tree structure storing crucial, quantitative information
about frequent patterns. Only frequent length-1 instances will have nodes in the
tree, and the tree nodes are arranged in such a way that more frequently
occurring nodes will have better chances of sharing nodes than less frequently
occurring ones. FP-Tree scales much better than Apriori because as the support
threshold goes down, the number as well as the length of frequent item-sets
increase dramatically. The frequent patterns generation process includes two
sub processes: constructing the FT-Tree, and generating frequent patterns from
the FP-Tree. The mining result is the same with Apriori series algorithms.

To sum up, the efficiency of FP-Tree algorithm accounts for three reasons:
1. The FP-Tree is a compressed representation of the original database

because only those frequent instances are used to construct the tree,
other irrelevant information are pruned.

2. This algorithm only scans the database twice.
3. FP-Tree uses a divide and conquers method that considerably reduced the

size of the subsequent conditional FP-Tree.
Every algorithm has his limitations, for FP-Tree it is difficult to be used in an

interactive mining system. Another limitation is that FP-Tree is that it is not
suitable for incremental mining.

3. CAR Algorithms 56

 TreeProjection

The innovation brought by TreeProjection [Agarwal et al, 2000] is the use of
a lexicographic tree, which requires substantially less memory than a hash tree.
The number of nodes in its lexicographic tree is exactly that of the frequent
item-sets. The support of the frequent item-sets is counted by projecting the
transactions onto the nodes of this tree. This improves the performance of
counting the number of transactions that have frequent item-sets. The
lexicographic tree is traversed in a top-down fashion. The efficiency of
TreeProjection can be explained by two main factors:

1. the transaction projection limits the support counting in a relatively small
space.

2. the lexicographical tree facilitates the management and counting of
candidates and provides the flexibility of picking efficient strategy during
the tree generation and transaction projection phrases.

 Matrix Algorithm

The Matrix Algorithm [Yuan and Huang, 2005] generates a matrix, which
entries 1 or 0 by passing over the database only once, and then the frequent
candidate sets are obtained from the resulting matrix. Finally, association rules
are mined from the frequent candidate sets. Experimental results confirm that
the proposed algorithm is more effective than Apriori Algorithm.

 Sampling Algorithms

For obtaining associations, several algorithms use sampling. Some examples
are provided below:

− Toivonen's sampling algorithm [Toivonen, 1996]. This approach is a
combination of two phases. During phase 1 a sample of the database is
obtained and all associations in the sample are found. These results are
then validated against the entire database. To maximize the
effectiveness of the overall approach, the author makes use of lowered
minimum support on the sample. Since the approach is probabilistic (i.e.
dependent on the sample containing all the relevant associations) not all
the rules may be found in this first pass. Those associations that were
deemed not frequent in the sample but were actually frequent in the
entire dataset are used to construct the complete set of associations in
phase 2;

− Progressive sampling [Parthasarathy, 2002] is yet another approach; it
relies on a novel measure of model accuracy (self-similarity of
associations across progressive samples), the identification of a
representative class of frequent item-sets that mimic (extremely
accurately) the self-similarity values across the entire set of

3. CAR Algorithms 57

associations, and an efficient sampling methodology that hides the
overhead of obtaining progressive samples by overlapping it with useful
computation;

− Sampling Error Estimation algorithm [Chuang et al, 2005] aims to
identify an appropriate sample size for mining association rules. It has
two advantages. First, it is highly efficient because an appropriate
sample size can be determined without the need of executing association
rules. Second, the identified sample size is very accurate, meaning that
association rules can be highly efficiently executed on a sample of this
size to obtain a sufficiently accurate result;

− Sampling large datasets with replacement [Li and Gopalan, 2004] is
used when data comes as a stream flowing at a faster rate than can be
processed. Li and Gopalan derive the sufficient sample size based on
central limit theorem for sampling large datasets with replacement.

 Partition

Partition [Savasere et al, 1995] is fundamentally different from other
algorithms because it reads the database at most two times to generate all
significant association rules. In the first scan of the database, it generates a set
of all potentially large item-sets by scanning the database once and dividing it in
a number of non-overlapping partitions. This set is a superset of all frequent
item-sets so it may contain item-sets that are not frequent. During the second
scan, counters for each of these item-sets are set up and their actual support is
measured.

 FOIL

FOIL (First Order Inductive Learner) is an inductive learning algorithm for
generating classification association rules (CARs) developed by Quinlan and
Cameron-Jones in 1993 [Quinlan and Cameron-Jones, 1993] and further
developed by Yin and Han to produce the PRM (Predictive Rule Mining) CAR
generation algorithm [Yin and Han 2003]. PRM was then further developed, by
Yin and Han, to produce CPAR (Classification based on Predictive Association
Rules).

FOIL is a sequential covering algorithm that learns first-order logic rules. It
learns new rules one at a time, removing the positive examples covered by the
latest rule before attempting to learn the next rule.

The hypothesis space search performed by FOIL is best understood by
viewing it hierarchically. Each iteration through FOIL'S outer loop adds a new
rule to its disjunctive hypothesis. The effect of each new rule is to generalize the
current disjunctive hypothesis (i.e., to increase the number of instances it
classifies as positive), by adding a new disjunct. Viewed at this level, the search
is a specific-to-general search through the space of hypotheses, beginning with

3. CAR Algorithms 58

the most specific empty disjunction and terminating when the hypothesis is
sufficiently general to cover all positive training examples. The inner loop of
FOIL performs a finer-grained search to determine the exact definition of each
new rule. This inner loop searches a second hypothesis space, consisting of
conjunctions of literals, to find a conjunction that will form the preconditions for
the new rule. FOIL employs a specific performance FOIL Gain that differs from
the entropy measure. This difference follows from the need to distinguish
between different bindings of the rule variables and from the fact that FOIL
seeks only rules that cover positive examples [Mitchell, 1997].

 Morishita & Sese Framework

This framework [Morishita and Sese, 2000] efficiently computes significant
association rules according to common statistical measures such as a chi-
squared value or correlation coefficient. Because of anti-monotonicity of these
statistical metrics, Apriori algorithm is not suitable for association rule
generation. Morishita and Sese present a method of estimating a tight upper
bound on the statistical metric associated with any superset of an item-set, as
well as the novel use of the resulting information of upper bounds to prune
unproductive supersets while traversing item-set lattices.

3.2.2 Rule Quality Measures

The process of generating association rules usually creates an extremely big
number of patterns. This bottleneck imposes the necessity of measuring the
significance, respectively redundancy of the generated rules and ordering using
different criteria.

Here we will mention some examples of used ranking of association rules.

For a rule P and a class-labeled dataset { | 1,..., }iD R i n= = several kinds of

rule quality measures and combinations of them are used:
− The time of generation of the rule. This is a weak restriction used when

all constrains before order two rules in equal places;
− ()ncovers P : the number of instances covered by P

(i.e. : () ()i iR body P body R⊆);

− ()pos P : the number of instances correctly classified by P

(i.e. : () () and () ()i i iR body P body R head P head R⊆ =);

− ()neg P : the number of negative instances covered by P

(i.e. : () () and () ()i i iR body P body R head P head R⊆ ≠);

− D : the number of instances in D ;

3. CAR Algorithms 59

− Coverage:
()() ncovers P

coverage P
D

= ;

− Accuracy:
()() pos P

accuracy P
ncovers

= ;

− Cardinality: () ()card P body P= ;

− Pessimistic error rate:
() 1()

() () 2
neg P

PER P
neg P pos P

+
=

+ +

− ip is the probability of class ic in D ;

− Expected information: 2
1

() * log ()
m

i i
i

Info D p p
=

= −∑ ;

− Information gain:
1

() () ()
v

j

j
j

D
InfoGain D Info D Info D

D=

= − ×∑ ;

− FOIL gain (it favors rules that have high accuracy and cover many
positive instances):

2 2
(') ()(, ') (') log log

(') (') () ()
pos P pos P

FOILGain P P pos P
pos P neg P pos P neg P

⎛ ⎞
= × −⎜ ⎟+ +⎝ ⎠

;

Further measures can be defined but those listed above are the most basic
ones.

3.2.3 Pruning

In order to reduce the produced association rules, pruning in parallel with
(pre-pruning) or after (post-pruning) creating association rules is performed.
Different heuristics for pruning during rule generation are used, mainly based on
minimum support, minimum confidence and different kinds of error pruning
[Kuncheva, 2004]. In post-pruning phase, criteria such as data coverage (ACRI)
or correlation between consequent and antecedent (CMAR) are also used.

During the pruning phase or in classification stage, different ranking criteria
for ordering the rules are used. The most common ranking mechanisms are
based on the support, confidence and cardinality of the rules, but other
techniques such as the cosine measure and coverage measure (ACRI) also exist;
we can mention amongst them:

− Pruning by confidence: retain more general rules with higher accuracy:

1 2R R< and 1 2() ()conf R conf R< , than 1R is pruned (used in ARC-AC,

ARC-BC);

3. CAR Algorithms 60

− Pruning by precedence: special kind of ordering using "precedence" (CBA
and MCAR);

− Correlation pruning: statistical measuring of the rule significance using

weighted 2χ (CMAR).

3.3 Recognition

In the recognition stage, three different approaches can be discerned
[Depaire et al, 2008]:

1. using a single rule.
2. using a subset of rules.
3. using all rules.
An example which uses a single rule is CBA. It classifies an instance by using

the single best rule covering the instance.
CPAR uses a subset of rules. It first gathers all rules covering the new

instance and selects the best n rules per class. Next, it calculates the average
Laplace accuracy per class and predicts the class with the highest average
accuracy.

Additionally to support, coverage and confidence, ACRI uses also the cosine
measure.

CMAR uses all rules covering a class to calculate an average score per class.

CMAR selects the rule with the highest 2χ measure from the candidate set.

ARC-AC and ARC-BC use the sum of confidences as score statistics.
A different approach is proposed in TFPC, which suggests to consider the size

of the antecedent and to favor long rules before making an allowance for
confidence and support.

When a subset or all rules is being used, several order-based combined
measures can be applied:

− Select all matching rules;
− Group rules per class value;
− Order rules per class value according to criterion;
− Calculate combined measure for best Z rules;
− Laplace Accuracy (CPAR): if k is the number of class values then

() 1
(())

support R
LA

support body R k

+
=

+
.

3. CAR Algorithms 61

3.4 Some Representatives of CAR Algorithms

In this subsection we present briefly several representatives of the CAR
Algorithm.

 CBA

In CBA [Liu et al, 1998], Apriori is applied to create the association rules.
For measuring the significance of the rules a special "precedence" definition is

given:
1 2P Pf (rule 1P precedes rule 2P) if:

1. 1 2() ()confidence P confidence P> ;

2. 1 2() ()confidence P confidence P= but 1 2() ()support P support P> ;

3. 1 2() ()confidence P confidence P= , 1 2() ()support P support P= , but 1P is

generated earlier than 2P .
Pruning is based on the pessimistic error rate based pruning method in C4.5.
Condition 1. Each training case is covered by the rule with the highest

precedence among the rules that can cover the case.
Condition 2. Every rule correctly classifies at least one remaining training

case when it is chosen.
The key point is instead of making one pass over the remaining data for each

rule, the algorithm to find the best rule to cover each case.
During the recognition CBA just searches in the pruned and ordered list for

the first rule that covers the instance to be classified. The prediction is the class
label of that classification rule. If no rule covers the instance, CBA uses the
default class calculated during pruning. If the decision list is empty, the majority
class of the training instance will be assigned to each test instance as default.

 CMAR

CMAR [Li et al, 2001] employs a novel data structure, CR-tree, to compactly
store and efficiently retrieve a large number of rules for classification. CR-tree is
a prefix tree structure to explore the sharing among rules, which achieves
substantial compactness.

In the phase of rule generation, CMAR computes the complete set of rules.
CMAR prunes some rule and only selects a subset of high quality rules for
classification. CMAR adopts a variant of FP-growth method, which is much faster
than Apriori-like methods, especially in the situations where large datasets, low

3. CAR Algorithms 62

support threshold, and long patterns exist. The specificity of CMAR is also that it
finds frequent pattern and generates rules in one step.

For every pattern, CMAR maintains the distribution of various class labels
among data objects matching the pattern. This is done without any overhead in
the procedure of counting (conditional) databases. On the other hand, CMAR
uses class label distribution to prune. Once a rule is generated, it is stored in a
CR-tree.

The number of rules generated by class-association rule mining can be huge.
To make the classification effective and also efficient, we need to prune rules to
delete redundant and noisy information. According to the facility of rules on
classification, a global order of rules is composed. CMAR employs the following
methods for rule pruning.

1. Using general and high-confidence rule to prune more specific and lower
confidence ones.

2. Selecting only positively correlated rules.
3. Pruning rules based on database cover.
In the phase of classification, for a given data object, CMAR selects a small

set of high confidence matching the object, highly related rules and analyzes the
correlation among those rules.

 ARC-AC and ARC-BC

In 2002, Zaïane and Antonie offered new associative classifiers for text
categorization – ARC-AC and ARC-BC [Zaïane and Antonie, 2002]. For building
association rules they used Apriori-like algorithm. They have considered two
different approaches for extracting term-category association rules and for
combining those rules to generate a text classifier.

In the first approach ARC-BC (Association Rule-based Categorizer by
Category), each category is considered as a separate collection and the
association rule mining applied to it. Once the frequent item-sets are discovered,
the rules are simply generated by making each frequent item-set the antecedent
of the rule and the current category the consequent.

The ARC-AC (Association Rule-based Categorizer for All Categories) considers
all categories at whole. In this case one antecedent can be found with different
consequents. During the recognition they introduce "dominant factor", which is
the proportion of rules of the most dominant category in the applicable rules to
the query.

 CPAR

A greedy associative classification algorithm called CPAR was proposed in [Yin
and Han, 2003]. CPAR adopts FOIL [Quinlan and Cameron-Jones, 1993] strategy
in generating the rules from datasets. It seeks for the best rule condition that

3. CAR Algorithms 63

brings the most gain among the available ones in the dataset. Once the
condition is identified, the weights of the positive examples associated with it
will be deteriorated by a multiplying factor, and the process will be repeated
until all positive examples in the training dataset are covered.

The searching process for the best rule condition is time consuming process
for CPAR since the gain for every possible item needs to be calculated in order to
determine the best item gain. Thus, CPAR uses an efficient data structure, i.e.
PN Array, to store all the necessary information for calculation of the items gain.
In the rules generation process, CPAR derives not only the best condition but all
close similar ones since there are often more than one attribute items with
similar gain.

 CorClass

CorClass [Zimmermann and De Raedt, 2004] directly finds the best
correlated associations rules for classification by employing a branch-and-bound
algorithm, using so called Morishita & Sese Framework [Morishita and Sese,
2000]. It follows the strategy in which calculating the upper bounds on the
values attainable by specializations of the rule currently considered. The upper
bound finally allows dynamic rising of the pruning threshold, differing from the
fixed minimal support used in existing techniques. This will result in earlier
termination of the mining process. Since the quality criterion for rules is used
directly for pruning, no post-processing of the discovered rule set is necessary.

The algorithm uses two strategies for classifying a new object
1. Decision List: Rank all the rules (rules are ranked by quality according to

some criterion) and use the first rule satisfied by an example for
classification.

2. Weighted Combination: The general way to do this is to collect all such
rules, assign each one a specific weight and for each class predicted by at
least one rule sum up the weights of corresponding rules. The class value
having the highest value is returned.

 ACRI

The task of ACRI (Associative Classifier with Reoccurring Items) [Rak et al,
2005] is to combine the associative classification with the problem of recurrent
items.

A delicate issue with associative classifiers is the use of a subtle parameter:
support. Support is a difficult threshold to set, inherited from association rule
mining. It is known in the association rule mining field that the support
threshold is not obvious to tune in practice. The accuracy of the classifier can be
very sensitive to this parameter.

The algorithm for mining associations in ACRI is based on earlier work of the
authors Apriori-based MaxOccur [Zaiane et al, 2000]. The building of the

3. CAR Algorithms 64

classification model follows their previous ARC-BC approach. The rational is
based on the efficiency of this method in the case of non-evenly distributed class
labels. MaxOccur run on transactions from each known class separately makes
the core of the rule generator module. It mines the set of rules with reoccurring
items from the training set.

These rules associate a condition set with a class label such that the condition
set may contain items preceded by a repetition counter. The classification
process might be considered as plain matching of the rules in the model to the
features of an object to classify. Different classification rules may match, thus
the classifier module applies diverse strategies to select the appropriate rules to
use.

In addition, simple matching is sometimes not possible because there is no
rule that has the antecedent contained in the feature set extracted from the
object to classify. With other associative classifiers, a default rule is applied,
either the rule with the highest confidence in the model or simply assigning the
label of the dominant class. The ACRI approach has a different strategy allowing
partial matching or closest matching by modeling antecedents of rules and new
objects in a vector space.

 TFPC

TFPC (Total From Partial Classification) [Coenen and Leng, 2005] is a
classification association rule mining algorithm founded on the TFP (Total From
Partial) association rule mining algorithm; which, in turn, is an extension of the
Apriori-T (Apriori Total).

TFP (Total From Partial) algorithm builds a set enumeration tree structure,
the P-tree, that contains an incomplete summation of support-counts for
relevant sets. Using the P-tree, the algorithm uses an Apriori-like procedure to
build a second set enumeration tree, the T-tree, that finally contains all the
frequent sets (i.e. those that meet the required threshold of support), with their
support-counts. The T-tree is built level by level, the first level comprising all the
single items (attribute-values) under consideration. In the first pass, the support
of these items is counted, and any that fail to meet the required support
threshold are removed from the tree. Candidate-pairs are then generated from
remaining items, and appended as child nodes. The process continues, as with
Apriori, until no more candidate sets can be generated.

The class-competition is solved by using support and confidence measures.

 HARMONY

HARMONY [Wang and Karypis, 2005] directly mines for each training instance
one of the highest confidence classification rules that it supports and satisfies a
user specified minimum support constraint, and builds the classification model
from the union of these rules over the entire set of instances. Thus HARMONY

3. CAR Algorithms 65

employs an instance-centric rule generation framework and mines the covering
rules with the highest confidence for each instance, which can achieve better
accuracy. Moreover, since each training instance usually supports many of the
discovered rules, the overall classifier can better generalize to new instances and
thus achieve better classification performance.

To achieve high computational efficiency, HARMONY mines the classification
rules for all the classes simultaneously and directly mines the final set of
classification rules by pushing deeply some effective pruning methods into the
projection-based frequent item-set mining framework. All these pruning
methods preserve the completeness of the resulting rule-set in the sense that
they only remove from consideration rules that are guaranteed not to be of high
quality.

 MCAR

MCAR (Multi-class Classification based on Association Rule) [Thabtah et al,
2005] uses an efficient technique for discovering frequent items and employs a
rule ranking method which ensures detailed rules with high confidence.

During the rules generation MCAR scans the training dataset to discover
frequent single items, and then recursively combines the items generated to
produce items involving more attributes. After that the rules are used to
generate a classifier by considering their effectiveness on the training dataset,
using expanded definition of "precedence":

1 2P Pf (rule 1P precedes rule 2P) if:

1. 1 2() ()confidence P confidence P> ;

2. 1 2() ()confidence P confidence P= but 1 2() ()support P support P> ;

3. 1 2() ()confidence P confidence P= , 1 2() ()support P support P= ,

but 1 2() ()ActAcc P ActAcc P= ;

4. All conditions before are the same, but 1 2() ()card P card P< ;

5. Last condition: 1P is generated earlier than 2P .

 CACA

The following innovations are integrated in CACA [Tang and Liao, 2007]:
− use the class-based strategy to cut down the searching space of

frequent pattern;
− design a structure call Ordered Rule Tree (OR-Tree) to store the rules

and their information which may also prepare for the synchronization of
the two steps;

3. CAR Algorithms 66

− redefine the compact set so that the compact classifier is unique and not
sensitive to the rule reduction;

− synchronize the rule generation and building classifier phases.
Class-based strategy: Given a training dataset D with k classes, the

principle idea of class based rule mining is to divide the single attribute value set

allC for all classes into k smaller ones for every class, that is, to limit the

searching in k low dimensional spaces other than a high dimensional one.
OR-Tree: To facilitate they design a structure, called Ordered-Rule-Tree

(OR-Tree), under the inspiration of CR-Tree used in CMAR to store and rank
rules. It is composed with a tree structure and an ordered list. When a rule

1(| ,...,)i i i i
nP c a a= satisfying the support and confidence thresholds is generated,

attribute values 1 ,...,i i
na a are stored as nodes in this tree according to their

frequency in D in descending order. The last node points to an information
node storing the rule's information such as class label, support and confidence.
Each rule can and only can have one information node. The ordered list is
designed to organize all rules in the tree. Each node in the chain points to a
certain rule. Nodes pointing to the rules with higher priority are closer to the
head node, while those pointing to the rules with lower priority are farther from
the head node.

The ranking rule criteria are as follows:
1 2P Pf (1P precedes 2P) if:

1. 1 2() ()confidence P confidence P> ;

2. 1 2() ()confidence P confidence P= but 1 2() ()support P support P> ;

3. 1 2() ()confidence P confidence P= and 1 2() ()support P support P= but
1 2() ()card P card P< (1P is more general than 2P);

4. Equal previous conditions, but 1P is generated earlier then 2P .
To ensure compact classifier to be unique and not sensitive to the rule

reduction, the redundant rules are defined as follows:

Definition of redundant rule: Given 1P , 2P and 3P , that belong to rule set
R , 2P is redundant if:

− 1 1 1 1
1 1(| ,...,)kP c a a= , 2 2 2 2

1 2(| ,...,)kP c a a= :
1 2c c≠ , 1 1 2 2

1 1 1 2(,...,) (,...,)k ka a a a⊆ , 1 2P Pf ;

− 1 1 1 1
1 1(| ,...,)kP c a a= , 2 2 2 2

1 2(| ,...,)kP c a a= :
1 2c c= , 1 1 2 2

1 1 1 2(,...,) (,...,)k ka a a a⊂ , 1 2P Pf ;

3. CAR Algorithms 67

− 1 1 1 1
1 1(| ,...,)kP c a a= , 2 2 2 2

1 2(| ,...,)kP c a a= , 3 3 3 3
1 3(| ,...,)kP c a a= :

1 2 3c c c= ≠ , 1 1 2 2
1 1 1 2(,...,) (,...,)k ka a a a⊂ , 1 1 3 3

1 1 1 3(,...,) (,...,)k ka a a a⊂ ,
1 2 3P P Pf f .

Definition of compact rule set: For rule set R , if R ' R⊂ , any redundant rule
R 'P∉ and R ' is unique, then R ' is the compact set of R .

CACA technically combined the rule generation and the building classifier
phases together. Once a new rule is generated, the algorithm visits the OR-Tree
partially to recognize its redundancy, stores it in the OR-Tree and ranks it in the
rule set. Not only can the synchronization simplify the procedure of associative
classification but also apply the pruning skill to shrink the rule mining space and
raise the efficiency.

 ARUBAS

In contrast with many existing associative classifiers, ARUBAS [Depaire et al,
2008] uses class association rules to transform the feature space and uses
instance-based reasoning to classify new instances. The framework allows the
researcher to use any association rule mining algorithm to produce the class
association rules. Five different fitness measures are used for classification
purposes.

The main idea behind the ARUBAS framework, is transformation of the
original feature space into a more powerful feature space. The original feature
space is called the attribute space, where each record 1(| ,...,)i i i i

nR c a a= is

coded as a set of attribute values and a class value.
In attribute space, each dimension consists of a single attribute. In the new

feature space, which we will call pattern space, each dimension will consist of a
combination of attributes, also called a pattern, which is denoted as

1 1(,),..., (,)p i i ik ikP A a A a= . For achieving more power for the feature space, only

combinations of attributes (or patterns) which are strongly associated with a
single class value is given.

The first step in the ARUBAS framework is to use any CAR mining technique
to find a set of CARs, which is used to transform the feature space. The
antecedent of each CAR, which represents an item-set, will become a pattern pP

and hence a dimension in the new feature space. The value of an instance iR
for a pattern dimension pP is 1 (if the instance contains the pattern) or 0 (if it

doesn't).
The instance similarity is used for classifying new instances. To measure the

similarity between a new instance iR and a known training instance tR ARUBAS
focuses on the patterns contained by both instances and how many patterns

3. CAR Algorithms 68

both instances have in common, but on those patterns coming from the CARs
which predicted the class value of the training instance tR .

The main idea behind the association rule based similarity framework is that
classification is based on similarity between a new instance and an entire class.
This similarity is not measured in the original attribute space, but in the pattern
space, which is constructed by means of CARs.

Conclusion
This chapter provided an overview of the area of CAR-classifiers. CAR

algorithms have its important place in the family of classification algorithms with
several advantages, such as: efficiency of the training regardless of the training
set; easy handling with high dimensionality; very fast classification; high
accuracy; human comprehensible classification model.

We observed all typical steps in the whole classification process of CAR
algorithms: generating the rules, pruning, and recognition.

In the phase of generating the rules several techniques are observed: the
pioneer AIS, most used Apriori, alternative FP-Tree, TreeProjection, Matrix
Algorithm, Sampling Algorithms, Partition, FOIL and Morishita & Sese
Framework.

The pruning is important step in the learning process of CAR algorithms,
applied as preprocessing step, in parallel of association rule mining or after it.
Here we made a brief observation of several rule quality measures and rule
ordering schemes, used in CAR algorithms.

In the recognition phase we also observed different types of choosing final
decision – using simple rule or set of rules with different types of ordering
schemas.

Finally, using the proposed framework, typical for CAR algorithms, we
analyze the some representatives of CAR algorithms: CBA, CMAR, ARC-AC and
ARC-BC, CPAR, CorClass, ACRI, TFPC, HARMONY, MCAR, CACA, ARUBAS,
showing wide variety of proposed techniques.

4. Multi-Dimensional Information Spaces 69

4 Multi-Dimensional Numbered
Information Spaces

Abstract
This chapter presents the advance of different types of access methods

developed in the last years and used in data mining processes in order to
facilitate access to the different kinds of structures.

A special attention is paid to a memory organization, called "Multi-
dimensional numbered information spaces" which allows to operate with
context-free multidimensional data structures.

The software implementation of such structure is named Multi-Domain Access
Method ArM 32. The implementation of the memory organization and available
functional operations are presented.

The purpose is to use such structures and operations in the implementation
of one class association rule classifier in order to show the vitality of the idea of
using context-free multidimensional data structures and direct access as a
powerful tool for knowledge discovery.

4.1 Memory Management

Memory management is a complex field of computer science. Over the years,
many techniques have been developed to make it more efficient [Ravenbrook,
2010]. Memory management usually addresses three areas: hardware,
operating system, and application, although the distinctions are a little fuzzy. In
most computer systems, all three are present to some extent, forming layers
between the user's program and the actual memory hardware:

− memory management at the hardware level is concerned with the
electronic devices that actually store data. This includes the use of RAM
and memory caches;

4. Multi-Dimensional Information Spaces 70

− memory in the operating system must be allocated to user programs,
and reused by other programs when it is no longer required. The
operating system can pretend that the computer has more memory than
it actually does, and that each program has the machine's memory to
itself. Both of these are features of virtual memory systems;

− application memory management involves supplying the memory
needed for a program's objects and data structures from the limited
resources available, and recycling that memory for reuse when it is no
longer required. Because in general, application programs cannot predict
in advance how much memory they are going to require, they need
additional code to handle their changing memory requirements.

Application memory management combines two related tasks:
− allocation: when the program requests a block of memory, the memory

manager must allocate that block out of the larger blocks it has received
from the operating system. The part of the memory manager that does
this is known as the allocator;

− recycling: when memory blocks have been allocated, but the data they
contain is no longer required by the program, the blocks can be recycled
for reuse. There are two approaches to recycling memory: either the
programmer must decide when memory can be reused (known as
manual memory management); or the memory manager must be able
to work it out (known as automatic memory management).

The progress in memory management gives the possibility to allocate and
recycle not directly blocks of the memory but structured regions or fields
corresponding to some types of data. In such case we talk about corresponded
"access methods".

4.2 Access Methods

Access Methods (AM) have been available from the beginning of the
development of computer peripheral devices. There are multiple possibilities for
developing different AM. In the beginning, the AM were functions of the
Operational Systems Core or so called Supervisor, and were executed via
corresponding macro-commands in the assembler languages [Stably, 1970] or
via corresponding input/output operators in the high level programming
languages like FORTRAN, COBOL, PL/I, etc.

The establishment of the first databases in the sixties of the previous century
caused gradually accepting the concepts "physical" as well as "logical"
organization of the data [CODASYL, 1971], [Martin, 1975]. In 1975, the
concepts "access method", "physical organization" and "logical organization"
became clearly separated.

In the same time, Christopher Date noted:

4. Multi-Dimensional Information Spaces 71

"The Database Management System (DBMS) does not know anything about:
− how physical records (blocks) are disposed;
− how the stored fields are integrated in the records (nevertheless that in

many cases it is obvious because of their physical disposition);
− how the sorting is realized (for instance it may be realized on the base of

physical sequence, using an index or by a chain of pointers);
− how the direct access is realized (i.e. by index, sequential scanning or

hash addressing).
This information is a part of the structures for data storing but it is used by

the access method but not by the DBMS" [Date, 1975].
Every access method presumes an exact organization of the file, which it is

operating with and is not related to the interconnections between the files,
respectively – between the records of one file and that in the others files. These
interconnections are controlled by the physical organization of the DBMS.

Therefore, in the DBMS we may distinguish four levels:
1. Access methods at the core (supervisor) of the operation system.
2. Specialized access methods which upgrade these at the core of the

operating system.
3. Physical organization of the DBMS.
4. Logical organization of the DBMS.
During the 80s, the overall progress in research and developments in the

information technologies, and more specifically in image processing, data mining
and mobile support boosted impetuous progress of designing convenient "spatial
information structures" and "spatial-temporal information structures" and
corresponding access methods. From different points of view, this period has
been presented in [Ooi et al, 1993], [Gaede and Günther, 1998], [Arge, 2002],
[Mokbel et al, 2003], [Moënne-Loccoz, 2005]. Usually the "one-dimensional"
(linear) AM are used in the classical applications, based on the alphanumerical
information, whereas the "multi-dimensional" (spatial) methods are aimed to
serve the work with graphical, visual, multimedia information.

4.2.1 Interconnections between Raised Access Methods

One of the most popular analyses is given in [Gaede and Günther, 1998]. The
authors presented a scheme of the genesis of the basic multi-dimensional AM
and theirs modifications. This scheme firstly was proposed in [Ooi et al, 1993]
and it was expanded in [Gaede and Günther, 1998]. An extension in direction to
the multi-dimensional spatio-temporal access methods was given in
[Mokbel et al, 2003].

4. Multi-Dimensional Information Spaces 72

Relational Interval Tree

Relational X-Tree

Relational R-Tree

Linear Quadtree

R-Tree

Grid File

Extendible Hashing
EXCELL

Linear Hashing

Adaptive K-D-Tree

K-D-Tree

Point Quadtree

Region Quadtree

Space Filling Curves

K-D-B-Tree

Bkd-Tree

cCR-Tree

Circle Tree

DP-Tree

Gauss Tree

KDBKD Tree

KDBFD & KDBHD Tree

kNR-Tree

mQp-Tree

Prefix Hash Tree

Q+R Tree

sQSF-Tree cQSF-Tree

SH-Tree

TPR-Tree

Rexp-Tree

STAR-Tree

TPR*-Tree

PR-Tree

TR-Tree

VA-File
VA+-File

LPC-File
IQ-Tree

A-Tree

BSP-Tree

BD-Tree

Z-Ordering

Bintree

zkdB+tree

PM Quadtree

Interpolation-Based Grid File

DOT

hB-Tree

GBD-Tree

Nested Interpolation Based Grid File

hB -TreeП

Packed R-Tree

Cell Tree

Sphere Tree

R+-Tree R*-Tree

TR*-Tree
X-Tree

SR Tree
SS Tree

TV-Tree

Parallel R
-
Tree

Hilbert R-Tree

P-Tree (S)

Generalized Grid File

Buddy Tree

Buddy Tree with Overlapping

Buddy Tree with Clipping

BV Tree

R-File

Two-Level Grid File

Multi-Layer Grid File

Filter Tree

Multi-Level Grid File

Extended K-D-Tree

MOLPHE
Z-Hashing

Quantile Hashing

PLOP-Hashing

LSD-Tree

SKD-Tree

KD2B-Tree G-Tree

lz-Hashing

Segment Indexes

Twin Grid File

BANG File

P-Tree (J)

Cell Tree with Oversize Shelves

PMR-Quadtree PMR-Quadtree for moving objects

SV-Model

PSI

Duality Transformation

DualityTransf.+Kinetic Data Structures

NSI-Tree

Overlapping Linear Quadtree

Bottom-Up UpdatesHR-Tree
LUR-TreeMR-Tree

Polynomial GreedyPPR-Tree

HR+-Tree

MV3R-TreeMVB-Tree

3D R-Tree
2+3 R-Tree 2-3 TR-Tree

2D R-Tree

TB-Tree SETI

STR-TreeRT-Tree

Hashing Technique

SEB-Tree

NA-Tree

Slim Tree

DBIN
CLINDEX

BIRCH PCURE

MedRank

PvS Index
LSH

MDAM 0 MDAM 1 MDAM 3 MDAM 5 ArM 5 ArM 16 ArM 32

VP Tree MVP Tree

BST Tree
GNAT

M Tree

MVSB-Tree

SB-Tree

Interval Tree Ext.Mem.Interval Tree

Reactive Tree V-Reactive TreeFieldtree

R-link-Tree
Virtual Index-Sequential Access Method,
Virtual Direct Access Method

CRB-TreeCR-Tree

MDAM 2 MDAM 4 MDAM 6

B-link Tree Persistent B-TreeSequential Access Method,
Index-Sequential AM,
Direct Access Method,
Partitioned Access Method

BUB-TreeUB-Tree
String B-Tree

GiST

Weight-bal. B-Tree
Level-balanced B-Tree

Partitioned B-Tree

MB+ Tree

B-Tree B+-Tree P+-Tree
Pyramid Techniques

Linear Greedy

Figure 3. Genesis of the Access Methods and their modifications

extended variant of [Gaede and Günther, 1998] and [Mokbel et al, 2003]
presented in [Markov et al, 2008]

4. Multi-Dimensional Information Spaces 73

The survey [Markov et al, 2008] presents a new variant of this scheme
(Figure 3), where the new access methods, created after 1998, are added. A
comprehensive bibliography of corresponded articles, where the methods are
firstly presented is given.

4.2.2 The Taxonomy of the Access Methods

From the point of view of the served area, the access methods, presented on
Figure 3, can be classified as follows (Figure 4): One-dimensional AM;
Multidimensional Spatial AM; Metric Access Methods; High Dimensional Access
Methods; and Spatio-Temporal Access Methods.

Figure 4. Taxonomy of the access methods

 One-Dimensional Access Methods

One-dimensional AM are based on the concept "record". The "record" is a
logical sequence of fields, which contain data eventually connected to unique
identifier (a "key"). The identifier (key) is aimed to distinguish one sequence
from another [Stably, 1970]. The records are united in the sets, called "files".

4. Multi-Dimensional Information Spaces 74

There exist three basic formats of the records – with fixed, variable, and
undefined length.

In the context-free AM, the storing of the records is not connected to their
content and depends only on external factors – the sequence, disk address, or
position in the file. The necessity of stable file systems in the operating systems
does not allow a great variety of the context-free AM. There are three main
types well known from sixties and seventies: Sequential Access Method; Direct
Access Method and Partitioned Access Method [IBM, 1965-68].

The main idea of the context-depended AM is that a part of the record is
selected as a key, which is used for making decision where to store the record
and how to search it. This way the content of the record influences the access to
the record.

Historically, from the sixties of the previous century on, the majority of
research and development is directed mainly to this type of AM. Modern DBMS
are built using context-depended AM such as: unsorted sequential files with
records with keys; sorted files with fixed record length; static or dynamic hash
files; index file and files with data; clustered indexed tables [Connolly and
Begg, 2002].

 Multidimensional Spatial Access Methods

Multidimensional Spatial Access Methods are developed to serve information
about spatial objects, approximated with points, segments, polygons,
polyhedrons, etc. The implementations are numerous and include traditional
multi-attributive indexing, geographical and/or GMES information systems, and
spatial databases, content indexing in multimedia databases, etc.

From the point of view of the spatial databases, access methods can be split
into two main classes of access methods – Point Access Methods and Spatial
Access Methods [Gaede and Günther, 1998].

Point Access Methods are used for organizing multidimensional point objects.
Typical instances are traditional records, where every attribute of the relation
corresponds to one dimension. These methods can be separated in three basic
groups:

− Multidimensional Hashing (for instance Grid File and its varieties,
EXCELL, Twin Grid File, MOLPHE, Quantile Hashing, PLOP-Hashing, Z-
Hashing, etc);

− Hierarchical Access Methods (includes such methods as KDB-Tree, LSD-
Tree, Buddy Tree, BANG File, G-Tree, hB-Tree, BV-Tree, etc.);

− Space Filling Curves for Point Data (like Peano curve, N-trees, Z-
Ordering, etc).

Spatial Access Methods are used for work with objects which have an
arbitrary form. The main idea of the spatial indexing of non-point objects is to
use an approximation of the geometry of the examined objects as more simple

4. Multi-Dimensional Information Spaces 75

forms. The most used approximation is Minimum Bounding Rectangle (MBR), i.e.
minimal rectangle, which sides are parallel of the coordinate axes and
completely include the object. There exist approaches for approximation with
Minimum Bounding Spheres (SS Tree) or other polytopes (Cell Tree), as well as
their combinations (SR-Tree).

The common problem in operating with spatial objects is their overlapping.
There are different techniques to avoid this problem. From the point of view of
the techniques for the organization of the spatial objects, Spatial Access
Methods fall into four main groups:

− Transformation: this technique uses transformation of spatial objects to
points in the space with more or less dimensions. Most of them spread
out the space using space filling curves (Peano Curves, z-ordering,
Hibert curves, Gray ordering, etc.) and then use some point access
method upon the transformed dataset;

− Overlapping Regions: here the datasets are separated in groups;
different groups can occupy the same part of the space, but every space
object associates with only one of the groups. The access methods of
this category operate with data in their primary space (without any
transformations) eventually in overlapping segments. Methods which use
this technique include R-Tree, R-link-Tree, Hilbert R-Tree, R*-Tree,
Sphere Tree, SS-Tree, SR-Tree, TV-Tree, X-Tree, P-Tree of Schiwietz,
SKD-Tree, GBD-Tree, Buddy Tree with overlapping, PLOP-Hashing, etc.;

− Clipping: this technique uses the clipping of one object to several sub-
objects, which will be stored. The main goal is to escape overlapping
regions. However, this advantage can lead to the tearing of the objects,
extending the resource expenses, and decreasing the productivity of the
method. Representatives of this technique are R+-Tree, Cell-Tree,
Extended KD-Tree, Quad-Tree, etc.;

− Multiple Layers: this technique can be considered as a variant of the
techniques of Overlapping Regions, because the regions from different
layers can overlap. Nevertheless, there exist some important
differences: first – the layers are organized hierarchically; second –
every layer splits the primary space in a different way; third – the
regions of one layer never overlaps; fourth – the data regions are
separated from the space extensions of the objects. Instances for these
methods are Multi-Layer Grid File, R-File, etc.

 Metric Access Methods

Metric Access Methods deal with relative distances of data points to chosen
points, named anchor points, vantage points or pivots [Moënne-Loccoz, 2005].
These methods are designed to limit the number of distance computation,
calculating first distances to anchors, and then finding the searched point in a
narrowed region. These methods are preferred when the distance is highly

4. Multi-Dimensional Information Spaces 76

computational, as e.g. for the dynamic time warping distance between time
series. Representatives of these methods are: Vantage Point Tree (VP Tree),
Bisector Tree (BST-Tree), Geometric Near-Neighbor Access Tree (GNNAT), as
well as the most effective from this group – Metric Tree (M-Tree) [Chavez et al,
2001].

 High Dimensional Access Methods

Increasing the dimensionality strongly aggravates the qualities of the
multidimensional access methods. Usually these methods exhaust their
possibilities at dimensions around 15. Only X-Tree reaches the boundary of 25
dimensions, after which this method gives worse results then sequential
scanning [Chakrabarti, 2001].

A possible solution is based on the data approximation and query
approximation in sequential scan. These methods form a new group of access
methods – High Dimensional Access Methods.

Data approximation is used in VA-File, VA+-File, LPC-File, IQ-Tree, A-Tree,
P+-Tree, etc.

For query approximation, two strategies can be used:
− examine only a part of the database, which is more probably to contain

the resulting set – as a rule these methods are based on the clustering
of the database. Some of these methods are: DBIN, CLINDEX, PCURE;

− splitting the database to several spaces with fewer dimensions and
searching in each of them. Here two main methods are used:

1. Random Lines Projection: representatives of this approach are
MedRank, which uses B+-Tree for indexing every arbitrary projection
of the database, and PvS Index, which consist of combination of
iterative projections and clustering.

2. Locality Sensitive Hashing: based on the set of local-sensitive hashing
functions [Moënne-Loccoz, 2005].

 Spatio-Temporal Access Methods

The Spatio-Temporal Access Methods have additional defined time dimension
[Mokbel et al, 2003]. They operate with objects which change their form and/or
position across time. According to position of time interval in relation to present
moment, the Spatio-Temporal Access Methods are divided to:

− indexing the past: these methods operate with historical spatio-temporal
data. The problem here is the continuous increase of the information
over time. To overcome the overflow of the data space two approaches
are used – sampling the stream data at certain time position or updating
the information only when data is changed. Representatives of this
group are: RT-Tree, 3DR-Tree, STR-Tree, MR-Tree, HR-Tree, HR+-Tree,

4. Multi-Dimensional Information Spaces 77

MV3R-Tree, PPR-Tree, TB-Tree, SETI, SEB-Tree. Spatio-temporal
indexing schemes for historical data can be split in three categories:
- the first category includes methods which are integrating both spatial

and temporal aspects into already existing spatial methods;
- the second category can be described as using snapshots of the

spatial information in each time instance;
- the third category focuses on trajectory-oriented queries, while

spatial dimension remains in the background.
− indexing the present: in contrast to previous methods, where all

movements are known, here the current positions are neither stored nor
queried. Some of the methods, which answer the questions of the
current position of the objects are 2+3R-Tree, 2-3TR-Tree, LUR-Tree,
Bottom-Up Updates, etc.;

− indexing the future: these methods have to represent the current and
predict the future position of a moving object – here are embraced the
methods like PMR-Quadtree for moving objects, Duality Transformation,
SV-Model, PSI, PR-Tree, TPR-Tree, TPR*-tree, NSI, VCIR-Tree, STAR-
Tree, REXP-Tree.

The survey of the access methods suggests that the context-free multi-
dimensional access methods practically are not available. A step in developing
such methods is the Multi-domain Information Model and corresponding Multi-
domain Access Method introduced in [Markov, 1984] [Markov, 2004]. It is
presented further in this chapter.

4.3 Multi-Dimensional Numbered Information Spaces

The proposed external memory structure is based on the numbering as a
main approach. The idea consists in replacing the (symbol or real; point or
interval) values of the objects' attributes with integer numbers of the elements
of corresponding ordered sets. This way, each object will be described by a
vector of integer values, which may be used as the co-ordinate address in the
multi-dimensional information space.

In other words, the process of replacing the names by numbers permits the
use of mathematical functions and address vectors for accessing the information
instead of search engines.

This type of memory organization is called "Multi-dimensional numbered
information spaces". Its advantages have been demonstrated in multiple
practical implementations during more than twenty-five years [Markov, 1984],
[Markov, 2004], [Markov, 2005]. In the recent years, it had been implemented
in the area of intelligent systems memory structuring for several data mining
tasks and especially in the area of association rules mining.

4. Multi-Dimensional Information Spaces 78

4.3.1 Multi-Domain Information Model (MDIM)

The independence of dimensionality limitations is very important for
developing new intelligent systems aimed to process high-dimensional data. To
achieve this one needs information models and corresponding access method to
cross the boundary of the dimensional limitations and to obtain the possibility to
work with information spaces with practically unlimited number of dimensions.
The first step is to establish context free multi-dimensional models and based on
it to develop high-level context depended applications. Examining the state of
the art in this area shows that the context-free multi-dimensional information
models and access methods practically are not available. One attempt in this
direction is establishing the Multi-Domain Information Model (MDIM) [Markov,
2004] and the corresponding Multi-domain Access Method. Their possibilities for
operating with context-free multidimensional data structures will be presented
below.

 Basic Structures of MDIM

Basic structures of MDIM are basic information elements, information spaces,
indexes and metaindexes, and aggregates. The definitions of these structures
are given below:

 Basic Information Element

The basic information element (BIE) of МDIМ is an arbitrary long string of
machine codes (bytes). When it is necessary, the string may be parceled out by
lines. The length of the lines may be variable.

Let the universal set UBIE be the set of all BIE .

Let 1E be a set of basic information elements:

1 1{ | , 1,..., }i iE e e UBIE i m= ∈ = .

Let 1μ be а function, which defines а biunique correspondence between

elements of the set 1E and elements of the set 1C of positive integer numbers:

1 1{ | , 1,..., }i iC c c i m= ∈ =N ,

i.e. 1 1 1:E Cμ ↔ .

The elements of 1C are said to be numbers (co-ordinates) of the elements

of 1E .

4. Multi-Dimensional Information Spaces 79

 Information Spaces

The triple 1 1 1 1(, ,)S E Cμ= is said to be а numbered information space of
range 1 (one-dimensional or one-domain information space).

The triple 2 2 2 2(, ,)S E Cμ= is said to be а numbered information space of

range 2 iff 2E is a set whose elements are numbered information spaces of

range 1 and 2μ is а function which defines а biunique correspondence between

elements of 2E and elements of the set 2C of positive integer numbers:

2 2{ | , 1,..., }j jC c c j m= ∈ =N ,

i.e. 2 2 2:E Cμ ↔ .

The triple (, ,)n n n nS E Cμ= is said to be а numbered information space of

range n (n-dimensional or multi-domain information space) iff nE is a set

whose elements are information spaces of range 1n − and nμ is а function,

which defines а biunique correspondence between elements of nE and elements

of the set nC of positive integer numbers:

{ | , 1,..., }n k k nC c c k m= ∈ =N ,

i.e. :n n nE Cμ ↔ .

Every basic information element "e" is considered as an information space

0S of range 0. It is clear that the information space 0 0 0 0(, ,)S E Cμ= , is

constructed in the same manner as all others:

− the machine codes (bytes) 0, 1,...,ib i m= are considered as elements of

0E ;

− the position ,ip i∈N of ib in the string e is considered as co-ordinate

of ib , i.e. 0 0{ | , 1,..., }l lC p p l m= ∈ =N ;

− function 0μ is defined by the physical order of bi in e and we have:

0 0 0:E Cμ ↔

In this way, the string 0S may be considered as a set of sub-elements

(sub-strings). The number and length of the sub-elements may be variable.
This option is very helpful but it closely depends on the concrete realizations and
it is not considered as a standard characteristic of MDIM.

The information space nS , which contains all information spaces of a given
application is called the information base of range n . Usually, the concept

4. Multi-Dimensional Information Spaces 80

information base without indication of the range is used as generalized concept
to denote all available information spaces.

 Indexes and Metaindexes

The sequence 1 1(, ,...,)n nA c c c−= where , 1,...,i ic C i n∈ = is called the
multidimensional space address of range n of a basic information element.
Every space address of range m , m n< , can be extended to space address of
range n by adding leading n m− zero codes. Every sequence of space
addresses 1 2, ,..., kA A A , where k is arbitrary positive number, is said to be a

space index.
A special kind of space index is the projection, which is the analytically

given space index. There are two types of projections:
− hierarchical projection – where the top part of coordinates is fixed and

the low part vary for all possible values of coordinates, where non-empty
elements exist;

− arbitrary projection – in this case, it is possible to fix coordinates in
arbitrary positions and the other coordinates vary for all possible values
of coordinates, where non-empty elements exist.

Every index may be considered as a basic information element, i.e. as a
string, and may be stored in a point of any information space. In such case, it
will have a multidimensional space address, which may be pointed in the other
indexes, and, this way, we may build a hierarchy of indexes. Therefore, every
index, which points only to indexes, is called meta-index.

The approach of representing the interconnections between elements of the
information spaces using (hierarchies) of meta-indexes is called
polyindexation.

 Aggregates

Let { | 1,..., }iG S i m= = be a set of numbered information spaces.

Let { : | , 1,..., }ij i jS S i const j mτ ν= → = = be a set of mappings of one "main"

numbered information space ,iS G i const⊂ = , into the others

, 1,...,jS G j m⊂ = , and, in particular, into itself.

The couple: (,)D G τ= is said to be an "aggregate".

It is clear that we can build m aggregates using the set G because every
information space , 1,...,jS G j m⊂ = , may be chosen as a main information

space.

4. Multi-Dimensional Information Spaces 81

 Operations in the MDIM

After defining the information structures, we need to present the operations,
which are admissible in the model.

It is clear that the operations are closely connected to the defined structures.
In MDIM, we assume that all information elements of all information spaces

exist. If for any :i i iS E C=∅∧ =∅ , than it is called empty. Usually, most of

the information elements and spaces are empty. This is very important for
practical implementations.

 Operation with Basic Information Elements

Because of the rule that all the structures given above must exist, we only
need two operations: (1) updating and (2) getting the value of BIE.

For both types of operations, we need two service operations: (1) getting the
length and (2) the positioning in the BIE.

Updating, or simply – writing the element, has several modifications with
obvious meaning: writing a BIE as a whole, appending/inserting in a BIE,
cutting/replacing a part of a BIE and deleting a BIE.

There is only one operation for getting the value of a BIE, i.e. Read a portion
from a BIE starting from given position. We may receive the whole BIE if the
starting position is the beginning of BIE and the length of the portion is equal to
the BIE length.

 Operation with Spaces

With a single space, we may do only one operation – clearing (deleting) the
space, i.e. replacing all BIE of the space with empty BIE – ∅. After this
operation, all BIE of the space will have zero length. Really, the space is cleared
via replacing it with empty space.

With two spaces, we may provide two operations with two modifications
both: (1) copying and (2) moving the first space in the second.

The modifications define how the BIE in the recipient space are processed.
We may have: copy/move with clear and copy/move with merge.

The "clear" modifications first clear the recipient space and after that provide
a copy or move operation.

The merge modifications offer two types of processing: destructive or
constructive. The destructive merging may be "conservative" or "alternative".
In the conservative approach, the recipient space BIE remains in the result if it
is with none zero length. In the other approach the donor space BIE remains in
the result. In the constructive merging the result is any composition of the
corresponding BIE of the two spaces.

Of course, the move operation deletes the donor space after the operation.

4. Multi-Dimensional Information Spaces 82

 Operation with Indexes and Metaindexes

The indexes are the main approach for describing the interconnections
between the structures.

We may receive the space address of the next or previous, empty or
non-empty elements of the space starting from any given co-ordinate. This
corresponds to the processing of given hierarchical projections.

By analogy, we may receive the space address of the nextproj or
previousproj non-empty elements of the space for the current address in
operation with a given arbitrary projection.

The possibility to count the number of non-empty elements of a given
projection is useful for practical realizations.

The operations with indexes are based on usual logical operations between
sets. The difference from usual sets is that the information spaces are built by
the interconnection between two main sets: the set of co-ordinates and the set
of information elements.

This way the operations with indexes may be classified in two main types:
context-free and context-depended operations.

The context-free operations defined in the MDIM are based on the
classical logical operations – intersection, union, and supplement, but these
operations are not trivial. Because of the complexity of the structure of the
information spaces, these operations have at least two principally different
realizations based on:

− co-ordinates;
− information elements.

The operations based on co-ordinates are determined by the existence of the
corresponding space information elements. Therefore, the values of the co-
ordinates of the existing information elements determine the operations.

In the other case, the existing BIE values determine the logical operations.
In both cases, the result of the logical operations is an index.
The context-dependent operations need special implementations for

concrete purposes.
The main information operation is creating the indexes and meta-indexes.

The main purpose of the MDIM is to provide the possibility for access to the
practically unlimited information space and easy approach for building
interconnection between its elements. The goal of the concrete applications is to
build tools for creating and operating with the indexes and meta-indexes and to
implement these tools in the realization of user requested systems.

For instance, such tools may realize the transfer from one structure to
another, information search, sorting, making reports, more complicated
information processing, etc. The information operations can be grouped into four

4. Multi-Dimensional Information Spaces 83

sets according to the main information structures involved: basic information
elements, information spaces and index or meta-index structures.

 Operations with Aggregates

Theory of aggregates may be assumed as an extension of the Relation theory
because the relation in the sense of the model of Codd [Codd, 1970] may be
represented by the aggregate. It is easy to see that if the aggregation mappings
are one-one mappings it will be relation in the sense of the model of Codd. So,
we may say that the aggregate is a more universal structure than the relation
and the operations with aggregates include those of relation theory. The relation
algebra is a very good starting point to understand the algebra of aggregates.
The new element is that the mappings of different aggregates may be not one-
one mappings. This field is not investigated until now.

4.3.2 Multi-Domain Access Method ArM 32

The program realization of MDIM is called Multi-Domain Access Method. For a
long period, it has been used as a basis for the organization of various
information bases. There exist several realizations of MDIM for different
hardware and/or software platforms. The most resent one is the FOI Archive
Manager – ArM. One of the first goals of the development of ArM was to
represent the digitalized military defense situation, which is characterized by a
variety of complex objects and events, which occur in the space and time and
have a long period of variable existence. The high number of layers, aspects,
and interconnections of the real situation may be represented only by
information space hierarchy. In addition, the different types of users with
individual access rights and needs insist on the realization of a special tool for
organizing such information base. Over the years, the efficiency of ArM is proved
in wide areas of information service of enterprise managements and accounting.
Organizing the datum in appropriate multi-dimensional information space model
permits omitting the heavy work of creating of OLAP structures [Markov, 2005].

The newest ArM Version No.9, called ArM32, is developed for MS Windows
and realizes the proposed algorithms.

The ArM32 elements are organized in numbered information spaces with
variable ranges. There is no limit for the ranges of the spaces. Every element
may be accessed by a corresponding multidimensional space address
(coordinates) given via coordinate array of type cardinal. At the first place of this
array, the space range needs to be given. Therefore, we have two main
constructs of the physical organizations of ArM32 – numbered information
spaces and elements.

4. Multi-Dimensional Information Spaces 84

In ArM32, the length of the string may vary from 0 up to 1G bytes. There is
no limit for the number of strings in an archive but their total length plus
internal indexes could not exceed 4G bytes in a single file.

The main ArM32 operations with basic information elements are:
− ArmRead (reading a part or a whole element);
− ArmWrite (writing a part or a whole element);
− ArmAppend (appending a string to an element);
− ArmInsert (inserting a string into an element);
− ArmCut (removing a part of an element);
− ArmReplace (replacing a part of an element);
− ArmDelete (deleting an element);
− ArmLength (returning the length of the element in bytes).

The operations over the spaces are:
− DelSpace (deleting the space);
− CopySpace and MoveSpace (copying/moving the first space in the

second in the frame of one file);
− ExportSpace (copying one space from one file the other space, which is

located in other file).
The operations, aimed to serve the hierarchical projections are:
− ArmNextPresent and ArmPrevPresent (traversing of existing elements);
− ArmNextEmpty and ArmPrevEmpty (finding neighbor empty element).

For arbitrary projections the operations are: ArmNextProj and ArmPrevProj.
The operations, which create indexes, are:
− ArmSpaceIndex (returns the space index of the non-empty structures in

the given information space;
− ArmProjIndex (gives the space index of basic information elements of a

given hierarchical or arbitrary projection).
The service operations for counting non-empty elements or subspaces are

correspondingly:
− ArmSpaceCount (returning the number of the non-empty structures in

given information space);
− ArmProjCount (calculating the number of elements of given (hierarchical

or arbitrary) projection).
The ArM32 logical operations defined in the multi-domain information model

are based on the classical logical operations – intersection, union, and
supplement, but these operations are not so trivial. Because of complexity of the
structure of the spaces these operations have at least two principally different
realizations based on codes of the information spaces' elements and on contents
of those elements.

4. Multi-Dimensional Information Spaces 85

The ArM32 information operations can be grouped into four sets
corresponding to the main information structures: elements, spaces,
aggregates, and indexes. Information operations are context depended and
need special realizations for concrete purposes. Such well-known operations are
for instance transferring from one structure to another, information search,
sorting, making reports, etc.

Finally, several operations, which serve information exchange between ArM32
archives (files) such as copying and moving spaces from one to another archive
exist.

4.3.3 Advantages of Multi-Dimensional Numbered Information
Spaces

We need to discuss shortly the main concept we use – the information space.
Its main structure is an ordered set of numbered information elements. These
elements may be information spaces or terminal elements. Of course, the
hierarchical structures are well-known. The new aspect of this model is the
possibility to connect elements from different spaces and levels of the hierarchy
using poly-indexation and in this way to create very large and complex networks
with a co-ordinate hierarchical basis.

The variety of interconnections is the characteristic, which permits us to call
the ordered set of numbered information elements "Information Space". In the
information space, different information structures may exist at the same time in
the same set of elements. In addition, the creation and destruction of the link's
structures do not change the basic set of elements. The elements and spaces
always exist but, in any cases, they may be "empty". At the end, the possibility
to use coordinates is good for well-structured models where it is possible to
replace search with addressing.

Hence, the advantages of the numbered information spaces are:
− the possibility to build growing space hierarchies of information

elements;
− the great power for building interconnections between information

elements stored in the information base;
− the practically unlimited number of dimensions (this is the main

advantage of the numbered information spaces for well-structured tasks
where it is possible "to address, not to search");

− the possibility to create effective and useful tools, in particular for
association rule mining.

In the next chapter we demonstrate the advantages of using such memory
structuring in the field of data mining on the example of realization of one class
association rule classifier, called MPGN.

4. Multi-Dimensional Information Spaces 86

Conclusion
Here we made an overview of data structures used for presenting information

in different fields of data mining and pattern recognition.
A special kind of data organization called "Multi-dimensional numbered

information spaces", allowing context-free access to high dimension points,
where different kind of data structures can be stored was discussed.

The idea to use the process of replacing the names by numbers, which
permits using of mathematical functions and addressing vectors for accessing
the information instead of search engines is established in Multi-Domain
Information Model (MDIM) and the corresponding Multi-domain Access Method.

The program realization of this method, called ArM 32 was outlined. The main
structures and operations with them are discussed.

5. PGN and MPGN Algorithms 87

5 PGN and MPGN Algorithms

Abstract
In this chapter the algorithms of two classifiers– PGN and MPGN – are

described.
PGN creates association rules, striving for maximal accuracy of produced

rules.
MPGN employs multilayer structure. It offers the possibility to escape

combinatorial explosion using smart disposing of the information.
A coding convention is introduced first, followed by the description of the PGN

and MPGN algorithms.

5.1 Coding Convention

Usually in classification tasks rectangular datasets are used. They are a set of

instances { , 1,..., }iR i r= ∈R . Each instance represent a set of attribute-value

pairs 1 1{ , ,..., }n nR C c A a A a= = = = . Because in the rectangular datasets the

positions of class and attributes are fixed, the instances are written as vectors,
which contain only values of attributes. For increasing the readability class value
(first position) is separated with "|": 1(| ,...,)nR c a a= .

Every instance has the same quantity of attributes, but some of the values
may be omitted. First attribute is the class variable denoted c ; the input
attributes are denoted ka . In the remainder of the text, we will simply refer to

them as "attributes".
Attribute positions of a given instance, which can take arbitrary values from

the attribute domain, are denoted as "-".

5. PGN and MPGN Algorithms 88

Thus each instance (record) is presented as: 1(| ,...,)nR c a a= ; where n is

the number of attributes (feature space dimension), Nc∈ ; Nka ∈ or " "ka = − ,

[1,...,]k n∈ .

More precisely, the class values and attribute values receive values, which
are natural numbers from 1 to some maximal value (specific for each attribute),
i.e. [1,...,]cc M∈ , [1,...,]

kk aa M∈ .

Pattern is denoted P and has similar structure as instances. A pattern is a
subset of an instance.

1

1

(| ,...,)
(| ,...,)

 or " "

n

n

i i i

P c a a

R c b b P R

a b a

= ⎫
⎪= ⊆⎬
⎪= = − ⎭

.

For example 1(2 | 3,2, ,2) (2 | 3,2,1,2)P R= − ⊆ = .

In 1(| ,...,)nP c a a= usually ()c is called head of a pattern and 1(,...,)na a is

called its body.
Each pattern defines a rule in a following manner: if some attributes have

given specified values (looking non-arbitrary values of the body of the pattern),
than (in some degree of accuracy) we can say that the observed object belongs
to the class, pointed in the head of the pattern.

The cardinality of one pattern is defined as number of "non-arbitrary"
attribute values:

number of " "kP a= ≠ − ; P n≤ .

For the set of patterns { , 1,..., }iP i m= ∈P we can define maximal cardinality

as maximum of cardinalities of patterns in the set.

1,...,
() max i

i m
MaxCard P

∈
=P .

The intersection between iP and jP is the result of matching of these
patterns.

1
::

(| ,...,) : and
" ":" ":

ji ii i j
k k ki j l l l l l

n k jii j
k k

a a ac c c
P P c a a c a

a ac c

⎧⎧ ==⎪ ⎪∩ = = =⎨ ⎨
− ≠− ≠⎪ ⎪⎩ ⎩

.

If 0i jP P∩ > and i jc c= , then i jP P P= ∩ is a pattern. P is successor

of iP and jP . And from other side, iP and jP is called predecessors of P .

5. PGN and MPGN Algorithms 89

For example, the successor of 1 (2 | 3,2,1,2)R = and 3 (2 | 3,2,2,2)R = is

(2 | 3,2, ,2)P = − .

Between patterns that belong to different classes different situations can
exist. We are interested in two cases:

− exception pattern versus general pattern;
− contradictory patterns.

One pattern becomes an exception pattern for other ones if the body of
second pattern (more general) is a subset of the body of first pattern (more
concrete), but they belong to different classes.

1(| ,...,)i i i i
nP c a a= is an exception pattern of 1(| ,...,)j j j j

nP c a a= if

1 1(,...,) (,...,)i i j j
n na a a a⊃ and i jc c≠ .

The contradictory situation means that the patterns have equal attributes
(equal bodies) but belong to different classes (different heads).

iP contradicts to jP if 1(| ,...,)i i
nP c a a= and 1(| ,...,)j j

nP c a a= , but

i jc c≠ .
Hence the attributes at hand or the information available are not able to

discriminate between the two classes.
Both situations can occur when:
− we have missing attributes;
− the class values are ill defined (exceptions);
− or the class/attributes values cannot be measured as required (noise,

error).
The query instance Q (or only query) is similar to a pattern, but the class

value is unknown. It is denoted 1(? | ,...,)nQ b b= .

The intersection size between pattern P and query Q is defined as

(,)
P Q

IntersectionSize P Q
P

∩
= . Let's mention that this operation is not

symmetric, i.e. (,) (,)IntersectionSize P Q IntersectionSize Q P≠ .

The intersection percentage is calculated as
(,) 100* (,)IntersectPerc P Q IntersectSize P Q= .

The intersection percentage is 100% in the case when P became a subset of
pattern 'Q , which has the head of the pattern P and the body of the query Q .

1
1

1

(| ,...,)
 if ' (| ,...,) then (,) 100%

(? | ,...,)
n

n
n

P c a a
P Q c b b IntersectPerc P Q

Q b b

= ⎫
⊆ = =⎬= ⎭

.

5. PGN and MPGN Algorithms 90

For the set of patterns { , 1,..., }iP i m= ∈P we can define maximal percentage

as maximum of intersection percentages of patterns in the set.

1,...,
(,) max (,)i

i m
MaxIPerc Q IntersectPerc P Q

∈
=P .

The support of a pattern P in a dataset { , 1,..., }iR i r= ∈R is the number of

instances for which P became their subset.

(,) number of : , , 1,...,i i iSupp P R P R R i r= ⊆ ∈ ∈R R .

The confidence of a pattern 1(| ,...)nP c a a= in a dataset { , 1,..., }iR i r= ∈R is

equal to the ratio between support of the pattern and support of the body of the
pattern in the dataset.

1

(,)(,)
((| ,...),)n

Supp P
conf P

Supp a a
=

−
RR

R
.

5.2 PGN Classifier

Here we propose a CAR algorithm, named PGN. One of the main specifics of
PGN is that it is a parameter free classifier. Let mention that in classical CAR
algorithms users have to provide the support and confidence level.

The association rule mining goes from longest rules (instances) to the shorter
ones until no intersections between patterns in the classes are possible. In the
pruning phase the contradictions and inconsistencies of more general rules are
cleared, after that the pattern set is compacted throwing all more concrete rules
within the classes.

The remainder of the text contains the description of the algorithm of PGN
classifier.

As example, a simple dataset is used, including the following instances:

R1: (1| 1, 2, 4, 1)
R2: (1| 1, 2, 3, 1)
R3: (1| 3, 1, 3, 2)
R4: (1| 3, 1, 4, 2)
R5: (1| 1, 2, 4, 1) Equal to R1
R6: (1| 3, 1, 4, 2) Equal to R4
R7: (2| 3, 1, 1, 2)
R8: (2| 2, 1, 1, 2)
R9: (2| 3, 1, 2, 2)

5. PGN and MPGN Algorithms 91

5.2.1 Training Process

The training process consists of several steps:
− generalization – the process of association rule mining;
− pruning – the process of clearing exceptions between classes and

lightening the pattern set;
− searching patterns with unique attributes. This step is optional as well as

it not typical CAR strategy and from other side it created very powerful
patterns, which is good for some dataset, but not for the others.

 Step 1: Generalization

The step of creating the pattern set consists of two sub-steps:
1. Adding instances to the pattern set.
2. Creating all possible intersection patterns between patterns within the

class.

 Sub-step 1.1: Adding Instances

The instances of the learning set { }iLS R= , 1,...,i t= are added to the

pattern set as initial patterns. All patterns are separated in accordance of their
classes (Figure 5).

Figure 5. Adding instances in the pattern set

 Sub-step 1.2: Adding Intersections

For each class every combination of two patterns is intersected. If a new
pattern exists, it would be added to the pattern set. If the patterns-candidates
to be written into the pattern set (instances as well as patterns) are already in
it, then they would not be duplicated; however the set of instances that are
possible creators of the pattern would be expanded.

The process goes iteratively until no intersections are possible.
Figure 6 shows the process of creating the pattern set on the example

dataset.

5. PGN and MPGN Algorithms 92

Figure 6. Adding intersections in the pattern set

Thus, after this step, the pattern set consists of these objects:

{ }lPS P= ,

:
; , , ; 0

l
l

l i j i j i j l

R LS
P

P P P P PS P PS c c P

⎧ ∈⎪
⎨

= ∩ ∈ ∈ = >⎪⎩
.

 Step 2: Pruning

In this step some patterns are removed from the pattern set using two sub-
steps:

1. Deleting contradictory patterns as well as general patterns that have
exception patterns in some other class.

2. Removing more concrete patterns within the classes. This step ensures
compactness of the pattern set that can be used in the recognition stage.

 Sub-step 2.1: Clearing Contradictions and General-
Exception Patterns between Classes

In this sub-step the patterns, belonging to different classes are paired. If one
pattern matches another pattern (but they have a different class value), then
the more general is removed. If two patterns match each other then both of
them are removed.

, , :i j i jP P PS c c∈ ≠

: remove

: remove

: remove ,

i

j

i j

i j i j

i j j i

i j i j

P

P

P P

P P P P

P P P P

P P P P

= <

= <

= =

⎧ ∩
⎪
⎪ ∩⎨
⎪

∩⎪⎩

If a dataset does not contain missing values, then all instances have equal
R n= and all other patterns will have smaller sizes. This means that checking

5. PGN and MPGN Algorithms 93

up for data consistency can be done with comparison of patterns only with the
instances but not with all patterns from other classes.

This sub-step tries to supply the maximum confidence of the resulting rules.
This operation removes the patterns that do not formulate a representative

for a given class combination, because in another class there exists pattern with
an equal or more concrete combination of the same values of attributes, which
can pretend to recognize the request.

Furthermore, by removing incorrect patterns (records with equal attributes,
which belongs to different classes) this operation ignores the possible
inconsistencies in the learning set.

It should be noted that the idea of supplying a confidence threshold of 100%
can result in an empty pattern set for noisy datasets.

Figure 7. Supplying maximum confidence of the rules

Figure 7 illustrates the first pruning sub-step for example dataset.
This process passes in two steps: labeling followed by removing.

 Sub-step 2.2: Retain Most General Rules in the Classes

This sub-step is provided again within the classes. Patterns from equal
classes are compared and, conversely to the previous step, more concrete
patterns are deleted, i.e. the larger pattern is removed.

, , i j i jP P PS c c∈ = :
: remove

: remove

j

i

i j i j

i j j i

P

P

P P P P

P P P P

= <

= <

⎧ ∩⎪
⎨

∩⎪⎩

The rationale behind is that after first sub-step in the pattern set remains
only patterns that are not exceptions to the other class. Because of this, we can
make lighter the pattern set by removing patterns for which other patterns are
subsets.

Figure 8 illustrates lightening the pattern set for example dataset.

5. PGN and MPGN Algorithms 94

Figure 8. Retain most general rules

As a result outcome of this step in the pattern set remain only patterns that
are general for the class that they belong and their bodies are not subsets of the
bodies of patterns in other classes.

In the example dataset the pattern set contains following patterns with
corresponded support:

 Pattern set Support Support set

 Class 1
P8 (1| 1, 2, -, 1) 3 {R1,R2,R5}
P9 (1| -, -, 4, -) 4 {R1,R4,R5,R6}
P10 (1| -, -, 3, -) 2 {R2,R3}
 Class 2

P7 (2| 3, 1, 2, 2) 1 {R9}
P12 (2| -, 1, 1, 2) 2 {R7,R8}

5.2.2 Recognition Process

The record to be recognized is given by the values of its attributes

1 2(? | , ,...,)nQ a a a= . Some of the features may be omitted.

We try to find the best fit between the query and the patterns from the
recognition model.

The idea is that in the recognition model at the same time there are patterns
that are very global (only a few non-arbitrary attributes) and some patterns that
are concrete (with more / a lot of non-arbitrary attributes). The global patterns
have a short size, but they are very powerful for the class. They contain only a
few attributes, but trustworthy for recognizing this class. In parallel, the
concrete patterns remains because more global combinations were killed by
other classes – so, it means that maybe there are no such kind of very specific
attributes and only complex combination of them characterizes the class.

So, we affirm that intersection percentage can make some kind of alignment
between short and long patterns. Of course, the intersection percentage suffers

5. PGN and MPGN Algorithms 95

from some kind of inequality when is not 100%; in this case short patterns
became lower value then the longer ones. But, we argue that this preceding of
the more concrete rules when there are not total matching with the query is
better because more features are equal.

These assumptions we implemented in the algorithm of recognition as

follows: During the recognition stage all patterns lP PS∈ , which have maximal
intersection percentage (size) with request Q build a list of patterns of potential

answers. The list consists of triplets containing the number of the class, the
coverage and the position of the pattern. While traversing the patterns,
dynamically the highest intersection percentage (size) is held. As potential
answers only these patterns are retained that have such intersection percentage
(size). Finally, the class, which has maximal sum of supports of patterns of this
class, belonging to the list of potential answer, is given as answer.

Let's see two examples on the tested dataset.

For the query (? | 2,1, ,2)Q = − :
 Pattern set P Q∩ (,)IntSize P Q Support Support set

 Class 1
P8 (1| 1, 2, -, 1) (?| -, -, -, -) 0 3 {R1,R2,R5}
P9 (1| -, -, 4, -) (?| -, -, -, -) 0 4 {R1,R4,R5,R6}
P10 (1| -, -, 3, -) (?| -, -, -, -) 0 2 {R2,R3}
 Class 2

P7 (2| 3, 1, 2, 2) (?| -, 1, -, 2) 0.50 1 {R9}
P12 (2| -, 1, 1, 2) (?| -, 1, -, 2) 0.667 2 {R7,R8}

The maximal intersection size between patterns and query is 0.667 and only
one pattern from class 2 has such intersection size. Class 2 is given as answer.

For the query (? |1,2,1,2)Q = :
 Pattern set P Q∩ (,)IntSize P Q Support Support set

 Class 1
P8 (1| 1, 2, -, 1) (?| 1, 2, -, -) 0.667 3 {R1,R2,R5}
P9 (1| -, -, 4, -) (?| -, -, -, -) 0 4 {R1,R4,R5,R6}
P10 (1| -, -, 3, -) (?| -, -, -, -) 0 2 {R2,R3}
 Class 2

P7 (2| 3, 1, 2, 2) (?| -, -, -, 2) 0.250 1 {R9}
P12 (2| -, 1, 1, 2) (?| -, -, 1, 2) 0.667 2 {R7,R8}

The maximal intersection size between patterns and query is 0.667.
There are two patterns from both classes for which (,) 0.667IntSize P Q = , i.e.

there are two sets of potential answers: 1:{ 8}class P and 2 :{ 12}class P . In

this case the set of patterns of class 1 has higher support 3. Because of this
class 1 is given as answer.

5. PGN and MPGN Algorithms 96

5.3 MPGN Algorithm

The PGN classifier has several advantages and as we can see in the chapter
with experiments shows very good benefits. It possesses all advantages of CAR
classifiers, such as creating compact pattern set, used in the recognition stage,
easy interpretation of the results, and very good accuracy for clear datasets.

In parallel, during the program realization one disadvantage is seen,
connected with exponential growth of operations during the process of creating
the pattern set.

In order to overcome this bottleneck, as well as to quickly find the potential
answer in the recognition stage MPGN algorithm is created.

MPGN is abbreviation from "Multi-layer Pyramidal Growing Networks of
information spaces", which is kind of CAR algorithm that uses advantages of
numbered information spaces. The main goal is to extend the possibilities of
network structures by using a special kind of multi-layer memory structures
called "pyramids", which permits defining and realizing of new opportunities.

The basic ideas in PGN and MPGN are similar. The main differences are
connected with:

− MPGN extends PGN structures for presenting patterns in the pattern set
using multi-layer memory structures, called pyramids;

− the possibility to save all patterns in an efficient manner, using multi-
dimensional numbered information spaces, allows to keep all patterns in
the pattern set, because of this the pruning step is different – only
contradictory patterns are removed;

− such pattern set contains possibilities to be implemented different kind
of algorithm in the recognition stage, searching for maximal cardinality
with 100% intersection percentage down to the constructed pyramids.

It should be noted that multi-layer memory structures can be easily
implemented in PGN. In practice, the steps of creating the pattern set use
theoretically the same algorithms in both classifiers and can be realized using
common tools.

5.3.1 Training Process

The training process in MPGN consists of:
− preprocessing step;
− generalization step;
− pruning step.

5. PGN and MPGN Algorithms 97

 Preprocessing Step

MPGN deals with instances and patterns separately for each class. This allows
the MPGN algorithm to be implemented for use on parallel computers which
could be particularly helpful within the current trend of using cloud services and
grid infrastructures.

The preprocessing step is aimed to convert the learning set in a standard
form for further steps. It consists of:

− discretization of numerical attributes [Mitov et al, 2009b];
− numbering the values of attributes.

The instances are converted to numerical vectors after discretization and the
juxtaposing positive integers to nominal values had been made.

 Generalization Step

The process of generalization is a chain of creating the patterns of upper
layer as intersection between patterns from lower layer until new patterns are
generated. For each class, the process starts from the layer 1 that contains the
instances of the training set. Patterns, generated as intersections between
instances of the training set are stored in layer 2. Layer N is formed by patterns
generated as intersections between patterns of the layer N-1. This process
continues until further intersections are not possible.

During generalization, for every class a separate pyramidal network structure
is built. The process of generalization creates "vertical" interconnections
between patterns from neighborhood layers. These interconnections for every
pattern are represented by a set of "predecessors" and a set of "successors".

The predecessors' set of a concrete pattern contains all patterns from the
lower layer which were used in the process of its generalization. Thus in cases of
different intersections generating the same pattern in the final outcome all
patterns appearing in the intersection would be united as predecessors of the
resulting pattern.

The predecessors sets for instances of layer one are empty.
The successors' set of a concrete pattern contains the patterns from upper

layer, which are created from it.
The successors' sets of patterns on the top of the pyramid are empty. These

patterns are called "vertexes" of the corresponded pyramids.
One pattern may be included in more than one pyramid, but the vertex

pattern belongs only to one pyramid.
It is possible for any pyramid to contain only one instance.

5. PGN and MPGN Algorithms 98

Figure 9. MPGN – the process of generalization of one class

Figure 9 presents the block scheme of the process of generalization for one
class.

Here, as example we will use following dataset:

Class 1
R1: (1|5,5,5,5)
R2: (1|5,3,5,4)
R3: (1|5,4,5,3)
R4: (1|1,1,1,1)
R5: (1|4,1,3,1)
R6: (1|1,2,1,1)
R7: (1|1,2,2,2)
R8: (1|4,2,4,1)

5. PGN and MPGN Algorithms 99

Class 2
R9: (2|4,2,3,1)

R10: (2|3,2,3,1)
R11: (2|2,1,2,1)
R12: (2|4,1,2,1)
R13: (2|2,2,2,1)

Separating of two classes are made only for increasing the readability.
We will use this dataset for showing different steps of MPGN algorithm.

Figure 10. MPGN – Result of generalization step on the example dataset

Figure 10 illustrates the result of the generalization step of MPGN for example
dataset. For simplifying the texts in the figures here and later patterns are
presented only with value attributes. The class label is omitted as it is known
from the pyramids in which pattern belongs. Light points denote vertexes of the
created pyramids.

 Pruning Steps

The pruning steps combines two different processes:
− pre-pruning – in parallel with the generalization;
− post-pruning – pruning the contradictions.

 Pre-pruning

During the generalization a huge amount of combinations arises in big
datasets. To restrict the combinatorial explosure different techniques can be
applied. We use three different mechanisms for solving which of created
patterns to be included in the process of generalization.

The first mechanism allows to be excluded the patterns that are generated by
little number of patterns from the lower layer. This is similar to support but here
is taken into account not the primary instances while the direct predecessors.

5. PGN and MPGN Algorithms 100

The other one tries to exclude the very general patterns from the beginning
layers, using the presumption that these patterns will be arisen again in the
upper layers. For this purpose, the ratio between the cardinality of the
generated patterns and the cardinality of the predecessor patterns can be used
as restriction.

 Post-pruning

Post-pruning is the process of iterative analysis of vertex patterns of all
pyramids from different classes and removing all contradictory vertex patterns.
The algorithm is presented on Figure 11.

As a result, some of the most general patterns are deleted, because the
vertexes with the same bodies were available in other classes (and they also are
deleted). The primary pyramids are decomposed to several sub-pyramids with
lower number of layers.

The vertexes of such pyramids do not contradict with vertexes of pyramids of
other classes.

Figure 11. MPGN – post-pruning

Here we will give the visual explanation of the pruning the contradictions in
already made pyramids of the example dataset.

5. PGN and MPGN Algorithms 101

Figure 12. Post-pruning – starting process

Figure 12 shows the start of the process, where vertexes of pyramids of class

1 and class 2 are compared and contradictory vertexes as well as all successor
equal patterns are destroyed.

Figure 13. Post-pruning – continuing the process

The process of destroying of contradictory vertexes cause the arising of new

vertexes from the patterns of corresponding pyramids. For new vertexes the
search and destroying of contradictory patterns are applied again.

Figure 13 shows this next step on the example dataset. The process
continues iteratively since no contradictions between vertexes of pyramids are
found. In our case after second traversing no new contradictions were found and
process of destroying pyramids stops.

5. PGN and MPGN Algorithms 102

Figure 14. Final result of post-pruning

Figure 14 shows the final result of the post-pruning. In grey we show the

destroyed parts of pyramids.

5.3.2 Recognition Process

The instance to be recognized is given by the values of its attributes

1(? | ,...,)nQ b b= . Some of the values may be omitted. If some attributes are

numerical, the values of these attributes are replaced with the number of
corresponded discretized interval, where the value belongs. The categorical
attributes also is recoded with the corresponded number values.

Initially the set of classes, which represent potential answers CS includes all
classes: CS { | 1,..., }c c Mc= = .

The recognition process consists of two main steps:
− creating recognition set for every class separately;
− analyzing resulting recognition sets from all classes and making decision

which class to be given as answer.

 Creating Recognition Set for Each Class

At this stage each class is processed separately.
The goal is to create for each class the recognition set, which contains all

patterns with maximal cardinality that have 100% intersection percentage with
the query.

5. PGN and MPGN Algorithms 103

Figure 15. MPGN – creating recognition set for one class

The process starts from the vertexes of all pyramids that belong to examined
class. Using the predecessor sets of the patterns in the recognition set each
pattern is replaced with the set of their predecessor that have 100% intersection
percentage with the query, if this set is not empty. After lighting the recognition
set keeping only patterns with maximal coverage the process is iteratively
repeated down to the layers until no new patterns became in the recognition set.

5. PGN and MPGN Algorithms 104

Figure 15 shows the block-scheme of this process.
The process of creation of recognition set for each class also can be

implemented on parallel computers.

 Analyzing Results and Make Final Decision

Figure 16 shows the general schema of this step.

Figure 16. MPGN – comparative analysis between classes

The result of the first step processing are the recognition sets for all classes
RSc , [1,...,]cc M∈ , which contain the patterns with maximal cardinality for this

class (RS)MaxCard c , [1,...,]cc M∈ that have 100% intersection percentage

with Q .

The goal is to find the class, which contains the patterns with highest
cardinality in its recognition set.

For this purpose, first the maximum of all maximal cardinalities of the
recognition sets of classes from CS is discovered.

CS
max (RS)
c

MaxCr MaxCard c
∈

=

5. PGN and MPGN Algorithms 105

All classes that have not such maximal cardinality are excluded from the set
CS .

CS { : (RS) }c MaxCard c MaxCr= =

After this step, if only one class remains in CS , then this class is given as an
answer (End 1).

Let us see the recognition process over the example dataset for query

Q=(?|5,2,3,1) , showed in Figure 17.

Each class is examined separately.
Only vertex (1|_,2,_,_) of class 1 matches the query. From its predecessors

the pattern (1|_,2,_,1) match the query and has bigger cardinality equal to 2.

No matching is found in its predecessors and process for class 1 stops.
In the case of class 2 the vertex (2|_,2,_,1) matches the query and its

predecessor (2|_,2,3,1) also matches and has bigger cardinality equal to 3.

As result of comparison of maximal cardinalities between classes class 2 is
given as answer.

Figure 17. Example of recognition in MPGN – Exit Point 1

In the case when several classes exist with maximal cardinality MaxCr (i.e.
(CS)>1Card), different strategies can be used to choose the best competitor.

Here we will discuss two basic options:
− S1: choose from each class a single rule with maximal confidence within

the class and compare with others;
− S2: find "confidence of recognition set", i.e. the number of instances

that are covered of patterns from recognition set of this class over the
number of all instances of this class and compare results.

5. PGN and MPGN Algorithms 106

 Variant Multiple Classes-Candidates: S1

The algorithm for the S1-option can be summarized as follows (Figure 18):
Find the pattern with maximal confidence of each of recognition sets of the

classes in CS :

RS
(RS) max (())

P c
MaxConf P c Conf P

∈
∈ = .

We find the maximum of received numbers from all classes:

CS
max (RS)
c

MaxCn MaxConf P c
∈

= ∈

Again we make lightening of CS retaining only classes that have such
maximum:

CS { : (RS) and (RS) }c MaxCard c MaxCr MaxConf P c MaxCn= = ∈ =

If only one class has such a maximum, this class is given as an answer. In
the other case, the class with maximal support from CS is given as answer.

Figure 18. Recognition strategy S1: using 1 rule with maximal confidence

Let us see the behavior of MPGN recognition: S1 strategy (Figure 19) on the
case of query Q=(?|5,2,5,1) .

5. PGN and MPGN Algorithms 107

For class 1 patterns that matched the query with maximal cardinality 2 are
(1|5,_,5,_) and (1|_,2,_,1) . For class 2 pattern that matched the query with

maximal cardinality again 2 is (2|_,2,_,1) .

Figure 19. Example of recognition in MPGN – Exit Point 2: Strategy S1

Because of the equality of the maximal cardinality we continue with finding

the rule with maximal confidence within each class.
For class 1 the confidence of the pattern (1|5,_,5,_) is 3/8 (maximal for this

class). For class 2 (2|_,2,_,1) has confidence 3/5. Following strategy S1 class 2

is given as answer.

 Variant Multiple Classes-Candidates: S2

This algorithm is similar to the previous (Figure 20).
The main difference is that instead of finding the pattern with maximal

confidence of each of recognition sets, here the "confidence of recognition set" is
evaluated, i.e. the number of instances that are covered by patterns from the
recognition set of this class over the number of all instances of this class and
then results are compared.

The rationale behind this is to take into account how many instances had
been covered by all patterns from the recognition set.

In practice this is the disjunction of the predecessors' sets of Layer 1 (not
direct predecessors) of the patterns that belong to RSc .

5. PGN and MPGN Algorithms 108

Figure 20. Recognition strategy S2: using confidences of the recognition sets

Let us see the behavior of MPGN recognition: S2 strategy (Figure 21) on the
case of the same query Q=(?|5,2,5,1) .

Figure 21. Example of recognition in MPGN – Exit Point 2: Strategy S2

Following strategy S2 we found the confidences of the set of patterns that
matches query with maximal cardinality. They are correspondingly:
3/8+2/8=0.625 for class 1 and 3/5=0.600 for class 2. As a result class 1 is
given as answer.

5. PGN and MPGN Algorithms 109

 Variant: Empty Recognition Sets

The worst case is when all recognition sets were empty.

Figure 22. Variant of recognition when 100% intersection percentage gives not

result

Here we create new recognition sets, including instances with maximal
intersection percentage with the query.

RS
(RS ,) max ((,))

R c
MaxIPerc c Q IntersectPerc R Q

∈
= ;

RS { : (,)) (RS)}c R IntersectPerc R Q MaxIPerc c= = .

Find
RS

(RS)
{instances of class }

c
Conf c

c
=

The class that contains the set with maximal confidence is given as an
answer. The reason is that a higher confidence is received because the rules are
more inherent to this class. If two or more classes have equal confidence, than
the class with maximal support is given as answer (End 4).

This process is presented on Figure 22.

5. PGN and MPGN Algorithms 110

An analysis of the results from the previous step is made at this step; it is
performed simultaneously over all classes simultaneously. The parallelization of
this process is not explicitly shown (it is not inherent to algorithm). The
parallelization can be implemented during the process of cross-comparison of
the results from all the classes.

Conclusion
In this chapter we provided a description of PGN and MPGN algorithms.
PGN creates association rules, striving for maximal accuracy of produced

rules. One of the main specifics of PGN is that it is a parameter free classifier.
The association rule mining goes from longest rules (instances) to the shorter
ones until no intersections between patterns in the classes are possible. In the
pruning phase the contradictions and inconsistencies of more general rules are
cleared, after that the pattern set is compacted throwing all more concrete rules
within the classes.

MPGN employs multilayer structure. It offers a possibility to escape
combinatorial explosion using smart disposing of the information in so called
multilayer structures "pyramids". Later these structures easy can be realized
using ArM-structures.

In the case of MPGN the process of association rule mining and part of the
pruning step are made in parallel, which allows to overcome the bottleneck of
exponential growth of created rules. The other pruning step is connected with
the process of clearing the contradictions between vertex patterns of all
pyramids from different classes.

The recognition process in MPGN first creates the recognition sets for each
class, after that analyzes the results in order to make a final decision. In this
step different options can be observed: only one class is class-candidate;
multiple classes are classes-candidates (in this case two different strategies are
proposed: S1 – to use the most powerful rule, or S2 – to analyze the normalized
support of the whole recognition set of each class), or worst case scenario when
recognition sets are empty. The possible actions in the case of each of those
different options had been presented and discussed.

6. Program Realization 111

6 Program Realization

Abstract
The realization of the proposed algorithms PGN and MPGN were made in a

common data mining analysis environment PaGaNe. It contains a variety of
statistical and data mining tools. PaGaNe uses ArM 32 as a basic access method
and all algorithms are fine-tuned to use the advantages given by such memory
structure environment.

For these purposes preprocessing steps, creating bijective functions between
attribute values and natural numbers, as well as converting input information
into numerical vectors is implemented.

Taking into account the fact that most of CAR algorithms work with
categorical data, several known discretization methods for partitioning the
attribute space had been implemented and presented.

The basic structure used for keeping created patterns in the pattern sets of
proposed algorithms are the so called pyramids – multi-layer structures,
containing vertical connections between patterns.

The algorithm for realizing smart storing and extracting of patterns from
these structures, using advantages of context-free access method, realized in
ArM 32, is proposed.

6.1 Common Environment

An international joint research group has been working on the design of a
data mining analysis environment called "PaGaNe". It integrates a number of
data mining algorithms, such as association rule miners, class association rule
(CAR) algorithms, etc. [Mitov et al, 2009a/b].

A distinguished feature of PaGaNe is that it uses the advantages of multi-
dimensional numbered information spaces [Markov, 2004], provided by the
access method ArM 32, such as:

6. Program Realization 112

− the possibility to build growing space hierarchies of information
elements;

− the great power for building interconnections between information
elements stored in the information base;

− the possibility to change searching with direct addressing in well-
structured tasks.

An important feature of the approaches used in PaGaNe, is the replacement
of the symbolic values of the objects' features with integer numbers of the
elements of corresponding ordered sets. Thus all instances or patterns can be
represented by a vector of integer values, which may be used as co-ordinate
address in the corresponding multi-dimensional information space.

The program realization of PGN and MPGN are implemented within this
environment.

6.2 Preprocessing Step

The preprocessing step is aimed to convert the learning set in a standard
form for further steps. It consists of:

− discretization of numerical attributes;
− numbering the values of attributes;
− attribute subset selection.

6.2.1 Input Data

The data can be entered directly, but usually files, containing the datasets
are used. Standard ".csv"-files, that contain rectangular datasets can be used as
input files. For assuring compatibility with WEKA ".arff"-files also can be used as
an input format. The user can use different files for a learning set and examining
set, or splitting incoming file into learning set and examining set in a particular
proportion. Cross-validation also can be applied.

6.2.2 Discretization

Discretization methods from different classes had been selected in order to
examine which of them supplies more convenient discretization for PGN
Classification Method.

 Fayyad-Irani Discretization

Fayyad-Irani Discretization method [Fayyad and Irani, 1993] is supervised
hierarchical split method, which uses the class information entropy of candidate

6. Program Realization 113

partitions to select boundaries for discretization. Class information entropy is a
measure of purity and it measures the amount of information which would be
needed to specify to which class an instance belongs. It considers one big
interval containing all known values of a feature and then recursively partitions
this interval into smaller subintervals until MDL criterion or an optimal number of
intervals is achieved.

The MDL Principle states that the best hypothesis is the one with minimal
description length. As partitioning always decreases the value of the entropy
function, considering the description lengths of the hypotheses allows balancing
the information gain and eventually accepting the null hypothesis. Performing
recursive bipartitions with this criterion leads to a discretization of the
continuous explanatory attribute at hand. Fayyad-Irani Discretizator evaluates
as a candidate cut point the midpoint between each successive pair of the sorted
values. For each evaluation of a candidate cut point, the data are discretized into
two intervals and the resulting class information entropy is calculated. A binary
discretization is determined by selecting the cut point for which the entropy is
minimal amongst all candidate cut points. This binary discretization is applied
recursively, always selecting the best cut point. A MDL criterion is applied to
decide when to stop discretization. It has been shown that optimal cut points for
entropy minimization must lie between examples of different classes.

This method does not need additional parameters to be chosen by the user.

 Chi-Merge Discretization

Chi-merge [Kerber, 1992] is a supervised hierarchical bottom-up (merge)
method that locally exploits the chi-square criterion to decide whether two
adjacent intervals are similar enough to be merged;

Chi-square (2χ) is a statistical measure that conducts a significance test on

the relationship between the values of a feature and the class. Kerber argues
that in an accurate discretization, the relative class frequencies should be fairly
consistent within an interval but two adjacent intervals should not have similar

relative class frequency. The 2χ statistic determines the similarity of adjacent

intervals based on some significance level. It tests the hypothesis that two
adjacent intervals of a feature are independent of the class. If they are
independent, they should be merged; otherwise they should remain separate.

The bottom-up method based on chi-square is ChiMerge. It searches for the
best merge of adjacent intervals by minimizing the chi-square criterion applied
locally to two adjacent intervals: they are merged if they are statistically similar.
The stopping rule is based on a user-defined Chi-square threshold to reject the
merge if the two adjacent intervals are insufficiently similar. No definite rule is
given to choose this threshold.

6. Program Realization 114

The stopping rule is based on a Chi-square threshold, which depends of
degrees of freedom (in our case – the number of possible values of class minus
one) and the significance level (commonly used significance levels are 90%,
95%, 99%). The chi-square threshold table in the system is adopted from
[Bramer, 2007].

At the pre-processing step, the system builds a mapping function for the real
values of each attribute to a number that correspond to the interval in which the
value belongs to; this is a result of implementing a discretization method..

Figure 23 presents a screenshot from the experimental system "PaGaNe",
which visualizes the results of discretization process using "Chi-merge" with
parameter 90% significance level for attribute "sepal length" for "Iris" dataset
from UCI repository [Frank and Asuncion, 2010]. Five intervals which had been
formed as well as the distribution of different class values in the intervals can be
seen. The right part of the screen is used to list the cut-points from each
interval, the number of instances of the learning set and correspondences
belonging to the class values of these instances.

Figure 23. A Screenshot of visualizing discretization

of attribute "sepal length in cm"
of Iris database using Chi-merge discretizator

The system uses these intervals to find the corresponding nominal values for
real attributes in learning and examining sets. This conversion of real data to
categorical values gives the opportunity of PGN-classifier to be implemented on
databases with the real values of attributes.

6.2.3 Converting Primary Instances into Numerical Vectors

At this stage, the bijective functions between primary values and positive
integers are generated.

6. Program Realization 115

After that, the input instances are coded into numerical vectors, replacing
attribute values with their corresponded numbers.

For example, during the input of instances of "Lenses" database the following
mapping functions (numbering) is created:

class Age prescription astigmatic tears
hard 1 pre-presbyopic 1 hypermetrope 1 no 1 normal 1
none 2 presbyopic 2 myope 2 yes 2 reduced 2
soft 3 young 3

and here is given the numerical representation of some instances:

Object;class;age;prescription;astigmatic;tears Numerical representations of
instances

1;none;young;myope;no;reduced R1= (2|3,2,1,2)
2;soft;young;myope;no;normal R2= (3|3,2,1,1)
3;none;young;myope;yes;reduced R3= (2|3,2,2,2)
4;hard;young;myope;yes;normal R4= (1|3,2,2,1)
5;none;young;hypermetrope;no;reduced R5= (2|3,1,1,2)

The idea is to prepare data for direct use as addresses in the multi-

dimensional numbered information spaces.

6.2.4 Attribute Subset Selection

The statistical observations on PaGaNe performance over the dataset can
show that some attributes give no important information and the environment
allows to point such attributes not to participate in further processing.

The automatic subset selection is an open part of the PaGaNe realization and
it is in the front of current and near-future investigation [Aslanyan and
Sahakyan, 2010].

6.3 PGN Program Realization

The first realization of the PGN algorithm did not use the added capacity of
multi-layer structures. The patterns, created during the first phase, were kept
sequentially. In this implementation the combinatorial explosion for big datasets
was limited with examining only intersections between primary instances.

The good results, received by the experiments enforced further research in
two directions:

− to find a way to overcome the bottleneck of exponential combinatorial
growth of intersections;

6. Program Realization 116

− to investigate other possibilities within CAR algorithms in different steps
of the process.

Here we will not present in detail the implementation of the PGN classifier.
We will mention only that, using appropriate parameters for changing pruning
step and recognition criterion, the realization of MPGN covers the PGN algorithm.

6.4 MPGN Program Realization

The main focus here is to show the advantages of multi-dimensional
numbered information spaces in the process of realization of multi-layer
structure of MPGN.

6.4.1 Training Process

Very important aspect is that for each class there exists separate class space,
which has multilayer structure called "pyramids". All layers have equal structure
and consist of "pattern-set" and "link-space". For each class space a "vertex-set"
also is kept, which is used in the recognition stage.

 Construction Elements

 The Pattern-Set

Each pattern belongs to a definite class c and layer l . The full denotation of
pattern should be (,)P c l in order to be clear in which class this pattern belongs
to (note that c is class value of the pattern). We omit c whenever it is clear
from the context and will denote ()P l . When l is also clear from the context we

will denote only P .
All patterns of the class c , which belongs to layer l form theirs pattern-set:

,(,) { (,) | 1,..., }i
c lPS c l P c l i n= = . Each pattern (,)P c l from (,)PS c l have

identifiers (, ,)pid P c l or shortly ()pid P where it is clear, which are natural

numbers. The identifiers are created in increasing order of incoming the patterns
into pattern-set.

The process of generalization creates "vertical" interconnections between
patterns from different (neighborhood) layers. These interconnections for every
pattern are represented by two sets of "predecessors" and "successors".

6. Program Realization 117

The predecessors' set ()iPredS P contains the identifiers of patterns from the

lower layer, which were used in the process of receiving this pattern. The
predecessors sets for instances of layer one are empty.

The successors' set ()iSuccS P contains the identifiers of patterns from the

upper layer, which are created by this pattern. The successors' sets of patterns
on the top of the pyramid are empty. These patterns are called "vertexes" of the
corresponded pyramids.

One pattern may be included in more than one pyramid. The vertex pattern
belongs only to one pyramid (they became top of the pyramids).

 The Link-Space

The goal of the Link-space is to describe all regularities between attributes
which are available in the classes. Links to the patterns, which contain it, are
created for every value of each attribute thus allowing to create a hierarchy of
sets. The structure of this hierarchy is as follows:

− attribute value set: a set of class sets for given value of given attribute;
− attribute set: a set of attribute value sets for given attribute;
− link-space (one): a set of all possible attribute sets.

Creation of link-space uses the advantages of multi-dimensional numbered
information spaces, especially the possibility to overcome searching by using
direct pointing via coordinate addresses.

Below we will focus our attention on the link-space, which becomes a key
element of accelerating the creation of new patterns as well as searching
patterns satisfying the queries.

Let c be a number of examined class and l be the number of given layer of
c :

− attribute value set (, , ,)VS c l t v , 1,..., tv n= is a set of all identifiers of

instances/patterns for class c , layer l , which have value v for the

attribute t : (, , ,) { (, ,), 0,.., | }i i
tVS c l t v pid P c l i x a v= = = ;

− attribute set (, ,)AS c l a for concrete attribute 1,...,a n= is a set of

attribute value sets for class c , layer l and attribute t :
(, ,) { (, , ,1),..., (, , ,)}tAS c l t VS c l t VS c l t n= , where tn is the number of

values of attribute t ;

− link-space (,)LS c l is a set of all possible attribute sets for class c and

layer l : (,) { (, ,1),..., (, ,)}LS c l AS c l AS c l n= .

In Figure 24, the visualization of class 3 of the "Lenses" dataset during
creation of the patterns is shown.

6. Program Realization 118

Such information is stored in
ArM-structures by a very simple
convention – the attribute value
sets (, , ,)VS c l t v is stored in the

points of ArM-archive using the
corresponding address (4, , , ,)c l t v ,

where 4 is the dimension of ArM
space, c is the number of the
class, l is the number of the layer,
t is the number of the attribute
and v is the number of the
corresponding values of the given
attribute. The disposition of link-
spaces in ArM-structures allows
very fast extraction of available
patterns in the corresponding layer
and class.

Figure 24. Visualization of link-spaces

 Vertex-Set

The vertex-set contains information about the patterns that have not
successors in the pyramids of the corresponded class.

, max() { (, ,) | 1,..., ; 1,..., : () }i i
c lVrS c pid P c l i n l l SuccS P= = = =∅ .

 Generation of the Rules

The process of rules generation is a chain of creating the patterns of the
upper layer as an intersection between patterns from lower layer until new
patterns are generated.

Each instance 1(| ,...,)nR c a a= from the learning set is included into the

pattern-set of the first layer of its class c : (,1)R PS c∈ .

Starting from layer 2l = the following steps are made:

1. Creating the link-space of the lower layer 1l − of class c with adding the

identifiers of patterns (, 1)iP PS c l∈ − , , 11,..., c li n −= in the attribute value

sets of the values: () (, 1, ,), 1,...,i i i
kpid P VS c l k a k n∈ − = . Let remark that

this sets became ordered during creation;

6. Program Realization 119

2. The set of patterns, which are intersections of the patterns of the lower

layer i jP P∩ , , (, 1)i jP P PS c l∈ − , , 1, 1,..., c li j k −= , i j≠ is created. The

algorithm of creating of this set is given below;
3. If patterns are not generated (i.e. (,) {}PS c l =), then the process of

generation the rules for this class stops;
4. On the basis of receiving a set of patterns, the pattern-set (,)PS c l of

layer l is created.

- Each pattern from the receiving set of patterns is checked for
existence in the (,)PS c l ;

- If this pattern does not exist in (,)PS c l , it receives an identifier

which is equal to the next number of identifiers of the patterns in the
pattern-set; the pattern is added at the end of the pattern-set; and

its predecessor-set is created with two pairs { ((), 1)ipid P l − ,

((), 1)jpid P l − };

- If this pattern already exists in (,)PS c l , its predecessor-set is formed

as union of existent predecessor-set and { ((), 1)ipid P l − ,

((), 1)jpid P l − }.

5. For each pattern from layer l check for existence the same pattern in
lower layers (from layer 1l − to layer 2). If such pattern exists, then it is
removed from the pattern-set and corresponded link-space of lower layer
and the predecessor-set of current pattern is enriched with predecessor-
set of removed pattern (by union).

6. Incrementing layer l and repeating the process.
As a result, for every class a separate pyramidal network structure is built.

Each pyramid is described by a predecessor-set and a successor-set of patterns
in neighbor layers.

 Generating the Set of Patterns, which are Intersections of
Patterns from the Lower Level

For restriction the exponential growth of intersections in program realization
there are included two parameters:

− L1 (from 0 to 100) – percentage of reduced patterns per layer;
− L2 (from 0 to 100) – minimal ratio in percent between cardinality of the

generated pattern toward maximal cardinality of patterns in lower layer.

6. Program Realization 120

The process of generation the intersections of the patterns from given

pattern-set (,)PS c l loops each pattern (,)iP PS c l∈ .

For this pattern 1(| ,...,)i i i
nP c a a= the generation of possible patterns is:

1. An empty set of resulting patterns is created;

2. For all attribute values 1,...,i i
na a different from "-" of iP we take

corresponding attribute-value-sets (, , ,), 1,...,i i
kVS c l k a i n= . The numbers

of identifiers of the patterns in these sets are ordered.
3. All extracted attribute-value-sets are activated.
4. From each of them the first identifier is given.
5. While at least one attribute-value-set is active, the following steps are

made:
- Assign the initial values of the resulting pattern: (| , ,...,)V c= − − − ;

- Locate minimal identifier ()jpid P from all active attribute-value-

sets;

- If () ()j ipid P pid P= , then this attribute-value-set is deactivated;

- All active attribute-value-sets ,(, , ,), 1,...,jj
c lkVS c l k a j k= , for which

()jpid P is current identifier, cause filling of corresponded attribute

value i
ka of thk attribute in V . For these sets the next identifier is

given;

- If 0V > and min , 2
i j

V V
L

P P

⎛ ⎞
⎜ ⎟ >⎜ ⎟⎜ ⎟
⎝ ⎠

 this pattern is included into the

set of resulting patterns with additional information, containing

()ipid P and ()jpid P .

This process is illustrated in Figure 25.

At the end the patterns in the created pattern set are sorted by the number

of their predecessors and L1% of them with lower number of predecessors are
removed.

6. Program Realization 121

Generating process, started from P3 (2| 3, 1, 1, 2)

 values of P3 activated attribute-value-sets

A1:age 3: young {P1,P2,P3,P4}
A2:prescription 1:

hypermetrope
{P3,P4,P7,P8,P9,P13,P14,P15}

A3:astigmatic 1: no {P1,P3,P5,P7,P10,P11,P13}
A4:tears 2: reduced {P1,P2,P3,P4,P5,P6,P7,P8,P10,P12,P13,P14}

 3:young 1:hyperm. 1:no 2:reduced

P1 P3

P1

P1
P2 P4 P3 P2
P3 P7 P5 P3
P4 P8 P7 P4

 P9 P10 P5
 P13 P11 P6
 P14 P13 P7
 P15 P8
 P10
 P12
 P13
 P14

The following resulting vectors are created:

(2| 3, -, 1, 2) {intersection between P1 and P3}
(2| 3, -, -, 2) {intersection between P2 and P3}

Pointers point P3 – the process is finished.

Figure 25. Visualization of process of generating a set of patterns

6.4.2 Recognition Process

The record to be recognized is represented by the values of its attributes

1(? | ,...,)nQ b b= . Some of the features may be omitted. The classification stage

consists of several steps:
1. Using the service attribute-values-space, the system takes corresponded

attribute value sets for all attributes 1,..., nb b as well as the attribute value

sets for "-" as a value of each attribute.

2. The union of these sets gives a set of possible classes 1{ ,..., }yc c , which

the record may belong to. This approach decreases the amount of the
information, needed for pattern recognition.

3. All classes, which are presented in this union 1{ ,..., }yc c are scanned in

parallel. For each class xc and for each layer of class space of xc the

following steps are done:

6. Program Realization 122

- For all attribute values 1,..., nb b different from "-" of Q we obtain the

corresponding attribute value sets from link-space of class xc of

current layer;
- The intersection between all these sets is made. As a result a

recognition set of candidate patterns is created. If this set is empty,
the target class is class with maximal support;

- For each pattern P , which is a member of the recognition set,
calculate (,)IntersectPerc P Q .

4. From all recognition sets of the classes and layers the patterns with
maximal cardinality are found.

5. These recognition sets are lightened with excluding the patterns, which
cardinality are less than maximal cardinality. The new set of classes-
potential answers 1 '{ ,..., }yc c contains only classes, which recognition sets

are not empty.
6. If only one class is in the set of classes-potential answers, then this is the

target class and the process stops.
7. Otherwise, if this set is empty, we give again primary set of classes-

potential answers 1 '{ ,..., }yc c = 1{ ,..., }yc c and the process continues with

examining this set.

8. Examine 1 '{ ,..., }yc c :

- for each class which is a member of this set, the number of instances
with maximal intersection percentage with the query is found and the
ratio between these number and all instances in the class is
calculated;

- the maximum of intersection percentages from all classes is
determinate and in the set 1 '{ ,..., }yc c only classes with this maximal

percentage and maximal ratio is remained;

- if 1 '{ ,..., }yc c contains only one class – the class is given as answer.

Otherwise the class of 1 '{ ,..., }yc c with maximal instances is given as

an answer. And the process stops.
We can assume that the possibilities to keep in a manageable way numerous

created patterns allows to use this environment to test different kinds of
recognition models.

Here the algorithm of recognition strategy S1 was described. The algorithm
for strategy S2 differs only in points 4 and 5, where the criteria for selection of
classes-candidates are so called "confidence of recognition set".

6. Program Realization 123

Conclusion
We presented the structure and functionality of the software realization of

MPGN algorithm.
The realization of the proposed algorithms PGN and MPGN were made in a

common data mining analysis environment PaGaNe.
Because PGN and MPGN deal with categorical attributes, different

discretization methods are implemented as a preprocessing step.
The basic construction elements, used in the realization of MPGN, which keep

vertical connections between patterns: the pattern-set, the vertex-set and the
link-space have been presented.

In addition, the algorithm which realizes smart storing and extracting of
patterns from these structures, using advantages of context-free access method,
realized in ArM 32 have been discussed.

6. Program Realization 124

7. Example on Lenses Data Set 125

7 Example on Lenses Dataset

Abstract
This chapter provides examples of the use of PGN and MPGN algorithms on

the "Lenses" dataset.

7.1 Lenses Dataset

Lenses dataset is provided from the UCI machine learning repository as the
simplest example which can be used to illustrate the steps in the data mining
algorithms.

Object class age prescription astigmatic tears
1 none young myope no reduced
2 soft young myope no normal
3 none young myope yes reduced
4 hard young myope yes normal
5 none young hypermetrope no reduced
6 soft young hypermetrope no normal
7 none young hypermetrope yes reduced
8 hard young hypermetrope yes normal
9 none pre-presbyopic myope no reduced
10 soft pre-presbyopic myope no normal
11 none pre-presbyopic myope yes reduced
12 hard pre-presbyopic myope yes normal
13 none pre-presbyopic hypermetrope no reduced
14 soft pre-presbyopic hypermetrope no normal
15 none pre-presbyopic hypermetrope yes reduced
16 none pre-presbyopic hypermetrope yes normal
17 none presbyopic myope no reduced
18 none presbyopic myope no normal
19 none presbyopic myope yes reduced
20 hard presbyopic myope yes normal
21 none presbyopic hypermetrope no reduced
22 soft presbyopic hypermetrope no normal
23 none presbyopic hypermetrope yes reduced
24 none presbyopic hypermetrope yes normal

7. Example on Lenses Data Set 126

During the input of instances of "Lenses" database, the following numbering
is created:

class age prescription astigmatic tears
hard 1 pre-presbyopic 1 hypermetrope 1 no 1 normal 1
none 2 presbyopic 2 myope 2 yes 2 reduced 2
soft 3 young 3

As a result, instances are presented as numerical vectors juxtaposing each

attribute value with the corresponding number.
For example, the instance (none|young,myope,no,reduced) is converted to

(2|3,2,1,2). For more readability we use "|" for separating class label from other
attributes.

7.2 PGN

Here we will present the behavior of training and recognition processes in
PGN on the example of Lenses dataset.

The description of Lenses dataset in UCI repository [Frank and Asuncion,
2010] argues that the dataset is complete (all possible combinations of
attribute-value pairs are represented), each instance is complete and correct
and 9 rules cover the training set.

Our goal is to show that PGN extracts these 9 rules.

7.2.1 Training Process in PGN

The training process in PGN consists of two steps that are usual for CAR
classifiers.

- generalization;
- pruning.

In PGN pruning is post-processing phase after generalization.

 Step 1: Generalization

The step of generalization tries to extract each possible intersections between
instances and patterns within the class.

 Sub-step 1.1: Adding Instances

In this sub-step the instances are added incrementally into pattern set as
primary patterns.

7. Example on Lenses Data Set 127

()pid R R
[1] (2| 3, 2, 1, 2)
[2] (3| 3, 2, 1, 1)
[3] (2| 3, 2, 2, 2)
[4] (1| 3, 2, 2, 1)
[5] (2| 3, 1, 1, 2)
[6] (3| 3, 1, 1, 1)
[7] (2| 3, 1, 2, 2)
[8] (1| 3, 1, 2, 1)
[9] (2| 1, 2, 1, 2)
[10] (3| 1, 2, 1, 1)
[11] (2| 1, 2, 2, 2)
[12] (1| 1, 2, 2, 1)
[13] (2| 1, 1, 1, 2)
[14] (3| 1, 1, 1, 1)
[15] (2| 1, 1, 2, 2)
[16] (2| 1, 1, 2, 1)
[17] (2| 2, 2, 1, 2)
[18] (2| 2, 2, 1, 1)
[19] (2| 2, 2, 2, 2)
[20] (1| 2, 2, 2, 1)
[21] (2| 2, 1, 1, 2)
[22] (3| 2, 1, 1, 1)
[23] (2| 2, 1, 2, 2)
[24] (2| 2, 1, 2, 1)

 Sub-step 1.2: Intersections within the Classes

In this sub-step the intersections between each two patterns that belong to
the same class are made.

If a new pattern is created it is added into the pattern set. For example, the
intersection between 1 (2 | 3,2,1,2)R = and 3 (2 | 3,2,2,2)R = creates a new

pattern 25 (2 | 3,2, _,2)R = .

If the pattern already exists, only the set of instances that are possible
creators of the pattern is expanded. For example,

1 17(2 | 3,2,1,2) (2 | 2,2,1,2)R R= ∩ = creates a pattern 28 (2 | _,2,1,2)R = already

created by 1 9(2 | 3,2,1,2) (2 |1,2,1,2)R R= ∩ = .

It is possible the intersection does not to produce a pattern when all attribute
values in two patterns differs. It is seen in the case of

1 16(2 | 3,2,1,2) (2|1,1,2,1)=R R= ∩ = ∅ .

1()pid P 1P 2()pid P 2P 1 2()pid P P∩ 1 2P P∩

[1] (2| 3, 2, 1, 2) [3] (2| 3, 2, 2, 2) [25] (2| 3, 2, _, 2)
[1] (2| 3, 2, 1, 2) [5] (2| 3, 1, 1, 2) [26] (2| 3, _, 1, 2)
[1] (2| 3, 2, 1, 2) [7] (2| 3, 1, 2, 2) [27] (2| 3, _, _, 2)
[1] (2| 3, 2, 1, 2) [9] (2| 1, 2, 1, 2) [28] (2| _, 2, 1, 2)
[1] (2| 3, 2, 1, 2) [11] (2| 1, 2, 2, 2) [29] (2| _, 2, _, 2)
[1] (2| 3, 2, 1, 2) [13] (2| 1, 1, 1, 2) [30] (2| _, _, 1, 2)

7. Example on Lenses Data Set 128

[1] (2| 3, 2, 1, 2) [15] (2| 1, 1, 2, 2) [31] (2| _, _, _, 2)
[1] (2| 3, 2, 1, 2) [16] (2| 1, 1, 2, 1) [] 0
[1] (2| 3, 2, 1, 2) [17] (2| 2, 2, 1, 2) [28] (2| _, 2, 1, 2)
[1] (2| 3, 2, 1, 2) [18] (2| 2, 2, 1, 1) [32] (2| _, 2, 1, _)
[1] (2| 3, 2, 1, 2) [19] (2| 2, 2, 2, 2) [29] (2| _, 2, _, 2)
[1] (2| 3, 2, 1, 2) [21] (2| 2, 1, 1, 2) [30] (2| _, _, 1, 2)
[1] (2| 3, 2, 1, 2) [23] (2| 2, 1, 2, 2) [31] (2| _, _, _, 2)
[1] (2| 3, 2, 1, 2) [24] (2| 2, 1, 2, 1) [] 0
[2] (3| 3, 2, 1, 1) [6] (3| 3, 1, 1, 1) [33] (3| 3, _, 1, 1)
[2] (3| 3, 2, 1, 1) [10] (3| 1, 2, 1, 1) [34] (3| _, 2, 1, 1)
[2] (3| 3, 2, 1, 1) [14] (3| 1, 1, 1, 1) [35] (3| _, _, 1, 1)
[2] (3| 3, 2, 1, 1) [22] (3| 2, 1, 1, 1) [35] (3| _, _, 1, 1)
[3] (2| 3, 2, 2, 2) [5] (2| 3, 1, 1, 2) [27] (2| 3, _, _, 2)
[3] (2| 3, 2, 2, 2) [7] (2| 3, 1, 2, 2) [36] (2| 3, _, 2, 2)
[3] (2| 3, 2, 2, 2) [9] (2| 1, 2, 1, 2) [29] (2| _, 2, _, 2)
[3] (2| 3, 2, 2, 2) [11] (2| 1, 2, 2, 2) [37] (2| _, 2, 2, 2)
[3] (2| 3, 2, 2, 2) [13] (2| 1, 1, 1, 2) [31] (2| _, _, _, 2)
[3] (2| 3, 2, 2, 2) [15] (2| 1, 1, 2, 2) [38] (2| _, _, 2, 2)
[3] (2| 3, 2, 2, 2) [16] (2| 1, 1, 2, 1) [39] (2| _, _, 2, _)
[3] (2| 3, 2, 2, 2) [17] (2| 2, 2, 1, 2) [29] (2| _, 2, _, 2)
[3] (2| 3, 2, 2, 2) [18] (2| 2, 2, 1, 1) [40] (2| _, 2, _, _)
[3] (2| 3, 2, 2, 2) [19] (2| 2, 2, 2, 2) [37] (2| _, 2, 2, 2)
[3] (2| 3, 2, 2, 2) [21] (2| 2, 1, 1, 2) [31] (2| _, _, _, 2)
[3] (2| 3, 2, 2, 2) [23] (2| 2, 1, 2, 2) [38] (2| _, _, 2, 2)
[3] (2| 3, 2, 2, 2) [24] (2| 2, 1, 2, 1) [39] (2| _, _, 2, _)
[4] (1| 3, 2, 2, 1) [8] (1| 3, 1, 2, 1) [41] (1| 3, _, 2, 1)
[4] (1| 3, 2, 2, 1) [12] (1| 1, 2, 2, 1) [42] (1| _, 2, 2, 1)
[4] (1| 3, 2, 2, 1) [20] (1| 2, 2, 2, 1) [42] (1| _, 2, 2, 1)
[5] (2| 3, 1, 1, 2) [7] (2| 3, 1, 2, 2) [43] (2| 3, 1, _, 2)
[5] (2| 3, 1, 1, 2) [9] (2| 1, 2, 1, 2) [30] (2| _, _, 1, 2)
[5] (2| 3, 1, 1, 2) [11] (2| 1, 2, 2, 2) [31] (2| _, _, _, 2)
[5] (2| 3, 1, 1, 2) [13] (2| 1, 1, 1, 2) [44] (2| _, 1, 1, 2)
[5] (2| 3, 1, 1, 2) [15] (2| 1, 1, 2, 2) [45] (2| _, 1, _, 2)
[5] (2| 3, 1, 1, 2) [16] (2| 1, 1, 2, 1) [46] (2| _, 1, _, _)
[5] (2| 3, 1, 1, 2) [17] (2| 2, 2, 1, 2) [30] (2| _, _, 1, 2)
[5] (2| 3, 1, 1, 2) [18] (2| 2, 2, 1, 1) [47] (2| _, _, 1, _)
[5] (2| 3, 1, 1, 2) [19] (2| 2, 2, 2, 2) [31] (2| _, _, _, 2)
[5] (2| 3, 1, 1, 2) [21] (2| 2, 1, 1, 2) [44] (2| _, 1, 1, 2)
[5] (2| 3, 1, 1, 2) [23] (2| 2, 1, 2, 2) [45] (2| _, 1, _, 2)
[5] (2| 3, 1, 1, 2) [24] (2| 2, 1, 2, 1) [46] (2| _, 1, _, _)
[6] (3| 3, 1, 1, 1) [10] (3| 1, 2, 1, 1) [35] (3| _, _, 1, 1)
[6] (3| 3, 1, 1, 1) [14] (3| 1, 1, 1, 1) [48] (3| _, 1, 1, 1)
[6] (3| 3, 1, 1, 1) [22] (3| 2, 1, 1, 1) [48] (3| _, 1, 1, 1)
[7] (2| 3, 1, 2, 2) [9] (2| 1, 2, 1, 2) [31] (2| _, _, _, 2)
[7] (2| 3, 1, 2, 2) [11] (2| 1, 2, 2, 2) [38] (2| _, _, 2, 2)
[7] (2| 3, 1, 2, 2) [13] (2| 1, 1, 1, 2) [45] (2| _, 1, _, 2)
[7] (2| 3, 1, 2, 2) [15] (2| 1, 1, 2, 2) [49] (2| _, 1, 2, 2)
[7] (2| 3, 1, 2, 2) [16] (2| 1, 1, 2, 1) [50] (2| _, 1, 2, _)
[7] (2| 3, 1, 2, 2) [17] (2| 2, 2, 1, 2) [31] (2| _, _, _, 2)
[7] (2| 3, 1, 2, 2) [18] (2| 2, 2, 1, 1) [] 0
[7] (2| 3, 1, 2, 2) [19] (2| 2, 2, 2, 2) [38] (2| _, _, 2, 2)
[7] (2| 3, 1, 2, 2) [21] (2| 2, 1, 1, 2) [45] (2| _, 1, _, 2)
[7] (2| 3, 1, 2, 2) [23] (2| 2, 1, 2, 2) [49] (2| _, 1, 2, 2)
[7] (2| 3, 1, 2, 2) [24] (2| 2, 1, 2, 1) [50] (2| _, 1, 2, _)
[8] (1| 3, 1, 2, 1) [12] (1| 1, 2, 2, 1) [51] (1| _, _, 2, 1)
[8] (1| 3, 1, 2, 1) [20] (1| 2, 2, 2, 1) [51] (1| _, _, 2, 1)
[9] (2| 1, 2, 1, 2) [11] (2| 1, 2, 2, 2) [52] (2| 1, 2, _, 2)
[9] (2| 1, 2, 1, 2) [13] (2| 1, 1, 1, 2) [53] (2| 1, _, 1, 2)
[9] (2| 1, 2, 1, 2) [15] (2| 1, 1, 2, 2) [54] (2| 1, _, _, 2)
[9] (2| 1, 2, 1, 2) [16] (2| 1, 1, 2, 1) [55] (2| 1, _, _, _)
[9] (2| 1, 2, 1, 2) [17] (2| 2, 2, 1, 2) [28] (2| _, 2, 1, 2)

7. Example on Lenses Data Set 129

[9] (2| 1, 2, 1, 2) [18] (2| 2, 2, 1, 1) [32] (2| _, 2, 1, _)
[9] (2| 1, 2, 1, 2) [19] (2| 2, 2, 2, 2) [29] (2| _, 2, _, 2)
[9] (2| 1, 2, 1, 2) [21] (2| 2, 1, 1, 2) [30] (2| _, _, 1, 2)
[9] (2| 1, 2, 1, 2) [23] (2| 2, 1, 2, 2) [31] (2| _, _, _, 2)
[9] (2| 1, 2, 1, 2) [24] (2| 2, 1, 2, 1) [] 0
[10] (3| 1, 2, 1, 1) [14] (3| 1, 1, 1, 1) [56] (3| 1, _, 1, 1)
[10] (3| 1, 2, 1, 1) [22] (3| 2, 1, 1, 1) [35] (3| _, _, 1, 1)
[11] (2| 1, 2, 2, 2) [13] (2| 1, 1, 1, 2) [54] (2| 1, _, _, 2)
[11] (2| 1, 2, 2, 2) [15] (2| 1, 1, 2, 2) [57] (2| 1, _, 2, 2)
[11] (2| 1, 2, 2, 2) [16] (2| 1, 1, 2, 1) [58] (2| 1, _, 2, _)
[11] (2| 1, 2, 2, 2) [17] (2| 2, 2, 1, 2) [29] (2| _, 2, _, 2)
[11] (2| 1, 2, 2, 2) [18] (2| 2, 2, 1, 1) [40] (2| _, 2, _, _)
[11] (2| 1, 2, 2, 2) [19] (2| 2, 2, 2, 2) [37] (2| _, 2, 2, 2)
[11] (2| 1, 2, 2, 2) [21] (2| 2, 1, 1, 2) [31] (2| _, _, _, 2)
[11] (2| 1, 2, 2, 2) [23] (2| 2, 1, 2, 2) [38] (2| _, _, 2, 2)
[11] (2| 1, 2, 2, 2) [24] (2| 2, 1, 2, 1) [39] (2| _, _, 2, _)
[12] (1| 1, 2, 2, 1) [20] (1| 2, 2, 2, 1) [42] (1| _, 2, 2, 1)
[13] (2| 1, 1, 1, 2) [15] (2| 1, 1, 2, 2) [59] (2| 1, 1, _, 2)
[13] (2| 1, 1, 1, 2) [16] (2| 1, 1, 2, 1) [60] (2| 1, 1, _, _)
[13] (2| 1, 1, 1, 2) [17] (2| 2, 2, 1, 2) [30] (2| _, _, 1, 2)
[13] (2| 1, 1, 1, 2) [18] (2| 2, 2, 1, 1) [47] (2| _, _, 1, _)
[13] (2| 1, 1, 1, 2) [19] (2| 2, 2, 2, 2) [31] (2| _, _, _, 2)
[13] (2| 1, 1, 1, 2) [21] (2| 2, 1, 1, 2) [44] (2| _, 1, 1, 2)
[13] (2| 1, 1, 1, 2) [23] (2| 2, 1, 2, 2) [45] (2| _, 1, _, 2)
[13] (2| 1, 1, 1, 2) [24] (2| 2, 1, 2, 1) [46] (2| _, 1, _, _)
[14] (3| 1, 1, 1, 1) [22] (3| 2, 1, 1, 1) [48] (3| _, 1, 1, 1)
[15] (2| 1, 1, 2, 2) [16] (2| 1, 1, 2, 1) [61] (2| 1, 1, 2, _)
[15] (2| 1, 1, 2, 2) [17] (2| 2, 2, 1, 2) [31] (2| _, _, _, 2)
[15] (2| 1, 1, 2, 2) [18] (2| 2, 2, 1, 1) [] 0
[15] (2| 1, 1, 2, 2) [19] (2| 2, 2, 2, 2) [38] (2| _, _, 2, 2)
[15] (2| 1, 1, 2, 2) [21] (2| 2, 1, 1, 2) [45] (2| _, 1, _, 2)
[15] (2| 1, 1, 2, 2) [23] (2| 2, 1, 2, 2) [49] (2| _, 1, 2, 2)
[15] (2| 1, 1, 2, 2) [24] (2| 2, 1, 2, 1) [50] (2| _, 1, 2, _)
[16] (2| 1, 1, 2, 1) [17] (2| 2, 2, 1, 2) [] 0
[16] (2| 1, 1, 2, 1) [18] (2| 2, 2, 1, 1) [62] (2| _, _, _, 1)
[16] (2| 1, 1, 2, 1) [19] (2| 2, 2, 2, 2) [39] (2| _, _, 2, _)
[16] (2| 1, 1, 2, 1) [21] (2| 2, 1, 1, 2) [46] (2| _, 1, _, _)
[16] (2| 1, 1, 2, 1) [23] (2| 2, 1, 2, 2) [50] (2| _, 1, 2, _)
[16] (2| 1, 1, 2, 1) [24] (2| 2, 1, 2, 1) [63] (2| _, 1, 2, 1)
[17] (2| 2, 2, 1, 2) [18] (2| 2, 2, 1, 1) [64] (2| 2, 2, 1, _)
[17] (2| 2, 2, 1, 2) [19] (2| 2, 2, 2, 2) [65] (2| 2, 2, _, 2)
[17] (2| 2, 2, 1, 2) [21] (2| 2, 1, 1, 2) [66] (2| 2, _, 1, 2)
[17] (2| 2, 2, 1, 2) [23] (2| 2, 1, 2, 2) [67] (2| 2, _, _, 2)
[17] (2| 2, 2, 1, 2) [24] (2| 2, 1, 2, 1) [68] (2| 2, _, _, _)
[18] (2| 2, 2, 1, 1) [19] (2| 2, 2, 2, 2) [69] (2| 2, 2, _, _)
[18] (2| 2, 2, 1, 1) [21] (2| 2, 1, 1, 2) [70] (2| 2, _, 1, _)
[18] (2| 2, 2, 1, 1) [23] (2| 2, 1, 2, 2) [68] (2| 2, _, _, _)
[18] (2| 2, 2, 1, 1) [24] (2| 2, 1, 2, 1) [71] (2| 2, _, _, 1)
[19] (2| 2, 2, 2, 2) [21] (2| 2, 1, 1, 2) [67] (2| 2, _, _, 2)
[19] (2| 2, 2, 2, 2) [23] (2| 2, 1, 2, 2) [72] (2| 2, _, 2, 2)
[19] (2| 2, 2, 2, 2) [24] (2| 2, 1, 2, 1) [73] (2| 2, _, 2, _)
[21] (2| 2, 1, 1, 2) [23] (2| 2, 1, 2, 2) [74] (2| 2, 1, _, 2)
[21] (2| 2, 1, 1, 2) [24] (2| 2, 1, 2, 1) [75] (2| 2, 1, _, _)
[23] (2| 2, 1, 2, 2) [24] (2| 2, 1, 2, 1) [76] (2| 2, 1, 2, _)

7. Example on Lenses Data Set 130

As a result of step 1, in the pattern set the following patterns are created and
corresponded sets of instances, creators of these patterns, are gathered:

()pid P P set of instances-creators of the pattern { ()}ipid R

[1] (2| 3, 2, 1, 2) {1}
[2] (3| 3, 2, 1, 1) {2}
[3] (2| 3, 2, 2, 2) {3}
[4] (1| 3, 2, 2, 1) {4}
[5] (2| 3, 1, 1, 2) {5}
[6] (3| 3, 1, 1, 1) {6}
[7] (2| 3, 1, 2, 2) {7}
[8] (1| 3, 1, 2, 1) {8}
[9] (2| 1, 2, 1, 2) {9}
[10] (3| 1, 2, 1, 1) {10}
[11] (2| 1, 2, 2, 2) {11}
[12] (1| 1, 2, 2, 1) {12}
[13] (2| 1, 1, 1, 2) {13}
[14] (3| 1, 1, 1, 1) {14}
[15] (2| 1, 1, 2, 2) {15}
[16] (2| 1, 1, 2, 1) {16}
[17] (2| 2, 2, 1, 2) {17}
[18] (2| 2, 2, 1, 1) {18}
[19] (2| 2, 2, 2, 2) {19}
[20] (1| 2, 2, 2, 1) {20}
[21] (2| 2, 1, 1, 2) {21}
[22] (3| 2, 1, 1, 1) {22}
[23] (2| 2, 1, 2, 2) {23}
[24] (2| 2, 1, 2, 1) {24}
[25] (2| 3, 2, _, 2) {1, 3}
[26] (2| 3, _, 1, 2) {1, 5}
[27] (2| 3, _, _, 2) {1, 3, 5, 7}
[28] (2| _, 2, 1, 2) {1, 9, 17}
[29] (2| _, 2, _, 2) {1, 3, 9, 11, 17, 19}
[30] (2| _, _, 1, 2) {1, 5, 9, 13, 17, 21}
[31] (2| _, _, _, 2) {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}
[32] (2| _, 2, 1, _) {1, 9, 18}
[33] (3| 3, _, 1, 1) {2, 6}
[34] (3| _, 2, 1, 1) {2, 10}
[35] (3| _, _, 1, 1) {2, 6, 10, 14, 22}
[36] (2| 3, _, 2, 2) {3, 7}
[37] (2| _, 2, 2, 2) {3, 11, 19}
[38] (2| _, _, 2, 2) {3, 7, 11, 15, 19, 23}
[39] (2| _, _, 2, _) {3, 11, 16, 19, 24}
[40] (2| _, 2, _, _) {3, 11, 18}
[41] (1| 3, _, 2, 1) {4, 8}
[42] (1| _, 2, 2, 1) {4, 12, 20}
[43] (2| 3, 1, _, 2) {5, 7}
[44] (2| _, 1, 1, 2) {5, 13, 21}
[45] (2| _, 1, _, 2) {5, 7, 13, 15, 21, 23}
[46] (2| _, 1, _, _) {5, 13, 16, 21, 24}
[47] (2| _, _, 1, _) {5, 13, 18}
[48] (3| _, 1, 1, 1) {6, 14, 22}
[49] (2| _, 1, 2, 2) {7, 15, 23}
[50] (2| _, 1, 2, _) {7, 15, 16, 23, 24}
[51] (1| _, _, 2, 1) {8, 12, 20}
[52] (2| 1, 2, _, 2) {9, 11}
[53] (2| 1, _, 1, 2) {9, 13}
[54] (2| 1, _, _, 2) {9, 11, 13, 15}
[55] (2| 1, _, _, _) {9, 16}

7. Example on Lenses Data Set 131

[56] (3| 1, _, 1, 1) {10, 14}
[57] (2| 1, _, 2, 2) {11, 15}
[58] (2| 1, _, 2, _) {11, 16}
[59] (2| 1, 1, _, 2) {13, 15}
[60] (2| 1, 1, _, _) {13, 16}
[61] (2| 1, 1, 2, _) {15, 16}
[62] (2| _, _, _, 1) {16, 18}
[63] (2| _, 1, 2, 1) {16, 24}
[64] (2| 2, 2, 1, _) {17, 18}
[65] (2| 2, 2, _, 2) {17, 19}
[66] (2| 2, _, 1, 2) {17, 21}
[67] (2| 2, _, _, 2) {17, 19, 21, 23}
[68] (2| 2, _, _, _) {17, 18, 23, 24}
[69] (2| 2, 2, _, _) {18, 19}
[70] (2| 2, _, 1, _) {18, 21}
[71] (2| 2, _, _, 1) {18, 24}
[72] (2| 2, _, 2, 2) {19, 23}
[73] (2| 2, _, 2, _) {19, 24}
[74] (2| 2, 1, _, 2) {21, 23}
[75] (2| 2, 1, _, _) {21, 24}
[76] (2| 2, 1, 2, _) {23, 24}

 Step 2: Pruning

Here the process of clearing exceptions between classes and lightening the
pattern set is made.

 Sub-step 2.1: Check up for Data Consistency

In this sub-step the patterns, belonging to different classes are paired. If one
pattern matches another pattern (but they have a different class value), then
the more general one is removed. If two patterns match each other then both of
them are removed.

1()pid P 1P 2()pid P 2P Pattern to be removed

[2] (3| 3, 2, 1, 1) [32] (2| _, 2, 1, _) [32] (2| _, 2, 1, _)
[2] (3| 3, 2, 1, 1) [40] (2| _, 2, _, _) [40] (2| _, 2, _, _)
[2] (3| 3, 2, 1, 1) [47] (2| _, _, 1, _) [47] (2| _, _, 1, _)
[2] (3| 3, 2, 1, 1) [62] (2| _, _, _, 1) [62] (2| _, _, _, 1)
[4] (1| 3, 2, 2, 1) [39] (2| _, _, 2, _) [39] (2| _, _, 2, _)
[6] (3| 3, 1, 1, 1) [46] (2| _, 1, _, _) [46] (2| _, 1, _, _)
[8] (1| 3, 1, 2, 1) [50] (2| _, 1, 2, _) [50] (2| _, 1, 2, _)
[8] (1| 3, 1, 2, 1) [63] (2| _, 1, 2, 1) [63] (2| _, 1, 2, 1)
[10] (3| 1, 2, 1, 1) [55] (2| 1, _, _, _) [55] (2| 1, _, _, _)
[12] (1| 1, 2, 2, 1) [58] (2| 1, _, 2, _) [58] (2| 1, _, 2, _)
[14] (3| 1, 1, 1, 1) [60] (2| 1, 1, _, _) [60] (2| 1, 1, _, _)
[16] (2| 1, 1, 2, 1) [51] (1| _, _, 2, 1) [51] (1| _, _, 2, 1)
[18] (2| 2, 2, 1, 1) [34] (3| _, 2, 1, 1) [34] (3| _, 2, 1, 1)
[18] (2| 2, 2, 1, 1) [35] (3| _, _, 1, 1) [35] (3| _, _, 1, 1)
[20] (1| 2, 2, 2, 1) [68] (2| 2, _, _, _) [68] (2| 2, _, _, _)
[20] (1| 2, 2, 2, 1) [69] (2| 2, 2, _, _) [69] (2| 2, 2, _, _)
[20] (1| 2, 2, 2, 1) [71] (2| 2, _, _, 1) [71] (2| 2, _, _, 1)
[20] (1| 2, 2, 2, 1) [73] (2| 2, _, 2, _) [73] (2| 2, _, 2, _)
[22] (3| 2, 1, 1, 1) [70] (2| 2, _, 1, _) [70] (2| 2, _, 1, _)
[22] (3| 2, 1, 1, 1) [75] (2| 2, 1, _, _) [75] (2| 2, 1, _, _)

7. Example on Lenses Data Set 132

 Sub-step 2.2: Retain Most General Rules

This sub-step is provided again within the classes. Patterns from equal
classes are compared and, conversely to the previous step, more concrete
patterns are deleted, i.e. the larger pattern is removed.

 1()pid P 1P 2()pid P 2P Pattern to be removed

 [1] (2| 3, 2, 1, 2) [25] (2| 3, 2, _, 2) [1] (2| 3, 2, 1, 2)
 [2] (3| 3, 2, 1, 1) [33] (3| 3, _, 1, 1) [2] (3| 3, 2, 1, 1)
 [3] (2| 3, 2, 2, 2) [25] (2| 3, 2, _, 2) [3] (2| 3, 2, 2, 2)
 [4] (1| 3, 2, 2, 1) [41] (1| 3, _, 2, 1) [4] (1| 3, 2, 2, 1)
 [5] (2| 3, 1, 1, 2) [26] (2| 3, _, 1, 2) [5] (2| 3, 1, 1, 2)
 [6] (3| 3, 1, 1, 1) [33] (3| 3, _, 1, 1) [6] (3| 3, 1, 1, 1)
 [7] (2| 3, 1, 2, 2) [27] (2| 3, _, _, 2) [7] (2| 3, 1, 2, 2)
 [8] (1| 3, 1, 2, 1) [41] (1| 3, _, 2, 1) [8] (1| 3, 1, 2, 1)
 [9] (2| 1, 2, 1, 2) [28] (2| _, 2, 1, 2) [9] (2| 1, 2, 1, 2)
 [10] (3| 1, 2, 1, 1) [56] (3| 1, _, 1, 1) [10] (3| 1, 2, 1, 1)
 [11] (2| 1, 2, 2, 2) [29] (2| _, 2, _, 2) [11] (2| 1, 2, 2, 2)
 [12] (1| 1, 2, 2, 1) [42] (1| _, 2, 2, 1) [12] (1| 1, 2, 2, 1)
 [13] (2| 1, 1, 1, 2) [30] (2| _, _, 1, 2) [13] (2| 1, 1, 1, 2)
 [14] (3| 1, 1, 1, 1) [48] (3| _, 1, 1, 1) [14] (3| 1, 1, 1, 1)
 [15] (2| 1, 1, 2, 2) [31] (2| _, _, _, 2) [15] (2| 1, 1, 2, 2)
 [16] (2| 1, 1, 2, 1) [61] (2| 1, 1, 2, _) [16] (2| 1, 1, 2, 1)
 [17] (2| 2, 2, 1, 2) [28] (2| _, 2, 1, 2) [17] (2| 2, 2, 1, 2)
 [18] (2| 2, 2, 1, 1) [64] (2| 2, 2, 1, _) [18] (2| 2, 2, 1, 1)
 [19] (2| 2, 2, 2, 2) [29] (2| _, 2, _, 2) [19] (2| 2, 2, 2, 2)
 [20] (1| 2, 2, 2, 1) [42] (1| _, 2, 2, 1) [20] (1| 2, 2, 2, 1)
 [21] (2| 2, 1, 1, 2) [30] (2| _, _, 1, 2) [21] (2| 2, 1, 1, 2)
 [22] (3| 2, 1, 1, 1) [48] (3| _, 1, 1, 1) [22] (3| 2, 1, 1, 1)
 [23] (2| 2, 1, 2, 2) [31] (2| _, _, _, 2) [23] (2| 2, 1, 2, 2)
 [24] (2| 2, 1, 2, 1) [76] (2| 2, 1, 2, _) [24] (2| 2, 1, 2, 1)
 [25] (2| 3, 2, _, 2) [27] (2| 3, _, _, 2) [25] (2| 3, 2, _, 2)
 [26] (2| 3, _, 1, 2) [27] (2| 3, _, _, 2) [26] (2| 3, _, 1, 2)
 [27] (2| 3, _, _, 2) [31] (2| _, _, _, 2) [27] (2| 3, _, _, 2)
 [27] (2| 3, _, _, 2) [36] (2| 3, _, 2, 2) [36] (2| 3, _, 2, 2)
 [27] (2| 3, _, _, 2) [43] (2| 3, 1, _, 2) [43] (2| 3, 1, _, 2)
 [28] (2| _, 2, 1, 2) [29] (2| _, 2, _, 2) [28] (2| _, 2, 1, 2)
 [29] (2| _, 2, _, 2) [31] (2| _, _, _, 2) [29] (2| _, 2, _, 2)
 [29] (2| _, 2, _, 2) [37] (2| _, 2, 2, 2) [37] (2| _, 2, 2, 2)
 [29] (2| _, 2, _, 2) [52] (2| 1, 2, _, 2) [52] (2| 1, 2, _, 2)
 [29] (2| _, 2, _, 2) [65] (2| 2, 2, _, 2) [65] (2| 2, 2, _, 2)
 [30] (2| _, _, 1, 2) [31] (2| _, _, _, 2) [30] (2| _, _, 1, 2)
 [30] (2| _, _, 1, 2) [44] (2| _, 1, 1, 2) [44] (2| _, 1, 1, 2)
 [30] (2| _, _, 1, 2) [53] (2| 1, _, 1, 2) [53] (2| 1, _, 1, 2)
 [30] (2| _, _, 1, 2) [66] (2| 2, _, 1, 2) [66] (2| 2, _, 1, 2)
 [31] (2| _, _, _, 2) [38] (2| _, _, 2, 2) [38] (2| _, _, 2, 2)
 [31] (2| _, _, _, 2) [45] (2| _, 1, _, 2) [45] (2| _, 1, _, 2)
 [31] (2| _, _, _, 2) [49] (2| _, 1, 2, 2) [49] (2| _, 1, 2, 2)
 [31] (2| _, _, _, 2) [54] (2| 1, _, _, 2) [54] (2| 1, _, _, 2)
 [31] (2| _, _, _, 2) [57] (2| 1, _, 2, 2) [57] (2| 1, _, 2, 2)
 [31] (2| _, _, _, 2) [59] (2| 1, 1, _, 2) [59] (2| 1, 1, _, 2)
 [31] (2| _, _, _, 2) [67] (2| 2, _, _, 2) [67] (2| 2, _, _, 2)
 [31] (2| _, _, _, 2) [72] (2| 2, _, 2, 2) [72] (2| 2, _, 2, 2)
 [31] (2| _, _, _, 2) [74] (2| 2, 1, _, 2) [74] (2| 2, 1, _, 2)

7. Example on Lenses Data Set 133

The resulting set after this step is:

()pid P P set of instances-creators of the pattern { ()}ipid R

[31] (2| _, _, _, 2) {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}
[33] (3| 3, _, 1, 1) {2, 6}
[41] (1| 3, _, 2, 1) {4, 8}
[42] (1| _, 2, 2, 1) {4, 12, 20}
[48] (3| _, 1, 1, 1) {6, 14, 22}
[56] (3| 1, _, 1, 1) {10, 14}
[61] (2| 1, 1, 2, _) {15, 16}
[64] (2| 2, 2, 1, _) {17, 18}
[76] (2| 2, 1, 2, _) {23, 24}

These patterns correspond to following rules:

P rule

(2| _, _, _, 2) Class=none,Tears=reduced
(3| 3, _, 1, 1) Class=soft,Age=young,Astigmatic=no,Tears=normal
(1| 3, _, 2, 1) Class=hard,Age=young,Astigmatic=yes,Tears=normal
(1| _, 2, 2, 1) Class=hard,Prescription=myope,Astigmatic=yes,Tears=normal
(3| _, 1, 1, 1) Class=soft,Prescription=hypermetrope,Astigmatic=no,Tears=normal
(3| 1, _, 1, 1) Class=soft,Age=pre-presbyopic,Astigmatic=no,Tears=normal

(2| 1, 1, 2, _)
Class=none,Age=pre-
presbyopic,Prescription=hypermetrope,Astigmatic=yes

(2| 2, 2, 1, _) Class=none,Age=presbyopic,Prescription=myope,Astigmatic=no
(2| 2, 1, 2, _) Class=none,Age=presbyopic,Prescription=hypermetrope,Astigmatic=yes

Thus, we have achieved 9 rules that are equal to the sufficient set of rules for
total description of the Lenses dataset given in [Cendrowska, 1987].

7.2.2 Recognition Process in PGN

We take the instance (age=young, prescription=myope, astigmatic=no,
tears=reduced) as a query. In practice this instance belongs to the class "none".

The corresponded numerical vector of the query is (? | 3,2,1,2)Q = .

P (,)IntersectionSize P Q

(2| _, _, _, 2) 1
(3| 3, _, 1, 1) 2/3
(1| 3, _, 2, 1) 1/3
(1| _, 2, 2, 1) 1/3
(3| _, 1, 1, 1) 1/3
(3| 1, _, 1, 1) 1/3
(2| 1, 1, 2, _) 0
(2| 2, 2, 1, _) 2/3
(2| 2, 1, 2, _) 0

The list with highest intersection size (1) contains only the first pattern,

which belongs to class 2. Class "2: none" is given as answer.

7. Example on Lenses Data Set 134

7.3 MPGN

The focus in the construction and realization of MPGN is to show the
advantages of multi-layer structures that can be easily stored in ArM archives.

Because of this, here we will point our attention in this direction using as
example Lenses dataset.

7.3.1 Training Process of MPGN

The training process of MPGN consists of generalization and pruning.
The step of generalization is similar to the generalization of PGN, but uses

multi-layer disposing of patterns, which decrease the number of intersections
and allows to operate with patterns in more structured manner.

The main focus of MPGN is just on this step, because on the base of already
created pattern set, different kinds of consequent steps can be examined.

The pruning step in MPGN differs from pruning of PGN, deleting vertexes of
pyramids that contradict each other.

 Generalization

After generalization of each class the multi-layer structures, containing
patterns with corresponded predecessor sets and successor sets are created.

Each pattern P is named ()pid P in the following manner:

[/ /]nclass nlayer number , where nclass and nlayer are the class and the layer,

in which the pattern belongs and number is unique number of the pattern within
chosen class and layer.

For alleviating the writing in the predecessors' and successors' sets only
unique number of the pattern is written. The class of these patterns is the same.
The layer in the predecessors' set is 1nlayer − and correspondingly the layer in

the successors' set is 1nlayer + .

We should remember that predecessors' sets of the instances (patterns in
layer 1) are empty and successors' sets of vertexes are also empty. The
vertexes can belongs to different layers.

Using the predecessors' sets and successors' sets, graphical representations
of created pyramids for each class are made.

7. Example on Lenses Data Set 135

 Class 1: "hard"

The generalization of class "hard" created 3 layers, containing 4 instances in
layer 1, 3 intermediate patterns in layer 2 and one vertex in the upper layer.

()pid P P Predecessor set Successor set

 Layer = 1
[1/1/1] (1| 3, 2, 2, 1) {} {1,2,3,1,2,3}
[1/1/2] (1| 3, 1, 2, 1) {} {2,3,2,3}
[1/1/3] (1| 1, 2, 2, 1) {} {1,2,1,2}
[1/1/4] (1| 2, 2, 2, 1) {} {1,2,1,2}

 Layer = 2
[1/2/1] (1| _, 2, 2, 1) {1,3,4} {1}
[1/2/2] (1| _, _, 2, 1) {1,2,3,4} {1}
[1/2/3] (1| 3, _, 2, 1) {1,2} {1}

 Layer = 3
[1/3/1] (1| _, _, 2, 1) {1,2,3} {}

Corresponding link-spaces of class 1 are:

Layer No: Attribute Attribute value pid set
Layer 1 1 age 1 pre-presbyopic : {P3}

2 presbyopic : {P4}
3 young : {P1,P2}

 2 prescription 1 hypermetrope : {P2}
2 myope : {P1,P3,P4}

 3 astigmatic 1 no : {}
2 yes : {P1,P2,P3,P4}

 4 tears 1 normal : {P1,P2,P3,P4}
2 reduced : {}

Layer 2 1 age 1 pre-presbyopic : {}
2 presbyopic : {}
3 young : {P3}

 2 prescription 1 hypermetrope : {}
2 myope : {P1}

 3 astigmatic 1 no : {}
2 yes : {P1,P2,P3}

 4 tears 1 normal : {P1,P2,P3}
2 reduced : {}

Layer 3 1 age 1 pre-presbyopic : {}
2 presbyopic : {}
3 young : {}

 2 prescription 1 hypermetrope : {}
2 myope : {}

 3 astigmatic 1 no : {}
2 yes : {P1}

 4 tears 1 normal : {P1}
2 reduced : {}

7. Example on Lenses Data Set 136

Figure 26. MPGN pyramid for class "hard" of Lenses dataset

Figure 26 shows the pyramid for class "hard".

 Class 2: "none"

The class "none" starts with more instances (15) and combinations between
them create more patterns. During the generalization four layers are created.

()pid P P Predecessor set Successor set

 Layer = 1
[2/1/1] (2|3,2,1,2) {} {1,3,4,11,13,17,18,19,38,42,1,3,4,1

1,13,17,18,19,38,42}
[2/1/2] (2|3,2,2,2) {} {1,2,4,8,12,13,17,37,42,1,2,4,8,12,

13,17,37,42}
[2/1/3] (2|3,1,1,2) {} {1,3,5,7,10,13,18,35,38,1,3,5,7,10,

13,18,35,38}
[2/1/4] (2|3,1,2,2) {} {1,2,5,6,7,8,9,13,35,37,1,2,5,6,7,8

,9,13,35,37}
[2/1/5] (2|1,2,1,2) {} {1,3,4,11,16,17,18,19,32,36,43,1,3,

4,11,16,17,18,19,32,36,43}
[2/1/6] (2|1,2,2,2) {} {1,2,4,8,12,16,17,33,36,43,44,1,2,4

,8,12,16,17,33,36,43,44}
[2/1/7] (2|1,1,1,2) {} {1,3,5,7,10,16,18,32,34,39,43,1,3,5

,7,10,16,18,32,34,39,43}
[2/1/8] (2|1,1,2,2) {} {1,2,5,6,7,8,9,16,33,34,39,40,43,44

,1,2,5,6,7,8,9,16,33,34,39,40,43,44
}

[2/1/9] (2|1,1,2,1) {} {6,7,8,30,39,40,41,43,44,6,7,8,30,3
9,40,41,43,44}

[2/1/10] (2|2,2,1,2) {} {1,3,4,11,14,15,17,18,19,20,21,22,2
3,31,1,3,4,11,14,15,17,18,19,20,21,
22,23,31}

[2/1/11] (2|2,2,1,1) {} {15,17,18,19,21,23,27,31,41,15,17,1
8,19,21,23,27,31,41}

[2/1/12] (2|2,2,2,2) {} {1,2,4,8,12,14,15,17,20,23,24,28,1,
2,4,8,12,14,15,17,20,23,24,28}

[2/1/13] (2|2,1,1,2) {} {1,3,5,7,10,14,15,18,21,22,25,29,1,
3,5,7,10,14,15,18,21,22,25,29}

[2/1/14] (2|2,1,2,2) {} {1,2,5,6,7,8,9,14,15,24,25,26,28,29
,1,2,5,6,7,8,9,14,15,24,25,26,28,29

7. Example on Lenses Data Set 137

}
[2/1/15] (2|2,1,2,1) {} {6,7,8,15,24,25,26,27,30,41,6,7,8,1

5,24,25,26,27,30,41}

 Layer = 2
[2/2/1] (2|_,_,_,2) {1,2,3,4,5,6,7,8,10,12,13,14} {1}
[2/2/2] (2|_,_,2,2) {2,4,6,8,12,14} {1,3}
[2/2/3] (2|_,_,1,2) {1,3,5,7,10,13} {1,7}
[2/2/4] (2|_,2,_,2) {1,2,5,6,10,12} {1,6,12}
[2/2/5] (2|_,1,_,2) {3,4,7,8,13,14} {1,2}
[2/2/6] (2|_,1,2,_) {4,8,9,14,15} {2,3,5}
[2/2/7] (2|_,1,_,_) {3,4,7,8,9,13,14,15} {2}
[2/2/8] (2|_,_,2,_) {2,4,6,8,9,12,14,15} {3}
[2/2/9] (2|_,1,2,2) {4,8,14} {1,2,3,5}
[2/2/10] (2|_,1,1,2) {3,7,13} {1,2,7}
[2/2/11] (2|_,2,1,2) {1,5,10} {1,6,7,11,12}
[2/2/12] (2|_,2,2,2) {2,6,12} {1,3,6,12}
[2/2/13] (2|3,_,_,2) {1,2,3,4} {1}
[2/2/14] (2|2,_,_,2) {10,12,13,14} {1,4}
[2/2/15] (2|2,_,_,_) {10,11,12,13,14,15} {4}
[2/2/16] (2|1,_,_,2) {5,6,7,8} {1}
[2/2/17] (2|_,2,_,_) {1,2,5,6,10,11,12} {6}
[2/2/18] (2|_,_,1,_) {1,3,5,7,10,11,13} {7}
[2/2/19] (2|_,2,1,_) {1,5,10,11} {6,7,11}
[2/2/20] (2|2,2,_,2) {10,12} {1,4,6,9,12}
[2/2/21] (2|2,_,1,_) {10,11,13} {4,7,10}
[2/2/22] (2|2,_,1,2) {10,13} {1,4,7,10}
[2/2/23] (2|2,2,_,_) {10,11,12} {4,6,9}
[2/2/24] (2|2,_,2,_) {12,14,15} {3,4}
[2/2/25] (2|2,1,_,_) {13,14,15} {2,4}
[2/2/26] (2|2,1,2,_) {14,15} {2,3,4,5}
[2/2/27] (2|2,_,_,1) {11,15} {4,8}
[2/2/28] (2|2,_,2,2) {12,14} {1,3,4}
[2/2/29] (2|2,1,_,2) {13,14} {1,2,4}
[2/2/30] (2|_,1,2,1) {9,15} {2,3,5,8}
[2/2/31] (2|2,2,1,_) {10,11} {4,6,7,9,10,11}
[2/2/32] (2|1,_,1,2) {5,7} {1,7}
[2/2/33] (2|1,_,2,2) {6,8} {1,3}
[2/2/34] (2|1,1,_,2) {7,8} {1,2}
[2/2/35] (2|3,1,_,2) {3,4} {1,2}
[2/2/36] (2|1,2,_,2) {5,6} {1,6,12}
[2/2/37] (2|3,_,2,2) {2,4} {1,3}
[2/2/38] (2|3,_,1,2) {1,3} {1,7}
[2/2/39] (2|1,1,_,_) {7,8,9} {2}
[2/2/40] (2|1,1,2,_) {8,9} {2,3,5}
[2/2/41] (2|_,_,_,1) {9,11,15} {8}
[2/2/42] (2|3,2,_,2) {1,2} {1,6,12}
[2/2/43] (2|1,_,_,_) {5,6,7,8,9} {}
[2/2/44] (2|1,_,2,_) {6,8,9} {3}

 Layer = 3
[2/3/1] (2|_,_,_,2) {1,2,3,4,5,9,10,11,12,13,14,16,20,22,

28,29,32,33,34,35,36,37,38,42}
{}

[2/3/2] (2|_,1,_,_) {5,6,7,9,10,25,26,29,30,34,35,39,40} {3}
[2/3/3] (2|_,_,2,_) {2,6,8,9,12,24,26,28,30,33,37,40,44} {4}
[2/3/4] (2|2,_,_,_) {14,15,20,21,22,23,24,25,26,27,28,29,

31}
{2}

[2/3/5] (2|_,1,2,_) {6,9,26,30,40} {3,4}
[2/3/6] (2|_,2,_,_) {4,11,12,17,19,20,23,31,36,42} {1}
[2/3/7] (2|_,_,1,_) {3,10,11,18,19,21,22,31,32,38} {}
[2/3/8] (2|_,_,_,1) {27,30,41} {}
[2/3/9] (2|2,2,_,_) {20,23,31} {1,2}
[2/3/10] (2|2,_,1,_) {21,22,31} {2}
[2/3/11] (2|_,2,1,_) {11,19,31} {1}
[2/3/12] (2|_,2,_,2) {4,11,12,20,36,42} {1}

 Layer = 4
[2/4/1] (2|_,2,_,_) {6,9,11,12} {}
[2/4/2] (2|2,_,_,_) {4,9,10} {}
[2/4/3] (2|_,1,_,_) {2,5} {}
[2/4/4] (2|_,_,2,_) {3,5} {}

7. Example on Lenses Data Set 138

Corresponded link-spaces of class 2 are:

Layer: attribute Attribute value pid set
Layer 1 1 age 1 pre-presbyopic: {P5,P6,P7,P8,P9}

2 presbyopic : {P10,P11,P12,P13,P14,P15}
3 young : {P1,P2,P3,P4}

 2 prescription 1 hypermetrope : {P3,P4,P7,P8,P9,P13,P14,P15}
2 myope : {P1,P2,P5,P6,P10,P11,P12}

 3 astigmatic 1 no : {P1,P3,P5,P7,P10,P11,P13}
2 yes : {P2,P4,P6,P8,P9,P12,P14,P15}

 4 tears 1 normal : {P9,P11,P15}
2 reduced : {P1,P2,P3,P4,P5,P6,P7,P8,P10,P12,P13,P14}

Layer 2 1 age 1 pre-presbyopic: {P16,P32,P33,P34,P36,P39,P40,P43,P44}
2 presbyopic :
{P14,P15,P20,P21,P22,P23,P24,P25,P26,P27,P28,P29,P31}
3 young : {P13,P35,P37,P38,P42}

 2 prescription 1 hypermetrope :
{P5,P6,P7,P9,P10,P25,P26,P29,P30,P34,P35,P39,P40}
2 myope : {P4,P11,P12,P17,P19,P20,P23,P31,P36,P42}

 3 astigmatic 1 no : {P3,P10,P11,P18,P19,P21,P22,P31,P32,P38}
2 yes :
{P2,P6,P8,P9,P12,P24,P26,P28,P30,P33,P37,P40,P44}

 4 tears 1 normal : {P27,P30,P41}
2 reduced : {P1,P2,P3,P4,P5,P9,P10,P11,P12,P13,P14,P16,
P20,P22,P28,P29,P32,P33,P34,P35,P36,P37,P38,P42}

Layer 3 1 age 1 pre-presbyopic: {}
2 presbyopic : {P4,P9,P10}
3 young : {}

 2 prescription 1 hypermetrope : {P2,P5}
2 myope : {P6,P9,P11,P12}

 3 astigmatic 1 no : {P7,P10,P11}
2 yes : {P3,P5}

 4 tears 1 normal : {P8}
2 reduced : {P1,P12}

Layer 4 1 age 1 pre-presbyopic: {}
2 presbyopic : {P2}
3 young : {}

 2 prescription 1 hypermetrope : {P3}
2 myope : {P1}

 3 astigmatic 1 no : {}
2 yes : {P4}

 4 tears 1 normal : {}
2 reduced : {}

7. Example on Lenses Data Set 139

Figure 27. MPGN pyramid for class "none" of Lenses dataset

Figure 27 shows the graphical representation of the class "none". The
possibility for one class to have several vertexes can be observed here. It is also
notable that vertexes can belongs to different layers. Here we have one vertex
in layer 2, three vertexes in layer 3 and four vertexes in the upper layer 4.

 Class 3: "soft"

The generalization of class 3 "soft" creates also 3 layer pyramid with one
vertex.

()pid P P Predecessor set Successor set

 Layer = 1
[3/1/1] (3| 3, 2, 1, 1) {} {1,4,5}
[3/1/2] (3| 3, 1, 1, 1) {} {1,2,5}
[3/1/3] (3| 1, 2, 1, 1) {} {1,3,4}
[3/1/4] (3| 1, 1, 1, 1) {} {1,2,3}
[3/1/5] (3| 2, 1, 1, 1) {} {1,2}

 Layer = 2
[3/2/1] (3| _, _, 1, 1) {1,2,3,4,5} {1}
[3/2/2] (3| _, 1, 1, 1) {2,4,5} {1}
[3/2/3] (3| 1, _, 1, 1) {3,4} {1}
[3/2/4] (3| _, 2, 1, 1) {1,3} {1}
[3/2/5] (3| 3, _, 1, 1) {1,2} {1}

 Layer = 3
[3/3/1] (3| _, _, 1, 1) {1,2,3,4,5} {}

7. Example on Lenses Data Set 140

Corresponding link-spaces of class 3 are:

Layer: attribute Attribute value pid set
Layer 1 1 age 1 pre-presbyopic : {P3,P4}

 2 presbyopic : {P5}
 3 young : {P1,P2}

 2 prescription 1 hypermetrope : {P2,P4,P5}
 2 myope : {P1,P3}

 3 astigmatic 1 no : {P1,P2,P3,P4,P5}
 2 yes : {}

 4 tears 1 normal : {P1,P2,P3,P4,P5}
 2 reduced : {}

Layer 2 1 age 1 pre-presbyopic : {P3}
 2 presbyopic : {}
 3 young : {P5}

 2 prescription 1 hypermetrope : {P2}
 2 myope : {P4}

 3 astigmatic 1 no : {P1,P2,P3,P4,P5}
 2 yes : {}

 4 tears 1 normal : {P1,P2,P3,P4,P5}
 2 reduced : {}

Layer 3 1 age 1 pre-presbyopic : {}
 2 presbyopic : {}
 3 young : {}

 2 prescription 1 hypermetrope : {}
 2 myope : {}

 3 astigmatic 1 no : {P1}
 2 yes : {}

 4 tears 1 normal : {P1}
 2 reduced : {}

Figure 28. MPGN pyramid for class "soft" of Lenses dataset

Figure 28 shows the pyramid for the class "soft".

 Pruning

The vertexes of pyramids of the three classes do not contradict. Because of
this the pyramids remains unchanged.

7. Example on Lenses Data Set 141

7.3.2 Recognition Process in MPGN

We take again the same instance (age=young, prescription=myope,
astigmatic=no, tears=reduced) as a query. The numerical vector of the query is

(? | 3,2,1,2)Q = .

The first phase of recognition traverses each class individually.

The vertex of the class "hard" is 1/ 3/1 (1| _, _,2,1)P = . The intersection

percentage is 0%. The recognition set of the first class is empty.

The vertex of the class "soft" is 3 / 3 /1 (3 | _, _,1,1)P = . The intersection

percentage is 50%. The recognition set of the first class is empty, because only
patterns with 100% intersection percentage are included in the set.

For the class "none" the vertex 2 / 4 /1 (2 | _,2, _, _)P = has 100% intersection

percentage and initial recognition set { 2 / 4 /1P } is created.

The predecessors' set of 2 / 4 /1P is { 2 / 3 / 6P , 2 / 3 / 9P , 2 / 3 /11P , 2 / 3 /12P }.

()pid P P P (,)IntersectionPercentage P Q Predecessors' set

[2/3/6] (2| _, 2, _,
_,

1 100% {4,11,12,17,19,20,23,31,36,42}

[2/3/9] (2| 2, 2, _,
_,

2 50% {20,23,31}

[2/3/11] (2| _, 2, 1,
_,

2 100% {11,19,31}

[2/3/12] (2| _, 2, _,
2)

2 100% {4,11,12,20,36,42}

Maximal cardinality is 2 and the set of patterns that have such cardinality and

100% intersection percentage is { 2 / 3 /11P , 2 / 3 /12P }. This set replace pattern

2 / 4 /1P in the recognition set.

The analysis of the predecessors' set of 2 / 3 /11P and 2 / 3 /12P shows the

following results.

For 2 / 3 /11P :

()pid P P P (,)IntersectionPercentage P Q Predecessors' set

[2/2/11] (2| _, 2, 1, 2) 3 100% {1,5,10}
[2/2/19] (2| _, 2, 1, _, 2 100% {1,5,10,11}
[2/2/31] (2| 2, 2, 1, _, 3 66.66% {10,11}

Maximal cardinality is 3 and 2 / 2 /11P replaces 2 / 3 /11P in the recognition set.

7. Example on Lenses Data Set 142

For 2 / 3 /12P :

()pid P P P (,)IntersectionPercentage P Q Predecessors' set

[2/2/4] (2| _, 2, _, 2) 2 100% {1,2,5,6,10,12}
[2/2/11] (2| _, 2, 1, 2) 3 100% {1,5,10}
[2/2/12] (2| _, 2, 2, 2) 3 66.66% {2,6,12}
[2/2/20] (2| 2, 2, _, 2) 3 66.66% {10,12}
[2/2/36] (2| 1, 2, _, 2) 3 66.66% {5,6}
[2/2/42] (2| 3, 2, _, 2) 3 66.66% {1,2}

Again the maximal cardinality is 3 and 2 / 2 /11P , which fulfill both conditions is

a candidate to replace 2 / 3 /12P in the recognition set. 2 / 3 /12P is removed,

because the new set is not empty. The new recognition set is { 2 / 2 /11P }, which

had already been included in the previous step.

Figure 29. The process of recognition in MPGN

From the instances 2 /1/1 (2 | 3,2,1,2)P = , 2 /1/ 5 (2 |1,2,1,2)P = ,

2 /1/10 (2 | 2,2,1,2)P = , which are in the predecessors' set of 2 / 2 /11P .the first fully

covers the query. There is a parameter which can mark the first layer not to be
given in the recognition process. Figure 29 shows the recognition process when
this first layer is excluded.

In the second phase, the recognition sets from all classes are compared and
maximal cardinality is estimated. Because two of the classes have empty
recognition sets and only one class gives some hypothesis, the class "none" is
given as an answer.

7. Example on Lenses Data Set 143

Conclusion
Here we have shown the behavior of PGN and MPGN and results from its

processing on the example of Lenses dataset.
We traversed all stages of PGN-classifier and we have demonstrated that PGN

produces the pattern set that is minimal and complete for covering the learning
set.

In the case of MPGN we showed the process of creating the main construction
elements on the example of the Lenses dataset.

Also we showed the possibilities for visualizing the processes of creating the
pyramids and the recognizing the queries.

7. Example on Lenses Data Set 144

8. Sensitivity Analysis 145

8 Sensitivity Analysis

Abstract
We made different experiments for studying the specific behavior of the

proposed algorithms and for comparing our results with results from other
classifiers.

Because PGN and MPGN as well as most of other classifiers deal with
categorical attributes we studied different discretizators in order to choose the
more convenient for our classifiers.

Further experiments follow the process of growing the learning sets and how
this reflects to the classification model and the accuracy of PGN and MPGN.

One particular study addressed the analysis of exit points of MPGN in order to
examine the significance of different branches of the recognition phase.

Other experiments analyzed the classifiers' behaviors when there is a noise
rush in the dataset attributes.

The overall accuracy and the F-measures in particular obtained from different
classifiers are compared and analyzed.

8.1 Global Frame of the Experiments

We will first discuss the main components in our experiments: chosen
datasets; the processes (such as cross-validation, noising, etc.); analyzed
constructs (classification models, accuracies, confusion matrices, etc.).

8.1.1 The Experimental Datasets

We have provided experiments with datasets from UCI Machine Learning
Repository [Frank and Asuncion, 2010].

8. Sensitivity Analysis 146

In these experiments the following datasets were used – Audiology,
Balance scale, Blood transfusion, Breast cancer wo, Car, CMC, Credit, Ecoli,
Forestfires, Glass, Haberman, Hayes-roth, Hepatitis, Iris, Lenses, Monks1,
Monks2, Monks3, Post operative, Soybean, TAE, Tic tac toe, Wine, Winequality-
red, and Zoo. The description of the used datasets is provided in Table 1.

Table 1. Datasets' Description

Dataset
Number of
attributes

Number of
classes

Number of
instances

Type of attributes

audiology 69 24 200 Categorical
balance_scale 4 3 624 Categorical
blood_transfusion 3 2 748 Real
breast_cancer_wo 9 2 699 Categorical
car 6 4 1728 Categorical
cmc 9 3 1473 Categorical, Integer
credit 15 2 690 Categorical, Integer, Real
ecoli 7 8 336 Real
forestfires 12 2 517 Real
glass 9 6 214 Real
haberman 3 2 306 Integer
hayes-roth 4 3 132 Categorical
hepatitis 19 2 155 Categorical, Integer, Real
iris 4 3 150 Real
lenses 4 3 24 Categorical
monks1 6 2 432 Categorical
monks2 6 2 601 Categorical
monks3 6 2 554 Categorical
post-operative 8 3 90 Categorical, Integer
soybean 35 19 307 Categorical
tae 5 3 151 Categorical, Integer
tic_tac_toe 9 2 958 Categorical
wine 13 3 178 Integer, Real
winequality-red 11 6 1599 Real
zoo 16 7 101 Categorical, Integer

Some of the datasets contain numerical values of attributes, which cause

additional questions of choosing appropriate discretization algorithm. As we have
already mentioned, discretization as pre-processing step is realized in PaGaNe.
We used Fayyad-Irani and Chi-square methods.

8.1.2 The Experiments

In order to receive more stable results we applied k -fold cross validation.

The process of cross validation in PaGaNe randomizes the input dataset, after
that creates k folds in which sequentially puts the instances from the dataset
until all instances are included in one of the folds. After that, k variants of the
learning set and examining set are created, each time using succession fold as
examining set and the set of other folds as learning set.

8. Sensitivity Analysis 147

PaGaNe has a functionality to export the learning sets and examining sets as
"arff"-files, which is an appropriate format for the knowledge environment of
Weka. We used the exported learning set and examining set by PaGaNe as input
files in Weka in order to achieve equality of the data in learning and recognition
processes for all classifiers that are compared.

In the part of analysis of preprocessing discretizing step we make 3k = fold
cross validation. In this way the proportion between learning and examining
sub-sets were respectively 2:1 (66.67%). For these experiments we use primary
variants of the datasets, choosing only the datasets with real parameters (Blood
transfusion, Ecoli, Forest fires, Glass, and Iris).

PGN and MPGN deal with nominal attributes. Consequently, in the
experiments we first discretize the numerical attributes using Chi-merge with
95% significance level. Here, again, in order to achieve equal condition for the
experiments with different classifiers, we used already discretized learning set
and examining set as input files in Weka.

In the part where we study the appropriate size of the learning set we made
experiments with 2,3,4,5k = fold cross validation in order to receive different
kinds of splitting between learning and examining set.

All other experiments are made using 5k = fold cross validation (the
proportion between learning and examining set – 4:1, i.e. 80%).

We made comparison with CMAR [Li et al, 2001] as representative of other
CAR-classifiers. We used the program realization of CMAR in the LUCS-KDD
Repository. CMAR is used with support threshold 1% and confidence threshold to
50%. The parameters are used as they are proposed by the experimental part of
the paper that firstly present CMAR [Li et al, 2001].

Also, the following classifiers, implemented in Weka, representatives of most
similar recognition models to CAR algorithms are used for comparison:

− Rules:
- OneR: one-level decision tree expressed in the form of a set of rules

that all test one particular attribute [Holte, 1993];
- JRip: implementation a propositional rule learner, Repeated

Incremental Pruning to Produce Error Reduction (RIPPER) [Cohen,
1995];

− Trees:
- J48 – a Weka implementation of C4.5 [Quinlan, 1993] that produces

a decision tree;
- REPTree – an extension of C4.5 [Witten and Frank, 2005], which

builds a decision tree using information gain reduction and prunes it
using reduced-error pruning.

The ratio of this choice is that CAR-classifiers, Rules and Trees have a similar
model representation language.

8. Sensitivity Analysis 148

8.1.3 The Analyzed Constructs

The most popular metric for comparing models created as a result of the
learning procedures in such types of classifiers as class association rules,
decision trees and decision rules is the number of the rules.

Especially for the MPGN algorithm there are four different exit points of the
recognition stage, each of them connected with a different part of the algorithm.
Gathering such statistics is realized in PaGaNe in order to do sensitivity analysis
and to study the behavior of the algorithm MPGN.

The confusion matrix is usually applied as a basis for analyzing the results of
the classifiers. The confusion matrix is m m× matrix (Table 2), where m is the
number of class labels. The rows indicate the class where the test query actually
belongs to. The columns show the class label assigned to the query by the
classifier. The numbers of correctly recognized instances are represented on the
diagonal.

Table 2. The structure of confusion matrix

 Cl.1 Cl.2 … Cl.m

Cl.1
Correctly
recognized queries
of Cl.1

Number of queries,
which are actually
of Cl.1, but were
predicted as Cl.2

…

Number of queries,
which are actually
of Cl.1, but were
predicted as Cl.m

Actual
number of
queries of
Cl.1

Cl.2

Number of queries,
which are actually
of Cl.2, but were
predicted as Cl.1

Correctly
recognized queries
of Cl.2

Number of queries,
which are actually
of Cl.2, but were
predicted as Cl.m

Actual
number of
queries of
Cl.2

… … … … …

Cl.m

Number of queries,
which are actually
of Cl.m, but were
predicted as Cl.1

Number of queries,
which are actually
of Cl.m, but were
predicted as Cl.2

…
Correctly
recognized queries
of Cl.m

Actual
number of
queries of
Cl.m

Predicted number of
queries of Cl.1

Predicted number of
queries of Cl.2

Predicted number of
queries of Cl.m

Total
number of
queries

Mainly classifiers usually are compared on the base of received accuracy. The

accuracy is the number of correct answers over the total number of the test
instances (queries).

More detailed analysis is made for each class label separately, using Recall,
Precision and F-Measure.

Recall for a given class label is the number of correct answers over the actual
number of the test instances (queries), or if we use the terms of confusion
matrix it is the diagonal value over the sum by row.

Precision for a given class label is the number of correct answers over the
predicted number of the test instances, i.e. the diagonal value over the sum by
column.

8. Sensitivity Analysis 149

F-measure is a parameter, which aims to accumulate information both for
precision and recall. There are different formulas for calculating F-measure. Here
F-measure is calculated as a harmonic mean of precision and recall:

2* *precision recall
F

precision recall
=

+
.

For more global analysis we use average values of these measures, which
characterize the dataset and classifier as a whole (not each class separately).

We use the Friedman test to detect statistically significant differences
between the classifiers in terms of average accuracy [Friedman, 1940]. The
Friedman test is a non-parametric test, based on the ranking of the algorithms
on each dataset instead of the true accuracy estimates. We use Average Ranks
ranking method, which is a simple ranking method, inspired by Friedman's
statistic [Neave and Worthington, 1992]. For each dataset the algorithms are
ordered according to the corresponded measure (accuracy, precision, etc.) and
are assigned ranks accordingly. The best algorithm receives rank 1, the second
– 2, etc. If two or more algorithms have equal value, they receive equal rank
which is mean of the virtual positions that had to receive such number of
algorithms if they were ordered consecutively each by other.

Let n is the number of observed datasets, k is the number of algorithms.

Let i
jr be the rank of algorithm j on dataset i . The average rank for each

algorithm is calculated as
1

1 k
i

j j
i

R r
n =

= ∑ . Under the null-hypothesis, which states

that all the algorithms are equivalent and so their ranks jR should be equal, the

Friedman statistic
2

2 2

1

12 (1)
(1) 4

k

F j
j

n k k
R

k k
χ

=

⎡ ⎤+
= −⎢ ⎥

+ ⎢ ⎥⎣ ⎦
∑

is distributed according to 2
Fχ with 1k − degrees of freedom.

The quantile values for 1k − degrees of freedom and probability α is give on
Table 3 [Korn and Korn, 1961].

Table 3. The quantile values of 2χ distribution for 1k − degrees of

freedom and probability α

Number of

classifiers k
2 3 4 5 6 7 8 9 10

0.05α = 3.841 5.991 7.815 9.488 11.070 12.592 14.067 15.507 16.919

0.10α = 2.706 4.605 6.251 7.779 9.236 10.645 12.017 13.362 14.684

8. Sensitivity Analysis 150

When null-hypothesis is rejected, we can proceed with the Nemenyi test

[Nemenyi, 1963] which is used when all classifiers are compared to each other.
The performance of two classifiers is significantly different if the corresponding
average ranks differ by at least the critical difference

(1)
6

k k
CD q

nα
+

=

where critical values qα are based on the Studentized range statistic divided by

2 . Some of the values of qα is given in Table 4 [Demsar, 2006].

Table 4. Critical values for the two tailed Nemenyi test

Number of
classifiers

2 3 4 5 6 7 8 9 10

0.05q 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164

0.10q 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

The results of the Nemenyi test are shown by means of critical difference

diagrams.
Our comparisons are based on the work of [Demsar, 2006]; he made a study

of different kinds of used techniques for comparisons between classifiers over
multiple datasets and recommended a set of simple, yet safe and robust non-
parametric tests for statistical comparisons of classifiers.

8.2 Choosing an Appropriate Discretizator

In our evaluation we made experiments with the following datasets which
contain real attributes – Blood transfusion, Ecoli, Forest fires, Glass, and Iris,
using three fold cross-validation. In these experiments primary variants of the
datasets (as they are in UCI repository) are used.

Chi-merge was examined with 90%, 95% and 99% significance level.
Fayyad-Irani is a non-parametric method.

Table 5 and Table 6 summarize the obtained overall accuracy in percentages

(Table 5), and in ranking (Table 6).

8. Sensitivity Analysis 151

Table 5. PGN accuracy (in percentage) for different discretization
methods

Accuracy Chi-merge: 90.00 Chi-merge: 95.00 Chi-merge: 99.00 Fayyad-Irani

blood_transfusion 66.44 60.55 72.86 76.21
ecoli 76.49 78.87 76.49 77.08
forestfires 56.47 57.06 53.77 54.54
glass 69.14 69.15 64.96 61.72
iris 96.00 96.00 94.67 94.67

Table 6. Ranking of PGN accuracy for different discretization
methods

Accuracy Chi-merge: 90.00 Chi-merge: 95.00 Chi-merge: 99.00 Fayyad-Irani

blood_transfusion 3 4 2 1
ecoli 3.5 1 3.5 2
forestfires 2 1 4 3
glass 2 1 3 4
iris 1.5 1.5 3.5 3.5

average 2.4 1.7 3.2 2.7

The Friedman test in this cases shows 2 3.54Fχ = , 0.05 6.251α = , which

means that the difference is not statistically distinctive.
Accuracy does not provide sufficient information to predict the separate class

labels. Because of this we continue the analysis using average recall, which
reflects more qualitative information for the received accuracy for each class
label. Table 7 (in percentage) and Table 8 (ranking results) show the obtained
average recalls for the examined datasets.

Table 7. PGN average recall (in percentage) for different
discretization methods

aver. Recall Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani

blood_transf. 57.233 57.167 58.933 50.000
ecoli 48.033 53.100 52.267 52.067
forestfires 56.467 57.167 53.633 54.633
glass 56.600 59.333 52.567 54.733
iris 96.500 96.567 93.967 95.267

Table 8. Ranking of PGN average recall for different discretization
methods

aver. Recall Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani

blood_transf. 2 3 1 4
ecoli 4 1 2 3
forestfires 2 1 4 3
glass 2 1 4 3
iris 2 1 4 3

average 2.4 1.4 3 3.2

8. Sensitivity Analysis 152

On the other hand, the precision gives more concrete information as so called

"measure of exactness". Table 9 (in percentage) and Table 10 (ranking results)
show the obtained average precision values for the examined datasets.

Table 9. PGN average precision (in percentages) for different
discretization methods

aver. Precision Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani

blood_transf. 56.367 56.067 46.567 38.100
ecoli 44.067 51.200 50.433 52.233
forestfires 56.533 57.200 53.667 54.667
glass 68.633 63.667 55.200 62.367
iris 95.767 95.667 95.233 94.900

Table 10. Ranking of PGN average precision for different
discretization methods

aver. Precision Chi-merge:90 Chi-merge:95 Chi-merge:99 Fayyad-Irani

blood_transf. 1 2 3 4
ecoli 4 2 3 1
forestfires 2 1 4 3
glass 1 2 4 3
iris 1 2 3 4

average 1.8 1.8 3.4 3

In a classification task, a precision value of 100% for a class label C means

that every item labeled as belonging to C does indeed belong to C, but says
nothing about the number of items from C that were not labeled correctly.
Contrary to that, a recall of 100% means that every item from class C was
labeled as belonging to class C, but says nothing about how many other items
were incorrectly also labeled as belonging to class C. In order to receive the
complex measure that reflects both aspects, we also examine F-measure, which
is harmonic mean of two measures above. The received F-measure is presented
respectively in Table 11 (percentages) and Table 12 (ranking values).

Table 11. PGN average F-measure (in percentages) for different
discretization methods

aver. F-measure Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani

blood_transf. 53.833 52.733 50.233 43.200
ecoli 44.033 50.367 49.067 50.133
forestfires 56.200 56.933 53.500 54.333
glass 58.300 58.400 52.267 54.033
iris 95.900 95.900 94.000 94.633

8. Sensitivity Analysis 153

Table 12. Ranking of PGN average F-measure for different
discretization methods

aver. F-measure Chi-merge: 90 Chi-merge: 95 Chi-merge: 99 Fayyad-Irani

blood_transf. 1 2 3 4
ecoli 4 1 3 2
forestfires 2 1 4 3
glass 2 1 4 3
iris 1.5 1.5 4 3

average 2.1 1.3 3.6 3

Figure 30. Comparison of different discretization methods

The analysis of the received results shows that Chi-merge discretization
method with 95% significance level gives the best results for all examined
measures. Close to it are the results from Chi-merge with 90% significance
level. Chi-merge with 99% significance level gave worse results because of the
significant fragmentation of the intervals. Fayyad-Irani method gives in some
cases very good results, but fails in other databases.

The overall experiments help to make the conclusion that it is best to use
Chi-merge discretization method with 95% significance level as the appropriate
discretizator for the next experiments.

8. Sensitivity Analysis 154

8.3 Studying the Size of the Learning Set

The aim of this part is to study the dependence of recognition accuracy from
the size of the learning set.

For instance, one of the experiments was made over the Iris dataset (Table
13 and Figure 31). As we can see half of the instances are enough to receive
stable good recognition for Iris dataset. The created model consists of about
eight patterns.

Table 13. The number of patterns and accuracy from PGN-classifier
for different split between learning set and examining set –
Iris dataset

Split
LS:ES

LS ES Patterns
(av.number)

Accuracy
(%)

1:4 30 120 6.0 90.50

1:3 37.5 112.5 6.0 92.46
1:2 50 100 6.3 93.33
1:1 75 75 7.5 94.67
2:1 100 50 8.0 94.67
3:1 112.5 37.5 8.3 94.65
4:1 120 30 8.4 94.67

Figure 31. The number of patterns and accuracy from PGN-classifier for different

split between learning set and examining set – Iris dataset

We conducted another experiment over the Glass dataset (Table 14 and
Figure 32). For this dataset, good recognition with relatively small number of
patterns is achieved in the case of about 140 instances. Increasing the number
of learning instances did not receive better accuracy and in parallel superfluously
expanded the pattern set.

8. Sensitivity Analysis 155

The number of instances in the learning set that is enough to achieve good
accuracy and tight pattern set highly would depend on the specific dataset.

Table 14. The number of patterns and accuracy from PGN-classifier
for different split between learning set and examining set –
Glass dataset

Split
LS:ES

LS ES Patterns
(av.number)

Accuracy
(%)

1:4 42.8 171.2 29.6 67.17
1:3 53.5 160.5 35.5 63.08
1:2 71.3 142.7 44.7 73.13
1:1 107 107 68.0 74.30
2:1 142.7 71.3 84.0 77.12
3:1 160.5 53.5 88.3 76.21
4:1 171.2 42.8 95.2 77.10

Figure 32. The number of patterns and accuracy from PGN-classifier for different

split between learning set and examining set – Glass dataset

PGN is a parameter free method, but it is advisable for the user to run it with
different training-learning splits in order to view the trade-off with size
(simplicity) and accuracy of the model. For future research we could develop a
wrapper procedure that solves this trade-off problem by using the minimum
description length principle. We observed that accuracy stabilizes for some
datasets but that the number of patterns increases. This is an indication that in
future research we could improve the pruning part of PGN.

8. Sensitivity Analysis 156

8.4 Examining the Exit Points of MPGN

During the design of MPGN we believe that the pyramidal network contains
enough information to classify. So we expect that a majority of unseen cases
can be classified by using the structure. In other words we expect that in the
recognition phase only few cases will have an empty recognition set. We are also
interested in how many cases have a recognition set with one class and how
many cases have multiple conflicting classes. The latter cases can be classified
on the basis of confidence or support. At the second step of the recognition
phase MPGN can fail in different situations:

− only one class is class-candidate – we sign this case as Exit point 1;
− several classes are class-candidates. In this case two strategies are

suggested in order to choose the best competitor: S1: from each class
choose single rule with maximal confidence within the class and compare
with others; and S2: find "confidence of recognition set", i.e. the number
of instances that are covered of patterns from recognition set of this
class over the number of all instances of this class and compare results.
In both strategies cases are classified based on maximal confidence (Exit
point 2) or maximal support (Exit point 3);

− empty recognition sets – in this case another algorithm is used – the
Exit point 4.

Firstly we will analyze the three groups: one class (Exit point 1), multiple
classes (Exit points 2 and 3) and no classes (Exit point 4). Secondly we will
examine more into detail the two strategies for multiple classes (exit points 2
and 3).

In Table 15 and Table 16 the obtained results – number of cases and number
of correct answers in cases, are presented respectively for the S1 and S2
recognition strategy.

Figure 33 and Figure 34 illustrate the percentage of different kinds of exits
for S1, respectively S2 recognition strategy. The unbroken line signs
percentages of different kinds of exits, the dashed line signs percentage of
correct ones (the number of correct exits divided by total number of queries).

As we can see the difference between two variants are not significant
because of the common constructions in the previous stages. In most cases the
recognition leads to exit 1, which means that applying of the MPGN is
worthwhile.

8. Sensitivity Analysis 157

Table 15. The exit points – total and correct answers for MPGN –
S1 recognition strategy

One

class
Multiple
classes

No
classes

One
class

Multiple
classes

No
classes

dataset
Exit
1

Exit
2

Exit
3

Exit
4

Correct
1

Correct
2

Correct
3

Correct
4

audiology 74.50 0.00 0.00 25.50 65.00 0.00 0.00 4.00
balance_scale 48.72 23.08 28.04 0.16 48.24 15.38 17.63 0.16
blood_transfusion 5.75 0.00 0.00 94.25 3.74 0.00 0.00 71.93
breast_cancer_wo 93.99 0.72 5.29 0.00 90.84 0.57 1.43 0.00
car 73.32 6.71 19.97 0.00 70.60 3.30 8.97 0.00
cmc 49.22 23.35 27.29 0.14 25.39 8.62 11.88 0.14
credit 90.14 5.22 4.64 0.00 79.86 3.48 2.32 0.00
ecoli 76.38 11.49 12.13 0.00 66.38 4.04 6.38 0.00
forestfires 66.34 14.89 18.76 0.00 38.10 7.74 10.06 0.00
glass 85.98 8.41 5.14 0.47 72.90 3.27 3.74 0.47
haberman 38.89 0.98 1.63 58.50 29.08 0.33 1.31 42.48
hayes-roth 74.24 4.55 21.21 0.00 57.58 3.03 3.79 0.00
hepatitis 96.13 1.94 1.94 0.00 78.71 1.94 1.29 0.00
iris 85.33 4.67 9.33 0.67 82.67 3.33 8.00 0.00
lenses 87.50 4.17 8.33 0.00 79.17 4.17 0.00 0.00
monks1 63.89 20.83 15.28 0.00 62.04 20.37 0.46 0.00
monks2 76.71 20.80 2.50 0.00 70.22 8.15 2.16 0.00
monks3 77.80 5.96 16.25 0.00 75.45 0.36 14.62 0.00
post-operative 72.22 23.33 4.44 0.00 45.56 4.44 2.22 0.00
soybean 92.12 2.17 2.45 3.26 81.25 1.09 0.54 0.00
tae 72.19 8.61 17.22 1.99 42.38 5.96 4.64 0.00
tic_tac_toe 84.34 0.73 14.93 0.00 82.78 0.63 12.73 0.00
wine 92.70 3.37 3.93 0.00 91.01 0.56 0.56 0.00
winequality-red 74.11 13.70 8.19 4.00 48.78 5.07 3.81 1.69
zoo 86.14 0.00 0.00 13.86 86.14 0.00 0.00 2.97

Figure 33. The exit points for MPGN – S1 recognition strategy

8. Sensitivity Analysis 158

Table 16. The exit points – total and correct answers for MPGN –
S2 recognition strategy

 One
class

Multiple
classes

No
classes

One
class

Multiple
classes

No
classes

dataset Exit
1

Exit
2

Exit
3

Exit
4

Correct
1

Correct
2

Correct
3

Correct
4

audiology 74.50 0.00 0.00 25.50 65.00 0.00 0.00 4.00
balance_scale 48.72 22.44 28.69 0.16 48.24 16.19 18.91 0.16
blood_transfusion 5.75 0.00 0.00 94.25 3.74 0.00 0.00 71.93
breast_cancer_wo 93.99 2.00 4.01 0.00 90.84 1.57 1.14 0.00
car 73.32 9.38 17.30 0.00 70.60 6.02 9.09 0.00
cmc 49.22 22.40 28.24 0.14 25.39 8.55 12.56 0.14
credit 90.14 4.78 5.07 0.00 79.86 3.48 2.75 0.00
ecoli 76.38 11.70 11.91 0.00 66.38 4.26 6.38 0.00
forestfires 66.34 15.09 18.57 0.00 38.10 7.93 10.06 0.00
glass 85.98 8.41 5.14 0.47 72.90 3.27 3.74 0.47
haberman 38.89 0.98 1.63 58.50 29.08 0.33 1.31 42.48
hayes-roth 71.21 9.85 18.94 0.00 55.30 7.58 4.55 0.00
hepatitis 96.13 1.94 1.94 0.00 78.71 1.94 1.29 0.00
iris 85.33 4.67 9.33 0.67 82.67 3.33 8.00 0.00
lenses 87.50 4.17 8.33 0.00 79.17 4.17 0.00 0.00
monks1 63.89 22.92 13.19 0.00 62.04 22.92 0.93 0.00
monks2 76.71 18.64 4.66 0.00 70.22 7.32 3.49 0.00
monks3 77.80 3.61 18.59 0.00 75.45 0.72 17.33 0.00
post-operative 72.22 20.00 7.78 0.00 45.56 2.22 4.44 0.00
soybean 92.12 2.17 2.45 3.26 81.25 1.09 0.54 0.00
tae 72.19 9.27 16.56 1.99 42.38 5.96 4.64 0.00
tic_tac_toe 84.34 3.34 12.32 0.00 82.78 1.67 11.17 0.00
wine 92.70 3.93 3.37 0.00 91.01 1.69 1.12 0.00
winequality-red 74.11 13.20 8.69 4.00 48.78 4.88 4.25 1.69
zoo 86.14 0.00 0.00 13.86 86.14 0.00 0.00 2.97

Figure 34. The exit points for MPGN – S2 recognition strategy

8. Sensitivity Analysis 159

Table 17 and Table 18 present the results of coverage and accuracy by each
case, respectively for S1 and S2 recognition strategy.

Table 17. The coverage and accuracy by exit points MPGN-S1
recognition strategy

 Coverage Accuracy
dataset Exit

1
Exit

2 or 3
Exit
4

Exit
1

Exit
2 or 3

Exit
4

audiology 74.50 0.00 25.50 87.25 0.00 15.69
balance_scale 48.72 51.12 0.16 99.01 64.58 100.00
blood_transfusion 5.75 0.00 94.25 65.12 0.00 76.31
breast_cancer_wo 93.99 6.01 0.00 96.65 33.33 0.00
car 73.32 26.68 0.00 96.29 45.99 0.00
cmc 49.22 50.64 0.14 51.59 40.48 100.00
credit 90.14 9.86 0.00 88.59 58.82 0.00
ecoli 76.38 23.62 0.00 86.91 44.14 0.00
forestfires 66.34 33.66 0.00 57.43 52.87 0.00
glass 85.98 13.55 0.47 84.78 51.72 100.00
haberman 38.89 2.61 58.50 74.79 62.50 72.63
hayes-roth 74.24 25.76 0.00 77.55 26.47 0.00
hepatitis 96.13 3.87 0.00 81.88 83.33 0.00
iris 85.33 14.00 0.67 96.88 80.95 0.00
lenses 87.50 12.50 0.00 90.48 33.33 0.00
monks1 63.89 36.11 0.00 97.10 57.69 0.00
monks2 76.71 23.29 0.00 91.54 44.29 0.00
monks3 77.80 22.20 0.00 96.98 67.48 0.00
post-operative 72.22 27.78 0.00 63.08 24.00 0.00
soybean 92.12 4.62 3.26 88.20 35.29 0.00
tae 72.19 25.83 1.99 58.72 41.03 0.00
tic_tac_toe 84.34 15.66 0.00 98.14 85.33 0.00
wine 92.70 7.30 0.00 98.18 15.38 0.00
winequality-red 74.11 21.89 4.00 65.82 40.57 42.19
zoo 86.14 0.00 13.86 100.00 0.00 21.43

Table 18. The coverage and accuracy by exit points MPGN-S2
recognition strategy

dataset Coverage Accuracy
 Exit

1
Exit

2 or 3
Exit
4

Exit
1

Exit
2 or 3

Exit
4

audiology 74.50 0.00 25.50 87.25 0.00 15.69
balance_scale 48.72 51.12 0.16 99.01 68.65 100.00
blood_transfusion 5.75 0.00 94.25 65.12 0.00 76.31
breast_cancer_wo 93.99 6.01 0.00 96.65 45.24 0.00
car 73.32 26.68 0.00 96.29 56.62 0.00
cmc 49.22 50.64 0.14 51.59 41.69 100.00
credit 90.14 9.86 0.00 88.59 63.24 0.00
ecoli 76.38 23.62 0.00 86.91 45.05 0.00
forestfires 66.34 33.66 0.00 57.43 53.45 0.00
glass 85.98 13.55 0.47 84.78 51.72 100.00
haberman 38.89 2.61 58.50 74.79 62.50 72.63
hayes-roth 71.21 28.79 0.00 77.66 42.11 0.00
hepatitis 96.13 3.87 0.00 81.88 83.33 0.00
iris 85.33 14.00 0.67 96.88 80.95 0.00

8. Sensitivity Analysis 160

lenses 87.50 12.50 0.00 90.48 33.33 0.00
monks1 63.89 36.11 0.00 97.10 66.03 0.00
monks2 76.71 23.29 0.00 91.54 46.43 0.00
monks3 77.80 22.20 0.00 96.98 81.30 0.00
post-operative 72.22 27.78 0.00 63.08 24.00 0.00
soybean 92.12 4.62 3.26 88.20 35.29 0.00
tae 72.19 25.83 1.99 58.72 41.03 0.00
tic_tac_toe 84.34 15.66 0.00 98.14 82.00 0.00
wine 92.70 7.30 0.00 98.18 38.46 0.00
winequality-red 74.11 21.89 4.00 65.82 41.71 42.19
zoo 86.14 0.00 13.86 100.00 0.00 21.43

From the coverage percentages we can seen that in the majority of cases the

recognition set contains one or multiple classes. Figure 35 gives the scatter plot
of the coverage for one class (X axis) and the coverage of multiple classes (Y
axis).

Figure 35. The scatterplot of the coverages for one class and multiple classes

There are four outliers: the datasets Audiology, Blood transfusion, Haberman
and Zoo. The analysis of the Blood transfusion dataset shows that from one side
there are contradictions between classes (6.4%) and from other side the
attribute values are very sparse and during the pruning phase almost all
patterns are pruned. Because of this the algorithm fall into Exit point 4. Similar
situation is for part of Haberman dataset. The distribution of the coverages of
datasets Audiology and Zoo have a different pattern. There are no cases with
multiple classes in the recognition sets. The cases with an empty recognition set
are representative and the accuracy of Exit point 4 is low.

8. Sensitivity Analysis 161

Figure 36. Scatter plot of Coverages and Accuracies for Exit point 1

The initial analysis is to check how good in terms of accuracy the different
exits are performing. Figure 36 gives the scatter plot with coverage on the X
axis and accuracy on the Y axis for Exit point 1. A general observation which can
be made is that the accuracies are high.

Figure 37 presents the scatter plot of coverages and accuracies for the cases
with multiple classes in the recognition set (Exit points 2 and 3). The accuracies
are as expected lower than for the cases with one class in the recognition set.
However in the corner "low accuracy, high coverage" there are no points
(datasets).

Figure 37. Scatter plot of Coverages and Accuracies for Exit points 2 and 3

8. Sensitivity Analysis 162

In this part of the recognition phase we are using support and confidence. In
future development we can extend our algorithm to become cost sensitive by
manipulating confidence or support.

In section 8.6 we will compare accuracies with other classifiers; here we will
consider the performance of the different exit points or recognition parts and
especially the difference between one class and multiple classes. Figure 38
illustrates the relative performance: the accuracy of the recognition part divided
by the mean accuracy of all classifiers.

Except for the post-operative dataset, the recognition based on one class
recognition set does a high quality job. The relative performance is higher than
one and as noted before the coverage is high or most datasets. Two lessons can
be learned from this. First, it is worthwhile to examine whether MPGN can be
used for ranking problems and campaign applications. Here we could only use
cases classified by the one class recognition set. Second, to improve accuracy
we should focus the recognition part with multiple classes. This influenced our
decision to try two different strategies (see section 5.3.2).

Figure 38. Relative performance of the recognition parts

over the mean accuracy of all classifiers

Figure 39 presents the scatter plot of the obtained accuracies for both
strategies.

We can conclude that Strategy 2 has a mean accuracy of 49% and Strategy 1
has a mean accuracy of 46%. In further research we could examine whether
other methods/classifiers outperform these two strategies. If so we could adapt
our recognition method here.

8. Sensitivity Analysis 163

The Friedman test shows 2 2.56Fχ = , 0.05 1.960α = , which means that the

MPGN-S2 statistically outperforms MPGN-S1.

Figure 39. Scatter plot of the obtained accuracies for MPGN-S1 and MPGN-S2

In conclusion, the analysis of different recognition parts learned us that the
initial idea of the PaGaNe algorithms works well and that for many cases the
recognition set contains only one and the correct class. Some datasets have a
specific distribution.

8.5 Noise in the Datasets

In the pruning phase we deleted patterns when there are contradictory cases
without looking at noise, outliers or confidence. This can be too rudimentary
when there is noise in the dataset. Therefore it is interesting to analyze the
performance of algorithms against noise. The received accuracy is determined
by two important factors:

− the inductive bias of the learning algorithm;
− the quality of the training data.

Given a learning algorithm, it is obvious that its classification accuracy
depends on the quality of the training data. Generally, there are two types of
noise sources [Wu, 1995]:

− attribute noise (the errors that are introduced in the attribute values of
the instances);

8. Sensitivity Analysis 164

− class noise (contradictory examples, i.e., the same examples with
different class labels; or misclassifications, i.e. instances labeled with
wrong classes).

Here we make experiments with artificial noising of datasets in order to study
the robustness of PGN and MPGN classifier.

The noising of the datasets has been introduced by choosing random instance
and attribute and replacing the value with arbitrary chosen possible for this
attribute value. The system keeps the information for the instances and position
when such changes are already made and does not make repetitive changing of
the same positions. Such replacing are made until a desired percentage of
noising is achieved.

We selected Monks1 dataset, which is a clear dataset with uniform class
distribution and made 5, 10, 15 and 20 % noising of the attributes.

Noising within attributes reflects to noising of class labels because of the
appearance of contradictory instances. Table 19 shows the resulting noise in
class labels (appearing contradictory instances).

Table 19. Resulting noise in class labels after noising the attributes
in Monks1 dataset

Percentage
of noising in attributes

Resulting noise
between class labels

0% 0.00 %
5% 6.00 %
10% 12.50 %
15% 17.25 %
20% 22.45 %

 PGN Behavior

We processed the clear dataset and noisy datasets over the 5-fold cross-
validation of PGN and checked the amount of the pattern sets and the obtained
accuracy, see Table 20.

Table 20. The number of patterns and accuracy from PGN-classifier
for noising datasets based on Monks1 dataset

Percentage
of noising in attributes

Patterns
(av.number)

Accuracy
(%)

0% 59.4 100.00
5% 108.8 92.36
10% 145.2 79.62
15% 153.8 71.77
20% 145.0 66.67

8. Sensitivity Analysis 165

Figure 40. The number of patterns and accuracy from PGN-classifier for noising

datasets based on Monks1 dataset

Table 20 and Figure 40 show the behavior of the amount of classification
model (number of patterns in the pattern set) and the accuracy of the PGN
classifier as a result of noising of Monsk1 dataset. The graphic affirms the
expectation that when the noise in the dataset has been increased the number
of rules would grow while the accuracy would decrease. The architecture of the
PGN classifier makes it sensitive of the available noise – the patterns become
more detailed and their number increases. The decrease in the number of
patterns in the case of 20% noising can be explained with the fact that the
dataset is quite different from the original and class labels have to conform to
quite different rules.

 MPGN Behavior

We made similar experiments with MPGN structure.
Table 21 and Figure 41 show the results for the MPGN classifier. The

expectation were that noising the datasets will cause deeper distortion of the
pyramids as a result of appearing more often of contradictory vertexes between
class labels. The graphic shows that for 5% and 10% the number of pruned
vertexes increase. The decrease after that maybe is by the same reason as in
PGN – the class labels change their profiles as a result of changing the dataset.

Table 21. The number of pruned vertexes and accuracy from MPGN-
classifier for noising datasets based on Monks1 dataset

Percentage
of noising in attributes

Vertexes
(av.number)

Accuracy
MPGN-S1 (%)

Accuracy
MPGN-S2 (%)

0% 782 82.900 85.916
5% 859 78.948 81.736
10% 1020 72.934 74.078
15% 937 64.374 66.690
20% 879 65.288 65.286

8. Sensitivity Analysis 166

Figure 41. The number of pruned vertexes and accuracy from MPGN-classifiers

for noising datasets based on Monks1 dataset

 Accuracy of Different Tested Classifiers for Noisy Datasets

The same dataset has been tested with other classifiers in order to study
their accuracy.

Table 22. The accuracy from different classifiers for noising datasets
based on Monks1 dataset

 PGN MPGN-S1 MPGN-S2 CMAR OneR JRip J48 REPTree

0% 100.00 82.90 85.92 100.00 74.98 87.53 94.68 88.91
5% 92.36 78.95 81.74 95.14 72.67 83.37 86.79 81.96
10% 79.62 72.93 74.08 87.27 68.73 75.73 81.92 77.06
15% 71.77 64.37 66.69 80.79 68.05 71.80 77.33 74.06
20% 66.67 65.29 65.29 74.31 65.96 66.02 71.30 65.72

Figure 42. The accuracy for different classifiers for noising datasets based on

Monks1

8. Sensitivity Analysis 167

Table 22 and Figure 42 show that all classifiers have relatively similar
decreasing of accuracy when noise in the datasets arises. The best performing
method in this experiment is CMAR. Also very stable is J48. The PGN and MPGN
are most sensitive to noise, which confirms our hypothesis that confidence-
prioritising approach has its disadvantages in noising datasets.

8.6 Comparison with Other Classifiers

We compared the proposed classifiers with some of those implemented in
Weka. We conducted the experiments with PGN, MPGN (with two recognition
strategies S1 and S2), CMAR as representative of CAR-classifiers, OneR and JRip
as representatives of decision rules classifiers, and J48 and REPTree as
representatives of decision trees.

The comparisons are two-fold measuring:
− overall accuracy;
− F-measure results.

8.6.1 Comparison with Overall Accuracy

In Table 23 the obtained results for the overall accuracy are shown.

Table 23. Percentage of overall accuracy of examined datasets for
PGN, MPGN-S1, MPGN-S2, CMAR, OneR, JRip, J48, and
REPTree

Datasets PGN MPGN-S1 MPGN-S2 CMAR OneR JRip J48 REPTree

audiology 75.50 69.00 69.00 59.18 47.00 69.50 72.00 62.50
balance_scale 77.89 81.41 83.49 86.70 60.10 71.95 66.18 67.15
breast_cancer_wo 96.43 92.85 93.56 93.85 91.85 93.28 94.28 93.99
car 92.59 82.87 85.71 81.77 70.03 86.75 90.80 88.20
cmc 49.90 46.03 46.64 53.16 47.25 50.38 51.60 50.17
credit 87.54 85.65 86.09 87.10 85.51 85.07 85.36 85.07
haberman 55.27 73.21 73.21 71.90 72.88 73.21 73.21 74.20
hayes-roth 81.94 65.22 67.49 83.42 50.77 78.12 68.23 73.53
hepatitis 80.65 81.94 81.94 84.52 81.94 77.42 79.36 79.36
lenses 74.00 83.00 83.00 88.00 62.00 83.00 83.00 80.00
monks1 100.00 82.9 85.92 100.00 74.98 87.53 94.68 88.91
monks2 73.06 80.52 81.02 59.74 65.73 58.73 59.90 63.90
monks3 98.56 90.43 93.50 98.92 79.97 98.92 98.92 98.92
post-operative 66.67 52.22 52.22 51.11 68.89 70.00 71.11 71.11
soybean 93.15 84.00 84.00 78.48 37.44 85.35 87.64 78.18
tae 52.94 52.88 52.88 35.74 45.76 34.43 46.97 40.43
tic_tac_toe 88.93 96.13 95.62 98.75 69.93 98.02 84.23 80.37
wine 96.09 92.19 93.87 91.70 78.63 90.45 87.03 88.16
winequality-red 64.98 59.35 59.60 56.29 55.54 53.72 58.22 57.03
zoo 98.10 89.24 89.24 94.19 73.29 88.19 94.14 82.19

8. Sensitivity Analysis 168

In order to apply Friedman’s test to measure statistical dissimilarity of

different classifiers we ranked the results (Table 24).

Table 24. Ranking by accuracy of PGN, MPGN-S1, MPGN-S2, CMAR,
OneR, JRip, J48, and REPTree

Datasets PGN MPGN-S1 MPGN-S2 CMAR OneR JRip J48 REPTree

audiology 1 4.5 4.5 7 8 3 2 6
balance_scale 4 3 2 1 8 5 7 6
breast_cancer_wo 1 7 5 4 8 6 2 3
car 1 6 5 7 8 4 2 3
cmc 5 8 7 1 6 3 2 4
credit 1 4 3 2 5 7.5 6 7.5
haberman 8 3.5 3.5 7 6 3.5 3.5 1
hayes-roth 2 7 6 1 8 3 5 4
hepatitis 5 3 3 1 3 8 6.5 6.5
lenses 7 3.5 3.5 1 8 3.5 3.5 6
monks1 1.5 7 6 1.5 8 5 3 4
monks2 3 2 1 7 4 8 6 5
monks3 5 7 6 2.5 8 2.5 2.5 2.5
post-operative 5 6.5 6.5 8 4 3 1.5 1.5
soybean 1 4.5 4.5 6 8 3 2 7
tae 1 2.5 2.5 7 5 8 4 6
tic_tac_toe 5 3 4 1 8 2 6 7
wine 1 3 2 4 8 5 7 6
winequality-red 1 3 2 6 7 8 4 5
zoo 1 4.5 4.5 2 8 6 3 7

average 2.975 4.625 4.075 3.85 6.8 4.85 3.925 4.9

The Friedman test shows as follows:
− the number of the datasets are 20n = ;

− the number of classifiers are 8k = ;

− the degree of freedom is 1 7k − = ;
− for this degree of freedom the null hypothesis critical values are

respectively – 0.05 14.067α = 0.10 12.017α = ;

− in our case 2 29.492Fχ = which means that the null-hypothesis is

rejected, i.e. the classifiers are statistically different.

This indicates that there are statistically significant differences in accuracy

among these classifiers. The rejecting of null-hypothesis of Friedman test gives
the assurance to make post-hoc Nemenyi test. In our case *0.611CD qα= ,

0.10 2.780q = , 0.05 3.031q = , i.e. 0.10 2.153CD = , 0.05 2.348CD = .

8. Sensitivity Analysis 169

In Table 25 the average ranks of the classifiers are shown. The classifiers are
ordered by average ranks. It should be noticed that PGN has best performance
from examined classifiers.

Table 25. Average ranks of the classifiers and distance to the
average rank of the first one

classifier Average rank
Distance between average rank of the classifier

and average rank of the first one

PGN 2.975 0
CMAR 3.850 0.875
J48 3.925 0.950
MPGN-S2 4.075 1.100
MPGN-S1 4.625 1.650
Jrip 4.850 1.875
REPTree 4.900 1.925
OneR 6.800 3.825

Figure 43. Visualisation of Nemenyi test results – 20 datasets

Figure 43 visualizes the results of the Nemenyi test (0.10 2.153CD =). All

groups of classifiers that are not significantly different are connected. From
these results we see that PGN has best overall performance between examined
classifiers and MPGN is competitive with J48, JRip and REPTree. The first four
classifiers (PGN, CMAR, J48, and MPGN-S2) significantly outperform OneR.

8. Sensitivity Analysis 170

8.6.2 Analyzing F-measures on Some Multi-class Datasets

The overall accuracy of a particular accuracy may be good in some cases,
and yet if might not be able to recognize some of the class labels for different
reasons – small percentage of presence of given class label, mixing with other
one, etc.

We present below the obtained results for F-measure in order to see more
detailed performance of different classifiers.

We make the experiments over datasets with two particular characteristics –
too many class labels, and unbalanced support of different class labels.

We make the analysis over Glass, Winequality-red, and Soybean datasets
from UCI-repository.

We choose F-measure as harmonic mean of recall (measure of completeness)
and precision (measure of exactness).

 Detailed Performance for Glass Dataset

Glass dataset has 6 class labels with very uneven distribution between them
(Table 26).

Table 26. Percentage of instances belonging to corresponded class
labels in Glass dataset

Class label
in Glass dataset

Percentage
of presence

2# 35.51
1# 32.71
7# 13.55
3# 7.94
5# 6.07
6# 4.21

Table 27 and Figure 44 present the F-measure for each class label from

different classifiers.

Table 27. Percentage of F-measure from tested classifiers
for Glass dataset

Class labels PGN MPGN-S1 MPGN-S2 OneR CMAR Jrip J48 REPTree

2# (35.5%) 80.3 81.6 82.2 57.5 79.7 67.9 78.1 75.2
1# (32.7%) 80.3 81.1 81.1 64.4 80.5 69.0 76.5 70.1
7# (13.6%) 89.7 89.7 89.7 53.8 90.3 85.7 84.2 67.8
3# (7.9%) 51.9 59.5 57.9 0.0 38.5 16.0 29.6 34.5
5# (6.1%) 58.1 69.2 69.2 0.0 64.0 53.8 64.5 21.1
6# (4.2%) 88.9 94.1 94.1 0.0 77.8 60.0 55.6 80.0

8. Sensitivity Analysis 171

Figure 44. F-measure for examined classifiers for class-labels of Glass dataset

As we can see PGN and MPGN have good performance for each of the class
labels. For instance low-presented class label "3#" is not good performed by
CMAR, OneR, JRip, J48 and REPTree; "5#" – from OneR and REPTree; "6#" –
from OneR (F-measures are less than 50%).

 Detailed Performance for Winequality-red Dataset

Winequality-red dataset has 6 class labels with a variety of distribution (Table
28).

Table 28. Percentage of instances belonging to corresponded class
labels in Winequality-red dataset

Class label
in Winequality-red dataset

Percentage
of presence

5# 42.59
6# 39.90
7# 12.45
4# 3.32
8# 1.13
3# 0.63

Table 29 and Figure 45 show F-measure for each class label from different

classifiers.

8. Sensitivity Analysis 172

Table 29. Percentage of F-measure from tested classifiers
for Winequality-red dataset

Class labels PGN MPGN-S1 MPGN-S2 CMAR OneR Jrip J48 REPTree

5# 74.7 26.7 66.7 70.2 65.7 65.7 68.9 65.8
6# 61.9 24.7 51.4 44.0 56.5 47.4 56.7 57.3
7# 48.6 46.3 44.9 40.6 0.0 28.9 36.1 35.9
4# 0.0 3.2 0.0 0.0 0.0 0.0 0.0 2.9
8# 20.0 12.5 14.3 0.0 0.0 0.0 0.0 0.0
3# 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 45. F-measure for examined classifiers for Winequality-red dataset

Practically, the class labels with few training instances are recognized only by
PGN and MPGN; class "4#" is recognized by REPTree also. The least presented
class cannot be detected by any algorithm.

 Detailed Performance for Soybean Dataset

Soybean dataset has 19 class labels with different groups of distribution
(Table 30).

Table 30. Percentage of instances belonging to corresponded class
labels in Soybean dataset

Class label
in Soybean dataset

Percentage
of presence

alternarialeaf-spot 13.029
brown-spot 13.029
frog-eye-leaf-spot 13.029
phytophthora-rot 13.029
anthracnose 6.515

8. Sensitivity Analysis 173

brown-stem-rot 6.515
bacterial-blight 3.257
bacterial-pustule 3.257
charcoal-rot 3.257
diaporthe-stem-canker 3.257
downy-mildew 3.257
phyllosticta-leaf-spot 3.257
powdery-mildew 3.257
purple-seed-stain 3.257
rhizoctonia-root-rot 3.257
cyst-nematode 1.954
diaporthe-pod-&-stem-blight 1.954
herbicide-injury 1.303
2-4-d-injury 0.326

Table 31 and Figure 46 show F-measure for each class label from different

classifiers.
Here the class with lowest support "2-4-d-injury" is not recognized by any

classifier because of the very low presence (1 instance) – it falls or in the
learning set either in the examining set.

As we can see PGN recognizes successfully all other class labels instead of
differences of their support. J48 also recognizes well but fails in low presented
classes. MPGN has relatively well behavior.

Table 31. Percentage of F-measure from tested classifiers
for Soybean dataset

Class labels PGN MPGN-
S1

MPGN-
S2

CMAR OneR Jrip J48 REPTree

alternarialeaf-spot 86.7 77.4 77.4 93.0 35.8 62.3 89.2 50.7
brown-spot 91.8 74.7 74.7 73.4 38.2 71.9 87.5 58.2
frog-eye-leaf-spot 83.8 75.7 75.7 51.6 69.6 61.7 87.8 52.3
phytophthora-rot 100.0 100.0 100.0 91.9 71.2 76.8 95.2 73.3
anthracnose 100.0 93.0 93.0 94.7 76.9 81.1 89.5 75.0
brown-stem-rot 100.0 97.4 97.4 70.3 0.0 100.0 88.4 54.9
bacterial-blight 90.0 75.0 75.0 73.3 0.0 0.0 90.0 30.8
bacterial-pustule 90.0 85.7 85.7 80.0 0.0 75.0 85.7 42.9
charcoal-rot 100.0 100.0 100.0 100.0 28.6 94.7 100.0 57.1
diaporthe-stem-canker 100.0 88.9 88.9 100.0 41.7 84.2 88.9 42.9
downy-mildew 100.0 100.0 100.0 95.2 0.0 82.4 100.0 0.0
phyllosticta-leaf-spot 70.6 42.9 42.9 100.0 0.0 33.3 82.4 0.0
powdery-mildew 100.0 100.0 100.0 16.7 0.0 75.0 90.0 0.0
purple-seed-stain 95.2 100.0 100.0 100.0 0.0 88.9 82.4 46.2
rhizoctonia-root-rot 100.0 75.0 75.0 100.0 0.0 75.0 100.0 46.2
cyst-nematode 100.0 100.0 100.0 100.0 0.0 50.0 92.3 0.0
diaporthe-pod-&-stem-
blight 100.0 90.9 90.9 57.1 50.0 66.7 66.7 54.5
herbicide-injury 88.9 40.0 40.0 82.4 0.0 57.1 75.0 40.0
2-4-d-injury 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8. Sensitivity Analysis 174

Figure 46. F-measure for examined classifiers for Soybean dataset

Looking at the results of the overall accuracy as well as refined analysis of

the behavior of classifiers over multi-classes non-uniform distributed datasets
we can conclude that our expectations that PGN-strategy for focusing more to
the confidence than to support has a potential to create vivid classification
algorithms.

Conclusion
We made experiments with 25 datasets from UCI machine learning

repository. The experiments were performed using data mining environment
PaGaNe and the knowledge analysis system Weka and LUCS-KDD Repository.

One series of experiments focused on the obtained accuracy when
preprocessing real data with different discretizators, realized in PaGaNe. We
made experiments with Blood transfusion, Ecoli, Forest fires, Glass, and Iris
datasets. We found that in general PGN-classifier trained on data preprocessed
by Chi-merge achieves lower classification.

Other experiments studied the process of growing the learning sets and how
this reflects to the classification model and the accuracy of PGN and MPGN. In
the case of Iris and Glass dataset we studied the critical point of the amount of
the learning set, in which classification model is relatively compact and the
received accuracy stands relatively equal with the accuracy, received from
bigger learning set. Of course this critical point highly depends on the dataset
and is different for different ones.

8. Sensitivity Analysis 175

The analysis of exit points of MPGN showed that in most cases the build
constructs lead to excluding only one class as best competitor.

Another experiment was aimed to analyze the depending of classifiers'
behaviors when the noise rush in the dataset attributes on the case of Monks1
dataset. We showed that noising in the dataset significantly worsens the
accuracy of PGN, which by its construction keeps well in clear datasets.
However, experiments with other classifiers show that they did not resist noising
attacks also.

We made the comparison of overall accuracy between PGN, MPGN (two
recognition strategies – S1 and S2), CMAR, OneR, JRip, J48 and REPTree. The
Friedman test showed statistical difference between tested classifiers. The
post-hoc Nemenyi test showed that our PGN has best overall performance
amongst examined classifiers and MPGN is competitive with J48, JRip and
REPTree. The first four classifiers (PGN, CMAR, J48, and MPGN-S2) significantly
outperform OneR.

The analysis of F-measures for different datasets with multiple classes and
non-uniform distribution show that PGN and MPGN have not only good
recognition accuracy for the chosen dataset, but also they recognize small
classes controversy to the other classifiers (for instance OneR), which cannot
construct recognition model for small class labels.

8. Sensitivity Analysis 176

Conclusion and Future Work 177

9 Conclusions and Future Work

9.1 Conclusions

The goals of this thesis were two-fold:
− to introduce a parameter-free class association rule algorithm, which

focuses primarily on the confidence of the association rules and only in a
later stage on the support of the rules. The main purpose is to provide a
proof of concept for this new approach and collect evidence about its
potential;

− to show the advantages of using multidimensional numbered information
spaces for memory structuring in data mining processes on the example
of realization of proposed class association rule algorithms.

In order to achieve these goals, several tasks were solved:
1. An introduction and survey of the scientific area of Data Mining and

Knowledge Discovery and especially of the CAR Algorithms is made.
Because most of examined classification models focus on categorical
attributes, a short examination of discretization methods is made. A brief
overview of already existing open source data mining environments
aimed to support research work, as well as implications on real work, is
presented.

2. An overview of different kinds of access methods is made. A taxonomy
of access methods defining clearly the place of Multi-Dimensional
Numbered Information Spaces in the frame of this taxonomy is shown.
A comprehensive analysis of the possibilities of Multi-Dimensional
Numbered Information Spaces, their main elements and functions is
presented.

3. Two specialized algorithms, PGN and MPGN, are developed and a
detailed theoretical description is provided.

Conclusion and Future Work 178

4. A software of the proposed algorithms within the frame of the global
data mining environment PaGaNe has been developed.

5. A comprehensive example, based on the Lenses Dataset, which
illustrates the work of the algorithms, was shown.

6. A sensitivity analysis of the PGN and MPGN algorithms was made. We
have carried out experiments with 25 datasets from UCI machine
learning repository. The experiments were made using data mining
environment PaGaNe, knowledge analysis system Weka, and LUCS-KDD
Repository.

7. The experiments that study received accuracy when preprocess real data
with different discretizators show Chi-merge with 95% significance level
as best appropriate.

8. The analysis of exit points of MPGN showed that in most cases the build
constructs lead to excluding only one class as best competitor.
Comparing the results of strategies S1 and S2 shows the preference of
choosing rule-set criterion against one rule in the competition.

9. The analysis of dependency of classifiers' behaviors when the noise rush
in the dataset attributes shows that noising in the dataset significantly
worsens the accuracy of PGN, which by its construction performs well in
clear datasets. But experiments with the other classifiers show that they
also did not behave well under noising attacks.

10. The comparison of overall accuracy between PGN, MPGN (two
recognition strategies – S1 and S2), CMAR, OneR, JRip, J48 and REPTree
using Friedman test showed statistical difference between tested
classifiers. The post-hoc Nemenyi test showed that PGN has best overall
performance between examined classifiers and MPGN is competitive with
J48, JRip and REPTree. The first four classifiers (PGN, CMAR, J48, and
MPGN-S2) significantly outperform OneR.

11. The analysis of F-measures for multi-classes datasets showed that PGN
and MPGN have not only good recognition accuracy, but also they
recognize small classes controversy better in comparison to other
classifiers (for instance OneR) which fail to construct recognition model
for small class labels.

12. Additional comparisons of PGN and MPGN with already examined as well
as other types of classifiers, such as CAR-classifiers (CMAR), Rules
(OneR, JRip), Trees (J48; REPTree), Lazy (Ibk, KStar), Bayes (BayesNet,
NaiveBayes), Ensemble – Bagging (RandomForest), Support Vector
Machines (SMO), Neural Networks (MultilayerPreceptron) is conducted
and given in the Appendix.

Conclusion and Future Work 179

Main contributions can be summarized as:
− a new CAR-classifier PGN that questions the common approach to

prioritize the support over the confidence and focuses on confidence first
by retaining only 100% confidence rules has been elaborated;

− a method for effective building and storing of pattern set in multi-layer
structure MPGN during the process of associative rule mining using the
possibilities of multidimensional numbered information spaces has been
developed;

− software of proposed algorithms and structures has been implemented
in the frame of data mining environment system PaGaNe;

− the conducted experiments prove the vividness of proposed approaches
showing the good performance of PGN and MPGN in comparison with
other classifiers from CAR, rules and trees, and especially in the case of
multi-class datasets with uneven distribution of the class labels.

9.2 Directions for Future Research

This work highlighted some possible directions for further research which
could tackle areas such as:

− implementing PGN pruning and recognition ideas over pyramidal
structures of MPGN;

− improving the pruning part of PGN in order to accommodate phenomena
that for some datasets increasing the amount of learning set leads to
increasing of the number of pattern set but without increasing of
accuracy;

− analyzing different variants of pruning and recognition algorithms based
on statistical evidence, structured over already created pyramidal
structures of patterns in order to achieve better recognition results;

− proposing different techniques for rule quality measure taking into
account confidence of the rule in order to overcome the process of
rejecting one rule preferring other one, rarely observed in the dataset;

− expanding the functionalities of the data mining environment PaGaNe for
automatic subset selection;

− testing the possibilities of MPGN using exit-1 recognition in the field of
campaign management;

− applying the established algorithms PGN and MPGN in different
application areas such as business intelligence or global monitoring.

Conclusion and Future Work 180

Appendix 181

10 Appendix

10.1 Results of 5-fold Cross Validation
for Different Classifiers

The results of 5-fold cross-validation for following classifiers:
− PGN group – PGN, MPGN-S1, MPGN-S2;
− CARs – CMAR;
− Rules – OneR, JRip;
− Trees – J48; REPTree;
− Lazy – Ibk, KStar;
− Bayes – BayesNet, NaiveBayes;
− Others – RandomForest (Ensemble – Bagging), SMO (Support Vector

Machines), MultilayerPreceptron (Neural Networks)

Table 32. The accuracy of 5-fold cross-validation for classifiers,
representatives of PGN-group, CARs, Rules, Trees, Lazy,
Bayes, SVM, and Neural Networks

 PGN
MPGN-
S1

MPGN-
S2

CMAR One R Jrip J48
REP
Tree

IB k K Star
Bayes
Net

Naïve
Bayes

Random
Forest

SMO
Multil.
Perc.

audiology01 77.50 67.5 67.5 35.9 45.00 67.50 70.00 57.50 80.00 72.50 67.50 60.00 77.50 72.50 77.50
audiology02 82.50 72.5 72.5 72.5 50.00 80.00 85.00 65.00 85.00 85.00 82.50 67.50 67.50 82.50 85.00
audiology03 65.00 57.5 57.5 50 50.00 60.00 55.00 62.50 65.00 70.00 55.00 57.50 70.00 70.00 62.50
audiology04 75.00 72.5 72.5 70 47.50 67.50 77.50 65.00 77.50 77.50 75.00 70.00 80.00 77.50 85.00
audiology05 77.50 75 75 67.5 42.50 72.50 72.50 62.50 75.00 75.00 75.00 67.50 72.50 80.00 82.50
audiology 75.50 69.00 69.00 59.18 47.00 69.50 72.00 62.50 76.50 76.00 71.00 64.50 73.50 76.50 78.50
balance_scale01 80.65 81.45 83.06 87.10 59.68 70.16 65.32 66.13 86.29 85.48 87.10 87.10 75.81 87.10 100.00
balance_scale02 72.00 74.40 76.80 82.40 56.00 69.60 67.20 67.20 79.20 81.60 87.20 87.20 74.40 88.00 100.00
balance_scale03 80.00 84.80 87.20 87.20 61.60 72.80 68.80 71.20 88.00 89.60 92.80 92.80 73.60 90.40 98.40
balance_scale04 81.60 84.80 88.00 90.40 64.00 72.80 64.00 68.00 91.20 92.00 94.40 94.40 82.40 90.40 99.20
balance_scale05 75.20 81.60 82.40 86.40 59.20 74.40 65.60 63.20 81.60 84.80 91.20 91.20 71.20 91.20 96.00
balance_scale 77.89 81.41 83.49 86.70 60.10 71.95 66.18 67.15 85.26 86.70 90.54 90.54 75.48 89.42 98.72
blood_transfusion01 57.05 73.15 73.15 74.50 77.18 74.50 75.17 77.18 75.84 76.51 75.17 75.84 75.17 76.51 75.17
blood_transfusion02 63.76 78.52 78.52 79.20 78.52 79.19 79.19 79.19 75.17 78.52 76.51 76.51 77.18 78.52 76.51
blood_transfusion03 70.67 78.67 78.67 78.67 79.33 78.67 78.67 79.33 77.33 79.33 70.67 72.67 77.33 79.33 71.33
blood_transfusion04 70.00 66.67 66.67 66.67 66.00 66.67 66.67 66.00 67.33 66.67 65.33 65.33 66.67 66.67 64.67
blood_transfusion05 66.67 81.33 81.33 81.33 82.00 81.33 81.33 82.00 82.00 82.00 78.00 78.00 82.00 82.00 82.00
blood_transfusion 65.63 75.67 75.67 76.07 76.61 76.07 76.21 76.74 75.53 76.61 73.14 73.67 75.67 76.61 73.94
breast_cancer_wo01 97.12 94.24 94.96 94.24 93.53 92.81 92.81 94.24 96.40 96.40 97.12 97.12 96.40 93.53 98.56
breast_cancer_wo02 99.29 95.71 96.43 96.43 95.00 95.71 97.86 97.86 97.14 97.14 99.29 99.29 96.43 99.29 99.29

Appendix 182

breast_cancer_wo03 96.43 92.14 92.86 93.57 90.71 92.86 92.86 92.86 94.29 93.57 95.71 95.71 94.29 95.00 93.57
breast_cancer_wo04 94.29 88.57 90 90.71 87.86 90.71 92.14 90.71 92.86 92.14 95.71 95.71 94.29 95.00 93.57
breast_cancer_wo05 95.00 93.57 93.57 94.29 92.14 94.29 95.71 94.29 98.57 97.14 97.86 97.86 95.71 97.14 96.43
breast_cancer_wo 96.43 92.85 93.56 93.85 91.85 93.28 94.28 93.99 95.85 95.28 97.14 97.14 95.42 95.99 96.28
car01 93.04 83.19 87.25 85.8 73.33 89.57 92.75 89.86 95.36 89.86 87.54 87.54 95.65 92.75 100.00
car02 94.20 82.9 86.96 80.87 71.88 82.90 89.86 87.83 93.04 88.70 86.38 86.38 91.30 95.07 100.00
car03 92.77 84.68 86.42 82.37 68.79 89.02 91.62 89.02 91.33 85.55 84.39 84.10 93.35 91.62 100.00
car04 90.75 81.21 83.82 78.9 65.90 85.55 89.88 86.71 92.20 84.68 82.95 82.66 94.51 91.62 99.42
car05 92.20 82.37 84.1 80.92 70.23 86.71 89.88 87.57 92.77 85.26 85.26 85.26 92.77 91.91 99.71
car 92.59 82.87 85.71 81.77 70.03 86.75 90.80 88.20 92.94 86.81 85.30 85.19 93.52 92.59 99.83
cmc01 52.38 50 50 61.22 50.00 56.12 59.18 57.82 53.06 55.44 55.10 55.44 53.40 60.88 49.32
cmc02 48.64 41.5 42.52 48.98 47.28 48.64 50.00 46.94 42.18 46.26 53.40 53.40 47.96 51.36 47.96
cmc03 44.41 41.02 43.39 48.81 44.07 49.83 47.46 46.78 44.41 45.08 44.07 44.41 45.76 48.47 42.37
cmc04 49.83 47.12 47.46 51.19 45.08 46.44 50.17 46.78 48.14 53.22 49.83 49.83 49.15 51.53 47.12
cmc05 54.24 50.51 49.83 55.59 49.83 50.85 51.19 52.54 47.80 51.53 49.15 49.15 47.12 55.25 51.86
cmc 49.90 46.03 46.64 53.16 47.25 50.38 51.60 50.17 47.12 50.31 50.31 50.45 48.68 53.50 47.73
credit01 87.68 85.51 86.23 87.68 86.23 84.78 84.78 86.23 82.61 85.51 85.51 84.78 85.51 89.86 89.13
credit02 89.86 85.51 86.23 86.23 82.61 82.61 82.61 82.61 78.99 81.16 89.13 89.13 85.51 88.41 85.51
credit03 86.96 86.96 86.96 86.23 86.96 87.68 88.41 86.96 84.78 84.78 86.23 85.51 84.78 84.06 84.06
credit04 87.68 84.06 84.78 87.68 84.06 84.78 83.33 81.88 81.16 84.78 84.78 86.23 86.23 83.33 88.41
credit05 85.51 86.23 86.23 87.68 87.68 85.51 87.68 87.68 86.96 87.68 86.23 86.23 85.51 84.06 83.33
credit 87.54 85.65 86.09 87.10 85.51 85.07 85.36 85.07 82.90 84.78 86.38 86.38 85.51 85.94 86.09
ecoli01 76.12 76.12 77.61 74.63 55.22 76.12 71.64 77.61 76.12 76.12 79.10 77.61 76.12 80.60 76.12
ecoli02 83.58 79.10 79.10 85.07 65.67 80.59 77.61 76.12 80.59 79.11 83.58 88.06 80.59 88.06 77.61
ecoli03 77.61 80.60 80.60 83.58 58.21 83.58 82.09 83.58 80.59 85.07 91.04 91.04 80.59 86.57 86.57
ecoli04 79.11 76.12 76.12 85.07 64.18 85.08 77.62 82.09 83.58 83.58 89.55 88.06 86.57 86.57 86.57
ecoli05 82.36 66.18 66.18 77.94 58.82 75.00 76.47 76.47 77.94 77.94 79.41 79.41 77.94 79.41 76.47
ecoli 79.76 75.62 75.92 81.26 60.42 80.07 77.09 79.17 79.76 80.36 84.54 84.84 80.36 84.24 80.67
forestfires01 57.28 59.22 57.28 66.02 53.39 59.22 51.46 46.60 62.14 61.17 56.31 56.31 64.08 65.05 54.37
forestfires02 59.22 56.31 59.22 59.22 55.34 58.25 51.46 52.43 54.37 53.40 56.31 56.31 61.17 56.31 55.34
forestfires03 53.40 56.31 52.43 53.4 50.49 57.28 56.31 53.40 61.17 56.31 54.37 55.34 54.37 53.40 54.37
forestfires04 56.73 61.54 62.5 64.42 55.76 50.00 58.65 61.54 56.73 59.62 60.58 59.62 55.77 63.46 63.46
forestfires05 61.54 46.15 49.04 50.96 51.92 49.04 51.92 55.77 49.04 52.88 63.46 62.50 56.73 67.31 62.50
forestfires 57.63 55.91 56.09 58.80 53.38 54.76 53.96 53.95 56.69 56.68 58.21 58.02 58.42 61.11 58.01
glass01 80.95 83.33 83.33 78.57 54.76 76.19 76.19 66.67 80.95 83.33 83.33 80.95 80.95 80.95 78.57
glass02 76.74 79.07 79.07 79.07 53.49 58.14 74.42 69.77 79.07 79.07 74.42 74.42 76.74 79.07 79.07
glass03 81.40 79.07 76.74 79.07 53.49 69.77 79.07 65.12 79.07 76.74 72.09 72.09 72.09 76.74 69.77
glass04 76.74 81.4 81.4 74.42 46.51 62.79 65.12 62.79 74.42 76.74 67.44 67.44 74.42 72.09 67.44
glass05 76.74 79.07 81.4 79.07 65.12 65.12 72.09 72.09 81.40 79.07 74.42 76.74 76.74 76.74 76.74
glass 78.51 80.39 80.39 78.04 54.67 66.40 73.38 67.29 78.98 78.99 74.34 74.33 76.19 77.12 74.32
haberman01 49.18 72.13 72.13 72.13 72.13 72.13 72.13 72.13 73.77 72.13 80.32 80.33 73.77 72.13 80.33
haberman02 47.54 68.85 68.85 68.85 70.49 70.49 70.49 72.13 72.13 73.77 72.13 72.13 72.13 70.49 72.13
haberman03 78.69 78.69 78.69 75.41 78.69 81.97 78.69 81.97 80.33 80.33 81.97 80.33 78.69 81.97 80.33
haberman04 57.38 75.41 75.41 72.13 72.13 72.13 75.41 75.41 80.33 78.69 80.33 80.33 78.69 72.13 80.33
haberman05 43.55 70.97 70.97 70.97 70.97 69.35 69.35 69.35 70.97 72.58 70.97 70.97 74.19 69.35 74.19
haberman 55.27 73.21 73.21 71.90 72.88 73.21 73.21 74.20 75.51 75.50 77.14 76.82 75.49 73.21 77.46
hayes-roth01 96.15 76.92 76.92 92.31 50.00 92.31 76.92 88.46 69.23 65.38 88.46 88.46 76.92 88.46 92.31
hayes-roth02 84.62 73.08 76.92 88.46 53.85 84.62 69.23 76.92 76.92 69.23 92.31 92.31 84.62 88.46 88.46
hayes-roth03 80.77 53.85 57.69 80.77 50.00 69.23 65.38 61.54 50.00 53.85 84.62 84.62 80.77 80.77 84.62
hayes-roth04 74.07 55.56 55.56 77.78 48.15 70.37 59.26 59.26 48.15 48.15 81.48 81.48 66.67 81.48 74.07
hayes-roth05 74.07 66.67 70.37 77.78 51.85 74.07 70.37 81.48 74.07 70.37 81.48 81.48 74.07 77.78 77.78
hayes-roth 81.94 65.22 67.49 83.42 50.77 78.12 68.23 73.53 63.67 61.40 85.67 85.67 76.61 83.39 83.45
hepatitis01 70.97 74.19 74.19 77.42 80.65 74.19 74.19 77.42 83.87 77.42 80.65 80.65 87.10 67.74 70.97
hepatitis02 77.42 83.87 83.87 83.87 80.65 77.42 80.65 70.97 80.65 80.65 87.10 87.10 77.42 80.65 87.10
hepatitis03 83.87 80.65 80.65 87.1 83.87 83.87 90.32 83.87 83.87 80.65 83.87 87.10 83.87 80.65 80.65
hepatitis04 83.87 90.32 90.32 90.32 80.65 77.42 80.65 83.87 80.65 83.87 93.55 96.77 83.87 83.87 87.10
hepatitis05 87.10 80.65 80.65 83.87 83.87 74.19 70.97 80.65 77.42 80.65 80.65 80.65 83.87 74.19 80.65
hepatitis 80.65 81.94 81.94 84.52 81.94 77.42 79.36 79.36 81.29 80.65 85.16 86.45 83.23 77.42 81.29
iris01 96.67 96.67 96.67 90.00 96.67 90.00 96.67 90.00 90.00 90.00 90.00 90.00 96.67 90.00 96.67
iris02 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33
iris03 93.33 93.33 93.33 90.00 93.33 90.00 93.33 93.33 93.33 93.33 90.00 90.00 93.33 93.33 93.33
iris04 80.00 86.67 86.67 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
iris05 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
iris 92.67 94.00 94.00 92.67 94.67 92.67 94.67 93.33 93.33 93.33 92.67 92.67 94.67 93.33 94.67
lenses01 50.00 75.00 75.00 100.00 50.00 75.00 75.00 100.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
lenses02 80.00 80.00 80.00 80.00 60.00 80.00 80.00 80.00 100.00 100.00 80.00 80.00 80.00 80.00 80.00
lenses03 60.00 60.00 60.00 60.00 20.00 60.00 60.00 60.00 80.00 80.00 60.00 60.00 60.00 60.00 60.00
lenses04 80.00 100.00 100.00 100.00 100.00 100.00 100.00 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
lenses05 100.00 100.00 100.00 100.00 80.00 100.00 100.00 80.00 60.00 60.00 60.00 60.00 80.00 60.00 80.00
lenses 74.00 83.00 83.00 88.00 62.00 83.00 83.00 80.00 78.00 78.00 70.00 70.00 74.00 70.00 74.00
monks101 100.00 94.19 93.02 100.00 67.44 100.00 90.70 94.19 98.84 98.84 67.44 67.44 98.84 67.44 100.00
monks102 100.00 77.91 83.72 100.00 75.58 75.58 100.00 79.07 97.67 97.67 75.58 75.58 91.86 75.58 100.00
monks103 100.00 89.53 97.67 100.00 74.42 100.00 93.02 100.00 100.00 100.00 74.42 74.42 100.00 74.42 100.00
monks104 100.00 75.86 78.16 100.00 82.76 87.36 100.00 85.06 96.55 96.55 82.76 82.76 94.25 82.76 100.00
monks105 100.00 77.01 77.01 100.00 74.71 74.71 89.66 86.21 96.55 96.55 74.72 74.71 96.55 74.71 100.00
monks1 100.00 82.90 85.92 100.00 74.98 87.53 94.68 88.91 97.92 97.92 74.98 74.98 96.30 74.98 100.00
monks201 77.50 77.50 80.00 62.50 66.67 62.50 66.67 67.50 72.50 80.00 63.33 63.33 68.33 66.67 100.00
monks202 71.67 80.83 79.17 63.33 64.17 54.17 50.00 65.83 73.33 77.50 62.50 63.33 68.33 64.17 100.00
monks203 75.00 81.67 83.33 65.00 68.33 59.17 65.00 66.67 71.67 78.33 61.67 61.67 62.50 68.33 100.00

Appendix 183

monks204 75.00 77.50 77.50 54.17 65.83 54.17 54.17 56.67 71.67 74.17 62.50 62.50 61.67 65.83 100.00
monks205 66.12 85.12 85.12 53.72 63.64 63.64 63.64 62.81 68.60 74.38 56.20 56.20 66.12 63.64 100.00
monks2 73.06 80.52 81.02 59.74 65.73 58.73 59.90 63.90 71.55 76.88 61.24 61.41 65.39 65.73 100.00
monks301 99.09 90.00 94.55 99.09 83.64 99.09 99.09 99.09 98.18 98.18 96.36 96.36 98.18 96.36 99.09
monks302 100.00 94.59 97.30 100.00 81.08 100.00 100.00 100.00 100.00 100.00 98.20 98.20 99.10 98.20 100.00
monks303 96.40 90.09 90.09 98.20 81.08 98.20 98.20 98.20 96.40 96.40 96.40 96.40 96.40 98.20 98.20
monks304 99.10 90.99 93.69 99.10 79.28 99.10 99.10 99.10 98.20 98.20 97.30 97.30 98.20 97.30 99.10
monks305 98.20 86.49 91.89 98.20 74.77 98.20 98.20 98.20 95.50 96.40 93.69 93.69 98.20 93.69 98.20
monks3 98.56 90.43 93.50 98.92 79.97 98.92 98.92 98.92 97.66 97.84 96.39 96.39 98.02 96.75 98.92
post-operative01 61.11 55.56 50.00 38.89 77.78 77.78 77.78 77.78 66.67 72.22 72.22 72.22 61.11 77.78 66.67
post-operative02 55.56 38.89 44.44 50.00 61.11 61.11 61.11 61.11 61.11 61.11 61.11 61.11 55.56 61.11 55.56
post-operative03 77.78 66.67 66.67 72.22 77.78 77.78 77.78 77.78 77.78 77.78 83.33 83.33 83.33 77.78 61.11
post-operative04 66.67 50.00 50.00 38.89 61.11 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 61.11
post-operative05 72.22 50.00 50.00 55.56 66.67 66.67 72.22 72.22 66.67 66.67 66.67 66.67 55.56 66.67 55.56
post-operative 66.67 52.22 52.22 51.11 68.89 70.00 71.11 71.11 67.78 68.89 70.00 70.00 64.45 70.00 60.00
soybean01 95.08 88.52 88.52 83.61 37.70 90.16 90.16 81.97 93.44 93.44 88.52 81.97 93.44 91.80 91.80
soybean02 91.80 77.05 77.05 78.69 36.07 85.25 90.16 80.33 91.80 93.44 85.25 86.89 90.16 90.16 91.80
soybean03 90.16 75.41 75.41 67.21 32.79 81.97 86.89 73.77 85.25 88.52 88.52 85.25 86.89 86.89 91.80
soybean04 93.55 91.94 91.94 87.10 41.94 88.71 91.94 77.42 91.94 93.55 83.87 80.65 91.94 96.77 93.55
soybean05 95.16 87.10 87.10 75.81 38.71 80.65 79.03 77.42 91.94 90.32 85.48 79.03 87.10 88.71 91.94
soybean 93.15 84.00 84.00 78.48 37.44 85.35 87.64 78.18 90.87 91.85 86.33 82.76 89.91 90.87 92.18
tae01 50.00 46.67 46.67 40.00 43.33 43.33 43.33 40.00 56.67 53.33 46.67 46.67 43.33 53.33 50.00
tae02 53.33 50.00 50.00 30.00 50.00 30.00 40.00 30.00 53.33 46.67 43.33 46.67 36.67 46.67 53.33
tae03 50.00 40.00 40.00 26.67 43.33 26.67 46.67 40.00 50.00 50.00 40.00 36.67 40.00 43.33 50.00
tae04 53.33 60.00 60.00 43.33 56.67 36.67 50.00 56.67 56.67 63.33 53.33 53.33 63.33 56.67 60.00
tae05 58.06 67.74 67.74 38.71 35.48 35.48 54.84 35.48 70.97 64.52 48.39 51.61 61.29 58.06 61.29
tae 52.94 52.88 52.88 35.74 45.76 34.43 46.97 40.43 57.53 55.57 46.34 46.99 48.92 51.61 54.92
tic_tac_toe01 85.86 94.76 94.24 99.48 65.45 97.38 85.34 83.77 98.43 95.29 69.11 68.59 90.58 98.43 96.34
tic_tac_toe02 89.53 95.81 96.86 100 68.59 99.48 81.15 70.68 97.38 95.81 68.59 68.59 92.67 100.00 98.96
tic_tac_toe03 86.98 95.31 92.71 98.44 68.23 98.96 82.29 79.69 96.88 94.27 68.23 68.23 92.19 98.96 98.96
tic_tac_toe04 89.58 98.96 98.44 97.4 71.88 96.35 82.81 82.81 95.83 95.31 72.92 72.92 89.58 96.35 96.35
tic_tac_toe05 92.71 95.83 95.83 98.44 75.52 97.92 89.58 84.90 98.44 95.83 78.13 78.13 90.63 97.92 98.44
tic_tac_toe 88.93 96.13 95.62 98.75 69.93 98.02 84.23 80.37 97.39 95.30 71.40 71.29 91.13 98.33 97.81
wine01 97.14 100.00 100.00 97.14 68.57 97.14 82.86 85.71 100.00 100.00 100.00 100.00 94.29 100.00 100.00
wine02 100.00 94.29 97.14 97.14 85.71 82.86 82.86 82.86 100.00 100.00 100.00 100.00 97.14 100.00 97.14
wine03 94.44 86.11 86.11 83.33 86.11 91.67 91.67 86.11 88.89 88.89 97.22 94.44 91.67 97.22 97.22
wine04 88.89 83.33 88.89 80.89 66.67 88.89 88.89 91.67 94.44 94.44 100.00 100.00 91.67 94.44 97.22
wine05 100.00 97.22 97.22 100.00 86.11 91.67 88.89 94.44 97.22 97.22 100.00 100.00 97.22 100.00 97.22
wine 96.09 92.19 93.87 91.70 78.63 90.45 87.03 88.16 96.11 96.11 99.44 98.89 94.40 98.33 97.76
winequality-red01 63.32 56.74 57.37 57.68 57.37 52.35 58.62 55.17 64.26 63.95 57.99 57.99 63.95 59.25 67.40
winequality-red02 65.63 60.31 60.94 53.75 56.88 54.38 56.25 54.69 68.75 66.88 58.44 58.75 68.13 60.31 63.13
winequality-red03 66.25 62.19 60.31 53.44 51.25 50.63 55.31 57.81 63.44 62.50 56.88 58.13 65.00 56.56 67.50
winequality-red04 66.56 60.63 61.56 60.31 57.81 58.13 60.94 62.81 65.31 67.50 59.06 58.13 62.81 59.69 60.63
winequality-red05 63.13 56.88 57.81 56.25 54.38 53.13 60.00 54.69 59.69 62.50 60.00 60.00 61.88 59.38 61.56
winequality-red 64.98 59.35 59.60 56.29 55.54 53.72 58.22 57.03 64.29 64.67 58.47 58.60 64.35 59.04 64.04
zoo01 100.00 90.00 90.00 95.00 70.00 85.00 95.00 80.00 100.00 100.00 95.00 95.00 95.00 100.00 100.00
zoo02 100.00 95.00 95.00 95.00 70.00 75.00 95.00 75.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00
zoo03 100.00 90.00 90.00 100.00 80.00 100.00 95.00 85.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00
zoo04 100.00 95.00 95.00 100.00 75.00 100.00 100.00 90.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00
zoo05 90.48 76.19 76.19 80.95 71.43 80.95 85.71 80.95 85.71 85.71 90.48 90.48 90.48 95.24 85.71
zoo 98.10 89.24 89.24 94.19 73.29 88.19 94.14 82.19 96.14 96.14 96.10 94.10 96.10 98.05 96.14

Appendix 184

10.2 Confusion Matrices, Recall, Precision and F-measure
for Some Multi-class Datasets

Here is given the precise information for the results of examined classifiers
for following datasets:

− Glass;
− Soybean;
− Winequality-red.

The class labels are ordered by decreasing of the support and alphabetically
for class labels with equal support. The class labels and their supports are given
respectively in Table 26, Table 28, and Table 30.

Table 33. Confusion matrices, recalls, precisions and F-measures
for Glass dataset

PGN 2# 1# 7# 3# 5# 6# actual recall precision f-measure
2# 61 7 0 1 7 0 76 0.803 0.803 0.803
1# 10 57 1 2 0 0 70 0.814 0.792 0.803
7# 0 1 26 0 1 1 29 0.897 0.897 0.897
3# 3 7 0 7 0 0 17 0.412 0.700 0.519
5# 2 0 2 0 9 0 13 0.692 0.500 0.581
6# 0 0 0 0 1 8 9 0.889 0.889 0.889

predicted 76 72 29 10 18 9 214

MPGN-S1 2# 1# 7# 3# 5# 6# actual recall precision f-measure
2# 60 8 1 3 4 0 76 0.789 0.845 0.816
1# 6 58 1 5 0 0 70 0.829 0.795 0.811
7# 1 1 26 1 0 0 29 0.897 0.897 0.897
3# 1 5 0 11 0 0 17 0.647 0.550 0.595
5# 3 0 1 0 9 0 13 0.692 0.692 0.692
6# 0 1 0 0 0 8 9 0.889 1.000 0.941

predicted 71 73 29 20 13 8 214

MPGN-S2 2# 1# 7# 3# 5# 6# actual recall precision f-measure
2# 60 8 1 3 4 0 76 0.789 0.857 0.822
1# 5 58 1 6 0 0 70 0.829 0.795 0.811
7# 1 1 26 1 0 0 29 0.897 0.897 0.897
3# 1 5 0 11 0 0 17 0.647 0.524 0.579
5# 3 0 1 0 9 0 13 0.692 0.692 0.692
6# 0 1 0 0 0 8 9 0.889 1.000 0.941

predicted 70 73 29 21 13 8 214

CMAR 2# 1# 7# 3# 5# 6# actual recall precision f-measure
2# 59 8 2 2 3 2 76 0.776 0.819 0.797
1# 8 60 0 2 0 0 70 0.857 0.759 0.805
7# 0 1 28 0 0 0 29 0.966 0.848 0.903
3# 2 10 0 5 0 0 17 0.294 0.556 0.385
5# 3 0 2 0 8 0 13 0.615 0.667 0.640
6# 0 0 1 0 1 7 9 0.778 0.778 0.778

predicted 72 79 33 9 12 9 214

OneR 2# 1# 7# 3# 5# 6# actual recall precision f-measure
2# 46 26 4 0 0 0 76 0.605 0.548 0.575
1# 11 57 2 0 0 0 70 0.814 0.533 0.644
7# 12 3 14 0 0 0 29 0.483 0.609 0.538

Appendix 185

3# 7 10 0 0 0 0 17 0.000 0.000 0.000
5# 4 6 3 0 0 0 13 0.000 0.000 0.000
6# 4 5 0 0 0 0 9 0.000 0.000 0.000

predicted 84 107 23 0 0 0 214

JRip 2# 1# 7# 3# 5# 6# actual recall precision f-measure
2# 54 13 1 2 3 3 76 0.711 0.651 0.679
1# 15 49 1 4 0 1 70 0.700 0.681 0.690
7# 3 0 24 0 2 0 29 0.828 0.889 0.857
3# 7 7 0 2 0 1 17 0.118 0.250 0.160
5# 4 1 1 0 7 0 13 0.538 0.538 0.538
6# 0 2 0 0 1 6 9 0.667 0.545 0.600

predicted 83 72 27 8 13 11 214

J48 2# 1# 7# 3# 5# 6# actual recall precision f-measure
2# 57 9 3 2 3 2 76 0.750 0.814 0.781
1# 9 57 0 4 0 0 70 0.814 0.722 0.765
7# 1 1 24 0 2 1 29 0.828 0.857 0.842
3# 1 12 0 4 0 0 17 0.235 0.400 0.296
5# 1 0 1 0 10 1 13 0.769 0.556 0.645
6# 1 0 0 0 3 5 9 0.556 0.556 0.556

predicted 70 79 28 10 18 9 214

REPTree 2# 1# 7# 3# 5# 6# actual recall precision f-measure
2# 56 12 3 3 2 0 76 0.737 0.767 0.752
1# 8 55 3 4 0 0 70 0.786 0.632 0.701
7# 4 3 20 0 2 0 29 0.690 0.667 0.678
3# 2 10 0 5 0 0 17 0.294 0.417 0.345
5# 2 7 2 0 2 0 13 0.154 0.333 0.211
6# 1 0 2 0 0 6 9 0.667 1.000 0.800

predicted 73 87 30 12 6 6 214

Table 34. Confusion matrices, recalls, precisions and F-measures
for Winequality-red dataset

PGN 5# 6# 7# 4# 8# 3# actual recall precision f-measure
5# 559 119 2 1 0 0 681 0.821 0.685 0.747
6# 198 398 40 2 0 0 638 0.624 0.615 0.619
7# 17 102 80 0 0 0 199 0.402 0.615 0.486
4# 36 16 1 0 0 0 53 0.000 0.000 0.000
8# 0 9 7 0 2 0 18 0.111 1.000 0.200
3# 6 3 0 1 0 0 10 0.000 0.000 0.000
predicted 816 647 130 4 2 0 1599

MPGN-S1 5# 6# 7# 4# 8# 3# actual recall precision f-measure
6# 182 329 115 5 5 2 638 0.285 0.252 0.267
5# 493 156 23 3 1 5 681 0.229 0.269 0.247
7# 14 71 107 1 6 0 199 0.538 0.407 0.463
4# 28 18 5 1 0 1 53 0.019 0.100 0.032
8# 1 6 9 0 2 0 18 0.111 0.143 0.125
3# 5 1 4 0 0 0 10 0.000 0.000 0.000
predicted 723 581 263 10 14 8 1599

MPGN-S2 5# 6# 7# 4# 8# 3# actual recall precision f-measure
5# 505 157 14 1 0 4 681 0.742 0.606 0.667
6# 241 301 91 2 2 1 638 0.472 0.564 0.514
7# 46 54 92 1 6 0 199 0.462 0.436 0.449
4# 31 16 5 0 0 1 53 0.000 0.000 0.000
8# 4 5 7 0 2 0 18 0.111 0.200 0.143
3# 7 1 2 0 0 0 10 0.000 0.000 0.000
predicted 834 534 211 4 10 6 1599

CMAR 5# 6# 7# 4# 8# 3# actual recall precision f-measure

Appendix 186

5# 591 80 10 0 0 0 681 0.868 0.590 0.702
6# 323 232 83 0 0 0 638 0.364 0.556 0.440
7# 38 84 77 0 0 0 199 0.387 0.428 0.406
4# 38 14 1 0 0 0 53 0.000 0.000 0.000
8# 4 6 8 0 0 0 18 0.000 0.000 0.000
3# 8 1 1 0 0 0 10 0.000 0.000 0.000
predicted 1002 417 180 0 0 0 1599

OneR 5# 6# 7# 4# 8# 3# actual recall precision f-measure
5# 456 225 0 0 0 0 681 0.670 0.645 0.657
6# 206 432 0 0 0 0 638 0.677 0.485 0.565
7# 18 181 0 0 0 0 199 0.000 0.000 0.000
4# 23 29 0 0 1 0 53 0.000 0.000 0.000
8# 1 16 0 1 0 0 18 0.000 0.000 0.000
3# 3 7 0 0 0 0 10 0.000 0.000 0.000
predicted 707 890 0 1 1 0 1599

JRip 5# 6# 7# 4# 8# 3# actual recall precision f-measure
5# 531 143 7 0 0 0 681 0.780 0.568 0.657
6# 312 286 39 1 0 0 638 0.448 0.504 0.474
7# 45 111 42 0 1 0 199 0.211 0.457 0.289
4# 34 18 0 0 0 1 53 0.000 0.000 0.000
8# 7 7 4 0 0 0 18 0.000 0.000 0.000
3# 6 3 0 1 0 0 10 0.000 0.000 0.000
predicted 935 568 92 2 1 1 1599

J48 5# 6# 7# 4# 8# 3# actual recall precision f-measure
5# 488 179 11 3 0 0 681 0.717 0.663 0.689
6# 194 383 53 4 3 1 638 0.600 0.536 0.567
7# 17 119 60 1 2 0 199 0.302 0.451 0.361
4# 32 19 1 0 1 0 53 0.000 0.000 0.000
8# 0 9 8 1 0 0 18 0.000 0.000 0.000
3# 5 5 0 0 0 0 10 0.000 0.000 0.000
predicted 736 714 133 9 6 1 1599

REPTree 5# 6# 7# 4# 8# 3# actual recall precision f-measure
5# 442 223 5 11 0 0 681 0.649 0.668 0.658
6# 175 413 46 3 1 0 638 0.647 0.514 0.573
7# 15 126 56 0 2 0 199 0.281 0.496 0.359
4# 24 27 0 1 1 0 53 0.019 0.063 0.029
8# 1 10 6 1 0 0 18 0.000 0.000 0.000
3# 5 5 0 0 0 0 10 0.000 0.000 0.000
predicted 662 804 113 16 4 0 1599

Table 35. Confusion matrices, recalls, precisions and F-measures
for Soybean dataset

PGN a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas.
a)alt.-leaf-spot 36 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 40 0.900 0.837 0.867
b)brown-spot 0 39 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.975 0.867 0.918
c)frog-eye-leaf-spot 7 1 31 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 40 0.775 0.912 0.838
d)phytophthora-rot 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 1.000 1.000
e)anthracnose 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 1.000 1.000
f)brown-stem-rot 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 1.000 1.000
g)bacterial-blight 0 0 0 0 0 0 9 1 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.900 0.900
h)bacterial-pustule 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.900 0.900
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
j)diap.-stem-canker 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
l)phyll.-leaf-spot 0 4 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 10 0.600 0.857 0.706
m)powdery-mildew 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 1.000 1.000 1.000
n)purple-seed-stain 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.000 0.909 0.952
o)rhizoctonia-root-rot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 1.000 1.000 1.000

Appendix 187

p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 1.000 1.000 1.000
q)diap.pod-&-st.blight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6 1.000 1.000 1.000
r)herbicide-injury 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 1.000 0.800 0.889
s)2-4-d-injury 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.000 0.000 0.000
predicted 43 45 34 40 20 20 10 10 10 10 10 7 10 11 10 6 6 5 0 307

MPGN-S1 a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas.
a)alt.-leaf-spot 36 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.900 0.679 0.774
b)brown-spot 3 34 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 40 0.850 0.667 0.747
c)frog-eye-leaf-spot 8 4 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.700 0.824 0.757
d)phytophthora-rot 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 1.000 1.000
e)anthracnose 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 0.870 0.930
f)brown-stem-rot 0 1 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.950 1.000 0.974
g)bacterial-blight 0 1 1 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 10 0.600 1.000 0.750
h)bacterial-pustule 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.818 0.857
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
j)diap.-stem-canker 0 2 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 10 0.800 1.000 0.889
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
l)phyll.-leaf-spot 4 2 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 10 0.300 0.750 0.429
m)powdery-mildew 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 1.000 1.000 1.000
n)purple-seed-stain 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.000 1.000 1.000
o)rhizoctonia-root-rot 1 0 0 0 3 0 0 0 0 0 0 0 0 0 6 0 0 0 0 10 0.600 1.000 0.750
p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 1.000 1.000 1.000
q)diap.pod-&-st.blight 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 6 0.833 1.000 0.909
r)herbicide-injury 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0.250 1.000 0.400
s)2-4-d-injury 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000
predicted 53 51 34 40 23 19 6 11 10 8 10 4 10 10 6 6 5 1 0 307

MPGN-S2 a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas.
a)alt.-leaf-spot 36 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.900 0.679 0.774
b)brown-spot 3 34 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 40 0.850 0.667 0.747
c)frog-eye-leaf-spot 8 4 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.700 0.824 0.757
d)phytophthora-rot 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 1.000 1.000
e)anthracnose 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 0.870 0.930
f)brown-stem-rot 0 1 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.950 1.000 0.974
g)bacterial-blight 0 1 1 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 10 0.600 1.000 0.750
h)bacterial-pustule 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.818 0.857
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
j)diap.-stem-canker 0 2 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 10 0.800 1.000 0.889
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
l)phyll.-leaf-spot 4 2 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 10 0.300 0.750 0.429
m)powdery-mildew 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 1.000 1.000 1.000
n)purple-seed-stain 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.000 1.000 1.000
o)rhizoctonia-root-rot 1 0 0 0 3 0 0 0 0 0 0 0 0 0 6 0 0 0 0 10 0.600 1.000 0.750
p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 1.000 1.000 1.000
q)diap.pod-&-st.blight 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 6 0.833 1.000 0.909
r)herbicide-injury 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0.250 1.000 0.400
s)2-4-d-injury 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000
predicted 53 51 34 40 23 19 6 11 10 8 10 4 10 10 6 6 5 1 0 307

CMAR a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas.
a)alt.-leaf-spot 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 0.870 0.930
b)brown-spot 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 0.580 0.734
c)frog-eye-leaf-spot 0 11 16 0 0 2 10 0 0 0 0 0 1 0 0 0 0 0 0 40 0.400 0.727 0.516
d)phytophthora-rot 0 3 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.850 1.000 0.919
e)anthracnose 0 0 0 0 9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0.900 1.000 0.947
f)brown-stem-rot 0 5 5 0 0 26 4 0 0 0 0 0 0 0 0 0 0 0 0 40 0.650 0.765 0.703
g)bacterial-blight 0 3 1 0 0 3 33 0 0 0 0 0 0 0 0 0 0 0 0 40 0.825 0.660 0.733
h)bacterial-pustule 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 6 0.667 1.000 0.800
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
j)diap.-stem-canker 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 0.909 0.952
l)phyll.-leaf-spot 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 1.000 1.000 1.000
m)powdery-mildew 3 2 0 0 0 0 3 0 0 0 0 0 1 0 0 0 1 0 0 10 0.100 0.500 0.167
n)purple-seed-stain 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.000 1.000 1.000
o)rhizoctonia-root-rot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 6 1.000 1.000 1.000
p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 1.000 1.000 1.000

Appendix 188

q)diap.pod-&-st.blight 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 0.500 0.667 0.571
r)herbicide-injury 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 7 0 10 0.700 1.000 0.824
s)2-4-d-injury 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000
predicted 23 69 22 17 9 34 50 4 10 10 11 10 2 10 6 10 3 7 0 307

OneR a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas.
a)alt.-leaf-spot 24 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.600 0.255 0.358
b)brown-spot 18 21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.525 0.300 0.382
c)frog-eye-leaf-spot 12 2 24 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 40 0.600 0.828 0.696
d)phytophthora-rot 0 0 0 37 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 40 0.925 0.578 0.712
e)anthracnose 2 1 0 0 15 0 0 0 0 0 0 0 0 0 0 0 2 0 0 20 0.750 0.789 0.769
f)brown-stem-rot 7 5 0 5 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 20 0.000 0.000 0.000
g)bacterial-blight 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
h)bacterial-pustule 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
i)charcoal-rot 0 0 0 4 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 10 0.300 0.273 0.286
j)diap.-stem-canker 0 0 0 2 0 0 0 0 3 5 0 0 0 0 0 0 0 0 0 10 0.500 0.357 0.417
k)downy-mildew 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
l)phyll.-leaf-spot 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
m)powdery-mildew 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
n)purple-seed-stain 5 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
o)rhizoctonia-root-rot 0 0 0 5 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
p)cyst-nematode 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0.000 0.000 0.000
q)diap.pod-&-st.blight 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 0 0 6 0.500 0.500 0.500
r)herbicide-injury 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0.000 0.000 0.000
s)2-4-d-injury 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000
predicted 94 70 29 64 19 0 0 0 11 14 0 0 0 0 0 0 6 0 0 307

JRip a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas.
a)alt.-leaf-spot 19 5 15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.475 0.905 0.623
b)brown-spot 0 32 6 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 40 0.800 0.653 0.719
c)frog-eye-leaf-spot 0 2 37 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.925 0.463 0.617
d)phytophthora-rot 0 1 1 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.950 0.644 0.768
e)anthracnose 0 0 1 4 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.750 0.882 0.811
f)brown-stem-rot 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 1.000 1.000 1.000
g)bacterial-blight 1 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
h)bacterial-pustule 0 0 2 2 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 10 0.600 1.000 0.750
i)charcoal-rot 0 0 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 10 0.900 1.000 0.947
j)diap.-stem-canker 1 0 1 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 10 0.800 0.889 0.842
k)downy-mildew 0 0 3 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 10 0.700 1.000 0.824
l)phyll.-leaf-spot 0 2 3 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 10 0.200 1.000 0.333
m)powdery-mildew 0 1 3 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 10 0.600 1.000 0.750
n)purple-seed-stain 0 1 1 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 10 0.800 1.000 0.889
o)rhizoctonia-root-rot 0 0 2 2 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 10 0.600 1.000 0.750
p)cyst-nematode 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 6 0.333 1.000 0.500
q)diap.pod-&-st.blight 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 6 0.500 1.000 0.667
r)herbicide-injury 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0.500 0.667 0.571
s)2-4-d-injury 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.000 0.000 0.000
predicted 21 49 80 59 17 20 0 6 9 9 7 2 6 8 6 2 3 3 0 307

J48 a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas.
a)alt.-leaf-spot 37 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.925 0.860 0.892
b)brown-spot 3 35 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.875 0.875 0.875
c)frog-eye-leaf-spot 3 1 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.900 0.857 0.878
d)phytophthora-rot 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1.000 0.909 0.952
e)anthracnose 0 0 0 2 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.850 0.944 0.895
f)brown-stem-rot 0 0 1 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0.950 0.826 0.884
g)bacterial-blight 0 0 1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.900 0.900
h)bacterial-pustule 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 0 10 0.900 0.818 0.857
i)charcoal-rot 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
j)diap.-stem-canker 0 0 0 0 1 1 0 0 0 8 0 0 0 0 0 0 0 0 0 10 0.800 1.000 0.889
k)downy-mildew 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.000 1.000 1.000
l)phyll.-leaf-spot 0 3 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 10 0.700 1.000 0.824
m)powdery-mildew 0 0 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 10 0.900 0.900 0.900
n)purple-seed-stain 0 0 0 0 0 1 0 1 0 0 0 0 1 7 0 0 0 0 0 10 0.700 1.000 0.824
o)rhizoctonia-root-rot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 1.000 1.000 1.000
p)cyst-nematode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 1.000 0.857 0.923
q)diap.pod-&-st.blight 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 6 0.500 1.000 0.667

Appendix 189

r)herbicide-injury 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 4 0.750 0.750 0.750
s)2-4-d-injury 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.000 0.000 0.000
predicted 43 40 42 44 18 23 10 11 10 8 10 7 10 7 10 7 3 4 0 307

REPTree a b c d e f g h i j k l m n o p q r s actual Rec. Prec. F-meas.
a)alt.-leaf-spot 17 8 11 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.425 0.630 0.507
b)brown-spot 0 32 5 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.800 0.457 0.582
c)frog-eye-leaf-spot 1 1 34 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.850 0.378 0.523
d)phytophthora-rot 0 1 6 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0.825 0.660 0.733
e)anthracnose 0 1 3 1 12 1 0 0 0 0 0 0 0 0 0 0 2 0 0 20 0.600 1.000 0.750
f)brown-stem-rot 0 2 3 0 0 14 0 0 0 1 0 0 0 0 0 0 0 0 0 20 0.700 0.452 0.549
g)bacterial-blight 1 4 2 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 10 0.200 0.667 0.308
h)bacterial-pustule 0 4 2 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 10 0.300 0.750 0.429
i)charcoal-rot 1 0 3 1 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 10 0.400 1.000 0.571
j)diap.-stem-canker 0 1 5 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 10 0.300 0.750 0.429
k)downy-mildew 1 4 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
l)phyll.-leaf-spot 0 5 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
m)powdery-mildew 5 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.000 0.000 0.000
n)purple-seed-stain 0 1 1 2 0 1 1 1 0 0 0 0 0 3 0 0 0 0 0 10 0.300 1.000 0.462
o)rhizoctonia-root-rot 0 4 2 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 10 0.300 1.000 0.462
p)cyst-nematode 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0.000 0.000 0.000
q)diap.pod-&-st.blight 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 6 0.500 0.600 0.545
r)herbicide-injury 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0.250 1.000 0.400
s)2-4-d-injury 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000 0.000 0.000
predicted 27 70 90 50 12 31 3 4 4 4 0 0 0 3 3 0 5 1 0 307

Appendix 190

References 191

References

[Achtert et al, 2010] Achtert, E., Kriegel, H.-P., Reichert, L., Schubert, E., Wojdanowski,
R., Zimek, A.: Visual еvaluation of outlier detection models. In 15th Int. Conf. on
Database Systems for Advanced Applications (DASFAA 2010), Tsukuba, Japan, 2010,
LNCS, Vol. 5982, 2010, pp.396-399.

[Agarwal et al, 2000] Agarwal, R. Aggarwal, C., Prasad V.: A tree projection algorithm for
generation of frequent item-sets. In J. of Parallel and Distributed Computing, 61/3,
2001, pp.350-371.

[Agrawal and Srikant, 1994] Agrawal, R., Srikant, R.: Fast algorithms for mining
association rules. In Proc. 20th Int. Conf. Very Large Data Bases, 1994, pp.487-499.

[Agrawal et al, 1993] Agrawal, R., Imieliński, T., Swami, A.: Mining association rules
between sets of items in large databases. Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, Washington, DC, 1993, pp. 207-216.

[Aha and Kibler, 1991] Aha, D., Kibler, D.: Instance-based learning algorithms. Machine
Learning. No.6, 1991, pp.37-66.

[Alpaydin, 2010] Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Second
Ed., 2010.

[Arakelyan et al, 2009] Arakelyan, A., Boyajyan, A., Aslanyan, L., Muradyan, D.,
Sahakyan, H.: Algorithmic analysis of functional pathways affected by typical and
atypical antipsychotics. In Proc. of 7th CSIT, Armenia, 2009, pp.361-363.

[Arge, 2002] Arge, L.: External memory data structures. Part 4, ch. 9 in Handbook of
Massive Datasets, Kluwer Academic Publishers, 2002, pp.313-357.

[Ashrafi et al, 2004] Ashrafi, M., Taniar, D. Smith, K.: A new approach of eliminating
redundant association rules, LNCS, Vol.3180, 2004, pp.465-474.

[Aslanyan and Sahakyan, 2010] Aslanyan, L., Sahakyan, H.:On structural recognition with
logic and discrete analysis. Int. J. Information Theories and Applications, 17/1, 2010,
pp.3-9.

[Baralis and Psaila, 1997] Baralis, E., Psaila, G.: Designing templates for mining
association rules. Journal of Intelligent Information Systems, 9/1, 1997, pp.7-32.

[Bastide et al, 2000] Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining
frequent patterns with counting inference. ACM SIGKDD Explorations Newsletter, 2000

[Bay, 2000] Bay, S.: Multivariate discretization of continuous variables for set mining. In
Proc. of the 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
2000, pp.315-319.

References 192

[Bayardo, 1998] Bayardo, R.: Efficiently mining long patterns from databases. In Proc. of
the ACM SIGMOD Int. Conf. on Management of Data, Seattle, Washington, United
States, 1998, pp.85-93.

[Bayes, 1763] Bayes, T.: Essay Towards Solving a Problem in the Doctrine of Chances.
Encyclopædia Britannica Online.
<http://www.britannica.com/EBchecked/topic/678260/Essay-Towards-Solving-a-
Problem-in-the-Doctrine-of-Chances>, accessed at 01.03.2011.

[Boser et al, 1992] Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal
margin classifiers. In Proc. of the Annual Conference on Computational Learning
Theory, Pittsburgh, 1992, pp.144-152.

[Bramer, 2007] M. Bramer. Principles of Data Mining. Springer Verlag London, 2007.

[Breiman, 1996] Breiman, L. Bagging predictors. Machine Learning 24/2, 1996,
pp.123-140.

[Brin et al, 1997] Brin, S., Motwani, R., Ullman, J., Tsur, S.: Dynamic itemset counting
and implication rules for market basket data. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1997, pp.255-264.

[Brin et al, 1997] Brin, S., Motwani, R., Ullman, J., Tsur, S.: Dynamic itemset counting
and implication rules for market basket data. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1997, pp.255-264.

[Cendrowska, 1987] Cendrowska, J.: PRISM: An algorithm for inducing modular rules.
International Journal of Man-Machine Studies, 1987, 27, pp.349-370.

[Chakrabarti, 2001] Chakrabarti, K.: Managing Large Multidimensional Datasets Inside a
Database System. Phd Thesis, University of Illinois at Urbana-Champaign. Urbana,
Illinois, 2001.

[Chavez et al, 2001] Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.: Searching in
metric spaces. ACM Computing Surveys, 33/3, 2001, pp.273-321.

[Cheung et al, 1996] Cheung, D., Han, J., Ng, V., Fu, A., Fu, Y.: A fast distributed
algorithm for mining association rules. In Proc. of 1996 Int. Conf. on Parallel and
Distributed Information Systems, Miami Beach, Florida, 1996, pp.31-44.

[Chuang et al, 2005] Chuang, K., Chen, M., Yang, W.: Progressive sampling for association
rules based on sampling error estimation, LNCS, Vol.3518, 2005, pp.505-515.

[Cleary and Trigg, 1995] Cleary, J., Trigg, L.: K*: An instance-based learner using an
entropic distance measure. In: 12th International Conference on Machine Learning,
1995, pp.108 114.

[CODASYL, 1971] Codasyl Systems Committee. Feature Analysis of Generalized Data Base
Management Systems. Technical Report, May, 1971.

[Codd, 1970] Codd, E.: A relation model of data for large shared data banks. Magazine
Communications of the ACM, 13/6, 1970, pp.377-387.

[Coenen and Leng, 2005] Coenen, F., Leng, P.: Obtaining Best Parameter Values for
Accurate Classification. Proc. ICDM'2005, IEEE, pp.597-600.

[Coenen et al, 2004] Coenen, F., Goulbourne, G., Leng, P.: Tree structures for mining
association rules. Data Mining and Knowledge Discovery, Kluwer Academic Publishers,
8, 2004, pp.25-51.

References 193

[Cohen, 1995] Cohen, W.: Fast effective rule induction. In Proc. of the 12th Int. Conf. on
Machine Learning, Lake Taho, California, Morgan Kauffman, 1995.

[Connolly and Begg, 2002] Connolly, T., Begg, C.: Database Systems. A Practical
Approach to Design, Implementation, and Management. Third Edition. Addison-Wesley
Longman, 2002.

[Cristofor and Simovici, 2002] Cristofor, L., Simovici, D.: Generating an informative cover
for association rules. In Proc. of the IEEE Int. Conf. on Data Mining, 2002.

[Date, 1975] Date, C.: An Introduction to Database Systems. Addison-Wesley Inc. 1975.

[Demsar, 2006] Demsar, J.: Statistical comparisons of classifiers over multiple data sets.
J. Mach. Learn. Res., 7, 2006, pp.1-30.

[Depaire et al, 2008] Depaire, B., Vanhoof, K., Wets, G.: ARUBAS: an association rule
based similarity framework for associative classifiers. IEEE Int. Conf. on Data Mining
Workshops, 2008, pp.692-699.

[Do et al, 2003] Do, T.D., Hui, S.-C., Fong, A.: Mining frequent item-sets with category-
based constraints, LNCS, Vol. 2843, 2003, pp.76-86.

[Dougherty et al, 1995] Dougherty, J., Kohavi, R., Sahami, M.: Supervised and
unsupervised discretization of continuous features. In Proc. of the 12th Int. Conf. on
Machine Learning 1995, pp. 194-202.

[Fayyad and Irani, 1993] Fayyad, U., Irani, K.: Multi-interval discretization of continuous-
valued attributes for classification learning. Proc. of the 13th International Joint
Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, 1993,
pp.1022-1027.

[Fayyad et al, 1996] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to
knowledge discovery: an overview. In Advances in Knowledge Discovery and Data
Mining. American Association for AI, Menlo Park, CA, USA, 1996, pp.1-34.

[Frank and Asuncion, 2010] Frank, A. Asuncion, A.: UCI Machine Learning Repository
http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School of Information
and Computer Science, 2010.

[Friedman, 1940] Friedman, M.: A comparison of alternative tests of significance for the
problem of m rankings. Annals of Mathematical Statistics, Vol. 11, 1940, pp.86-92.

[Friedman, 1997] Friedman, J.: Data mining and statistics: what is the connection?
Keynote Address, 29th Symposium on the Interface: Computing Science and Statistics,
1997.

[Gaede and Günther, 1998] Gaede, V., Günther, O.: Multidimensional Access Methods.
ACM Computing Surveys, 30/2, 1998.

[Goethals, 2002] Goethals, B.: Efficient Frequent Pattern Mining. PhD Thesis,
Transnationale Univeriteit Limburg, 2002.

[Han and Kamber, 2006] Han, J., Kamber, M.: Data Mining: Concepts and Techniques.
Morgan Kaufman Publ., Elsevier, 2006.

[Han and Pei, 2000] Han, J., Pei, J.: Mining frequent patterns by pattern-growth:
methodology and implications. ACM SIGKDD Explorations Newsletter 2/2, 2000,
pp.14-20.

[Hilderman and Hamilton, 2002] Hilderman, R., Hamilton, H.: Knowledge Discovery and
Interest Measures. Kluwer Academic, Boston, 2002.

References 194

[Holte, 1993] Holte, R.: Very simple classification rules perform well on most commonly
used datasets. Machine Learning, Vol. 11, 1993, pp.63-91.

[Hussain et al, 1999] Hussain, F., Liu, H., Tan, C., Dash, M.: Discretization: An Enabling
Technique. Technical Report – School of Computing, Singapore, 1999.

[IBM, 1965-68] IBM System/360: Disk Operating System, Data Management Concepts.
IBM System Reference Library, IBM Corp. 1965, Major Revision, Feb.1968.

[Jaroszewicz and Simovici, 2002] Jaroszewicz, S., Simovici, D.: Pruning redundant
association rules using maximum entropy principle, LNCS, Vol. 2336, 2002,
pp.135-142.

[Kass, 1980] Kass, G.: An exploratory technique for investigating Large quantities of
categorical data. Journal of Applied Statistics 29/2, 1980, pp. 119-127.

[Kerber, 1992] Kerber R.: Discretization of numeric attributes. Proc. of the 10th National
Conf. on Artificial Intelligence, MIT Press, Cambridge, MA, 1992, pp.123-128.

[Klosgen and Zytkow, 1996] Klosgen, W, Zytkow, J.: Knowledge discovery in databases
terminology. In Advances in Knowledge Discovery and Data Mining. AAAI Press, 1996,
pp.573-592.

[Korn and Korn, 1961] Korn, G., Korn, T.: Mathematical Handbook for Scientists and
Engineers. McGraw-Hill, 1961.

[Kotsiantis and Kanellopoulos, 2006] Kotsiantis, S., Kanellopoulos, D.: Association rules
mining: a recent overview. GESTS International Transactions on Computer Science and
Engineering, 32/1, 2006, pp. 71-82.

[Kouamou, 2011] Kouamou, G.: A software architecture for data mining environment.
Ch.13 in New Fundamental Technologies in Data Mining, InTech Publ., 2011,
pp.241-258.

[Kuncheva, 2004] Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms.
Willey, 2004.

[Li and Gopalan, 2004] Li, Y., Gopalan, R.: Effective sampling for mining association rules.
LNCS, Vol. 3339, 2004, pp.391-401.

[Li et al, 2001] Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on
multiple class-association rules. In: Proc. of the IEEE Int. Conf. on Data Mining ICDM,
2001, pp.369-376.

[Liu et al, 1998] Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule
mining. In Knowledge Discovery and Data Mining, 1998, pp.80-86.

[Liu et al, 1999] Liu, B. Hsu, W., Ma, Y.: Mining association rules with multiple minimum
supports. Proc. Knowledge Discovery and Data Mining Conf., 1999, pp.337-341.

[Liu et al, 2003] Liu, G., Lu, H., Lou, W., Yu, J.: On computing, storing and querying
frequent patterns. Proc. of the 2003 ACM SIGKDD international conference on
knowledge discovery and data mining (KDD’03), Washington, DC, 2003, pp.607-612

[Maimon and Rokach, 2005] Maimon, O., Rokach, L.: Decomposition Methodology for
Knowledge Discovery and Data Mining. Vol. 61 of Series in Machine Perception and
Artificial Intelligence. World Scientific Press, 2005.

[Markov et al, 2008] Markov K, Ivanova, K., Mitov, I., Karastanev, S.: Advance of the
access methods. Int. J. Information Technologies and Knowledge, 2/2, 2008,
pp.123-135.

References 195

[Markov, 1984] Markov K.: A multi-domain access method. Proc. of the Int. Conf. on
Computer Based Scientific Research. Plovdiv, 1984, pp.558-563.

[Markov, 2004] Markov, K.: Multi-domain information model. Int. J. Information Theories
and Applications, 11/4, 2004, pp.303-308.

[Markov, 2005] Markov, K.: Building data warehouses using numbered multidimensional
information spaces. Int. J. Information Theories and Applications, 2005, 12/2,
pp.193-199.

[Martin, 1975] Martin, J.: Computer Data-Base Organization. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1975.

[Mitchell, 1997] Mitchell, T.: Machine Learning, McGraw-Hill, 1997.

[Mitov et al, 2009a] Mitov, I., Ivanova, K., Markov, K., Velychko, V., Vanhoof. K.,
Stanchev, P.: "PaGaNe" – A classification machine learning system based on the
multidimensional numbered information spaces. In World Scientific Proc. Series on
Computer Engineering and Information Science, No.2, pp.279-286.

[Mitov et al, 2009b] Mitov, I., Ivanova, K., Markov, K., Velychko, V., Stanchev, P.,
Vanhoof, K.: Comparison of discretization methods for preprocessing data for
pyramidal growing network classification method. In Int. Book Series Information
Science & Computing – Book No: 14. New Trends in Intelligent Technologies, 2009,
pp. 31-39.

[Moënne-Loccoz, 2005] Moënne-Loccoz N.: High-Dimensional Access Methods for Efficient
Similarity Queries. Technical Report N:0505, University of Geneva, Computer Vision
and Multimedia Laboratory, 2005.

[Mokbel et al, 2003] Mokbel, M., Ghanem, T., Aref, W.: Spatio-temporal access methods.
IEEE Data Engineering Bulletin, 26/2, 2003, pp.40-49.

[Morishita and Sese, 2000] Morishita, S., Sese, J.: Transversing itemset lattices with
statistical metric pruning. In Proc. of the 19th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, 2000, pp.226-236.

[Neave and Worthington, 1992] Neave, H., Worthington, P.: Distribution Free Tests.
Routledge, 1992.

[Nemenyi, 1963] Nemenyi, P.: Distribution-free multiple comparisons. PhD thesis,
Princeton University, 1963

[Ooi et al, 1993] Ooi, B., Sacks-Davis, R., Han, J.: Indexing in Spatial Databases.
Technical Report, 1993.

[Parthasarathy et al, 2001] Parthasarathy, S., Zaki, M., Ogihara, M., Li, W.: Parallel data
mining for association rules on shared memory systems. Journal Knowledge and
Information Systems, 3/1, 2001, pp. 1-29.

[Parthasarathy, 2002] Parthasarathy, S.: Efficient progressive sampling for association
rules. Proc. of Int. Conf. on Data Mining, 2002, pp.354-361.

[Quinlan and Cameron-Jones, 1993] Quinlan, J., Cameron-Jones, R.: FOIL: A midterm
report. In Proc. of European Conf. On Machine Learning, Vienna, Austria, 1993,
pp.3-20.

[Quinlan, 1986] Quinlan, R.: Induction of decision trees. Machine Learning 1/1, 1986,
pp.81-106.

References 196

[Quinlan, 1993] Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993.

[Rak et al, 2005] Rak, R., Stach, W., Zaiane, O., Antonie M.-L.: Considering re-occurring
features in associative classifiers. In Advances in Knowledge Discovery and Data
Mining, LNCS, Vol. 3518, 2005, pp.240-248.

[Rakotomalala, 2005] Rakotomalala, R.: TANAGRA: a free software for research and
academic purposes. In Proc. of EGC'2005, RNTI-E-3, Vol. 2, 2005, pp.697-702 (in
French)

[Ravenbrook, 2010] Ravenbrook – software engineering consultancy, 2010,
http://www.ravenbrook.com/

[Sarwar et al, 2001] Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based
collaborative filtering recommendation algorithms. In: World Wide Web, 2001,
pp.285-295.

[Savasere et al, 1995] Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for
mining association rules in large databases. The 21st VLDB Conference, 1995, pp.

[Stably, 1970] Stably D.: Logical Programming with System/360. New York, 1970.

[StatTrek, 2011] http://stattrek.com/Lesson3/SamplingTheory.aspx

[Tang and Liao, 2007] Tang, Z., Liao, Q.: A new class based associative classification
algorithm. IAENG International Journal of Applied Mathematics, 2007, 36/2, pp.15-19.

[Thabtah et al, 2005] Thabtah, F., Cowling, P., Peng, Y.: MCAR: multi-class classification
based on association rule. In Proc. of the ACS/IEEE 2005 Int. Conf. on Computer
Systems and Applications, Washington, DC, 2005, p.33.

[Toivonen, 1996] Toivonen, H.: Sampling large databases for association rules. In The
VLDB Journal, 1996, pp.134-145.

[Wagner, 1973] Wagner, H.: Begriff. In: Handbuch philosophischer Grundbegriffe,
München, Kösel, 1973, pp.191-209.

[Wang and Karypis, 2005] Wang, J., Karypis, G.: HARMONY: Eficiently Mining the Best
Rules for Classification. In Proc. of SDM, 2005, pp.205-216.

[Wille, 1982] Wille, R.: Restructuring lattice theory: an approach based on hierarchies of
concepts. In: Ordered Sets, Dordrecht-Boston, Reidel, 1982, pp.445-470.

[Williams, 2009] Williams, G.: Rattle: A data mining GUI for R. The R Journal, 1:2, 2009,
pp.45-55. http://rattle.togaware.com/

[Witten and Frank, 2005] Witten, I., Frank, E.: Data Mining: Practical Machine Learning
Tools and Techniques. 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

[Wu, 1995] Wu, X.: Knowledge Acquisition from Database. Ablex Pulishing Corp., USA,
1995.

[Yin and Han, 2003] Yin, X., Han, J.: CPAR: Classification based on predictive association
rules. In SIAM Int. Conf. on Data Mining (SDM'03), 2003, pp.331-335.

[Yuan and Huang, 2005] Yuan, Y., Huang, T.: A matrix algorithm for mining association
rules. LNCS, Vol. 3644, 2005, pp.370-379.

[Zaiane and Antonie, 2002] Zaiane, O., Antonie, M.-L.: Classifying text documents by
associating terms with text categories. J. Australian Computer Science
Communications, 24/2, 2002, pp.215-222.

References 197

[Zaiane and Antonie, 2005] Zaiane, O., Antonie, M.-L.: On pruning and tuning rules for
associative classifiers. In Proc. of Int. Conf. on Knowledge-Based Intelligence
Information & Engineering Systems, LNCS, Vol. 3683, 2005, pp.966-973.

[Zaiane et al, 2000] Zaiane, O., Han, J., Zhu, H.: Mining recurrent items in multimedia
with progressive resolution refinement. In Int. Conf. on Data Engineering, 2000,
pp.461-470.

[Zimmermann and De Raedt, 2004] Zimmermann, A., De Raedt, L.: CorClass: Correlated
association rule mining for classification. In Discovery Science, LNCS, Vol. 3245, 2004,
pp.60-72.

References 198

Curriculum Vitae 199

Curriculum Vitae

Iliya Georgiev Mitov was born on May 26, 1963 in Sandansky, Bulgaria.
After graduating from the secondary school in his home town, from 1983 till
1988 he studied Mathematics at Sofia University "St. Kliment Ohridsky", where
he obtained his Master of Science degree in Computer Science.

He has been started as software engineer in the field of business informatics.
Later, since 2003 he has been develop own IT company for automation of
company management and accountancy. He has participated in several projects
in the field of advance of non-governmental organizations in Bulgaria and Balkan
region.

The main research interests of Iliya Mitov are: Data Mining, Knowledge
Retrieval, Data Bases, Information systems, ERP-systems applied in areas such
as: Analysis and Management of Economical and Natural Processes.

He has more than 60 scientific publications in journals and peer-reviewed
conferences in the areas of his research interests.

Since 1990 he has been a principal co-developer of the Complex FOI, applied
in numerous Bulgarian companies, which provided an excellent framework to
investigate workflow, software, and management aspects in the field of business
informatics. He also served as a principal co-developer of the data mining
environment system PaGaNe, which provides a convenient workplace for
examining different tools supporting the process of knowledge discovery.

Since 2009 he is carrying out a doctoral research project at the Hasselt
University, which outcomes are presented in this dissertation.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20111011140911
 680.3150
 doctoraat
 Blank
 481.8898

 Tall
 1
 0
 No
 675
 317
 None
 Down
 14.1732
 0.0000

 Both
 119
 AllDoc
 133

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 197
 203
 202
 202

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 5 to page 133
 Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
 Shift: move down by 56.69 points
 Normalise (advanced option): 'original'

 32

 D:20111011140911
 680.3150
 doctoraat
 Blank
 481.8898

 Tall
 1
 0
 No
 675
 317
 Fixed
 Down
 56.6929
 0.0000

 Both
 5
 SubDoc
 133

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 4
 203
 132
 129

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 5 to page 133
 Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
 Shift: move down by 28.35 points
 Normalise (advanced option): 'original'

 32

 D:20111011140911
 680.3150
 doctoraat
 Blank
 481.8898

 Tall
 1
 0
 No
 675
 317
 Fixed
 Down
 28.3465
 0.0000

 Both
 5
 SubDoc
 133

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 27
 203
 132
 129

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 134 to page 203
 Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
 Shift: move down by 56.69 points
 Normalise (advanced option): 'original'

 32

 D:20111011140911
 680.3150
 doctoraat
 Blank
 481.8898

 Tall
 1
 0
 No
 675
 317
 Fixed
 Down
 56.6929
 0.0000

 Both
 134
 SubDoc
 203

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 133
 203
 202
 70

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 134 to page 203
 Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
 Shift: move down by 28.35 points
 Normalise (advanced option): 'original'

 32

 D:20111011140911
 680.3150
 doctoraat
 Blank
 481.8898

 Tall
 1
 0
 No
 675
 317
 Fixed
 Down
 28.3465
 0.0000

 Both
 134
 SubDoc
 203

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 133
 203
 202
 70

 1

 HistoryItem_V1
 InsertBlanks

 Where: after last page
 Number of pages: 1
 same as current

 1
 1
 1
 602
 331

 CurrentAVDoc

 SameAsCur
 AtEnd

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

