

DOCTORAATSPROEFSCHRIFT
2011 | School voor Informatietechnologie
 Kennistechnologie, Informatica, Wiskunde, ICT

Mining Correlated Motif Pairs from Protein-Protein
Interaction Networks

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, Informatica, te verdedigen door:

Peter BOYEN

Promotor: prof. dr. Frank Neven
Copromotor: dr. Dries Van Dyck

D/2011/2451/53

i

Acknowledgements

First and foremost, I offer my sincerest gratitude to my advisor, Frank Neven.
He has guided and supported me, let me work in my own way when appropri-
ate, and pushed me when I needed pushing. He has taught me much about
what makes good research, a good paper, a good scientist. Without him I
would have never started, let alone finished this thesis.

A special mention goes to Dries Van Dyck, my co-advisor. His passion for
the work was inspirational and I have learned a lot from his seemingly endless
flow of ideas.

Aalt-Jan van Dijk has been helping me to understand and process the
biological side of my thesis since the very beginning. So I would like to thank
him as well.

I would like to thank everybody who was important to the successful real-
ization of this thesis, inspirationally, as well as conversationally.

It has been a pleasure working with and among the members of Infolab
(past and present). In my time here, many of you have become not only good
colleagues, but good friends as well.

I am grateful for the faith my friends have had in me and also for their
inquiries to my progress.

Last but not least, I thank my family, in particular my parents, for sup-
porting me throughout all my university studies.

Diepenbeek, December 2011

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 2

1.2.1 Correlated Motif Mining (cmm) 2

1.2.2 Correlated Motif Covering (cmc) 5

1.2.3 Applications and future work 6

1.3 Related work . 7

1.3.1 Pattern mining . 7

1.3.2 Binding site prediction 7

1.4 Outline . 8

1.5 Publications . 8

2 Mining the best motif pairs according to a support measure 9

2.1 Introduction . 9

2.2 Correlated motif mining . 10

2.3 Support measures . 12

2.3.1 A χ2-based support measure 13

2.3.2 p-score: a probabilistic support measure 14

2.3.3 Comparison of fχ2 and fp 15

2.4 Complexity of cmm . 15

2.5 Algorithms . 20

2.5.1 m-slider: Sliding over motifs 22

2.5.2 seq-slider: Sliding over sequences 23

2.6 Time complexity of algorithms 25

2.6.1 Preprocessing step . 25

2.6.2 Evaluation cost and value range fχ2 25

2.6.3 Nmot (m-slider) . 26

2.6.4 N seq (seq-slider) . 28

2.6.5 Time complexity slider 28

2.7 Data . 29

iii

iv CONTENTS

2.7.1 Artificial data . 29

2.7.2 Biological data . 30

2.8 Experiments . 31

2.8.1 Precision for motif pairs 31

2.8.2 Evaluation of support measures 32

2.8.3 Evaluation of neighborhood functions 35

2.8.4 Comparison with existing methods 37

2.8.5 Biological validation . 39

2.8.6 Performance comparison for SEQ-SLIDER and brute
force computation . 43

2.8.7 Additional simulated data 45

2.9 Conclusion . 45

3 Mining minimal motif pair sets maximally covering interac-
tions 49

3.1 Introduction . 49

3.2 Covering a graph with a set of motif pairs 50

3.3 Complexity and Approximation of cmc 52

3.3.1 Lower bounds . 52

3.3.2 Upper bounds . 60

3.4 Algorithms . 69

3.4.1 seq-slider . 69

3.4.2 cmc-greedy . 69

3.4.3 cmc-approx . 69

3.5 Data . 72

3.6 Evaluation . 74

3.7 Biological validation . 75

3.7.1 Prediction . 75

3.7.2 Comparison with protein structure data 76

3.7.3 Cross-species comparison 76

3.8 Conclusion . 79

4 Applications and future work 81

4.1 Introduction . 81

4.2 bioSLIDER . 81

4.2.1 Adaptation . 82

4.2.2 Experiments . 84

4.3 Binding sites in higher order complexes 87

4.3.1 Adaptation . 87

4.3.2 Experiments . 89

4.4 Cross-species evaluation . 91

CONTENTS v

4.4.1 Data . 91
4.4.2 Experiments . 92

4.5 Conclusion . 94

5 Conclusion 97

Bibliography 101

A Software 109
A.1 Parameters . 109
A.2 Methods . 112
A.3 Support measures . 113
A.4 Neighbor functions . 113
A.5 File formats . 114

B Samenvatting 117
B.1 Motivatie . 117
B.2 Probleemstelling . 118
B.3 Bijdragen . 119

1
Introduction

1.1 Motivation

Proteins form the basic building blocks of all living organisms. They perform
all basic functions to which end they must often physically bind together, form-
ing different complexes. Large-scale biological networks are available for sev-
eral organisms, incorporating an ever increasing number of interactions within
the same organism [STdS+08]. Such data demonstrate how proteins function
as part of an interaction network, but provide no insight into how interactions
are encoded in protein sequences. These interactions occur via connections
between parts of the respective proteins, called binding sites. Protein residues
(amino acids) involved in such connections are called binding residues or in-
terface residues. Knowledge of binding sites is critical for the prediction of
novel protein-protein interactions (PPI’s), understanding of the evolution of
protein interactions, or for the creation of drugs to target a specific protein.
Unfortunately, the discovery of these sites requires laborious and expensive bi-
ological experiments. In fact, it is estimated that at the present rate of protein
structure determination, it would take 20 years to determine all interaction
types using current experimental techniques [AR04]. Moreover, even if this
would be accomplished, one would still have to deal with predicting for a given
interacting sequence to what interaction type it adheres.

Therefore, we have developed a novel methodology to help us find potential
binding sites computationally, to complement and guide the effort into their
discovery. An implementation as a tool is discussed in Appendix A.

1

2 Introduction

 A B

B

A

C

D

 C D

1

2

3

4

5

6

Figure 1.1: Compatible binding sites {A, C} and {B, D} as correlated motifs in
sequences.

1.2 Problem statement

For the above reasons, we wish to determine if it is possible to locate protein
binding sites using only widely available information, such as the Protein-
Protein Interaction (PPI-)network and the sequences of its proteins, as input.

1.2.1 Correlated Motif Mining (cmm)

Correlated Motif Mining (cmm) is an approach to identify binding sites by
looking for a consensus pattern, called a motif, in one set of proteins (most
of) which interact with (almost) all proteins which contain another consensus
pattern. If so, both patterns are likely to represent a part of the surface of the
molecules which makes interactions possible through a physical binding.

We represent a PPI-network as a graph where the nodes are proteins, which
are labelled with their amino acid sequence, and there is an edge between two
nodes if their corresponding proteins interact. For example, in Figure 1.1 we
see the graph representation of a PPI-network with 6 nodes and 7 interactions.
Then, the problem becomes identifying those patterns where the nodes whose
labels adhere to the patterns form a large (quasi-)biclique within the graph
representation of the network. For instance, in Figure 1.1 the patterns {A, C}
and {B, D} represent two such correlated motifs. In particular, there is an
undirected edge between two protein sequences when the first one contains
motif A, and the second one motif C, and similarly for motif B and D.

Several computational approaches have been proposed to locate binding
sites through the mining of overrepresented pairs of motifs in the sequences
of interacting proteins [LSY+07, LLW06, LLLW07, LSLW08, THSN06]. Cur-
rently, despite the development of these algorithms, it is unclear which frac-

1.2. Problem statement 3

tion of interfaces can be described by such correlated motifs. However, results
clearly indicate that correlated motifs do contain information about inter-
faces [LSY+07, LLW06, LLLW07, LSLW08, THSN06].

Methods for cmm can be subdivided into two classes:

• interaction-driven [LLW06, LLLW07, LSLW08], and

• motif-driven approaches [LSY+07, THSN06].

Interaction-driven methods mine for (quasi-)bicliques, i.e., subsets of vertices
for which (almost) every vertex from one set is connected to (almost) all
vertices of the other set. Such subgraphs exhibit a type of all-versus-all (or
most-versus-most) interaction. A motif pair representing the corresponding in-
teraction sites is then derived from the sequence carried by the vertices. The
motif-driven approach, in contrast, starts from candidate motif pairs whose
support is then evaluated in the network. Although both approaches have
shown to produce biologically meaningful results, we study the second ap-
proach as it has several conceptual advantages over the first:

• motif pairs are mined directly, not derived;

• all proteins containing one of the motifs, and not a subset, are taken
into account; and,

• if the interactions between two sets of proteins are a consequence of
multiple compatible binding sites, such as {A, C} and {B, D} in Figure 1.1,
the interaction-driven method necessarily merges them into one motif
pair.

Currently, only two techniques have been introduced and implemented for
the motif-driven approach towards cmm. Unfortunately, both methods differ
not only in the mining method but also in the used notion of support for
correlated motifs. The first method by Tan et al. [THSN06], called D-STAR,
uses a χ2-based scoring function to determine the support, but the underlying
mining method does not scale to networks containing more than 250 proteins.
As contemporary biological networks contain up to thousands of proteins (see
Section 2.7), scalability is an increasingly important issue. The second method,
called MotifHeuristics, employs a different, probabilistically motivated notion
of support called p-score. This method is developed by Leung et al. [LSY+07]
and does scale to larger networks. Although the authors argue in their paper
that MotifHeuristics is superior to D-STAR, it remains unclear if the latter is
due to the different support measure or the underlying mining method.

Given that biological data is both noisy and incomplete, we cannot simply
look for the motif pairs selecting the largest bicliques. We must somehow weigh

4 Introduction

completeness against size. To do that, we present a thorough, empirical study
of the effectiveness of various existing and new notions of support for correlated
motifs. We evaluate them in terms of precision and recall on artificial networks
with implanted motifs at different noise levels. These experiments clearly
show that a χ2-based support measure is vastly superior in discovering highly
interaction-descriptive motif pairs.

We formally prove, under reasonable assumptions concerning the used no-
tion of support, the complexity of cmm is np-hard and its associated decision
problem is np-complete. In particular, we show our χ2-based support mea-
sure adheres to these assumptions. We therefore approach the problem as a
combinatorial optimization problem.

More specifically, we present slider, a generic metaheuristic containing
two steepest ascent methods (m-slider and seq-slider), the key compo-
nents of which are their neighborhood functions, based on viewing a motif as
a window that slides over the amino acid sequence of one of the proteins. In
contrast with more common neighborhood functions, they have a clear biolog-
ical interpretation: they are based on the philosophy that if a motif overlaps
with part of a binding site in a sequence, it should be able to slide towards
the binding site in a few steps. So both neighborhood functions want to find
neighboring motifs that could be close to each other on actual proteins. The
difference is that m-slider considers as neighbors of a motif all motifs which
could theoretically be near it on any protein whereas seq-slider only takes
motifs actually nearby on a single selected protein. Although slider can be
used with an arbitrary support measure, we use the χ2-based support mea-
sure, as our empirical study clearly indicates this is the best support measure
known so far.

We validate slider by showing its methods outperform, in both speed
and accuracy, all existing motif-driven approaches on retrieving implanted
motif pairs from artificial networks. When the data follows our model, slider
performs near optimal, finding almost all implanted motif pairs in only a short
period of time. Unfortunately, as an effect of motifs in biological networks not
adhering to our strict model of motifs, there is a large amount of motifs that
covers a very similar, if not identical, part of the network. As a result, the
best scoring motif pairs often refer to highly similar selected networks and
to get a decent coverage of the network, we would need to incorporate an
unmanageable amount of motif pairs. So, even though slider is successful
in finding the best motif pairs according to a support measure, the resulting
binding sites all occur in proteins in the small, densest part of the network.
Though knowledge of these binding sites is useful, it is important for biological
tests to know as many as possible throughout the entire network.

1.2. Problem statement 5

1.2.2 Correlated Motif Covering (cmc)

To address the low recall of slider, we investigate a radically different ap-
proach where instead of scoring the power of a pattern to explain interactions
on an individual basis, we score the explicative power of a set of motif pairs
as a whole. In essence, we target a minimal set of motif pairsM which covers
a maximal part of the network. To balance the minimality of M with the
‘goodness’ ofM representing the network, we employ a minimum description
length measure to score sets of motif pairs. We formalize the latter as the
Correlated Motif Covering (cmc) problem.

We analyze cmc from a computational viewpoint. We prove that cmc is
NP-hard and that it belongs to a class of problems for which it is practically
impossible to find “good” approximation algorithms. Here, “good” means
approximations with a sub-square root approximation rate. Specifically, we
reduce the Red-Blue Set Cover (rbsc) problem, a well-known combinatorial
problem, to cmc using polynomial time reductions that maintain constant
factors of approximation. On the other hand, we exhibit a reduction from cmc
to the Weighted Red-Blue Set Cover (wrbsc) problem allowing the transfer
of known approximation algorithms for the latter to cmc. Unfortunately, due
to the large sizes of biological networks, none of the available algorithms for
wrbsc remain feasible when directly adapted for cmc. We therefore introduce
the novel heuristic cmc-approx for cmc which is based on an approximation
algorithm by Peleg [Pel07] for wrbsc. Although the adaptation no longer
guarantees the same approximation rate, we experimentally assess its merits
by comparing it to two alternative algorithms for cmc. The first alternative
algorithm is seq-slider, which is considered as a baseline as it simply mines
for the k best motif pairs in a network which are then considered to form a
cover. The second alternative is the expected greedy algorithmic solution to
cmc. We refer to the latter algorithm as cmc-greedy.

In an experimental validation on biological networks, we confirm that the
network coverage of cmc-approx is indeed much larger than that of seq-slider
and cmc-greedy at the expense of a slightly increased running time. To further
evaluate the biological relevance of cmc-approx, we tested the effectiveness of
the derived motif pairs in several scenarios. The first scenario is the predic-
tion of protein interactions from 2D-sequences, where cmc-approx is shown to
slightly outperform the two other algorithms. In the second scenario, we de-
termine the overlap of our found motif pairs with actual interaction sites in the
human and yeast network for which there is 3D-structure information avail-
able. We obtain that the coverage (the number of proteins and interactions
covered) drastically increases (at the expense of a slightly lower precision) com-
pared to the baseline, thereby greatly improving the utility for experimental

6 Introduction

biologists who want to predict binding sites to perform further experimental
studies and for whom it obviously is very important to obtain predictions for
as many proteins as possible.

1.2.3 Applications and future work

Finally, we conclude with some applications and show the potential of several
possible avenues of future work:

• The potential of expanding slider with biological knowledge is investi-
gated. First, we use the likelihood that an evolutionary change occurs
from one amino acid to another to define a similarity between them. We
can use this similarity to make motifs more flexible, and allow them to
select areas in the protein sequence that are a biological near-match. We
can also employ different types of information that give for each amino
acid a likelihood of being part of a binding site, e.g. Relative Solvent
Accessibility (RSA) and conservation score. This allows us to make sure
that unlikely regions for binding sites are not taken into account in our
calculations. Finally, most interactions are known to occur within known
subsections of proteins called domains. Thus, by excluding motifs oc-
curring elsewhere, we increase our chances of finding a binding site. We
show that by using these various forms of biological data, we can improve
the ability of slider to find biologically meaningful results.

• An attempt was made to predict binding sites for higher order complexes,
but our simple model, which extends the motif pair into a motif triplet,
is unable to capture what is really going on. It would be interesting to
conduct further research into this using more complex models.

• We also show that it is possible to adapt our algorithms to take into
account not only binary (yes/no) interaction data, but interaction prob-
abilities. Interaction probabilities can be calculated by combining infor-
mation from different sources and/or by setting probabilities for each
method of interaction detection.

• Cross-species motif pair mining can be used as a filtering step to in-
crease accuracy. That is, we provide evidence for the hypothesis that
motif positions which are found in more than one species through min-
ing of motif pairs are more likely to be interface residues. This means
that a cross-species comparison could be used to filter noise from the
predictions. We use our results in an extended test to verify if we can
use data from multiple species to predict binding sites with increased
certainty.

1.3. Related work 7

1.3 Related work

1.3.1 Pattern mining

Many pattern mining applications suffer from pattern explosion. That is,
when an interestingness measure is chosen to retrieve novel results, such a
large amount of patterns is obtained as to eclipse the data itself by several
orders of magnitude. This is mostly due to the locality of the minimum support
constraint, which causes patterns to be added to the results set independent of
patterns already found, causing great redundancy in the results. This problem
is often alleviated, but not solved, by looking for special types of patterns, such
as closed [PBTL99] or maximal [Bay98] patterns, that encompass a group
of redundant patterns. To provide less redundant patterns, there has been
much research toward finding small sets of representative macro-patterns for
databases. Bringmann et al. [BZ09] use a post-processing technique to filter
item set mining results and remove redundant item sets. They show that this
reduction of the result set can improve the quality of classification. Geerts
et al. [GGM04] consider the top-k tiling problem. Here, tiles are frequent
item sets that cover a large area of the transaction database. Their top-k tiles
problem looks for the k (possibly overlapping) tiles that together cover the
largest surface in the database. Vreeken et al. [VLS11] introduce KRIMP,
which uses MDL to find the item sets that can best be used to compress a
database. So far, all these techniques only select item sets that occur exactly
within the data. Xiang et al. [XJFD08] adapt tiling to allow for item sets
with a few missing items. They focus, however, on covering every cell in the
database, while we are more interested in informative patterns which give us
insight into the data. None of these techniques focuses on biological data.

1.3.2 Binding site prediction

The prediction of binding sites is mostly used in two fields, the prediction of
transcription factor binding sites, or of protein binding sites.

Transcription factor binding sites are the locations on strands of DNA
where proteins bind to activate or inhibit its transcription. This search is
typically performed by looking for statistically overrepresented motifs among
DNA strands of coregulated genes [DD07].

Several tools exist for predicting protein binding sites [THSN06, LSY+07,
LLW06, LLLW07, LSLW08, BW05, LZLZ06, LVT07, MJ06, NSO+07, NRS04,
OKA+05, PM07, SPNW04, SGG03, TQZ07, ZS01, ZQ07, vDMF+10]. They
use several types of information, e.g. amino acid sequence, solvent accessibil-
ity, conservation, and many others. This information is not always available,
especially for newly sequenced proteins. Many learning methods are used to

8 Introduction

predict the binding sites, such as SVMs or neural networks. One, in particu-
lar, named PRISM [OKA+05] should be mentioned as it also uses motif pairs.
Using known pairs of binding sites, it looks for a structural match for the left
and right binding sites. If found, it predicts interaction through those sites.

All these works focus on predicting binding sites separately. To the best
of our knowledge, this is the first attempt to look for a grand explaining set
of binding sites for a protein-protein interaction network.

1.4 Outline

In chapter 2, we formally define the problem of Correlated Motif Mining
(cmm). We obtain that cmm is an np-hard problem and present the generic
metaheuristic slider which employs the χ2-based support measure. We show
that slider outperforms existing motif-driven cmm methods and scales to
large protein-protein interaction networks.

In chapter 3, we formally define Correlated motif covering (cmc). We
show cmc to be NP-hard and prove its hardness of approximation. We create
a functional heuristic for cmc, called cmc-approx, and experimentally assess
its performance and biological relevance.

In chapter 4, we show some extensions of slider and some applications
of our results. We extend slider by providing it with different forms of
biological data. We also provide a version that can work with motif triplets
instead of motif pairs and is able to use interaction probabilities instead of
binary interaction data. Finally, we check that we can use results for various
species to reduce noise in the results and increase our certainty of several
binding sites.

In Appendix A, we give a short overview of the functionality of the software
created as part of this work.

Finally, a Dutch summary is provided in Appendix B.

1.5 Publications

Chapter 2 is based on work presented at ICDM 2009 [BNVD+09], and the ex-
tended version published in ACM Transactions on Computational Biology and
Bioinformatics [BVDN+11]. Chapter 3 is based on work submitted to ACM
Transactions on Computational Biology and Bioinformatics [BNVD+on].
Chapter 4 is based on work yet to be published.

2
Mining the best motif pairs
according to a support
measure

2.1 Introduction

We consider the problem of finding those pairs of patterns, called motifs,
where (most of) the proteins containing one motif interact with (almost) all of
the proteins containing the other. These motifs are expected to indicate the
locations of binding sites. We formalize this problem as the Correlated Motif
Mining (cmm) problem in Section 2.2. Next, we discuss two support measures,
the p-score and the χ2-based support measure, in Section 2.3. In Section 2.4,
we prove cmm to be np-hard for a large class of support measures. As a result,
we reformulate the search for correlated motifs as a combinatorial optimization
problem in Section 2.5 and introduce the generic slider metaheuristic, along
with its two methods m-slider and seq-slider, based on the idea that we can
slide a detector for the optimal motif along the sequence. We discuss slider’s
space and time complexity in Section 2.6. To validate slider’s capability
in retrieving the descriptive motif pairs, we create artificial data sets where
each interaction is the result of an implanted motif pair. In Section 2.7, we
introduce these artificial data sets as well as the biological data sets on which
the effectiveness of our methods is then assessed in Section 2.8. Our results
show that slider outperforms existing methods in both accuracy and speed.

9

10 Mining the best motif pairs according to a support measure

Notation Explanation

f a support measure

X,Y motifs

VX set of proteins containing motif X

EX,Y set of interactions between VX and VY
GX,Y subnetwork of G with vertices VX ∪ VY and

edges EXY
Emax|VX |,[VY |,|VX∩VY | maximum amount of edges in GX,Y , given

|VX |, |VY |, |VX ∩ VY |
EX,Y expected amount of edges in GX,Y
M = {X,Y } a motif pair

MkX ,kY ,kX,Y complete motif pair

M a set of motif pairs

u, v proteins

{u, v} interaction between protein u and protein v

λ(u) protein sequence of u

pos(X,u) set of positions of occurrences of X in λ(u)

N(X), N({X,Y }) neighbor of a motif or motif pair

S a set of objects

S a set of sets

Figure 2.1: Table of major notation.

Finally, we conclude in Section 2.9 with a discussion on the choice for steepest
ascent and the difference with frequent motif mining.

For the reader’s convenience, a table of major notation has been added in
Figure 2.1.

2.2 Correlated motif mining

A Protein-Protein Interaction (PPI-)network can be represented as a labeled
graph G = (V,E, λ), with protein set V , interaction set E ⊆ V × V 1, and
a labeling λ : V → L, with L a finite alphabet of labels. As we label every
protein with its amino acid sequence, the label function λ maps each vertex
v ∈ V to a string λ(v) over the alphabet Σ = {A, . . . , Z} \ {B, J, O, U, X, Z}.

An (`, d)-motif is a string of length ` over the alphabet Σ∪{x} containing
exactly d x-characters. The character x is interpreted as a wildcard-symbol,
i.e., it matches with any character of Σ. For instance, GAQPRNMY matches the

1Throughout this work, we use V × V to mean {{u, v} | u, v ∈ V }.

2.2. Correlated motif mining 11

 A B

B

A

C

D

 C D

1

2

3

4

5

6

Figure 2.2: An example protein-protein interaction network (repeated).

(8, 3)-motif GxQPxNxY. We do not allow motifs to start with a wildcard-symbol,
eliminating a lot of redundant motifs. Note that motifs starting and ending
with a wildcard character are redundant because, in practice, the amino acid
sequences are much longer than the motifs.

A protein contains an (`, d)-motif X if its amino acid sequence contains a
substring of length ` that matches X. A protein pair contains a motif pair,
if one protein contains one motif, and the other protein contains the other.
Conversely, we say a motif (pair) selects a protein (pair) if the protein (pair)
contains it.

A motif pair M = {X,Y } now selects a subnetwork of a PPI-network
G = (V,E, λ) as follows. Let VX = {v ∈ V | v contains X}, be the set of
proteins in the network containing the motif X, and EM = EX,Y = {{u, v} ∈
E | u ∈ VX ∧ v ∈ VY } be the set of interactions between proteins containing
X and proteins containing Y . Similarly, we define the set of anti-edges AM =
AX,Y = {{u, v} 6∈ E | u ∈ VX ∧ v ∈ VY }, the set of protein pairs selected by
{X,Y } without interactions (the false postive interactions for {X,Y }). The
subgraph GM = GX,Y selected by {X,Y } is then

GX,Y := (VX ∪ VY , EX,Y , λ|VX∪VY)

with λ|VX∪VY the restriction of λ to VX ∪ VY . Note that VX and VY can share
proteins.

The amount of (`, d)-motif pairs is the amount of ways you can pick 2
motifs out of the amount of (`, d)-motifs, as given by

MP(`, d) =

((`−1
d

)
|Σ|(`−d)

2

)
,

which, e.g. means there are approximately 6× 1015 (8, 3)-motif pairs.

12 Mining the best motif pairs according to a support measure

By |G| we denote the size of G, defined as |V | + |E| +
∑
v∈V
|λ(v)|, where

|S| denotes the number of elements in a set S and |s| denotes the length of a
string s.

In Figure 2.2, we see an example PPI-network G = (V,E, λ), with λ par-
tially given in the figure. Proteins 1 and 3 contain the motif A, and the motif
A selects those proteins. If you pair either protein 1 or 2, with protein 4,
both protein pairs contain the motif pair {B,C}, though only one has an in-
teraction. The subgraph GB,C consists of proteins 1, 2 (containing B), 4, 6
(containing C) and the three edges between them.

A support measure f is a function mapping a motif pair {X,Y } and a
graph G to a positive real number f({X,Y }, G). We refer to f({X,Y }, G) as
the support of {X,Y } in G. In Section 2.3 and 2.8.2 we discuss and compare
several instances of support measures.

The Correlated Motif Mining (cmm) problem is then defined as follows:

The Correlated Motif Mining problem (cmm)

• Input: A PPI-network G, three numbers `, d, k ∈ N+, with d < `
and a support measure f

• Output: the k (`, d)-motif pairs {X1, Y1}, . . . ,{Xk, Yk} with highest
support in G with respect to f

2.3 Support measures

Support measures should reflect the power of a motif pair to describe inter-
actions. Several considerations should be taken into account in deciding how
to measure the descriptive power of a motif pair for a given PPI-network
G = (V,E, λ):

• EX,Y should be significantly larger than expected given G, VX and VY ;
and,

• VX and VY should be large enough to minimize the likelihood that the
appearance of the motif X (Y) in the sequences of the proteins in VX
(VY) is just by chance.

In other words, we want the motifs X and Y to truly represent an overrep-
resented consensus pattern in the sequences of the proteins in VX , respectively
VY , to increase the likelihood that they correspond to, or at least overlap with,

2.3. Support measures 13

VYVX

VX VY
U

Figure 2.3: An example of a network selected by a complete (5,6,3)-motif pair.

a so called binding site — a site on the surface of the molecule that makes
interactions between proteins from VX and VY possible through a molecular
lock-and-key mechanism.

Before we discuss support measures in detail, we need some more concepts
from graph theory. A bipartite graph is a graph for which the vertex set can
be partitioned into two disjoint sets B and W such that each edge connects a
vertex of B with a vertex of W . It is called balanced if |B| = |W | and complete
if each vertex of B is connected to each vertex of W . A complete bipartite
subgraph is called a biclique. The edge density ed(G) of a graph G = (V,E)
is the proportion of edges it has of all its potential edges: ed(G) = |E|/

(|V |
2

)
.

We call {X,Y } a (kX , kY , kX,Y)-motif pair for a PPI-network G = (V,E, λ)
if |VX | = kX , |VY | = kY and |VX ∩ VY | = kX,Y . We call it complete if all
vertices from VX are connected with all vertices from VY . Clearly, a complete
(kX , kY , kX,Y)-motif pair is an ideal candidate provided that kX and kY are
sufficiently large. Figure 2.3 shows an example. As such, the maximal number
of edges any (kX , kY , kX,Y)-motif pair can have in any PPI-network is

Emax
kX ,kY ,kX,Y

=

(
kXkY −

(
kX,Y

2

)
− kX,Y

)
.

2.3.1 A χ2-based support measure

Tan et al. [THSN06] introduced the χ2-score for statistical significance as a
support measure for cmm:

fχ2({X,Y }, G) =

{
(|EX,Y |−EX,Y)2

EX,Y
if |EX,Y | > EX,Y ;

0 if |EX,Y | ≤ EX,Y ;

with EX,Y the expected number of interactions between VX and VY . The

14 Mining the best motif pairs according to a support measure

value EX,Y is calculated by assuming a uniform density of edges:

EX,Y = ed(G)Emax
|VX |,|VY |,|VX∩VY | .

If we also use the edge density of the selected subnetwork ed(GX,Y) =
|EX,Y |/Emax

|VX |,|VY |,|VX∩VY | we can rewrite the χ2-support of {X,Y } for which

|EX,Y | > EX,Y as

fχ2({X,Y }, G) = Emax
|VX |,|VY |,|VX∩VY |

(ed(GX,Y)− ed(G))2

ed(G)
.

As ed(G) is a constant for a fixed PPI-network, we clearly see in this form
that fχ2 uses two criteria to determine the support of a motif pair {X,Y }:

• the difference in edge density of GX,Y and G, which rewards a larger
EX,Y than expected; and

• the (potential) size of GX,Y in terms of the number of edges, which
rewards larger VX and VY .

2.3.2 p-score: a probabilistic support measure

The p-score is a measure introduced by Leung et al. [LSY+07] to evaluate the
statistical significance of a motif pair {X,Y } in a PPI-network G = (V,E, λ)
by estimating the conditional probability that there are at least |EX,Y | or more
interactions between VX and VY given the number of interactions involving
VX and assuming a uniform distribution of interactions over all interaction
partners. Motif pairs for which this probability is small are considered to be
statistically significant.

More formally, given a motif pair {X,Y } and a PPI-network G = (V,E, λ),
let N(VX) = {u | ∃v ∈ VX : {u, v} ∈ E}, i.e., the set of all vertices connected
with a vertex from VX , and EX = {{u, v} ∈ E | u ∈ VX}, the set of interactions
involving vertices from VX .

The probability pX that there are |EX,Y | or more interactions between
VX and VY given VX , VY , N(VX) and EX is estimated by (see [LSY+07] for
details)

pX =

Emax
X,Y∑

i=|EX,Y |

(
i−1

|N(VX)∩VY |−1

)(|EX |−i−1
|N(VX)\VY |−1

)(|EX |−1
|N(VX)|−1

)
where

Emax
X,Y = min(|EX | − |N(VX) \ VY |, |VX ||N(VX) ∩ VY |)

2.4. Complexity of cmm 15

represents the maximal possible size of EX,Y . The idea is that pX is a good
estimator for the conditional probability of |EX,Y | or more interactions be-
tween VX and VY given VX , N(VX), EX , VY , N(VY) and EY if |EX,Y |/EY→X
is small, with

EY→X = (|EY |/|N(VY)|)|N(VY) ∩ VX |

the expected number of interactions between VY and N(VY) ∩ VX given VY ,
N(VY), EY and VX . Of course, similar formulas can be obtained for pY
and EX→Y and the p-score-based support measure fp uses the best of both
estimators:

fp({X,Y }, G) =

{
1− pX if EY→X ≥ EX→Y ;

1− pY if EY→X < EX→Y ;

2.3.3 Comparison of fχ2 and fp

Comparing fp with fχ2 , a major difference is that fχ2 bases its support on
the whole network G, while fp-support is based on the statistical significance
of a motif pair {X,Y } in two subnetworks of the whole PPI-network: GX =
(VX ∪N(VX)∪VY , EX) and GY = (VY ∪N(VY)∪VX , EY). Moreover, besides
the typical edge distribution assumption, fp implicitly makes the following
additional assumptions:

• VX and VY are disjoint;

• every interaction from EX (EY) can be described using X (Y), thus to
calculate the support of {X,Y } each protein is assumed to have only
one binding site.

Finally, we stress a design flaw in the definition of fp: the approximation
pX becomes less precise when |EX,Y |/EX→Y becomes larger. But the lat-
ter happens precisely when the selected subgraph contains more edges than
expected, i.e., becomes more interesting. In addition, our experiments in Sec-
tion 2.8 confirm that fp is inferior to fχ2 in recovering implanted correlated
motifs at different noise levels.

2.4 Complexity of cmm

We will prove that cmm is np-hard when fχ2 is used as support measure.
However, to make the result as broadly applicable as possible, we will prove
the np-hardness of cmm for a whole class of support measures and show at
the end of the section that fχ2 is a member of that class.

16 Mining the best motif pairs according to a support measure

For technical reasons, we restrict ourselves to support measures which
abide by three reasonable conditions. Let G = (V,E, λ) be any PPI-network
and let MkX ,kY ,kX,Y be a complete (kX , kY , kX,Y)-motif pair for G, kX,Y ≤
min(kX , kY). We call a support measure f compliant if the following condi-
tions hold for f :

• f is polynomial time computable in the size of G,

• for any two (kX , kY , kX,Y)-motif pairs {X,Y }, {X ′, Y ′} in G:

f({X,Y }, G) = 0 ∨(
f({X,Y }, G) > f({X ′, Y ′}, G) ⇐⇒ |EX,Y | > |EX′,Y ′ |

)
,

• f(MkX+1,kY ,kX,Y , G) > f(MkX ,kY ,kX,Y , G) .

Informally, the first condition says that the support can be computed ef-
ficiently, which is crucial for scalability reasons. The second condition states
that if the subnetworks selected by two motif pairs differ only in the number
of edges, the one which covers more interactions has higher support. Finally,
the last condition states that the support of a complete motif pair increases
with the size of the selected subnetwork. Hence, the last two conditions for-
malize the intuition that a good support measure prefers motif pairs which
select large, dense subnetworks. On the other hand, the last two conditions
also induce some bias as they implicitly assume that the support only depends
on VX , VY , EX,Y and/or its relation to the PPI-network as a whole.

We call a support measure f biclique-maximal if:

f(Mk,k,0, G) > f(Mk,k,k′ , G), 0 < k′ ≤ k .

We will now show that cmm is np-hard by proving that even a simpli-
fied version of the associated decision (D) problem is already np-complete.
Let d-cmm be the problem to decide whether for a given PPI-network G =
(V,E, λ), natural numbers `, d, a real number t and a support measure f , there
exists an (`, d)-motif pair {X,Y } for which f({X,Y }, G) ≥ t.

Theorem 2.1. d-cmm is np-complete for any biclique-maximal compliant
support measure f .

Proof. d-cmm is obviously in np: since f is compliant and thus polynomial
time computable, a motif pair M for which f(M,G) ≥ t can serve as polyno-
mial time verifiable certificate.

We will now describe a reduction R which transforms an unlabeled graph
G = (V,E), with V = {v1, . . . , vn}, into a labeled graph R(G) = G′ =

2.4. Complexity of cmm 17

1 2 3 4

5 6 8

9 10

7

Figure 2.4: Example PPI-network

(V,E, λ). Afterwards, we will show this reduction can be used to prove the
np-completeness of d-cmm for biclique-maximal measures.

For convenience, we will use the alphabet Σ = {0, 1} and label the vertices
of G′ as follows: λ(vi) = wi1 . . . w

i
n, with wii = 1 and wij = 0, for j 6= i.

Example 2.2. There are 10 vertices in the graph in Figure 2.4, so the vertices
receive the following labels:

λ(1) = 1000000000 λ(6) = 0000010000

λ(2) = 0100000000 λ(7) = 0000001000

λ(3) = 0010000000 λ(8) = 0000000100

λ(4) = 0001000000 λ(9) = 0000000010

λ(5) = 0000100000 λ(10) = 0000000001

Each label consists of a string of 0’s containing a single 1, with the position
of the 1-character indicating its index.

/

The labels of the vertices are chosen in such a way that for any (n, k)-motif
X, |VX | ∈ {0, 1, k}. Indeed, we can discriminate the following cases:

• if X contains at least two 1’s then VX = ∅;

• if X contains a 1 at position i and all other non-wildcard symbols are 0
then VX = {vi}; and,

• if X contains only wildcard symbols and 0’s then vi ∈ VX if the symbol
at position i is a wildcard symbol.

18 Mining the best motif pairs according to a support measure

Example 2.3. In the example graph n = 10. Suppose k = 4. Then the (10,
4)-motif 0x100xx01x selects no vertex, as none of the labels can match this
motif; none of them contain more than a single 1-character.

The (10, 4)-motif 0x100xx0x0 only matches λ(3), because it is the only
one with a 1 on that position.

The motif X = 0x000xx0x0 selects VX = {2, 6, 7, 9}, with |VX | = 4 = k.
/

As such, ignoring the cases with VX or VY empty, and thus EX,Y empty,
every motif pair in G′ is necessarily a (1, 1, k′)-, (1, k, k′)-motif pair, with
k′ ∈ {0, 1}, or a (k, k, k′)-motif pair, with 0 ≤ k′ ≤ k. Moreover, for an (n, k)-
motif X containing only 0’s and wildcard symbols, vi will be in VX if and only
if position i of X is a wildcard symbol. In other words, for any subset W ⊆ V
of size k, we can choose an X such that VX = W .

Consequently, if {X,Y } is a motif pair for which |VX | = |VY |, VX ∩ VY =
∅ and |EX,Y | = Emax

|VX |,|VY |,0, then (VX ∪ VY , EX,Y) is a balanced complete
bipartite graph.

Example 2.4. If we want a motif X to select VX = {3, 4, 6, 8}, it suffices to
take the (10, 4)-motif with only 0-characters and wildcards on the correspond-
ing positions, i.e., X = 00xx0x0x00. Hence, the motif pair

{X,Y } = {xxxx000000, 0000xxxx00}

selects

G′X,Y =
(
{1, 2, 3, 4} ∪ {5, 6, 7, 8}, {{u, v} | 1 ≤ u ≤ 4 < v ≤ 8}, λ|{1,...,8}

)
which is a balanced (4, 4)-biclique.

/

Given a graph G and a natural number k, deciding whether G contains
a biclique such that both parts are of size k, is called the balanced complete
bipartite subgraph (bcbs) problem . bcbs is known to be np-complete [GJ79].
We will now show that we can decide bcbs on G by deciding d-cmm on
R(G) = G′ for a compliant, biclique-maximal support measure.

Since the support measure is compliant, a complete (kX , kY , kX,Y)-motif
pair will always have higher support than any other (kX , kY , kX,Y)-motif pair.
Let MkX ,kY ,kX,Y be a complete (kX , kY , kX,Y)-(n, k)-motif pair for G′, kX,Y ≤
min(kX , kY) and k ≥ 2. We know that, by construction of G′, kX , kY ∈ {1, k}.
As f is compliant and biclique-maximal it holds that:

f(Mk,k,0, G
′) > f(M1,k,0, G

′) > f(M1,1,0, G
′)

∧ f(Mk,k,0, G
′) > f(Mk,k,1, G

′) > f(M1,k,1, G
′) > f(M1,1,1, G

′) .

2.4. Complexity of cmm 19

Thus, G contains a balanced complete bipartite subgraph with both parts of
size k if and only if there exists an (n, k)-motif pair {X,Y } for which

f({X,Y }, G′) ≥ t = f(Mk,k,0, G
′) .

Example 2.5. Deciding whether G contains a balanced bipartite complete
subgraph with partitions of size 4 is thus equivalent to deciding whether there
exists a motif pair {X,Y } for which f({X,Y }, R(G)) ≥ t = f(M4,4,0, R(G)),
for any biclique-maximal support measure f . Remark that the vertex and
edge set and thus also the edge density are invariant under R:

ed(R(G)) = ed(G′) = ed(G) =
25

45
=

5

9
.

Hence, for f = fχ2 and k = 4 we get for the support of {X,Y }:

fχ2({X,Y }, G′) ≥ fχ2(M4,4,0, G
′) = Emax

4,4,0

(1− ed(G′))2

ed(G′)

= 16
(1− 5

9)2

5
9

=
256

45
≈ 5.68889.

Thus, if there exists an {X,Y } with a score at least 256/45 then there exists
(4, 4)-biclique in G (and in G′ as R leaves the topology invariant), because
it is the only subgraph that can be selected with a (10, 4)-motif pair having a
score this high.

/

The proof is complete by noting that the transformation of G into G′ and
the calculation of t can be done in polynomial time.

It is easy to see that fχ2 is compliant and biclique-maximal. Indeed, for
fixed k, the support for a complete (k, k, kX,Y)-motif pair {X,Y } in PPI-
network G is

Emax
k,k,kX,Y

(1− ed(G))2

ed(G)
,

which is maximal for kX,Y = 0. On the other hand, remark that fp is not
compliant because fp({X,Y }, G) depends on the neighborhood of the selected
subnetwork GX,Y in G (GX and GY).

20 Mining the best motif pairs according to a support measure

2.5 Algorithms

Since the decision problem associated with cmm is in np, we can efficiently
check if a motif pair has higher support than another which makes it possible
to tackle cmm as a search problem in the space of all possible (`, d)-motif pairs.
If we add the assumption that similar motifs can be expected to get similar
support, it has the typical form of a combinatorial optimization problem. In
combinatorial optimization, the objective is to find a point in a discrete search
space which maximizes a user-provided function f . A number of heuristic
algorithms called metaheuristics are known to yield good solutions to a wide
variety of combinatorial optimization problems.

One such metaheuristic is steepest ascent (a form of hill climbing) [AL97].
Steepest ascent algorithms move from the current point to the best neighboring
point in the space of candidate solutions until a locally optimal solution is
found, i.e., a solution that maximizes f in its neighborhood. Hence, to apply
steepest ascent one needs to define a neighborhood function which returns
the neighbor points of each point in the search space. The neighborhood
function is a key component of the steepest ascent method and has to be
chosen carefully and fine-tuned for the problem at hand. The initial points
from where steepest ascent is started are randomly chosen. In Section 2.9, we
discuss other metaheuristics and explain the choice for steepest ascent.

The main idea behind our steepest ascent algorithm for cmm is illustrated
by the pseudo-code in Algorithm 1. To be able to specify the difference be-
tween our two methods, we use an abstract neighborhood function N . For
reasons of clarity, we use an abstract support measure f and focus on the case
in which only the best pair is returned (k = 1). In practice, we accumulate
the best results found over as many runs as can be completed in a given time
frame, and store the results sorted by support.

The method randomMotifPair() picks:

1. a random interaction {u, v};

2. a random position pu in λ(u) and pv in λ(v);

3. a random motif X by first picking d random positions in [pu+1, pu+`−1]
as the wildcard positions and taking the remaining positions as the non-
wildcard positions; and,

4. a random motif Y from λ(v) at position pv in the same way.

2.5. Algorithms 21

Algorithm 1 The general steepest ascent algorithm with abstract neighbor
function applied to cmm (SA-CMM).

Input: PPI-network G = (V,E, λ), `, d ∈ N, d < `
Output: {X∗, Y ∗} best correlated motif pair found in G

1: {X∗, Y ∗} ← randomMotifPair()
2: maxsup← f({X∗, Y ∗}, G)
3: sup← −∞
4: while maxsup > sup do
5: {X,Y } ← {X∗, Y ∗}
6: sup← maxsup
7: for all {X ′, Y ′} ∈ N({X,Y }) do
8: if f({X ′, Y ′}, G) > maxsup then
9: {X∗, Y ∗} ← {X ′, Y ′}

10: maxsup← f({X ′, Y ′}, G)

To apply steepest ascent to cmm, we need to define a neighborhood func-
tion which maps a motif pair {X,Y } to its neighbors N({X,Y }) in the space
of all motif pairs. Consider a motif pair {X,Y } and the selected subnet-
work GX,Y . The main idea behind a steepest ascent algorithm is to grad-
ually improve a candidate solution until it becomes (locally) optimal. Con-
sequently, it is desirable that the subnetwork GX′,Y ′ selected by a neighbor
{X ′, Y ′} ∈ N({X,Y }) is also “close” to GX,Y in the sense that at least some
proteins and interactions are shared between GX,Y and GX′,Y ′ . That is, we
would like that the candidate solution in the dual search space of selected sub-
networks also improves gradually to avoid that the algorithm jumps around
in the network selecting completely different networks in each step. Suppose
for instance that {X,Y } is a motif pair which describes (a part of) compatible
binding sites in most proteins in VX and VY . If at some point in the algorithm
we reach a motif pair {X ′, Y ′} for which a significant fraction of the motif hits
of X ′ and Y ′ overlap with the desired motifs X and Y , it would be undesirable
that X ′ is changed into a motif which has almost no motif hits in VX .

A straightforward way to ensure that some proteins are kept, is by only
considering motifs of the form {X,Y ′} or {X ′, Y } as candidate neighbors, such
that either VX or VY remains in GX′,Y ′ . The neighbor functions we will define
in the next sections share the principle that one motif remains fixed and that
the neighborhood of the pair is defined in terms of a neighbor function N on
the motifs, more formally: {X ′, Y ′} ∈ N({X,Y }) if X ′ ∈ N(X) ∧ Y ′ = Y or
Y ′ ∈ N(Y) ∧X ′ = X.

Hence, to ensure that GX′,Y ′ is also likely to share interactions with GX,Y ,
it suffices to define the neighborhood function N on motifs in such a way that

22 Mining the best motif pairs according to a support measure

...AKKGTLKYRTTTCFGKI...

...AKKGTLKYRTTTCFGKI...

...AKKGTLKYRTxTxxGKI...

...AKKGTLxxxTxTxxGKI...

...AKKGTLKxxTxTCFGKI...

RTxTxx

xTxTxx
xxxTxT

KxxTxT

Figure 2.5: Two neighboring (by Nmot) (6, 3)-motifs seen as sliding windows
on a sequence.

VX shares proteins with VX′ for most of the motifs X ′ ∈ N(X).

On the other hand, it is also desirable that N is powerful enough to move
from any {X,Y } to any other {X ′, Y ′} in a reasonable number of steps, while
keeping N({X,Y }) small enough to keep evaluating all neighbors of {X,Y }
tractable.

2.5.1 m-slider: Sliding over motifs

In this subsection, we formally introduce a first neighborhood function Nmot

on motifs which will be the basis for m-slider (short for motif-slider). Nmot

is based on the observation that looking for a match of an (`, d)-motif X in a
protein can be seen as sliding a window of length ` with ` − d holes over the
sequence until the characters in the holes match the non-wildcard characters
of X. Hence, any motif X ′ obtained by closing one hole and creating a new
one (not too far from the other ones so as to respect the window size `) will
select the same protein we are sliding the window over. In this way, the motif
window can slide to the left or right if the new hole is punched before the first
or after the last original character. We will call any motif X ′ a neighbor of X,
if it can be obtained from it, by replacing one non-wildcard character with a
wildcard and then adding a new non-wildcard character making it an (`, d)-
motif again. We can see in Figure 2.5 that moving from RTxTxx to KxxTxT,
by closing the hole over the R and opening a new one over the K, shifts the
window to the left. The motif RTxxxA is also a neighbor, but does not select
the same protein.

Next, we formally define Nmot. For a motif X, denote by trim(X), the
motif obtained from X by removing leading and trailing wildcards. That is,
trim(xTxTxx) = TxT. A motif X ′ ∈ Nmot(X) if X and X ′ have the same

2.5. Algorithms 23

length and trim(Y) = trim(Y ′) where Y is obtained from X by changing
one non-wildcard character into a wildcard, and similarly for Y ′ and X ′. In
Figure 2.5, X equals RTxTxx while X ′ equals KxxTxT. Now, X ′ ∈ Nmot(X)
as X (X ′), can be transformed into Y = xTxTxx (Y ′ = xxxTxT) by changing
one non-wildcard character into a wildcard and Y equals Y ′ after stripping
leading and trailing wildcards.

Remember that when applying Nmot to pairs of motifs, one of the motifs
remains fixed. From our experiments we observed that fixing one motif at
each step greatly improves the effectiveness.

It is fairly easy to show that Nmot allows to reach any {X ′, Y ′} in at most
2(`−d) steps and |Nmot({X,Y })| = Θ(`2) which keeps evaluating all neighbors
tractable for the typical values for ` and d. Moreover, at least 2d(` − d)
neighbors will select a subnetwork that shares at least one interaction with
GX,Y (see Section 2.6.3).

Definition 2.6. We define the method m-slider as steepest ascent with
(i) neighborhood function Nmot; and,
(ii) support measure fχ2 .

It can be formally shown that, if we assume that the number of steps
can be bound by a small constant as observed in our experiments (for in-
stance, in our experiments the number of steps never exceeded 15), m-slider
runs in time O

(
`2 (|V |2 + `|V |λmax)

)
, with λmax = maxv∈V |λ(v)|. Remark

that the former is almost linear in the size of G, when |G| = |V |2. How-
ever, using a theoretical maximum number of steps |V |5, we obtain the bound
O
(
|V |5 `2 (|V |2 + `|V |λmax)

)
(proof in Section 2.6.5).

2.5.2 seq-slider: Sliding over sequences

Although a significant number of the neighbors of a motif pair {X,Y } under
Nmot are expected to select a subnetwork GX′,Y ′ that is also “close” in the
network in the sense that GX,Y and GX′,Y ′ share interactions, this property is
not guaranteed for any neighbor. For that reason, we also designed a second
neighborhood function N seq which focusses on this aspect, but does not guar-
antee that all other motif pairs can be reached by moving from one neighbor
to the other. The N seq neighborhood function forms the basis of our second
slider variant seq-slider.

N seq
u defines the neighborhood of a motif X on the sequence level by con-

sidering all (`, d)-motifs that match a region around the motif hits of X in the
sequence of one particular protein u ∈ VX . The idea is that, in each run, after
picking a random pair {X,Y } that describes some interaction {u, v}, we only
consider motif pairs based on the region around the motifs hits of X in λ(u)

24 Mining the best motif pairs according to a support measure

and of Y in λ(v), i.e.,

N seq
u,v ({X,Y }) = {{X ′, Y } | X ′ ∈ N seq

u (X)} ∪ {{X,Y ′} | Y ′ ∈ N seq
v (Y)}.

In that way, N seq
u,v guarantees that the subnetwork GX′,Y ′ selected by any

neighbor {X ′, Y ′} of a motif pair {X,Y } will always contain {u, v}.
More formally, for an (`, d)-motif X and a protein u, denote by pos(X,u)

the set of positions of substrings in λ(u) that match X. An (`, d)-motif X ′ ∈
N seq
u (X) if there exist positions p ∈ pos(X,u) and p′ ∈ pos(X ′, u) such that
|p− p′| ≤ δ, where δ is some small distance bound (we use δ = d`/3e). Hence,
N seq
u,v ({X,Y }) defines the neighborhood of {X,Y } relative to u ∈ VX and

v ∈ VY .
For instance, the two motifs in Figure 2.5 are also neighbors under N seq

as they both have matches in the sequence within the distance bound. The
motif KYxTxx is an example of a motif that would be a neighbor under N seq

but not under Nmot as it differs more than one non-wildcard character from
the original. The motif RTxxxA on the other hand is a neighbor using Nmot

but not using N seq as it does not have any matches within a δ-region of a
match of the original motif.

Thus, for a sufficiently high number of runs, we are likely to have considered
a local optimum under N seq

u,v for each {u, v} in E, which gives seq-slider a
bias towards a set of complementary best motif pairs in the sense that all of
them together are likely to cover more interactions than the set of best motif
pairs returned by m-slider.

From a theoretical point of view however, seq-slider has some disad-
vantages compared to m-slider: it cannot reach every motif pair from an
arbitrary motif pair and evaluating all neighbors of a motif pair can be ex-
pensive as the number of neighbors |N seq({X,Y })| can become as large as(
`−1
d

)
(2δ + 1)(|pos(X,u)| + |pos(Y, v)|) (see Section 2.6.4), which can become

prohibitive for larger values of ` and d. Nevertheless, as we will see in the
experimental section, seq-slider obtains significantly better results than m-
slider in the same time frame for the typically small values of ` and d.

Definition 2.7. We define the method seq-slider as steepest ascent with
(i) neighborhood function N seq

u,v with δ = d`/3e ; and,
(ii) support measure fχ2 .

Let λmax = maxv∈V |λ(v)|. We formally proved that seq-slider runs

in time O
(
δ
(
`
d

)
λmax (|V |2 + `|V |λmax)

)
, if we again assume the number of

steps is constant, and O
(
|V |5 δ

(
`
d

)
λmax (|V |2 + `|V |λmax)

)
otherwise (proof

in Section 2.6.5).

2.6. Time complexity of algorithms 25

2.6 Time complexity of algorithms

In this section, we will examine the time complexity of slider in greater detail.

2.6.1 Preprocessing step

For the typically small values of ` and d, we create an array which contains
for each motif X the set of proteins VX in which the motif appears. In that
way, we can obtain VX for a motif X in constant time during the execution
of the algorithm. The preprocessing step is only performed for those values of
` and d for which we effectively win time. We can estimate this performance
gain by performing a single run with and without preprocessing.

The preprocessing step takes O
((

`
d

) (
20l−d + |V |λmax

))
time with λmax =

maxv∈V |λ(v)| and O
(

20`−d
(
`
d

)
|V |
)

space to store the array.

As there are 20`−d
(
`−1
d

)
motifs, the size of the array is O(20`−d

(
`
d

)
|V |).

Initially, all lists are empty. Subsequently, we consider each position p in
the sequence of each protein u, look at the window W of length ` starting at p
and enumerate all motifs that match with W by considering all

(
`−1
d

)
ways to

place wildcards in W . For each such motif X, we add u to the list of proteins
containing X unless u is already in the list.

Hence, the constructive part of the preprocessing step takes

O

((
`

d

)∑
u∈V
|λ(u)|

)
≤ O

((
`

d

)
|V |λmax

)
time. Remark that we can check if u is already in the list in constant time,
because if it is, it must be the last element in the list.

In practice, the bottleneck is the memory required to store all the lists.

2.6.2 Evaluation cost and value range fχ2

Lemma 2.8. fχ2 can be evaluated in time O(|V |2) if the preprocessing step is
performed and in time O(|V |2 + `|V |λmax) otherwise.

Proof. The dominant operation to evaluate fχ2 is to obtain |EX,Y |. If the
preprocessing step is performed, we can obtain VX and VY in constant time.
Otherwise, we have to construct VX and VY by scanning the sequences of each
protein for a match of X or Y . This can be done in time O(`

∑
u∈V |λ(u)|) ≤

O(`|V |λmax).

Using an adjacency matrix, we can determine |EX,Y | from VX and VY in
time O(|VX ||VY |) = O(|V |2).

26 Mining the best motif pairs according to a support measure

Hence, evaluating fχ2 can be performed in timeO(|V |2) if the preprocessing
step is performed and O(|V |2 + `|V |λmax) otherwise.

The following Lemma will be used to bound the total time complexity of
both methods.

Lemma 2.9. Given a PPI-network G, the maximum number of different val-
ues fχ2 can take is O(|V |5).

Proof. For a fixed G it is clear from the definition of fχ2 that fχ2({X,Y }, G)
only depends on Emax

|VX |,|VY |,|VX∩VY | and ed(GX,Y), which in turn only depend

on |VX |, |VY |, |VX ∩ VY | and |EX,Y |. As the sizes of the vertex sets are all
bounded by |V | and |EX,Y | by |V |2, it follows that the number of different
values that fχ2({X,Y }, G) can take is O(|V |5).

2.6.3 Nmot (m-slider)

Lemma 2.10. The maximum number of neighbors of any (`, d)-motif pair
under Nmot is Θ(`2).

Proof. We will use the notation introduced in Section 2.5.1. First, note that
it is possible that Y has no wildcards at the beginning and end. In that case,
trim(Y) = Y and the number of possible positions for the new character is
equal to d + 1: the original wildcard characters plus the new one. The other
extreme occurs when all wildcard characters of Y are at the beginning or end.
In that case trim(Y) is composed of `− d− 1 non-wildcard characters and the
number of possible positions for the new character equals 2d+2: d+1 wildcards
in front and d + 1 wildcards at the end. In general, the number of possible
positions equals d + 1 plus the number of wildcards removed by trimming Y
which equals ` − |trim(Y)|. Thus, the number of possible positions `′ for the
new character is `′ = d+1+`−|trim(Y)| ∈ N[d+1, 2d+2]. Hence, the number
of neighbors for X equals the number of possible non-wildcard characters to
be removed to obtain Y times the number of possible positions `′ for the new
character times the number of possible new characters: (l− d)`′20 = Θ(`2) as
both d and `′ are at most linear in `.

The neighborhood of a pair of motifs under Nmot is composed of the motif
pairs which can be obtained by replacing one of the motifs of the pair by a
neighbor under Nmot. Because Nmot always keeps one of the motifs of a pair
fixed, the number of neighbors for a pair of motifs is twice the number of
neighbors of an individual motif and thus also Θ(`2).

Theorem 2.11. The maximum number of steps required to change an (`, d)-
motif X into any other (`, d)-motif X ′ by following neighbors under Nmot

2.6. Time complexity of algorithms 27

is at most (` − d). That is, there exists a sequence of (`, d)-motifs X =
X0, X1, . . . , Xk = X ′, such that Xi ∈ Nmot(Xi−1), 1 ≤ i ≤ k, with k ≤ (`−d).

Proof. Informally, it is easy to see that (l − d) steps suffice as, in each step,
we can choose any non-wildcard character to be replaced by a wildcard and
afterwards change an arbitrary wildcard into an arbitrary non-wildcard char-
acter. Hence, if we ignore to order of the operations for a moment, we can
replace all (l − d) non-wildcard character by wildcards to obtain a string of
only wildcards and then pick (l − d) of them to be replaced by non-wildcard
characters of our choice. Of course, any (`, d)-motif can be created in this way.

For a more formal proof, we give a procedure which keeps the operations
in the order as defined by Nmot, i.e., it produces a sequence of (`, d)-motifs
X = X0, X1, . . . , Xk = X ′, such that Xi ∈ Nmot(Xi−1), 1 ≤ i ≤ k and show
that k ≤ (`−d). Let i be the first position containing a non-wildcard character
of X ′ that differs from the character of X in the same position. We distinguish
two cases: the character at position i in X is

• a non-wildcard: in that case we change position i of X into a wildcard.

• a wildcard: in that case we choose the first position j for which there is
a wildcard in X ′ but not in X and change the non-wildcard character
at position j in X into a wildcard. Note that j always exists because
otherwise it would be impossible that position i is a wildcard in X but
not in X ′ as both X and X ′ are (`, d)-motifs.

Next, we change position i, which is now necessarily a wildcard, into the
character at position i in X ′ to obtain an (l, d)-motif X1. The first non-
wildcard character of X ′ that differs from the character in the same position
in X1 must now be at position j > i. Hence, by repeating this procedure, we
must end up with X ′ in at most (l − d) steps as the position with the first
non-wildcard character in X ′ that differs from the (l, d)-motif obtained after
each iteration increases after each iteration.

For instance, to change X = RxxTxT into X ′ = KxLxxR, the procedure
above yields the following sequence:

X = RxxTxT

→ (xxxTxT)→ KxxTxT→ (KxxxxT)→ KxLxxT→ (KxLxxx)

→ KxLxxR = X ′ .

Theorem 2.12. Given a motif pair {X,Y }, and assuming that GX,Y contains
at least one interaction, there will be at least 2d(`− d) neighbors under Nmot

which select a subnetwork that shares at least one interaction with GX,Y .

28 Mining the best motif pairs according to a support measure

Proof. Let’s assume GX,Y contains the interaction {u, v}, with u matching
motif X and v matching motif Y . We can take the subsequence of length `
matching motif X from the sequence of protein u in GX,Y . We can create a
neighbor that also matches this subsequence by removing a single non-wildcard
and replacing a wildcard with the letter occurring at that position in the
subsequence. Since for each of the (` − d) non-wildcards, we can do this for
each of the d wildcards, we get d(`−d) neighbors that match the same protein
by changing the motif X.

We can also do this for protein v and motif Y , leading us to a minimum
of 2d(`− d) neighbors that share the interaction.

2.6.4 N seq (seq-slider)

Lemma 2.13. The number of neighbors of a motif pair {X,Y } under N seq
u,v

can become as large as:
(
`−1
d

)
(2δ + 1)(|pos(X,u)|+ |pos(Y, v)|).

Proof. Consider a motif hit of X starting at position i in λ(u). By definition,
any (`, d)-motif X ′ appearing in a δ-region around the motif hit is a neighbor
of X under N seq

u . Thus, any string of length ` starting at position j, i − δ ≤
j ≤ i+ δ can be the basis for X ′ by replacing d chars by wildcards. Thus, we
have 2δ+ 1 possible positions for the motif hit of X ′ to start within a δ-region
around i. For one such position, there are exactly

(
`−1
d

)
ways to choose d

positions for the wildcards. Thus, assuming all subsequences starting within
this δ-region around i are different, we can create up to

(
`−1
d

)
(2δ+1) neighbors

based on one motif hit. In total, we have |pos(X,u)|motif hits of X in u, which
can yield up to

(
`−1
d

)
(2δ+1)|pos(X,u)| neighbors for X under N seq

u . Applying
the same reasoning for Y under N seq

v yields the formula above for the potential
size of N seq

u,v ({X,Y }).

2.6.5 Time complexity slider

We are now ready to address the time complexity of slider.

Theorem 2.14. The total time complexity of m-slider without preprocessing
is

O
(
|V |5 `2 (|V |2 + `|V |λmax)

)
and the total time complexity of seq-slider without preprocessing is

O

(
|V |5 δ

(
`

d

)
λmax (|V |2 + `|V |λmax)

)
,

with λmax = maxv∈V |λ(v)|. However, if we assume that the total number of
steps is constant, as observed in practice, then the bound for m-slider is

O
(
`2 (|V |2 + `|V |λmax)

)

2.7. Data 29

and for seq-slider

O

(
δ

(
`

d

)
λmax (|V |2 + `|V |λmax)

)
,

Proof. The total time complexity of both slider variants is at most the cost
of the preprocessing step, if performed, plus

{number of steps} times {number of neighbors} times {evaluation cost fχ2}.

We know the total cost of the preprocessing step is O(
(
`
d

)
(20`−d+|V |λmax)),

but it is only performed for the small values of ` and d for which this effectively
saves time. Hence, we can ignore this cost and bound the theoretical time
complexity of our methods for the case in which no preprocessing is done. If
we use the preprocessing step, we can remove the term O (`|V |λmax) from the
evaluation cost of fχ2 .

We know that in practice, the number of steps in one run of both slider
variants can be bounded by a small constant. Hence, using Lemma 2.10 and
2.8 the time complexity of m-slider in practice is O

(
`2 (|V |2 + `|V |λmax)

)
.

To obtain the time complexity of seq-slider we need a bound on the
number of neighbors which is independent of a particular edge {u, v}. Clearly,
the number of motif hits |pos(X,u)| of a motif X in the sequence of a protein
u is at most |λ(u)| ≤ maxv∈V |λ(v)| = λmax. Substituting this into the bound
on the number of neighbors of N seq from Lemma 2.13 and using Lemma 2.8,
we can bound the time complexity of seq-slider with O(

(
`
d

)
δλmax(|V |2 +

`|V |λmax)).

As mentioned earlier, these bounds assume that the number of steps can
be bounded by a constant. Because both slider-variants are steepest ascent
methods which only move to a neighboring point if the support is strictly
larger, we can use the number of different values fχ2 can take from Lemma 2.9
as a bound on the number of steps, which results in an extra O(|V |5) factor
in the time complexity bound of both methods.

2.7 Data

2.7.1 Artificial data

To evaluate the biological relevance of the different notions of support and
the power of heuristic methods to retrieve the best motif pairs in terms of
describing interactions, we created a number of artificial networks as follows.
Each network is composed of 100 proteins which are randomly chosen out of

30 Mining the best motif pairs according to a support measure

the well-known yeast network [CKX+07]. We then generate 50 random (8, 3)-
motifs2 and implant k instances of each motif in the sequences of randomly
chosen proteins, with k chosen uniformly from N[3, 10]. Then, we implant mo-
tif pairs by randomly selecting two implanted motifs X and Y and connecting
each protein containing X with each protein containing Y and repeat this
procedure until a chosen minimal edge density e is obtained — we used 0.1,
0.2 and 0.3. Consequently, the network obtained is perfect in the sense that
there is an interaction {u, v} if and only if a motif pair is present in λ(u) and
λ(v). Because noise and missing data are an important factor in biological
networks, we also evaluate the resistance to noise of both the support mea-
sures and heuristic methods. To that end, we also created versions of each
network with added noise, by choosing a certain noise level a (from 0.05 to
0.3 in steps of 0.05) and switch the edge relation of each pair of vertices with
probability a (remove the edge if they are connected and add one if not). We
used 105 networks in total — 5 networks for each (e, a)-combination.

We restrict ourselves to networks of 100 proteins because this is more or
less the maximum size for which we are still able to mine the motif pairs with
highest support for each support measure by a brute force computation within
a reasonable time frame, which is necessary to evaluate the results.

As a sanity check, we also constructed networks where only a small portion
of interactions can be explained by a motif pair (see Section 2.8.7).

2.7.2 Biological data

To assess the effectiveness on larger networks, we ran our method and Mo-
tifHeuristics on the high-confidence PPI-network of yeast consisting of 1 620
proteins and 9 060 interactions [CKX+07] and on the human PPI-network
which has 8 872 proteins and 14 230 interactions [KPGK+09], two of the largest
and most complete interaction datasets available. The interactions in the hu-
man network are curated from the literature [KPGK+09] and the interactions
in the yeast dataset are determined using Tandem-Affinity Purification fol-
lowed by Mass-Spectrometry (TAP/MS), a technique which is used to deter-
mine the proteins in a complex [CKX+07]. As a consequence, the interactions
determined by TAP/MS contain both direct and indirect interactions. For
that reason, it is expected that the human dataset contains less false positive
but more false negative interactions in comparison with yeast. Hence, these

2Using entropy analysis, research has shown that the highest amount of structural in-
formation per sequence length can be found in subsequences of length 7 to 9 (see Figure 1
in [vTV09]).

2.8. Experiments 31

two interaction datasets are ideal to assess our methods as they are

• large, which allows us to test the scalability of our methods;

• as complete as available at the moment, which allows to assess if the
best scoring (`, d)-motif pairs found by our methods and by a brute
force method can describe the interactions given enough data;

• complementary in terms of noise, which allows to assess how the de-
scriptive power of the best scoring (`, d)-motif pairs of our methods and
a brute force method are affected by different kinds of noise (false posi-
tives vs. false negatives).

2.8 Experiments

The brute force runs on yeast and human (which calculate support for each
possible motif pair) were run on a computer cluster. All other experiments
were run on a 3GHz Mac Pro using 2GB of RAM and 8 cores. In the following,
whenever a timing is mentioned and unless explicitly mentioned otherwise, the
experiment was run using only 1 core. Nevertheless, we stress that our slider-
prototype, implemented in Java, can use as many processors as are available.
In this section, we experimentally assess the effectiveness of

1. support measures to assign a support to a motif pair reflecting its power
to describe interactions; and,

2. neighborhood functions to find the motif pairs with highest support by
exploring the space of all motif pairs.

Furthermore, we compare both slider variants with other motif-driven cmm-
methods. To this end, we need a notion of precision3 that compares an ordered
set of motif pairs versus a set of motif pairs which is considered to be the
“ground truth”. Finally, we assess the effectiveness of the slider variants on
the yeast and human PPI-networks.

2.8.1 Precision for motif pairs

Before we define our notion of precision, we need a similarity measure to
compare the found motif pairs against the implanted pairs. We define the

3 The notion of precision we will use is similar to the notion of sensitivity of a binary
classifier. Specificity, however, cannot be defined for a ranking problem such as cmm because
there is no meaningful notion of true negative.

32 Mining the best motif pairs according to a support measure

similarity between an (`, d)-motif pair {X,Y } and {X ′, Y ′} in a PPI-network
G = (V,E, λ) as

s({X,Y }, {X ′, Y ′}, G) =
|EX,Y ∩pos EX′,Y ′ |
|EX,Y ∪ EX′,Y ′ |

where {v, w} ∈ EX,Y ∩pos EX′,Y ′ if there exists substrings sv and s′v in λ(v)
and sw and s′w in λ(w) such that

• sv matches with X and sw with Y ;

• s′v matches with X ′ and s′w with Y ′; and,

• sv and s′v as well as sw and s′w are at the same position in λ(v), respec-
tively λ(w).

Let S = (M1, . . . ,Mn) be a list of motif pairs, then we reduce S by deleting
for every j from 1 to n, every Mi for i > j such that s(Mi,Mj) = 1. We denote
the reduced version of S by S∗.

Let T be a set of known “ground truth” (`, d)-motif pairs and let S =
(M1, . . . ,Mn) be a list of (`, d)-motif pairs to be compared against T . We
define the precision of S against T at rank k as the fraction of motif pairs
Mi in S∗, 1 ≤ i ≤ k for which there exists a motif pair MT in T such that
s(Mi,MT) = 1. We note that, when k = |T |, the precision as defined above
also corresponds to the usual notion of recall.

2.8.2 Evaluation of support measures

We start by assessing the effectiveness of support measures in assigning a
support to a motif pair reflecting its power to describe interactions. Since the
most descriptive motif pairs in real PPI-networks are unknown, we measure
the ability of a support measure to assign the highest support to motif pairs
on artificial networks with implanted motifs, as described in Section 2.7.1. We
used a collection of networks Gae with edge density e and noise level a. We
compare the support measures by looking at the precision of the best motif
pairs obtained by a brute force method at rank m against the implanted motif
pairs on Gae , where m equals the number of implanted motif pairs.

To make sure that the fχ2 and fp assign a meaningful support, we also
implemented two naive support measures, called fc and fv. The fc-support
in a PPI-network G = (V,E) is simply the number of interactions covered:
fc({X,Y }, G) = |EX,Y | and fv({X,Y }, G) =

|EX,Y |
Emax
|VX |,|VY |,|VX∩VY | + |VX ∪ VY |

.

2.8. Experiments 33

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dilution

p
re
c
is
io
n

x2
c
v
p

Figure 2.6: Precision of support measures on artificial networks with implanted
motif pairs and edge density of 10%.

fv is the edge density corrected with an extra term in the denominator to prefer
larger subnetworks (Emax

|VX |,|VY |,|VX∩VY | grows quadratically in |VX ∪VY |). Both
measures are naive in the sense that they are independent of the interaction
distribution in G. It is straightforward to show that both measures are com-
pliant, thus meeting the basic requirements of a support measure. Moreover,
they are biclique-maximal.

A visual inspection of the graphs in Figure 2.6, 2.7, and 2.8 already indi-
cates that fχ2 globally outperforms the other support measures in selecting
motif pairs describing actual interactions. Indeed, at every data point, the
precision of fχ2 is the best value or very close to the best value of the four
support measures considered. Moreover, comparing precision on noisy net-
works shows that fχ2 is vastly more robust to noise — a crucial aspect since
contemporary PPI-networks contain large amounts of both noise and missing
data [vMKS+02].

When we compare the results of the brute force runs on yeast for fχ2 and
fp, we also notice that the 1 000 best scoring subnetworks for fχ2 , have an
average edge density of 97.2% and a minimum edge density of 64%, while
those for fp have an average edge density of 14.5% and a maximum edge
density of 16.7%. The edge density for the latter is obviously much lower than
desired.

34 Mining the best motif pairs according to a support measure

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dilution

p
re
c
is
io
n

x2
c
v
p

Figure 2.7: Precision of support measures on artificial networks with implanted
motif pairs and edge density of 20%.

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dilution

p
re
c
is
io
n

x2
c
v
p

Figure 2.8: Precision of support measures on artificial networks with implanted
motif pairs and edge density of 30%.

2.8. Experiments 35

Thus, we can conclude this experimental section by saying that fχ2 is
superior to all other support measures considered on all merits.

2.8.3 Evaluation of neighborhood functions

We will now confirm that our neighborhood functions, which are based on a
sliding window interpretation on the sequences, are superior to neighborhood
functions which simply define small perturbations to explore the search space.

In particular, we define the following perturbations:

• letter change (LC, replace one non-wildcard character by another);

• swap adjacent (SA, swap an adjacent wildcard and non-wildcard char-
acter); and,

• swap (S, swap an arbitrary wildcard and non-wildcard character).

We denote neighborhood functions combining these perturbations by concate-
nating their abbreviations with boolean operators. For instance, LCandSA
denotes the neighborhood function which requires a letter change and a swap
adjacent perturbation. Finally, we consider a simple version of Nmot, denoted
Nmot
	 , which forces the motif to slide left or right by only allowing to change

the leftmost (rightmost) non-wildcard character into a wildcard and demand-
ing that the new non-wildcard character is added to the right (left) of the
existing ones. The corresponding neighborhood functions on pairs of motifs
are defined similarly: one motif is kept fixed, while the other is replaced by
a neighbor. As a naive baseline, we also compare with the method Random,
which evaluates random motif pairs using fχ2 .

Figure 2.9 displays the precision of SA-CMM with each of these neigh-
borhood functions on five implanted networks of density 10% and their noisy
versions. The displayed precision is averaged over 5 SA-CMM runs. Runs on
the networks of density 20 and 30% give similar results (data not shown). As
the speed of SA-CMM is highly dependent on the chosen neighborhood func-
tion, we provided each run the same amount of time (10 minutes). In this way,
faster neighborhood functions like LCorSA can process more randomly chosen
starting motif pairs than slower functions like Nmot and N seq (cf. the table in
Figure 2.10). As can be seen from Figure 2.9, N seq, and thereby seq-slider,
outperforms the other SA-CMM variants using other neighborhood functions,
including m-slider which is second.

For the sake of completeness, we also experimented with neighborhood
functions on motif pairs where both motifs can be replaced with a neighboring
one (in contrast to the previous neighborhood functions where one is kept
fixed). Unfortunately, the precision was never larger than 10%, independent of

36 Mining the best motif pairs according to a support measure

!
!

!

!
!

!

!

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dilution (%)

p
re

c
is

io
n

/r
e

c
a

ll

! Nseq
Nmot
LCandS
Nmot!
Random
LCandSA
LCorSA

Figure 2.9: Precision of SA-cmm with different neighborhood functions on
artificial networks with implanted motifs.

Neighbor func. seeds

N seq 90K

Nmot 277K

LCandS 784K

Nmot
	 1 986K

LCandSA 3 315K

LCorSA 3 643K

Random 15 924K

Figure 2.10: Average amount of randomly chosen initial motif pairs per run
for each neighborhood function.

2.8. Experiments 37

! ! !

! !

!

!

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dilution (%)

p
re

c
is

io
n
/r

e
c
a
ll

! BF!ChiSquare
Seq!SLIDER20
Seq!SLIDER10
M!SLIDER20
M!SLIDER10
D!STAR
Random20
MotifHeuristics

Figure 2.11: Precision of slider compared with that of D-STAR, MotifHeuris-
tics and Random on artificial networks.

the noise level, indicating that in those cases the merit of a larger neighborhood
is overshadowed by the time it costs to search it.

2.8.4 Comparison with existing methods

D-STAR. Tan et al. introduced the first motif-driven method for cmm: D-
STAR [THSN06]. In contrast with our approach, D-STAR uses (`, d)-motifs
in the mismatch model. In the mismatch model, an (`, d)-motif is simply a
string s of length ` and an amino acid sequence is said to contain the (`, d)-
motif s if it contains a substring of length ` that differs in at most d characters
from s. D-STAR is based on the observation that two strings s1 and s2 which
both differ at most d characters from s, differ at most in 2d characters from
each other. Strictly spoken, D-STAR does not deliver (`, d)-motifs. Instead it
returns two strings sX and sY , and two sets of proteins VX and VY together
with the indices of the substring of the amino acid sequence of each protein
in VX that differs at most 2d characters from sX , and similarly for VY and
sY . To construct the {VX , VY }-pairs, D-STAR considers for each interaction
{v, w}, each substring of length ` in λ(v) and λ(w) as the initial strings sX
and sY , determines VX and VY , and evaluates {VX , VY } using fχ2 . As the
similarity in Section 2.8.1 is defined in terms of positions of substrings, we
can directly use the returned subsets VX and VY to compare with implanted
motifs. Every run of D-STAR on the same network produced the same result,

38 Mining the best motif pairs according to a support measure

consequently the running time of D-STAR cannot be parameterized. We used
the D-STAR implementation freely available on the web.

MotifHeuristics. Another method, called MotifHeuristics, proposed by Le-
ung et al. [LSY+07], derives (`, d)-motifs directly within the wildcard model
and introduced the probabilistically motivated fp-support. Although the au-
thors do not describe it as such, MotifHeuristics can be seen as a steepest
ascent method in which the neighbors of a motif pair {X,Y } are all motif
pairs {X,Y ′} at odd steps and all motif pairs {X ′, Y } at even steps. Because
we could not obtain an implementation of MotifHeuristics, we implemented
our own version based on the algorithmic description in [LSY+07] and con-
firmed the correctness of the implementation by reproducing all results on the
SH3-dataset from [LSY+07].

Comparison. Given that each method relies on different principles, it is
not easy to compare them directly. Both slider variants and MotifHeuristics
share the principle that they start from a random motif pair which is improved
by local search principles. One could be tempted to compare them by looking
at the results which each method obtains using a fixed number of motif pair
seeds but such a comparison would favor a method which considers a larger
neighborhood in each step, that is, has an expensive neighbor function. More-
over, D-STAR is a deterministic method and as such is unable to improve its
results by using more time. For those reasons, we believe that comparing the
results obtained by each method within a given time frame yields the fairest
comparison as time is the most important constraint for large PPI-networks
and any method method requires time to produce results.

The graph in Figure 2.11 depicts the precision of the various methods on
the artificial network of density 10%, including Random as naive baseline. D-
STAR took 5 minutes to finish. We let Random and both slider variants run
once for 10 and once for 20 minutes. To give our unoptimized implementation
of MotifHeuristics a fair chance, we allowed it to run for 175 minutes. The
underlying reason why MotifHeuristics takes such a long time is that for every
search step a number of supports has to be calculated which approaches the
total number of motifs. The graph makes it quite apparent that seq-slider
is vastly superior to all other methods — the precision obtained by both seq-
slider runs are so close to the precision obtained by brute force that they
are almost indistinguishable in the figure. m-slider is second as long as the
network is not too noisy but loses to D-STAR as the networks become more
noisy. It might be noteworthy that D-STAR finishes in more or less 5 minutes
but, as mentioned earlier, its results cannot be improved by giving it more
time. We also performed 5 minute m-slider runs to make the comparison

2.8. Experiments 39

with D-STAR more fair and in that time frame m-slider’s precision is only
better than D-STAR’s for the original networks. On the other hand, if we
give m-slider more time it beats D-STAR on all noise levels. Somewhat
surprisingly, Random performs better than MotifHeuristics. Calculating fp-
support for an enormous amount of neighbors takes so much time that our
implementation of MotifHeuristics could handle only about 120 initial motif
pairs in 175 minutes. Hence, this experiment indicates that even a random
search using fχ2 is a better approach to retrieve implanted motif pairs than a
heuristic search using fp.

Overall, both slider variants are more effective and robust than its com-
petitors although m-slider needs more time to outclass D-STAR on these
small networks.

We conclude the comparison by pointing out that both slider variants
obtain a precision>80% in 20 minutes on the original networks, which is quite
fast in comparison with the 40 hours necessary to obtain the best motif pairs
by brute force.

2.8.5 Biological validation

Next, we assess the effectiveness of slider on two of the largest real-life PPI-
networks: the yeast network and the human network (see Section 2.7.2).

Retrieving the best motif pairs.

We will first assess if m-slider and seq-slider are still capable of retrieving
the best motif pairs on networks of this size. As the motif pairs which describe
the interactions in the real PPI-networks are not known, we use the 1 000
best scoring motif pairs obtained by a brute force algorithm as the “ground
truth”. Hence, the notion “precision” is a bit misleading here because the
real motifs describing the interactions are unknown and might not even exist
because of the limitations of the (`, d)-motif model. Nevertheless, from a
purely theoretical point of view, calculating precision against the best scoring
motif pairs is a correct and objective merit to assess the capability of our
methods to find the best motif pairs according to the model. Moreover, because
in this setting we are guaranteed to compare against all best scoring motif
pairs, we do not have to rely on the positional similarity measure and can
compare the two sets of motif pairs directly.

To give an idea, the brute force computation for (8,3)-motif pairs on the
yeast network occupied about 100 nodes in the cluster spanning a period of 2
weeks.

We ran m-slider and seq-slider for 20 minutes exploiting all 8 cores
of the Mac Pro. The average precision of the 1 000 best results returned

40 Mining the best motif pairs according to a support measure

by m-slider over 5 runs is 14%, that of seq-slider is 74.2%. The number
implies that seq-slider succeeds in recovering 742 of the 1000 best correlated
motifs out of a search space of 6 × 1015 (8,3)-motif pairs after only a run of
20 minutes which is quite satisfactory. As seq-slider returns a ranked list,
these 742 motif pairs occur at the top.

Biological relevance of best motif pairs.

We will now assess the biological relevance of the results of the brute force al-
gorithm, seq-slider and MotifHeuristics on the yeast network and the human
network. We used our own implementation of MotifHeuristics, but allowed it
to run significantly longer. We did not assess D-STAR, because even though
D-STAR terminated on our artificial networks within 5 minutes, the method
does not scale to larger networks. In particular, Leung et al. [LSY+07] men-
tion an experiment where they executed D-STAR on the yeast network and
it did not finish in 5 days. We ourselves have run D-STAR on this network
for a month without result. We took protein structures from the protein
databank (PDB) [BBB+02] and selected only those that could be mapped
to proteins in the human and yeast networks (using pdb homologs.tab from
yeastgenome.org for yeast and the GTOP database [KFH+02] for human),
with blast e-value < 1E-10. We discarded any structures where no two sepa-
rate chains of the structure could be mapped to two interacting proteins in one
of the networks, or where one or both of those proteins didn’t contain a motif
from the result. Subsequently, we used NACCESS [HT93] to calculate the
Relative Solvent Accessibility (RSA) of each residue in the PDB structures.
The higher RSA, the more at the surface a residue is. Protein sequences were
aligned with PDB protein sequences, and in this way the solvent accessibility
of residues covered by a correlated motif was obtained (see example in the
table in Figure 2.12). This was done two times for each residue: once in the
structure of the complex (two chains bound to each other) and once in the free
protein chain. The solvent accessibility of these residues in the single proteins
was compared with that in the protein complex structure. Residues which
have a smaller accessibility in the complex, are considered to be at the inter-
action site. For example, for the residues listed in the table in Figure 2.12, the
first, second, fourth and eighth residue, respectively R, D, P and F, have acces-
sibility 35.6, 39.2, 33.3 and 7.5 in the single chain, but only 1.2, 18.0, 6.0 and
0 in the complex, which implies that that they are indeed at the interaction
site. You can see the positions of the motifs in that complex in Figure 2.13.

Unfortunately, because of the limited available structure information, none
of the proteins of the human network survived both the PDB-mapping and
motif-filtering phase for (8,3)-motifs obtained by seq-slider. The number of

2.8. Experiments 41

Position in protein 321 322 323 324 325 326 327 328

Residue R D P P H N N F

Position in PDB 322 323 324 325 326 327 328 329

Residue R D P P H N N F

RSA (single chain) 35.60 39.20 8.90 33.30 21.00 1.20 0.80 7.50

RSA (complex) 1.20 18.00 8.90 6.00 21.00 1.20 0.80 0.00

Figure 2.12: Mapping a motif hit of RDxxxxNx (rank 7, seq-slider) in protein
18 010 of the human network to PDB 1Y8Q, chain C. The residues in bold
are at the interaction site according to the RSA values. Its partner motif
GxGxxGxx also occurs at the interface of the complex.

proteins remaining for yeast is also extremely small, as can be seen from Fig-
ure 2.14. For that reason, we ran the brute force method and seq-slider using
(the less informative) (8,5)-motifs where we used all 8 cores of our machine
for an hour and 15 minutes (for an equivalent of 10 hours of computation on a
single core) for both the yeast and human network to increase the number of
motif hits for which RSA values can be obtained. Each of these results gave us
1 000 motif pairs ranked by their χ2-support. We ran our own implementation
of MotifHeuristics for the equivalent of a month of computation time.

To see if the current (real) motif pair interface coverage is statistically
significant, we prepared 100 sets of random motif pair occurrences in the
sequences from the interaction network and analyzed how many of them have
more motif pair interface coverage than the real data. These datasets were
generated from the original result set by choosing a random new position for
each motif hit in the sequence in which it appears. Results of this comparison
are shown in the tables in Figure 2.14 and Figure 2.15.

Proteins shows the amount of proteins that remains when both both pro-
teins of a pair need to contain at least one motif from the result. Motif hits
shows the number of motif-protein hits after filtering data such that only motif
hits for which a complementary motif hit is present in an interacting protein
(with both protein having an associated structure) are kept. At site shows the
percentage of randomly generated motif hit datasets that have more hits at in-
teraction sites than the result of the method. Random ≥ shows the percentage
of random sets that have greater presence at the interaction site.

Both for the yeast and human network we have significantly more overlap
than random with the interface. Notably, for the human network only 2 out
of the 100 random sets have at least 45% of their motifs overlapping with the
interface (as observed for the seq-slider motifs). In this run, the average
of the percentage of motif hits overlapping with the interface is 36.5 for the
random motif hits and the standard deviation 4.5. The fact that SEQ-SLIDER

42 Mining the best motif pairs according to a support measure

Figure 2.13: Two interacting chains C and D of PDB 1Y8Q in black and white
and the two motif hits in gray.

Method parameters Proteins Motif hits At site Random ≥
Brute force χ2, (8,3) 252 48 13 (27%) 37%

Brute force χ2, (8,5) 949 5 335 2 103 (39%) 48%

seq-slider χ2, (8,5), 600min 949 1 157 335 (29%) 12%

MotifHeuristics p, (8,5), 1 month 949 615 224 (36%) 50%

seq-slider (restricted: 400) 926 817 319 (39%) 6 %

Figure 2.14: Occurrences at surface and at interaction site compared to ran-
dom sampling in the yeast high-confidence network (1620 proteins/9060 inter-
actions).

Method parameters Proteins Motif hits At site Random ≥
Brute Force χ2, (8,5) 229 188 61 (32%) 23%

seq-slider χ2, (8,5), 600min 229 137 62 (45%) 2%

MotifHeuristics p, (8,5), 1 month 208 14 8 (57%) 8%

seq-slider (restricted: 24) 156 13 8 (62%) 4%

Figure 2.15: Occurrences at surface and at interaction site compared to ran-
dom sampling in the human network (8872 proteins/34230 interactions).

2.8. Experiments 43

has more overlap with the interaction site than brute force can be explained by
the more complementary nature of the SEQ-SLIDER motif pairs; their motif
hits cover more regions in the sequences (see Section 2.8.6).

We also ran MotifHeuristics on the large-scale networks. As the method
did not return a single motif pair after ten hours, we allowed it to run for a full
month, still producing less motif pairs than seq-slider in a ten-hour run. We
restrict the comparison to the same number of found motif pairs. seq-slider
still finds a larger overlap with the interface (See the tables in Figure 2.14 and
Figure 2.15).

Using an additional cutoff for the interface (i.e. not only requiring change
in RSA upon complexation but also that RSA in free protein is above a cutoff)
does not change much in analysis (data not shown).

Conclusion.

We find significant overlap of motif hits with interface residues for seq-slider,
on both the yeast and human results. That being said, the results on human
are remarkably better than those for yeast. Our experimental results seem
to suggest that the model itself is better in describing the interactions in
the human network than the interactions in the yeast network. A possible
explanation for the skewness in these results is that the (`, d) with χ2-support
model suffers more from false positives caused by indirect interactions, which
are prominently present in the yeast network, than from false negatives, which
are assumed to be common in the human network, as explained above.

It might be worth pointing out that, as far as we know, this is the first
effort to assess if cmm is able to produce biologically meaningful results from
genome-wide PPI-networks.

2.8.6 Performance comparison for SEQ-SLIDER and brute
force computation

At first sight, it seems strange that on yeast and human seq-slider outper-
forms the brute force computation (as seen in the tables in Figure 2.14 and
Figure 2.15). The main reason is that brute force returns the 1 000 best motif
pairs with the highest score even if several of them are very similar. To define
similarity, we extend the definition of Section 2.8.1 as follows.

We say that two (`, d)-motif pairs {X,Y } and {X ′, Y ′} are (α, β)-similar
in a PPI-network G = (V,E, λ) if

s({X,Y }, {X ′, Y ′}, G) =
|EX,Y ∩pos EX′,Y ′ |
|EX,Y ∪ EX′,Y ′ |

≥ α

44 Mining the best motif pairs according to a support measure

(α, β) seq-slider BF

(1.0, 8) 0 11

(0.75, 3) 3 161

(0.5, 1) 91 402

Figure 2.16: For both methods, the amount of motif pairs (out of 1 000) that
are (α, β)-similar to a better-scoring motif pair in the result.

where {v, w} ∈ EX,Y ∩pos EX′,Y ′ if there exists substrings sv and s′v in λ(v)
and sw and s′w in λ(w) such that

• sv matches with X and sw with Y ;

• s′v matches with X ′ and s′w with Y ′; and,

• sv and s′v as well as sw and s′w overlap in at least β positions in λ(v),
respectively λ(w).

Let S = {M1, . . . ,Mn} be a list of motif pairs, then we reduce S by deleting
for every j from 1 to n, every Mi for i > j such that s(Mi,Mj) ≥ α. We denote
the reduced version of S by S∗.

The table in Figure 2.16 shows that for decreasing values of α and β both
brute force and seq-slider select more and more similar motif pairs on the
human network. As we suspected, these tests show that a motif pair {X,Y }
appearing in the list of motif pairs with highest support is often accompanied
with very similar motif pairs in the list in the sense that they select (almost)
the same VX , VY , EX,Y and also have the same or largely overlapping motif
hits in the respective sequences. Consequently, if the motif hits of such a motif
pair are not part of the interface, then the motif hits of the whole set of similar
motif pairs are not at the interface.

This tendency to end up with a lot of similar motif pairs, is far less present
in SEQ-SLIDER because in each run, it starts from a random point and moves
to a local optimum without reporting the similar motif pairs it considered to
reach this local optimum. Hence, although the average support of the motif
pairs returned by SEQ-SLIDER is lower than those returned by brute force,
the motif pairs are less likely to have the same or largely overlapping motif
hits and thus more likely to cover more regions of the proteins than the motif
pairs returned by a brute force computation.

For the same reason, the brute force results tend to explain less interactions
and we will consider an approach that focuses on coverage of the interactions
and/or regions of the proteins in Chapter 3.

2.9. Conclusion 45

The fact that the results for the brute force methods are much more similar,
also explains that the brute force method has more motif hits, even though
the same amount of proteins is selected (as seen in the tables in Figure 2.14
and Figure 2.15). A lot of those motif hits will only be a few amino acids
apart.

So when a motif is found not to be at the interface, this means that all
similar motifs are also not at the interface. So brute force is punished more
severely than seq-slider. That is why the randomly generated motif hits
manage to outperform the brute force method so much more.

2.8.7 Additional simulated data

It is not likely that every interaction in a network is explainable by a motif
pair following the (`, d)-motif model. Therefore, we want simulated networks
where only a small amount of edges could be explained by a motif pair, to
verify whether our method could detect those that were present. We made
two different kinds of simulated network and ran tests on them.

First, we implanted a single motif pair into a small existing network (120
proteins, 90 interactions), adding a single biclique that could be explained by
one motif pair. To make sure we did not add a biclique of too large a size,
we added both motifs a number of times that was smaller than the largest
amount of proteins selected by a single motif occurring naturally within the
network. We made 5 networks of this sort, and ran seq-slider on them for
10 minutes. seq-slider always managed to find the implanted motif pair as
its top result.

Next, we made networks based on the known yeast network (1 620 proteins,
9 060 interactions). We added motif pairs in the same way as the simulated
networks described in the paper until the amount of edges present had grown
by 10%. We also made 5 of these networks. We ran seq-slider on them for
60 minutes and found on average roughly half of the implanted motif pairs
(exactly, not by positional information) (see Figure 2.17). After 300 minutes,
this was over 70%. We ran seq-slider with the p-score for the same amount
of time. Even after 300 minutes, the precision did not rise above 10%.

2.9 Conclusion

Steepest ascent is not only the oldest, but also the simplest among the known
metaheuristics for combinatorial optimization [BR03]. Several others exist
that would avoid getting stuck in local optima and move on to a better, global
optimum. We tried simulated annealing with several parameters for its start-
ing temperature, annealing schedule and acceptance function and found no

46 Mining the best motif pairs according to a support measure

●

●

●

100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minutes

pr
ec

is
io

n
●

biclique
x2
p

Figure 2.17: Percentage of implanted motif pairs recovered over time within
the yeast network.

improvement upon our steepest ascent algorithm, we even found it to gener-
ate worse results. The more advanced metaheuristics improve upon steepest
ascent by escaping a local optimum by taking a few steps in a direction that
decreases the support to gain access to a region from where a better local
optimum can be reached. We checked if such a search path is feasible for the
neighborhood function N seq. As N seq always takes its motifs from two pro-
teins, we can visualize the search space (for one starting seed) as a 2D plane.
Each point (x, y) on this plane represents the best support out of all possible
motif pairs {X,Y } where X starts at position x and Y at position y. We have
visualized these search spaces for several interacting motif pairs in the yeast
network and found that the local maxima are too far away from each other
to be reached by such an approach. We also observed that the search space
consists mostly of positions where all neighbors have the same support. Steep-
est ascent would immediately stop at these points, where simulated annealing
would continue to walk around randomly until it has moved its allotted steps.
Hence, it appears that the search landscape of cmm is not suitable for these
more advanced metaheuristics. An example of such a visualized search space
is given in Figure 2.18.

At first sight the present work seems highly related to the mining of fre-
quent patterns in sequences (as for instance in [GHZ07]). It is therefore tempt-

2.9. Conclusion 47

Figure 2.18: Search landscape between two proteins in the yeast high confi-
dence network (lighter gray represents a better score).

48 Mining the best motif pairs according to a support measure

1 10 20 30 40 50 60

1
1
0
0

1
0
0
0
0

1
0
0
0
0
0
0

Figure 2.19: Number of (8,3)-motifs (y-axis) selecting a given number of pro-
teins in the yeast network (x-axis).

ing to think about a method which first mines frequent motifs from protein
sequences which are then paired together in a second step serving as candidates
for high scoring correlated motifs. An examination of the 1 000 top correlated
motifs in yeast, however, reveals that each of the participating motifs occur
only in 3 to 10 proteins, whereas highly frequent motifs in yeast occur in up
to 60 proteins as can be seen from the histogram in Figure 2.19. Therefore,
mining correlated motifs is very different from mining frequent motifs.

We layed the foundation of motif-driven cmm by establishing an adequate
support measure and determining the complexity of the general problem. The
novel generic metaheuristic slider based on the sliding window neighborhood
function outperforms existing motif-driven cmm algorithms and shows a very
promising behavior on real-world PPI-networks.

We could not confirm the claimed superiority in [LSY+07] of MotifHeuris-
tics over D-STAR. In fact, our results clearly show that fp is inferior to fχ2

in recovering implanted motifs. These tests should be repeated on real world
data, but as long as only few biological correlated motifs are known this is not
possible.

The slider-implementation and the data used in the experiments are avail-
able on http://bioinformatics.uhasselt.be.

http://bioinformatics.uhasselt.be

3
Mining minimal motif pair
sets maximally covering
interactions

3.1 Introduction

As shown in the previous chapter, when we score a motif pair solely on its
own merit within the network, we get a lot of very similar high-scoring motif
pairs within the same dense part of the network. For example, among the best
1 000 (8, 5)-motif pairs found using a brute force approach in the PPI-network
of Human (a network consisting of 8 872 nodes) only 598 refer to dissimilar sub-
networks (see Section 2.8.6). This effect becomes even worse when considering
more specific motif pairs (i.e., restricting the number of allowed wildcards).
For example, in Yeast (a network consisting of 1 620 nodes) out of the 1 000
best (8, 3)-motif pairs only 382 refer to distinct networks. Every found motif
pair selects a subnetwork identical to one of these, even to the point of having
the same motif positions in the proteins. Moreover, using all 1 000 motif pairs,
only 5% of all nodes and 8% of all edges of the Yeast network are described.
Correlated motif covering (cmc) is the problem of finding a set of motif pairs
in the sequences of proteins from a PPI-network which describe the interac-
tions in the network as concisely as possible. In other words, a perfect solution
for cmc would be a minimal set of motif pairs which describes the interaction
behavior perfectly in the sense that two proteins from the network interact if

49

50 Mining minimal motif pair sets maximally covering interactions

 A B

B

A

C

D

 C D

1

2

3

4

5

6

Figure 3.1: An example protein-protein interaction network (repeated).

and only if their sequences match a motif pair in the minimal set. We for-
mally introduce the Correlated Motif Covering (cmc) problem in Section 3.2.
In Section 3.3, we show that cmc is np-hard, and that it is impossible to cre-
ate a sub-square root approximation algorithm for it. We do this by reducing
the Red-Blue Set Cover (rbsc) problem to cmc while using an Approxima-
tion Factor Preserving (AFP)-reduction, a form of reduction that allows us
to transfer knowledge of approximation factors. We show the existence of a
theoretical approximation algorithm for cmc by providing an AFP-reduction
from cmc to wrbsc. We adapt the latter algorithm into a functional heuristic
for cmc, called cmc-approx and then present two more naive algorithms in
Section 3.4. First, we use seq-slider as a naive baseline algorithm by in-
terpreting the set of motif pairs it returns as a cover. Secondly, we present
a greedy algorithm called cmc-greedy. In Section 3.5, we describe the used
data sets, followed by a validation that the algorithms achieve their intended
purpose (increased coverage) in Section 3.6. We perform several test to en-
sure the biological meaningfulness of our results in Section 3.7. We start by
examining the usefulness of the returned motif pairs in the prediction of novel
protein-protein interactions. Then, we compare the found locations to known
binding sites from 3D-structure information. Our last experiment shows an
application where the high coverage of cmc-approx is advantageous, namely
in the comparison of results across multiple species. We provide evidence that
if a site is returned as a binding site by our methods in multiple species, then
the chance of it being an actual binding site increases. Finally, we conclude
in Section 3.8.

3.2 Covering a graph with a set of motif pairs

Rather than scoring motif pairs on an individual basis as in cmm (see Sec-
tion 2.2), we now formalize how to score the explicative power of a set of motif

3.2. Covering a graph with a set of motif pairs 51

pairs as a whole. To this end, let M be a set of motif pairs. Then the graph
GM = (VM, EM, λM) induced by M on G is defined as

GM :=
⋃

{X,Y }∈M

(VX ∪ VY , VX × VY , λ|VX∪VY),

where the union of two graphs G1 = (V1, E1, λ1) and G2 = (V2, E2, λ2) is
simply G1,2 = (V1∪V2, E1∪E2, λ1∪λ2). Note that GM might contain edges not
present in G, contrary to the case for GM for a motif pair M . For example, if
we were to take G{{B,C}} in Figure 3.1, we get the network containing proteins
1, 2, 4, 6, with four edges connecting those proteins, even though in G and
GB,C only three of those edges are present.

For a result setM to have little redundancy and high coverage, we wantM
to be small while maximizing the similarity between GM and G. Therefore,
we adopt the Minimum Description Length (MDL) principle [Ris83] which
embraces the slogan of Induction by Compression. More specifically, we can
compress G by GM encoded asM. We then only need to list the false positive
and false negative edges. That is, the edges present in EM but not in EG, and
the edges missing in EM but present in EG. The size of M, denoted |M| is
simply counted as the number of motif pairs occurring in it. More formally,
we calculate the size of the latter compression relative to three nonnegative
numbers α, β, and γ as follows

costα,β,γ(M, G) := α|M|+ β|EM \ EG|+ γ|EG \ EM|.

The table below lists some example solutions for the network in Figure 3.1:

M costα,β,γ(M, G)

∅ 7γ
{{B,C}} α+ β + 4γ

{{B,C}, {A,D}} 2α+ 2β + 2γ
{{A,C}, {B,D}} 2α

The last line contains a solution that describes the interactions perfectly, and,
given reasonable values for α, β, and γ, should be the optimal solution.

In the experimental section, following the MDL principle, we will set α to
the number of bits to represent a motif pair and β = γ to the number of bits
to represent an interaction.

We are now ready to define the problem central to this paper:

52 Mining minimal motif pair sets maximally covering interactions

The Correlated Motif Covering problem (cmc)

• Input: A PPI-network G, numbers `, d ∈ N+ with d < `,
and α, β, γ ∈ Q+

• Output: a set M of (`, d)-motif pairs minimizing costα,β,γ(M, G).

3.3 Complexity and Approximation of cmc

We show that cmc is np-hard and that there are limits to how well it can be ap-
proximated within polynomial time. On the positive side, we show that there
are algorithms that provide approximation guarantees that are within those
limits by establishing an Approximation Factor Preserving (AFP-)reduction
to the Weighted Red-Blue Set Cover (wrbsc) problem.

3.3.1 Lower bounds

In this section, we show that cmc is np-hard and that it is hard to approxi-
mate. Specifically, we show that, unless p = np, it is impossible to achieve a
polynomial-time algorithm for cmc with an O(2log1−δ

√
n) approximation ratio,

with δ = 1 / log logcn, for any constant c < 1/2, with n the size of the input.

We start by reducing the Red-Blue Set Cover (rbsc) problem to cmc using
AFP-reductions.

First, we define rbsc [CDKM00]. The input consists of a universe U of
elements which are either red or blue. In addition, a set S of subsets of U is
given. The objective is to choose sets from S covering all blue elements while
selecting as few red elements as possible.

Formally, we define the Red-Blue Set Cover (rbsc) problem [CDKM00] as
follows:

• Input: Finite sets U,B,R,S, with U = B ∪R, B ∩R = ∅, and S ⊆ 2U ,

with
⋃
S∈S

S = U .

• Output: a set S∗ ⊆ S such that B ⊆
⋃
S∈S∗

S minimizing the cost

function

costrbsc(S∗, U,B,R) := |

(⋃
S∈S∗

S

)
∩R|.

3.3. Complexity and Approximation of cmc 53

To obtain the lower bounds for cmc, we make use of a reduction from
rbsc to cmc that preserves not only constant factor approximability but also
the constant itself. Therefore, we will need the following notion:

Definition 3.1. [Vaz04] Let Π1 and Π2 be two minimization problems. An
Approximation Factor Preserving (AFP-)reduction from Π1 to Π2 is a pair of
ptime functions (f, g) such that:

• for any instance I1 of Π1, I2 = f(I1) is an instance of Π2 such that
OPT2(I2) ≤ OPT1(I1), where OPT1 (resp. OPT2) is the quality of an
optimal solution to I1 (resp. I2), and

• for any solution s2 to I2, s1 = g(s2) is a solution to I1 such that
obj1(s1) ≤ obj2(s2), where obj1() (resp. obj2()) is a function measuring
the quality of a solution to I1 (resp. I2).

By Π1 ≤AFP Π2, we denote that there exists an AFP-reduction from Π1

to Π2.

Throughout the remainder of this section, objΠ is the cost function of
problem Π and OPTΠ(I) equals the cost of an optimal solution for instance I
of problem Π.

The proofs in the rest of this section are based on the following lemma,
which we state without proof [Vaz04]:

Lemma 3.2. If there exists an approximation algorithm with approximation
factor α for problem Π1, and Π2 ≤AFP Π1, then there exists an approximation
algorithm with approximation factor α, for problem Π2.

In the remainder of this section, we will prove the following theorem.

Theorem 3.3. cmc is NP-hard and unless p = np, there is no polynomial-
time algorithm for cmc with an O(2log

1−δ√n) approximation ratio, with δ =
1 / log logcn, for any constant c < 1/2, with n the size of the input.

We need the following lemma:

Lemma 3.4. rbsc ≤AFP cmc.

Proof. Let Irbsc = (U,B,R,S) be an instance of rbsc. Let S = {S1, . . . , S|S|}.
We start by defining the function f mapping Irbsc to f(Irbsc) = Icmc =
(G, `, d, α, β, γ). Here, ` = |S| and d = |S| − 1. This means that motifs only
have one non-wildcard character. Furthermore, set α = 0, β = 1, and γ to one
more than the maximal number of red elements occurring in a set in S. That is,
γ = max

S∈S
|S∩R|+1. It remains to define G = (V,E, λ). Define V = U∪{c}∪O

54 Mining minimal motif pair sets maximally covering interactions

where c is a new element and O consists of 2γ|B|+ 1 new elements. Here, c is
the center of the graph connected to all elements in B. Furthermore, O, and
R consist of isolated vertices. That is, set E = {{b, c} | b ∈ B}. Although
Σ contains the 20 characters used to specify amino acids, G uses only three
characters. For ease of exposition, we shall refer to three characters in Σ as 0,
1, and 2. Then, λ(c) is a sequence of length |S| consisting only of 2-characters;
for each u ∈ U , λ(u) = c1 . . . c|S|, with ci = 1 if u ∈ Si and 0 otherwise; and;
for each o ∈ O, λ(o) is a sequence of length |S| consisting only of 0-characters.
Clearly, f is ptime-computable.

B R
S1

S2

S3

Figure 3.1: An example instance Irbsc for rbsc. Blue elements are shaded in
gray.

100

110

011

001

001

110

011

001

222
C

O

000 000 000 000 000

000 000 000 000 000

000 000 000 000 000

000 000 000 000 000

000 000 000 000 000

Figure 3.2: f(Irbsc) = Icmc. The newly created elements are indicated by thin
edges.

3.3. Complexity and Approximation of cmc 55

Example 3.5. In Figure 3.1, we see a possible instance Irbsc for rbsc. In
Figure 3.2, we see the corresponding f(Irbsc) = Icmc. In Icmc, as there are 3
sets in S, ` = 3, d = 2. We automatically set α = 0, β = 1, and because the S3

contains the most red elements, we set γ = 4, making |O| = 2×4×3+1 = 25.
The first blue element gets a sequence of 110 as it is an element of S1 and S2,
but not of S3.

/

We next argue that OPTcmc(Icmc) ≤ OPTrbsc(Irbsc). First, we need
some terminology concerning motif pairs. As ` = d + 1, every motif contains
precisely one non-wildcard character σ. We refer to such a motif as a σ-motif.
We say that a motif pair {X,Y } where X is a σ-motif and Y is a σ′-motif, is
a motif pair of type Jσ, σ′K.

Let scmc = (M) be a solution to Icmc. Then objcmc(M) = α|M|+β|EM \
EG|+ γ|EG \EM| = |EM \EG|+ γ|EG \EM| by choice of α and β. Assume
M is optimal. ThenM has to cover all edges. That is, EG \EM = ∅. Indeed,
assume towards a contradiction that {b, c} ∈ EG \ EM and let b ∈ Si (b is
always in at least one set, according to the definition of rbsc). Then, we can
extend M with a motif pair selecting {b, c} thereby decreasing its cost and
contradicting the fact that M is optimal. Indeed, denote by Mi the motif
pair {Xi, Yi} where Xi is the 1-motif with 1 on the i-th position and Yi is the
2-motif with 2 on the i-th position. Then

objcmc(M∪ {Mi}) =

= |EM∪{Mi} \ EG|+ γ|EG \ EM∪{Mi}|
≤ (|EM \ EG|+ |Si ∩R|) + (γ|EG \ EM| − γ) (†)
< |EM \ EG|+ γ|EG \ EM| (‡)
= objcmc(M).

Here, (†) is an equality if Si contains only one blue element not yet covered,
and (‡) follows as γ = maxS∈S |S ∩ R| + 1 > |Si ∩ R|. So, it follows that
EG \ EM = ∅ and that objcmc(M) = |EM \ EG| when M is optimal.

Example 3.6. In the example in Figure 3.2, the set {{xx1, 2xx}} covers two
out of three edges, and its cost is 3 + 4 = 7. By adding the motif pair
{x1x, 2xx}, we reduce the cost to 5. A cost of γ was removed, and at most
γ − 1 could be added.

/

56 Mining minimal motif pair sets maximally covering interactions

We distinguish the following kinds of motif pairs:

• We say that a motif pair is good when it is of type J1, 2K. Note that
every such motif pairs selects the subgraph consisting of the center and
all elements in some set of S.

• We say that a motif pair is bad when it is of type J0, 2K Note that
every such motif pairs selects the subgraph consisting of the center and
all elements in the complement of some set of S, together with all the
elements in O.

• Motif pairs which only contain σ-motifs with σ ∈ {0, 1, 2} but which are
not good nor bad are called superfluous. Specifically, they are of type
J0, 0K, J1, 1K, J2, 2K, and J0, 1K. They are called superfluous as EM∩EG =
∅ for every superfluous motif pair M .

• A motif pair M = {X,Y } which is not good, bad, or superfluous is
called empty. Specifically, it is of type Jσ, σ′K where σ 6∈ {0, 1, 2} or
σ′ 6∈ {0, 1, 2}. They are called empty because at least one of VX or VY
is empty.

Example 3.7. In the example in Figure 3.2, {x1x, 2xx} is a good motif pair,
it selects the center and the elements that were in S2 in Figure 3.1. Also,
{x0x, 2xx} is a bad motif pair, it selects the center and all the elements that
were not in S2, including all the elements of O. Next, {x0x, 0xx} is a super-
fluous motif pair, it selects elements, but never any edges. Finally, {x3x, 0xx}
would be an empty motif pair, as one of its motifs never selects any elements,
since it contains a character not present in any sequence.

/

Next, we argue that the optimal solution M cannot contain bad motif
pairs. Furthermore, we will show that for every optimal solution M there is
a reduced optimal solution M′ which does not contain empty or superfluous
motif pairs and only a minimal number of good motif pairs which can be
mapped in a one-to-one fashion on sets in S.

Indeed, assume Mbad to be the non-empty set of bad motif pairs in any
solution M. Then

3.3. Complexity and Approximation of cmc 57

objcmc(M\Mbad)

= |EM\Mbad
\ EG|+ γ|EG \ EM\Mbad

|
≤ |EM\Mbad

\ EG|+ γ|EG|
≤ |EM \ EG| − |O|+ 2γ|EG| (†)
< |EM \ EG| (by def. of O)

≤ |EM \ EG|+ γ|EG \ EM|
= objcmc(M).

Here, (†) follows as the motif pairs in Mbad select at least all elements in
O, and at most all the elements in |EG|.

Also, assume Msup to be the non-empty set of superfluous motif pairs in
any solution M. Then

objcmc(M\Msup)

= |EM\Msup
\ EG|+ γ|EG \ EM\Msup

|
= |EM \ EG| − |EMsup |+ γ|EG \ EM| (†)
≤ |EM \ EG|+ γ|EG \ EM|
= objcmc(M).

Here, (†) follows from the fact that EMsup ∩ EG = ∅.
Finally, assume Mempty to be the non-empty set of empty motif pairs in

any solution M. Then

objcmc(M\Mempty)

= |EM\Mempty
\ EG|+ γ|EG \ EM\Mempty

|
= |EM \ EG|+ γ|EG \ EM|
= objcmc(M).

So, given an optimal set of motif pairsM, it cannot contain any bad motif
pairs. Furthermore, let M′ be obtained from M by removing all empty and
superfluous motif pairs, thenM′ is also optimal and contains only good motif
pairs. Therefore, if M is optimal objcmc(M) = objcmc(M′) = |EM′ ∩Red| =
|EM∩Red| with Red = {{c, r} | r ∈ R}. Thus, each motif pair inM′ is of the
form {Xi, Yj} where Xi is the 1-motif with 1 on the i-th position and Yj is the
2-motif with 2 on the j-th position. We replace each motif pair {Xi, Yj}, with
the motif pair Mi = {Xi, Yi} and remove any duplicates. Since any 2-motif
selects only the central node, the solution still selects the same node pairs, so
its cost and thus its optimality are maintained.

58 Mining minimal motif pair sets maximally covering interactions

Example 3.8. In the example in Figure 3.2, M = {{x1x, 2xx}, {xx1, x2x},
{x1x, 0xx}, {x1x, 3xx}} is an optimal set of motif pairs, with cost 4. It does not
contain any bad motif pairs. We transform it into the set M′ = {{x1x, x2x},
{xx1, xx2}}, which is still optimal, by removing the empty and superfluous
motif pairs and changing the motif pairs to the form of Mi = {Xi, Yi}.

/

Each Mi selects exactly those {u, c} with u ∈ Si. Since we have shown that
EG\EM = ∅, we can create a solution for Irbsc by taking Si for each Mi ∈M′.
Also, because OPTcmc(Icmc) = |EM∩Red|, this solution for Irbsc has the same
cost as the optimal solution to Icmc. This solution is also optimal, because if
there was a S∗ with a lower cost we could create a set of motif pairs with that
same cost (by taking Mi for each Si ∈ S∗), which would be in contradiction
with M being optimal. This means OPTcmc(Icmc) = OPTrbsc(Irbsc), and so
definitely OPTcmc(Icmc) ≤ OPTrbsc(Irbsc).

Example 3.9. We turn our solution M′ = {{x1x, x2x}, {xx1, xx2}} for Icmc
(in Figure 3.1) into the solution S∗ = {S2, S3} for Irbsc (in Figure 3.2). This
solution also has cost 4 and is also optimal.

/

Let scmc = (M). We next define the function g mapping scmc to g(scmc) =
srbsc = (S∗). Here, let Mgood be the set of good motif pairs in M. Define
Sgood as the set of sets Si for which there is a motif pair {X,Y } in Mgood,
with X the 1-motif with 1 on its ith position. For every b ∈ B, let Sb be an
arbitrary set in S containing b. Then, define

Sextra :=
⋃

b∈B,b 6∈ ⋃
S∈Sgood

S

Sb.

Finally, set

S∗ := Sgood ∪ Sextra.

Clearly, g is ptime-computable.

We next argue that objrbsc(srbsc) ≤ objcmc(scmc). Indeed,

3.3. Complexity and Approximation of cmc 59

objrbsc(srbsc)

= |
⋃
S∈S∗

S ∩R|

≤ |
⋃

S∈Sgood

S ∩R|+ (max
S∈S
|S ∩R|)|Sextra|

≤ |EMgood
∩Red|+ γ|EG \ EMgood

|
= objcmc(Mgood)

≤ objcmc(scmc).

Example 3.10. In the example in Figure 3.2, M = {{x1x, 2xx}} is a (non-
optimal) solution. We turn it into the (optimal) solution S = {S2, S3} by
taking S2 due to the motif pair in M and adding any set containing the blue
elements not yet present. The cost of S is equal to or lower than that of M
since the added cost of a new set is always lower than the cost in Icmc for not
covering the corresponding edge.

/

Hence, the lemma follows.

Since an AFP-reduction is a polynomial-time reduction and rbsc is an
NP-hard problem, this lemma already shows that cmc is NP-hard.

Lemma 3.11. If there is a constant δ, with 0 < δ < 1, for which there exists a
polynomial-time algorithm for cmc with an O(2log

1−δ√n) approximation ratio,
with n the size of the input, then there exists a polynomial-time algorithm for
rbsc with an O(2log

1−δn) approximation ratio, with n the size of the input.

Proof. A polynomial-time algorithm for rbsc with an O(2log1−δn) approxi-
mation ratio is achieved by composing the AFP-reduction from the proof of
Lemma 3.4 and the polynomial-time algorithm for cmc.

It remains to discuss the approximation rate. First, we discuss the size of
the obtained cmc instance, which is |Icmc| = |(G, `, d, α, β, γ)| = O(|S||V | +
log(|S|) + log(|S|) + 1 + 1 + log(|R|)) = O(|S||V |), where |G| = O(|V | +
|E| + |λ|) = O(|V | + |λ|), because it is a sparse graph by construction and
|λ| = O(|S||V |). So, O(|S||V |) = O(|S||U |2), because of the size of O.

The size of the rbsc instance is n = |Irbsc| = |(U,B,R,S)| = O(|U | +
|U |+ |U |+ |S||U |) = O(|S||U |).

Thus, the size of the cmc-instance created by the reduction is O(|S||U |2) =
O(n2).

60 Mining minimal motif pair sets maximally covering interactions

Since OPTcmc(Icmc) = OPTrbsc(Irbsc) and objrbsc(srbsc) ≤ objcmc(scmc)
(as shown by the proof of Lemma 3.4), it follows that our composed algorithm

has an approximation rate of O(2log((
√
n)2)1−δ) = O(2log(n)1−δ). Take a solution

scmc to an instance Icmc from the theorized polynomial-time algorithm for
cmc. The algorithm has a O(2log1−δn) approximation ratio which means

objrbsc(srbsc)

≤ objcmc(scmc)

≤ O(2log1−δ
√
ncmc) OPTcmc(Icmc)

= O(2log1−δ
√
ncmc) OPTrbsc(Irbsc)

= O(2log1−δ
√

(nrbsc)2) OPTrbsc(Irbsc)

= O(2log1−δnrbsc) OPTrbsc(Irbsc).

Hence, the lemma follows.

rbsc was shown to be Ω(2log1−εn)-inapproximable1 by Dinur et al. [DS04],
Carr et al. [CDKM00], and Elkin et al. [EP07]. Dinur et al. [DS04] prove this
inapproximability under the weakest assumption (p 6= np). Specifically, they
proved unless p = np, it is impossible to achieve a polynomial-time algorithm
for rbsc with an O(2log1−δn) approximation ratio, with δ = 1 / log logcn,
for any constant c < 1/2, with n the size of the input. So, since we know a

polynomial-time algorithm for rbsc with an O(2log1−δn) approximation ratio
is impossible unless p = np, this means a polynomial-time algorithm with an
O(2log1−δ

√
n) approximation ratio is impossible for cmc unless p = np, which

proves Theorem 3.3.

3.3.2 Upper bounds

In this section, we show that we can use existing approximation algorithms to
solve cmc. Specifically, we show that cmc is polynomial time reducible to the
weighted version of the Red-Blue Set Cover problem using AFP-reductions.
This allows to transfer known approximation algorithms (such as the one given
by Peleg [Pel07]) from wrbsc to cmc, while preserving any constant factor
approximations. In section 3.3.1, we have shown that such algorithms are
unlikely to exist, but in Section 3.4.3 we will show that we can still use this
AFP-reduction to obtain an approximation algorithm with a non-constant
approximation guarantee.

1f(n) ∈ Ω(g(n)) ⇐⇒ ∃k > 0, n0 : ∀n > n0 : g(n)k ≤ f(n)

3.3. Complexity and Approximation of cmc 61

We start by introducing wrbsc which is the weighted version of rbsc
(defined in Section 3.3.1), in which the red elements have a nonnegative cost
assigned to them. By choosing elements from S, the objective is to select all
the blue elements (to which no cost is assigned), while incurring as little cost
by selecting red elements as possible.

Formally, we define the Weighted Red-Blue Set Cover (wrbsc) prob-
lem [CDKM00] as follows:

• Input: Finite sets U , B, R, S with U = B ∪R and B ∩R = ∅, S ⊆ 2U ,

with
⋃
S∈S

S = U , and a function c : R→ Q+.

• Output: a set S∗ ⊆ S such that B ⊆
⋃
S∈S∗

S and that minimizes the

cost function

costwrbsc(S∗, U,B,R, c) :=
∑

r∈(

⋃
S∈S∗

S ∩R)

c(r).

By restricting the length of motifs to be at most logarithmic in the size
of the network, we can reduce cmc to wrbsc using approximation factor
preserving reductions.

Theorem 3.12. If ` ≤ log(|G|), cmc ≤AFP wrbsc.

The rest of this section is dedicated to proving this theorem.

First, we reformulate cmc on a more abstract level which facilitates the
reduction to wrbsc. Let U be a finite set of elements divided into two disjoint
subsets U = C ∪ I. Here, C contains the correct elements while I contains the
incorrect ones. Let S be a set of subsets of U . The relationship with cmc is
as follows: Given a PPI-network G = (VG, EG, λG) and numbers ` and d, U
corresponds to the set of all protein pairs, C corresponds to the edges in G,
while I are the non-edges (anti-edges). Finally, S contains precisely those sets
of protein pairs defined by a (`, d)-motif pair. That is,

S =
⋃
{X,Y }

{VX × VY }.

We will show that if we restrict ` to its typical small values, cmc reduces
to the following problem which we refer to as the MDL-cover (mdl-cover)
problem:

62 Mining minimal motif pair sets maximally covering interactions

• Input: Finite sets U , C, I with U = C ∪ I, C ∩ I = ∅, S ⊆ 2U and
nonnegative numbers α, β, and γ

• Output: a set S∗ ⊆ S that minimizes the cost function

α|S∗|+ β|I ∩
⋃
S∈S∗

S|+ γ|C \
⋃
S∈S∗

S|.

Lemma 3.13. If ` ≤ log(|G|), cmc ≤AFP mdl-cover.

Proof. Let Icmc = (G, l, d, α, β, γ) be an instance of cmc. Let G = (V,E, λ).
We start by defining the function f mapping Icmc to f(Icmc) = Imdl-cover =
(U,C, I,S, α, β, γ). Here, α, β, and γ remain the same. Let C = E, and

I = {e ∈ (V ×V) | e 6∈ E}, then U = C ∪ I. Lastly, define S =
⋃
{X,Y }

VX ×VY .

Example 3.14. In Figure 3.3, we depict a possible instance Icmc for cmc.
In Figure 3.4, we show the corresponding f(Icmc) = Imdl-cover. For ease of
exposition, we use an alphabet Σ = {A,B}, ` = 1 and d = 0. In that case,
the sets in Figure 3.4 correspond to the sets of protein pairs selected by all
possible motif pairs.

/

We argue that f is ptime-computable. To construct S, we need to generate
all possible motif pairs. The amount of possible (`, d)-motifs is given by the
following equation(

`− 1

d

)
|Σ|(`−d) ≤

`−1∑
i=0

(
`− 1

i

)
|Σ|` = 2`−1|Σ|`.

If ` ≤ log(|G|), then this amount is polynomial in |G|. Since the number of
motif pairs is polynomial in the number of motifs, we can enumerate all motif
pairs in time polynomial in the size of G. For each motif pair {X,Y }, we then
need to find {VX×VY }. This can be done in polynomial time, by passing over
all the sequences.

Let smdl-cover = S. We next define the function g mapping smdl-cover to
g(smdl-cover) = scmc = (M). By construction, for any set Si ∈ S, there is at
least one motif pair Mi = {X,Y } with VX × VY = Si. Therefore, define

M =
⋃
Si∈S

Mi.

By the same reasoning given above, it can be argued that g is ptime-
computable.

3.3. Complexity and Approximation of cmc 63

ABAB

AAAA

BBBB

1

2 3

Figure 3.3: An example instance Icmc for cmc. The anti-edge is indicated by
a dotted line.

{1,2}

{2,3}

{1,3}

C I
{A,A}

{B,B}

{A,B}

S1

S2

S3

Figure 3.4: f(Icmc) = Imdl-cover. Elements correspond to edges (thick lines)
or anti-edges (dotted lines) in Figure 3.3.

Example 3.15. Let S = {S1, S3} be a solution to Imdl-cover in Figure 3.4,
we can find the corresponding set of motif pairs {{A,A}, {A,B}} by iterating
over all possible motif pairs.

/

We next argue that objcmc(scmc) ≤ objmdl-cover(smdl-cover). By con-
struction, the sets in smdl-cover contain the same correct and incorrect ele-
ments that are selected by the motif pairs in scmc. That is, EG = C and

V × V \ EG = I. Further, EM =
⋃
S∈S∗

S. It is however possible that multiple

sets contain the same elements and thus get represented by the same motif
pair, i.e., |M| ≤ |S∗|. So,

64 Mining minimal motif pair sets maximally covering interactions

objcmc(scmc)

= α|M|+ β|EM \ EG|+ γ|EG \ EM|
≤ α|S∗|+ β|EM \ EG|+ γ|EG \ EM|
= α|S∗|+ β|

⋃
S∈S∗

S \ C|+ γ|C \
⋃
S∈S∗

S|

= α|S∗|+ β|I ∩
⋃
S∈S∗

S|+ γ|C \
⋃
S∈S∗

S|

= objmdl-cover(smdl-cover).

We next show that OPTmdl-cover(Imdl-cover) ≤ OPTcmc(Icmc).
We first argue that if an optimal set of motif pairs M contains two motif

pairs which select the same node pairs, we can remove one of them without
removing optimality. We refer to such motif pairs as duplicates. Indeed,
assume M to be a motif pair inM that selects the same node pairs as another
motif pair in M. Then,

objcmc(M\ {M})
= α|M \ {M}|+ β|EM\{M} \ EG|+ γ|EG \ EM\{M}|
= α(|M| − 1) + β|EM \ EG|+ γ|EG \ EM|
≤ α|M|+ β|EM \ EG|+ γ|EG \ EM|
= objcmc(M).

So, for an optimal solutionM, we can create a solutionM′ which contains
no duplicates and is still optimal.

Example 3.16. In the example in Figure 3.3, if we were to change the motifs
to ` = 2, d = 1, we could have a solution M = {{Ax, Bx}, {xA, Bx}} with
cost 2α + β. If this solution is optimal, the solution M′ = {{Ax, Bx}} is also
optimal, with cost α+β. Note that duplicates are only possible in an optimal
solution if α = 0.

/

For convenience, we now construct the function g−1 that maps M′ to
g−1(M′) = S∗, as

g−1(M′) = S∗ =
⋃

Mi∈M∗
Si.

Since |M′| = |S∗|,

3.3. Complexity and Approximation of cmc 65

objcmc(M′)
= α|M′|+ β|EM′ \ EG|+ γ|EG \ EM′ |
= α|S∗|+ β|EM′ \ EG|+ γ|EG \ EM′ |
= α|S∗|+ β|

⋃
S∈S∗

S \ C|+ γ|C \
⋃
S∈S∗

S|

= α|S∗|+ β|I ∩
⋃
S∈S∗

S|+ γ|C \
⋃
S∈S∗

S|

= objmdl-cover(S∗).

This solution S∗ to Imdl-cover is also optimal. Assume towards a contra-
diction that there exists S∗2 with objmdl-cover(S∗2) < objmdl-cover(S∗). We
have already shown objcmc(g(smdl-cover)) ≤ objmdl-cover(smdl-cover), so

objcmc(g(S∗2))

≤ objmdl-cover(S∗2)

< objmdl-cover(S∗)
= objcmc(M′),

which is in contradiction withM′, and thusM, being optimal. Therefore,
OPTmdl-cover(Imdl-cover) ≤ OPTcmc(Icmc). The lemma now follows.

Lemma 3.17. mdl-cover ≤AFP wrbsc.

Proof. Let Imdl-cover = (Umdl-cover, C, I,Smdl-cover, α, β, γ) be an instance
of mdl-cover. We start by defining the function f mapping Imdl-cover to
f(Imdl-cover) = Iwrbsc = (Uwrbsc, B,R,Swrbsc, c). Here, B = C, R = I∪{rT |
T ∈ Smdl-cover} ∪ {rb | b ∈ C}, where all rt and rb are new objects, and
Uwrbsc = B ∪R. Define

c(r) =

α r ∈ {rT | T ∈ Smdl-cover};
γ r ∈ {rb | b ∈ C}; and,
β r ∈ I.

For every T ∈ Smdl-cover, we define ST = {rT } ∪ T . For every b ∈ B, we
define Sb = {rb} ∪ {b}. Finally,

Swrbsc =

(⋃
T∈Smdl-cover

ST

)
∪
⋃
b∈B

Sb. (?)

66 Mining minimal motif pair sets maximally covering interactions

Clearly, f is ptime-computable.

Example 3.18. In Figure 3.5, we depict a possible instance Imdl-cover for
mdl-cover. In Figure 3.6, we see the corresponding f(Imdl-cover) = Iwrbsc.
Elements from I have gotten weight β. A red element with weight α has been
added to every set. And new sets have been created for every blue element,
containing it and a new red element with weight γ.

/

We next define the function g mapping swrbsc to g(swrbsc) = smdl-cover.
Simply set

smdl-cover = {T ∈ Smdl-cover | ST ∈ swrbsc}. (??)

Clearly, g is ptime-computable.
We next argue that objmdl-cover(smdl-cover) ≤ objwrbsc(swrbsc). Indeed,

objwrbsc(swrbsc)

=
∑
{c(r) | r ∈ (

⋃
S∈swrbsc

S ∩R)}

=
∑
{c(r) | T ∈ smdl-cover, ST ∈ swrbsc, r ∈ (ST ∩R)}

+
∑
{c(r) | b ∈ C, Sb ∈ swrbsc, r ∈ (Sb ∩R)}

=
∑
{c(r) | T ∈ smdl-cover, r ∈ ((T ∪ {rT }) ∩R)}

+
∑
{c(r) | b ∈ C, Sb ∈ swrbsc, r ∈ ({rb} ∩R)}

=
∑
{c(r) | T ∈ smdl-cover, r ∈ ({rT } ∩R)}

+
∑
{c(r) | T ∈ smdl-cover, r ∈ (T ∩R)}

+
∑
{c(r) | b ∈ C, Sb ∈ swrbsc, r ∈ ({rb} ∩R)}

= α|smdl-cover|+ β|
⋃

T∈smdl-cover

T ∩ I|+ γ|
⋃

Sb∈swrbsc

{rb}|

≥ α|smdl-cover|+ β|
⋃

T∈smdl-cover

T ∩ I|+ γ|C \
⋃

S∈smdl-cover

S| (†)

= objmdl-cover(smdl-cover).

Here, (†) follows as a set Sb can be selected in swrbsc, while another set
already selects b.

3.3. Complexity and Approximation of cmc 67

b1

b2

r1

C I

T1

T2

T3

Figure 3.5: An example instance Imdl-cover for mdl-cover.

α
β

γ

γ

α

αST1

ST2
ST3

Sb1

Sb2

Figure 3.6: f(Imdl-cover) = Iwrbsc. Blue elements shaded in gray, red elements
have their weight indicated. Newly created elements are indicated with thinner
lines.

68 Mining minimal motif pair sets maximally covering interactions

Example 3.19. In Figure 3.6, S = {ST3 , SB1} is a solution with cost α+β+γ.
Then, g(S) = {T3} with cost α + β. In this case, the cost is reduced, due to
the fact that b1 was contained in ST3 .

/

We next argue that OPTwrbsc(Iwrbsc) ≤ OPTmdl-cover(Imdl-cover).
We first argue that if an optimal solution S∗wrbsc for Iwrbsc contains a set

Sb and a set ST with b ∈ ST , we can remove Sb without removing optimality.
Indeed, assume Sb to be in S∗wrbsc with another set in S∗wrbsc containing b,
then

objwrbsc(S∗wrbsc \ Sb)
=

∑
r∈

 ⋃
S∈S∗wrbsc\Sb

S

∩R

c(r)

=
∑

r∈

 ⋃
S∈S∗wrbsc

S

∩R

c(r) − γ

≤
∑

r∈

 ⋃
S∈S∗wrbsc

S

∩R

c(r)

= objwrbsc(S∗wrbsc).

So, for an optimal solution S∗wrbsc, we can create a solution S∗wrbsc
′ that

contains no Sb with b ∈ ST ∈ S∗wrbsc
′ and is still optimal.

For an instance Iwrbsc, we can use g to transform an optimal solution
S∗wrbsc into a solution smdl-cover for Imdl-cover with OPTwrbsc(Iwrbsc) =
objwrbsc(S∗wrbsc) = objmdl-cover(smdl-cover). The solution smdl-cover is also
an optimal solution for Imdl-cover, because if there was a better solution, we
could transform it into one for Iwrbsc with the same score, by taking ST
for every T and Sb, for every element of C not covered. This would be in
contradiction with S∗wrbsc being optimal. Therefore, OPTwrbsc(Iwrbsc) =
OPTmdl-cover(Imdl-cover), which means that definitely OPTwrbsc(Iwrbsc) ≤
OPTmdl-cover(Imdl-cover).

The lemma now follows.

Theorem 3.12 now follows from Lemma 3.13 and Lemma 3.17 and the fact
that AFP-reductions are closed under composition [Vaz04].

3.4. Algorithms 69

3.4 Algorithms

In the next three subsections, we present three algorithms for cmc: seq-
slider, cmc-greedy, and cmc-approx.

3.4.1 seq-slider

We use the seq-slider algorithm (see Section 2.5.2) as a baseline. Using local
search, the latter returns the set of the k best motif pairs (according to its
χ2-score) it can find, which is then interpreted as a cover.

3.4.2 cmc-greedy

We devise a naive greedy algorithm, called cmc-greedy, for cmc which re-
peatedly looks for a motif pair to add to M which reduces costα,β,γ(M, G)
the most. Since the space of possible motif pairs is far too large to consider
every motif pair (see Section 2.2), we replace this step with a local search
approach, similar to that of seq-slider, that looks for the best motif pair
to add to M during a set time period. The algorithm keeps adding mo-
tif pairs until it no longer finds one that reduces costα,β,γ(M, G). The full
algorithm is shown in Algorithm 2; the local search step is shown in Algo-
rithm 3, with neighbors the neighbor function of seq-slider. When used by
cmc-greedy costf (M,M,G) = costα,β,γ(M,M,G), which is simply defined as
costα,β,γ(M∪ {M}, G).

3.4.3 cmc-approx

By Theorem 3.12, we can apply to cmc any constant factor approximation
algorithm for wrbsc while preserving the approximation factor. However, no
such algorithms are known, and by Theorem 3.3 are very unlikely to exist.
We can however also apply the reduction to algorithms with known (but non-
constant) approximation ratios and then deduce the approximation ratio of
this algorithm for cmc. Therefore, we first give an overview of such algorithms.

wrbsc admits naive approximation algorithms with ratios |B|, |R| or
|S|log(|B|) [Pel07]. Carr et al. [CDKM00] suggest an algorithm that gives
an approximation ratio of 2

√
KB|S| or O(|S|1−1/KR log(|S|)) (with KB (KR)

the maximum amount of blue (red) elements in a single set). These ra-
tios are low when KB or KR are small, but may go up to Ω(

√
|S||B|) or

Ω(|S|log(|S|)). Peleg [Pel07] suggests a greedy algorithm with approximation
factor ∆(S)log(|B|) (with ∆(S) the maximum amount of sets that contain the
same red element) and another algorithm with factor 2

√
|S|log(|B|).

70 Mining minimal motif pair sets maximally covering interactions

Algorithm 2 The algorithm cmc-greedy.

Input: PPI-network G = (V,E, λ), `, d ∈ N+, d < `, and α, β, γ ∈ Q+,
TIME ∈ N+

Output: best cover M according to costα,β,γ found in G
1: M← ∅
2: cost ← costα,β,γ(M, G)
3: oldCost ←∞
4: while cost < oldCost do
5: oldCost ← cost
6: bestMotifPair = undef
7: startTime = getTime()
8: while getTime() < startTime + TIME do
9: M ← localSearch(G, `, d,M, costα,β,γ)

10: if costα,β,γ(M∪ {M}, G) < cost then
11: bestMotifPair ←M
12: cost ← costα,β,γ(M∪ {M}, G)
13: if cost < oldCost then
14: M←M∪ {bestMotifPair}

Algorithm 3 The local search algorithm for cmc, with costf as the cost
function.
Input: PPI-network G = (V,E, λ), `, d ∈ N, d < `, set of motif pairs M, a

cost function costf
Output: best correlated motif pair M∗ to add toM according to costf found

in G
1: M∗ ← randomMotifPair()
2: cost ← costf (M,M∗, G)
3: oldCost ←∞
4: while cost < oldCost do
5: oldCost ← cost
6: M ←M∗

7: for all M ′ ∈ neighbors(M) do
8: if costf (M,M ′, G) < cost then
9: M∗ ←M ′

10: cost ← costf (M,M ′, G)

3.4. Algorithms 71

Theoretically, the naive approximation algorithm with ratio |B| is the most
appealing as B in our setting corresponds to the number of edges and is far
smaller than the number of possible motif pairs |S|. The naive algorithm
selects for each blue element a set containing it with the least cost worth of
red elements. For a blue element b, there is the option to take a set ST or
the set Sb (cf. equation (?) in the proof of Lemma 3.17). Here, ST has a
cost of at least α and corresponds to a motif pair, while the set Sb contains
b, has associated cost γ and does not correspond to a motif pair. As in our
setting α > γ, the naive algorithm will always select the sets Sb which results
in returning the empty set of motif pairs as a solution for cmc (cf. equation
(??) in the proof of Lemma 3.17). So, although this naive algorithm has the
best theoretical approximation guarantee, it can not be meaningfully applied
towards cmc.

Therefore, we turn to Peleg’s algorithm with approximation factor
2
√
|S|log(|B|) [Pel07] which by composing the reductions in the proofs of

Lemmas 3.13 and 3.17 results in a theoretical algorithm for cmc with an
approximation factor of 2

√
(MP(`, d) + |E|)log(|E|). We next explain how

the algorithm works. Peleg’s approximation algorithm [Pel07], transforms an
instance of wrbsc into an instance of the Weighted Set Cover (wsc) problem
by assigning to each set the cost of the red elements in it and then removing the
red elements from each set. He applies the greedy algorithm for wsc, which
is known to have an approximation ratio of log(|B|) [Chv79], to this instance.
The greedy algorithm works by selecting the most cost-efficient set at each time
point. He proves this algorithm has approximation guarantee 2

√
|S|log(|B|),

when applied to an instance of wrbsc adapted from the original instance
using Z, the maximum cost of red elements in a single set in the optimal
solution to that instance. As Z is unknown, the algorithm is run repeatedly
with every possible value and the best result is saved. The adaptation of the
original instance starts by removing any set with total cost greater than Z.
Then it removes from the remaining set all red elements still occurring in more
than

√
|S|/log(|B|) sets. Unfortunately, the latter algorithm is infeasible as it

iterates over all elements in S corresponding to all possible motif pairs.

Therefore, we consider an adaption, called cmc-approx, which is shown in
Algorithm 4. Rather than iterating over all possible motif pairs, cmc-approx
employs local search to find the most cost-efficient motif pair to be added.
Specifically, cmc-approx iterates over the possible values for Z, the maximum
amount of cost for a single motif pair, and then uses local search utilizing
a cost function costwsc,α,β,γ,Z . Here, costwsc,α,β,γ,Z(M,M,G) calculates the
cost (as the inverse of cost efficiency) of adding M to M as follows:

72 Mining minimal motif pair sets maximally covering interactions

costwsc,α,β,γ,Z(M,M,G) := α+ β|ÂM |
|EM \ EM|

if α+ β|AM | <= Z;

∞ otherwise;

where ÂM is the set of anti-edges AM , but with the anti-edges selected by√
(|MP(`, d)|+ |E|)/log(|E|) or more motif pairs removed. We cannot deter-

mine the amount of motif pairs that select an anti-edge without knowledge of
all the sets, but we can compute an upper bound. Indeed, for every protein
p, we compute the number Np of motifs selecting p (note that the number of
motifs is significantly lower than the number of motif pairs). The number of
motif pairs selecting an anti-edge {p, q} is then bounded above by Np ×Nq.

Algorithm 4 The adapted approximation algorithm for wrbsc applied to
cmm.
Input: PPI-network G = (V,E, λ), `, d ∈ N+, d < `, and α, β, γ ∈ Q+,

TIME ∈ N+

Output: best cover M according to costα,β,γ found in G
1: M = ∅
2: for Z = 1→ α+ β|V × V | do
3: M′ ← ∅
4: while E 6⊂ EM′ do
5: bestMotifPair = undef
6: cost ←∞
7: startTime = getTime()
8: while getTime() < startTime + TIME do
9: M ← localSearch(G, `, d,M′, costwsc,α,β,γ,Z)

10: if costwsc,α,β,γ,Z(M′,M,G) < cost then
11: bestMotifPair ←M
12: cost ← costwsc,α,β,γ,Z(M,M,G)
13: M′ ←M′ ∪ {M}
14: if costα,β,γ(M′, G) < costα,β,γ(M, G) then
15: M←M′

3.5 Data

We ran our methods on the high-confidence PPI-network of yeast [CKX+07]
consisting of 1 620 proteins and 9 060 interactions, to determine their perfor-
mance and to check the coverage of the network obtained by the results.

3.5. Data 73

Yu et al. [YGN+10] present positive and negative example datasets created
by balanced sampling for testing protein-protein interaction prediction. We
took their files for yeast containing 4 972 physical interactions and 4 972 non-
interactions and created from those a network with all the proteins contained
in these files and all the physical interactions present. We ran our methods
on cross-validation networks created from this network and used the resulting
covers to predict protein-protein interactions.

Protein-protein interaction prediction is used in two different ways:

• Predicting interaction/non-interaction between proteins for which no
previous observation exists at all, and

• predicting interaction/non-interaction for proteins for which some knowl-
edge of their interactions has been obtained already.

Both scenarios are relevant in biology and are tested here.

For each of these setups, we made ten training and test sets for cross-
validation purposes:

• In the first case, the focus lies on separating test-proteins from training-
proteins. We divide the list of all proteins into ten sets randomly. For
each of these sets, we took the original (non-)interaction-data set and
put each (non-)interaction where one or more proteins are contained in
the set, into the test set. What remains became the training set.

• In the second case, the focus lies on separating test-(non-)interactions
from training-(non-)interactions. The positive and negative data sets
were divided randomly into ten parts. Each part became a test set, with
the other (non-)interactions forming the training set.

For every training set, a network was created with all the proteins re-
maining in the positive and negative training set and as interactions those in
the positive training set. Practically, our algorithms did not have substan-
tially different results depending on the case. Therefore, we treat this as a
homogeneous set of interaction networks for prediction purposes.

To compare our results to known 3D-structures, to see if our methods
locate actual binding sites, we took the high-confidence networks for human
and yeast presented by Yu et al. [YGN+10] and attempted to map the protein
sequences (retrieved from uniprot.org and yeastgenome.org respectively) to
structures in the PDB database. To perform the mapping of the protein
sequences to PDB structures, we used a strategy similar to the one used by
Yabuki at al. [YMSS04], where each protein sequence in the input dataset is
searched against the PDB database by gapped BLAST. The protein structure

74 Mining minimal motif pair sets maximally covering interactions

was mapped to the protein sequence if the aligned regions present identity,
coverage of aligned region on query sequences, coverage of aligned region on
PDB sequences and bit score higher than 40%, 30%, 30% and 70, respectively.
By doing so, it is guaranteed that at least 30% of the length of the protein
sequence is mapped to the PDB structure, and the PDB structure is covered
at least 30% by the alignment with identity of at least 40% with bit score
of at least 70. After mapping, we obtained a human network containing 578
proteins and 547 interactions, and a yeast network containing 526 proteins
and 263 interactions.

3.6 Evaluation

All experiments were run on a 3GHz Mac Pro using 2GB of RAM and 8 cores.
Our Java-implementations of seq-slider, cmc-greedy and cmc-approx can
use as many processors as are available. We set out to check if the algorithms
we present, fulfill the requirement we first laid out: the result set should be
small and have a high coverage of the network.

We have performed a run of seq-slider on each of the cross-validation
networks described in Section 3.5 taking about 75 minutes requesting 10 000
result motif pairs. A run of cmc-greedy with 30 seconds for each iteration
was also performed, as well as a run of cmc-approx with 15 seconds for each
iteration. The run of cmc-greedy took on average 14 minutes while cmc-
approx took 120 minutes. While in theory the results of seq-slider can
keep improving over time until they reach the same results as a brute force
search, in practice, the gain of allowing additional time over 75 minutes of
computation is negligible.

The results averaged over all twenty networks are shown in the table in
Figure 3.7. Protein coverage (proteins) shows the percentage of proteins in
the network that is covered by at least one motif in the result set. Interaction
coverage (interactions) shows the percentage of interactions that is covered by
at least one motif pair. Size is the average size of the result sets of the different
methods (for seq-slider this is constant). It is clear that even though the
amount of results returned is much larger for seq-slider, it does not cover
the interactions in the network well. Even cmc-greedy, with only a fraction
of the results covers more interactions. cmc-greedy covers less proteins than
seq-slider, though. The overall winner on coverage is cmc-approx which,
with less than a tenth of the results of seq-slider, manages to cover about
three quarters of the interactions, and almost all the proteins. If we look
at coverage per result, cmc-greedy and cmc-approx score about the same on
interactions (and much better than seq-slider), but cmc-approx covers much

3.7. Biological validation 75

Method seq-slider cmc-greedy cmc-approx

proteins 43.8% 23.4% 96.2%

interactions 11.8% 19.0% 73.5%

size 10 000 214.95 867.5

Figure 3.7: Coverage results of algorithms run on cross-validation networks.

Method seq-slider cmc-greedy cmc-approx

proteins 21.2% 44.9% 100%

interactions 23.1% 48.0% 99.9%

size 10 000 663 1 786

Figure 3.8: Coverage results of algorithms run on yeast high-confidence net-
work.

more proteins.

We also ran all algorithms on the high-confidence yeast network. The
results are shown in the table in Figure 3.8.

It is clear that the coverage of cmc-approx is far superior to that of both
other algorithms. The latter comes at the expense of a longer running time
and a larger set of results compared to cmc-greedy.

3.7 Biological validation

To further evaluate the biological relevance of our algorithms, we tested the
effectiveness of the derived motif pairs in several scenarios. The first scenario
is the prediction of protein interactions from 2D-sequences. In the second
scenario, we investigate how well motif hit locations correspond to interface
residues by a comparison with protein structure data. Finally, we investigate
how cross-species motif pair mining can be used as a filtering step to increase
accuracy.

3.7.1 Prediction

We used the weka [HFH+09] data mining software to do prediction using an
SVM classifier on the twenty networks described in Section 3.5. The training
and test data for the positive and negative data sets were created with the
result motif pairs from the runs in Section 3.6 as binary attributes. Of the
10 000 results returned by seq-slider only the 1 000 with the best score were

76 Mining minimal motif pair sets maximally covering interactions

used due to limitations of the classifier. In the rare case where cmc-approx
returned more than 1 000 results, only the first 1 000 were used. cmc-greedy
never returned more than 1 000 results.

The average AUC (Area Under the ROC Curve) of both seq-slider and
cmc-greedy are 0.502, while that of cmc-approx is 0.526, only a slight improve-
ment. We performed the same predictions with a random forest classifier, but
the results were nearly identical. While slightly improving over seq-slider,
the predicitve performance remains still only marginally different from ran-
dom (AUC slightly above 0.5), confirming the analysis of Yu et al. [YGN+10],
showing that sequences do not contain sufficient information to be useful for
predicting PPIs.

3.7.2 Comparison with protein structure data

To determine the overlap of our found motif pairs with actual interaction sites,
we ran all three methods on the human and yeast network for which we have a
mapping to 3D-structures as described in Section 3.5. The table in Figure 3.9
shows the results for the yeast network; the table in Figure 3.10 for the human
network. We start with the amount of motif pairs returned by the method
(motif pairs) and check how many unique motifs we have (unique motifs). We
then check at how many positions those motifs occur in the proteins (motif
hits), if a position occurs multiple times, we count it only once (unique hits).
In addition, we also don’t count a hit if it occurs within seven amino acids,
so it has at least one residue overlap, of a hit we already found (dissimilar).
The precision (precision) is the percentage of the remaining hits that is found
at the interface. The decision of whether an amino acid is an interface amino
acid is based on its Relative Solvent Accessibility (RSA) in the protein and
in a complex, in the same way as described in Section 2.8.5. At last, we show
the percentage of proteins (proteins) and interactions (interactions) covered.

The comparison with networks containing proteins mapped to protein
structure data indicates that for the yeast as well as the human network,
coverage of the network increases for cmc-approx, as would be expected, at
the expense of only a slight reduction in precision compared to seq-slider.

3.7.3 Cross-species comparison

We investigate the hypothesis that motif positions which are found in more
than one species could be more likely to be interface residues. In that case, a
cross-species comparison could be used to filter noise from the predictions. For
the values (`, d) = (8, 3), (8, 4) and (8, 5), resulting motifs for seq-slider (75
minutes), cmc-approx (2 minutes per iteration), and cmc-greedy (4 minutes

3.7. Biological validation 77

Method seq-slider cmc-greedy cmc-approx

motif pairs 10 000 6 82

unique motifs 5 963 11 156

motif hits 8 547 40 340

unique hits 1 792 40 336

dissimilar (7) 388 40 319

precision 49.74% 65% 44.51%

proteins 21.13% 15.49% 100%

interactions 31.94% 20.91% 97.72%

Figure 3.9: Motif hits in 3D info for yeast.

Method seq-slider cmc-greedy cmc-approx

motif pairs 10 000 15 135

unique motifs 2 387 30 268

motif hits 10 774 104 972

unique hits 2 246 104 941

dissimilar (7) 393 100 879

precision 39.95% 53% 31.29%

proteins 9.39% 15.48% 100%

interactions 9.46% 23.56% 100%

Figure 3.10: Motif hits in 3D info for human.

78 Mining minimal motif pair sets maximally covering interactions

per iteration) for the human and yeast networks for which we have a mapping
to 3D-structures were mapped to the sequences. cmc-greedy never returned
motif pairs for which a decent amount of proteins could be found, so its re-
sults are omitted. Subsequently, a cross-species comparison was performed
between yeast and human. Proteins from these species were linked to each
other by finding best BLAST hits and requiring a sequence identity of at least
50%. The yeast-human pairs were aligned to each other using Muscle [Edg04].
Subsequently, the positions of the motifs in each of the two sequences in such
alignment were compared to each other to see if they overlapped or not. Note
that this analysis was restricted to the networks for which we have a mapping
to 3D-structures because we need structure data to asses the precision of the
predicted residues.

The table in Figure 3.11 shows the results from this analysis. For each run,
the table shows the number of proteins in which motifs are found and which
are among the proteins linked to each other between species (Nprot). Next,
it shows how many positions in those proteins contain motifs in both species
(same), and how many of those are interface residues (sameTP). Then, the
amount of positions in those proteins containing motifs in only a single species
(diff), and how many of those are interface residues (diffTP). Finally, there
is the fraction of positions that are found in both species, which are indeed
interface residues (Fs) and the fraction of positions that are found in only one
of the two species, which are indeed interface residues (Fd).

The data in the table supports the hypothesis to some extent. In five
out of six cases, positions that are found in both species have a indeed a
higher chance to be interface residues than positions that are found in only
one species. These are the rows where Fs > Fd. The latter does not hold for
seq-slider (8,3) but the motifs from that run only select two proteins linked
to each other between species. Besides the just described anomaly, there is
not a clear difference between seq-slider and cmc-approx in this respect,
confirming that the cmc-approx motifs are of comparable quality as the seq-
slider motifs. What is also clear is that the number of proteins which could
be used in this comparison was in most cases much higher for the cmc-approx
results than for the seq-slider results. This is obviously related to the fact
that cmc-approx obtains a high network coverage; in this application, we
compare two networks from different species which means that a method with
a high network coverage is clearly advantageous.

To conclude, comparison of results from networks from various species
seems to be a promising strategy to reduce noise in the predictions. The much
higher network coverage that cmc-approx obtains compared to seq-slider
makes it well suited for such an approach.

3.8. Conclusion 79

Method Nprot same sameTP diff diffTP Fs Fd

seq-slider (8,3) 2 8 0 157 65 0.00 0.41

seq-slider (8,4) 11 43 18 1 130 327 0.42 0.29

seq-slider (8,5) 52 4 234 1 175 8 315 1 449 0.28 0.17

cmc-approx (8,3) 52 68 44 1 205 314 0.65 0.26

cmc-approx (8,4) 51 96 46 1 778 360 0.48 0.20

cmc-approx (8,5) 52 589 161 1 759 497 0.27 0.13

Figure 3.11: Cross-species comparison results for seq-slider and cmc-approx
on human and yeast networks for which we have a mapping to 3D-structures.

3.8 Conclusion

We sought to improve upon computational methods for deriving motif pairs
that usually only find motif pairs that select the densest part of the network.
Our new algorithms for cmc decrease the size of the result set while increasing
the coverage of the network, having minimal impact on their precision. The
much higher coverage of proteins by motifs is important in many applications
such as cross-species comparison, where it increases the probability of finding
interface residues. In addition, for experimental biologists who want to predict
binding sites to perform further experimental studies, obviously it is very
important to obtain predictions for as many proteins as possible.

The cmc-approx-implementation and the data used in the experiments are
available on http://bioinformatics.uhasselt.be.

http://bioinformatics.uhasselt.be

4
Applications and future work

4.1 Introduction

We now introduce some applications of our algorithms, and show that these
provide some promising areas of future research. We start by extending seq-
slider with additional biological knowledge in Section 4.2 and show that this
allows us to improve the accuracy of our results. In Section 4.3, we examine
the possibility of extending slider to find binding sites responsible for higher
order complexes, by extending our motif pair model to a motif triplet model. In
Section 4.4, we extend the experiments of Section 3.7.3 to use multiple species
and show that the accuracy improves with each species added. Finally, we
conclude in Section 4.5.

4.2 bioSLIDER

We adapt the seq-slider algorithm to take as additional input several forms
of biological information. This information determines when seq-slider con-
siders a motif to be present at a location. The types of information we include
are the following:

• amino acid similarity;

• Relative Solvent Accessibility (RSA) values and, if those values are pre-
dicted, the confidence in those predictions; and,

81

82 Applications and future work

• conservation scores.

4.2.1 Adaptation

The general seq-slider alorithm (shown in Algorithm 1 in Section 2.5) con-
siders an (`, d)-motif to be present in a sequence, if there is a subsequence of
length ` that matches it. Next, we describe how we use each type of data to
change the definition of a motif being present.

Some amino acids are more similar than others (size, polarity,. . .). This
also makes them more likely to replace each other in binding motifs without
affecting the functionality of the protein. There are many different ways to
qualify what the similarity between amino acids is. Therefore, we allow as
input any matrix with similarity values expressed as a percentage. In practice,
we use a modified version of the BLOSUM62 matrix [HH92]. The matrix is
scaled to give similarities between amino acids ranging from 0 to 100%, as
shown in Figure 4.1. We use the input matrix to determine the similarity
between two amino acids by looking in the row of the amino acid in the
sequence, and find the value in the column corresponding to the amino acid
in the motif. We can use the similarities for amino acids to determine the
similarity of a motif to a subsequence in two different ways:

• by averaging the similarities of the matching amino acids, or

• by multiplying the similarities.

In both cases, we ignore the positions of the motif containing a wildcard char-
acter. When using the similarity between amino acids as input, an (`, d)-motif
is considered to be present in a sequence, if there is a subsequence of length `
with similarity above a necessary threshold. This use of amino acid similarity
allows for non-exact matches, and therefore increases the amount of matches
found in a sequence. It is the only biological information we use that increases
the amount of matches found at a location. As shown below, the use of the
other data will limit the amount. How many non-exact matches are allowed
can be determined by adjusting the threshold parameter.

For example, the sequence ERLEELEKKEAQLTVTNDQIHILKKENELLHF does not
contain the exact (8, 3)-motif AQxTITxx. However, if we use the amino acid
similarity matrix shown in Figure 4.1, we find that the motif is very similar to
the subsequence AQLTVTND. If we average the similarity values, their similarity
is 97.4%, if we multiply their similarities, the similarity is 85.7%, both of which
would be above a reasonable threshold. By lowering the threshold, we would
increase the amount of matches found in the sequence.

To be a binding motif, a motif has to be at or near the surface of the protein.
Therefore, we discard motif occurrences that have very low RSA values. When

4.2. bioSLIDER 83

C S T P A G N D E Q H R K M I L V F Y W
C 100.0 23.1 23.1 7.7 30.8 7.7 7.7 7.7 0.0 7.7 7.7 7.7 7.7 23.1 23.1 23.1 23.1 15.4 15.4 15.4
S 28.6 100.0 57.1 28.6 57.1 42.9 57.1 42.9 42.9 42.9 28.6 28.6 42.9 28.6 14.3 14.3 14.3 14.3 14.3 0.0
T 28.6 57.1 100.0 57.1 28.6 57.1 42.9 57.1 42.9 42.9 42.9 28.6 42.9 28.6 14.3 14.3 14.3 14.3 14.3 0.0
P 9.1 27.3 45.5 100.0 27.3 18.2 27.3 27.3 27.3 27.3 18.2 18.2 27.3 18.2 9.1 9.1 18.2 0.0 9.1 0.0
A 42.9 57.1 28.6 28.6 100.0 42.9 28.6 14.3 28.6 28.6 14.3 28.6 28.6 28.6 28.6 28.6 14.3 14.3 14.3 0.0
G 10.0 40.0 50.0 20.0 40.0 100.0 20.0 30.0 20.0 20.0 20.0 20.0 20.0 10.0 0.0 0.0 40.0 10.0 10.0 20.0
N 10.0 50.0 40.0 20.0 20.0 40.0 100.0 50.0 40.0 40.0 30.0 40.0 40.0 20.0 10.0 10.0 10.0 10.0 20.0 0.0
D 10.0 40.0 50.0 30.0 20.0 30.0 50.0 100.0 60.0 40.0 30.0 20.0 30.0 10.0 10.0 0.0 10.0 10.0 10.0 0.0
E 0.0 44.4 44.4 33.3 33.3 22.2 44.4 66.7 100.0 66.7 44.4 44.4 55.6 22.2 11.1 11.1 11.1 11.1 22.2 11.1
Q 0.0 37.5 37.5 25.0 25.0 12.5 37.5 37.5 62.5 100.0 37.5 50.0 50.0 37.5 0.0 12.5 12.5 0.0 25.0 12.5
H 0.0 18.2 27.3 9.1 9.1 9.1 36.4 36.4 27.3 27.3 100.0 27.3 18.2 9.1 0.0 0.0 9.1 18.2 45.5 9.1
R 0.0 25.0 25.0 12.5 25.0 12.5 37.5 12.5 37.5 50.0 37.5 100.0 62.5 25.0 0.0 12.5 0.0 0.0 12.5 0.0
K 0.0 37.5 37.5 25.0 25.0 12.5 37.5 25.0 50.0 50.0 25.0 62.5 100.0 25.0 0.0 12.5 0.0 0.0 12.5 0.0
M 25.0 25.0 25.0 12.5 25.0 0.0 12.5 0.0 12.5 37.5 12.5 25.0 25.0 100.0 50.0 62.5 12.5 37.5 25.0 25.0
I 37.5 25.0 25.0 12.5 37.5 0.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 62.5 100.0 75.0 62.5 50.0 37.5 12.5
L 37.5 25.0 25.0 12.5 37.5 0.0 12.5 0.0 12.5 25.0 12.5 25.0 25.0 75.0 75.0 100.0 87.5 50.0 37.5 25.0
V 28.6 14.3 14.3 14.3 42.9 0.0 0.0 0.0 14.3 14.3 0.0 0.0 14.3 57.1 85.7 57.1 100.0 28.6 28.6 0.0
F 20.0 20.0 20.0 0.0 20.0 10.0 10.0 10.0 10.0 10.0 30.0 10.0 10.0 40.0 40.0 40.0 30.0 100.0 70.0 50.0
Y 10.0 10.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 20.0 50.0 10.0 10.0 20.0 20.0 20.0 20.0 60.0 100.0 50.0
W 13.3 6.7 6.7 0.0 6.7 13.3 0.0 0.0 6.7 13.3 13.3 6.7 6.7 20.0 6.7 13.3 6.7 33.3 40.0 100.0

Figure 4.1: scaled BLOSUM62 matrix

using RSA values as input, we consider an (`, d)-motif to be present, if there
is a subsequence of length ` that matches it, and whose average RSA value is
above a set threshold. If exact RSA values are unknown, predictions can be
used. In that case, we want to take into account how much confidence we have
in the prediction for each single amino acid. So, we only take the predicted
RSA value of an amino acid into account for averaging, if its confidence is
above a set threshold. If none of the predictions for a subsequence have a
high enough confidence, we ignore the RSA data and consider a motif to be
present if it matches. To predict the RSA values of the amino acids, we use the
SABLE [APM05] software that predicts solvent accessibilities from sequences
alone using a neural networks algorithm trained on PDB structures. The
SABLE algorithm outputs an integer value for each residue, ranging from 0 to
9, representing prediction of a fully buried amino acid to prediction of a fully
exposed amino acid, respectively.

When part of a protein is conserved over time, it is more likely to be a
functional part, such as a binding site, of that protein. When using conser-
vation values as input, we consider an (`, d)-motif to be present, if there is a
subsequence of length ` that matches it, and whose average conservation value
is above a set threshold. To calculate the conservation values for amino acids
in a certain protein, we need to perform three steps:

1. select a group of homologous proteins;

2. align the protein sequence to those homologous proteins; and,

3. quantify the conservation of each amino acid in the alignment.

For the purpose of selecting groups of homologs, we use OrthoMCL (Ver-
sion 2.0) [CMVR07] to assign each protein to a OrthoMCL-DB group. Next,

84 Applications and future work

amino acid E R L E E L E K K E A E L T V T N D Q I H I L K K E N E L L H F
RSA 0 3 2 4 8 2 8 3 8 4 2 1 4 2 9 5 7 3 5 8 2 0 1 2 4 6 2 4 4 2 5 3
conservation 2 3 8 4 5 9 0 2 1 7 2 8 4 5 2 0 1 0 4 2 8 3 5 2 8 7 5 9 0 0 1 7

Figure 4.2: Example bioSLIDER input.

we use Clustal [LBB+07] to align the protein sequence with the sequences of
all members of the OrthoMCL-DB group. Finally, we use the AL2CO soft-
ware [PG01] to obtain a conservation score for each position in the multiple
sequence alignments. The AL2CO algorithm performs its calculation in two
steps: first amino acid frequencies at each position in the alignment are esti-
mated, then a score is calculated from these frequencies. We use the methods
unweighted-frequencies and entropy-based in the first and second steps, respec-
tively. To assign a conservation score to each residue in the protein sequence,
we use the integer conservation indices resulting from the AL2CO calculation.
The AL2CO integer conservation indices range from 0 to 9, representing low
to high conservation, respectively.

It is possible with the bioSLIDER algorithm to combine as many (or as
few) of these options as wanted for each run.

For example, in Figure 4.2 we see an example input for the bioSLIDER
algorithm. We look for the (3, 1)-motif ExE, with RSA threshold 5 and con-
servation threshold 4. We see that the motif occurs three times, but only once
(the last occurrence) does it have both a high enough average RSA value and
conservation value to be considered.

4.2.2 Experiments

The bioSLIDER algorithm requires the user to set values of parameters that
determine the thresholds for degree of similarity, conservation and relative sol-
vent accessibility. The performance of various parameter settings is analyzed
by comparing our sequence-based predictions with available protein structure
data. This analysis allows us to assess the significance of the inclusion of the
biological information in bioSLIDER and, furthermore, to obtain a default set
of parameters.

We use the datasets of human and yeast that were mapped to 3D-structures
in Section 3.5. For the threshold of the allowed degree of similarity between
motif and protein sequence, we test five different values ([none,0.4;0.5;0.6;0.7],
where none stands for not having used the modification). For the thresholds
of conservation and residue surface accessibility, we test six different values
([none,3;4;5;6;7]). For each combination of parameters (180 in total), we ex-
ecute bioSLIDER on the structurally mapped datasets for the three species
using the following configuration: ` = 8; d = 3; execution time of 60 minutes

4.2. bioSLIDER 85

and 1 000 motif pairs returned.

To analyze the results, we define two measures to quantify the quality
of the predictions: accuracy (of predicted motifs) and coverage (of protein-
protein interfaces). Here, accuracy is defined as the number of motifs correctly
predicted to be in the interface as a fraction of all result motifs. A motif is
said to be in the interface, if at least one of its residues is identified to be in the
interface of its assigned complex structure. Coverage stands for the number
of protein pairs that contain at least one motif mapped to their interface, as
fraction of the total number of interacting pairs in the interaction data. Thus,
accuracy reflects the predictive power of the algorithm toward finding motifs
that are indeed located in the interface, and coverage reflects its predictive
power towards finding motifs explaining the largest number of interactions.
The overall performance of the predictions is measured via the F-score, defined
as

2 ∗ accuracy ∗ coverage

accuracy + coverage
.

The results are shown in Figure 4.3. The x-axis represents the coverage of
protein-protein interfaces and the y-axis represents the accuracy of predicted
motifs. The dots represent the results of bioSLIDER using each of the 180
tested sets of parameters, for human, and yeast structurally mapped subsets.
The grey arrows indicate the dot corresponding to the results of the seq-
slider algorithm; while the black arrows indicate the dot corresponding to the
results of bioSLIDER using the combination of parameters selected to be the
default parameters: Amino acid similarity (using average) = 0.6; Conservation
= 6; RSA = 7. This setting shows the best F-score over the different networks.

We observe that for most of the parameter settings, the bioSLIDER results
are better than the seq-slider results, in terms of both accuracy and coverage
(Figure 4.3). Depending on the values of the thresholds, bioSLIDER could
predict motifs with accuracy up to 58%, and 96%, respectively for the human,
and yeast subsets. Likewise, the values of coverage were up to 43%, and 22%.

Of practical consequence here is that the highest thresholds for conserva-
tion and surface accessibility would adjust the algorithm to only keep motifs
that are strictly conserved across species, respectively fully exposed at the sur-
face. Perhaps the most serious disadvantage here is that the performance of
the bioSLIDER algorithm relies, partially, on the correct calculation of residue
conservation score and correct prediction of residue surface accessibility score
from sequence. However, assuming the correctness of the methods that calcu-
late the a priori information, we expect that the bioSLIDER predicts conserved
motifs located at the surface of the proteins, thus improving the relevance of
the results.

86 Applications and future work

Figure 4.3: Accuracy and coverage (in %) of bioSLIDER on the human (A)
and yeast (B) network.

4.3. Binding sites in higher order complexes 87

4.3 Binding sites in higher order complexes

MADS domain proteins are involved in various developmental processes in
plants [NY01, PdFK+03]. These proteins form dimers, but various experi-
ments also indicate the importance of higher order complexes (consisting of
more than two MADS molecules). It has been suggested that these complexes
are tetramers (as suggested by the quartet model) which might be dimers of
dimers [TS01, MVT08]. Because the MADS transcription factors can only
fulfill their role in activating or repressing gene expression after forming the
correct complex, and because different complexes have different functions, the
specificity of interaction in those complexes is of great biological significance.
Here, we investigate how higher order interaction specificity is encoded in the
sequences of those proteins, using a variant of the seq-slider method. We
experimentally test our predictions.

Very limited knowledge exists on which sites are important for higher order
complex formation. In particular, the two splice variants of ABS, ABS-I and
ABS-II, which are different by a 5-amino acid insertion/deletion, have the
same dimeric interactions as obtained by Yeast 2-hybrid (Y2H) but differ
substantially in Yeast 3-hybrid (Y3H) interactions [KAST05]. In addition,
Yang et al. [YJ04] found three mutations in PI (L121P, L143P and S145P)
that interfered with or attenuated higher order complex formation. In tomato,
a clear difference in higher order complex formation was found between the two
PI-like proteins LePI and TPI: the former participated in various complexes,
the latter in none [LEW+08]. There are only three different amino acids
between those two proteins.

4.3.1 Adaptation

Higher order complexes

So far, we have always used motif pairs to accomodate for interactions between
pairs of proteins. To accommodate the Y3H interactions, we change our ap-
proach from motif pairs to motif triplets. In the case of triplets, a PPI-network
is defined as follows: G = (V,E, λ), with V and λ as before, but now with a
set of hyperedges E ⊆ {({u, v}, w) | u, v, w ∈ V }. Remark that the form of
the hyperedge means that if the interaction ({u, v}, w) is present, this implies
the interaction ({v, u}, w) is as well, but it implies nothing of ({u,w}, v) or
any of the other possible permutations. This has implications, for example, on
the maximum amount of unique edges that can be present in a subnetwork.
We can also represent an edge with an adaptation of the standard notion of
hyperedges by using sets {u, v, w} or we can use fully ordered tuples (u, v, w),
but we choose to focus on {({u, v}, w) because of the following biologically

88 Applications and future work

inspired reason. The tuple {({u, v}, w) models that u and v interact first, and
are then later joined by protein w. A motif triplet ({X,Y }, Z) selects a set of
hyperedges as follows: EX,Y,Z = {({u, v}, w) ∈ E | u ∈ VX , v ∈ VY , w ∈ VZ}.

To evaluate motif triplets, we adapt the χ2-support measure as follows:

fχ2(({X,Y }, Z), G) =

{
(|EX,Y,Z |−EX,Y,Z)2

EX,Y,Z
if |EX,Y,Z | > EX,Y,Z ;

0 if |EX,Y,Z | ≤ EX,Y,Z ;

with EX,Y,Z the expected number of interactions between VX , VY , and VZ .
The value EX,Y,Z is calculated by assuming a uniform density of edges:

EX,Y,Z = ed(G)Emax
VX ,VY ,VZ

.

Here ed(G) is defined as |E|
|V |(|V |2)

, and Emax
VX ,VY ,VZ

is the maximum number

of possible interactions between the three sets of proteins:

Emax
VX ,VY ,VZ

=

(
|VX ||VY | −

(
|VX ∩ VY |

2

)
− |VX ∩ VY |

)
|VZ | .

To use seq-slider with this support measure, we also need a neighbor
function. So we define,

N seq
u,v,w(({X,Y }, Z)) = {({X ′, Y }, Z) | X ′ ∈ N seq

u (X)}
∪ {({X,Y ′}, Z) | Y ′ ∈ N seq

v (Y)}
∪ {({X,Y }, Z ′) | Z ′ ∈ N seq

w (Z)}.

Our implementation of seq-slider for triplets can also use edge sets of the
forms E ⊆ {(u, v, w) | u, v, w ∈ V } or E ⊆ {{u, v, w} | u, v, w ∈ V }. Similar
formulas for those forms can be readily derived.

Interaction probabilities

Methods of interaction detection introduce errors, some more than others.
Also, some proteins are known to not interact, as opposed to those where
it is not known if they interact, e.g. because the combination has not been
tested. So instead of using a binary true/false metric for interactions, we
want to use a probability of having an interaction that reflects the likelihood
of an interaction actually being present when indicated by a certain method,
counter-indicated by a method, or not checked at all. This probability could

4.3. Binding sites in higher order complexes 89

then be set depending on the source(s) that suggest (non-)interaction between
a pair of proteins.

The χ2-based support measure, easily translates into one that takes such
probabilities into account:

fχ2({X,Y }, G) =

 ∑
e∈EX,Y

p(e)− EX,Y

2

EX,Y
if

∑
e∈EX,Y

p(e) > EX,Y ;

0 if
∑

e∈EX,Y

p(e) ≤ EX,Y ;

with p(e) the probabilty of edge e, and EX,Y the expected number of
interactions (which is not necessarily an integer) between VX and VY . The
value EX,Y is calculated in the same way as before, by assuming a uniform
density of edges:

EX,Y = ed(G)Emax
|VX |,|VY |,|VX∩VY | ,

but with ed(G) =
∑
e∈E

p(e)/

(
|V |
2

)
.

It is clear that if all probabilities are set to 1, this defaults to the regular
slider algorithm.

The adaptation of the support measure using probabilities instead of bi-
nary interaction data to such a support measure used for motif triplets is
straightforward.

4.3.2 Experiments

Arabidopsis MADS Y3H data, as obtained by Immink et al. [ITdF+09], are
used. These data essentially contain triplets of proteins which interact, and
triplets of proteins which do not interact. Out of these, we restrict ourselves
to the type II MADS domain proteins (the majority, and best studied so far
in general).

There are also some additional (smaller) datasets available, in particular
there are gerbera [RNA+10], tomato [LEW+08], and a very small set from
rice [SPP+10]. We use the gerbera and tomato data in addition to the Ara-
bidopsis data.

On this data, we perform runs of seq-slider for triplets where interaction
data is considered in two ways: either unordered ({u, v, w}) or semi-ordered
(({u, v}, w)); and where unknowns are either treated as if they were non-
interactions, or are given a probability equal to the probability observed for

90 Applications and future work

all triplets measured to be interacting among all observed triplets (0.02754).
We use the following combinations for ` and d: (8, 5), (8, 4), (7, 4) and (7, 3),
resulting in total in 16 different sets of motif triplets.

The resulting lists of motif triplets suggest possible locations for binding
sites on the proteins in the network. We now analyze if these predicted binding
sites are indeed responsible for the interaction. This is done by taking the
original protein and then changing the predicted binding site, using a process
called mutagenesis. Then, we test if this newly formed protein still forms the
same interactions using a new Y3H experiment. If the protein no longer forms
those interactions, we are sure that the targeted location was indeed a binding
site.

Mutation experiments

First, we must select which amino acids in the proteins we want to change.
Positions of the motifs from the seq-slider runs are visually analyzed for
the various settings, using only the top 10 motif triplets. All cases with (7, 4)
and (8, 5) show motifs all over the sequence; since these results do not allow
to distinguish between interface and non-interface amino acids, they are dis-
carded. Similarly, for (7, 3) and (8, 4) the cases with “probability” to treat
the unknowns result in motifs all over the sequence; these results are also dis-
carded. For the remaining results, it seems that (7, 3) and (8, 4) yield more or
less similar results so only the latter are further analyzed. To make a selec-
tion out of the proteins containing these motifs, it is also taken into account
whether a protein is interesting for biologists (because of known function for
example). From the locations of the motifs on these proteins, only amino acids
on positions that are not wildcards are chosen to be mutated.

Then, a mutation is introduced in two different proteins, targeting amino
acids in two different seq-slider motifs. In one case, four complexes (triplets
of proteins) are tested which could be formed with the original protein, where
for two of them the prediction was that they would be lost upon introducing
the mutation, whereas for the other two the prediction was that they would
not be lost (because the seq-slider motif was not predicted to be involved in
those two). Experimentally, all four complexes are still formed by the mutated
version of the protein (the predicted loss of interaction is not observed). For
the second protein, there are three complexes for which loss of interaction was
predicted, and two for which it was predicted that the mutated protein would
retain the interaction. In this case, the three predicted losses are not observed
experimentally. Moreover, out of the two complexes for which it was predicted
that they would be retained, one was experimentally observed to be lost.

In addition to the seq-slider-based mutations, a mutation is introduced

4.4. Cross-species evaluation 91

in ten other proteins at sites which are not covered by seq-slider motifs.
Here, in some cases, clear losses or gains of interations are observed.

Unfortunately, the results of these experiments indicate that seq-slider
for triplets is unable to locate actual binding sites. We will discuss options to
improve the method in Section 4.5.

4.4 Cross-species evaluation

Our hypothesis, as first suggested in Section 3.7.3, is that combining inter-
action site predictions obtained for several PPI networks would improve the
performance of such predictions. The basic assumption here is that proteins
which have similar sequences (orthologs) also have interaction sites at similar
locations. Hence, if for certain proteins interaction sites would be predicted
at similar locations in various species, one would expect that those are more
likely to be actual binding sites than when in each species the interaction site
is predicted at a different location. This idea could be used to filter predic-
tions from various species and combine them into one integrated set. To test
this idea, we use data from various species. Subsequently, we map the pro-
teins in various species to each other (using predicted orthology relationships)
to combine the predicted interaction sites. Finally, we validate the predicted
interaction sites by mapping results to available protein complex structures.

4.4.1 Data

For our experiments, we require data from several species. We can acquire
this data in two ways. One choice would be to use interaction networks which
have been experimentally determined in those species. Alternatively, given
an experimentally determined network in one species, the network in other
species could simply be predicted using orthologous sequences.

We use data from the STRING repository [vMJS+05], which contains both
known and predicted protein-protein associations, based on various experimen-
tal datasets and prediction methods. In addition, interactions are transferred
across species using orthology information. No distinction was made between
experimentally determined annotations and annotations of interactions based
on orthology, because if we were to focus on using only experimentally deter-
mined interactions, only a sparse amount of data would be available. This
is the case in particular because we need to map orthologs across species to
compare our predicted interaction sites. Note that for the orthology relation-
ships we use the orthology groups provided by STRING. We use only those
interactions with a combined confidence score higher than the typically used
threshold value of 0.7.

92 Applications and future work

!"

"

F igure 1. Species used from ST RIN G .
Figure 4.4: Species used from STRING.

Complete network Restricted network

Nprot Nint Nprot Nint

Homo sapiens 15 010 459 198 4 486 111 190

Mus musculus 11 997 311 490 3 880 67 994

Canis lupus 5 541 63 168 2 705 30 686

Monodelphis domestica 4 790 55 776 2 536 30 980

Ornithorhynchus anatinus 3 305 30 644 2 090 19 038

Gallus gallus 4 088 44 416 2 309 24 562

Xenopus (Silurana) 3 636 31 162 2 007 16 780

Figure 4.5: Number of proteins and number of interactions.

Out of the hundreds of species for which STRING has data, we select
a subset of seven species, including human and the six species most closely
related to it (see Figure 4.4). In addition to filtering with the confidence score,
we also require that proteins should be in an orthology group that has at least
one member in each of the seven species. The table in Figure 4.5 contains
the number of proteins (Nprot) and the number of interactions (Nint), for
the networks restricted to the most reliable subset with combined confidence
score > 0.7 (Complete network), as well as those for the networks where each
protein must have orthologs in each of the other species (Restricted network).

4.4.2 Experiments

Interaction sites for the human proteins are obtained by mapping them to
available PDB structures as described in Section 3.5. These sites are all com-
bined, such that for each human protein we have a list of interface residues
(proteins for which no interface residue was found at all are ignored in the
subsequent performance assessment step). Sequences of members of the same
orthology group are aligned with MUSCLE [Edg04], and the positions of the

4.4. Cross-species evaluation 93

interface residues are mapped to alignment columns. For each species, a run
of cmc-approx ((8, 3), 1 minute) is performed to gather predicted interaction
sites. Subsequently, predicted interaction sites (motif locations) for members
of the same orthology group are all mapped to alignment columns. Here, or-
thology groups for which no interaction site was predicted at all (i.e. for none
of the proteins in the orthology group a motif hit the sequence) are ignored.
For each alignment column, a prediction score is obtained as the fraction of
sequences in the alignment for which this particular column was predicted as
an interface residue.

In total, 2 016 different orthology groups are present in the different net-
works we analyzed. By construction, we focus on orthology groups for which
proteins are present in each of the seven species. However, for some of those
families, in some species the proteins do not have any interaction with proteins
which pass the filter, and hence for a number of families there is not a protein
present in the final network in each of the seven species. Out of a total of
2 016 orthology groups that passed the filter, this was the case for 234. We
ignore those orthology groups in the performance prediction and focus on the
remaining 1 782 for which at least one protein is present in the final interaction
network in each of the seven species. In total, 30 346 proteins are present in
those orthology groups.

We also separately analyze orthology groups with at least a minimum num-
ber of proteins. When requiring at least 15 proteins, the remaining number
of orthology groups is 521 (with a total number of proteins 19 254); when
requiring at least 20 proteins, the remaining number of orthology groups is
333 (with 16 112 proteins) and when requiring at least 25 proteins, the re-
maining number of orthology groups is 234 (with 13 953 proteins). Note that
though the amount of orthology groups drops rapidly, the amount of proteins
covered is still very large. For each of the orthology groups for which struc-
tural information is available for the human sequences, prediction scores are
obtained for each sequence alignment column, and these are compared with
the known interaction sites. This is performed using either only prediction
in human (Homo sapiens), or in human and mouse (Mus musculus), and so
on, progressively adding one species at a time. The performance is assessed
using the AUC (class label to be predicted is 1/0 for interface/non-interface;
prediction score is fraction of sequences in the alignment in which the position
is predicted to be an interface residue, i.e. covered by a motif). From the AUC
values (see the table in Figure 4.6) it is clear that adding additional species
improves the prediction. It can also be seen that combining sequences within
a species helps as well (the more proteins are present in an orthology group,
the better the prediction performance). Figure 4.7 shows some example ROC
curves.

94 Applications and future work

Species used All groups < 15 ≥ 15 ≥ 20 ≥ 25

1 0.579 0.507 0.649 0.679 0.719

2 0.597 0.515 0.669 0.702 0.745

3 0.609 0.516 0.684 0.715 0.757

4 0.619 0.520 0.693 0.726 0.765

5 0.628 0.520 0.703 0.735 0.771

6 0.635 0.522 0.709 0.741 0.778

7 0.642 0.522 0.717 0.748 0.785

Figure 4.6: AUC values for prediction of interface residues. Prediction can be
done with a different number of species and with a different minimum number
of proteins per orthology group.

4.5 Conclusion

We have shown the potential of bioSLIDER to increase both the accuracy
and coverage of our results. We could consider additional types of, preferably
plentifully available or easily acquired, biological data which might be added to
further improve the results. For instance, most interactions between proteins
occur between two domains. Therefore, we could look for motifs that fall
completely within such a domain. bioSLIDER is already capable of using
domain data as input. Such data would for each amino acid indicate in which
domain (if any) it is located. When using domain data as input, we would
consider an (`, d)-motif to be present, if there is a subsequence of length ` that
matches it, and that is contained within a single domain. The effect of using
this data is so far untested.

Generalizing from a motif pair to a motif triplet is the most naive adapta-
tion of seq-slider possible for discovering higher order binding sites. Appar-
ently, the motif triplets model is too much of a simplification of what is really
going on to be useful. We might still improve our results by introducing a
more powerful model into slider. To capture the true biological background,
we may need to consider pairs of motif pairs, one responsible for binding the
first two proteins, and the second for binding the third protein to the com-
plex. Maybe we even need triplets of motif pairs, where the last two pairs are
responsible for binding the third protein to parts of both original proteins. Ei-
ther way, we would need to devise a more powerful search algorithm to tackle
the highly increased size of the search space this would entail. We must also
consider that our current (`, d)-motif model is not powerful enough for this
application.

In the cross-species comparison, we have successfully demonstrated the
possibility of filtering our results by using results from multiple closely related

4.5. Conclusion 95

Figure 4.7: ROC curves for prediction of human interface residues. A dashed
line indicates all orthology groups were used, a continuous line, only orthology
groups with at least 25 proteins. For each set of lines the lowest is the one
where only human network data were used to obtain predictions; second: three
species were used; third: five species were used; top: all seven species were
used.

96 Applications and future work

species. It is still possible to investigate how necessary it is that the species be
closely related. Also, note that the mapping of results between species could
have been performed in different ways. Currently, we just compared predicted
interaction sites for a set of orthologous sequences. On the other hand, we
could also take into account differences in interactions between the species,
and only compare predicted interaction sites for pairs of sequences where the
interaction sites derive from a motif pair covering that pair of sequences, to
see if this offers further improvement.

5
Conclusion

Discovering binding sites using biological experiments takes a considerable
amount of time and money. Therefore, it is very interesting to see, if these
methods can be complemented by computational approaches to guide the pro-
cess. First, motif discovery algorithms were used to find motifs in groups of
proteins, known to have similar interactions. This required knowledge of these
protein groups and usually only provided the binding site in one of the interact-
ing proteins. Therefore, methods for Correlated Motif Mining (cmm) were de-
veloped, two of which followed the motif-driven approach, namely MotifHeuris-
tics [LSY+07] and D-STAR [THSN06]. Of those, only D-STAR [THSN06] was
freely available. D-STAR, however, has a severe limitation on the size of the
network it can handle. It can not perform on networks consisting of more
than 250 proteins, which is very small compared to the size of actual biologi-
cal networks. Though MotifHeuristics can handle networks of larger size than
D-STAR, it uses a probability-based support measure called the p-score, which
we have experimentally shown to be inferior to the χ2-based support measure
of D-STAR.

By reducing the Balanced Complete Bipartite Subgraph (BCBS) problem
to the decision problem associated with cmm, we proved the NP-hardness of
cmm for a broad class of support measures. This shows that, given current
mathematical knowledge, an exact algorithm for cmm is impossible. Since the
decision problem associated with cmm is in np, we can efficiently compare the
support of two motif pairs, making it possible to tackle cmm as a combinatorial
optimization problem.

97

98 Conclusion

To provide a highly scalable method, we created slider, a local search
method using a χ2-based support measure, which can handle biological net-
works consisting of thousands of proteins. We have shown that slider, seq-
slider in particular due to its unique neighbor function, has a higher precision
and more resistance to noise in the data than any other existing method on
artificial networks. On biological networks, we have found significant overlap
of motif hits of seq-slider results with interface residues. In general, seq-
slider closely approaches the results of a brute force run in a fraction of the
time.

Though seq-slider provides a way to solve cmm (near) optimally, there
is a large amount of motifs that covers a very similar, if not identical, part
of the network. As a result, the best scoring motif pairs often refer to highly
similar selected networks and to get a decent coverage of the network, we
would need to incorporate an unmanageable amount of motif pairs. So, even
though seq-slider is successful in finding the best motif pairs according to a
support measure, the resulting binding sites all occur in proteins in the small,
densest part of the network. Though knowledge of these binding sites is useful,
it is important for biological tests to know as many as possible throughout the
entire network.

The use of additional biological data, with bioSLIDER, shows promise in
improving our results, especially increasing the coverage. However, it is still
limited by the problem definition of cmm, which allows many result motif pairs
to cover the same part of the network.

Therefore, we chose to move to a new problem, which we called Correlated
Motif Covering (cmc), which focuses on the predictive power of the complete
set of results instead of that of the single results. By demanding a motif pair
adds predictive value to the set of already selected motif paris, we make an
intelligent choice from any set of motif pairs that have large overlap in the
interactions they describe.

Using reductions between cmc and the (Weighted) Red-Blue Set Cover
((w)rbsc) problem, we proved the NP-hardness of cmc and that it belongs
to a class of problems for which it is practically impossible to find an approxi-
mation algorithm with a sub-square root approximation rate. There are some
approximation algorithms for wrbsc with a higher approximation rate, and
we adapted one of these algorithms to solve cmc.

We created cmc-approx, which uses data mining techniques to drastically
increase the coverage of the output motif pairs with only a minor drop in
precision, when compared to seq-slider.

Using data from multiple species promises to boost the precision of our
methods. When we run cmc-approx on the data of multiple species and
combine the results, we get results with high accuracy and coverage.

99

We identify several directions for future work such as:

• Investigating candidate generation for motif pairs. Currently motif pairs
are generated purely at random from the data. It might be interesting
to see what could be accomplished by heuristically chosen starting mo-
tif pairs. For example, the motifs for a starting pair could be chosen
based on the amount of motifs they select (though we have shown in
Section 2.9 that a large motif does not necessarily equal the best motif
pair). Alternatively, they could be based on the best motif pair out of a
set of randomly chosen ones. These heuristic starting pairs could be used
alone or mixed with randomly generated starting pairs to compensate
for the bias induced by the heuristic.

• Though we favored the motif-driven approach, a detailed comparison
with interaction-driven approaches [LLW06, LLLW07, LSLW08] should
be done. Maybe ideas from both paradigms can be successfully combined
into a hybrid method.

• Since the β parameter of cmc-approx has such a natural correspondence
to noise, and the γ parameter to missing data, it might be interesting
to find out if we can compensate for those factors by adjusting their
respective values.

• Most importantly, we have only considered the admittedly very simple
model of (`, d)-motifs and our results suggest that this model has some
drawbacks. It suffers from false positives caused by indirect interactions.
Also, as we have shown when applying motif pairs to predict interactions,
the prediction using (`, d)−motif pairs as binary attributes is hardly an
improvement over random. We noticed that while the mined motif pairs
cover the training set well, they hardly cover any of the proteins in the
test set. In this sense, (`, d)-motifs are too selective.

Though (`, d)-motifs are very common in the field of bioinformatics, it
could be worthwhile to investigate how we can deviate from the simple
(`, d)−motif model. We have already presented one possible adapta-
tion by using the similarities between amino acids and we could con-
sider others, such as, for instance, adding disjunctions. There also exist
more expressive models (e.g., Position Weight Matrix or Hidden Markov
Model). Of course, we should take care to balance the expressiveness,
and generality, of motifs with the computational effort required to mine
them.

Bibliography

[AL97] E. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial
Optimization. John Wiley & Sons, Inc., New York, NY, USA,
1st edition, 1997.

[APM05] R. Adamczak, A. Porollo, and J. Meller. Combining prediction
of secondary structure and solvent accessibility in proteins. Pro-
teins: Structure, Function, and Bioinformatics, 59(3):467–475,
2005.

[AR04] P. Aloy and R.B. Russell. Ten thousand interactions for the
molecular biologist. Nature Biotechnology, 22(10):1317–1321, Oc-
tober 2004.

[Bay98] R.J. Bayardo. Efficiently mining long patterns from databases.
In SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD inter-
national conference on Management of data, pages 85–93, New
York, NY, USA, 1998. ACM.

[BBB+02] H.M. Berman, T. Battistuz, T.N. Bhat, W.F. Bluhm, P.E.
Bourne, K. Burkhardt, Z. Feng, G.L. Gilliland, L. Iype, S. Jain,
P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider,
N. Thanki, H. Weissig, J.D. Westbrook, and C. Zardecki. The
Protein Data Bank. Acta Crystallographica Section D: Biological
Crystallography, 58(Pt 6 No 1):899–907, June 2002.

[BNVD+09] P. Boyen, F. Neven, D. Van Dyck, A.D.J. van Dijk, and R.C.H.J.
van Ham. SLIDER: Mining Correlated Motifs in Protein-Protein
Interaction Networks. In ICDM 2009, The Ninth IEEE Inter-
national Conference on Data Mining, Miami, Florida, USA, 6-9
December 2009, pages 716–721, 2009.

[BNVD+on] P. Boyen, F. Neven, D. Van Dyck, F.L. Valentim, and A.D.J.
van Dijk. Mining minimal motif pair sets maximally covering

101

102 Bibliography

interactions in a protein-protein interaction network. submitted
for publication.

[BR03] C. Blum and A. Roli. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Computing
Surveys, 35:268–308, September 2003.

[BVDN+11] P. Boyen, D. Van Dyck, F. Neven, R.C.H.J. van Ham, and A.D.J.
van Dijk. SLIDER: A Generic Metaheuristic for the Discovery
of Correlated Motifs in Protein-Protein Interaction Networks.
IEEE/ACM Transactions on Computational Biology and Bioin-
formatics (TCBB), January 2011.

[BW05] J.R. Bradford and D.R. Westhead. Improved prediction of
protein-protein binding sites using a support vector machines ap-
proach. Bioinformatics, 21(8):1487–1494, April 2005.

[BZ09] B. Bringmann and A. Zimmermann. One in a million: picking the
right patterns. Knowledge and Information Systems, 18:61–81,
2009.

[CDKM00] R.D. Carr, S. Doddi, G. Konjevod, and M. Marathe. On the
red-blue set cover problem. In Proceedings of the eleventh annual
ACM-SIAM symposium on Discrete algorithms, SODA ’00, pages
345–353, Philadelphia, PA, USA, 2000. Society for Industrial and
Applied Mathematics.

[Chv79] V. Chvatal. A Greedy Heuristic for the Set-Covering Problem.
Mathematics of Operations Research, 4(3):233–235, 1979.

[CKX+07] S.R.R. Collins, P. Kemmeren, Xue, J.F.F. Greenblatt,
F. Spencer, F.C.C. Holstege, J.S.S. Weissman, and N.J.J. Kro-
gan. Towards a comprehensive atlas of the physical interactome
of Saccharomyces cerevisiae. Molecular & Cellular Proteomics,
January 2007.

[CMVR07] F. Chen, A.J. Mackey, J.K. Vermunt, and D.S. Roos. Assessing
performance of orthology detection strategies applied to eukary-
otic genomes. PLoS ONE, 2(4):e383, 2007.

[DD07] M. Das and H.K. Dai. A survey of DNA motif finding algorithms.
BMC Bioinformatics, 8(Suppl 7):S21+, 2007.

[DS04] I. Dinur and S. Safra. On the hardness of approximating label-
cover. Information Processing Letters, 89:247–254, March 2004.

Bibliography 103

[Edg04] R.C. Edgar. MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic acids research,
32(5):1792–1797, March 2004.

[EP07] M. Elkin and D. Peleg. The Hardness of Approximating Spanner
Problems. Theory of Computing Systems, 41:691–729, December
2007.

[GGM04] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling Databases.
In Lecture Notes in Computer Science. Springer, 2004.

[GHZ07] K. Gouda, M. Hassaan, and M.J. Zaki. Prism: A Primal-
Encoding Approach for Frequent Sequence Mining. In ICDM
2007, The Seventh IEEE International Conference on Data Min-
ing, Omaha, Nebraska, USA, 28-31 October 2007, pages 487–492,
2007.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., New York, NY, USA, 1979.

[HFH+09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I.H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations Newsletter, 11:10–18, November 2009.

[HH92] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices
from protein blocks. Proceedings of the National Academy of
Sciences, 89(22):10915–10919, November 1992.

[HT93] S. Hubbard and J. Thornton. NACCESS, 1993. Computer Pro-
gram, Department of Biochemistry and Molecular Biology, Uni-
versity College London.

[ITdF+09] R. Immink, I. Tonaco, S. de Folter, A. Shchennikova, A. van
Dijk, J.B. Lange, J. Borst, and G. Angenent. SEPALLATA3:
the ’glue’ for MADS box transcription factor complex formation.
Genome Biology, 10(2):R24+, feb 2009.

[KAST05] K. Kaufmann, N. Anfang, H. Saedler, and G. Theissen. Mutant
analysis, protein-protein interactions and subcellular localization
of the Arabidopsis B sister (ABS) protein. Molecular Genetics &
Genomics, 274(2):103–18, 2005.

[KFH+02] T. Kawabata, S. Fukuchi, K. Homma, M. Ota, J. Araki, T. Ito,
N. Ichiyoshi, and K. Nishikawa. GTOP: a database of protein

104 Bibliography

structures predicted from genome sequences. Nucleic acids re-
search, 30(1):294–298, January 2002.

[KPGK+09] T.S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar,
S. Kumar, S. Mathivanan, D. Telikicherla, R. Raju, B. Shafreen,
A. Venugopal, L. Balakrishnan, A. Marimuthu, S. Banerjee, D.S.
Somanathan, A. Sebastian, S. Rani, S. Ray, C.J. Harrys Kishore,
S. Kanth, M. Ahmed, M.K. Kashyap, R. Mohmood, Y.L. Ra-
machandra, V. Krishna, B.A. Rahiman, S. Mohan, P. Ran-
ganathan, S. Ramabadran, R. Chaerkady, and A. Pandey. Hu-
man Protein Reference Database - 2009 update. Nucleic Acids
Research, 37(suppl 1):D767–D772, January 2009.

[LBB+07] M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A.
McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm,
R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins.
Clustal W and Clustal X version 2.0. Bioinformatics (Oxford,
England), 23(21):2947–2948, nov 2007.

[LEW+08] C.H. Leseberg, C.L. Eissler, X. Wang, M.A. Johns, M.R. Du-
vall, and L. Mao. Interaction study of MADS-domain proteins in
tomato. Journal of Experimental Botany, 59(8):2253–2265, may
2008.

[LLLW07] J. Li, G. Liu, H. Li, and L. Wong. Maximal Biclique Subgraphs
and Closed Pattern Pairs of the Adjacency Matrix: A One-to-
One Correspondence and Mining Algorithms. IEEE Transactions
on Knowledge and Data Engineering, 19:1625–1637, December
2007.

[LLW06] H. Li, J. Li, and L. Wong. Discovering motif pairs at interaction
sites from protein sequences on a proteome-wide scale. Bioinfor-
matics, 22:989–996, April 2006.

[LSLW08] J. Li, K. Sim, G. Liu, and L. Wong. Maximal Quasi-Bicliques
with Balanced Noise Tolerance: Concepts and Co-clustering Ap-
plications. In Proceedings of the SIAM International Conference
on Data Mining, SDM 2008, April 24-26, 2008, Atlanta, Geor-
gia, USA, pages 72–83, 2008.

[LSY+07] H.C. Leung, M.H. Siu, S.M. Yiu, F.Y. Chin, and K.W. Sung.
Finding linear motif pairs from protein interaction networks: a
probabilistic approach. Computational systems bioinformatics

Bibliography 105

/ Life Sciences Society. Computational Systems Bioinformatics
Conference, 6:111–119, 2007.

[LVT07] G. López, A. Valencia, and M.L. Tress. Firestar - prediction of
functionally important residues using structural templates and
alignment reliability. Nucleic Acids Research, 35(Web-Server-
Issue):573–577, 2007.

[LZLZ06] S. Liang, C. Zhang, S. Liu, and Y. Zhou. Protein binding site
prediction using an empirical scoring function. Nucleic Acids
Research, 34(13):3698–3707, January 2006.

[MJ06] Y. Murakami and S. Jones. SHARP2: protein–protein interaction
predictions using patch analysis. Bioinformatics, 22:1794–1795,
July 2006.

[MVT08] R. Melzer, W. Verelst, and G. Theissen. The class E floral
homeotic protein SEPALLATA3 is sufficient to loop DNA in
’floral quartet’-like complexes in vitro. Nucleic Acids Research,
pages gkn900+, nov 2008.

[NRS04] H. Neuvirth, R. Raz, and G. Schreiber. ProMate: A Structure
Based Prediction Program to Identify the Location of Protein-
Protein Binding Sites. Journal of Molecular Biology, 338(1):181–
199, April 2004.

[NSO+07] S.S. Negi, C.H. Schein, N. Oezguen, T.D. Power, and W. Braun.
InterProSurf: a web server for predicting interacting sites on
protein surfaces. Bioinformatics, 23(24):3397–3399, December
2007.

[NY01] M. Ng and M.F. Yanofsky. Function and evolution of the plant
mads-box gene family. Nature reviews. Genetics, 2(3):186–95,
2001.

[OKA+05] U. Ogmen, O. Keskin, A.S. Aytuna, R. Nussinov, and A. Gursoy.
PRISM: protein interactions by structural matching. Nucleic
acids research, 33(Web Server issue), July 2005.

[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
Frequent Closed Itemsets for Association Rules. In Proceedings
of the 7th International Conference on Database Theory, ICDT
’99, pages 398–416, London, UK, 1999. Springer-Verlag.

106 Bibliography

[PdFK+03] L. Pařenicová, S. de Folter, M. Kieffer, D.S. Horner, C. Favalli,
J. Busscher, H.E. Cook, R.M. Ingram, M.M. Kater, B. Davies,
G.C. Angenent, and L. Colombo. Molecular and phylogenetic
analyses of the complete MADS-box transcription factor family
in arabidopsis: New openings to the MADS world. The Plant
Cell, 15:1538–1551, jul 2003.

[Pel07] D. Peleg. Approximation algorithms for the Label-CoverMAX

and Red-Blue Set Cover problems. Journal of Discrete Algo-
rithms, 5:55–64, March 2007.

[PG01] J. Pei and N.V. Grishin. AL2CO: calculation of positional
conservation in a protein sequence alignment. Bioinformatics,
17(8):700–712, 2001.

[PM07] A. Porollo and J. Meller. Prediction-based fingerprints of protein-
protein interactions. Proteins: Structure, Function, and Bioin-
formatics, 66(3):630–645, February 2007.

[Ris83] J. Rissanen. A universal prior for integers and estimation by
minimum description length. Annals of Statistics, 11:416–431,
1983.

[RNA+10] S. Ruokolainen, Y. Ng, V. Albert, P. Elomaa, and T. Teeri. Large
scale interaction analysis predicts that the gerbera hybrida floral
e function is provided both by general and specialized proteins.
BMC Plant Biology, 10(1):129, 2010.

[SGG03] E.W. Stawiski, L.M. Gregoret, and Y.M. Gutfreund. Annotat-
ing Nucleic Acid-Binding Function Based on Protein Structure.
Journal of molecular biology, 326(4):1065–1079, 2003.

[SPNW04] A. Shulman-Peleg, R. Nussinov, and H.J. Wolfson. Recognition
of functional sites in protein structures. Journal of molecular
biology, 339(3):607–633, June 2004.

[SPP+10] H. Seok, H. Park, J. Park, Y. Lee, S. Lee, G. An, and Y. Moon.
Rice ternary MADS protein complexes containing class B MADS
heterodimer. Biochemical and Biophysical Research Communi-
cations, 401(4):598–604, 2010.

[STdS+08] M.P.H. Stumpf, T. Thorne, E. de Silva, R. Stewart, H.J. An,
M. Lappe, and C. Wiuf. Estimating the size of the human in-
teractome. Proceedings of the National Academy of Sciences,
105(19):6959–6964, May 2008.

Bibliography 107

[THSN06] S.H. Tan, W. Hugo, W.K. Sung, and S.K. Ng. A correlated motif
approach for finding short linear motifs from protein interaction
networks. BMC bioinformatics, 7(502), November 2006.

[TQZ07] H. Tjong, S. Qin, and H. Zhou. PI2PE: protein interface/in-
terior prediction engine. Nucleic Acids Research, 35(Web
Server):W357–W362, May 2007.

[TS01] G. Theissen and H. Saedler. Plant biology. floral quartets. Na-
ture, 409(6819):469–71, 2001.

[Vaz04] V.V. Vazirani. Approximation Algorithms. Springer, March 2004.

[vDMF+10] A.D.J. van Dijk, G. Morabito, M. Fiers, R.C.H.J. van Ham,
G.C. Angenent, and R.G.H. Immink. Sequence Motifs in MADS
Transcription Factors Responsible for Specificity and Diversifica-
tion of Protein-Protein Interaction. PLoS Computational Biology,
6(11):e1001017+, November 2010.

[VLS11] J. Vreeken, M. Leeuwen, and A. Siebes. Krimp: mining itemsets
that compress. Data Mining and Knowledge Discovery, 23:169–
214, July 2011.

[vMJS+05] C. von Mering, L.J. Jensen, B. Snel, S.D. Hooper, M. Krupp,
M. Foglierini, N. Jouffre, M.A. Huynen, and P. Bork. STRING:
known and predicted proteinprotein associations, integrated and
transferred across organisms. Nucleic Acids Research, 33(suppl
1):D433–D437, 2005.

[vMKS+02] C. von Mering, R. Krause, B. Snel, M. Cornell, S.G. Oliver,
S. Fields, and P. Bork. Comparative assessment of large-scale
data sets of protein-protein interactions. Nature, 417(6887):399–
403, 2002.

[vTV09] M. Šikić, S. Tomić, and K. Vlahoviček. Prediction of Protein-
Protein Interaction Sites in Sequences and 3D Structures by Ran-
dom Forests. PLoS Computational Biology, 5(1):e1000278, 2009.

[XJFD08] Y. Xiang, R. Jin, D. Fuhry, and F.F. Dragan. Succinct summa-
rization of transactional databases: an overlapped hyperrectangle
scheme. In KDD ’08: Proceeding of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining,
pages 758–766, New York, NY, USA, 2008. ACM.

108 Bibliography

[YGN+10] J. Yu, M. Guo, C.J. Needham, Y. Huang, L. Cai, and D.R.
Westhead. Simple sequence-based kernels do not predict protein-
protein interactions. Bioinformatics, 26(20):2610–2614, 2010.

[YJ04] Y. Yang and T. Jack. Defining subdomains of the K domain im-
portant for protein-protein interactions of plant MADS proteins.
Plant Molecular Biology, 55(1):45–59, 2004.

[YMSS04] Y. Yabuki, Y. Mukai, M.B. Swindells, and M. Suwa. GENIUS II:
a high-throughput database system for linking ORFs in complete
genomes to known protein three-dimensional structures. Bioin-
formatics, 20:596–598, March 2004.

[ZQ07] H.X. Zhou and S. Qin. Interaction-site prediction for protein
complexes: a critical assessment. Bioinformatics, 23(17):2203–
2209, September 2007.

[ZS01] H.X. Zhou and Y. Shan. Prediction of protein interaction
sites from sequence profile and residue neighbor list. Proteins,
44(3):336–343, August 2001.

A
Software

The implementation in Java of our novel methodology as a tool is available on
http://bioinformatics.uhasselt.be.

As the memory requirements for holding all possible motifs in memory are
quite large, it is necessary to set the maximum memory for Java.

Example A.1. java -Xms250M -Xmx2G -jar CorrelatedMotifs.jar

will run the program. As no parameters are set, the program will output
some help text.

/

All parameters described in the rest of this Appendix are case insensitive.

A.1 Parameters

There are several parameters that are required for any run of the software:

• A method name (-m <methodName>, see Section A.2),

• `, the length of the motifs (-l <integer>),

• d, the amount of wildcards (-d <integer>),

• a fasta-file with sequence data (-seq <filename>),

• a file containing the interaction information (-int <filename>), and

109

http://bioinformatics.uhasselt.be

110 Software

• a filename without extension for the output (-o <filename>).

Example A.2. java -Xms250M -Xmx2G -jar CorrelatedMotifs.jar

-m BruteForce -l 8 -d 3 -seq seq.fasta -int prot.int -o output

would start a run of the brute force algorithm.
/

For all methods except the brute force, a time in minutes (-min<number>)
is required. cmc-greedy and cmc-approx use it as the amount of time allowed
per iteration, for the other methods it is the total allotted time for the run.
In both cases, the time will be divided among threads as appropriate.

Example A.3. java -Xms250M -Xmx2G -jar CorrelatedMotifs.jar

-m SeqSlider -min 600 -l 8 -d 3 -seq seq.fasta -int prot.int

-o output

would start a run of the seq-slider algorithm for 10 hours.
/

In addition there are several optional parameters. Some of these are very
general and have default settings, which have been implicitly used in the pre-
vious examples:

• The amount of threads to be used (-t <integer>), which defaults to the
amount of available processors.

• The support measure (-st <supportMeasure>), which default to the χ2-
based support measure. Different support measures will be enumerated
in Section A.3.

• The amount of top scoring motif pairs to keep (-a <integer>), which
defaults to 1 000.

There are numerous other optional parameters. Specifically, there are the
parameters for bioSLIDER:

• Amino acid similarity (-simFile <filename>) reads the similarities be-
tween amino acids from the given file. When this parameter is used, the
parameter to set the minimum similarity threshold (-var <number>)
for motifs is also required. The parameter which sets the type of simi-
larity (-varType avg or -varType product) is optional, as the algorithm
defaults to the product type of similarity.

• The various types of data that indicate the likelihood of an amino acid
to be part of a binding site, such as RSA values and conservation scores,

Software 111

can be added using a single type of flag (-metaX <filename>, with X
a number starting at 1). For each such flag, another flag (-metaValX
<number>, with X the same) is required to set the minimum thresh-
old. Optionally, confidence in the values can be added (-metaConfX
<filename>), along with the corresponding minimum threshold for con-
fidence (-metaConfValX <number>). Any type of data following the
same format can be added using this flag.

• Domain data (-domain <filename>) can also be read from a file.

Example A.4. java -Xms250M -Xmx2G -jar CorrelatedMotifs.jar

-m SeqSlider -min 600 -l 8 -d 3 -seq seq.fasta -int prot.int

-o output

-simFile blosum62.txt -var 0.7 -varType product

-meta1 conservation.txt -metaVal1 7.8

-meta2 RSAprediction.txt -metaVal2 6.5

-metaConf2 RSAconfidence.txt -metaConfVal2 5.0

-domain domains.txt

is simply an extended version of a seq-slider call.

/

These are the parameters for using seq-slider for triplets:

• Probabilities (-prob true) can be used instead of binary interaction in-
formation. This allows to indicate for each triplet if it is an interaction,
a non-interaction or an unknown. Using probabilities allows for the use
of the following parameters:

– The positive value (-pos <number>, default 1.0) sets the probabil-
ity for interactions.

– The negative value (-neg <number>, default 0.0) sets the proba-
bility for non-interactions.

– The unknown value (-unknown <number>, default 0.5) sets the
probability for unknowns.

• You can set the order triplets are interpreted in. There are flags for
fully ordered (X,Y, Z) (-ordered true) or unordered {X,Y, Z} triplets
(-unordered true), otherwise it defaults to the semi-ordered ({X,Y }, Z)
triplet case.

seq-slider for triplets only works with the χ2-based support measure,
so this is automatically selected. If the probabilities option is selected, it

112 Software

automatically uses the adapted χ2-based support measure.

Example A.5. java -Xms250M -Xmx2G -jar CorrelatedMotifs.jar

-m SliderTriplets -min 600 -l 8 -d 3

-seq seq.fasta -int prot.int -o output

-prob true -pos 0.9 -unknown 0.05 -ordered true

Is a potential call for seq-slider for triplets.
/

And then there are a few remaining optional parameters:

• Read the motif data from a file (-motif <filename>), created with the
saveMotifData method (see Section A.2), instead of parsing it from the
sequences.

• It is also possible to skip the preprocessing step entirely (-reading true).
In this case, no data of which motif occurs in which proteins is saved,
and this information is recalculated during the running of the algorithm.

• There are several different neighbor functions (-f <neighborFunction>)
for the steepest ascent method. The different choices are explain in
Section A.4.

The order in which parameters are given is irrelevant.

A.2 Methods

The package allows the execution of all the algorithms described in this work.
To indicate what method to run, a flag (-m <methodName>) is added to the
call followed by the parameter in parentheses behind each of these algorithms:

• m-slider (MSlider),

• seq-slider (SeqSlider),

• cmc-greedy (CMCgreedy),

• cmc-approx (CMCapprox),

• bioSLIDER (SeqSlider, see Section A.1),

• seq-slider for triplets (SliderTriplets),

• a brute force algorithm (BruteForce), and

• a steepest ascent algorithm (SteepestAscent).

Software 113

There is one additional method (saveMotifData) possible, which for one
network and its settings for motifs, such as those for bioSLIDER, loads all
possible motifs and their occurrences in memory and then saves these to a file.
This file can then later be loaded for use by any of the other methods to save
time on the preprocessing step.

A.3 Support measures

It is possible to use the different support measures explained in this work (-st
<supportMeasure>):

• The χ2-based support measure,

• the p-score (p),

• fc (cover),

• fv (weightedv).

When no support measure is specifically selected, it defaults to the χ2-
based support measure.

A.4 Neighbor functions

If the steepest ascent method (SteepestAscent) is selected, there are multi-
ple choices for neighbor function (-f <neighborFunction>). Their function is
described in Section 2.5.1 and Section 2.8.3:

• Letter Change (LC),

• Swap Adjacent (SA),

• Letter Change and Swap (LCandS),

• Letter Change or Swap Adjacent (LCorSA),

• Letter Change and Swap Adjacent (LCandSA),

• Nmot (Slide),

• Nmot
	 (SimpleSlide),

• All (All) is the neighbor function implicitly used by MotifHeuristics,
which fixes one motif and attempts to pair it with all possible motifs.

114 Software

A.5 File formats

Our algorithms take several files of several types as input. Now follows a quick
overview of their necessary formats.

The sequence information (-seq <filename>) should be in a file in the
FASTA-format.

Example A.6.
>ID1

ERLEELEKKEAQLTVTNDQIHILKKENELLHF

>ID2

EYVKCLENRVAVLENQNKTLIEELKTLKDLYSNKSV

>ID3

VWVQSLEKKAEDLSSLNGQLQSEVTLLRNEVAQLKQLLLAHKDC

/

In the interaction file (-int<filename>), each line represents an interaction.
The two, or three, id’s, from the FASTA-file, are separated by a space.

Example A.7.
ID1 ID2

ID1 ID3

/

In the case of triplets, a + or − can optionally be added at the end of the
lines, also separated by a space, to indicate interaction and non-interaction.
In that case, triplets not in the file will be considered unknowns.

Example A.8.
ID1 ID2 ID3 +

ID3 ID1 ID2 -

/

The file which indicates the similarities between amino acids (-simFile
<filename>) should adhere to the following format. The first line should start
with a tab and then contain a tab-separated list of all amino acids. Then each
following line contains an amino acid and a tab-separated list of similarities
to the amino acids in the order of the first list. The similarities are given as
percentage values going from 0.0 to 100.0.

Example A.9.
C S T

C 100.0 23.1 23.1

S 28.6 100.0 57.1

T 28.6 57.1 100.0

is a partial similarity matrix.

Software 115

/

The biological data for bioSLIDER (-metaX <filename> or -metaConfX
<filename>) is to be given in a format similar to FASTA, only instead of
amino acids, we have the corresponding values.

Example A.10.
>ID1

24799779597999455777675977579963

>ID2

777576466877667757996575777757316534

>ID3

34432777893532221321212144746334594388515845

/

The domain data (-domain <filename>) is to be given as follows. There is
a line for each domain present, containing the protein-id, the domain id, and
the start and end position of the domain in the amino acid sequence. These
are tab-separated, and the positions are 1-indexed.

Example A.11.
ID1 DOMID1 9 59

ID1 DOMID2 77 171

ID2 DOMID1 9 59

ID3 DOMID3 93 172

/

B
Samenvatting

B.1 Motivatie

Protëınen zijn de belangrijkste onderdelen van alle levende organismes. Samen
vervullen ze de basisfuncties van levende cellen. Om hun functies te vervullen,
moeten protëınen vaak samenwerken door aan elkaar te binden, waardoor ze
een complex vormen. We zeggen dan dat deze protëınen interageren, of dat ze
een interactie hebben. Als we verschillende interacties van de protëınen binnen
eenzelfde organisme verzamelen, vormen ze samen een protëıne-protëıne inter-
actienetwerk. Voor verschillende organismes zijn er grootschalige biologische
netwerken beschikbaar, die een steeds groeiend aantal van deze interacties om-
vatten [STdS+08]. Deze netwerken geven aan hoe een protëıne functioneert als
deel van het netwerk, maar bieden geen inzicht in hoe de interactie gecodeerd
is in de sequenties van aminozuren waaruit protëınen opgebouwd zijn.

Interacties vinden plaats door middel van chemische verbindingen tussen
delen van de sequentie van beide protëınen. Aminozuren die betrokken zijn bij
interacties noemen we bindresidu’s of interactieresidu’s, en samen vormen ze
een interactiesite. Kennis van interactiesites is essentieel voor het voorspellen
van tot nog toe ongekende protëıne interacties, het begrijpen van de evolutie
van protëıne interacties, of het aanmaken van geneesmiddelen die een specifiek
protëıne, en op die manier een specifieke functie, willen bëınvloeden.

Spijtig genoeg zijn er om deze interactiesites te ontdekken uitgebreide en
kostelijke biologische experimenten nodig. Gebaseerd op het huidige tempo
waarmee protëınestructuren bepaald worden, wordt geschat dat er nog 20 jaar

117

118 Samenvatting

 A B

B

A

C

D

 C D

1

2

3

4

5

6

Figuur B.1: Overeenkomstige interactiesites {A, C} en {B, D}, weergegeven als
gecorreleerde motieven in sequenties.

nodig zal zijn om alle interactietypes te bepalen met behulp van de huidige
experimentele technieken [AR04]. Bovendien zou men, zelfs als dit bereikt is,
nog altijd voor elke interactie moeten voorspellen van welk type ze is.

Daarom hebben we een nieuwe methode ontwikkeld om mogelijke interac-
tiesites computationeel te ontdekken. Een implementatie hiervan wordt be-
sproken in Appendix A.

B.2 Probleemstelling

Er zijn verschillende computationele methoden voorgesteld om interactiesites
op te sporen door middel van het minen van paren van patronen, motieven ge-
naamd, die vaker voorkomen in de sequentie dan verwacht [LSY+07, LLW06,
LLLW07, LSLW08, THSN06]. Correlated motif mining (cmm) is een methode
om interactiesites te vinden door een consensuspatroon te zoeken in een groep
protëınen waarvan (bijna) alle protëınen interageren met (bijna) alle protëınen
uit een groep die aan een ander consensuspatroon voldoet. Als we dergelijke
patronen vinden, stellen deze waarschijnlijk een deel van het protëıneoppervlak
voor dat interacties mogelijk maakt. Bijvoorbeeld, in Figuur B.1 stellen de
patronen {A, C} en {B, D} dergelijke gecorreleerde motieven voor. Er is een
interactie tussen twee protëınen als de ene het motief A bevat, en de andere
het motief C (gelijkaardig voor motieven B en D). Ondanks de ontwikkeling
van verschillende algoritmes is het niet duidelijk hoeveel interactietypes be-
schreven kunnen worden door gecorreleerde motieven, maar de resultaten van
deze methoden tonen wel aan dat gecorreleerde motieven informatie over in-
teractietypes bevatten [LSY+07, LLW06, LLLW07, LSLW08, THSN06].

We merken dat verschillende hoog scorende motiefparen vaak naar zeer

Samenvatting 119

gelijkaardige subnetwerken verwijzen. Daardoor worden door methodes voor
cmm enkel interactiesites gevonden in een klein deel van het interactienetwerk.
Daarom onderzoeken we ook een andere methode waarbij we de motiefparen
niet op individuele basis beschouwen, maar we de beschrijvende kracht van
een verzameling van motiefparen evalueren. We noemen dit het Correlated
Motif Covering (cmc) probleem. In essentie zoeken we een zo klein mogelijke
verzameling motiefparen die een zo groot mogelijk deel van het netwerk dekt.

B.3 Bijdragen

Onze eerste bijdrage is een grondig onderzoek naar verschillende mogelijke sco-
refuncties voor gecorreleerde motieven. We vergelijken de precision en recall
op artificiële netwerken waarin motieven ingeplant zijn met verschillende ni-
veaus van ruis. Deze experimenten tonen aan dat de χ2-scorefunctie duidelijk
beter is dan de alternatieven in het vinden van beschrijvende motiefparen.

Vervolgens bewijzen we, onder redelijke aannames over de scorefunctie,
dat het Correlated Motif Mining (cmm) probleem np-hard is en dat het over-
eenkomstige beslissingsprobleem np-compleet is. Daarom benaderen we het
probleem als een combinatorisch beslissingsprobleem. We stellen de metaheu-
ristiek slider voor, die twee steepest ascent methoden bevat. Deze methoden
zijn gebaseerd op het idee dat een motief dat in de buurt van een binding site
ligt, er stap voor stap naartoe moet kunnen glijden.

De vergelijking van slider met andere bestaande methoden toont aan
dat slider er beter in slaagt om motiefparen terug te vinden die in artificı-
ele netwerken ingeplant zijn. De experimenten tonen ook aan dat slider
grootschalige netwerken aan kan.

We tonen aan dat het Correlated Motif Covering (cmc) probleem NP-hard
is en dat het tot een klasse van problemen behoort waarvoor het ook moeilijk
is om een “goed” benaderingsalgoritme te vinden. Daarom introduceren we
de heuristiek cmc-approx die gebaseerd is op een benaderingsalgoritme van
Peleg [Pel07] voor het Weighted Red-Blue Set Cover (wrbsc) probleem.

We vergelijken cmc-approx experimenteel met seq-slider en een greedy
algoritme, dat we cmc-greedy noemen, op biologische netwerken. De dekking
van het netwerk door de resultaten van cmc-approx is veel hoger, maar heeft
meer tijd nodig. De resultaten van cmc-approx zorgen ook voor een iets
betere voorspelling van nieuwe interacties. Wanneer we de overlap tussen
de gevonden motiefparen en echte interactiesites bekijken in netwerken met
protëınen waarvoor de 3D-structuur bekend is, merken we dat de resultaten
van cmc-approx een drastisch grotere dekking hebben dan die van de andere
methoden, ten kost van slechts een licht verlaagde precisie. De verhoogde

120 Samenvatting

dekking verhoogt het nut voor experimentele biologen enorm aangezien zij
duidelijk interactiesites willen voorspellen voor zo veel mogelijk protëınen.

Ten slotte stellen we dat we de resultaten van verschillende organismes
kunnen gebruiken om de nauwkeurigheid te verhogen. Onze experimenten
met protëınen die in meerdere organismes voorkomen, tonen aan dat, als een
deel van een sequentie teruggegeven wordt door onze methoden bij meerdere
soorten, het ook inderdaad een hogere kans heeft om effectief een interactiesite
te zijn.

De gebruikte data en de java-implementatie van slider en cmc-approx
bevinden zich op http://bioinformatics.uhasselt.be.

http://bioinformatics.uhasselt.be

	Introduction
	Motivation
	Problem statement
	Correlated Motif Mining (cmm)
	Correlated Motif Covering (cmc)
	Applications and future work

	Related work
	Pattern mining
	Binding site prediction

	Outline
	Publications

	Mining the best motif pairs according to a support measure
	Introduction
	Correlated motif mining
	Support measures
	A 2-based support measure
	p-score: a probabilistic support measure
	Comparison of f2 and fp

	Complexity of cmm
	Algorithms
	m-slider: Sliding over motifs
	seq-slider: Sliding over sequences

	Time complexity of algorithms
	Preprocessing step
	Evaluation cost and value range f2
	Nmot (m-slider)
	Nseq (seq-slider)
	Time complexity slider

	Data
	Artificial data
	Biological data

	Experiments
	Precision for motif pairs
	Evaluation of support measures
	Evaluation of neighborhood functions
	Comparison with existing methods
	Biological validation
	Performance comparison for SEQ-SLIDER and brute force computation
	Additional simulated data

	Conclusion

	Mining minimal motif pair sets maximally covering interactions
	Introduction
	Covering a graph with a set of motif pairs
	Complexity and Approximation of cmc
	Lower bounds
	Upper bounds

	Algorithms
	seq-slider
	cmc-greedy
	cmc-approx

	Data
	Evaluation
	Biological validation
	Prediction
	Comparison with protein structure data
	Cross-species comparison

	Conclusion

	Applications and future work
	Introduction
	bioSLIDER
	Adaptation
	Experiments

	Binding sites in higher order complexes
	Adaptation
	Experiments

	Cross-species evaluation
	Data
	Experiments

	Conclusion

	Conclusion
	Bibliography
	Software
	Parameters
	Methods
	Support measures
	Neighbor functions
	File formats

	Samenvatting
	Motivatie
	Probleemstelling
	Bijdragen

 HistoryItem_V1
 InsertBlanks

 Where: after last page
 Number of pages: 2
 same as current

 2
 1
 1
 602
 331

 CurrentAVDoc

 SameAsCur
 AtEnd

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

