Enabling Event-data Analysis in R

Demonstration

Gert Janssenswillen!2, Marijke Swennen!, Benoit Depaire!, Mieke Jans!, and
Koen Vanhoof!

! Hasselt University, Agoralaan Bldg D, 3590 Diepenbeek, Belgium
2 Research Foundation Flanders (FWO), Egmontstraat5, 1060 Brussels, Belgium
{gert.janssenswillen,marijke.swennen,
benoit.depaire,mieke. jans, koen.vanhoof}@uhasselt.be

Abstract This demonstration introduces a newly developed R-package,
named edeaR - Ezploratory and Descriptive FEvent-based Data Analysis
in R. The package aims to handle, describe and select event data using
a set of predefined methods. Consequently, it enables the vast collection
of data manipulation and analysis functionalities within R to be used for
event data.

Keywords: Data Analysis, R, Event data

1 Introduction

Due to the enormous growth of event data in the last decades, organisations are
dealing with the challenge of extracting useful knowledge from it, and exploiting
it to gain competitive advantages. Process mining provides ways to reach this
goal, by getting a better understanding of processes and improving them [I].

In order to analyse event data, the process mining framework ProM [6] has
been growing rapidly over the last decade, and provides an enormous amount of
methods to discover and analyse processes. However, most attention has been
given to the discovery and analysis of process models. This approach can be
successful when the resulting models are a good representation of the event log,
i.e. having a relatively high fitness and precision. However, realistic event logs
are often complex and, without any preprocessing of the data, reliable models to
describe them are difficult to be found. Exploratory analysis of event data itself
is only limited supported by ProM. Therefore, there is a need for an interactive
tool which allows direct access to the event log to analyse it. Commercial tools,
such as Discd] or QPR Process Analyzerﬁ7 partly fill up this gap. However, in
general, there does not exist a lot flexibility.

The objective of this demonstration is to introduce a newly developed R-
package, named edeaR - Ezploratory and Descriptive Fvent-based Data Analysis
in R. R is a statistical programming environment which is used for data analysis

! http://fluxicon.com/disco/
2 http://www.qpr.com

http://fluxicon.com/disco/
http://www.qpr.com

and visualisation [4], and has gained a lot of importance over the last few years. R
comes with an extensive package eco-system, which results in a limitless range of
data analysis applications. The main goal of the package is to provide a grammar
to handle event data in R. It includes functionalities to import and export event
data from and to XES-files, making it combinable with other process mining
tools. It can be used to describe the data of an event log using a set of predefined
methods, as well as to perform data selection. But primarily, it enables event data
analysts to use the vast range of functionalities in R on event data. Furthermore,
it invites data scientists from other disciplines who are familiar with R to look
into event data analysis. The R-package edeaR is available on github, from where
it can be easily installed 8

The next section will formally define the terminology used by the R-package.
Section [3] will introduce the event log class. Section [will discuss methods to
describe and explore event-based data. Data selection will be illustrated in Sec-
tion Bl Section [6 provides a brief application while section [7] will conclude the

paper.

2 Preliminaries

In this section, we will define the terminology used by the package to handle
event data. An event log is expected to be in the format as illustrated in Table[Il
Each record of the event log contains one event. Events are atomic registrations
of actions in a process. Each event should contain a timestamp, an activity
identifier, a lifecycle transaction and an activity instance identifier. Next to these,
events can have multiple other attributes, depending on the context. Attributes
at the level of cases should preferable be stored separately for the event log, in a
second data.frame, which can be linked to the event log by means of a common
case identifier column in both data tables.

A process exists of several activities. Each activity can have one or more
activity instances. An activity instance refers to one specific instance of an activ-
ity, related to one specific case. Within one case, an activity might occur more
than once, leading to the existence of multiple activity instances. Each activ-
ity instance consists of one or more events, recording the different stages in the
transactional life-cycle of the activity instance. In Table[I] each activity instance
has two events: a start event and a complete event. A case refers to one indi-
vidual process instance. It is a finite sequence of activity instances. Multiple
cases might share the same sequence of activities, which is referred to as a trace.

3 Eventlog object

Within the context of R an event log can be represented as a data.frame. How-
ever, in order to analyse an event log, it is essential to know which elements

3 The package is available at https://github.com/gertjanssenswillen/edeaR. Us-
ing the R-package devtools, it can be installed using the following command:
install_github(“gertjanssenswillen/edear”, build vignettes = T).

https://github.com/gertjanssenswillen/edeaR

Table 1. Example event log

Event Case Timestamp Activity instance Activity Lifecycle transition
1 0 28/09/2015 16:51:34 1 A start
2 0 28/09/2015 16:53:01 1 A complete
3 0 28/09/2015 16:53:51 3 D start
4 0 28/09/2015 16:54:03 2 C start
5 0 28/09/2015 16:56:33 2 C complete
6 0 28/09/2015 16:56:29 3 D complete
9 1 28/09/2015 16:51:53 5 A start
10 1 28/09/2015 16:53:18 5 A complete
11 1 28/09/2015 16:53:53 7 D start
121 28/09/2015 16:55:06 7 D complete

of the data.frame identify the different cases, activities, activity instances, etc.
The eventlog class, implemented by the R-package, will do just this. As one
can observe, there are five mandatory fields needed for a data.frame to act as an
event log. The names of these field will be stored as attributes of an eventlog
object, which are described in Table

Table 2. Attributes of an eventlog-object

Attribute Description

case_id The case to which the event belongs.
activity_id The activity the event refers to.
activity_instance_id The activity instance the event belongs to.
lifecycle_id The stage in the transactional life cylce.
timestamp The timestamp of the event.

For an object of the class eventlog, the values of the different arguments
can be easily obtained and changed on the go, allowing the user to easily switch
between different views on the same event log. The values for the lifecycle trans-
action can be any of the transitions in the transactional life cycle specified in
the XES-standard[3]. Next to these mandatory attributes, each event can have
a number of other attributes. In order to avoid data redundancy, case attributes
should preferably be stored in a second data.frame, which can be linked to the
event log by the case identifier column.

There are two ways to create eventlog objects. Firstly, the package comes
with import functions to read both event logs and case attributes from XES-
files. Secondly, event logs stored as csv-files can be imported using existing R-
functionalities, and if needed be preprocessed manually to the desired format.
For an example on how to preprocess event data accordingly, we refer to the
vignettes available in the package.

Objects of the class eventlog will be handled differently compared to normal
data.frame objects by the generic R-functions print and summary. When these
functions are called upon an event log, the nature of the object will be reported,
as well as some relevant information to describe the event log.

4 Descriptive statistics

Several functions have been developed to compute descriptive summary statistics
about an event log. These functions are based on the work in [5]. The metrics
describe an event log concerning two dimensions - time and structuredness - and
are available at different levels of granularity: event log, trace, case and activity.
Table [3] gives an overview of the different metrics and the levels of analysis at
which they can be used. For the precise definition of all the metrics, we refer to
[5] or the package documentation.

Table 3. Descriptive metrics

Log Trace Case Activity

Time Processing time X X X X
Throughput time X X X
Structuredness Variance
Activity presence in traces X
Activity type frequency X X X
Start activities X X X
End activities X X X
Trace length X X X
Trace coverage X X
Number of traces X
Repetitions
Number of repetitions X X X X
Self-loops
Size of self-loops X X X X
Number of self-loops X X X X
Number of traces with self-loop X

Each metric can be calculated by providing the event log and the desired
analysis level. Depending on the metric and the level of analysis, the output can
be of two types: either a table containing absolute and relative values concerning
a certain phenomenon, or a table with measures of locality and spread. For
instance, the trace length at trace level will contain for each trace, the length of
the trace in absolute terms, i.e. the number of activity instances, and in relative
terms, i.e. compared to the overall average trace length of the event log. However,

at a log level, the metric will return descriptive measures of the trace length,
e.g. average, median, min, max, quantiles, etc.

5 Data selection

Data selection can be performed in several ways. Firstly, the event log can be
subsetted as any regular data.frame in R, e.g. selecting on certain attribute
values. Additionally, the developed R-package supports several predefined func-
tions which are able to select data based on specific features of cases or activity
instances. Table @ lists all the available filters, together with the different op-
tions and the corresponding output. Note that the workings of some filters differ
depending on the arguments provided by the user. Furthermore, each filter con-
tains the argument reverse, allowing the user to invert the selection. For instance,
selecting the 10% most rare activities instead of the 90% most common.

Thirdly, one can define custom filtering methods which may be based on
the provided metrics. For instance, one might be interested to select only the
cases in which a self-loop never occurs. Furthermore, custom features of cases
can be developed, computed and used for data filtering. This clearly shows the
flexibility and extendability of the approach. Finally, also case attributes, stored
in a second data table, can be used for filtering. Any subsetting on the case
attributes can be done, and subsequently used for event log filtering based on
the case identifier.

6 Application

In this section, a brief illustration on the use of the package is given. The analyses
are conducted using data from the BPI Challenge 2014 [2]. In particular, the
Incident details are used as case attributes, while the Activity log for incidents
is used as the event log itself. A sample of both datasets describing a total of
4000 cases is included in the package. In order to know the nature of the event
log, the mapping function can be called, as is shown in Code [Tl This function
prints out the different identifiers connected to the event log.

BPIC14_incident_log %>’ mapping

The result is printed out as follows

Case identifier: incident_id

Activity identifier: incident_activity_type
Activity instance identifier: incident_activity_number
Timestamp: data_stamp

Lifecycle transition: lifecycle

Code 1.1. Mapping

Table 4. Filtering methods

Filter

Options

Description

Activity frequency Percentile z

Endpoints

Throughput time

Trace frequency

Trace length

Trim

Precedence

Time period

{Start activities,
end activities}
Percentile z

Interval [a, b]

Percentile x
Interval [a, b]

Percentile x
Interval [a, b]

Percentile z
Start activities,
end activities}

{Antecedents,
consequents,
directly follows,
each}
{Antecedents,
consequents,
eventually follows,
each}
{Antecedents,
consequents,
directly follows,
one of}
{Antecedents,
consequents,
eventually follows,
one of}
{Intersecting,
[a, b]}
{Contained,

[a, 8]}

{Start,

[0,]}
{Complete,

[a, b]}

{Trim,

[a,]}

Select the x% most frequent activities

Select cases with the provided start and/or
end activities

Select cases with the x% most common start
and end activities

Select cases with a throughput time in the in-
terval [a, b]

Select the x% shortest cases

Select cases of which the corresponding trace
has a frequency in the interval [a, b]

Select the x% of cases which correspond to the
most freqeunt trace

Select cases with a trace length in the interval
[a,b]

Select the x% most shortest cases

Restrict all cases to the first activity instance
of a start activity until the last activity in-
stance of an end activity

Select cases where each of the antecedents is
at least once directly followed by each of the
consequents

Select cases where each of the antecedents is
eventually followed by each of the consequents

Select cases where at least one of the ante-
cedents is directly followed by one of the con-
sequents

Select cases where at least one of the ante-
cedents is eventually followed by one of the
consequents

Select cases with at least one activity instance
in the time interval [a, b]

Select cases where all activity instances are in
the time interval [a, b]

Select cases which started in the time interval
[a,b]

Select cases which completed in the time in-
terval [a, b]

Select activity instances in the time interval
[a,b]

N

Note that, for readability, the piping symbol %>% as defined by the R-
package dplyr is used. This symbol inserts the output of its predecessor as the
first argument of its successor. Several basic characteristics of the event log, such
as the number of cases or the number of activities, can be computed with simple
auxiliary functions, like n_cases and n_activities, respectively. An brief overview
of characteristics can be printed using the generic R-function summary, which
will recognize the data as an event log, as depicted in Code

BPIC14_incident_log %>’ summary

The result is printed out as follows

Number of events: 39911
Number of cases: 4000
Number of traces: 2430

Number of activities: 36
Average trace length: 9.97775

Start eventlog: 2013-02-06 13:07:45
End eventlog: 2014-04-02 14:04:51

Code 1.2. Event log summary

The following command will compute the number of self-loops in the log,
and output the result as log-level summary statistics. The output in Code
shows that while at least 50% of the cases do not include self-loops (i.e. the
median is equal to zero), there exist at least one case in which the number of
self-loops peaks at 34. To drill down in this result, the number of self-loops can
be calculated at the case level and visualised, e.g. using ggplot2, as in Code [[L4]
The resulting graph is displayed in Figure [I.

BPIC14_incident_log %>/, number_of_selfloops("log")

The result is printed out as follows

min ql median mean q3 max st_dev iqr
0 0 0 0.8444 1 34 1.459654 1

Code 1.3. Number of self-loops

BPIC14_incident_log %>’ number_of_selfloops("case") %>% ggplot() +
geom_histogram(aes(absolute)))

Code 1.4. Visualizing the occurrence of self-loops
This output can then be easily compared with other descriptives. For ex-
ample, Figure [2 shows the relationship between the number of self-loops in a

4 Note that some formatting commands have been left out in Code [Z] as they are
out of the scope of this demonstration.

2750 -
2500 -
2250 -
2000 -

51750 -

2

@ 1500 -

&

O 1250 -
1000 -

750 -
500
250 -

T
0 1 2 4 5
Number of selfloops

0-

Figure 1. Distribution of number of self-loops per case

case and the throughput time of a case. It can be seen that the occurrence
of self-loops has a negative impact on the performance, as could be expected.
The analysis of self-loops at the level of activities furthermore indicated that
the activities Assignment and Operator Update are most problematic in this
respectl.

Next to visualising the descriptives, they can be used as input for other
analyses, such as clustering. For instance, one might be interested in describing
which cases score worse on certain performance characteristics, such as through-
put time or the number of repetitions, often signalling rework. As an illustration,
a kmeans clustering was conducted on the bases of 5 metrics on case-level: the
throughput time, the trace length, the number of repetitions, the number of
self-loops, and the average activity frequency. Upon inspection of the SSE for
different number of clusters, a cluster design with three different clusters was
chosen. The largest cluster contained 92% of the cases which all scored good at
the different metrics. For example, throughput time was less that 35 days for all
cases and no more than 4 self-loops occurred. A second cluster, containing 6.9%
of the cases, included cases which scored somewhat worse, though not excep-
tionally bad. For these cases, the maximum throughput time was still limited to
86 days. The third cluster contained about 1 % percent of exceptionally bad be-
haviour. For these cases, throughput time ranged between 90 and 363 days. For
simplicity, these clusters were given the names High, Medium and Low, respect-
ively, refering to the performance level of the cases they contain. Subsequently,

5 Full results were omitted due to limited space.

150 -
[]
[J
(]
125 .
m hd ¢
%.. °
S 100 o .
= o .
= [] L]
<] . . .
1S ° L4
2 ™ : . 1
2 . .
5 t ! .
S 50- ® i L] .
o i L H
‘lf' .
——
0_ L T 1 |

0 1 2 4 5
Number of selfloops

Figure 2. Throughput related to the number of self-loops

officeelectronics -
computer - |
no type -

displaydevice -
Performance cluster
lication - .
application High

bapplication -
subapplication Medium

storage -
g n-

software -

ci_type_chy

networkcomponents -
hardware -
database -

1 1 1
0.00 0.25 0.50 0.75 1.00
Relative frequency

Figure 3. Performance clusters related to ci_type_cby

it is very straightforward to connect these clusters to different case attributes,
in order to explain which case characteristics are related to cases which score
less good on the selected criteria. For example, Figure [Bl shows how the clusters
are represented differently among different subtypes of configuration items (CI).
Although the example is rather illustrative, it highlights how the vast amount
of statistical and data analysis functionality available in R and its package eco-
system can be used in the analysis of event data.

7 Conclusions

This paper briefly introduced a newly developed R-package which allows users
to handle event data in R. In order to do so, the eventlog object class was
presented, which is compatible with the XES-standard. Furthermore, a collec-
tion of functions was defined to describe event data and to perform event data
selection.

Introducing event data in R enables us to use a vast amount of functionalities
available in R, ranging from statistical analysis over data visualization to data
mining. For instance, output of several descriptives can be easily visualized. The
current package is available on github. A manual describing the different methods
is available, as well as several vignettes to illustrate their workings.

References

1. van der Aalst, W.: Process mining: discovery, conformance and enhancement of
business processes. Springer, Heidelberg (2011)

2. van Dongen, B.F.: BPI Challenge. Rabobank Nederland. Dataset (2014),
http://dx.doi.org/10.4121/uuid: c3e5d162-0cfd-4bb0-bd82-af5268819c35

3. Giinther, C.W., Verbeek, H.: Xes-standard definition. Tech. rep., Technische Uni-
versiteit Eindhoven (2012)

4. Thaka, R., Gentleman, R.: R: a language for data analysis and graphics. Journal of
computational and graphical statistics 5(3), 299-314 (1996)

5. Swennen, M., Janssenswillen, G., Jans, M., Depaire, B., Vanhoof, K.: Capturing
Process Behavior with Log-Based Process Metrics. In: Submitted to Simpda 2015
(2015)

6. Verbeek, HM.W., Buijs, J.C.A.M., Van Dongen, B.F., Van Der Aalst, W.M.P.: Xes,
xesame, and prom 6. In: Soffer, P., Proper, E. (eds.) Information Systems Evolution.
pp. 60-75. Springer (2011)

http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

	Enabling Event-data Analysis in R
	Introduction
	Preliminaries
	Eventlog object
	Descriptive statistics
	Data selection
	Application
	Conclusions

