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Overview of the Thesis

In this thesis, some modeling issues and design aspects that arise in toxicological

studies and clinical trials are addressed. The text is structured in two parts. The

first part of the thesis is motivated by a comet assay, a toxicological study design to

assess DNA damage, which has been a standard tool in the pharmaceutical indus-

try for the assessment of the safety of potential new drugs. In this part, a flexible

modeling tool is proposed addressing the different modeling issues and an estimation

technique is explored. In particular, various models, i.e., a flexible model for hierarchi-

cally clustered and overdispersed outcomes, the multivariate extension through a joint

modeling technique, mixture models, zero-inflated models, and the use of Gaussian

variational approximation are discussed in this part.

The second part is related to incomplete data in clinical trials. It is very common

practice for patients to drop out from a study due to different reasons. Such missing

data, in general, have a potential to affect/distort inferences drawn. Some trials allow

for data-driven adaptation when the dropout rate is high. The second part of the

thesis focuses on the impact of such data driven adaptations in some characteristics.

In particular, the type I error rate associated with dose group switching is assessed

when the primary analysis is in terms of a longitudinal outcome. The error rate is

assessed through a simulation study, inspired by a clinical trial in Alzheimer’s disease.

1





Part I

Flexible Modeling Tools for

Hierarchically Clustered and

Overdispersed Data with

Applications in Comet Assays
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Chapter 1

Introduction

In clinical trials and toxicological studies, measurements are taken to assess the ef-

ficacy and/or safety of a potential drug. Measurements are not always recorded on

a continuous scale, also binary, count, and time to event outcomes are encountered.

The standard approach of modeling such non-normal data is through the generalized

linear model (GLM). They are the most common class of regression models used to an-

alyze various types of variables (Nelder and Wedderburn 1972, McCullagh and Nelder

1989, Agresti 2002). The exponential family distributions provide elegant specifica-

tions of the models. The most well-known examples include linear regression, logistic

regression, and Poisson regression. An important extension of these models is the gen-

eralized linear mixed model, by the inclusion of normally distributed random effects,

allowing to account for multi-level structure in the data (Molenberghs and Verbeke

2005). A common issue with non-Gaussian data is overdispersion in the sense that

the variability in the data is not well described by the distributional mean-variance

relationship (Hinde and Demétrio 1998). This can happen both in the univariate and

in the multi-level setting. One approach to account for overdispersion in a univariate

generalized linear mixed model is by the use of a conjugate random effect, such as, for

example the negative binomial (Breslow 1984, Lawless 1978) and beta-binomial model

(Skellam 1948, Kleinman 1973). In a more recent publication, Molenberghs, Verbeke,

and Demétrio (2007) proposed a similar approach to account for overdisperion in a

multilevel setting, by the use of two random effects, a normally distributed random

effect to accommodate for the hierarchy and some overdispersion, and a conjugate

random effect to account for the overdispersion in the data. They introduced a new

general modeling framework for the analysis of overdispersed multilevel data, which is

5



6 Chapter 1. Introduction

often referred to as the combined model (Molenberghs, Verbeke, and Demétrio 2007,

Molenberghs et al 2010).

This thesis is partly motivated by a toxicological study design that is regularly

encountered in pre-clinical research: the so-called comet assay (Ejchart and Sadlej-

Sosnowska 2003, Lovell and Omori 2008). It is a sensitive method to assess DNA

damage. During the last decade the assay gained widespread use in various areas and

has emerged as a standard tool in the pharmaceutical industry for the assessment of

the safety of potential new drugs. Typically, a comet assay is a single cell microgel

electrophoresis method detecting DNA damage in any target tissue or organ of which

a single cell suspension can be prepared. Visualization of this DNA migration (typical

comet-like structures) is performed by a fluorescent dye. An image analysis system

coupled to a microscope permits quantification of DNA damage at the single cell level.

Three measures are commonly used: the tail migration (i.e., tail length), percentage

tail intensity, and tail moment. Moreover, it exhibits higher-order hierarchies. In

essence, the comet assay represents a hierarchical design with animals nested within

doses, a number of slides per animals and several cells measured per slide. Comet

measures from an animal are clearly not normally distributed but are rather asym-

metric, skewed, bi- or multimodal, a mixture of different distributions, etc. While

such data consist of non-Gaussian outcomes in a multi-level hierarchical structure,

traditional analyses typically completely or partly ignore this hierarchical nature by

summarizing measurements within a cluster. The comet assay study is presented in

detail in Section 2.1.

In this thesis, different modeling issues that exist in the data are addressed: the

nature of the outcome variables, the higher-order hierarchical structure, the overdis-

persion effect, the presence of excess zeros, as well as the multivariate structure of the

data. A flexible modeling framework is thus needed to accommodate the above men-

tioned modeling issues. Moreover, an alternative estimation technique is proposed for

such models.

In Chapter 2, different datasets that are used throughout this thesis are intro-

duced. The first datasets correspond to the comet assay design and two sets of data re-

sulting from a toxicology study on 1,2-Dimethylhydrazine dihydrochloride compound

are presented. The second dataset is from a clinical trial in epilepsy, which has a

count type of outcome. A third dataset from a toxicology study on Ethylene glycol

with a binary time of outcome, is described as well.

In Chapter 3, the overview of models for non-Gaussian data, and the existing

estimation techniques are presented. The probability model has to reflect the na-
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ture of the data. In this chapter the different models for non-Gaussian are presented

which range from the basic GLM, generalized linear mixed model (GLMM), different

overdispersion models, to the recently proposed model for modeling for overdispersed

and hierarchically clustered data. The various estimation techniques and the approx-

imation techniques are also presented.

In Chapter 4, a flexible modeling approach for hierarchically clustered and overdis-

persed non-Gaussian outcome for comet assays is proposed, based on the combined

model (Molenberghs et al 2010). Whereas a conjugate gamma random effect is used

to account for the overdispersion of the data, both gamma and normal random effects

are considered to account for the hierarchical structure of the data. In this chapter,

the outcomes are modelled univariately. However, the comet assay data exhibit a

multivariate structure.

In general, multivariate longitudinal or clustered data are commonly encountered

in clinical trials and toxicological studies. Typically, there is no single standard end-

point to assess the toxicity or efficacy of the compound of interest, but co-primary

endpoints are available to assess the toxic effects or the working of the compound.

Modeling the responses jointly is thus appealing to draw overall inferences using all re-

sponses and to capture the association among the responses. In Chapter 5, a further

extension to a multivariate setting with hierarchically clustered and overdispersed

non-Gaussian outcomes is proposed for analysis of the comet assay data. The two

outcomes are jointly analyzed by assuming that the normal random effects for both

endpoints are correlated. The association structure between the response is analyti-

cally derived.

The overdispersion is accounted for through continuous conjugate random effects

in Chapters 4 and 5. While it is convenient because of the conjugacy, misspecification

of this distribution is possible. In Chapter 6, the use of mixture models is explored

for comet data. A finite mixture of models as an alternative way to account for

overdispersion, which is useful if the overdispersion is driven by subpopulations, and

zero-inflated models, which are also mixture models, are considered. In addition, the

use of a mixture of the conjugate distributions is also considered, where deviation

from a single conjugate distribution is allowed for, while the property of conjugacy

can still be employed to ease computations.

Another important aspect is the estimation technique for the combined model.

The main difficulty with this kind of models is the computational complexity due to

the intractable multivariate integrals, as is the case for GLMM that involve such inte-

grals with no analytic expression. Different estimation methods for these models were
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already proposed: estimation using partial marginalization (Molenberghs, Verbeke,

and Demétrio 2007, Molenberghs et al 2010), estimation in the Bayesian framework

(Ghebretinsae et al 2013), and an approximate estimation based on pseudo-likelihood

(Effendi, Molenberghs, and Verbeke 2010). In Chapter 7, we will investigate the use

of Gaussian variational approximation methods as a computationally fast estimation

method for the combined model. A range of overdispersed non-gaussian mixed models

will be investigated.



Chapter 2

Motivating Examples

This chapter introduces the datasets that are used throughout this thesis. In Sec-

tion 2.1, we present the comet assay datasets. In Section 2.2, we introduce data from

a clinical trial in epilepsy. The data from a toxicological study on Ethylene glycol is

then introduced in Section 2.3.

2.1 Comet Assay Data

A comet assay, regularly encountered in pre-clinical research, is a sensitive method

to assess DNA damage. It was first developed by Ostling and Johanson in 1984

and later modified by Singh et al in 1988. It has since increased in popularity as a

standard technique for evaluation of DNA damage/repair, biomonitoring and geno-

toxicity testing. During the last decade, the assay has emerged as a standard tool in

the pharmaceutical industry for the assessment of the safety of potential new drugs.

It involves the encapsulation of cells in a low-melting-point agarose suspension, lysis

of the cells in neutral or alkaline conditions, and electrophoresis of the suspended

lysed cells. Typically, it is a single cell microgel electrophoresis method detecting

DNA damage in any target tissue or organ of which a single cell suspension can be

prepared. Individual cells are embedded in a thin agarose gel on a microscope slide.

All cellular proteins are then removed from the cells by lysing. The DNA is allowed

to unwind under alkaline (pH>13.0) or neutral conditions. Following the unwinding,

the DNA undergoes electrophoresis, allowing the broken DNA fragments or damaged

DNA to migrate away from the nucleus. The resulting image obtained resembles a

“comet” with a distinct head and tail. The head is composed of intact DNA, while

9



10 Chapter 2. Motivating Examples

the tail consists of damaged (single-strand or double-strand breaks) or broken pieces

of DNA. The extent of DNA liberated from the head of the comet is directly pro-

portional to the amount of DNA damage. Visualization of this DNA migration is

performed by a fluorescent dye. An image analysis system coupled to a microscope

permits quantification of DNA damage at the single cell level. Three measures are

commonly used: the tail migration (i.e., tail length), percentage tail intensity, and tail

moment. Tail length is the distance from the perimeter of the comet head to the last

visible point in the tail, percentage tail intensity is the percentage of DNA fragments

present in the tail, while tail moment is the product of the amount of DNA in the tail

and the mean distance of migration in the tail. In many experiments, the cells from a

single animal are placed on a number of slides. Although there is no consensus among

the experts as to the most appropriate statistical method and design (the number of

slides and the replicates). Some studies (Wiklund and Agurell 2003, Smith et al 2008)

indicate 3 slides and about 50 replicates/cells would be appropriate. A summary of

the comet assay is presented in Figure 2.1.

The statistical analysis of such a comet assay is complicated because of several

issues in the data. The comet assay represents a hierarchical design (Figure 2.2) with

animals nested within doses, a number of slides per animals and several cells measured

per slide. Comet measures from an animal are oftentimes not normally distributed.

The complications that arise from the various non-normal distributions of comet end-

points are avoided in most standard analyses through the use of the central limit

theorem. While the original data at the cell level may not be normally distributed,

mean (or median) summaries at slide or animal level will be approximately normally

distributed (given the typically large sample sizes) and are thus amenable to standard

statistical analyses. Hierarchical or multilevel models make use of information on the

various levels of variability but may be quite complex in terms of the distribution

between cells of the same animals and difficult to interpret and explain. Their ad-

vantage, however, is that they provide estimates of the variability at each level and

make use of the information at the cell level thus increasing the power of the study

especially if the between-animal variability is not too large. Variability is expected

between slides because of the variability in the handling of the different slides, and

also variability between animals is expected, because of the individual-specific dif-

ferences. Analyses on the same data indicate the importance of slide variability in

contrast to the smaller rat variability (Ghebretinsae et al 2013).

The datasets resulted from a comet assay designed to assess the genotoxic potential

of 1,2-Dimethylhydrazine dihydrochloride at different dose levels. Two datasets are
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Figure 2.1: Comet assay. Upper: overview of comet assay design. Lower: visualization of
comets corresponding to the DNA damage of the cells.(Life Science: Comet Assay)
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Figure 2.2: Comet assay. Hierarchical structure of the design.

considered. The first set has been studied in Ghebretinsae et al (2013). It refers to

four groups of six male rats that received a daily oral dose of a compound in three

dose levels (low, medium, and high) or vehicle (control). On the day of necropsy, an

extra group of three animals received a single dose of a positive control (200 mg/kg

ethyl methanesulfonate, EMS, PC). The animals were sacrificed 3 hours after the last

dose administration, their liver was removed, and processed for the comet assay. For

each animal, a cell suspension is prepared. From each cell suspension, three replicate

samples were prepared for scoring. Fifty randomly selected, non-overlapping cells per

sample were then scored for DNA damage using a semi-automated scoring system.

Thus, a total of 150 liver cells were scored per animal, on three slides. Generally, the

toxicity level increases with the dose level. A summary of the data for tail intensity

and tail length are represented in Figure 2.3. It indicate dispersion is more pronounced

for tail length, due in part to the occurrence of zeros. We observe some extreme values

at all dose levels.

The second set refers to four groups of six male rats that received a daily oral dose

of a compound in three dose levels (low, medium, and high) or vehicle control. Also

in the second datasets, a total of 150 liver cells were scored per animal. But here, a

pronounced zero observations were observed in all dose groups. A summary of the

data for tail length is represented in Figure 2.4.
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Figure 2.3: Comet assay data 1. Box plots of tail intensity (left) and tail length (right) at
each dose level

2.2 A Clinical Trial in Epilepsy

The data considered here is obtained from a randomized, double-blind, parallel group

multi-center study for the comparison of placebo with anti-epileptic drug (AED), in

combination with one or two other AED’s. The study is described in full detail in

Faught et al (1996) and it is used in Molenberghs, Verbeke, and Demétrio (2007). The

randomization of epileptic patients took place after a 12-week baseline period that

served as a stabilization period for the use of AED’s, and during which the number

of seizures were counted. After that period, 45 patients were assigned to the placebo

group, 44 to the active (new) treatment group. Patients were then measured on a

weekly basis during 16 weeks, after which they were entered into a long term open

extension study. Some patients were followed for up to 27 weeks. The outcome of

interest is the number of epileptic seizures experienced during the last week, i.e., since

the last time the outcome was measured. The key research question is whether or not

the additional new treatment reduces the number of epileptic seizures. As a summary

of the data, the distribution of the response is presented in the left panel of Figure 2.5

and the average profile for the two treatment groups over time is presented in the

right panel of Figure 2.5. It produces a skewed distribution with largest observed

value equal to 73 seizures at one particular week.
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Figure 2.4: Comet assay data 2. Distribution of tail length for each dose level
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Figure 2.5: Epilepsy data. The distribution of the response (left) and the average profile
for the two treatment groups over time (right).

2.3 Ethylene Glycol (EG) Data

The third dataset is from a toxicology study of ethylene glycol. Ethylene glycol

(EG), also called 1,2-ethanediol is a high-volume industrial chemical with diverse

applications. It is used to make antifreeze and de-icing solutions for cars, airplanes

and boats, to make polyester compounds, and is used as a solvent in the paint and

plastic industries. It is also used as an ingredient in photographic developing solutions,

hydraulic brake fluids and in the formulation of several types of inks and many more.

While EG may not be hazardous to humans in normal industrial handling, it can

become dangerous when used at elevated temperatures or when ingested. Exposure to

large amounts of ethylene glycol can damage the kidneys, heart, and nervous system.

In addition, ingestion of antifreeze products, which consist for approximately 95 % of

EG, is toxic and may result in death. The data resulted from a study in which timed-

pregnant CD-1 mice were dosed by gavage with EG in distilled water as described

by Price et al (1985). Dosing occurred during the period of major organogenesis and

structural development of the foetuses (gestational days 6 through 15). The doses
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were administered at 0, 750, 1500, or 3000 mg/kg/day, with 25, 24, 23, and 23 timed-

pregnant mice randomly assigned to each of these dose groups, respectively. The

interest here is to assess the toxicity of this chemical at the different dose levels based

on a binary outcome, whether the foetus is malformed or not. Summary of the data

is presented in Figure 2.6. We observe a general trend of increasing toxicity with dose

level.
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Figure 2.6: EG data. Scatter plot of the rate of malformation in a litter, as a function of
dose.



Chapter 3

Methodological Background

Each of the datasets described in the previous chapter deals with correlated non-

normal data. In addition, these are hierarchically structured with two (for Epilepsy

and EG data) or three (for comet data) levels in the hierarchy. In building a flexible

model for such a complex data setting, some choices have to be made in regard to the

appropriate probability model and estimation method. The probability model needs

to reflect the nature of the data. One of these is the type of outcome: count, binary,

time to event, or continuous. Accordingly, an appropriate probability distribution

of the data collected need be considered. The other aspect is the data structure:

whether the data have hierarchical, clustered structure or not. As a result, differ-

ent modeling approaches can be considered: random-effect, marginal, or conditional

models. The choice between these may mainly depend on the research question one

wants to answer. However, the computational ease and the availability of software

tools also plays a role in the choice. In addition, when the data is highly skewed

and/or an overdispersion issue exists, models that accommodate these issues need be

considered.

Another issue is the estimation method. Based on the model formulation, an ap-

propriate estimation method has to be chosen. Estimation methods range from full

likelihood to approximating methods such as pseudo-likelihood and quasi-likelihood.

Likelihood methods enjoy many desirable properties, such as efficiency under appro-

priate regularity conditions and the ability to calculate functions of interest based

on the proposed parametric model (Edwards 1971). However, the estimation of the

parameters can be computationally intensive. As a result, alternative estimation tech-

niques are often of interest. But also, estimation can be done in a Bayesian framework,

17
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as an alternative to the likelihood framework.

In this chapter, a review of the existing models for the analysis of such non-

normal data as well as the estimation techniques is given. Section 3.1 presents an the

overview of models for non-normal data with overdispersion. The various techniques

are reviewed in Section 3.2.

3.1 Overview of Models for Modeling Non-normal

Data

3.1.1 Standard Generalized Linear Models

A standard approach for modeling non-normal data is the generalized linear model

(GLM). Let us assume that a random variable Y follows an exponential family dis-

tribution if the density is of the form:

f(y) = f(y|η, φ) = exp
{

φ−1[yη − ψ(η)] + c(y, φ)
}

, (3.1)

for a specific set of unknown parameters η and φ, and for known functions ψ(·) and
c(·, ·). Often, η and φ are termed ‘natural parameter’ (or ‘canonical parameter’) and

‘dispersion parameter’, respectively.

The first two moments follow from the function ψ(·) (Molenberghs and Verbeke

2005) and are given by:

E(Y ) = µ = ψ′(η), (3.2)

Var(Y ) = σ2 = φψ′′(η), (3.3)

An important implication is that, in general, the mean and variance are related

through σ2 = φψ′′[ψ−1(µ)] = φv(µ), with v(·) the so-called variance function, de-

scribing the mean-variance relationship. This relationship exists in the exponential

family for binary, count, and time-to-event data. The normal model is a special one,

in particular because the overdispersion parameter is needed to allow for a variance

other than unity. As a result, the mean-variance relationship, is absent for this model,

but present for all others.

In a regression context, where one wishes to explain variability between outcome

values based on measured covariate values, the model needs to incorporate covari-

ates. This leads to so-called generalized linear models. Let Y1, . . . , YN be a set of
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independent outcomes, and let x1, . . . ,xN represent the corresponding p-dimensional

vectors of covariate values. It is assumed that all Yi have densities f(yi|ηi, φ), which
belong to the exponential family, but a different natural parameter ηi is allowed per

observation. Specification of the generalized linear model is completed by modeling

the means µi as functions of the covariate values. More specifically, it is assumed

that µi = h(ηi) = h(x′
iξ), for a known function h(·), and with ξ a vector of p fixed,

unknown regression coefficients. Usually, h−1(·) is called the link function. In most

applications, the so-called natural link function is used, i.e., h(·) = ψ′(·), which is

equivalent to assuming ηi = x′
iξ. Hence, it is assumed that the natural parameter

satisfies a linear regression model.

3.1.2 Overdispersion Models

As presented in Molenberghs et al (2010), the standard Bernoulli, Poisson, and ex-

ponential models force the mean and variance functions to depend on a single pa-

rameter. However, comparing the sample average with the sample variance might

already reveal in certain applications that this assumption is not in line with a partic-

ular set of data, for count and time-to-event data, for example. Therefore, a number

of extensions have been proposed. Hinde and Demétrio (1998ab) provide general

treatments of overdispersion. The Poisson case received particular attention by Bres-

low (1984) and Lawless (1987). Molenberghs and Verbeke (2005) mentions various

model-based approaches that accommodate overdispersion, including the betabino-

mial model (Skellam 1948), the Bahadur model (1961), the multivariate probit model

(Dale 1986, Molenberghs and Lesaffre 1994), and certain versions of the generalized

linear mixed model (Breslow and Clayton 1993).

A straightforward and commonly encountered step is to allow the overdispersion

parameter φ 6= 1, so that Var(Y ) = φv(µ). This is in line with the moment-based

approach mentioned in the previous section, but can also be engendered by fully

parametric assumptions. Another way forward is through a random effect. Assuming

no particular distributional form for the random effects gives rise to a semi-parametric

specification. Assuming full distributional assumptions about the random effects may

be advantageous though. In that case, the common choices are the beta distribution

for binomial outcomes and the gamma distribution for Poisson and Weibull outcomes.

Generally, the model is made up of two components: a distribution for the outcome,

given a random effect f(yi|θi), and a distribution for the random effect, f(θi). If the
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two are combined, it produces the marginal model:

fi(yi) =

∫

f(yi|θi)f(θi)dθi. (3.4)

Considering gamma random effects for the Poisson model, beta random effects for bi-

nomial data, and gamma random effects for the Weibull model may look a disparate

collection. However, they are bound together by the property of conjugacy, in the

sense of Cox and Hinkley (1974, p. 370) and Lee, Nelder, and Pawitan (2006, p. 178).

Informally, conjugacy refers to the fact that the hierarchical and random-effects den-

sities have similar algebraic forms. Conjugate distributions produce a general and

closed-form solution for the corresponding marginal distribution.

In the case of binary data, the marginal model is the familiar beta-binomial model.

For count data, the negative-binomial model results. Unlike in the binary case, uni-

variate counts are able to violate the mean-variance relationship of the Poisson distri-

bution, hence the great popularity of this and other types of models for overdispersion.

The parameters α and β in the beta and gamma distributions are not always

jointly identified. It is therefore customary to impose restrictions, such as setting one

of them equal to a fixed value, e.g., α = 1, or constraining their mean or variance,

etc.

3.1.3 Generalized Linear Mixed Models

The generalized linear mixed model (GLMM; Breslow and Clayton 1993, Molenberghs

and Verbeke 2005) is the most frequently used random-effects model in the context

of non-Gaussian repeated measurements. It is a relatively straightforward extension

of the generalized linear model for independent data (Section 3.1.1) to the context of

hierarchically organized data on one hand and the linear mixed model (Verbeke and

Molenberghs 2000) on the other hand. A wide range of software tools is available

for fitting such models. Let Yij be the jth outcome measured for cluster (subject) i,

i = 1, . . . , N, j = 1, . . . , ni, and stack the ni measurements into a vector Yi. Assume

that, in analogy with Section 3.1.1, conditionally upon q-dimensional random effects

bi ∼ N(0, D), the outcomes Yij are independent with densities of the form:

fi(yij |bi, ξ, φ) = exp
[

φ−1[yijηij − ψ(ηij)] + c(yij , φ)
]

, (3.5)

with

ψ′(ηij) = µij = E(Yij |bi, ξ) = h(x′
ijξ + z

′
ijbi), (3.6)
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for a known function h(·) and h−1(·) is the link function, with xij and zij p-

dimensional and q-dimensional vectors of known covariate values, with ξ a p-

dimensional vector of unknown fixed regression coefficients, and with φ a scale

(overdispersion) parameter. Finally, let f(bi|D) be the density of the N(0, D) distri-

bution for the random effects bi.

3.1.4 Combined Model

Integrating both the overdispersion random effects as well as the normal random

effects into the generalized linear model framework, Molenberghs et al (2010) pro-

posed an exponential family model to accommodate simultaneously the clustering

and overdispersion effects. It extends the generalized linear mixed model by the use

of conjugate random effect for overdispersion. The general model family proposed for

modeling overdispersed and correlated data is given by:

fi(yij |bi, θij , ξ, φ) = exp
{

φ−1[yijλij − ψ(λij)] + c(yij , φ)
}

, (3.7)

for outcome Yij on subject i = 1, . . . , N at occasion j = 1, . . . , ni. The unknown

parameters λij and φ are termed natural parameter and scale parameter, respectively.

The term c(yij , φ) is the normalizing constant. The function ψ(·) is a known function

with the property that E[yij |bi, θij , ξ] = ψ′(λij) and Var(yij |bi, θij , ξ) = φψ′′(λij).

Model specification proceeds by assuming that the conditional mean of Yij is given

by

E[Yij |θij , bi] = µc
ij = θijκij , (3.8)

where θij ∼ Gij(ξij , σ
2
ij) for some distribution Gij with mean ξij and variance σ2

ij and

κij = g(ηij) = g(x′
ijξ + z

′
ijbi) for some function g and bi ∼ N(0, D). The random

variable θij is used to account for the overdispersion in the data, while the random

effect in κij accounts for the clustered or hierarchical structure of the data. The two

parameters ηij and λij refer to the linear predictor and/or the natural parameter.

The basic difference is that λij encompasses the random variables θij , whereas ηij

refers to the ‘GLMM part’ only.

Most often, but not strictly necessary, it is assumed that the two sets of random

effects, θi and bi, are independent of each other. Regarding the components θij of

θi, three useful special cases result from assuming that: (1) they are independent; (2)

they are correlated, implying that the collection of univariate distributions Gij(ξij , σ
2
ij)

needs to be replaced with a multivariate one; and (3) they are equal to each other,
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useful in applications with exchangeable outcomes Yij (see Molenberghs et al 2010

for further discussion).

Parameterization (3.8) is such that the random effects θij capture overdispersion,

and are formulated directly at the mean scale, whereas κij can be considered the

generalized linear mixed model component.

An important concept in regard to computational efficiency is conjugacy, in the

sense of Cox and Hinkley (1974, p. 370) and Lee, Nelder, and Pawitan (2006, p. 178).

Conjugacy refers to the fact that the hierarchical and random-effects densities have

similar algebraic forms. Conjugate distributions produce a general and closed-form so-

lution for the corresponding marginal distribution. Molenberghs et al (2010) adapted

conjugacy to the situation where both normal and overdispersion random effects are

included. For further explanation see Molenberghs et al (2010).

A set of three types of outcomes are further considered: time-to-event, count and

binary. A Poisson model will be considered for counts, a Weibull-exponential model

for time-to-event and a logistic model for binary outcomes.

3.1.4.1 Poisson-type Models for Count Data

From the general developments above, the Poisson model with gamma and normal

random effects combined naturally follows. By way of overview, let us assemble all

model elements:

Yij ∼ Poisson(λij), (3.9)

λij = θij exp(xij
′ξ + z′ijbi), (3.10)

bi ∼ Normal(0, D), (3.11)

θij ∼ Gamma(α, β). (3.12)

It is a Poisson-gamma-normal model or, equivalently, a negative-binomial-normal

model. It is implicitly assumed that the components θij of θi are independent. This

is natural in many cases in the sense that the bi will induce association between

repeated measurements, with then the θij taking care of additional dispersion. For

a dependent θij , then one could choose, for example, multivariate extensions of the

gamma model (Gentle 2003).

Further to this, regarding the overdispersion random effects, three situations could

be of interest: (1) the random-effects θij are independent; (2) they are allowed to be

dependent; (3) they are equal to each other and hence reduce to θij = θi.
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3.1.4.2 Weibull- and Exponential-type Models for Time-to-event Data

The general Weibull model for repeated measures, with both gamma and normal

random effects can be expressed as:

f(yij |θij , bi) = λρθijy
ρ−1
ij eηij e−λyρ

ijθije
ηij

, (3.13)

ηij = x′
ijξ + z

′
ijbi, (3.14)

f(θij) =
1

βαΓ(α)
θα−1
ij e−θij/β , (3.15)

f(bi) =
1

(2π)q/2|D|1/2 e
− 1

2
bi

′

D−1bi . (3.16)

A few comments are in place. First, it is implicit that the gamma random effects

are independent. This need not be the case and, like in the Poisson case, extension

via multivariate gamma distributions is possible. Second, setting ρ = 1 leads to the

special case of an exponential time-to-event distribution. Third, it is evident that the

classical gamma frailty model (i.e., no normal random effects) and the Weibull-based

GLMM (i.e., no gamma random effects) follow as special cases. Fourth, owing to the

conjugacy and the following property of the gamma distribution:

1

κ
f(θ|α, β) =

1

κ

1

βαΓ(α)
θα−1e−θ/β, (3.17)

=
1

(κβ)αΓ(α)
(κθ)α−1e−(κθ)/(κβ), (3.18)

= f(κβ|α, κβ). (3.19)

strong conjugacy applies. This is typically considered for the exponential model, but

it holds for the Weibull model too, merely by observing, that the Weibull model is

nothing but an exponential model for the random variable Y ρ
ij . It is equally possible to

derive this result by merely re-writing the factor φ = λκ. Fifth, the above expressions

are derived for a two-parameter gamma density. It is customary in a gamma frailty

context (Duchateau and Janssen 2007) to set αβ = 1, for reasons of identifiability. In

this case, (3.15) is replaced by

f(θij) =
1

(

1
α

)α
Γ(α)

θα−1
ij e−αθij , (3.20)
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Alternatively, assuming α = 1 and β = 1/δ, one could write

f(θij) = δe−δθij , (3.21)

implying that the gamma density is reduced to an exponential one.

3.1.4.3 Bernoulli-type Models for Binary Data

Similar to the Poisson case, a natural binary-data counterpart is:

Yij ∼ Bernoulli(πij = θijκij), (3.22)

κij =
exp(x′

ijξ + z
′
ijbi)

1 + exp(x′
ijξ + z

′
ijbi)

, (3.23)

bi ∼ Normal(0, D), (3.24)

θij ∼ Beta(α, β). (3.25)

In comparison to the longitudinal Poisson case, the longitudinal binary case ap-

pears to defeat closed-form solutions and strong conjugacy. However, this hinges on

the fact that we employ the logit link. In spite of it being a very natural choice in the

univariate case, it does not combine very nicely with normal random effects. This is

known already from the GLMM framework for binary data.

3.2 Estimation Techniques

Based on the model formulation, an appropriate estimation method should be cho-

sen. Estimation methods range from full likelihood to pseudo-likelihood, and quasi-

likelihood.

3.2.1 Maximum Likelihood Estimation

In general, for a fixed set of data and underlying statistical model, the method of

maximum likelihood selects the set of values of the model parameters that maximizes

the likelihood function. Intuitively, this maximizes the “agreement” of the selected

model with the observed data. Random effects models can be fitted by maximization

of the marginal likelihood, obtained by integrating out the random effects. In the
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generalized linear mixed model, the likelihood contribution of subject i becomes:

fi(yij |β,D, φ) =
∫ ni
∏

j=1

fi(yij |bi, D, φ)f(bi)dbi, (3.26)

from which the likelihood for β,D, and φ is derived as:

L(β,D, φ) =

N
∏

1=1

fi(yij |β,D, φ) =
N
∏

i=1

∫ ni
∏

j=1

fi(yij |bi, D, φ)f(bi)dbi (3.27)

In a similar way, the combined model can be fitted by maximizing the marginal

model, obtained by integrating out both random effects. Maximum likelihood meth-

ods enjoy many desirable properties, such as efficiency under appropriate regularity

conditions. But it can be unattractive due to excessive computational requirements.

For example, with multivariate exponential family models, it can have a cumber-

some expression, rendering it hard to evaluate (Arnold and Strauss 1991). Several

suggestions have been made to overcome this problem, such as Monte Carlo integra-

tion (Tanner 1991). For example, Geyer and Thompson (1992) use Markov Chain

Monte Carlo simulations to construct Monte Carlo approximation to the analytically

intractable likelihood. Arnold and Strauss (1991) proposed the use of a so called

pseudo-likelihood (PL) function.

3.2.2 Approximate Estimation Techniques

The problem in maximizing (3.27) is the presence of the N -integrals over the q-

dimensional random effects bi. In some special cases, these integrals can be worked out

analytically. For example, this has been done for linear mixed models for continuous

outcomes (Molenberghs 2005). In general, no analytic expressions are available for the

integrals and numerical approximation is needed. There is a large statistical literature

on various methods to do so. The numerical approximations can be subdivided in:

(1) those that are based on the approximation of the integrand; (2) those on the

approximation of the data and; (3) those that are based on the approximation of the

integral itself.

3.2.2.1 Approximation of the Integrand

The first approach is through the approximation of the integrand. When the inte-

grands are approximated, the goal is to obtain a tractable integral such that a closed
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form expressions can be obtained, making the numerical maximization of the approx-

imate likelihood feasible. Several methods have been proposed, but basically all come

down to Laplace-type approximations of the function to be integrated (Molenberghs

2005). Recently, Ormerod and Wand (2012) introduced variational approximation in

the statistical modeling framework. It approximates the integrand by introducing a

set of approximating densities in such a way as to make their evaluation tractable. It

will be discussed in Chapter 7.

3.2.2.2 Approximation of the Data

Another approach is based on a decomposition of the data into the mean and an ap-

propriate error term, with a Taylor series expansion of the mean, which is a non-linear

function of the linear predictor. All methods in this class differ in the order of the

Taylor approximation and the point around which the approximation is expanded.

Penalized Quasi- Likelihood (PQL) and Marginal Quasi- Likelihood (MQL) are ex-

amples of techniques based on approximation of the data. PQL is obtained by/from

maximizing a quasi-likelihood function which only involves first- and second-order

conditional moments, augmented with a penality term on the random effects. MQL

is also very similar to PQL in the sense that it also depends on first- and second-order

conditional moments, but now evaluated in the marginal linear predictor instead of

the conditional linear predictor. The difference is MQL does not incorporate the

random effect bi.

3.2.2.3 Approximation of the Integral

Where the above approximation methods fail, approximations to the integral, that

is, numerical integration, is useful. Approxmation of the integral through Gaussian

quadrature assumes that
∫

f(z)Φ(z)dz is approximated by:

∫

f(z)Φ(z)dz ≈
Q
∑

h=1

whf(zh).

The integral is approximated by a weighted sum evaluated at Q values zh, called

quadrature points. The quadrature points are the solutions to the Qth order hermite

polynomial. wh are appropriately chosen weights. In the simple setting of univari-

ate integration, the approximation consists of subdividing the integration region in

intervals, and approximating the area under the curve by the sum of the areas of the
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so-obtained rectangles. In general, the higher Q, the smaller the width of the intervals

and the better the approximation. The quadrature points zh are independent of the

function f(z), and as a result the zh may or may not lie in the region of interest.

In such a case, for a small value of Q, the quadrature points zh can be inappropri-

ate. In that case, it might be useful to rescale and shift the quadrature points such

that more points lie in the region of interest. In the adaptive Gaussian quadrature

the quadrature points are centered and scaled as if f(z)Φ(z) would follow a normal

distribution.

3.2.3 Bayesian Estimation

When random-effects models are used, the likelihood function involves the integration

over the random-effects distribution. In case responses are normally distributed, the

marginal likelihood can be derived analytically. However, this property of normal

models does not extend to the case of non-normal distributions, where in general, no

closed forms are available. Estimation methods then either employ an approximation

of the integrand or uses numerical integration techniques. The need for complex

numerical integration can be avoided by casting the random-effects model into a

Bayesian framework, and resorting to the Gibbs sampler (Zeger and Karim 1991).

In the Bayesian framework, the unknown parameters are estimated by the pos-

terior mean. It is typically done by taking random draws from a posterior density

using Markov chain Monte Carlo simulation (MCMC), particularly Gibbs sampling.

The basic idea of Gibbs sampling is to partition the set of unknown parameters and

then estimate them one at a time or in a group, conditional on all others. The Gibbs

sampler starts with initial values for all parameters and then updates them in turn,

giving each a random estimate based on the data and the current guess of the other

parameters in the model (Gelman and Hill 2006). The sample averages are taken

as the posterior means of the parameters of interest. A model selection procedure

is needed in order to compare between models and to select the best fitting model.

Goodness-of-fit and complexity of the models can be assessed using the deviance in-

formation criterion (DIC) as proposed by Spiegelhalter et al (1998, 2002) and recently

used by Erkanli et al (2000), Rahmann et al (1999) and Gelfand et al (2000) for model

selection within the Bayesian framework.
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3.2.3.1 Deviance Information Criterion (DIC)

The deviance is defined as the posterior distribution of the log likelihood: D =

−2 log(p(y|β))+2 log f(y), where p(y|β) is the posterior density, with f(y) a standard-

izing term that does not affect model comparison. The goodness of fit of the model is

then summarized by the posterior expectation of the deviance: Eβ|y[D]. Spiegelhalter

et al (1998, 2002) suggested to measure the complexity of the model by the difference

between the posterior expectation of the deviance (D̄) and the deviance evaluated at

the posterior expectation of β (D̂), that is:

pD = Eβ|y[D]−D(Eβ|y[β]), (3.28)

= D̄ − D̂, (3.29)

where pD can be interpreted as the effective number of parameters in the model.

These are combined to give the overall DIC:

DIC = D̄ + pD,

where the first term represents the goodness of fit and the second term represents

the model complexity (the effective number of parameters). Smaller values of DIC

indicate a better fitting model.



Chapter 4

Univariate Model for

Hierarchically Clustered and

Overdispersed Outcomes:

Comet Assay Data

As explained in the previous chapters, the statistical analysis of a comet assay is com-

plicated because of several issues in the data. In this chapter, a method is proposed

accounting for different challenges: the multi-level structure of the data, the type of

data, and the skewness of the outcome of interest.

In many protocols, the cells from a single animal are placed on a number of slides.

Each cell is then investigated for DNA damage by measuring the tail length and tail

intensity of the comet. Because variability is expected between slides and between

animals, this needs to be taken into account in the statistical analysis. This results

in three-level hierarchies, with clustering at the animal and slide level (Figure 2.2).

Moreover, exploration of the distribution of the gathered data and previous work in

this area indicate that the distribution for the responses (tail length and tail intensity)

are asymmetric (Lovell and Omori 2008). This is often completely or partly ignored

in traditional analyses. The standard approach of modeling non-normal data, such

as the tail intensity and tail length in the comet assay, is using a generalized linear

model (e.g., a Weibull model). The generalized linear model framework (McCullagh

29
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and Nelder 1989) is a very rich one. Nevertheless, as already discussed in Chapters

1 and 3, many standard members of the family may exhibit overdispersion due to a

prescribed relationship between mean and variance. For example, in the exponential

and Weibull cases, there is a quadratic relationship between them. This is why many

proposals have been made to extend the models such that they can deal with so-called

overdispersion, which is taken to mean that the actual relationship between mean and

variance is different from the one prescribed.

Here, a random effects model is proposed accounting for both the overdispersion

in the data and the hierarchical design of the assay. Random effects are broadly

used to analyze outcomes collected in a repeated-measures, longitudinal, clustered,

or multivariate fashion. But as mentioned in previous chapters, random effects can

also be used to accommodate the overdispersion in the data. For example, when

parameters in the Weibull model are thought of as being random and each observation

is drawn from a different Weibull distribution, this would lead to an overdispersed

Weibull model. An overview is given in Molenberghs et al (2010). Random effects

are frequently assumed to be normal, but they can take various distributional forms,

such as beta random effects with binomial data, gamma random effects with count

data, etc. An illustrious counterexample is time-to-event data where gamma random-

effects, usually termed gamma frailties, are in common use. Molenberghs et al (2010)

proposed an extended framework where both types of random effects are considered

simultaneously, so as to deal, at the same time, with overdispersion on the one hand

and data hierarchies on the other.

Arguably, such model development, while requiring additional work, is necessary

for a number of reasons. First, Molenberghs, Verbeke, and Demétrio (2007) showed

that classical generalized linear mixed models (GLMM) can be inadequate to model,

at the same time, overdispersion and data hierarchies. Precisely, they modeled repeat-

edly measured epileptic-seizure data and found that the more conventional GLMM

exhibited inferior fit, but also that two types of inferences were incorrect under the

simpler model: (1) the correlation between repeated measures was substantially over-

estimated with the GLMM and (2) the treatment effect with the GLMM was found

significant whereas the extended model showed that there was no treatment effect

at all. Thus, the spurious treatment effect was entirely a consequence of model mis-

specification. Second, the design considered here is even more complex, with various

hierarchical levels; it is generally inappropriate to consider a model that does not

fully accommodate the design. Third, even if the model could be simplified to a more

conventional model, this cannot be uncovered without considering a more general
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model. Thus, the model development proposed here can be used additionally as a

goodness-of-fit tool for, say, the GLMM.

Here, we will focus on the specific case of a non-negative continuous outcome in

view of the comet assay. Whereas Molenberghs et al (2010) considered a two-level

hierarchy in the form of repeated measures on the same subject, the comet assay data

exhibit higher-order hierarchies.

Also, these authors considered maximum likelihood estimation, but here we rather

propose a Bayesian approach. Not only does it have computational advantages,

it allows to take relevant information from preceding studies into account, a so-

called Bayesian learning approach. The interest here is to see the toxicity of 1,2-

Dimethylhydrazine dihydrochloride at the different dose levels (low, medium, and

high) using the appropriate distribution and taking in to account the complete hier-

archical nature. This work has been published in Ghebretinsae et al (2013).

In this chapter, data are explored and the traditional analyses are presented in

Section 4.1. Section 4.2 presents the framework for combined overdispersion and hier-

archical random effects with non-Gaussian continuous outcome. Estimation method-

ology is discussed in Section 4.3. The effect of overdispersion and clustering is illus-

trated in Section 4.4. The data are analyzed in Section 4.5.

4.1 Data Exploration and Traditional Models

Although for the purpose of comparison across studies, statistical analyses are com-

monly performed on percentage of tail intensity, tail length is also used. Data for

tail intensity and tail length are represented in Figure 2.1. For these data, an non-

negligble set of dispersed observations are encountered and it was more pronounced

for tail length. This may require attention in modeling with respect to the adequacy

of the model to handle the dispersion present in the data. Further exploration is done

to get an idea of the variation at rat- and slide-level. Figure 4.1 shows scatter plots of

the average measurement at rat and slide levels after adjustment for the dose effect.

Noticeable variability in the average score of the slides was observed, illustrating the

importance of slide effect. Looking at the variability of the averages at slide level

before and after adjusting for the rat effect, it can be seen that the variation shrinks

more for tail length, implying that the rat effect could be more important for tail

length as compared to tail intensity. This suggests the use of more elaborate models

to formally check the importance of clustering and overdispersion.
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(a) Tail Intensity

(b) Tail Length

Figure 4.1: Comet Assay Study. Scatter plot of average (a) tail intensity and (b) tail length,
after adjusting for the dose effect (Left): at rat level; (Middle): at slide level; (Right): at
slide level, but adjusted for the rat effect.

Standard methods to investigate the dose-response relationship of tail length and

tail intensity, are based on first log-transforming the outcome to deal with the skew-

ness of the outcome, and second, taking animal-averages of the log-transformed out-

comes as a summary measure of the measurements in the animals. Thus, the hierar-

chical structure is completely ignored and the analysis is done using simple analysis

of variance techniques. Sometimes, summary measures for the cells at slide-level are

used instead of at the animal-level (Lovell and Omori 2008). The analysis is then

performed using a mixed model, fitting the group as a fixed effect and animal as

a random effect, and using the Kenward-Roger method for calculating degrees of
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Table 4.1: Comet Assay Study. Parameter estimates, standard errors and credible intervals
from the conventional models for tail intensity.

Weibull Analysis of variance

Effect Parameter Estimate(s.e.) 95% C.I. Estimate(s.e.) 95% C.I.

Veh. β0 -2.431(0.056) [-2.54,-2.32] 0.234(0.052) [0.13,0.34]

Low vs. veh. β1 -2.698(0.053) [-2.80,-2.59] 3.351(0.073) [3.21,3.49]

Med. vs veh. β2 -2.947(0.054) [-3.05,-2.84] 3.527(0.074) [3.38,3.67]

High vs veh. β3 -3.156(0.055) [-3.27,-3.05] 3.693(0.074) [3.55,3.84]

Pos. C.vs veh. β4 -1.711(0.060) [-1.83,-1.59] 2.543(0.09) [2.37,2.73]

Weibull shape ρ 1.376(0.018) [1.34,1.41]

freedom (Kenward and Roger 1997). However, with this method, one loses a lot of

information. Indeed, 150 cell observations are summarized by, for example, a single

value. Such averaging effect may have a major impact on parameter estimation and

corresponding inferences. Therefore, it is of paramount importance to deal with the

full hierarchical structure using an appropriate probability distribution suggested in

the literature. The results of the traditionally used analysis of variance and classical

Weibull model for tail intensity are presented in Table 4.1, which will be compared

to estimates from the proposed model in Section 4.5.

4.2 Hierarchical, Overdispersed, Non-Gaussian

Continuous Outcomes

In this section, the model of interest for the comet assay data will be outlined. Because

tail intensity and tail length are skewed, non-negative and continuous, which is similar

to time-to-event data, an exponential or Weibull model appears appropriate. It is well

known that the exponential distribution and gamma distribution are conjugate. The

same holds for the Weibull distribution, when considered exponential in the outcome

yρij . These facts are reviewed in Molenberghs et al (2010). In particular, closed form

expressions can be derived for the joint distribution, mean, variance, and higher-order

moments.

Let us first assume that there is only one level of hierarchy in the data, e.g., the

variability between animals. We then propose to use a combined model with a normal

random effect to handle the hierarchy in the data and a conjugate random effect to

account for overdisperion in the response. Using the Weibull distribution, this leads to
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the Weibull-type combined model in (3.13)–(3.16) with bi the animal-specific random

effects to account for the clustering of observations and θij the measurement-specific

random effects to accommodate for overdispersion.

Next, let us propose an extension of the above model accounting for an extra

level of hierarchy. Indeed, in the comet assay there are two sources of variation: one

coming from the slide effect and one from the animal effect. The previous model can be

extended by the use of three random effects of which one is the overdispersion effect. In

addition, while typically a normal random effect is included in the linear predictor to

account for the clustering, as in Molenberghs et al (2010), also a multiplicative factor

using a multivariate gamma distribution can be used, similar to the multiplicative

factor for the overdispersion random effect. For example, let us consider a model

with a normally distributed random effect for the first hierarchy in the data and a

gamma random effect for the second hierarchy in the data. In addition, we allow for

the overdispersion in the model via another gamma-random effect. Let the outcome

Yijk be the measurement for unit k = 1, . . . , nij of cluster i = 1, . . . , N , sub-cluster

j = 1, . . . , ni. The model can then be expressed as:

Yijk|bi, bij , θijk ∼ Weibull(ρ, λθijkbije
ηijk),

ηijk = x′
ijξ + bi,

θijk ∼ Gamma(α1, 1/α1),

bij ∼ Gamma(α2, 1/α2),

bi ∼ Normal(0, D),

leading to

f(yijk|θijk, bi, bij) = λρθijkbijy
ρ−1
ijk e

x′

ijkξ+bie−λyρ

ijk
θijkbije

x′

ijk
ξ+bi

, (4.1)

f(θijk) =
1

(

1
α1

)α1

Γ(α1)
θα1−1
ijk e−α1θijk , (4.2)

f(bi) =
1

(2πd)1/2
e−

1
2d

b2i , (4.3)

f(bij) =
1

(

1
α2

)α2

Γ(α2)
bα2−1
ij e−α2bij . (4.4)
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The conditional mean, given the overdispersion and hierarchical random effects is:

E(yijk|θijk , bi, bij) =
Γ( 1ρ + 1)

λθijkbije
x′

ijk
ξ+bi

. (4.5)

Similarly, other models can be defined where either a gamma or a normal random

effect is considered. This results in four different models: (a) Weibull- gamma(OD)-

normal(RE1)-normal(RE2); (b) Weibull-gamma(OD)-normal(RE1)-gamma(RE2);

(c) Weibull-gamma(OD)-gamma(RE1)-normal(RE2); and (d) Weibull-gamma(OD)-

gamma(RE1)-gamma(RE2), where (.) explains what this random effect is considered

for. OD refers to the overdispersion random effect, RE1 and RE2 refer to the first and

second hierarchical random effect, respectively. As a result, a very flexible modeling

framework is obtained for which model selection can easily be performed.

4.3 Bayesian Estimation Using MCMC

In the Bayesian framework, computation of the posterior probability is of main in-

terest.The posterior probabilities are obtained by updating the likelihood with prior

probabilities. For the Weibull-gamma(OD)-normal(RE1)-gamma(RE2) model for in-

stance, combining the distribution of the outcome variable given in (7.6) with prior

densities f(ϑ, θijk, bi, bij), the posterior density is:

p(ϑ|y, x) ∝
N
∏

i=1

J
∏

j=1

n
∏

k=1

f(yijk|λijk)f(ϑ, θijk, bi, bij), (4.6)

where λijk = θijkbij exp(x
′
ijkξ + bi) and ϑ is a group of parameters (ξ, ρ).

Sampling was done with two chains and dispersed initial values were given for

all parameters in the two chains. 150,000 samples were drawn from each chain and

the first 100,000 samples were discarded. To ensure the samples are drawn from the

target posterior density, convergence was checked by comparing the between- and

within-chain variation for each parameter in the simulated samples.

Non-informative or weak priors were used for all the parameters of interest:

β0, β1, β2, β3, β4 ∼ N(0, 106); σ2
r ∼ IG(0.1, 0.001); ρ ∼ exp(0.01); αθ ∼ Gamma(2, 2);

and αs ∼ Gamma(0.1, 0.1), where IG is the Inverse Gamma distribution. The mean

was reported as point estimate for each parameter, together with the 95 percent cred-

ible interval that ranges between the 2.5 and 97.5 percent quantiles. Note that, while
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the α value for the gamma distribution will result in a relatively informative prior,

sensitivity of the prior has to be checked. In general, for large datasets, varying this

value has little or no impact on the conclusion. For relatively small sets of data,

however, caution is needed.

4.4 Illustration of Overdispersion and of the Clus-

tering Effect

Overdispersion, in which the variability in the data is beyond the variance of the model

considered, occurs quite often in practice. This is basically because of the restricted

relationship between mean and variance functions. The extra-variability could be due

to some unaccounted covariates/factors, heterogeneous population, clustering effect

and many others. The extra unaccounted variability can be accounted for by the use

of mixture models or using an overdispersion parameter. In this case, a continuous

overdispersion random effect is used. We now illustrate how the effect of the overdis-

persion random effect and the clustering random effect extend the Weibull model to

accommodate more dispersed data. This is done by comparing the marginalized densi-

ties corresponding to different models. Because no analytical expressions are available

for all these models, a large dataset is simulated from the models, and a density plot is

made from the data. we simulate data from models that assume both overdispersion

and clustering, model that consider either overdispersion or clustering and a model

that considers neither of them. Let us first see the effect of overdispersion alone. The

data are generated from: (1) Weibull Model: Weibull(ρ, 1) and (2) Weibull-gamma

Model: Weibull(ρ, θ). In the Weibull-gamma model, we assume different choices for

the Gamma(α, 1) distribution (different choices of α parameters) in order to see the

effect of overdispersion. The result is given in the upper panel of Figure 4.2. Inclusion

of the gamma random effect, results in ticker right-tails, an important characteristic

of overdispersion. Similarly, to have an idea of the effect of clustering alone and the

effect of overdispersion combined with clustering, we generate data from the following

set: (1) Weibull model: Weibull(ρ, 1); (2) Weibull-normal model: Weibull(ρ, ebi); and

(3) Weibull-gamma-normal model: Weibull(ρ, θebi), where ρ = 1.4, bi ∼ Normal(0, 1),

i = 1, . . . , 20, and θ ∼ Gamma(α, 1).

The density plot of the data is presented in the lower panel of Figure 4.2. Intro-

ducing clustering leads to more dispersion in the data. With the inclusion of both the

overdispersion and clustering random effect, more variability is seen with the degree
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Figure 4.2: Illustration of the effect of clustering and overdispersion.
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of dispersion depending on the α parameter. If this is the case, analyzing more dis-

persed data using the traditional model, which does not address overdispersion and

clustering, may leave a lot of variability unexplained and it can affect the precision of

the estimates.

4.5 Application to the Comet Assay Data

The primary goal is to assess the toxicity of 1,2-Dimethylhydrazine dihydrochloride

at different dose levels. The data described in Chapter 2 are analyzed taking the

multilevel hierarchical nature into account. Cells coming from the same rat could be

more alike due to biological reasons, implying clustering at the animal level. Moreover

the fact that cells are grouped into three slides could pose some sort of clustering due

to uncontrolled differences in external factors such as the amount of gel being used.

In addition to the hierarchical structure, the skewed nature of the outcome variable

adds complexity. Tail intensity and tail length are non-negative continuous outcomes.

In the literature, a number of probability distributions were proposed for modelling

the distribution. These include the Weibull, exponential, logistic, normal, log-normal,

and log-logistic distributions (Lovell and Omori 2008). Ejchart and Sadlej-Sosnowska

(2003) found that Weibull was the best distribution for such data. In our analyses,

also the Weibull distribution was assumed. As explained in the previous section, a

gamma random effect is used for the overdispersion and both normal and gamma

random effects are used to explain the hierarchical structure. As described in Section

4, the normal random effect is included in the linear predictor and the gamma random

effect is included as multiplicative effect together with the overdispersion factor. This

creates a wide choice of models to choose from. Table 4.2 presents an overview of the

models considered.

Model 1 is the traditional Weibull model that ignores the hierarchical nature as

well as overdispersion. Model 4 considers the overdispersion but not the hierarchical

nature. Models 2, 3, 7, and 8 consider one random effect (rat or slide) and ignore the

over-dispersion and the other random effect, the classical gamma frailty model being

part of it. Models 5, 6, 9, and 10 consider the overdispersion and one random effect

but ignore the second one. Models 11–14 consider the correct hierarchical structure

but ignore the overdispersion. The last four models account for both the hierarchical

nature and overdispersion.Let Yijk represent the tail intensity or tail length measured

for a kth cell (k = 1, . . . , 50) from rat i = 1, . . . , 27 in slide j = 1, 2, 3. If we consider
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Table 4.2: Comet Assay Study. Overview of models considered with DIC for tail inten-
sity(TI)and tail length(TL).

Distribution for

Response Overdispersion RE1(rat) RE2(slide)

Model Weibull Gamma Normal Gamma Normal Gamma DIC(TI) DIC(TL)

1
√

33869.6 30878.8

2
√ √

33823.9 30421.6

3
√ √

33823.5 30420.2

4
√ √

33895.6 27378.5

5
√ √ √

33853.7 26901.6

6
√ √ √

33852.5 26883.0

7
√ √

33728.9 29622.6

8
√ √

33728.5 29620.8

9
√ √ √

33760.7 26386.9

10
√ √ √

33760.6 26377.0

11
√ √ √

33728.7 29623.4

12
√ √ √

33728.6 29619.5

13
√ √ √

33730.3 29631.1

14
√ √ √

33729.7 29605.2

15
√ √ √ √

33761.6 26374.4

16
√ √ √ √

33760.5 26333.1

17
√ √ √ √

33760.6 26338.0

18
√ √ √ √

33758.6 26209.6

the Weibull-Gamma(OD)-Normal(RE1)-Normal(RE2) model, for instance, the λijk

will be modelled as:

λijk = θijk exp(β0 + β1Lijk + β2Mijk + β3Hijk + β4PCi + ri + sij), (4.7)

with measurement-specific random effects θijk ∼ Gamma(α1, 1/α1), rat-specific ran-

dom effects ri ∼ N(0, d1) and slide-specific random effects sij ∼ N(0, d2). Further,

Lijk is the indicator variable whether rat i is given a Low dose (1 if it is given low

dose; 0 otherwise). Similarly,Mijk,Hijk , PCijk are the indicator variables for medium

dose, high dose, or positive control, respectively. Similarly, the Weibull-gamma(OD)-

normal(RE1)-gamma(RE2) is parameterized as:

λijk = θijk ∗ sij ∗ exp(β0 + β1 ∗Lijk + β2 ∗Mijk + β3 ∗Hijk + β4 ∗PCijk + ri), (4.8)
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with now θijk ∼ Gamma(α1, 1/α1), ri ∼ N(0, d) and sij ∼ Gamma(α2, 1/α2). The

fixed effect β0 denotes the control (vehicle) effect. The parameters β1 to β4 are the

contrasts of interest that represent the effect of low dose, medium dose, high dose,

and positive control versus vehicle. All other models follow similarly. The R2winbugs

code for Models 8 and 16 is given in Appendix A.

The next issue is model comparison. In situations where non-informative priors

are used or when where huge amounts of data are available, the data overwhelm the

choice of the prior and Bayesian estimates are equivalent with maximum likelihood

estimates. In such a case, the likelihood ratio can be used to formally test hypotheses

and compare nested models. In this case, the deviance information criterion (DIC)

is used as a model comparison tool. It penalizes for the complexity of the model as

explained in Section 3.2.3.1. Based on the deviance, which favors complex models,

Weibull-gamma(OD)-gamma(RE1)-gamma(RE2) was to be preferred. Note that the

DIC is subject to random variability and hence differences in value by 2–4 should not

be regarded as evidence for a difference. Therefore, Models 7 and 8 on the one hand

and Models 11–14 on the other can be regarded as roughly equivalent for tail intensity.

For the outcome tail length, model 18 is the best model. Note that the penalty term,

measuring the complexity of the model, for the models with overdispersion was large.

Looking at models 8 and 12, Model 12 did not outperform and this was not unexpected

from the exploratory data analysis for tail intensity, the variability at the slide level

did not reduce much after removing the rat effect (Figure 4.1).

The parameter estimates and 95 percent credible intervals for Models 8 and 12 for

the tail intensity are presented in Table 4.3. Models 12 and 8 are nested models, where

Model 12 is an extension of model 8 by the inclusion of the normal random effect for

the animal level. The parameter estimates from both models are very similar and we

notice that the standard errors from Model 12 are consistently and slightly higher as

opposed to the ones obtained with Model 8. This is in line with the expectation that,

with exclusion of one hierarchical level, the effective degrees of freedom is usually

overestimated which results in underestimation of the standard errors.

The parameter estimates from the model with overdispersion only (Model 4) had

higher standard errors compared to the estimates from a classical Weibull model. In

addition, they were lower compared to that of Weibull-gamma(RE2), the preferred

model. The estimates from models with both overdispersion and clustering have

higher standard errors compared with models with either overdispersion or clustering.

The 95% credible interval for ρ did not include 1, which conveys that the Weibull

distribution is more plausible than the exponential. The 95% credible interval for the
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Table 4.3: Comet Assay Study. Parameter estimates, standard errors, and credible inter-
vals of the regression coefficients in Model 8 (Weibull-gamma(RE2) model), and Model 12
(Weibull-normal(RE1)-gamma(RE2) model) for tail intensity.

Models 8 Models 12

Effect Par. Est.(s.e.) 95% C.I. Est.(s.e.) 95% C.I.

Veh. β0 -2.419(0.079) [-2.57,-2.26] -2.427(0.085) [-2.59,-2.25]

Low vs veh. β1 -2.854(0.097) [-3.04,-2.66] -2.850(0.104) [-3.06,-2.65]

Med.vs veh. β2 -3.092(0.098) [-3.29,-2.90] -3.088(0.106) [-3.30,-2.88]

High vs veh. β3 -3.317(0.098) [-3.51,-3.12] -3.312(0.107) [-3.53,-3.11]

Pos. C. vs veh. β4 -1.829(0.115) [-2.05,-1.60] -1.826(0.124) [-2.07,-1.58]

Weibull shape ρ 1.420(0.019) [1.38,1.46] 1.419 (0.019) [1.38,1.46]

Precision of RE1 1

d
114.2(79.29) [28.60,331.61]

RE2 parameter α2 18.33(4.036) [11.68,27.3] 19.99(4.493) [12.08,29.54]

regression parameters describing treatment contrasts of interest did not include zero

indicating toxicity of the chemical at all dose levels. This same final conclusion was

reached by all models. However, the credible intervals were affected by the choice of

the model.

As explained in Section 4.1, conventional analyses transform the tail intensities

using logarithmic transformations. The mean of the transformed responses is then

used as a summary measure for each rat. The hierarchical nature of the data is thus

completely ignored and a simple analysis of variance is used to test whether there is

a dose effect. Comparing this conventional model (Table 4.1) to our preferred model

would be rather difficult since as we are using different responses and different type

of models. We can, however, compare this with an equivalent model from our set of

proposed models which completely ignores the hierarchical structure, but which uses

the appropriate distribution and all the available information, namely the classical

Weibull model. Upon comparison of the classical Weibull model with Model 8, the

parameters of interest are highly significant in both cases. Yet, the standard errors,

likewise the credible intervals of Model 8 are twice that of the classical Weibull model.

While not the case in this example because of the high toxicity of the compound of

interest, this suggests that ignoring the hierarchical structure and overdispersion could

have major influence on the final conclusion. Significant estimates in the classical

Weibull model may be insignificant in Model 8. In other words, a compound might

be erroneously declared toxic.

Based on the analysis for tail intensity, more elaborate models did not outperform
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Table 4.4: Comet Assay Study. Parameter estimates, standard errors, and credible inter-
vals of the regression coefficients in (1) the Weibull-gamma(OD)-gamma(RE1)-gamma(RE2)
model, Model 18, (2) the Weibull-gamma(OD)-normal(RE1)-gamma(RE2) model, Model 16
for Tail Length.

Model 18 Model 16

Effect Parameter Est.(s.e.) 95% C.I. Est.(s.e.) 95% C.I.

Veh. β0 -30.44(0.66) [-31.74,-29.12] -30.54(0.80) [-32.01,-28.97]

Low vs veh. β1 -11.99(0.50) [-12.95,-11.01] -12.02(0.52) [-13.05,-11.06]

Med. vs veh. β2 -12.14(0.51) [-13.1,-11.12] -12.19(0.53) [-13.27,-11.23]

High vs veh. β3 -12.57(0.49) [-13.54,-11.58] -12.63(0.54) [-13.75,-11.64]

Pos. C. vs veh. β4 -9.75(0.55) [-10.84,-8.65] -9.75(0.56) [-10.88,-8.68]

Weibull shape ρ 10.71(0.22) [10.26,11.13] 10.71(0.2727) [10.17,11.22]

Precision of RE1 1

d
32.14(168.10) [1.27,323.2]

OD parameter α1 0.89(0.04) [0.82,0.98] 0.89(0.049) [0.81,0.99]

RE1 parameter α2 4.60(3.18) [1.53,12.67]

RE2 parameter α3 1.61(0.30) [1.10,2.25] 1.58(0.31) [1.05,2.28]

(not much improvement in terms of DIC). However, this was not the case for the

second response, tail length. Based on the DIC, the most complicated model has the

best fit, showing the importance of the hierarchical structure as well as overdispersion,

as shown in Table 4.2. Models with one hierarchical random effect were better fitting

as compared to the classical Weibull model. Models with two random effect improved

the fit further, and models with the complete hierarchical structure and overdisper-

sion random effect appear to be best. Further, notice that the model with only the

overdispersion random effect is better fitting than models with only the hierarchical

structure, showing the importance of the overdispersion relative to the hierarchical

structure.

Note the effects of the model on the parameter estimates (Table 4.5). When only

one hierarchical structure (one random effect) is added to the classical Weibull model,

the point estimates were slightly higher and the standard error for the contrast of in-

terest was approximately four times larger. Smaller DIC for models with the second

random effect (slide) showed the importance of slide effect in contrast to rat. Extend-

ing to two random effects, the standard error slightly increased further. The inclusion

of an overdispersion random effect had a very important impact on the estimate (ap-

proximately 3 times) and standard error (four times) in contrast with the classical

Weibull model. With the inclusion of one hierarchical random effect to the overdis-
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Table 4.5: Comet Assay Study. Parameter estimates, and standard errors of the regression
coefficients in the Weibull model (Model 1), the Weibull-gamma(OD) (Model 4), Weibull-
gamma(RE2) (Model 8), and the Weibull-normal(RE1)-gamma(RE2) (Model 12) for Tail
Length.

Model 1 Model 4 Model 8 Model 12

Effect Parameter Est.(s.e.) Est.(s.e.) Est.(s.e.) Est.(s.e.)

Veh. β0 -12.76(0.15) -27.36(0.60) -15.26(0.23) -15.26(0.25)

Low vs veh. β1 -3.55(0.05) -10.58(0.26) -4.80(0.22) -4.79(0.25)

Med. vs veh. β2 -3.65(0.05) -10.76(0.26) -4.90(0.22) -4.89(0.25)

High vs veh. β3 -3.85(0.06) -11.13(0.27) -5.10(0.22) -5.10(0.25)

Pos. c. versus veh. β4 -2.70(0.06) -8.55(0.22) -3.81(0.26) -3.79(0.30)

Weibull shape ρ 4.01(0.04) 9.48(0.22) 4.97(0.06) 4.96(0.06)

Precision of RE1 1

d
45.83(54.60)

OD parameter α1 0.86(0.04)

RE2 parameter α3 2.79(0.45) 3.03(0.54)

persion, the standard error was doubled. Models with complete hierarchical structure

and overdispersion yielded a slightly different estimate compared to the estimate from

a model with overdispersion alone and a changing estimate (approximately 2.5 times)

in contrast to the estimate of the corresponding models with two hierarchical ran-

dom effects but no overdispersion; the standard error was double in contrast to both

models. Generally, for tail length, we did not reach a different conclusion, due to

high toxicity of the compound; however, inclusion of the hierarchical structure and

overdispersion random effect had severe impact on the magnitude, standard errors as

well as the credible intervals. Results for the more elaborate models with complete

hierarchical structure and overdispersion are given in Table 4.4 and the results for the

classical Weibull model, a model with overdispersion alone, and models with a single

and two hierarchical random effects are given in Table 4.5.
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4.6 Concluding Remarks

In this chapter, a flexible modeling framework for the comet assay data using a

Bayesian hierarchical model. It takes not only the complete hierarchical nature but

also the appropriate non-Gaussian probability distribution for the response into ac-

count. It further includes a possible overdispersion that may exist in the data. Both

normal and gamma random effects can be considered to account for clustering in the

same framework, the more conventional models with either the overdispersion, or just

one hierarchical random effect being submodels.

The method was applied to the comet assay data gathered to assess the toxic-

ity of 1,2-Dimethylhydrazine dihydrochloride at different dose levels. For this par-

ticular dataset, a Weibull-gamma(RE2) model seemed adequate for tail intensity,

whereas a Weibull-gamma(OD)-gamma(RE1)-gamma(RE2) was better fit for tail

length. A comparison of these analysis with the conventional approach, which ig-

nores the overdispersion and the hierarchy in the data, revealed that both models led

to the same qualitative conclusion of severe toxicity of the compound at all dose lev-

els. This notwithstanding, estimates, standard errors, and credibility intervals were

severely affected, underscoring the risk of using models that are too simple. In gen-

eral, proper models encompassing at the same time the hierarchical nature in the

data, combined with overdispersion effects, need to be adopted. In this case, the use

of the overdispersion and hierarchical structure improved the fit for one response.

Furthermore, even when the more elaborate model does not provide a substantially

improved fit, nor alters the inferences drawn, the development is still very useful be-

cause it provides further confidence, by way of model specification assessment, on the

quality of the purported model.



Chapter 5

Joint Modeling of

Hierarchically Clustered and

Overdispersed Outcomes for

Comet Assay Data

In the previous chapter, we have dealt with univariate response. However, it is not

always appropriate to do analyses on a single endpoint. Multivariate longitudinal

or clustered data are also commonly encountered in clinical trials and toxicological

studies. Typically, there is no single standard endpoint to assess the toxicity or

efficacy of the compound of interest, but multiple endpoints, the so-called co-primary

endpoints, are available to assess the toxic effects or the activity of the compound. In

a comet assay, for instance, different outcomes (Lovell and Omori 2008, Wiklund and

Agurell 2003) are used to assess the DNA damage of a cell as a result of an exposure:

the tail length, tail intensity, and tail moment. These outcomes will formally be

introduced in the next section. Most often, the tail length and tail intensity are used.

Typically, univariate analyses are conducted to asses the treatment effect on each

endpoint separately, leading to as many conclusions as there are endpoints regarding

the same treatment effect. In particular, for the comet assay, one tends to focus

primarily on tail intensity because of its discriminative power. Ideally though, one

would reach a conclusion on the overall effect using all outcomes simultaneously,

45
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necessitating a joint analysis. An added value of joint modeling is that inferences can

be drawn about the association between outcomes as well.

Various modeling approaches for specifying a joint distribution are possible (Fitz-

maurice et al., 2009, Ch. 14; Fieuws and Verbeke, 2004). First, this can be effectuated

by specifying the full multivariate distribution of the outcomes. This allows for draw-

ing marginal inferences regarding the characteristics of the individual outcomes, but

it requires many parameters and while the multivariate Gaussian distribution is well-

known, there are many distributions for which no commonly accepted multivariate

distribution is available. Second, i can be done by the use of conditional models where

the joint distribution is expressed as the product of the conditional distribution of

the first outcome conditional on the second outcome and the marginal distribution

of the second outcome. However, factorization can be done in many ways, leading

to different results, and it requires the specification of many parameters. Third,

shared-parameter models can be entertained, where a pair of outcomes are associated

by using a common latent variable, e.g., a common random effect. This is a simple

but very strong assumption about the association between outcomes. Fourth, one

can relax the latter assumption by using multivariate random effects, in which the

two outcomes are associated via separate correlated random effects. This is more

flexible than shared-parameter models, but might still fail to fully capture the as-

sociation structure and/or the variance function. Fifth, dimension reduction using

principal components can be used, upon which the principal components are sub-

jected to univariate analysis. While simple, the resulting inferences may not be about

the parameters of direct scientific interest. In this chapter, we focus on a flexible

multivariate random effects approach. This work has been published in Ghebretinsae

et al (2012).

The joint model for two hierarchical, overdispersed non-Gaussian outcomes is out-

lined in Section 5.1, and characteristics of the models are derived. It is then applied

to the comet data in Section 5.2.

5.1 Joint Model for Two Hierarchical, Overdis-

persed Positive Outcomes

In this section, a joint model for hierarchical, overdispersed positive outcomes is pro-

posed. First, the setting of a single hierarchical, overdispersed outcome is introduced,

which is then extended to the multivariate setting.
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5.1.1 Univariate Analysis

As explained in the previous chapters, because the primary outcomes, tail intensity

and tail length, are skewed, non-negative and continuous, which is similar to many

time-to-event data (Duchateau and Janssen 2007), an exponential or Weibull distri-

bution is a natural choice. Here, we account for one level in the hierarchy of the data,

namely the variability between slides. As proposed by Ghebretinsae et al (2011), we

use a combined Weibull model with normal random effects to handle the hierarchy in

the data and a gamma conjugate random effect to account for overdispersion in the

response. This model falls into the model family as proposed by Molenberghs et al.

(2010).

Let Yij be the jth cell of subject i measured for tail length or tail intensity,

grouped in to Y i. The Weibull-type combined model (Weibull-gamma-normal model)

in (3.13)–(3.16) is considered. bi is the zero-mean normally-distributed slide-specific

random effects, with variance-covariance D, to account for the clustering of obser-

vations and θij is the gamma-distributed measurement-specific random effects to ac-

commodate for overdispersion. Further, λ and ρ are Weibull parameters, and αj and

βj are gamma parameters. Here, ηij is a linear predictor, with fixed-effects parameter

ξ and design vectors xij and zij for the fixed effects and random effects, respectively.

5.1.2 Joint Analysis

The proposed joint model for tail length and tail intensity assumes a Weibull-gamma-

normal model for both endpoints. The endpoints are associated by the use of bivariate

normal random effects for the two endpoints, instead of the use of two separate (uni-

variate) random effects, which we will call the Weibull-Gamma-Multivariate Normal

model.

Let Y1ij and Y2ij be the jth measurements of subject i for the two outcomes, tail

length and tail intensity respectively. With notation similar to the above, the linear

part for the two responses are assumed to be:

η1ij = x′
1ijξ1 + b1i,

η2ij = x′
2ijξ2 + b2i,

with x1ij and x2ij design matrices, ξ1 and ξ2 vectors of unknown fixed-effect param-

eters, and b1i and b2i the cluster-specific random intercepts for the first and second

outcomes, respectively. These two random effects are assumed bivariate normally
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distributed:





b1i

b2i



 ∼ N









0

0



 ,





d21 rd1d2

rd1d2 d22







 , (5.1)

with d211 and d222 the variances of the random intercepts and r the correlation between

them. The association between the two endpoints is induced via the parameter r.

More details on this are given in the next section. Conditionally on the normally

distributed random effects (b1i and b2i), it is assumed that the two outcomes are

independent. Testing for treatment effect based on both endpoints simultaneously is

conveniently done by way of a likelihood ratio test for the treatment effect parameters

in both endpoints combined.

In terms of estimation, we opt for maximum likelihood using partial marginal-

ization. This implies that the gamma random effects are analytically integrated out

from the likelihood, while numerical integration, as implemented in the SAS procedure

NLMIXED, is invoked to marginalize over the normally distributed random effects.

The code is given in the Appendix B.1.

5.1.3 Correlation Between Both Responses

The association between both outcomes is captured via the bivariate normal random

effects. However, the correlation between the two random effects is not necessarily

equal to the correlation between the two responses. Furthermore, a significant corre-

lation at the cluster level does not necessarily imply a significant correlation between

the two responses taken from the same cell. In this section, it is established how the

correlation between the outcomes is related with the correlation between the random

effects.

The correlation between two measurements from the same subject for a single

response, also called the intraclass correlation (ICC), is equal to:

Corr(Yℓij , Yℓik) =
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with ℓ = 1, 2, ρℓ the shape parameter of the Weibull distribution, d2ℓ the random-

effects variance (equal to d21 or d22 for tail length and tail intensity, respectively),

and αℓ the shape parameter of the Gamma random effects distribution. B(·, ·) is
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the beta function. A large value for the shape parameter (αℓ) indicates a small

amount of overdispersion, which in the limit reduces to the Weibull-Normal model

for a univariate outcome. In this case, the intraclass correlation reduces to:

Corr(Yℓij , Yℓik) =

[

e
d2
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ρ2
ℓ − 1

]/
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,

with Γ(·) the gamma function.

On the other hand, the correlation between the two outcomes (tail length and tail

intensity) of the same cell is given by the following expression

Corr(Y1ij , Y2ij) =
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where ICC1 and ICC2 are the intracluster/class correlation for responses 1 and 2,

respectively. The correlation between the two endpoints is proportional to the cor-

relation between the two random effects, with the same sign. So, when two random

effects are positively or negatively correlated, the correlation between endpoints fol-

lows accordingly and when the correlation between the two random effects is zero,

then the correlation between the two endpoints is zero as well. In other words, the

correlation is induced entirely by the correlation between the two random effects.

This correlation also depends on the Weibull shape parameters ρ1 and ρ2.

For a joint model based on two linear mixed models, the bivariate correlation

between the two endpoints is given by Corr(Y1ij , Y2ij) = r
√
ICC1

√
ICC2 (Fitzmaurice

et al., 2009, Ch. 14). It is by definition smaller than or equal to the correlation between

the two random intercepts. Only when both intra-class correlations are 1, equality
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holds. However, it is not straightforward in this case. Details on the calculations are

given in Appendix B.2.

5.2 Application to the Comet Data

5.2.1 Univariate Analyses

Univariate analyses for tail intensity and tail length are performed separately for the

comet assay data (Figure 5.1). The endpoints are analyzed both with and without

overdispersion, using the Weibull-gamma-normal and Weibull-normal models, respec-

tively. Summary results are presented in Tables 5.1 and 5.2. For tail intensity, inclu-

sion of the overdispersion random effect neither improved the likelihood, nor affected

the estimates and precision of the estimate. On the other hand, for tail length, in-

clusion of the overdispersion random effect greatly improved the likelihood and also

affected the parameter estimation and precision. If we consider the contrast between

the low and high dose group for tail length, for instance, the p-value was 0.1358 based

on the model without overdispersion and 0.0543 with overdispersion. For both end-

points, there is a major effect of the compound as compared to the vehicle group.

However, the conclusion for the contrasts between the three dose level is different

based on both responses. Based on tail intensity, there was a significant difference

among the dose levels.

A conventional significance test for α would test the null hypothesis H0 : α =

0. However, this does not correspond to the absence of overdispersion. Rather,

overdispersion vanishes as α approaches infinity.

5.2.2 Analysis Based on a Combined Endpoint

It is often desirable to opt for a summary analysis of both endpoints, at least to avoid

multiple and perhaps conflicting inferences from the univariate analyses. To this end,

define tail moment as the product of the mean distance of migration in the tail with

the amount of DNA in the tail (intensity). Although not directly the product of the

two responses, it indirectly combines information from both endpoints. Also here, in-

clusion of overdispersion improved the fit and had impact on the parameter estimates

as well as on the standard errors; see Table 5.3. Remember that the contrasts between

low, medium and high doses was significant based on the univariate analysis using

tail intensity, but not using the endpoint tail length. Using tail moment, none of the
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Figure 5.1: Comet Assay data. Scatter plot and box plots of the tail length versus tail
intensity

Table 5.1: Comet Assay Study. Parameter estimates, and standard errors for the regression
coefficients in (1) the Weibull-gamma-normal model, (2) the Weibull-normal model in the
analysis for tail length

Weibull-gamma-normal Weibull-normal

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value

Veh. β0 -30.9295(0.7264) 0.0001 -15.6378(0.2517) 0.0001

Low vs. veh. β1 -11.9378(0.4445) 0.0001 -4.4965(0.2243) 0.0001

Med.vs. veh. β2 -12.1552(0.4472) 0.0001 -4.5998(0.2245) 0.0001

High vs. veh. β3 -12.6026(0.4525) 0.0001 -4.8290(0.2251) 0.0001

Pos. C.vs. veh. β4 -9.6419(0.4762) 0.0001 -3.4808(0.2718) 0.0001

Low vs. Med. β5 -0.2174(0.3398) 0.5241 -0.1033(0.2206) 0.6410

Low vs. High β6 -0.6648(0.3403) 0.0543 -0.3325(0.2206) 0.1358

Med. vs. High β7 -0.4474(0.3402) 0.1923 -0.2292(0.2206) 0.3019

Weibull Par. ρ 10.7072(0.2474) 0.0001 4.9585(0.0580) 0.0001

s.d. of RE
√

d 0.9881(0.08592) 0.0001 0.6464(0.0543) 0.0001

OD par. α 0.8932(0.0463) 0.0001 − −

-2 loglik. 28069 29793

contrasts are significant. This shows that some effects might be lost by summarizing
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Table 5.2: Comet Assay Study. Parameter estimates, and standard errors for the regression
coefficients in (1) the Weibull-gamma-normal model, (2) the Weibull-normal model in the
analysis for tail intensity

Weibull-gamma-normal Weibull-normal

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value

Veh. β0 -2.4628(0.0774) 0.0001 -2.4628(0.0774) 0.0001

Low vs. veh. β1 -2.8125(0.0911) 0.0001 -2.8126(0.0911) 0.0001

Med.vs. veh. β2 -3.0565(0.0920) 0.0001 -3.0566(0.0920) 0.0001

High vs. veh. β3 -3.2777(0.0929) 0.0001 -3.2778(0.0929) 0.0001

Pos. C. vs. veh. β4 -1.7941(0.1079) 0.0001 -1.7941(0.1078) 0.0001

Low vs. Med. β5 -0.2440(0.0874) 0.0065 -0.2440(0.0874) 0.0065

Low vs. High β6 -0.4652(0.0875) 0.0001 -0.4652(0.0875) 0.0001

Med. vs. High β7 -0.2212(0.0874) 0.0133 -0.2212(0.0874) 0.0133

Weibull Par. ρ 1.4158(0.0189) 0.0001 1.4158(0.0189) 0.0001

s.d. of RE
√

d 0.2201(0.0248) 0.0001 0.2201(0.0248) 0.0001

log OD par. log(α) 13.9715(2.0370) 0.0001 − −

-2 loglik. 33769 33769

Table 5.3: Comet Assay Study. Parameter estimates, and standard errors for the regression
coefficients in (1) the Weibull-gamma-normal model, (2) the Weibull-normal model in the
analysis for tail moment

Weibull-Gamma-Normal Weibull-Normal

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value

Veh. β0 1.0946(0.1023) 0.0001 0.8294(0.0781) 0.0001

Low vs. veh. β1 -3.8954(0.1515) 0.0001 -3.4995(0.1159) 0.0001

Med.vs. veh. β2 -4.2326(0.1558) 0.0001 -3.8116(0.1171) 0.0001

High vs. veh. β3 -4.5767(0.1599) 0.0001 -4.1341(0.1186) 0.0001

Pos. C. vs. veh. β4 -2.2365(0.1594) 0.0001 -1.9365(0.1360) 0.0001

Low vs. Med. β5 -0.3372(0.1174) 0.0052 -0.3121(0.1104) 0.0059

Low vs. High β6 -0.6813(0.1180) 0.0001 -0.6346(0.1106) 0.0001

Med. vs. High β7 -0.3441(0.1174) 0.0044 -0.3224(0.1104) 0.0046

Weibull Par. ρ 1.3199(0.0237) 0.0001 1.2429(0.0159) 0.0001

s.d. of RE
√

d 0.3174(0.0316) 0.0001 0.2990(0.0291) 0.0001

log OD par. log(α) 10.9408(2.6443) 0.0001 − −

-2 loglik. 19980 20004

two endpoints by a single endpoint.
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5.2.3 Joint Analysis

The univariate analyses on the two endpoints (Section 5.2.1) lead to multiple infer-

ences. The univariate analysis on the combined endpoint (Section 5.2.2) uses a sum-

mary endpoint, but which may not always be interpretable. It also renders impossible

assessment of the association between the endpoints. As a third and appealing al-

ternative, a joint analysis models both endpoints simultaneously and accommodates

association between them. Conveniently, a test for the overall treatment effect based

on both endpoints can be done using likelihood ratio tests.

The two preferred models in the univariate analyses, Weibull-normal for tail in-

tensity and Weibull-gamma-normal for tail length are now combined into a joint

model by assuming that the normal random effects are correlated. Table 5.4

presents the results. The contrasts of interest based on each endpoints separately

as well as on the overall effect based on both endpoints is provided. The es-

timates are slightly different from the univariate analyses. The three contrasts

(low versus medium, low versus high, and medium versus high) have p-values of

(0.5242,0.0556,0.1959) and (0.0055,0.0001,0.0119) based on the first and second end-

points and (0.0302,0.0001,0.0302) based on the two endpoints combined. The cor-

relation between the two random intercepts was highly significant, and estimated as

0.6049 (s.e. 0.098). The intraclass correlations were estimated as 0.1991 (s.e. 0.02704)

and 0.04180 (s.e. 0.0089) for tail length and tail intensity, respectively. As a result,

the pairwise correlation is estimated as 0.05499 (s.e. 0.0129).

5.3 Simulation Study

A set of simulations was conducted to evaluate the performance of the different mod-

els in terms of the type I and II error rates, as well as bias of the parameter estimates.

Two batches of simulation were done for two levels of overdispersion. We considered

two treatment groups: active and vehicle control. In the fist set of simulations, we

assume there are 3 animals, hence 9 slides, and a total of 450 cells in each treatment

group. In contrast, in the second batch, 6 animals and 18 slides each with 10 cells, are

considered. Two responses were generated, one with and the other without overdisper-

sion. The first response Y1ij ∼ Weibull(ρ1, θije
η1ij ) follows a Weibull-gamma-normal,
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Table 5.4: Comet Assay Study. Joint Model, Weibull-normal model for tail intensity and
Weibull-gamma-normal for tail length

Tail Length Tail Intensity Overall

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value G2 p-value

Veh. β0 -29.0574(0.6537) 0.0001 -2.4620(0.0763) 0.0001 − −

Low vs. veh. β1 -11.1543(0.4083) 0.0001 -2.8064(0.0893) 0.0001 248 0.0001

Med.vs. veh. β2 -11.3575(0.4107) 0.0001 -3.0502(0.0902) 0.0001 256 0.0001

High vs. veh. β3 -11.7724(0.4154) 0.0001 -3.2701(0.0912) 0.0001 264 0.0001

Pos. C.vs. veh. β4 -8.9600(0.4400) 0.0001 -1.7826(0.1056) 0.0001 171 0.0001

Low vs. Med. β5 -0.2032(0.3177) 0.5242 -0.2438(0.0854) 0.0055 7 0.0302

Low vs. High β6 -0.6181(0.3181) 0.0556 -0.4637(0.0856) 0.0001 25 0.0001

Med. vs. High β7 -0.4149(0.3181) 0.1959 -0.2199(0.0854) 0.0119 7 0.0302

log of Weib.P ρ 10.0336(0.2210) 0.0001 1.4152(0.0189) 0.0001 − −

s.d. of RE
√

d 0.9227(0.0797) 0.0001 0.2133(0.0239) 0.0001 − −

log of OD par. α 1.0052(0.0517) 0.0001 − − − −

Correlation r 0.6049(0.0979) 0.0001

-2 loglik 61824

while Y2ij ∼ Weibull(ρ2, e
η2ij ) follows a Weibull-normal, with further

ηkij = βk0 + βk1Tij + bki, (k = 1, 2)

θij ∼ Gamma

(

α,
1

α

)

.

Tij is the indicator for the treatment group. Random effects are correlated and follow

(5.1). Different correlation levels between the random effects as well as different

overdispersion level were considered to gauge the impact of these characteristics. We

set the random-effects standard deviations to d1 = d2 = 0.2 and the Weibull shape

parameters to ρ1 = ρ2 = 0.4. The correlation r ranges over 0.9, 0.6, and 0.3 in both

sets of simulations. Because interest lies in assessing the type I and II error rates,

the data are generated under the null (β10 = β11 = −1 and β21 = β21 = −1) for the

type I error rate, and under the alternative (β10 = −1, β11 = −1.3 , β20 = −1, and

β21 = −1.3) to assess the type II error rate. An overdispersion level of α = 0.8 is

used for the first set of simulation and α = 1.5 for the second one. A total of 200 such

datasets is generated per run. The two responses are analyzed separately using: (1)

a traditional model, i.e., analysis of variance on the summary measure (mean) of the

log-transformed response; (2) a classical Weibull model; (3) a Weibull-normal model;
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(4) a Weibull-gamma-normal model; and finally (5) a joint model.

Simulation Results

The first simulation run is summarized in Table 5.5–5.7, with the rest deferred to

the Appendix B.3. Generally, the type I error rate for all models was approximately

the nominal one, except for the classical Weibull model. This could be ascribed to

the independence assumption between the outcomes in this model. Indeed, ignoring

the correlation may underestimate the standard errors (see Table 5.5). This has an

adverse impact on the assessment of treatment effect, in the sense that a compound

can easily erroneously be declared toxic. The error rate is higher for the first response

where the hierarchical structure and overdispersion are omitted, in contrast to the

second response.

We now turn to the power of the test. Analyzing the two responses using the

various appropriate models has higher power when compared to the traditional model.

The discrepancy between the proper and traditional models increases with decreasing

variance of the random effects (results not presented here). This is not surprising

because, when the variability between clusters is high, then the measurement within

a cluster are similar. In that case, summarizing the observations has little impact.

The shape parameter has an impact as well. When it gets smaller, the density becomes

more skewed and the traditional approach, relying on normality and hence symmetry,

drifts apart. On the other hand, the underestimated standard error when the simple

classical model was employed not only inflated the type I error rate, it also exaggerates

the power of the test.

The parameter estimates are also biased and the bias was higher for the estimates

of the first response with overdispersion. When the first response is analyzed with

the Weibull-normal model that does not account for overdispersion, the power of the

test was lower and the parameter estimates still biased, though they were slightly

better than under the classical Weibull model. In fact, the power of the test for the

traditional model was even better. On the other hand, analyzing the data coming from

the Weibull-normal model by using the Weibull-gamma-normal, leads to the same

results in terms of the type I error rate, the power of the test as well as the parameter

estimates, underscoring the importance of accommodating overdispersion. Given the

elaborate nature of the joint analysis, it is not surprising that some convergence

problems emerge. Its power is higher than that from the univariate analyses. The

rise in power increases with decreasing correlation between the random effects. This
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Table 5.5: Simulation result 1.1. Type I error rates, power of the tests and parameter
estimates in (1) Analysis of variance (Trad.), (2) the Weibull model (W), (3) the Weibull-
normal model, (4) the Weibull-gamma-normal model (WGN), (5) the Joint model (JWGN).
Correlation between r = 0.3 and α = 0.8.

Resp. Par. Trad. W WN WGN JWGN

Power 1 0.38 0.57 0.26 0.435 0.448

2 0.565 0.895 0.655 0.655 0.642

Comb. 0.743

Est.(s.e.) 1 β10 -0.9635(0.0575) -0.9977(0.0901) -1.0049(0.1129) -1.006(0.1171)

β11 -1.1066(0.0596) -1.1443(0.09171) -1.2977(0.1133) -1.3073(0.1176)

β11 − β10 -0.1430(0.0671) -0.1466(0.1173) -0.2929(0.1528) -0.3000(0.1586)

2 β20 -0.9965(0.0598) -1.0085(0.0854) -1.0085(0.0854) -1.0079(0.0865)

β21 -1.2765(0.0646) -1.2934(0.0890) -1.2934(0.0890) -1.3007(0.0892)

β21 − β20 -0.2801(0.0671) -0.2849(0.1087) -0.2849(0.1087) -0.2918(0.1087)

Type I 1 0.05 0.335 0.065 0.06 0.065

2 0.045 0.26 0.05 0.05 0.0365

Comb.d 0.048

Est.(s.e.) 1 β10 -0.9580(0.0574) -0.9917(0.0894) -0.9929(0.1116) -0.9985(0.1145)

β11 -0.9728(0.0578) -1.0050(0.0897) -0.9941(0.1116) -0.9911(0.1140)

β11 − β10 -0.0148(0.0670) -0.0134(0.1162) -0.0012(0.1499) 0.0101(0.1565)

2 β20 -0.9783(0.0595) -0.9911(0.0859) -0.9911(0.0859) -0.9901(0.0856)

β21 -0.9927(0.0598) -1.0039(0.0861) -1.0039(0.0861) -1.0053(0.0869)

β21 − β20 -0.0143(0.0667) -0.0128(0.1096) -0.0128(0.1096) -0.0148(0.1120)

is to be expected because lower correlation implies that a pair of outcomes is more

informative. Finally, we also noted that as the cluster size grows larger, the power of

the test is higher for all models (details not given).
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Table 5.6: Simulation result 1.2. Type I error rates, power of the tests and parameter
estimates in (1) Analysis of variance (Trad.), (2) the Weibull model (W), (3) the Weibull-
normal model, (4) the Weibull-gamma-normal model (WGN), (5) the Joint model (JWGN).
Correlation between r = 0.6 and α = 0.8.

Resp. Par. Trad. W WN WGN JWGN

Power 1 0.465 0.58 0.25 0.48 0.424

2 0.555 0.915 0.69 0.69 0.633

Comb. 0.696

Est.(s.e.) 1 β10 -0.9595(0.0574) -0.9940(0.0901) -0.9978( 0.1116) -1.002(0.1136)

β11 -1.1080(0.0596) -1.1462(0.0917) -1.3035( 0.1120) -1.2979(0.1132)

β11 − β10 -0.1485(0.0671) -0.1522(0.1173) -0.3057( 0.1510) -0.2945(0.1533)

2 β20 -0.9903(0.05969) -1.0028(0.0835) -1.0028(0.0835) -1.011(0.0838)

β21 -1.2823(0.0647) -1.2970(0.0874) -1.2970(0.0874) -1.2967(0.0885)

β21 − β20 -0.2920(0.0672) -0.2942(0.1060) -0.2942(0.1060) -0.2811(0.1073)

Type I 1 0.04 0.295 0.05 0.07 0.0666

2 0.045 0.265 0.07 0.07 0.0588

Comb. 0.0504

Est.(s.e.) 1 β10 -0.9594(0.0574) -0.9933(0.0898) -0.9950(0.1106) -0.9940(0.1122)

β11 -0.9775(0.0578) -1.0114(0.0901) -1.0075(0.1105) -1.0020(0.1110)

β11 − β10 -0.0180(0.0670) -0.0181(0.1168) -0.0125(0.1485) -0.0073(0.1537)

2 β20 -0.9855(0.0596) -0.9980(0.0856) -0.9980(0.0856) -0.9980(0.0848)

β21 -0.9920(0.0598) -1.0037(0.0858) -1.0037(0.0858) -0.9990(0.0851)

β21 − β20 -0.0065(0.0667) -0.0057(0.1090) -0.0065(0.1089) -0.0005(0.1080)

Table 5.7: Simulation result 1.3. Type I error rates, power of the tests and parameter
estimates in (1) Analysis of variance (Trad.), (2) the Weibull model (W), (3) the Weibull-
normal model, (4) the Weibull-gamma-normal model (WGN), (5) the Joint model (JWGN).
Correlation between r = 0.9 and α = 0.8.

Resp. Par. Trad. W WN WGN JWGN

Power 1 0.445 0.595 0.255 0.505 0.4605

2 0.565 0.915 0.675 0.675 0.6619

Comb. 0.6056

Est.(s.e.) 1 β10 -0.9616(0.0574) -0.9959(0.0897) -1.0016(0.1126) -1.011(0.1185)

β11 -1.1117(0.0596) -1.1486(0.0913) -1.3082(0.1131) -1.302(0.1171)

β11 − β10 -0.1501(0.0671) -0.1527(0.1166) -0.3066(0.1525) -0.2997(0.1600)

2 β20 -0.9902(0.0597) -1.0029(0.0861) -1.0029(0.0861) -1.0105(0.0883)

β21 -1.2838(0.0647) -1.3016(0.0899) -1.3016(0.0899) -1.2990(0.0905)

β21 − β20 -0.2936(0.0672) -0.2988(0.1099) -0.2988(0.1099) -0.2860(0.1125)

Type I 1 0.08 0.33 0.08 0.085 0.0909

2 0.06 0.245 0.08 0.08 0.0666

Comb. 0.0512

Est.(s.e.) 1 β10 -0.9593(0.0574) -0.9936(0.0896) -0.997(0.1117) -1.0019(0.1095)

β11 -0.977(0.0579) -1.0101(0.0899) -1.005(0.1116) -1.0064(0.1083)

β11 − β10 -0.0180(0.0670) -0.0164(0.1166) -0.0081(0.1501) -0.0083(0.1555)

2 β20 -0.9867(0.05965) -0.99948(0.0859) -0.9995(0.0859) -1.013(0.0853)

β21 -0.9889(0.05976) -1.0011(0.08598) -1.0011(0.08598) -0.9902(0.0825)

β21 − β20 -0.00214(0.0667) -0.00164(0.1094) -0.00165(0.1094) 0.0139(0.1093)
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5.4 Concluding Remarks

Co-primary endpoints are commonly used to assess the toxic effect of a certain com-

pound in toxicological studies. Univariate analyses are often done on each endpoint

separately; but this leads to multiple inferences. Joint modeling of the endpoints

is appealing to make overall inferences as well as to capture the association among

the outcomes. In this chapter, joint model using a random-effect was presented in

a bivariate setting with hierarchically clustered and overdispersed non-Gaussian con-

tinuous outcomes. Thus, the model accounts for: (1) overdispersion; (2) repeated

measures over time; (3) and the multivariate nature of the outcomes.

Two Weibull-gamma-normal models were combined using bivariate normally dis-

tributed random effects. This is a simple and relatively less restrictive approach

compared to a shared parameter model and it can be easily implemented in standard

software like in the SAS procedure NLMIXED.

It was applied to the comet assay data which exhibit two outcomes namely tail

length and tail intensity. Univariate analyses indicate that a model with overdisperion

(Weibull-gamma-normal) is necessary for tail length and a model without overdisper-

sion (Weibull-normal) is sufficient for the tail intensity. The contrast between low,

medium, and high dose level using the two endpoints leads to different conclusion.



Chapter 6

Finite-mixture and

Zero-inflated Models for

Hierarchically Clustered and

Overdispersed Outcomes

As already explained in Chapter 3, due to the prescribed mean-variance relationship,

overdispersion is a commonly encountered phenomenon in non-Gaussian data. It

can be driven by different factors: multimodality in the data due to the presence

of subpopulations within an overall population, a lack of information about which

subpopulation an observation belongs to, highly skewed nature of the data, which

could be partly due to sets of outlying observations, the presence of excess zeros in

the data, and many more.

In general in statistical modeling, because of their usefulness as a flexible method

of modeling, finite mixture models received increasing attention over the years, both

from a practical and a theoretical point of view. It occupies an interesting niche

between parametric and non-parametric approaches to statistical estimation. As ex-

plained by Jordan and Xu (1995) mixture-model-based estimation approaches are

parametric in that parametric forms are specified for the component density func-

tions, but they can also be regarded as non-parametric by allowing the number of

components K to grow. Hence, the mixture models have much of the flexibility of
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non-parametric models, while retaining some of the advantages of parametric ap-

proaches, such as keeping the dimension of the parameter space down to a reasonable

size. They have been useful in modeling quite complex distributions through an ap-

propriate choice of its components to accurately represent the local areas of support of

the true distribution. It can thus handle situations where a single parametric family

is unable to provide a satisfactory model for local variation in the observed data.

In Chapters 4 and 5, in line with Molenberghs et al (2010), overdispersion is

accounted for through a continuous conjugate random effect. However, the assumed

conjugate distribution can be misspecified. In these circumstances, mixture models

may be useful. Note that in the combined model, the overdispersion is accounted

for through a random effect and this random effect is typically assumed to have a

continuous, conjugate distribution. This can be regarded as a mixture of models

where each observation is allowed to have its own model, with the number of mixture

components equal to the number of observations. In this chapter, we will consider

three situations in which a finite mixture model is useful. First, the overdispersion

random effect can have a complex distribution, different from the previously assumed

conjugate distribution. In this case, assuming a mixture of conjugate distributions

for the random effect can give further flexibility to the combined model. Second,

the source of the overdispersion could be due to the existence of unobserved sub-

populations (latent classes). In this case, the overdispersion random effect can be well

expressed by some discrete distribution, instead of a continuous distributed random

effect. Third, the source may also stem from excess zeros, which can be accounted for

by zero-inflated models; these in turn may be regarded as mixtures of models. The

different situations will be investigated for the comet assay data. These results are

summarized in Ghebretinsae et al (2013).

Section 6.1 is devoted to gamma mixtures, while Section 6.2 focuses on Weibull

mixtures. Zero inflation is the topic of Section 6.3. An application to the comet data

is the subject of Section 6.4.

6.1 A Mixture of Gamma Distributions for the

Overdispersion Random Effect

One way to account for overdispersion is through the use of random effects. In Sec-

tion 3.1.4, a general model family proposed by Molenberghs et al (2010) for modeling

overdispersed and correlated data is presented. A model with a normal random effect
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to handle the hierarchy in the data and a conjugate random effect to account for ad-

ditional overdisperion in the response is used. In the context of comet data, since the

outcomes are skewed, non-negative and continuous, which is similar to time-to-event

data, a Weibull-type version of the combined model is used.

Now, while the gamma frailty (random effect) is convenient as a specification for

the overdispersion because of the conjugacy of the gamma and Weibull distribution,

misspecification of this distribution is possible. Alternatives to the gamma distribu-

tion can be considered but are computationally more complex, because of the lack of

the conjugacy property. In this section, a mixture of conjugate distributions is consid-

ered for the specification of the overdispersion term, as an alternative to the previously

proposed gamma frailty. In this way, flexibility is added to the overdispersion distri-

bution, and misspecification of the overdispersion can be checked. Deviations from a

single conjugate distributions are allowed for by the use a mixture distribution, and

the property of conjugacy can still be employed to ease computations. Let us first

consider the situation where clustering is not taken into account. In this case, model

(3.13)–(3.16) simplifies to the gamma frailty (Weibull-gamma) model, given by:

f(yi|θi) = λρθiy
ρ−1
i ex

′

iξe−λyρ
i θie
x′

iξ , (6.1)

f(θi|α) =
1

(

1
α

)α
Γ(α)

θα−1
i e−αθi . (6.2)

This model is now extended by replacing (6.2) by a mixture of gamma distributions.

It is produced by combining two or more gamma distributions using mixing param-

eters that represent the proportion of mixing of the components. Let us assume the

distribution of the random effect (θi) is a mixture of two gamma distributions instead

of one. In this case, (6.2) is replaced by:

f(θi|α1, α2) = P.f(θi|α1) + (1− P ).f(θi|α2),

where P is the proportion of mixing of the components. The marginal distribution

can easily be derived by integrating over both random effects, as it is given by:

f(yi) =

∫

f(yi|θi)f(θi|α1, α2)dθi,

= P

∫

f(yi|θi)f(θi|α1)dθi + (1− P )

∫

f(yi|θi)f(θi|α2)dθi.
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This can be extended to account for clustering by incorporating a normal random

effect in the linear predictor x′
ijξ, that is, x

′
ijξ + z

′
ijbi.

6.2 A Discrete Mixture of Weibull Distributions

Misspecification of the conjugate random effect was addressed in Section 6.1 through

gamma mixtures. On the other hand, it is also possible to explain overdispersion by

considering only a few discrete values instead of infinitely many values, as represented

by a continuous random effect. That is, the overdispersion may be derived by some

subpopulations or latent classes which lead to the mixture models. Here, mixtures

based on the Weibull and Weibull-normal models are considered and the connection

with the combined model is outlined.

Consider a Weibull-type combined model and suppose the overdispersion random

effect θij has only two discrete values, θ1 or θ2.

f(yij |θ1) = Weibull(ρ, λθ1 exp(ηij))

f(yij |θ2) = Weibull(ρ, λθ2 exp(ηij))

Now, these values can be absorbed into the scale parameter, λ exp(ηij). This implies

that the scale parameter of the Weibull distribution is either λ1 exp(ηij) or λ2 exp(ηij).

So, previous expression can be rewritten as:

f(yij |λ1) = Weibull(ρ, λ1 exp(ηij))

f(yij |λ2) = Weibull(ρ, λ2 exp(ηij))

It leads to a mixture of two Weibull-normal models with different scale parameters

but the same shape parameter ρ. A randomly picked observation either belongs to

population 1, a Weibull(ρ, λ1 exp(ηij)) or population 2, a Weibull(ρ, λ2 exp(ηij)):

f(yij) =







Weibull(ρ, λ1 exp(ηij)) with probability P,

Weibull(ρ, λ2 exp(ηij)) with probability 1− P,

where P is the proportion of the first component and ηij = x′
ijξ + z

′
ijbi. This is a

special case of the combined model, taking a discrete distribution for the overdisper-

sion random effect. This can further be extended by allowing the shape parameter to

vary, leading to a full mixture model.
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In general, mixtures of Weibull distributions are produced by combining two or

more Weibull distributions using mixing parameters that represent the proportion of

mixing of the components:

f(yij) =

K
∑

l=1

Plλlρly
ρl−1
ij eηije−λly

ρl
ij e

ηij

,

where Pl > 0 is the proportion of the mixing of the lth component, K is the number

of components and

k
∑

l=1

Pl = 1.

The different components may correspond to meaningful subpopulations. For exam-

ple, they may correspond to the different species of the rat, or may not be identified

but rather introduced to allow for greater flexibility in modeling a heterogenous pop-

ulation that is apparently unable to be modeled as a single component distribution.

In modeling finite mixture models, often mixtures of normal densities are employed

as any continuous distribution can be approximated well by a finite mixture of normal

densities. However, mixtures of other distributions can also be used. The Weibull

distribution by itself is flexible with a variety of shapes and using mixtures of Weibull

distributions adds more flexibility. Figure 6.1 present different densities resulting from

mixing different pairs of Weibull distributions with equal proportions.

6.3 Zero-inflated Mixture Models

When the data have a pronounced excess of zeros, none of the different Weibull

models considered so far sufficiently account for these zeros. Further extension is

needed, motivating the zero-inflated models.

Zero-inflated models are commonly used to model counts data with an excess of

zeros. The idea in the zero-inflated Poisson model (ZIP) is that it assumes outcomes

to emanate from two processes. One process models zero inflation by including a

proportion of extra zeros and another proportion of zeros coming from the regular

Poisson distribution. However, the classical Weibull model accounts for values Yij >

0. To account for the possible presence of zeros, one component is added to the

distribution, a point mass at zero. A zero-inflated Weibull model (ZIW) has, like the
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Figure 6.1: Mixtures of Weibull densities with different shape and scale parameters.
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zero-inflated Poisson model, two compartments. But the zeros in the ZIP may come

from the point mass and the Poisson component, which is not the case for the zero-

inflated Weibull model, since the zeros are entirely from the point mass. Similarly,

the zero-inflated Weibull-normal (ZIWN) and zero-inflated combined model or zero-

inflated Weibull-gamma-normal model (ZIWGN) are produced by incorporating an

additional component of a point mass at zero to the Weibull-type GLMM (Weibull-

normal) and combined model (Weibull-gamma-normal). Let us consider the zero-

inflated combined model. The density function is given by:

f(yij |θij , bi) =







φ(η1ij) if yij = 0,

λρθijy
ρ−1
ij eη2ije−λyρ

ijθije
η2ij

if yij > 0,

where η1ij = xijξ1 and η2ij = x
′
ijξ2+z

′
ijbi. The additional component for the zero is

also allowed to be a function [φ(·)] of covariates. In this case, it will be dose group. If

the proportion of zeros across the dose levels are informative by themselves, inference

may be drawn based on the combined effects of ξ1 and ξ2. If the overdispersion

random effect (θij) is dropped, it reduces to a zero-inflated Weibull-normal model

and if the hierarchical random effect (bi) is further dropped, it reduces to a zero-

inflated Weibull model. Similarly, a zero-inflated mixture of Weibulls and zero-inflated

mixture of Weibull-normal models extends the mixture of Weibull distributions of

Section 6.2. They have three compartments: a point mass at zero and two Weibull

models or Weibull-normal models. The zero-inflated Weibull-normal model is given

by:

f(yij |bi) =



















φ(η1ij) if yij = 0,

λ1ρy
ρ−1
ij eη2ij e−λ1y

ρ
ije

η2ij

if yij > 0 with prob. P,

λ2ρy
ρ−1
ij eη2ij e−λ2y

ρ
ije

η2ij

if yij > 0 with prob. 1-P.

6.4 Application to the Comet Data

Also here, the primary aim is to assess the toxicity of 1,2-Dimethylhydrazine dihy-

drochloride at different dose levels. The two sets of comet assay data presented in

Section 2.1 are analyzed using the statistical models of Sections 6.1–6.3. The mix-

ture of Weibull distributions and the mixture of Gamma distributions are applied to

the first set, which apparently does not have zeros, likewise, zero-inflated models are

applied to the second set with excess zeros. All analyses are done on tail length and
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the linear predictor part of the models is given by (4.7). In what follows, the results

are presented.

6.4.1 Mixture of Gamma Distributions

To add flexibility to the distributional assumption for the overdispersion, a Weibull-

type combined model with a mixture of two conjugate gamma distributions for

overdispersion is applied to the comet data. Some of the results for models with

and without a normal hierarchical random effects are presented in Table 6.1. The

Weibull-gamma model is presented, together with the Weibull-mixture of gamma in

the top panel. Extensions of these models, by the inclusion of a normal random effect

to account for hierarchy in the data, is given in the lower panel. Using a mixture

of conjugate distributions has improved the fit slightly in the two sets of models. It

indicates that almost all of the observation-specific random effects come from one

component and only a few from the other component. The other note that needs to

be made is the identifiability of the intercept and scale parameter in modeling the

combined model. The Weibull-gamma-normal model in Tables 6.1 and 6.2 are the

same, except that the scale parameter is fixed to one. The only difference between the

two models is in the estimate of the intercept, exp(−30.93) = 0.005 · exp(−25.63) and

the rest of the parameter estimates remain the same. This indicates that the intercept

and scale parameter are only jointly identifiable. At the same time, it does not have

an effect on the inference drawn, as the comparison of interest remains unaffected.

6.4.2 Mixture of Weibull Models

A mixture of Weibull models was employed to assess if the overdispersion could be

explained by a few unobserved components. In this case, a mixture of two Weibull

models was considered. Analyses with and without a normal random effect to account

for the clustering are done. A summary of the result is presented in Table 6.2.

The upper panel corresponds to the Weibull model, Weibull-mixture model with two

mixture components, and the Weibull-gamma model, which can be seen as a mixture

of with infinite number of components. The lower panel corresponds with these three

models, extended by a normal random effect to take into account the clustering as

well. Comparing the models with and without the normal hierarchical random effect,

it can be seen that the models accounting for the hierarchical structure have a better

fit, underscoring the importance of the hierarchical structure. In both sets of models,

we clearly see the discrete mixture model improved the fit in terms of the likelihood.
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Table 6.1: Comet Assay Study. Parameter estimates, standard error, and significance
level for the regression coefficient in (1) the Weibull-gamma model, Model 1, (2) the Weibull
mixture of gamma model, Model 2, (3) the Weibull-gamma-normal model, Model 3, (4) the
Weibull-mixture of gamma-normal model, Model 4.

Model 1 Model 2

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value

Veh. β0 -27.2624(0.6211) 0.0001 -22.3976(1.7424) 0.0001

Low vs. Med. β2 − β1 -0.1862(0.08511) 0.0288 -0.1893(0.08670) 0.0290

Low vs. High β3 − β1 -0.5556(0.08621) 0.0001 -0.5646(0.08798) 0.0001

Med. vs. High β3 − β2 -0.3694(0.08699) 0.0001 -0.3753(0.08889) 0.0001

Weib.P ρ 9.4499(0.2242) 0.0001 9.6691(0.2426) 0.0001

OD par.1 α1 0.8619(0.04527) 0.0001 0.00012(0.00008) 0.1474

OD par.2 α2 − − 0.8286(0.0446) 0.0001

prop. p − − 0.9958(0.00722) 0.0001

-2loglik. 28904 28891

Model 3 Model 4

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value

Veh. β0 -30.9295(0.7264) 0.0001 -24.4192(1.6681) 0.0001

Low vs. Med. β2 − β1 -0.2174(0.3398) 0.5241 -0.2204(0.3557) 0.5373

Low vs. High β3 − β1 -0.6648(0.3403) 0.0543 -0.6897(0.3564) 0.0565

Med. vs. High β3 − β2 -0.4474(0.3402) 0.1923 -0.4693(0.3563) 0.1916

Weib.P ρ 10.7072(0.2474) 0.0001 11.1825(0.2829) 0.0001

s.d. of RE
√

d 0.9881(0.0859) 0.0001 1.0354(0.0906) 0.0001

OD par.1 α1 0.8932(0.0463) 0.0001 0.8313(0.0446) 0.0001

OD par.2 α2 − − 0.0002(0.0001) 0.0001

prop. p − − 0.9996(0.0006) 0.0001

-2loglik. − 28069 28037

It also has some impact on the estimate as well as the precision and this in turn

had impact on the conclusion inferred for some contrasts of interest. For example,

in the contrast between low dose and high dose the significance level changed from

p=0.1357 for the Weibull-normal model to p=0.0395 for the mixture model. Similarly,

the comparison of low versus medium changed from p=0.0431 for the Weibull model

to p=0.001 for the mixture of Weibull models. Based on the mixture model, the

majority of the observations are allegedly from one component and a small amount

of about 1.8 % is from the second component. The observed and predicted densities

are given in Figure 6.2. The overdispesion seems to be driven by some small set
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of large/extreme observations. When the overdispersion is accounted for through a

gamma random effect, the models have still a better performance, showing that the

overdispersion may not be sufficiently explained by just two components. In modeling

the mixture model, further allowing the shape parameter to vary did not improve the

fit.
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Figure 6.2: Observed (dotted line) and predicted estimate (solid line), from the Mixture of
Weibull-normal models, for tail length by dose groups.

6.4.3 Zero-inflated Models

In this analysis, the different zero-inflated models, as proposed in Section 6.3, were

applied on the second set of comet data, that has a non-negligible amount of zeros



6.4. Application to the Comet Data 69

Table 6.2: Comet Assay Study: tail length. Parameter estimates, standard error, and
significance level for the regression coefficient in (1) the Weibull model, Model 1, (2) the
mixture of two Weibull models, Model 2, (3) the Weibull-gamma model, Model 3, (4) the
Weibull-normal model, Model 4, (5) the mixture of Weibull-normal models, Model 5, (6) the
Weibull-gamma-normal model, Model 6.

Model 1 Model 2 Model 3

Effect Par. Est.(s.e.) p-val. Est.(s.e.) p-val. Est.(s.e.) p-val.

Veh. β0 -17.93(0.03) 0.0001 -21.73(0.30) 0.0001 -25.93(0.08) 0.0001

Low vs. Veh. β1 -3.55(0.05) 0.0001 -6.35(0.10) 0.0001 -10.54(0.27) 0.0001

Med. vs. Veh. β2 -3.64(0.05) 0.0001 -6.52(0.10) 0.0001 -10.72(0.27) 0.0001

High vs. Veh. β3 -3.85(0.05) 0.0001 -6.78(0.10) 0.0001 -11.09(0.28) 0.0001

Pos.C. vs. Veh. β4 -2.70(0.06) 0.0001 -5.17(0.09) 0.0001 -8.51(0.23) 0.0001

Low vs. Med. β5 -0.10(0.05) 0.0431 -0.16(0.05) 0.0010 -0.19(0.09) 0.0288

Low vs. High β6 -0.30(0.05) 0.0001 -0.43(0.05) 0.0001 -0.56(0.09) 0.0001

Med. vs. High β7 -0.21(0.05) 0.0001 -0.27(0.05) 0.0001 -0.37(0.09) 0.0001

Weib.Shape ρ 4.01(0.04) 0.0001 5.76(0.07) 0.0001 9.45(0.22) 0.0001

Weib.Scale1 λ1 179.96(25.31) 0.0001 1 − 0.26(0.18) 0.1420

Weib.Scale2 λ2 − − 100.03(14.22) 0.0001 − −

Overdis. α − − − − 0.86(0.05) 0.0001

prop. P − − 0.02(0.002) 0.0001 − −

-2loglik. 30867 29242 28904

Model 4 Model 5 Model 6

Effect Par. Est.(s.e.) p-val. Est.(s.e.) p-val. Est.(s.e.) p-val.

Veh. β0 -23.80(0.14) 0.0001 -25.65(0.39) 0.0001 -25.63(0.23) 0.0001

Low vs. veh. β1 -4.50(0.22) 0.0001 -7.43(0.24) 0.0001 -11.94(0.44) 0.0001

Med.vs. veh. β2 -4.60(0.22) 0.0001 -7.60(0.24) 0.0001 -12.16(0.45) 0.0001

High vs. veh. β3 -4.83(0.23) 0.0001 -7.89(0.24) 0.0001 -12.60(0.45) 0.0001

Pos.C.vs. veh. β4 -3.48(0.27) 0.0001 -6.09(0.28) 0.0001 -9.64(0.48) 0.0001

Low vs. Med. β5 -0.10(0.22) 0.6393 -0.17(0.22) 0.4432 -0.22(0.34) 0.5242

Low vs. High β6 -0.33(0.22) 0.1357 -0.46(0.22) 0.0395 -0.66(0.34) 0.0542

Med. vs. High β7 -0.23(0.22) 0.3029 -0.29(0.22) 0.1897 -0.45(0.34) 0.1922

Weib.Shape ρ 4.96(0.06) 0.0001 6.79(0.08) 0.0001 10.71(0.25) 0.0001

Weib.Scale1 λ1 3524.37(708.51) 0.0001 1 0.005(0.004) 0.1929

Weib.Scale2 λ2 − − 235.94(41.67) 0.0001 − −

s.d. of RE
√

d 0.65(0.05) 0.0001 0.65(0.05) 0.0001 − −

Overdis. α − − − − 0.89(0.05) 0.0001

prop. P − − 0.02(0.002) 0.0001 −

-2loglik. − 29793 28230 28069
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(10.47 %). From the exploratory analysis, the distribution of zeros varies across

the dose groups: 17.47% in vehicle control, and 10, 8.67 and 6.93 % in the low,

medium and high dose groups, respectively. The general trend is that the amount

zeros decreases with increasing dose. In modeling, the covariate dose is therefore

included in the component for zero outcomes. In the zero-inflated mixture of Weibull

models, one of the scale parameter is fixed to one, for reasons of identifiability. The

results with and without clustering random effect are presented in Table 6.3 (upper

versus lower panel). The result for the zero component for all the zero inflated models

is the same and is presented separately in Table 6.4. The estimates (percentage of

zeros) can be informative by itself and could be included in the inference. In this

analysis, the zero-inflated mixture of Weibulls fitted better as opposed to the zero-

inflated combined model. It was consistent in both sets of models. Also here, it has

an impact on the estimates and the inference drawn for some contrasts of interest.

The fit of the zero-inflated mixture model is graphically illustrated in Figure 6.3.
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Table 6.3: Comet Assay Study. Parameter estimates, standard error, and significance
level for the regression coefficient in (1) the zero-inflated Weibull model, Model 1, (2) the
zero-inflated mixture of two Weibull models, Model 2, (3) the zero-inflated Weibull-gamma
model, Model 3, (4) the zero-inflated Weibull-normal model, Model 4, (5) the zero-inflated
mixture of Weibull-normal models, Model 5, (6) the zero-inflated Weibull-gamma-normal
model, Model 6.

Model 1 Model 2 Model 3

Effect Par. Est.(s.e.) p-value Est.(s.e.) p-value Est.(s.e.) p-value

Veh. β0 -4.71(0.04) 0.0001 -0.59(0.08) 0.0001 -0.72(0.04) 0.0001

Low vs. veh. β1 -0.02(0.06) 0.7723 -0.13(0.07) 0.08 -0.02(0.06) 0.7856

Med.vs. veh. β2 0.02(0.06) 0.7567 -0.07(0.07) 0.3101 0.033(0.06) 0.6030

High vs. veh. β3 -0.2(0.06) 0.0004 -0.28(0.07) 0.0001 -0.22(0.06) 0.0005

Weib.Shape1 ρ1 0.45(0.01) 0.0001 0.65(0.02) 0.0001 0.49(0.02) 0.0001

Weib.Scale1 λ1 116.61(1.91) 0.0001 1 2.44(0.10) 0.0001

Weib.Shape2 ρ2 − − 0.81(0.03) 0.0001 − −

Weib.Scale2 λ2 − − 17.88(1.73) 0.0001 − −

Overdis. α − − − − 6.71(2.5122) 0.0076

prop. of zero P1 0.17(0.01) 0.0001 0.17(0.01) 0.0001 0.17(0.01) 0.0001

prop. of mixture P2 − − 0.60(0.02) − − −

-2loglik. 8078.6 7769.3 8069.5

Model 4 Model 5 Model 6

Effect Par. Est.(s.e.) p-value Est.(s.e.) p-value Est.(s.e.) p-value

Veh. β0 -4.77(0.04) 0.0001 -0.82(0.08) 0.0001 -2.12(0.05) 0.0001

Low vs. veh. β1 -0.02(0.07) 0.7942 -0.17(0.09) 0.0839 -0.02(0.08) 0.8062

Med.vs. veh. β2 0.02(0.07) 0.8213 -0.10(0.09) 0.3027 0.03(0.08) 0.6761

High vs. veh. β3 -0.20(0.06) 0.0033 -0.32(0.09) 0.0009 -0.2(0.08) 0.0043

Low vs. High β3 − β1 -0.18(0.06) 0.0060 -0.16(0.09) 0.1001 -0.21(0.08) 0.0073

Weib.Shape ρ 0.45(0.01) 0.0001 0.66(0.03) 0.0001 0.50(0.02) 0.0001

Weib.Scale1 λ1 124.15(2.36) 0.0001 1 0.0001 10.06(0.44) 0.0001

Weib.Scale2 λ2 − − 17.15(1.52) 0.0001 − −

s.d. of RE
√

d 0.09(0.03) 0.0065 0.15(0.04) 0.0003 0.12(0.04) 0.0022

Overdis. α − − − − 5.97(2.10) 0.0062

prop. of zero P1 0.17(0.01) 0.0001 0.17(0.01) 0.0001 0.17(0.01) 0.0001

prop. of mixture P2 − − 0.54(0.01) 0.0001 − −

-2loglik. 8075.6 7776.0 8065.1
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Table 6.4: Comet Assay Study. Parameter estimates, standard error, and significance level
for the regression coefficient of the zero component for all the zero-inflated models in ?? and
the observed and estimated proportion of zeros in each dose group.

Effect Par. Estimate(s.e.) P-value Observed Prob. Estimated Prop.

Veh. β1 0.4401(0.0619) 0.0001 0.17466 0.17467

Low. β2 0.7872(0.0554) 0.0001 0.01000 0.09999

Med β3 0.8566(0.0551) 0.0001 0.08666 0.08666

High β4 0.9543(0.0553) 0.0001 0.06933 0.06934
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Figure 6.3: Comet Assay Study. Observed (histograms) and predicted estimates (solid line),
from the zero-inflated mixture of Weibull-normal models, for tail length by dose groups.
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6.5 Concluding Remarks

In modeling non-Gaussian data that are hierarchically structured and are overdis-

persed in the sense that the distributional mean-variance relationship is not fulfilled,

Molenberghs et al (2010) proposed a general modeling framework using two random

effects. In Chapters 4 and 5, a modeling framework for comet assay data was proposed

which fits within this framework, but with some extension. A conjugate distribution

is assumed for the overdispersion random effect. It is convenient because of conju-

gacy. However, misspecification of this distribution is possible. In this chapter, the

use of finite mixture models is explored for comet assay data. Mixtures of conjugate

distributions are considered for the overdispersion random effect to accomodate devi-

ations from the assumed distribution. Finite mixture models are considered to asses

whether the extra-variation could be explained by a small number of components. In

the joint presence of excess zeros and dispersed data, a zero-inflated model was also

explored.

This wide range of models was applied to the comet assay data. Here, two datasets

were considered, one with and another without pronounced zeros. Finite mixture

models and mixtures of the conjugate Gamma distributions were applied to the first

set of the data and zero-inflated models to the other set. The use of mixture of two

Gamma distributions instead of one has improved the fit. Using mixtures of Weibull-

normal improved the fit but the combined model fitted better. On the other hand,

the zero-inflated Weibull-normal yielded a better fit as opposed to the zero-inflated

combined model for these particular datasets.





Chapter 7

Gaussian Variational

Approximation for

Overdispersed Generalized

Linear Mixed Models

In the preceding Chapters 3–6, the proposed general framework for modeling non-

Gaussian data that are hierarchically structured and overdispersed was presented.

Difficulty in inference of these models is often encountered in both the Bayesian and

likelihood frameworks, due to the intractable multivariate integrals in the likelihood

and posterior densities. This can already be problematic for the generalized lin-

ear mixed models (GLMM), because of the integrals in the marginalized likelihood

with no analytic expression that need numerical approximations. Often, this is dealt

with by numerical integration using adaptive and non-adaptive Gaussian quadrature,

series expansion methods including penalized quasi-likelihood and marginal quasi-

likelihood, Laplace approximations, etc. Different estimation techniques have been

employed when fitting the combined model. Commonly, this is done through partial

marginalization in which the conjugate random effects are first integrated out, leaving

the normal effects untouched. Then, one obtains the fully marginal expression by nu-

merical integration of the normal random effect using adaptive Gaussian quadrature

in standard software such as the SAS procedure NLMIXED (Molenberghs, Verbeke,

75
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and Demétrio 2007, Molenberghs et al 2010). In the Bayesian framework this is done

using MCMC (Ghebretinsae et al 2013) and pseudolikelihood estimation (Effendi,

Molenberghs, and Verbeke 2010).

In this chapter, another estimation method for the combined model is pro-

posed, providing a fast estimation method as an alternative to the existing methods.

Ormerod and Wand (2012) recently introduced variational approximation in a sta-

tistical modeling framework. Variational inference has its roots in statistical physics

and is used to approximating intractable mathematical expressions (Blei and Jordan

2006). The key idea is to introduce a set of approximating densities to the posteriors

and to introduce them in such a way as to make their evaluation tractable. These

approximations are then optimized so as to minimize the discrepancy between the

approximation and the true posterior using some measure of the difference. The opti-

mization is carried out by varying the functional parameters of these approximations,

thus giving the approximation its name. While different variational approximations

exist, we focus on Gaussian variational approximations, in which the conditional dis-

tribution of the random effects given the data are approximated by Gaussian distribu-

tions. Hall, Ormerod, and Wand (2011) studied the properties of Gaussian variational

approximations in the setting of generalized linear mixed models.

The general idea of variational approximation is to approximate the likelihood so

that the integral problem is either fully or partially solved. It is therefore basically

an approximation of the integrand. When the integral problem is fully solved, it

results in optimization of the resulting approximate likelihood. When the integral

problem is not completely eradicated, like, for example, in a binary GLMM as will

be shown later, it is still useful in reducing the dimension of the integral to one. But

approximation of the integral of the new likelihood/integrand is still required, using

adaptive Gaussian quadrature.

The rest of this chapter is organized as follows. The Gaussian variational approxi-

mation estimation technique is presented in Section 7.1. Its properties are investigated

via three examples, i.e., an extended random-effects Weibull, Poisson, and logistic

model, in Sections 7.2, 7.3 and 7.4, respectively. The Results are then discussed in

Section 7.5.
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7.1 Gaussian Variational Approximation Using

Density Transformation (GVA)

This section presents the GVA approximation method using density transformation,

as described by Ormerod and Wand (2012) and Hall, Ormerod, and Wand (2011).

7.1.1 Deriving GVA Lower Bound Likelihood

Ormerod and Wand (2012) considered the generalized linear mixed model (3.5) with

the scale parameter φ fixed to one. The corresponding marginal log likelihood is,

ℓ(ξ, D) =
N
∑

i=1

log

∫

p(yi|bi)p(bi)dbi (7.1)

=

N
∑

i=1

[yi
′x′

iξ + 1′ic(yi)]−
N

2
log |D| − Nq

2
log(2π)

+

N
∑

i=1

log

∫

exp

[

yi
′z′ibi − ψ(x′

iξ + z
′
ibi)−

1

2
bi

′D−1bi

]

dbi. (7.2)

The maximum likelihood estimates of the fixed effects ξ and covariance matrix D

of the GLMM are obtained by maximizing (7.2). The problem in maximizing this

likelihood, as also explained in Section 3.2.2, is the presence of N integrals over the

q-dimensional random effects bi. The Gaussian variational approximation method

tackles this issue by introducing an extra pair of variational parameters (µi,Λi) for

each subject i, 1 ≤ i ≤ N , where µi is a q-dimensional vector and Λi is q× q positive

definite matrix. Then, new density functions q(bi) are introduced which are assumed

multivariate Gaussian with mean µi and covariance matrix Λi. But in principle, these

densities can take any other functional form as well. In this case, the marginalized

likelihood can be re-written in terms of the q(bi) densities:

ℓ(ξ, D) =

N
∑

i=1

log

∫

p(yi|bi)p(bi)dbi

=
N
∑

i=1

log

∫

p(yi|bi)p(bi)
q(bi)

q(bi)dbi

=

N
∑

i=1

logEbi∼N(µi,Λi)

[

p(yi|bi)p(bi)
q(bi)

]

.
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In this expression, Ebi∼N(µi,Λi)
[.] is the expected value with respect to

bi ∼ N(µi,Λi).

By Jensen’s inequality and concavity of the logarithmic function, we then have:

ℓ(ξ, D) ≥
N
∑

i=1

Ebi∼N(µi,Λi)

[

log

(

p(yi|bi)p(bi)
q(bi)

)]

= ℓ(ξ, D,µ,Λ),

where ℓ(ξ, D,µ,Λ) is the lower boundary of the loglikelihood function ℓ(ξ, D), which

is defined as the approximate likelihood. Alternatively, the same inequality can be

derived from a Kullback-Leibler divergence point of view (Ormerod and Wand 2012;

Hall, Ormerod, and Wand 2011). The accuracy of the approximate likelihood de-

pends on the distance between q(bi) and p(bi|yi), measured by the Kullback-Leibler

distance. Note that, when q(bi) = p(bi|yi), the lower bound ℓ(ξ, D,µ,Λ) is equal to
∑N

i=1 log
∫

p(yi|bi)p(bi)dbi = ℓ(ξ, D).

The idea of GVA is to approximate the computational complex posterior dis-

tribution p(bi|yi), because of the difficult integral, with q(bi), in such a way that

the likelihoood/integrand is integrable or easier. The integral problem is not always

completely removed after applying GVA. In some cases, the integral problem exists

partially. However, it may still have computational advantage, although numerical

approximation is required. We will see this in detail in the next section.

For the generalized linear mixed model given in (3.6), this variational lower bound

of the log-likelihood simplifies to

ℓ(ξ, D,µ,Λ) =
Nq

2
− N

2
log |D|+

N
∑

i=1

{y′i(x′
iξ + ziµi) + 1′ic(yi)−

1′iT [x′
iξ + ziµi, diag(z

′
iΛizi)]−

1

2

[

log |Λi| − µ′
iD

−1µi − (D−1Λi)
]

},

where

T
[

µ, σ2
]

=

∫

ψ(µ+ σx)Φ(x)dx, (7.3)

and Φ is the standard normal cumulative distribution function.

Note that, the variational lower bound contains the original parameters (ξ, D) and

additional variational parameters (µ,Λ). The ML estimates are the (ξ, D) parameters

obtained by maximizing the lower likelihood ℓ(ξ, D,µ,Λ).
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7.2 GVA for General Frailty Models

In this section, four hierarchical models are presented for time-to-event data: the

Weibull-gamma frailty model (taking in to account overdispersion in the data), the

Weibull-normal random-intercept model (taking in to account a two-level hierarchy in

the data), the Weibull-normal-normal random-intercepts model (taking in to account

a three level hierarchy in the data), and a Weibull-gamma-normal hierarchical model,

also called the Weibull-type combined model (taking both overdispersion and two

level hierarchy in to account). For each of these models, a Gaussian variational

approximation is derived.

7.2.1 Lower Bound for Weibull-gamma Frailty Model

Let us consider the Weibull-gamma model, as given in (6.1)–(6.2), assuming that the

outcome yij follows a Weibull(ρ, λθije
xij

′ξ) distribution with θij ∼ Gamma(α, 1/α).

Because of the conjugacy of the Weibull and gamma distributions, the computations

to obtain the marginal likelihood simplify since the gamma frailty can be integrated

out with tractable solution. The marginal likelihood can in this case be expressed as:

ℓ(ξ, α) = log p(y) =
N
∑

i=1

ni
∑

j=1

[log(λρ) + (ρ− 1) log(yij) + xij
′ξ

+(α+ 1) log(α) − (α+ 1) log(α+ λρyρije
x
xij ′ξ )

]

. (7.4)

The parameters of interest are obtained by maximizing (7.4).

7.2.2 Lower Bound for Weibull-normal Random Intercept

Model

Consider the Weibull-type GLMM (Weibull-normal model) where a normal random

effect is used to account for clustering in the data, instead of a conjugate gamma ran-

dom effect. In this case, assuming the outcome yij follows a Weibull(ρ, λθije
xij

′ξ+bi)

with bi ∼ Normal(0, d). The marginal log-likelihood becomes:

ℓ(ξ, d) =

N
∑

i=1

log

∫ ni
∏

j=1

λρyρ−1
ij exij

′ξ+bie−λyρ
ije
xij ′ξ+bi

f(bi)dbi.

The N integrals of the bi random effects do not have a tractable solution and
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can lead to slow computation. Applying the Gaussian variational approximation

technique leads to the Gaussian variational approximate likelihood ℓ(ξ, d,µ,Λ), as

given in (7.5). This lower bound has a tractable solution, with no further requirement

of an integration.

ℓ(ξ, d, µ,Λ) =

N
∑

i=1

ni
∑

j=1

[log(λ) + log(ρ) + (ρ− 1) log(yij) + (xij
′ξ + µi)−

λyρije
xij

′ξ+µi+
1
2
Λi

]

− N

2
log(d)−

N
∑

i=1

1

2d
(µ2

i + Λi) +

N
∑

i=1

1

2
log(Λi). (7.5)

Parameters can be obtained by maximizing this approximate likelihood. So far, we

considered just one hierarchical random effect. It can be extended to two or more

hierarchical random effects, e.g., the Weibull-normal-normal model. Assuming that

the random effects are independent, a GVA approximation is applied to each random

effect separately, leading to the lower bound:

ℓ(β, d1, d2, µ,Λ) =

N
∑

i=1

Mi
∑

j=1

nij
∑

k=1

[log(λ) + log(ρ) + (ρ− 1) log(yijk)+

(x′
ijkξ + µi + µij)− λyρijke

x′

ijkξ+µi+µij+
1
2
Λi+

1
2
Λij

]

−N
2
log(d1)−

N
∑

i=1

1

2d1
(µ2

i + Λi) +

N
∑

i=1

1

2
log(Λi)

−NM
2

log(d2)−
N
∑

i=1

M
∑

j=1

1

2d2
(µ2

ij + Λij) +

N
∑

i=1

M
∑

j=1

1

2
log(Λij).

for outcome Yijk in cluster i = 1, . . . , N , in subcluster j = 1, . . . ,Mi, measured at

occasion k = 1, . . . , nij . d1 and d2 are the variances of the first (at cluster level) and

second (at subcluster level) hierarchical random effects.

7.2.3 Lower Bound for Weibull-gamma-normal Hierarchical

Model

In the Weibull-type combined model (Weibull-gamma-normal model) given by equa-

tions (3.13)–(3.16) in Section 3.1.4.2, we have one additional gamma random effect,
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θij , in contrast to the Weibull-normal model. One option is to approximate the poste-

rior density of both the gamma and the normal random effects in such a way that the

integrand becomes integrable. Approximation of the posterior density of gamma ran-

dom effects θij by gamma and lognormal variational densities was attempted in which

the integral problem was solved. However, it did not lead to a good approximation.

An alternative way is to first integrate over the gamma random effect, as is done in

partial integration. This leads to a gamma frailty model with normal random effect

embedded in it and GVA is applied to the normal random effect. After integrating

over the gamma random effect θij , we have:

p(yij |bi) =
λρyρ−1

ij exij
′ξ+biαα+1

(α+ λρyρije
xij ′ξ+bi)α+1

.

Applying GVA leads to:

ℓ(β, d,µ,Λ) =

N
∑

i=1

∫

log

(

p(yi|bi)p(bi)
q(bi)

)

q(bi)dbi

=

N
∑

i=1

ni
∑

j=1

(log(λ) + log(ρ) + (ρ− 1) log(yij) + (xij
′ξ + µi) +

(α+ 1) log(α)) − N

2
log(d) −

N
∑

i=1

1

2d
(µ2

i + Λi) +

N
∑

i=1

1

2
log(Λi)

− (α + 1)

N
∑

i=1

∫

log(α+ λρexij
′ξ+bi)q(bi)dbi.

Maximization of ℓ(β, d,µ,Λ) with respect to all parameters, leads to parameter esti-

mation of (β, d). Note that, in this case a numerical approximation is still required.

Approximation of the non-integrable part is done using adaptive Gaussian hermite

quadrature (Liu and Pearce, 1994) which is given in Section 3.2.2.3 in general terms.

The abscissae and weight are obtained from R package statmod (smyth, 2009).

7.2.4 Application: the Comet Assay

The proposed method was applied to the comet assay data. Three models were con-

sidered: Weibull-normal, Weibull-normal-normal and Weibull-gamma-normal. The

linear predictor part of the Weibull-normal-normal model was taken the same as in

Chapter 4, given in (4.7).
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Estimation was done using both a GVA approximation and the numerical ap-

proximation using adaptive Gaussian quadrature in PROC NLMIXED . The latter

is taken as gold standard estimate (termed ‘exact estimate’). Standard software, like

SAS PROC NLMIXED, does not allow for more than one hierarchical random effect

level. However, for few sub-clusters, it can be modeled by using a trick. This is done

by considering the subclusters as the random effect at the cluster level and specifying

the same variance for the sub-clusters. For a random intercept model, k random ef-

fects for the subclusters, with k the number of subclusters, are specified at the cluster

level but in an interaction with a dummy variable for the subclusters. The code is

given in Appendix C.1.

The estimates using both GVA and the exact method are given in Ta-

bles 7.1 and 7.2. In terms of accuracy, the parameter estimates as well as the standard

errors using GVA estimate were almost the same as the gold standard estimate for

both Weibull-normal and Weibull-gamma-normal models. It was both fast and accu-

rate. Implementation of the Weibull-normal-normal model in PROC NLMIXED had

convergence problems. Therefore, we considered 10% of the data only, such that the

performance of Gaussian variation approximation can still be evaluated. The result of

the variational approximation is obtained in few minutes (using standard optimization

method) while PROC NLMIXED took several hours for the small dataset.

7.3 GVA for Poisson Models

7.3.1 Lower Bound for Poisson-gamma, Poisson-normal,

Poison-gamma-normal models

Also in the Poisson-gamma model, like in the Weibull-gamma model, the gamma

random effect can be integrated out and as such the marginal likelihood does not need

any approximation. If we consider a Poisson-type GLMM (Poisson-normalmodel), the

marginal likelihood contains an intractable integral. Applying a GVA approximation

results in a new lower bound likelihood with no integral problem, which is similar to

that in the Weibull-normal case. It is given by:

ℓ(ξ, d, µ,Λ) =

N
∑

i=1

ni
∑

j=1

[

yij(x
′
ijξ + µi)− ex

′

ijξ+µi+
1
2
Λi − log(yij!)

]

−N
2
log(d)−

N
∑

i=1

1

2d
(µ2

i + Λi) +
N
∑

i=1

1

2
log(Λi).
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Table 7.1: Comet Assay Study. Exact and GVA estimates for Weibull-normal and Weibull-
gamma-normal models.

Weibull-normal

Exact GVA

Effect Par. Estimate(s.e.) Estimate(s.e.)

Veh. β0 -13.7574(0.2270) -13.7575(0.2270)

Low vs. veh. β1 -3.8319(0.2180) -3.8316(0.2179)

Med.vs. veh. β2 -3.9243(0.2181) -3.9241(0.2180)

High vs. veh. β3 -4.1268(0.2185) -4.1266(0.2183)

Pos.C.vs. veh. β4 -2.9399(0.2653) -2.9402(0.2652)

Weib. shape ρ 4.3293(0.0477) 4.3293(0.0477)

Var. d 0.1334(0.0384) 0.1333(0.0384)

-2loglik. 30476 30502.6

Duration 70 sec. 7 sec.

Weibull-gamma-normal

Exact GVA

Effect Par. Estimate(s.e.) Estimate(s.e.)

Veh. β0 -30.9295(0.7264) -30.9292(0.7264)

Low β1 -42.8673(1.0005) -42.8669(1.0004)

Med. β2 -43.0847(1.0045) -43.0843(1.0040)

High β3 -43.5321(1.0122) -43.5316(1.0121)

Pos.C β4 -40.5714(0.9768) -40.5710(0.9767)

Weib. shape ρ 10.7070(0.2473) 10.7070(0.2473)

Var1. d1 0.9764(0.1698) 0.9764(0.1698)

OD Par. α 0.8932(0.0463) 0.8932(0.0463)

-2loglik. 28069 28069.24

Duration 60 sec. 35 sec.

Also here, extending to more hierarchical random effects follow similarly by ap-
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Table 7.2: A subsample of Comet Assay Study. Exact and GVA estimates for Weibull-
normal-normal model.

Weibull-normal-normal

Exact GVA

Effect Par. Estimate(s.e.) Estimate(s.e.)

Veh. β0 -19.2239(0.9048) -19.1356(0.8970)

Low vs. veh. β1 -6.9489(0.4468) -6.9170(0.4426)

Med.vs. veh. β2 -7.1410(0.4555) -7.1063(0.4512)

High vs. veh. β3 -7.4521(0.4670) -7.4168(0.4627)

Pos.C.vs. veh. β4 -5.5195(0.4650) -5.4933(0.4602)

Weib. shape ρ 6.4192(0.2885) 6.3898(0.2861)

Var1. d1 7.59e-07(0.0003) 4.81e-06(0.0002)

Var2. d2 0.7184(0.1689) 0.6962(0.1644)

Duration 2 hr and 30 min. 10 min.

plying GVA to all hierarchical random effects separately.

ℓ(ξ, d1, d2,µ,Λ) =

N
∑

i=1

Mi
∑

j=1

nij
∑

k=1

[

yijk(x
′
ijkξ + µi + µij)− e(x

′

ijkξ+µi+µij+
1
2
Λi+

1
2
Λij)

− log(yijk!)]−
N

2
log(d1)−

N
∑

i=1

1

2d1
(µ2

i + Λi) +
N
∑

i=1

1

2
log(Λi)

−NM
2

log(d2)−
N
∑

i=1

M
∑

j=1

1

2d2
(µ2

ij + Λij) +

N
∑

i=1

M
∑

j=1

1

2
log(Λij).

When an overdispersion gamma random effect is added to the Poisson-normal model,

it leads to the Poisson-gamma-normal model (Molenberghs, Verbeke, and Demétrio

2007) given in (3.9)–(3.12), a model for repeated count data with overdispersion.

The gamma random effect is first integrated out and GVA is applied to the normal

random effect. In general, the Weibull and Poisson models have similar form. The
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lower bound is given by:

ℓ(ξ, d,µ,Λ) =

N
∑

i=1

ni
∑

j=1

[log((yij + α− 1)!)− log((α− 1)!)− log(yij !) + yij log(β)

+yij(x
′
ijξ + µi)− (yij + α)

∫

log(1 + βex
′

ijξ+bi)q(bi)dbi]

− N

2
log(d) −

N
∑

i=1

1

2d
(µ2

i + Λi) +
N
∑

i=1

1

2
log(Λi).

7.3.2 Application: the Epilepsy Study

Both the Poisson-normal and Poisson-gamma-normal are applied to the epilepsy data

presented in Section 2.2. Let Yij represent the number of epileptic seizures patient i

experiences during week j of the follow-up period. Also, let tij be the time-point

at which Yij has been measured, tij = 1, 2, . . . until at most 27. The mean for the

Poisson-gamma-normal is modelled as:

log(λij) =







(β00 + bi) + β01tij if placebo

(β10 + bi) + β11tij if treated

where the random intercept bi is assumed to be zero-mean normally distributed with

variance d. The result for the Poisson-normal and Poisson-gamma-normal models is

given in Table 7.3. For Poisson-normal, it was fast and accurate and for Poisson-

gamma-normal which still require numerical approximation to the resulted GVA, it

was also fast and fairly accurate. Although the approximation using both methods

was fast, the approximation using GVA was faster.

7.3.3 Application: the Jimma Study

Similarly, the Poisson-normal and Poisson-gamma-normal are applied to a data from

Jimma Infant Survival Study, Jimma data, (Kassahun et al 2012). Jimma Infant

Survival Study is a longitudinal study set to assess the risk factors that affect infant

survival and to investigate socio-economic, maternal, and infant-rearing factors that

contribute most to the child’s early survival. At baseline, a total of 7969 infants

enrolled in the study. The children were followed-up every two months, until the age

of one year. The outcome is defined as the number of days of illness from diarrhea.

Here, the effect of gender, place of residence (rural, urban and semi-urban), as well



86 Chapter 7. Gaussian Variational Approximation

Table 7.3: Epilepsy Study. Exact and GVA estimates for Poisson-normal model and
Poisson-gamma-normal (combined model)

Poisson-normal

Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)

Intercept Placebo β00 0.8179(0.1677) 0.8179(0.1675)

Slope Placebo β01 -0.0143(0.0044) -0.0143(0.0044)

Difference in Intercept β10 − β00 -0.1703(0.2387) -0.1704(0.2385)

Difference in Slope β11 − β01 0.0023(0.0062) 0.0023(0.0062)

Variance of RE d 1.1568(0.1844) 1.1543(0.1839)

-2 Loglik. -6810 -6808.87

Duration 11 sec. 4 sec.

Poisson-gamma-normal (combined)

Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)

Intercept Placebo β00 -2.9862(0.1965) -2.9856(0.1759)

Slope Placebo β01 -0.0248(0.0077) -0.0248(0.0077)

Difference in Intercept β10 − β00 -0.2557(0.2500) -0.2556(0.2498)

Difference in Slope β11 − β01 0.0130(0.0107) 0.0130(0.0107)

Var.of RE d 1.1290(0.1850) 1.1274(0.1847)

OD par. α 2.4640(0.2113) 2.4625(0.0324)

-2 Loglik. -7664 -7664.17

Duration 60 sec. 50 sec.

as breast feeding behavior on the response is investigated. The linear predictor part

of the model is given by:

log(λij) = β0 + β1Ri + β2Ui + β3Gi + β4Bfij + β5Hij +

[β6 + β7Ri + β8Ui + β9Gi + β10Bfij + β11Hi].tij + bi,

where Ri and Ui are dummy variables for place of residence corresponding to rural and

urban areas, with using semi-urban areas as a reference. Gi is the Gender indicator,

tij is the time point at which the jth measurement is taken for the ith infant. Bfij

denotes whether the ith infant is breast fed or not at time j (months). The random

intercept bi ∼ N(0, d). The result for Poisson-normal and Poisson-gamma-normal is

given in Table 7.4. The gain in computational time is clearly seen in this analysis.
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Table 7.4: Jimma Study. Exact and GVA estimates for Poisson-normal model and Poisson-
gamma-normal model (combined model).

Poisson-normal

Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)

Intercept β0 1.6529(0.1039) 1.6938(0.1028)

Rural β1 0.4627(0.0636) 0.4561(0.0615)

Urban β2 -0.2654(0.0832) -0.2657(0.0806)

Time β3 -0.1268(0.0089) -0.1269(0.0089)

Gender β4 0.1017(0.0440) 0.1092(0.0431)

Breast feeding β5 -1.5016(0.0845) -1.5034(0.0844)

Help β6 -2.9504(0.0242) -2.9533(0.0242)

Slope Rural β7 -0.0102(0.0030) -0.0102(0.0030)

Slope Urban β8 0.0531(0.0040) 0.0531(0.0040)

Slope Gender β9 -0.0059(0.0023) -0.0059(0.0023)

Slope Breast feeding β10 0.1430(0.0084) 0.1431(0.0084)

Slope Help β11 0.1666(0.0028) 0.1666(0.0028)

log. Variance of RE log(d) 1.3473(0.0273) 1.2616(0.0177)

Duration 45 min. 3 min.

Poisson-gamma-normal (Combined)

Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)

Intercept β0 5.7516(0.4570) 5.7120(0.4495)

Rural β1 -0.0697(0.1230) -0.0681(0.1195)

Urban β2 -0.2946(0.1599) -0.2908(0.1551)

Time β3 -0.3282(0.0506) -0.3255(0.0498)

Gender β4 0.2426(0.1039) 0.2389(0.1010)

Breast feeding β5 -3.1524(0.4151) -3.1199(0.4079)

Help β6 -6.1489(0.1896) -6.0022(0.1882)

Slope Rural β7 0.0179(0.0158) 0.0178(0.0156)

Slope Urban β8 0.0792(0.0201) 0.0778(0.0198)

Slope Gender β9 0.0064(0.0129) 0.0063(0.0127)

Slope Breast feeding β10 0.3209(0.0453) 0.3181(0.0446)

Slope Help β11 0.3448(0.0219) 0.3396(0.0217)

log Var.of RE log(d) 1.0432(0.0514) 0.8925(0.0525)

log OD par. log(ρ) -2.2590(0.0199) -2.2802(0.0175)

Duration 4 hr and 40 min 5 min.
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7.4 GVA for Logistic Models

7.4.1 Lower Bound for Logistic-normal and Logistic-beta-

normal Models

For the logistic-normal model, we have:

Yij ∼ bernoulli(πij), (7.6)

logit(πij) = x′
ijξ + bi, (7.7)

bi ∼ Normal(0, d). (7.8)

Applying GVA results in the lower bound l(ξ, d, µ,Λ). Unlike in the Poisson-normal

and Weibull-normal models, the GVA likelihood still has a non-tractable likelihood:

ℓ(ξ, d, µ,Λ) =

N
∑

i=1

ni
∑

j=1

[

yij(x
′
ijξ + µi)−

∫

log(1 + ex
′

ijξ+bi)q(bi)dbi

]

−N
2
log(d)−

N
∑

i=1

1

2d
(µ2

i + Λi) +

N
∑

i=1

1

2
log(Λi).

For the Bernoulli-type combined model (logistic-beta-normal models) given in (3.22)–

(3.23), the lower bound is given by:

ℓ(ξ, d, α, β, µ,Λ) =
N
∑

i=1

ni
∑

j=1

[

yij log(α)− log(α+ β)−
∫

log(1 + ex
′

ijξ+bi)q(bi)dbi+

yij(x
′
ijξ + µi) + (1− yij)

∫

log(α+ β + βex
′

ijξ+bi)q(bi)dbi

]

− N

2
log(d)−

N
∑

i=1

1

2d
(µ2

i + Λi) +
N
∑

i=1

1

2
log(Λi).
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For identifiability reasons, we fix α/β = c. The lower bound is then given by:

ℓ(ξ, d, c,µ,Λ) =

N
∑

i=1

ni
∑

j=1

[

− log(1 + c)−
∫

log(1 + ex
′

ijξ+bi)q(bi)dbi+

yij(x
′
ijξ + µi) + (1− yij)

∫

log(1 + c+ cex
′

ijξ+bi)q(bi)dbi

]

− N

2
log(d)−

N
∑

i=1

1

2d
(µ2

i + Λi) +

N
∑

i=1

1

2
log(Λi).

We see that the GVA for the Weibull-gamma-normal, Poisson-gamma-normal and

logistic models, have similar algebraic forms, which still needs numerical approxima-

tion.

7.4.2 Application: the EG Study

We applied the proposed method to the EG data. The model is given by:

logit [P (yij = 1|ξ, bi)] = β0Cij + β1Lij + β2Mij + β3Hij + bi,

where Cij is an indicator for the control group and Lij , Mij , and Hij are the indi-

cators for low, medium, and high dose groups, respectively. The random intercept bi

corresponds to the animal-specific random effect which is assumed to be zero-mean

normally distributed with variance d. The result is presented in Table 7.5. The per-

formance of the GVA in terms of the accuracy of the parameter estimates as well

as the standard error for the logistic models was slightly lower as compared to the

Weibull and Poisson models.
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Table 7.5: Ethylene Glycol Study. Exact and GVA estimates for logistic-normal and logistic-
beta-normal (combined model)

logistic-normal

Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)

Control β0 -6.2344(0.8860) -6.1592(0.8543)

Low β1 -3.8615(0.5420) -3.8011(0.5190)

Medium β2 − β00 -1.7370(0.4332) -1.6984(0.4121)

High β3 − β01 1.5695(0.4693) 1.5274(0.4466)

Var. of RE d 3.9988(1.0977) 3.5808(0.9360)

Duration 18 sec. 6 sec.

logistic-beta-normal

Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)

Control β0 -6.2344(0.8860) -6.1592(0.8543)

Low β1 -3.8615(0.5420) -3.8011(0.5190)

Medium β2 − β00 -1.7370(0.4332) -1.6984(0.4121)

High β3 − β01 1.5695(0.4693) 1.5274(0.4466)

Var. of RE d 1.3860(0.2745) 1.2756(0.2614)

OD par. β/α 1.30e-07(0.00011) 2.68e-09(0.00001)

Duration 35 sec. 40 sec.

Table 7.6: Overview of computational efficiency, duration for convergence (h:m:s).

Models Datasets Exact GVA

Weibull-normal Comet 0:01:10 0:00:07

Weibull-gamma-normal Comet 0:01:00 0:00:35

Poisson-normal Epilepsy 0:00:11 0:00:04

Poisson-gamma-normal Epilepsy 0:01:00 0:00:50

Poisson-normal Jimma 0:45:00 0:03:00

Poisson-gamma-normal Jimma 4:40:00 0:05:00

logistic-normal EG 0:00:18 0:00:06

logistic-beta-normal EG 0:00:35 0:00:40
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7.5 Discussion and Conclusion

Generalized linear mixed models often involve intractable integrals. Different approx-

imating techniques exist, which can be broadly categorized as approximating the inte-

grand, the data or the integral itself. Gaussian variational approximation approximate

the integrand by introducing a set of variational densities (to the posterior densities)

in such a way that their evaluation is tractable. It is applicable for both Bayesian

and likelihood paradigms. In this chapter, we focused on the likelihood framework by

approximating the posterior density of the normal random effect (by a set of normal

densities). We considered three families of GLMM models: 1) the Weibull models:

Weibull-normal, Weibull-normal-normal, and Weibull-gamma-normal; 2) the Poisson

models: Poisson-normal, Poisson-normal-normal and Poisson-gamma-normal; 3) the

logistic models: logistic-normal and logistic-beta-normal.

The GVA approximation was applied to the comet assay data for Weibull models,

epilepsy data for Poisson models and EG data for logistic model. Estimation using

adaptive numerical Gaussian quadrature in the SAS Procedure NLMIXED was taken

as gold standard. For Weibull-normal and Poisson-normal, estimation using GVA was

faster and very accurate (in contrast with the exact estimate). For models with higher

hierarchical random effect (Weibull-normal-normal), this is not accomodated in con-

ventional software, such as the SAS procedure NLMIXED. It is only possible with

the use of some modeling tricks for cases of small number of sub-clusters. Turning to

the comet data, we were having problems in convergence. Thus, we were forced to

deal with the reduced data, yet it was taking very long time to converge. Estimation

using GVA was much faster and fairly accurate. Considering overdispersed hierar-

chical models (Weibull-gamma-normal, Poisson-gamma-normal, and logistic models),

applying GVA approximation still requires numerical approximation. It was also fast

and fairly accurate for the parameters of interest.

In general, GVA can be a good approximation technique especially when the

numerical approximation using standard software fails, is very restrictive, takes a long

time, exhibits problems in convergency, or when it does not allow to accommodate

such features, for instance, when we have more than two hierarchical levels where and

when we have higher dimension of random effect. Table 7.6 gives an overview of the

computational efficiency in terms of time to convergence.





Chapter 8

Discussions and Concluding

Remarks

This first part of the thesis is partly motivated by comet assays, a toxicology study

commonly encountered in preclinical research to assess DNA damage. Nowadays,

the assay has gained widespread use in various areas and has emerged as a standard

tool in the pharmaceutical industry for the assessment of the safety of potential new

drugs. It has a higher-order hierarchical representation. In essence, the comet assay

represents a hierarchical design with animals nested within doses, a number of slides

per animals and several cells measured per slide. In general, comet measures from an

animal are clearly not normally distributed but are rather asymmetric, skewed, bi- or

multimodal, a mixture of different distributions, etc. The different type of measures

used for the quantification of the DNA damage also exihibits a multivariate nature and

three measures are commonly used: the tail migration (i.e., tail length), percentage of

tail intensity, and tail moment. While such data consist of non-Gaussian outcomes in

a multi-level hierarchical structure, traditional analyses typically completely or partly

ignore some of the ingredients that are useful in modeling and that could have a major

impact on the inference drawn.

In this first part, we have explored some statistical models for hierarchically struc-

tured and overdispersed outcomes for comet assay data and propose an alternative

estimation technique for the combined model in general.

In the univariate analysis, a flexible modeling approach for hierarchically clustered

and overdispersed non-Gaussian outcomes for comet assays is proposed that exihibits
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a full hierarchical structure, an appropriate distribution, and possible overdispersion

using a combined model (Molenberghs et al 2010). In this approach, while a conjugate

gamma random effect is used for the overdispersion random effect, both gamma and

normal random effects are considered for the hierarchical random effect, the more

conventional models with either the overdispersion, or just one hierarchical random

effect being submodels. It provided a wide choice of models to select from. The use

of more elaborate model with overdispersion and hierarchical structure improved the

fit for one response. In this approach, the observation-specific gamma random effects

within a cluster are assumed to be independent. It could also further be explored to

see whether the result improves by considering correlated conjugate random effects

with different covariance structure.

In the combined model, a conjugate distribution is assumed for the overdispersion

random effect. In this thesis, alternative distributions are considered. A discrete

distributions that eventually lead to finite mixture models as an alternative way of

accounting for overdispersion. Zero-inflated models are also explored to account for

the excess zeros. A mixture of conjugate distributions for the overdispersion random

effects is also considered, where deviations from a single conjugate distribution are

allowed for while the property of conjugacy can still be employed to ease computa-

tions. In addition, it would have been possible to consider other distributions, like

a normal random effect added in the linear predictor, which will then have a log-

normal distribution in the multiplicative factor. Some assessment of misspecification

of the distribution of the overdispersion random effect and thereof the impact on the

inference drawn could further be investigated.

In multivariate analysis, the hierarchically clustered and overdispersed non-

Gaussian outcomes are jointly analyzed using a multivariate normal distribution. It

allowed to draw overall inferences using all outcomes and to capture the association

among them. Using correlated hierarchical random effects is less restrictive compared

to shared random effects. But it still assumes that the association is entirely induced

by the hierarchical random effect. If the two random effect are uncorrelated then there

is no association between the two outcomes. To accomodate deviations from this as-

sumption, it would have been sensible to explore whether the association is through

the observation specific overdispersion random effect or both. In that case, one may

opt for multivariate extensions of the gamma model. In the case of a bivariate setting

as in the comet data, it would also be possible to use copulas.

Most of the statistical models considered are using the combined model of Molen-

berghs et al (2010) or extensions thereof. In general, the main difficulty with this
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kind of models is the computationally complex estimation due to the intractable mul-

tivariate integrals, as is the case for generalized linear mixed models that involve such

integrals with no analytic expression. In this thesis, the use of Gaussian variational

approximation is explored as an alternative estimation technique. It approximates

the integrand by introducing a set of variational densities in such a way that their

evaluation is tractable. It is quite useful in the cases where there is computational

difficulty using standard estimation or when computational time would be excessive

otherwise.

In this thesis, we have discussed some modeling issues that could distort the infer-

ences drawn if they are not properly addressed in modeling. We tried to accommodate

them by proposing a flexible modeling framework. The development of such elabo-

rate models is quite useful because even when the more elaborate model does not

provide a substantially improved fit, nor alters the inferences drawn, the development

is still very useful because it provides further confidence, by way of model specification

assessment.





Part II

Assessment of Type I Error

Rate Associated with Dose

Group Switching in Clinical

Trials with Incomplete Data
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Chapter 9

Introduction and

Fundamental Concepts of

Incomplete data and

Multiplicity

In clinical trials, although the primary focus of many trials is on a specific time of

measurement - usually the last, the outcome of interest is recorded in a longitudinal

fashion, and missingness in general, and dropout in particular is a common occurrence

(Molenberghs and Kenward, 2007). Missing data has a potential to lead to biased

results and there can be a severe loss of power if the proportion of incompleteness

is high thus, endangering the credibility of the inference drawn. The effect could be

more in dropout, where subjects are observed without interruption from the beginning

of a study to a given point in time when they drop out and do not return to the

study. Although model formulation and manipulation could be simplified, the causes

behind it could be more problematic. This may stem from lack of efficacy, or from

potentially serious treatment-related side effects that can have impact on the inference

(i.e. significance of the treatment effect). On the other hand, an intermittently missing

endpoint value may be due more plausibly to the patient skipping for practical or

administrative reasons, to measurement equipment failure, etc. As such, the impact

could be less in terms of the bias. However, the effect of missingness cannot be
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underestimated, it needs to be handled with care in order to draw valid inference.

While analysing incomplete data, in order to obtain valid inference, one needs to

ask what the response of the subject would have shown had they remained in the

study (Molenberghs and Kenward, 2007). Considering nature of the ’missing data

mechanism’ on that matter is important. This is not under the control of the in-

vestigators, and only assumptions about it are made. Based on the assumption, an

appropriate method for handling missing data is applied. There are various meth-

ods, ranging from simple methods to multiple imputation and likelihood ignorable

methods. However, the validity of the analyses will always depend on whether these

assumptions hold for the particular case. It is always better to minimize the missing-

ness to the level possible so as to minimize the impact. The impact increases with

the increase in the percentage of missingness in the data. For example, the effect on

the power of a test is higher when the dropout is higher.

Some clinical trials allow for a data-driven adaptation when the missingness/-

dropout rate is very high. For example, if the dropout rate in one of the treatment

arms is very high, that treatment group is dropped and another treatment arm with

less missing data used instead. That is, one allows for switching treatment compari-

son. However, reliability of the inference drawn is questioned as it can have an impact

on the type I error rate. It is believed by some that it inflates the type I error rate

and may need multiplicity adjustment. The focus here is to assess the impact of such

data-driven adaptation. In particular, the impact of switching treatment comparison

at the end of a trial on the type I error rate. The problem at hand differs from the

common multiple testing problem. In a way, in multiplicity, analyses are done with

the presumption that attention will focus on the strongest differences among all com-

parisons that are made but, in this case, no multiple comparisons are done. Rather,

one comparison is selected at the end of the study based on dropout rate. But still

the question remains whether such data driven adaptations will have impact on the

type I error rate.

In this chapter, we present the methods for incomplete data and the basic concepts

of type I error rate and multiplicity. Common terminology for missing data will be

introduced and fundamental concepts of missing data, different modeling frameworks,

and the missing mechanisms will be reviewed and methodologies for handling them

(simple imputation methods, multiple imputation, and ignorable likelihood methods)

will be presented.

In Chapter 10, the impact of data driven adaptation on type I error rate will

be assessed. A simulation experiment will be set up to assess the type I error rate
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inflation associated with switching dose group as a function of drop out rate at the

end of the study, where the primary analysis is in terms of a longitudinal outcome.

The work is inspired by a clinical trial in Alzheimer’s disease. The type I error rate

will be assessed under a number of scenarios, in terms of different correlations between

efficacy and tolerance, different missingness mechanisms, and different probabilities

of switching. A collection of parameter values will also be used to assess sensitivity

of the analysis.

9.1 Incomplete Data

The following terminology is based on the standard framework of Rubin (1976)

and Little and Rubin (2002). Let the random variable Yij denote the response

for subject i = 1, . . . , N at occasion j = 1, . . . , ni. The outcomes are grouped

into a vector Yi = (Yi1, . . . , Yini
). Define further a vector of missingness indica-

tors Ri = (Ri1, . . . , Rini
) with Rij = 1 if Yij is observed and 0 otherwise. The set

of measurements, along with the missingness indicators, (Yi,Ri), comprise what is

called the full data. Typically, the vector Yi is divided into observed (Y o

i
) and missing

(Y m

i
) components, respectively. For incomplete data, only (Y o

i
,Ri) is available.

Two types of missingness exist based on the pattern of missingness: monotone

and non-monotone. When the missingness is monotone or of a dropout nature, the

unobserved measurement within the longitudinal series all occur after a particular

measurement occasion, and in that sense, the subject is said to have “dropped out”

of the study. In such cases, the missingness indicator Ri consists of a very particular

form, with all Rij equal to one up to a particular time point j and zero thereafter.

This structure allows the missingness indicators in Ri to be collapsed into a single

variate, Di, defined as Di = 1+
∑ni

j=1 Rij denoting the time point at which subject i

drops out. Non-monotone missingness on the other hand, occurs when missing values

arise intermittently within the series.

9.2 Modeling Frameworks

In modeling missing data, one would need to consider the full data density

f(yi, ri|xi, zi, θ,ψ), where Xi and Zi are the design matrices for fixed and random

effects, respectively, and the parameter vectors θ and ψ describe the measurement

and missingness processes. The parameter θ is composed of (β,γ) where β and γ, in
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order, are the fixed effect and covariance parameters. This full density function can

be factored in different ways, each leading to a different framework. Under a selec-

tion model framework (Rubin 1976, Little and Rubin 2002), the joint distribution is

factored into a marginal density of the measurement process and a conditional model

for missingness process given the outcomes, that is,

f(yi, ri|xi, zi, θ,ψ) = f(yi|xi, zi, θ)f(ri|xi,yi,ψ). (9.1)

Selection models are a primary choice if one is interested in the marginal effect, θ,

of the independent variables on the response. Alternatively, one can consider so-

called pattern-mixture models (Little 1993, 1994a, Molenberghs et al 1997), using

the reversed factorization:

f(yi, ri|xi, zi, θ,ψ) = f(yi|ri,xi, zi, θ)f(ri|xi,ψ).

This density can be seen as a mixture of different populations, each of which is defined

conditionally on the observed pattern of missingness. The parameters θ then denote

pattern-specific effects of the independent variables on the response. Instead of using

the selection or pattern-mixture model frameworks, the measurement and the dropout

process can be jointly modeled using a shared-parameter model (Wu and Carroll 1988,

Wu and Bailey 1989). In such a model the measurement and dropout process are

assumed to be independent, conditional upon a certain set of shared parameters. It

is given by:

f(yi, ri|xi, zi, θ,ψ) = f(yi|bi,xi, zi, θ)f(ri|bi, zi,ψ).

Here, bi are the shared parameters, often considered to be random effects and follow-

ing a specific parametric distribution. Further, θ denotes the effects of the covariates,

conditional on the random effects.

9.3 Missing Data Mechanisms

In order to obtain valid inferences from incomplete data, one needs to consider the

nature of the “missing data mechanism”. Normally, the missing data mechanism is

not under the control of the investigators; consequently, it is often not well understood.

Instead, assumptions are made about the missing data mechanism, and the validity
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of the analyses will depend on whether these assumptions hold for the data at hand.

Rubin (1976) developed a taxonomy to classify the missingness process based on

its dependence on the measurement process. This classification is based on the second

term of (9.1). Upon partitioning of the response vector into its observed and missing

components, it can be expressed as f(ri|xi,yi,ψ) = f(ri|xi,y
o

i
,ym

i
,ψ). When

there is independence on the measurement and missingness process, conditionally

of the covariates, the mechanism is missing completely at random (MCAR). A less

strict assumption would be missing at random (MAR), for which the missingness may

depend on the observed outcomes and covariates but not on the unobserved outcomes.

If the cause of missing data is neither MCAR nor MAR, the data is missing not at

random (MNAR).

Consider a longitudinal clinical trial to assess the efficacy of a new treatment for

a particular disease or condition. If a patient drops out for a reason not related

to treatment effect, like due to weather condition, family issue, this most probably

falls within the category of MCAR, since the missingness process and the outcome

are independent. On the other hand, if a patient missed a visit because in previous

visits his condition stabilized and he is convinced that continuing the visits to the

hospital are of no value or if the result of the previous visits was discouraging that he

decided to stay at home, then the nature of the missingness is related to the previously

observed outcome, and the most plausible process is MAR. In general, if dropping out

is known to be unrelated to current health conditions, an MAR assumption for the

missing values seems justified; however, if dropping out is related to current health

conditions then the MAR assumption is not justified, and the missing data are likely

MNAR.

9.4 A Model for Continuous Longitudinal Data

Here, we consider a model for longitudinal data in a Gaussian setting. The most

widely used methodology for continuous longitudinal data within the likelihood frame-

work is the general linear mixed-effects model (Verbeke and Molenberghs 2000), which

takes the form

Y i =Xiβ +Zibi + εi, (9.2)

where Y i is the ni-dimensional response vector for subject i = 1, . . . , N . Xi and Zi

are, respectively, (ni × p) and (ni × q) known design matrices. β is the p-dimensional
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vector containing the fixed effects. bi ∼ N(0, D) is the q-dimensional vector contain-

ing the random effects. εi ∼ N(0,Σi) are the within-subject random errors. D and

Σi are general covariance matrices of size (q × q) and (ni × ni), respectively.

From (9.2), conditional on the random effect bi, Y i is normally distributed with

mean vector Xiβ + Zibi and with covariance matrix Σi. Upon integration over the

random effects, the resulting marginal model for the response can be expressed as:

Y i ∼ N(Xiβ,ZiDZ
′
i +Σi).

As shown by Verbeke and Molenberghs (2000), the random-effects model implies a

simple marginal model in the linear mixed model case. The expectation Xiβ follows

either by (1) marginalizing over the random effects or by (2) conditioning on the

random-effects vector bi = 0. Thus, the fixed-effects parameters β have both a

marginal and a hierarchical model interpretation.

9.5 Methodology for Incomplete Data

In this section, some of the methods commonly used for handling incomplete data in

longitudinal data analysis in a Gaussian setting are presented: simple ad-hoc methods,

imputation methods, and maximum likelihood estimation methods. We also discuss

the assumptions that need to be made about the missing data mechanism for each

method to yield valid inferences.

9.5.1 Simple Methods

Two simple, common methods to analyze incomplete data are complete case analysis,

which discards subjects with incomplete sequences, and simple imputation. Last

observation carried forward, for which the last observed measurement is substituted

for values at later points in time that are not observed, is among the commonly

used simple imputation methods. Until recently, clinical trial practice has put a

strong emphasis on such simple methods. Some of the claimed advantages include

computational simplicity, no need for a full longitudinal model (e.g., when the research

question is in terms of the last observed measurement occasion only) and, for LOCF,

compatibility with the Intention-to-Treat (ITT) principle, since data on all patients

randomized can be used.
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9.5.1.1 Complete Case Analysis

A complete case analysis (CC) includes only those cases for analysis, for which all

measurements (covariates and outcomes) were recorded (Verbeke and Molenberghs,

2000; Little and Rubin, 2002; Molenberghs and Verbeke, 2005). This method has

the advantage of simplicity. But it is an inefficient use of information, with adverse

effects on precision and power. Further, such an analysis will only be representative

for patients who remain on study and have complete data. In addition, severe bias

can result when the missingness mechanism is MAR. For example, if the completers

are the ones with a better result, then they are not representative of the population

at large and would overestimate the effect. This method is valid only under MCAR.

9.5.1.2 Last observation Carried forward

Last observation carried forward (LOCF) is a common single imputation method

where the most recent observation replaces any subsequent missing ones. It can be

applied to both monotone and non-monotone missingness. The idea of LOCF is based

on the very strong and unrealistic assumption that a subject’s measure stays at the

same level until the end of the trial or during the period they are unobserved in the

case of intermittent missingness. In most clinical trial settings, the assumption that a

patient’s condition would remain at the response level is questionable as study effects,

placebo effects, and natural time evolution also influence outcomes. Molenberghs and

Kenward (2007) showed, using hypothetical data, that, even under the unrealistically

strong assumption of MCAR, while CC produces unbiased estimates, the bias in the

LOCF estimator does not vanish, and can even induce an apparent treatment effect

when there is none. Under MAR, they showed that both can be biased and bias can

go in either direction.

9.5.2 Multiple Imputation

A widely used approach for handling incomplete data is using some form of imputa-

tion. The basic idea behind imputation is simple: substitute or fill in the values that

were not recorded with the imputed values. Methods that impute or fill in the missing

values have the advantage that, unlike CC, the information from the observed values

in the incomplete cases is retained and once a filled-in data set has been constructed,

standard methodology for complete data can be applied. However, single imputation

methods, creating only a single filled-in data set, fail to acknowledge the uncertainty
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inherent in the imputation of the unobserved responses. Multiple imputation (MI)

circumvents this difficulty. MI was formally introduced by Rubin (1978). The key

idea of the procedure is to first replace each missing value with a set of M plausible

values drawn from the conditional distribution of the unobserved values, given the

observed ones. This conditional distribution represents the uncertainty about the

right value to impute. In this way, M imputed data sets are generated, which are

then analyzed using standard complete data methods. Finally, the results from the

M analyses have to be combined into a single inference by means of the method laid

out in Rubin (1978). In its basic form, multiple imputation requires the missingness

mechanism to be MAR.

9.5.3 Maximum Likelihood Estimation

We have presented maximum likelihood in the first part of the thesis (Chapter 3) in

general terms and here, we present the concept in the context of missing data. When

data are incomplete and under a selection model framework, subject i’s observed-data

likelihood contribution takes the form:

Li =

∫

f(yi|θ)f(ri|yoi ,ymi ,ψ)dym
i
. (9.3)

In general, (9.3) does not simplify, but under MCAR (or MAR), we obtain respec-

tively:

Li = f(yo
i
|θ)f(ri|ψ), (9.4)

or

Li = f(yo
i
|θ)f(ri|yoi ,ψ). (9.5)

Hence, likelihood inferences for the measurement model parameters θ can be made

without explicitly formulating the missing data mechanism, provided the parameters

θ and ψ are disjoint, that is, their joint parameter space is the cartesian product of

the two component parameter spaces (Rubin 1976). It is precisely this result which

makes so-called direct likelihood analyses valid under MCAR and MAR.
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9.6 Type I Error Rate and Multiplicity

9.6.1 Type I Error Rate

In statistical inference, type I error and type II error are fundamental concepts. Any

statistical hypothesis test has a probability of making type I and type II errors. A

type I error refers to an incorrect rejection of a true null hypothesis whereas a type

II error is a failure to reject a false null hypothesis. A type I error leads one to

conclude that a relationship exists when in reality there is none, for example, that a

certain treatment cures a disease when in reality it does not. A small nominal level

of significance, usually 5%, is allowed for a result to be significant when there are no

relationships in the population. However, the actual error rate in some designs may

be more than the allowed error rate and this phenomenon is called inflation of the

overall Type I error rate. For example, the overall Type I error rate is higher when

investigates a lot of effects in the data. In general, type I error rate is not always

controlled. For some designs, it is questioned and one of these will be discussed in

the next chapter.

9.6.2 Multiplicity

Multiple comparisons arise when a statistical analysis encompasses a number of for-

mal comparisons, with the presumption that attention will focus on the strongest

differences among all comparisons made. The term ‘comparison’ refers to comparison

of two groups, such as a treatment group and a control group. Failure to compensate

for multiple comparisons can have important real-world consequences. Suppose we

consider the efficacy of a drug in terms of the reduction of any one of a number of

disease symptoms. As more symptoms are considered, it becomes more likely that

the drug will appear to be an improvement over existing drugs in terms of at least one

symptom. As the number of comparisons increases, it becomes more likely that the

groups being compared will appear to differ in terms of at least one attribute. The

confidence that a result will generalize to independent data should generally be weaker

if it is observed as part of an analysis that involves multiple comparisons, rather than

an analysis that involves only a single comparison. In this respect, multiplicity ad-

justment have been considered important. Several statistical techniques have been

developed, allowing significance levels for single and multiple comparisons to be di-

rectly compared. These techniques generally require a stronger level of evidence to be

observed in order for an individual comparison to be deemed “significant”, so as to
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compensate for the number of inferences being made. Some of these are Bonferroni’s

correction, and False discovery rate using Benjamini and Hochberg method to correct

for multiple comparisons (Benjamini and Hochberg 995).



Chapter 10

Assessment of Type I Error

Rate Associated with Dose

Group Switching in a

Longitudinal Alzheimer Trial

In clinical trials, it is not uncommon to modify trial and/or statistical procedures

during conduct, based on review of interim data, or even at the end of the study.

Such adaptive designs have been in use for quite a while now. Procedural changes

may also be implemented at the end of the study; this is of interest here. Adaptation

oftentimes reflects medical practice, and may be regarded as ethical conduct with

respect to both efficacy and tolerance of the experimental treatment. However, it is a

concern whether the p-value or the confidence interval associated with the treatment

effect after modification can be reliably and correctly compared to the nominal α level

(Chang 2008, Chow and Chang 2008, Wang, Wu, and Tsai 2008).

The objective here is to examine key operating characteristics of a clinical trial

design with data-driven adaptation, when the primary analysis is based on a longi-

tudinal outcome. The assessment of the type I error rate inflation associated with

adaptation of a trial by switching dose groups at the end of the study is scrutinized

in particular. This work is motivated by a clinical trial in Alzheimer’s disease. It is

believed by some that switching dose groups may lead to an inflated Type I error rate

109
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and thus the significance level needs to be adjusted. On the other hand, it may not

be applicable to some trials, including the Alzheimer’s disease trial considered here.

The Type I error rate can be lower for such trials, thus not inflating the overall Type

I error rate, when the primary analysis is modified by switching doses based on high

dropout rate in the high dose arm.

In this chapter, the Type I error rate inflation related with switching the dose level

in the primary analysis is assessed by comparing the estimated Type I error rate with

switching doses and without switching, i.e., adhering to the pre-specified comparison.

These results were summarized in Ghebretinsae et al (2013).

Section 10.1 offers some theoretical background on the inflation of Type I error

rate associated with switching treatment comparison. Section 10.2 describes the de-

sign of the Alzheimer clinical trial considered and the statistical model employed.

Section 10.3 presents the design of the simulation study, the results of which are

described in Section 10.4. Finally, the findings are discussed in Section 10.5.

10.1 Theoretical Background on Changes in the

Primary Analysis and Their Effects on Type I

Error Rate

We consider a clinical trial with a primary endpoint of which the primary analysis

can be performed using two different comparisons. A priori, the intention is to use

comparison 1 (High dose versus Placebo), but one can switch to comparison 2 (Low

dose versus Placebo). The comparison is selected at the end of the study and the

decision for switching is driven by the data collected in the study. That is, depending

on the drop-out rate in the high-dose arm one of the possible comparisons is chosen.

Whether switching a comparison is allowed or not (in the latter case, one sticks

to the first comparison), the primary analysis is performed at a pre-specified α level.

Evidently, a key question is whether this switching strategy inflates the Type I error

rate. To address this question, denote H as the test statistic used in the decision

for switching rule. If H < h, the primary analysis will be performed using the first

comparison, otherwise the second comparison is employed. In addition, let t1 and c1

represent the test statistic and critical value for comparison 1, respectively. In this

case, if t1 ≥ c1, the primary analysis becomes significant, based on comparison 1. Note

that, under the hypothesis of no treatment difference, the error rate is approximately
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the nominal rate [P (t1 ≥ c1) ≤ α]. Similarly, take t2 and c2 to be the test statistic

and critical value for comparison 2. Then, as before, the error rate is approximately

the nominal rate [P (t2 ≥ c2) ≤ α], under the hypothesis of no treatment difference.

If the trial does not allow for switching, then the comparison is entirely based on

the high dose and placebo arms. Evidently, then there is neither a multiple testing

problem nor error rate inflation. If switching is allowed, then the type I error rate is

given by:

[P (H < h)P (t1 ≥ c1|H < h)] + [P (H ≥ h)P (t2 ≥ c2|H ≥ h)].

Because low dose is not part of the switching criterion, the test of comparison 2 does

not depend on the switching process, i.e., t2 and H are independent. Controlling the

type I error rate is equivalent to having P (t1 ≥ c1|H < h) ≤ α. If the decision for

switching and testing high dose versus placebo comparison are independent then the

type I is protected, i.e., P (t1 ≥ c1|H < h) = P (t1 ≥ c1) ≤ α. However, in general,

the Type I error rate may not be preserved at the α level. The amount of Type I

error rate inflation is likely to increase with the increase in correlation between the

decision for switching and first comparison. This will be scrutinized in the current

chapter.

10.2 A Clinical Trial in Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disorder causing progressive decline

in memory and other aspects of cognition. The average duration from onset of symp-

toms to nursing home placement is 5 to 7 years and from symptom onset to death is

7 to 9 years (Figure 10.1). Although 6-month trials are still standard in regulatory

guidelines for AD trials, 18 month long randomized placebo controlled trials are very

common. Discontinuation rates for any cause, including death, vary across long-term

AD trials and range between 20% and 40%. Thus, it is critical to account for the

high discontinuation rates in the design and analysis of AD studies.

A phase III clinical trial was designed for patients who were at least 55 years old

to assess the effect of an experimental treatment (ET) compared to placebo on AD

progression using co-primary endpoints that include both cognitive and functional

measures. This study was a multi-site (176 sites), randomized, double-blind, placebo-

controlled, Phase III study of 1500 patients to compare 3 treatments: (i) high dose

of the experimental treatment, (ii) low dose of the experimental treatment, and (iii)
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Figure 10.1: Alzheimer’s disease. Onset and expected decline in memory and cognition.

placebo. The co-primary endpoints for cognition and function were assessed on all

patients at baseline (prior to start of treatment) and six post-baseline visits (at weeks

12, 28, 40, 52, 64, and 76). Patients who were on a stable dose of concomitant

symptomatic medications (AChEI or memantine) were allowed to stay for the duration

of the study.

Patients with mild to moderate AD who met entry criteria were randomized in

a 1:1:1 ratio (500 per treatment arm) to 1 of the 3 treatment groups. Patients were

randomized by site and severity of AD; mild or moderate AD based on the score from

the Mini-Mental State Examination (MMSE) scale.

The primary hypothesis being tested is that the high dose of the experimental

drug (HD) slows down the decline rate associated with AD as compared with placebo

after 76 weeks of treatment. In other words, the decline for the experimental drug is

smaller than the decline for placebo. This can be formulated as:

H0 : µ76,HD = µ76,Placebo,

H1 : µ76,HD < µ76,Placebo,

where µ76 is the mean change in decline from baseline. Given that the expected
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discontinuation rates for the high dose group were unknown, a contingency plan was

included in the protocol. This plan stated that if a large proportion of patients in the

high dose group dropped out of the study, then primary comparison would be between

the low dose group and placebo. The specific criteria that would trigger the switch

were pre-specified as follows: If (1) the discontinuation rate in the high dose group

was greater than 50%; (2) the discontinuation rate in the high dose group exceeded

the discontinuation rate in the placebo group by 20%; (3) the low dose group does

not meet either of the criteria above (1) or (2).

In analyzing the treatment effect, a linear mixed-effects model is considered (Ver-

beke and Molenberghs 2000), allowing for a direct-likelihood approach to incomplete

data, which is sometimes referred to as ‘repeated measures mixed model’ (MMRM),

and is used for analysis of the primary endpoint. The general form is given in (9.2).

In our case, the model for the fixed effect includes 8 independent variables: base-

line score, age at baseline, treatment, visit (post-baseline assessments; a categorical

variable), treatment by visit interaction, MMSE stratification factor at baseline (mild

or moderate), concomitant ACHEI or memantine use at baseline (yes or no), and

investigator (site). In the final analysis, models with site as a random effect and a

model without site are considered. Thus, all in all, we have four cases, referring to

site as: (1) fixed effect; (2) random effect; (3) included while generating data but

excluded in the data analysis; (4) excluded while generating data as well as in the

data analysis.

10.3 Simulation Study

10.3.1 Generating Datasets

In line with the Alzheimer trial, our simulation starts from 176 sites. Each site is

assumed to have and equal sample size of 9, that is, 3 patients per treatment arm.

The total population sums up to 528 × 3 = 1584 patients. Every time, a complete

dataset is generated. First, for each patient, the values of the covariates are generated

from a number of practically plausible distributions. The baseline value for the co-

primary outcome of cognition follows a N(25, 92). The age of the patient at baseline

is assumed to follow N(70, 92), while the distribution for severity of the disease at

baseline (mild=1/moderate=0) is Bernoulli(0.5). Finally, concomitant ACHEI or

meantime use at baseline (Yes=1/No=0) follows a Bernoulli(0.75).

The mean and variance for age are chosen in line with knowledge about Alzheimer’s
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disease. Once the covariates are generated, both responses: efficacy (change from the

baseline for one of the co-primary endpoints) and tolerance are jointly generated from

a multivariate normal distribution. The underlying models for both response variables

are given below. For efficacy, this is

Yijk = β1Bij + β2Aij + β3Mij + β4Cij

+[β5I(k = 1) + β6I(k = 2) + β7I(k = 3) + β8I(k = 4) + β9I(k = 5) +

β10I(k = 6)]× I(Tij = 140mg)

+[β11I(k = 1) + β12I(k = 2) + β13I(k = 3) + β14I(k = 4) + β15I(k = 5) +

β16I(k = 6)]× I(Tij = 100mg)

+[β17I(k = 1) + β18I(k = 2) + β19I(k = 3) + β20I(k = 4) + β21I(k = 5)

+ β22I(k = 6)]× I(Tij = Placebo)

+bYi + εYijk. (10.1)

Here, Yijk is the efficacy response for patient j at site i = 1, . . . , 176 and at visit

k = 1, . . . , 6. Bij , Aij , Cij , Mij , and Tij are baseline, age, concomitant medication,

MMSE, and treatment for patient j in site i, respectively. Further, bYi ∼ N(0, σ2) is

a site-specific random effect, εYij ∼ N(0,Σ11) is a random error vector for the efficacy

response, the patient specific random effect can be absorbed into it by choosing Σ11 an

unstructured 6× 6 covariance matrix. Similarly, the model for the tolerance response

variable is:

Zijk = [α1I(k = 1) + α2I(k = 2) + α3I(k = 3) + α4I(k = 4) + α5I(k = 5) +

α6I(k = 6)]× I(Tij = 140mg)

+[α7I(k = 1) + α8I(k = 2) + α9I(k = 3) + α10I(k = 4) + α11I(k = 5) +

α12I(k = 6)]× I(Tij = 100mg)

+[α13I(k = 1) + α14I(k = 2) + α15I(k = 3) + α16I(k = 4) + α17I(k = 5) +

α18I(k = 6)]× I(Tij = Placebo)

+bZi + εZijk. (10.2)

Now, Zijk denotes the tolerance response for the jth patient at the ith site and at

visit k, εZij ∼ N(0,Σ22), ε
Z
ij also is a random error vector for the tolerance response

and here as well the patient-specific random effect is absorbed into it; Σ22 is an

unstructured 6× 6 covariance matrix. The tolerance response variable is assumed to
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be related to treatment and visit. The joint distribution for both error terms is:





εYij

εZij



 ∼ N









0

0



 ,





Σ11 Σ12

ΣT
12 Σ22







 ,

with additionally Σ12 the 6×6 covariance structure between efficacy and tolerance.

Two types of covariance structures were considered: (1) no correlation and (2) a

correlation of 0.2 between efficacy and tolerance. For the latter, the covariance is as-

sumed to have an autoregressive covariance structure in which the correlation between

the measurements of efficacy and tolerance at the same visit is 0.2. The covariance

matrices Σ11, Σ22, and Σ12 are given in Table 10.1. As far as our interest is in es-

timating the type I error rate, the data were generated under the null hypothesis of

no difference in mean change between treatment arms at week 76 (visit 6), that is,

β10 = β16 = β22. The sets of parameters in Table 10.2 were used, and are chosen such

that the measurements are within their appropriate ranges. A total of S = 10, 000

datasets were simulated. Different sets of parameters (treatment means) are consid-

ered, to study the sensitivity of the error rate to the choices of the parameter values,

and to make sure the results are robust to different settings. Four sets of parameter

values (treatment means) are considered, leading to four sets of simulations. The

second set of parameter values are set with more rapidly declining rates whereas the

third set of parameter values are set with more slowly declining rates in efficacy over

time (at visit 6), when compared to the first parameter values. In the fourth setting,

parameter values are chosen in such a way that the efficacy of the patients is declining

very slowly over time and the difference among the three treatment groups is very

narrow.

In addition, one simulation (Simulation 5) is considered under different switching

criteria. Although the main interest is in assessing the type I error rate associated

with the switching criteria explained in Section 10.2, it is useful to consider other

switching criteria for comparison purposes, where the switching condition is highly

related to the test statistics for the significance of the treatment effect. In this respect,

the following criterion was used to switch to compare low dose group and placebo:

whether the efficacy of the patients in the low dose group is better than that of

patients in the high dose group.
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Table 10.1: The covariance structure used for efficacy (Σ11), tolerance (Σ22), and between
efficacy and tolerance, a correlation of 0, 2 and 0.8 (Σ1

12, Σ
2

12, and Σ3

12)

Σ11 =





















6 2.4 2.2 2.1 1.8 1.2

2.4 5 2.1 1.9 1.6 1.3

2.2 2.1 4.4 2.3 1.7 0.9

2.1 1.9 2.3 4.1 1.6 0.8

1.8 1.6 1.7 1.7 3.8 1.2

1.2 1.3 0.9 0.8 1.2 3.2





















,

Σ22 =





















1 0.4 0.32 0.31 0.28 0.21

0.4 1.2 0.6 0.42 0.38 0.24

0.32 0.6 1.3 0.5 0.44 0.32

0.31 0.42 0.5 1.1 0.56 0.38

0.28 0.38 0.44 0.56 1.2 0.42

0.21 0.24 0.32 0.38 0.42 1.4





















,

Σ1
12 =





















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















,

Σ2
12 =





















0.49 0.107 0.022 0.0041 0.00086 0.00018

0.089 0.49 0.102 0.019 0.0039 0.00085

0.016 0.091 0.48 0.088 0.018 0.004

0.0032 0.018 0.092 0.42 0.089 0.019

0.00062 0.0034 0.018 0.082 0.43 0.092

0.00011 0.00068 0.0033 0.015 0.078 0.42





















Σ3
12 =





















1.9370640 1.6952802 1.4024076 1.0250879 0.8569165 0.7342662

1.3847788 1.9091082 1.5695555 1.1424399 0.9439085 0.8086843

1.0140888 1.4055154 1.8308832 1.3327083 1.1029738 0.9365158

0.7686524 1.0671151 1.3872131 1.6068414 1.3250188 1.1279343

0.5832244 0.801930 1.052397 1.221365 1.619066 1.3825108

0.400769 0.5572728 0.733952 0.8530009 1.1404708 1.5724763





















.
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10.3.2 Incorporating Incompleteness

On a generated complete dataset, a missingness mechanism was applied. First, this

was done under a MAR mechanism, where missingness depends on the observed values

only:

logit[P (Dij = k|Dij > k − 1, yij,k−1, Tij , Zij,k−1)]

= ψ0 + ψ1yij,k−1 + ψ2I(Tij = 140mg) + ψ3I(Tij = 100mg) + ψ4Zij,k−1.

Here, Dij represents the time of drop out for patient j at site i, yij,k−1 is the previous

observed measurement of this patient, representing the dependence of dropout on

efficacy. Including treatment effect into the model helps to ensure that the switching

condition is satisfied by assigning a different probability of dropping out for different

treatment groups. Zij,k−1 is the previous/observed tolerance response, representing

the dependence of dropout on tolerance.

In the first batch of simulations, three sets of parameter values (Scenarios 1, 2, and

3), leading to a probability of switching of about 10%, 25%, and 50%, respectively, are

considered. Scenario 1 introduces dropouts at a rate of about 47% in the high dose

(140 mg) group, 39% in the low dose (100 mg), and 24% in the placebo group. It leads

to a probability of switching of about 10%. Similarly, Scenarios 2 and 3 introduce

dropout profiles of about (48.5%, 40.5%, 25%) and (50%, 43.5%, 26%) in the high

dose, low dose, and placebo groups, respectively. Whereas the first three scenarios

result in switching with a given non-zero probability, two other sets of parameters

(Scenarios 4 and 5), not resulting in switching, are also considered, for the sake of

comparison. Scenario 4 introduces dropout of about 25% in the high dose group, 21%

in the low dose group and 14% in the placebo group. In this case, dropout in the

high dose group is not sufficiently large to meet the first requirement for switching.

Scenario 5, on the other hand, introduces dropout of about 57% in the high dose

group, 55% in the low dose group, and 48.5% in the placebo group. The percentage

of dropout in all treatment groups is large but the percentage of dropout in the high

dose group does not exceed that of placebo by 20% (second requirement for switching

not satisfied).

To further see the impact of switching on the Type I error under a MNAR missing

mechanism, such a mechanism was also considered. This is done by including the
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current measurement, Yijk, into the logistic model:

logit[P (Dij = k|Dij > k − 1, yij,k−1, Tij , Zij,k−1)]

= ψ0 + ψ1yij,k−1 + ψ2yijk + ψ3I(Tij = 140mg) + ψ4I(Tij = 100mg) + ψ5Zij,k−1

+ψ5Zijk.

While it is evidently true that treatment is unknown to the trialist as well as to the

patient, the patient does undergo the effects and therefore, in the true data generating

model, a dependence on treatment is considered realistic, even though unavailable

during the conduct of the trial, unless the trial is unblinded, or at least partially so

(e.g., to the members of the monitoring committee).

Like the first five scenarios we considered under MAR, a corresponding collection

of five scenarios under MNAR was also considered. Three sets of parameter values

(Scenarios 6, 7, and 8), leading to probabilities of switching of about 10%, 25%, and

50% and two sets of parameters (Scenarios 9 and 10) that do not lead to switching.

The percentage of dropout in each treatment arm for all scenarios is given in Table 10.3

and the ψ parameters are displayed in the Table 10.4. The final scenario corresponds

to complete data, which is expected to produce a Type I error rate of 0.025. The

latter is introduced as an internal checking device. These 11 scenarios are applied

to the datasets generated under zero correlation between efficacy and tolerance. The

same sets of parameters are also applied to data with a correlation of 0.2 between

efficacy and tolerance, producing an additional 11 scenarios (Scenarios 12–22). An

overview of the scenarios in the first batch of simulation is presented in Table 10.3.

The first set of simulations, which results from the first set of parameter values,

is large, while the other simulation batches, three with different sets of efficacy pa-

rameters (treatment means) and one with different switching criteria, are done on a

smaller scale, i.e., only a subset of the scenarios from the first simulation is considered.

The second batch of simulations encompasses the first 11 scenarios. The third batch

contains 6 scenarios (1–5 and 11). The fourth batch contains only 4 scenarios; two

scenarios with switching and the remaining two without switching. The fifth batch,

with alternate switching criterion, encompasses two scenario with switching (1 and

3) and another two without (4 and 5). To assess the sensitivity of the results to the

choice of the number of sites as well as to the number of patients per site, two ad-

ditional sets of simulations were conducted (simulation 6 and 7). These simulations

are the same as the second batch of simulations, but with different numbers of sites

and patients per site. In the first set of simulations, the number of sites is varied to
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Table 10.3: Overview of the scenarios considered for the first batch of simulations.

Av. % dropout

Scenario Corr. Mech. Switching P(Switching) high low placebo

1 0 MAR Yes 0.10 47 39 24

2 0 MAR Yes 0.25 48.5 40.5 25

3 0 MAR Yes 0.50 50 43.5 26

4 0 MAR No - 25 21 14

5 0 MAR No - 57 55 48.5

6 0 MNAR Yes 0.10 47 39 22.5

7 0 MNAR Yes 0.25 48.5 40.5 23.5

8 0 MNAR Yes 0.50 50 43.5 24.5

9 0 MNAR No - 25 21 12.5

10 0 MNAR No - 57 55 48.5

11 0 No No - 0 0 0

12 0.2 MAR Yes 0.10 47 39 24

13 0.2 MAR Yes 0.25 48.5 40.5 25

14 0.2 MAR Yes 0.50 50 43.5 26

15 0.2 MAR No - 25 21 14

16 0.2 MAR No - 57 55 48.5

17 0.2 MNAR Yes 0.10 47 39 22.5

18 0.2 MNAR Yes 0.25 48.5 40.5 23.5

19 0.2 MNAR Yes 0.50 50 43.5 24.5

20 0.2 MNAR No - 25 21 12.5

21 0.2 MNAR No - 57 55 48.5

22 0.2 No No - 0 0 0

50, 176, and 300, thereby keeping the number of patients per site at 3. In the second

batch, the number of patients per site is varied to 3, 10, and 30, keeping the number

of sites fixed at 176.

Moreover, two additional simulations (8 and 9) are conducted and add up to a

total of 9 simulations. These are similar to the second batch of simulations but the

treatment effect is excluded when introducing missingness into the data. Therefore,

the dropouts are entirely induced either by efficacy, tolerance, or both. For MAR,

logit[P (Dij = k|Dij > k − 1, yij,k−1, Zij,k−1)] = ψ0 + ψ1yij,k−1 + ψ2Zij,k−1

. Assume that efficacy can be positively or negatively related with dropouts. That
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Table 10.4: Parameter values used for introducing missingness for Simulations 1 and 5.

Scenario Parameter values

1 ψ0–ψ4=-2.10, -0.02, 0.46, 0.3, 0.025

2 ψ0–ψ4=-2.05, -0.02, 0.45, 0.3, 0.025

3 ψ0–ψ4=-2.00, -0.02, 0.45, 0.35, 0.025

4 ψ0–ψ4=-2.75, -0.02, 0.30, 0.20, 0.025

5 ψ0–ψ4=-1.60, -0.01, 0.02, 0.01, 0.015

6 ψ0–ψ6=-2.20, -0.01, -0.01, 0.45, 0.30, 0.015, 0.02

7 ψ0–ψ6=-2.15, -0.01, -0.01, 0.45, 0.30, 0.015, 0.02

8 ψ0–ψ6=-2.10, -0.01, -0.01, 0.44, 0.35, 0.015, 0.02

9 ψ0–ψ6=-2.85, -0.01, -0.01, 0.30, 0.20, 0.015, 0.02

10 ψ0–ψ6=-1.60, -0.005, -0.005, 0.02, 0.01, 0.005, 0.01

11 -

is, patients may drop out due to poor efficacy at the previous visit (ψ1 > 0) or due

to temporary relief (ψ1 < 0). We consider these cases, and some sub-cases, in turn.

(1) The less efficacy there is, the more likely the patient drops out (ψ1 > 0). In

this case, the dropout has to be driven by tolerance. Otherwise, more missingness

is likely in the placebo group and less in the high dose group and this implies that

the switching condition cannot be satisfied. The tolerance response has no direct

impact on the significance of the treatment effect but can have an indirect impact

through the association with efficacy. (1.a) No correlation between efficacy and tol-

erance: Therefore, there is no association between significance of the treatment effect

and switching criteria. As a result, no type I error rate inflation is expected. (1.b)

Although not realistic, if we assume negative correlation between efficacy and toler-

ance, i.e., the higher tolerance response then the more efficacy (smaller value) there

is, the switching criteria will have quite the opposite effect because we are switching

to another treatment comparison when the chance of significance for the high dose is

higher. Therefore, in that case, a lower type I error rate is expected. (1.c) Positive

correlation between efficacy and tolerance, i.e., the higher tolerance response, the less

efficacy (larger value) there is. This may result in inflation of the error rate. (2) The

more efficacious the drug is, the more likely the patient drops out, stemming from

temporary relief (ψ1 < 0). In this case, if missingness is driven by efficacy, then the

switching criteria does not systematically favor significance of the treatment effect.

The switching criteria is associated with significance of the treatment effect but in a

quite opposite way. Also here, a lower type I error rate is anticipated. The two addi-
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Table 10.5: Parameter values used for introducing missingness for Simulations 2, 3, 6 and
7.

Scenario Parameter values

1 ψ0–ψ4=-3.76, 0.015, 0.51, 0.36, 0.05

2 ψ0–ψ4=-3.72, 0.015, 0.51, 0.37, 0.05

3 ψ0–ψ4=-3.675, 0.015, 0.51, 0.36, 0.05

4 ψ0–ψ4=-4.45, 0.015, 0.4, 0.28, 0.05

5 ψ0–ψ4=-2.93, 0.015, 0.013, 0.011, 0.05

6 ψ0–ψ6=-4.10, 0.01, 0.01, 0.6, 0.41, 0.025, 0.025

7 ψ0–ψ6=-4.06, 0.01, 0.01, 0.6, 0.42, 0.025, 0.025

8 ψ0–ψ6=-4.01, 0.01, 0.01, 0.597, 0.42, 0.025, 0.025

9 ψ0–ψ6=-4.80, 0.01, 0.01, 0.45, 0.30, 0.025, 0.025

10 ψ0–ψ6=-3.20, 0.01, 0.01, 0.024, 0.018, 0.025, 0.025

11 -

Table 10.6: Parameter values used for introducing missingness for Simulation 4.

Scenario Parameter values

1 ψ0 = −1.8, ψ1 = −0.03, ψ2 = 0.33, ψ3 = 0.15, ψ4 = 0.05

2 ψ0 = −2.2, ψ1 = −0.03, ψ2 = 0.82, ψ3 = 0.6, ψ4 = 0.05

3 ψ0 = −3.2, ψ1 = −0.03, ψ2 = 1.5, ψ3 = 1.25, ψ4 = 0.05

4 ψ0 = −1.34, ψ1 = −0.02, ψ2 = 0.12, ψ3 = 0.09, ψ4 = 0.025

tional simulations correspond to these two situations, i.e., the first one when dropout

is driven by efficacy and the second one when dropout is induced by the tolerance

response; a correlation between efficacy and tolerance of 0, 0.2, and 0.8 is considered.

10.3.3 Estimating the Type I Error Rate

The resulting datasets are analyzed using the aforementioned likelihood-based ignor-

able method, valid under MAR, thereby using all the available information without

the need to either delete or impute measurements (Molenberghs and Verbeke 2005,

Molenberghs and Kenward 2007). The same method was used to analyze the incom-

plete data resulting from MNAR. It enables us to see the impact of misspecification of

the missing data mechanism. In addition to this likelihood-based ignorable method,

last observation carried forward (LOCF) imputation was also used, limited to the
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Table 10.7: Parameter values used for introducing missingness for Simulation 8.

Scenario Parameter values

1 ψ0 = 1.86, ψ1 = −0.12, ψ2 = 0.02

2 ψ0 = 1.86, ψ1 = −0.118, ψ2 = 0.02

3 ψ0 = 1.86, ψ1 = −0.117, ψ2 = 0.02

4 ψ0 = 1.2, ψ1 = −0.125, ψ2 = 0.02

5 ψ0 = −1.2, ψ1 = −0.02, ψ2 = 0.02

Table 10.8: Parameter values used for introducing missingness for Simulation 9.

Scenario Parameter values

1 ψ0 = −4.47, ψ1 = 0.015, ψ2 = 0.14

2 ψ0 = −4.5, ψ1 = 0.015, ψ2 = 0.145

3 ψ0 = −4.5, ψ1 = 0.015, ψ2 = 0.148

4 ψ0 = −4.5, ψ1 = 0.015, ψ2 = 0.08

5 ψ0 = −2.7, ψ1 = 0.015, ψ2 = 0.04

case where site is considered a fixed effect. This allows us to assess the type I error

rate under this more traditional analysis.

10.3.3.1 Scenarios with Switching

Those datasets satisfying the switching condition are analyzed based on the compar-

ison of low dose and placebo (Model 1):

Yijk = β0 + β1I(Tij = 100mg) + β2I(k = 1) + β3I(k = 2) + β4I(k = 3)

+β5I(k = 4) + β6I(k = 5) + [β7I(k = 1) + β8I(k = 2) +

β9I(k = 3) + β10I(k = 4) + β11I(k = 5)]I(Tij = 100mg)

+β12Aij + β13Mij + β14Cij + β15Bij + bi + εijk. (10.3)
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The remainder are analyzed based on the comparison of high dose and placebo (Model

2):

Yijk = β0 + β1I(Tij = 140mg) + β2I(k = 1) + β3I(k = 2) + β4I(k = 3)

+β5I(k = 4) + β6I(k = 5) + [β7I(k = 1) + β8I(k = 2) +

β9I(k = 3) + β10I(k = 4) + β11I(k = 5)]I(Tij = 140mg)

+β12Aij + β13Mij + β14Cij + β15Bij + bi + εijk. (10.4)

In both models, visit 6 is the reference time, hence β1 is the parameter of interest.

For each dataset, we either reject or do not reject the null hypothesis H0 : β1 = 0.

The overall Type I error rate is calculated as c/s, where c is the number of significant

cases in both parts and s is the total number of simulations (10, 000).

10.3.3.2 Scenarios Without Switching

All datasets are analyzed based on the designed comparison of high dose and placebo.

The type I error rate is calculated and compared with the type I error rate with

switching. This enables us to see whether switching doses inflates the type I error

rate and would need correction.

10.4 Simulation Results

Our primary goal was to compare the estimated Type I error rate with and without

switching. A summary of the results of the first three batches, where site is considered

as random and as fixed effect, is presented in Tables 10.9–10.11. The detailed results

for all cases (site as fixed, random, and excluded) are presented in the Appendix D.1.

When site is excluded from the final analysis, the results produced an error rate much

lower than the nominal level, but the type I error rates for the remaining three are

quite similar. They approximately amount to the allowed type I error rate of 0.025,

with minimum of 0.02 and maximum of 0.0305. The reason for the low Type I error

rate for case c, site excluded from analysis, is because in generating the data, site has

been considered, while in the final analysis it is neither included as fixed nor as random

effect. Thus, as a consequence, a certain amount of variability is left unexplained.

The immediate consequence is an overestimation of the standard errors, which in turn

results in underestimating the Type I error rate. When site was excluded completely,

both in data generating and final analysis, the expected type I error rate was obtained.
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In general, there was not much difference between the scenarios with and without

switching, in the estimated type I error rate except for one scenario that will be dis-

cussed below. This finding appeared when it was applied under the same missing data

mechanism and correlation between efficacy and tolerance. There was no systematic

trend in error rate when the probability of switching increases from 10% to 50%. It

is also of interest to see how the type I error rate would vary if we assume a different

correlation between efficacy and tolerance. Noticeable differences in Type I error rate

were not observed when a correlation of 0 and 0.2 between efficacy and tolerance

was assumed in generating the data. If we consider the datasets generated under

MAR and MNAR and analyzed using direct likelihood, a technique valid only under

MAR, then, although results were generally very similar between both, we noted that

the type I error rate under MNAR is slightly higher in most of the scenarios when

compared to its counterpart under MAR in the second batch of simulation.

In contrast, and in line with expectation, the results obtained by analyzing these

incomplete data using LOCF were very different (Table 10.9). The type I error rate

was huge under all scenarios. The reason is that the efficacy for the patients in the

high dose group is better, i.e., smaller change/decline in the primary endpoint, than

the efficacy of the patients in the control and low dose groups in the first five visits.

Also, the efficacy in the low dose group is better than in the control group. Although

the data are generated under the null hypothesis, implying that the efficacy of the

patient is the same in all treatment arms at the last visit, carrying the observation

forward for about 50% of the missing observations will inflate significance of the

treatment effect at the last visit. Two factors determine how much the type I error

rate inflates: (1) the magnitude of difference in the efficacy between the treatment

arms and placebo; and (2) the difference in the percentage of missingness between

the treatment arms and placebo.

Let us turn to the fourth batch (Table 10.12). The error rate from the likelihood

based analysis, like before, is controlled. The error rates from LOCF are still large. It

is worth emphasizing that this large error resulted despite the data being generated

under almost no treatment effect at any visit and very slight difference in the efficacy

of the patients over time. This underscores just how much LOCF can inflate the error

rate. Furthermore, the error rate is relatively lower when contrasted to their counter-

parts from the earlier results, with the same amount of missingness. This stems from

the fact that the difference between the treatment arms and placebo is very small in

this simulation. On the other hand, the difference in the percentage of missingness

in the treatment arm forces the error rate to vary across the scenarios. For instance,
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Table 10.9: Summary of the estimated type I error rate from the first batch of results, for
site as a fixed and a random effect.

Estimated Type I error rate

Site fixed Site random

Scenario Corr. Mech. Switching Ign. lik. LOCF Ign. lik.

1 0 MAR Yes 0.024 1.000 0.025

2 0 MAR Yes 0.023 1.000 0.025

3 0 MAR Yes 0.027 1.000 0.027

4 0 MAR No 0.026 1.000 0.022

5 0 MAR No 0.026 1.000 0.029

6 0 MNAR Yes 0.025 1.000 0.024

7 0 MNAR Yes 0.023 1.000 0.025

8 0 MNAR Yes 0.025 1.000 0.025

9 0 MNAR No 0.023 1.000 0.022

10 0 MNAR No 0.026 1.000 0.027

11 0 No No 0.021 0.021 0.026

12 0.2 MAR Yes 0.029 1.000 0.028

13 0.2 MAR Yes 0.028 1.000 0.024

14 0.2 MAR Yes 0.029 1.000 0.025

15 0.2 MAR No 0.024 1.000 0.023

16 0.2 MAR No 0.025 1.000 0.022

17 0.2 MNAR Yes 0.025 1.000 0.028

18 0.2 MNAR Yes 0.023 1.000 0.022

19 0.2 MNAR Yes 0.024 1.000 0.022

20 0.2 MNAR No 0.025 1.000 0.022

21 0.2 MNAR No 0.025 1.000 0.025

22 0.2 No No 0.024 0.024 0.027

the error rate under Scenario 4 is three times that of Scenario 3. Considering the

difference in the percentage of missingness between the treatment arms and placebo

explains why this huge difference can happen. Carrying observations forward assumes

that patients had no further deterioration. Thus, more observations in the treatment

group have better efficacy than in the placebo group, leading to more spurious treat-

ment effects. The first four simulation results and the last two simulation (6 and

7) assess the error rate inflation associated with switching dose group based on the

criteria explained in Section 10.2. Results indicated that the error rates are controlled

under the likelihood method. Next, let us see the other switching criteria. Results
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Table 10.10: Summary of the estimated type I error rate from the second batch of results,
based on ignorable likelihood.

Estimated Type I error rate

Scenario Corr. Mech. Switching Site fixed Site random

1 0 MAR Yes 0.0277 0.0264

2 0 MAR Yes 0.0240 0.0251

3 0 MAR Yes 0.0205 0.0249

4 0 MAR No 0.0273 0.0250

5 0 MAR No 0.0255 0.0250

6 0 MNAR Yes 0.0274 0.0298

7 0 MNAR Yes 0.0288 0.0251

8 0 MNAR Yes 0.0220 0.0254

9 0 MNAR No 0.0217 0.0267

10 0 MNAR No 0.0271 0.0283

11 0 No No 0.0234 0.0237

Table 10.11: Summary of the estimated type I error rate from the third batch of results,
based on ignorable likelihood.

Estimated type I error rate.

Scenario Corr. Mech. Switching Site fixed Site random

1 0 MAR Yes 0.0248 0.0232

2 0 MAR Yes 0.0204 0.0289

3 0 MAR Yes 0.0288 0.0234

4 0 MAR No 0.0295 0.0269

5 0 MAR No 0.0259 0.0278

6 0 No No 0.0260 0.0236
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Table 10.12: Summary of the type I error rate obtained from the fourth batch of simulations
(with alternative parameter values); all scenarios are under MAR. (Av.per.drop.: average
percentage of dropouts in the high, low and placebo response.

Estimated Type I error rate

Site fixed Site random

Scenario Switching Av.per.drop. Likelihood LOCF Likelihood LOCF

1 Yes 47,38,26 0.025 0.38 0.024 0.37

2 Yes 50,40,18 0.028 0.48 0.026 0.48

3 No 39.5,30,7 0.029 0.68 0.025 0.68

4 No 59,56,46.5 0.022 0.22 0.023 0.22

presented in Table 10.13 clearly indicate the inflation of the type I error rate, which

is in line with the theoretical expectation that the type I error rate can inflate when

the switching criterion is correlated with the test statistic for significance. If the two

treatment arms are compared with placebo independently, an error rate of approxi-

mately 0.025 is expected. When switching in a manner unrelated to the significance

of treatment effect, we still have an error rate of 0.025 because of the random nature

of the switching act. In the worst case scenario, however, as the switching criteria is

related with the level of significance for treatment effect, situations with a significant

treatment effect will be included, leading to an error rate of about 0.05. This is true,

provided an appropriate method for handling missing data is used; combined with

inappropriate methods, it can even inflate further, and considerably so, as shown us-

ing LOCF, for instance. The sensitivity of the results to the choice of the number of

Table 10.13: Summary of the type I error rate, obtained from the fifth batch of simulations
with different switching criteria; all scenarios are under MAR and site is a fixed effect.

Scenario Switching Type I error (likelihood)

1 Yes 0.03483

2 Yes 0.03320

3 No 0.02364

4 No 0.02899

sites, as well as to the number of patients per site was further assessed. The results,

presented in Tables 10.14 and 10.15, show that it is insensitive to the number of sites

and the number of patients per site. We do not see systematic differences in the

Type I error rates between scenarios with and without switching, regardless the other
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Table 10.14: Summary of the estimated type I error rate for the sixth batch of results based
on ignorable likelihood for different number of sites, where site is a random effect.

Type I error for # sites

Scenario Corr. Mech. Switching 50 176 300

1 0 MAR Yes 0.028 0.025 0.025

2 0 MAR Yes 0.025 0.021 0.026

3 0 MAR Yes 0.029 0.027 0.025

4 0 MAR No 0.027 0.022 0.022

5 0 MAR No 0.026 0.023 0.027

6 0 MNAR Yes 0.023 0.022 0.030

7 0 MNAR Yes 0.029 0.028 0.031

8 0 MNAR Yes 0.030 0.029 0.030

9 0 MNAR No 0.029 0.022 0.031

10 0 MNAR No 0.026 0.023 0.029

11 0 No No 0.028 0.020 0.030

settings. The bias of the parameters of two covariates, treatment difference at the

last visit and MMSE score, for the different scenarios of one particular simulation is

presented in Table 10.16.

In the latter two simulations, the treatment effect is excluded when introducing

missingness. Therefore, dropout is entirely induced either by efficacy or tolerance. In

simulation 8 (Table 10.17), dropout is driven by efficacy such that the more efficacious

the drug the higher the dropout rate due to temporary relief. The type I error rate is

approximately the nominal rate, no error rate inflation associated with switching is

noticed. In simulation 9 (Table 10.18), dropout is driven by the tolerance response.

More dropout is associated with a higher tolerance response. In this simulation, a

correlation of 0, 0.2, and 0.8 between the efficacy and tolerance is considered. As

before, the results show that, for both correlations 0 and 0.2, no type I error shift was

noted. However, for the specific case of a very high correlation of 0.8, the switching

had some impact. This is because the switching criterion is highly related with efficacy

through the tolerance response.
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Table 10.15: Summary of the estimated type I error rate from the seventh batch of results,
based on ignorable likelihood, for different number of patients per site, where site is a random
effect.

Type I error for # pat.

Scenario Corr. Mech. Switching 3 10 30

1 0 MAR Yes 0.025 0.029 0.027

2 0 MAR Yes 0.021 0.029 0.026

3 0 MAR Yes 0.027 0.029 0.024

4 0 MAR No 0.022 0.029 0.030

5 0 MAR No 0.023 0.026 0.023

6 0 MNAR Yes 0.022 0.031 0.027

7 0 MNAR Yes 0.028 0.029 0.025

8 0 MNAR Yes 0.029 0.030 0.031

9 0 MNAR No 0.022 0.029 0.026

10 0 MNAR No 0.023 0.026 0.028

11 0 No No 0.020 0.025 0.026

Table 10.16: Summary of the bias and standard error results for the seventh batch of results
based on ignorable likelihood.

bias (s.e.)

Scenario Corr. Mech. Switching Treat. diff. at V6 MMSE

1 0 MAR Yes -0.00429(0.1370) 0.00336(0.1004)

2 0 MAR Yes -0.00341(0.1372) 0.00372(0.1005)

3 0 MAR Yes -0.00431(0.1369) 0.00277(0.1005)

4 0 MAR No -0.00232(0.1221) 0.00242(0.0962)

5 0 MAR No -0.00708(0.1595) 0.00323(0.1059)

6 0 MNAR Yes -0.00878(0.1362) 0.00287(0.1000)

7 0 MNAR Yes -0.00777(0.1360) 0.00388(0.1000)

8 0 MNAR Yes -0.00806(0.1359) 0.00185(0.1001)

9 0 MNAR No -0.00381(0.1215) 0.00225(0.0960)

10 0 MNAR No -0.01016(0.1597) 0.00343(0.1057)

11 0 No No -0.00034(0.1102) 0.00266(0.0920)
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Table 10.17: Summary of the estimated type I error rate from the Eighth batch of results,
based on ignorable likelihood.

Scenario Corr. Mech. Switching Type I error rate

1 0 MAR Yes 0.022

2 0 MAR Yes 0.026

3 0 MAR Yes 0.025

4 0 MAR No 0.025

5 0 MAR No 0.025

Table 10.18: Summary of the estimated type I error rate from the ninth batch of results,
based on ignorable likelihood.

Type I error rate

Scenario Mech. P(Switching) Switching corr=0 corr=0.2 corr=0.8

1 MAR Yes 0.1 0.019 0.024 0.032

2 MAR Yes 0.25 0.023 0.025 0.039

3 MAR Yes 0.5 0.028 0.025 0.038

4 MAR No 0.019 0.025 0.028

5 MAR No 0.024 0.021 0.031
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10.5 Concluding Remarks

Adaptive studies that allow switching between dose groups are routinely used. In

particular, a design that allows to choose a dose group to compare to placebo based

on dropout rate can be considered. That is, the primary analysis may switch or shift

to a different treatment contrast if the dropout rate is too high. It is a concern whether

the type I error rate inflates with such design and requires a multiplicity adjustment.

In this study, a simulation experiment was set up to assess the type I error rate

inflation, inspired by an Alzheimer’s disease trial associated with switching dose level.

The type I error rate was estimated treating site as fixed effect, random effect, as well

as by excluding it from analysis. All of this was done under different correlation levels

between efficacy and tolerance, and under different missing mechanisms.

Based on the analysis using an ignorable likelihood method, the estimated type I

error rate with and without switching was approximately the nominal error rate for

the different scenarios except when dropout is strongly associated with efficacy and it

was insensitive to the choice of parameters. Using LOCF imputation, the error rate

was inflated, both with and without switching. However, no type I error rate inflation

associated with switching was observed. Under a switching criterion, related with the

test statistic for treatment effect, type I error rate inflation associated with switching

is noticed.

We conclude that, although switching doses in a data-driven fashion at the final

analysis, where the switching criteria is highly related with the primary endpoint,

may in general lead to type I error rate inflation, the type I error rate inflation

associated with switching was controlled for in most scenarios for the Alzheimer trial

with longitudinal outcome where patients are expected to worsen over time. An

exception occurred for the specific case where dropout is strongly associated with

efficacy. Therefore the switching criteria used needs to be carefully studied regarding

the possible association with significance of the treatment effect (Mallinckrodt et al

2003).

Our findings, when carefully consulted, can help minimize the impact of using

untoward switch criteria.
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Summary

In this thesis, modeling issues and design aspects that arise in toxicologic studies and

clinical trials are addressed. The text is structured in two parts.

The first part of the thesis is motivated by a toxicologic study measuring DNA

damage: the so-called comet assay. It was developed by Ostling and Johansson in

1984 and later modified by Singh et al in 1988. It has since increased in popularity for

the evaluation of DNA damage and genotoxicity testing, and is now used as a stan-

dard tool in the pharmaceutical industry for the assessment of the safety of potential

new drugs. In the comet assay allows DNA migration is visualised (typical comet-like

structures), allowing the quantification of DNA damage at the single cell level. Three

measures are commonly used: the tail migration (i.e., tail length), percentage tail in-

tensity, and tail moment. Different issues complicate the analysis. (1) The design of

the study is hierarchical in the sense that animals are nested within doses, a number

of slides per animals are used and several cells are measured per slide. (2) Comet mea-

sures from an animal are not normally distributed but are rather asymmetric, skewed,

bi- or multimodal, a mixture of different distributions, etc. Traditional analyses typ-

ically completely or partly ignore these issues and summarize measurements within a

cluster. In this part, we have explored statistical models for hierarchically structured

and overdispersed outcomes, such as for the comet assay data. Both univariate and

multivariate methods are considered. Because of the computational complexity of the

proposed models, an alternative estimation technique is explored.

The standard approach of modeling non-normal data is through a generalized lin-

ear model. The best-known examples include linear regression, logistic regression,

and Poisson regression. An important extension of these models is the generalized

linear mixed model, by the inclusion of normally distributed random effects, account-

ing for the multi-level structure in the data. A common issue with non-Gaussian data

is overdispersion in the sense that the variability in the data is not well described by
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the distributional mean-variance relationship. This can happen both in the univariate

and in the multi-level setting. One approach to account for overdispersion in a uni-

variate generalized linear model is by the use of a conjugate random effect, such as in

for example the negative binomial and beta-binomial model. In a recent publication,

Molenberghs, Verbeke, and Demétrio (2007) proposed a similar approach to account

for overdispersion in a multilevel setting, by the use of two random effects, a normally

distributed random effect to accommodate for the hierarchy and part of the overdis-

persion, and a conjugate random effect to account for the remaining overdispersion

in the data. This is often referred to as the combined model.

In Chapter 4, a flexible modeling approach for hierarchically clustered and overdis-

persed non-Gaussian outcomes for comet assays is proposed. The model exhibits a

full hierarchical structure, an appropriate distribution, and possible overdispersion

using a combined model. In this approach, while a conjugate gamma random effect

is used for the overdispersion random effect, both gamma and normal random ef-

fects are considered for the hierarchical random effect. The more conventional models

with either the overdispersion, or just one hierarchical random effect are considered

as sub-models. It provides a wide choice of models to select from. The use of more

elaborate model with overdispersion and hierarchical structure improved the fit for

one response.

Up to this point, the outcomes are modeled univariately. However, the comet

assay data exhibit a multivariate structure. In general, multivariate longitudinal or

clustered data are commonly encountered in clinical trials and toxicologic studies.

Typically, there is no single standard endpoint to assess the toxicity or efficacy of

the compound of interest, but co-primary endpoints are available to assess the toxic

effects or the working of the compound. Modeling the responses jointly is thus ap-

pealing to draw overall inferences using all responses and to capture the association

among the responses. A further extension to a multivariate setting with hierarchi-

cally clustered and overdispersed non-Gaussian outcomes is proposed in Chapter 5.

The two outcomes are jointly analyzed by assuming that the normal random effects

for both endpoints are correlated. The association structure between the response is

analytically derived.

In Chapter 6, alternatives for the overdispersion distribution are considered: (1) A

discrete distributions that eventually lead to finite mixture models as an alternative

way of accounting for overdispersion. (2) Zero-inflated models are also explored to

account for the excess zeros. (3) A mixture of conjugate distributions, where deviation

from a single conjugate distribution are allowed for, while the property of conjugacy
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can still be employed to ease computations. This further improves the flexibility of

the combined model.

Most of the statistical models considered are using the combined model of Molen-

berghs et al (2010) or extensions thereof. In general, the main difficulty with this

kind of models is the computationally complex estimation due to the intractable mul-

tivariate integrals, as is the case for generalized linear mixed models that involve such

integrals with no analytic expression. In Chapter 7, the use of Gaussian variational

approximation is explored as an alternative estimation technique. It approximates

the integrand by introducing a set of variational densities in such a way that their

evaluation is tractable. It is quite useful in the cases where there is computational

difficulty using standard estimation or when computational time would be excessive

otherwise.

The second part is related to incomplete data in clinical trials. In clinical trials,

although the primary focus of many trials is on a specific time of measurement, usually

the last, the outcome of interest is recorded in a longitudinal fashion, and missingness

in general and dropout in particular is a common feature. Such missing data, in

general, have a potential to affect/distort inferences drawn. It can lead to biased

results and there can be a severe loss of power if the proportion of incompleteness

is high. Some trials allow for data-driven adaptation when the dropout rate is high.

For example, if the dropout rate in one of the treatment arms is very high, that

treatment group is dropped and another treatment arm with less missing data used

instead. That is, one allows for switching treatment comparison at the end of the

study. However, reliability of the inference drawn is questioned as it can have an

impact on the type I error rate. Chapter 10 focuses on the impact of such data driven

adaptations. In particular, the type I error rate associated with dose group switching

is assessed when the primary analysis is in terms of a longitudinal outcome. It is

believed by some that switching dose groups may lead to an inflated Type I error rate

and thus the significance level needs to be adjusted. On the other hand, it may not be

applicable to some trials, including the Alzheimer’s disease trial considered here. The

Type I error rate can be lower for such trials, thus not inflating the overall Type I error

rate, when the primary analysis is modified by switching doses based on high dropout

rate in the high dose arm. In this study, a simulation experiment was set up to assess

the type I error rate inflation, inspired by an Alzheimer’s disease trial associated with

switching dose level. The type I error rate was assessed under a number of scenarios,

in terms of differing correlations between efficacy and tolerance, different missingness
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mechanisms, and different probabilities of switching. A collection of parameter values

was used to assess sensitivity of the analysis. We conclude that, although switching

doses in a data-driven fashion at the final analysis, where the switching criteria is

highly related with the primary endpoint, may in general lead to type I error rate

inflation, the type I error rate inflation associated with switching was controlled for

in most scenarios for the Alzheimer trial with longitudinal outcome where patients

are expected to worsen over time. An exception occurred for the specific case where

dropout is strongly associated with efficacy. Therefore, the switching criteria used

needs to be carefully studied regarding the possible association with significance of

the treatment effect.
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Supplementary Materials of

Chapter 4

In this appendix, we present the code used in Chapter 4.

#Model 8 - Weibull gamma(re2) #

model {

# N observations

for (i in 1:N) {

intensity[i]$\sim$dweib(r,lamda[i])

lamda[i] <- h[slide[i]] * exp(eta[i])

eta[i] <- beta0+beta1 * low[i] + beta2 * med[i]+

beta3 * high[i]+beta4 * pos[i] }

# P Slides

for (k in 1:P) { h[k] $\sim$ dgamma(alpha, alpha) }

# priors

beta0$\sim$dnorm(0.0, 1.0E-6)

beta1$\sim$dnorm(0.0, 1.0E-6)

beta2$\sim$dnorm(0.0, 1.0E-6)

beta3$\sim$dnorm(0.0, 1.0E-6)

beta4$\sim$dnorm(0.0, 1.0E-6)

alpha$\sim$dgamma(0.1,0.1)

r$\sim$dexp(0.01)}
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# Model 16 - Weibull gamma(OD) normal(RE1) gamma(RE2) model #

model {

# N observations

for (i in 1:N) {

intensity[i]$\sim$dweib(r,lamda[i])

lamda[i] <- h[slide[i]] * theta[i] * exp(eta[i])

theta[i]$\sim$dgamma(alpha1, alpha1)

eta[i] <- beta0+beta1 * low[i]+beta2 * med[i]+

beta3 * high[i]+beta4 * pos[i]+u[rat[i]] }

# M rats

for (j in 1:M) { u[j] $\sim$ dnorm(0,tau) }

# P slides

for (k in 1:P) { h[k] $\sim$ dgamma(alpha2, alpha2) }

# priors

beta0$\sim$dnorm(0.0, 1.0E-6)

beta1$\sim$dnorm(0.0, 1.0E-6)

beta2$\sim$dnorm(0.0, 1.0E-6)

beta3$\sim$dnorm(0.0, 1.0E-6)

beta4$\sim$dnorm(0.0, 1.0E-6)

tau$\sim$dgamma(0.01, 0.01)

alpha1$\sim$dgamma(2, 2)

alpha2$\sim$dgamma(0.1,0.1)

r$\sim$dexp(0.01)}
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Supplementary Materials of

Chapter 5

In this appendix, we present the code used, derivation of the formulas and additional

tables for the simulation studies discussed in Chapter 5.

B.1 Software Code

proc nlmixed data=comet2r maxiter=5000 qpoints=30;

/ * specification of initial values * /

parms int0=-28 int125=-40 int25=-40.2 int5=-41 int200=-3 6

in0=-2.9 in125=-5.5 in25=-6.2 in5=-6.5 in200=-4.9 logrho 1=1.4

logrho2=2 logalpha1=1 sigma1=0.6 sigma2=0.117 r=0.2;

/ * specification of the linear part of the model for * /

/ * the first response * /

if (dose=0) then eta1=int0+b;

else if (dose=1.25) then eta1=int125+b;

else if (dose=2.5) then eta1=int25+b;

else if (dose=5) then eta1=int5+b;

else if (dose=200) then eta1=int200+b;

/ * specification of the linear part of the model for * /
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/ * the second response * /

if (dose=0) then eta2=in0+c;

else if (dose=1.25) then eta2=in125+c;

else if (dose=2.5) then eta2=in25+c;

else if (dose=5) then eta2=in5+c;

else if (dose=200) then eta2=in200+c;

/ * use appropriate link functions * /

k1=exp(eta1);

k2=exp(eta2);

rho1=exp(logrho1);

rho2=exp(logrho2);

alpha1=exp(logalpha1);

/ * likelihood specification * /

if res=1 then

loglik=logrho1+log(response) * (rho1-1)+(alpha1+1) * logalpha1

+ eta1-(alpha1+1) * log(alpha1+(response ** (rho1)) * k1);

else if

res=2 then loglik=logrho2+log(response) * (rho2-1)+eta2-

((response ** rho2) * k2);

model response˜ general(loglik);

/ * normal random effect specification * /

random b c ˜normal([0,0],[sigma1 ** 2,r * sigma1 * sigma2,sigma2 ** 2])

subject=slide_id;

/ * some estimate statements of interest for first response * /

estimate ’Veh vs Low’ int125 - int0;

estimate ’Veh vs Med’ int25 - int0;

estimate ’Veh vs High’ int5 - int0;

estimate ’Veh vs P. Control’ int200-int0;

estimate ’low vs Med’ int25 - int125;

estimate ’low vs High’ int5- int125;

estimate ’Med vs high’ int5-int25;

/ * some estimate statements of interest for second response * /
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estimate ’Veh vs Low’ in125 - in0;

estimate ’Veh vs Med’ in25 - in0;

estimate ’Veh vs High’ in5 - in0;

estimate ’Veh vs P. Control’ in200-in0;

estimate ’low vs Med’ in25 - in125;

estimate ’low vs High’ in5- in125;

estimate ’Med vs high’ in5-in25;

/ * Intraclass correlation and correlation between two respon ses * /

/ * estimate statements * /

betta1=beta(alpha1-(2/rho1),(2/rho1));

betta2=beta(alpha1-(1/rho1),(1/rho1));

ex1=exp((sigma1/rho1) ** 2);

estimate ’ICC1’ (ex1-1)/((2 * rho1 * betta1 * ex1/(betta2 ** 2))-1);

gamma1=gamma(2/rho2);

gamma2=gamma(1/rho2);

ex2=exp((sigma2/rho2) ** 2);

estimate ’ICC2’ (ex2-1)/((2 * rho2 * gamma1* ex2/(gamma2 ** 2))-1);

ex3=exp((r * sigma1 * sigma2)/(rho1 * rho2));

estimate ’Corr’ (ex3-1)/sqrt(((2 * rho1 * betta1 * ex1/(betta2 ** 2))-1)

* ((2 * rho2 * gamma1* ex2/(gamma2 ** 2))-1));

run;

B.2 Derivation of the Correlation Between Both

Endpoints

Let Y1ij and Y2ij be the j
th measurements of subject i for outcome 1 and 2 respectively.

The linear part for the two responses are:

η1ij = x′
1ijξ1 + b1i,

η2ij = x′
2ijξ2 + b2i,

with




b1i

b2i



 ∼ N









0

0
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d21 rd1d2

rd1d2 d22
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The correlation between the two endpoints is, by definition:

Corr(Y1ij , Y2ij) =
Cov(Y1ij , Y2ij)

√

Var(Y1ij)
√

Var(Y2ij)
. (B.1)

We will re-write this as

Corr(Yij , Yik) =
T 1√
T 2

√
T 3

. (B.2)

It is also known that

Cov(Yij , Yik) = E (Cov(Yij , Yik|b1i, b2i)) + Cov [E(Yij |b1i, b2i),E(Yik|b1i, b2i)] ,

which we denote as T 1 = L1 + L2.

Given the random effect, the two measurements are independent. Therefore

Cov(Yij , Yik|b1i, b2i) = 0.

By integrating the gamma random effect, we have:

f(y1ij |b1i) =
λ1ρ1y

ρ1−1
1ij ex

′

1ijξ1
+b1iαα1+1

1

(α1 + λ1y
ρ1

1ije
x′

1ijξ1
+b1i)α1+1

, (B.3)

with similar formula for f(y2ij |b2i).
Further, we have,

f(y1ij |b1i, b2i) = f(y1ij |b1i), (B.4)

f(y2ij |b1i, b2i) = f(y2ij |b2i). (B.5)

Therefore, the conditional expectation is given by

E(Y1ij |b1i) =
∫

y1ijf(y1ij)dy1ij =
α

1
ρ1

1 B(α1 − 1
ρ1
, 1
ρ1
)

ρ1(λ1e
x′

1ijξ1
+b1i)

1
ρ1

, (B.6)

with a similar formula for E(Y2ij |b2i).
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The covariance between E(Y1ij |b1i) and E(Y2ij |b2i) is

Cov[E(Y1ij |b1i),E(Y2ij |b2i)] =
α

1
ρ1

1 α
1
ρ2

2 B(α1 − 1
ρ1
, 1
ρ1
)B(α2 − 1

ρ2
, 1
ρ2
)

ρ1(λ1e
x′

1ijξ1)
1
ρ1 ρ2(λ2e

x′

2ijξ2)
1
ρ2

Cov(e−
b1i
ρ1 , e−

b2i
ρ2 ).

As a result:

T 1 = L2 =
α

1
ρ1

1 α
1
ρ2

2 B(α1 − 1
ρ1
, 1
ρ1
)B(α2 − 1

ρ2
, 1
ρ2
)

ρ1(λ1e
x′

1ijξ1)
1
ρ1 ρ2(λ2e

x′

2ijξ2)
1
ρ2

e
1
2
(
d2
1

ρ2
1

+
d2
2

ρ2
2

)
[e

rd1d2
ρ1ρ2 − 1], (B.7)

T 2 = Var(Y1ij) =

α
2
ρ1

1 e
d2
1

ρ2
1

[

B
(

α1 − 2
ρ1
, 2
ρ1

)

e
d2
1

ρ2
1 −B

(

α1 − 1
ρ1
, 1
ρ1

)2
]

ρ1

(

λ1e
x′

1ijξ1

)
1
ρ1

, (B.8)

and

T 3 = Var(Y2ij) =

α
2
ρ2

2 e
d2
2

ρ2
2

[

B
(

α2 − 2
ρ2
, 2
ρ2

)

e
d2
2

ρ2
2 −B

(

α2 − 1
ρ2
, 1
ρ2

)2
]

ρ2

(

λ2e
x′

2ijξ2

)
1
ρ2

. (B.9)

Substituting T 1, T 2 and T 3 in (B.2) gives a formula for the correlation between

the two endpoints in (5.2).

Derivation of the Intraclass Correlation

The correlation between the jth and kth measurements of subject i for outcome 1,

Y1ij and Y1ik is

Corr(Y1ij , Y1ik) =
Cov(Y1ij , Y1ik)

√

Var(Y1ij)
√

Var(Y1ik)
(B.10)

with

Cov(Yij , Yik) = E(Cov(Y1ij , Y1ik|b1i)) + CovE(Y1ij |b1i),E(Y1ik|b1i) (B.11)
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Given that the random effect between the measurements are independent,

E(Cov(Y1ij , Y1ik|b1i)) = 0 and

Cov(Yij , Yik) =
α

2
ρ1

1 B(α1 − 1
ρ1
, 1
ρ1
)2

ρ12
(

λ
2
ρ1

1 ex
′

1ijξ1
+x′

1ik
ξ

1

)
1
ρ1

e
d2
1

ρ2
1

[

e
d2
1

ρ2
1 − 1

]

(B.12)

Var(Y1ij) is just the variance given in (B.9). Solving this leads to the intraclass

correlation

Corr(Y1ij , Y1ik) =

[

e
d

ρ2
1 − 1

]

[

2ρ1B(α1−
2
ρ1

, 2
ρ1

)e
d

ρ1
2

B(α1−
1
ρ1

, 1
ρ1

)2
− 1

] (B.13)

B.3 Simulation Results
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Appendix C

Supplementary Materials of

Chapter 7

In this appendix, we present the code used, derivation of the formulas and additional

tables for the simulation studies discussed in Chapter 7.

C.1 SAS code for three level hierarchical structure

of the comet data

proc nlmixed data=aa maxiter=5000 qpoints=30;

title ’Weibull normal normal for Tail Length’;

parms int0=-28.7 int125=-40 int25=-41 int5=-42 int200=-3 8

rho=0 sig1=0 sig2=0;

if (dose=0) then eta=int0+b+b1 * (slide=1)+b2 * (slide=2)

+b3* (slide=3);

else if (dose=1.25) then eta=int125+b+b1 * (slide=1)+b2 * (slide=2)

+b3* (slide=3);

else if (dose=2.5) then eta=int25+b+b1 * (slide=1)+b2 * (slide=2)

+b3* (slide=3);

else if (dose=5) then eta=int5+b+b1 * (slide=1)+b2 * (slide=2)

+b3* (slide=3);

else if (dose=200) then eta=int200+b+b1 * (slide=1)+b2 * (slide=2)

+b3* (slide=3);
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k= exp(eta);

erho=exp(rho);

loglik=rho+log(response) * (erho-1)+eta-((response ** erho) * k);

esig1= exp(sig1);

esig2= exp(sig2);

model response ˜ general (loglik);

random b b1 b2 b3 ˜ normal([0,0,0,0],

[esig1,0,esig2,0,0,esig2,0,0,0,esig2]) subject=rat;

run;



Appendix D

Supplementary Materials of

Chapter 10

In this appendix, additional tables for the first batch of simulation discussed in Chap-

ter 10 are presented.

D.1 Result For the First Batch of Simulations
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Samenvatting

Dit proefschrift is een studie naar specifiek modellen en design aspecten voor toxicol-

ogische studies en klinische proeven. De tekst is opgebouwd uit twee delen.

Het eerste deel van het proefschrift wordt gemotiveerd door een toxicologische

studie voor het opmeten van DNA schade: het zogenaamde comet assay. De studie

werd ontwikkeld door Ostling en Johansson in 1984 en werd later aangepast door

Sing et al in 1988. De populariteit van deze methode is sindsdien steeds toegenomen

voor de evaluatie van DNA schade en toetsen voor genotocixiteit, en wordt nu ge-

bruikt als een standaard methode voor de beoordeling van de veiligheid van potentiële

nieuwe geneesmiddelen. DNA migratie wordt in de comet assay gevisualiseerd (typ-

isch komeet-achtige structuur), welk toelaat de DNA schade te kwantificeren op het

niveau van de cel. Drie maten worden hier meestal voor gebruikt: staart migratie

(of staartlengte van de komeet), percentage staart intensiteit en staart-moment. Ver-

schillende eigenschappen maken de analyse van deze data moeilijk: (1) Het ontwerp

van de studie is hïrarchisch in de zin dat dieren genest zijn in dosisgroepen, een aantal

‘slides’ per dier gebruikt worden en verschillende cellen gemeten worden per ‘slide’.

(2) De opmetingen van de studie zijn niet normaal verdeeld maar eerder asymmetrisch,

scheef, bi- of multimediaal, een mengvorm van verdelingen, enz. Traditionele analyses

negeren geheel of gedeeltelijk de eigenschappen van de gegevens, en zijn gebaseerd op

een samenvatting van de metingen per cluster. In dit deel worden statistische modellen

onderzocht welke rekening houden met de hiërarchische structuur en overdispersie in

de data, zoals voor de comet essay gegevens. Zowel uni- als multivariabele modellen

worden beschouwd. Ter wille van de computationele complexiteit van de voorgestelde

modellen, wordt een alternatieve schattingsmethode onderzocht.

De standaard aanpak voor het modelleren van niet-normaal verdeelde gegevens

is het gebruik van veralgemeende lineaire modellen. De meest bekende voorbeelden

zijn lineaire regressie, logistische regressie en Poisson regressie. Een belangrijke uit-
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breiding van deze modellen is het veralgemeende lineaire gemengde model, door het

toevoegen van een normaal-verdeeld random effect om de hiërarchische structuur van

de data in rekening te brengen. Echter, een veel voorkomend probleem met niet-

normale data is overdispersie in de zin dat de variabiliteit in de data niet voldoet aan

de gemiddelde-variantie relatie afkomstig van de verdeling. Dit komt zowel voor in het

geval van univariate als multi-level data. In het geval van een veralgemeend lineair

model maakt men vaak gebruik van een geconjugeerd random effect om rekening te

houden met overdispersie, zoals in het negatief binomiaal model of het beta-binomiaal

model. In een recente publicatie stelden Molenberghs, Verbeke en Demétrio (2007)

een gelijkaardige methode voor om rekening te houden met overdispersie in een mul-

tivariate setting, door het gebruik van twee random effecten, een normaal verdeeld

random effect om rekening te houden met de hiërarchie, en een geconjugeerd random

effect om rekening te houden met overdispersie in de data. Dit wordt vaak aangeduid

als het gecombineerde model.

In Hoofdstuk 4 werd een flexibele modelleer-methode voorgesteld voor hiërarchisch

geclusterde niet-normale data met overdispersie, in het kader van het comet essay. Het

model maakt gebruik van de volledige hiërarchische structuur, de meest geschikte

verdeling, en overdispersie, via het gebruik van het gecombineerde model. In deze

methode maken we gebruik van een geconjugeerd gamma random effect om rekening

te houden met overdispersie, en een gamma en normaal random effect om rekening

te houden met de hiërarchie. De meer conventionele modellen welke enkel reken-

ing houden met ofwel overdispersie ofwel een enkel hiërarchisch random effect worden

beschouwd als sub-modellen. Het biedt een ruime keuze aan modellen bij model selec-

tie. Het gebruik van meer uitgebreide modellen met overdispersie en de hiërarchische

structuur was een verbetering in deze studie.

Tot op dit punt werden de resultaten univariaat gemodelleerd. De comet assay

data vertonen echter een multivariate structuur. Ook in vele andere klinische stud-

ies en toxicologische experimenten komen multivariate longitudinale of geclusterde

data voor. In toxicologie is er meestal geen enkele standaard eindpunt om de toxi-

citeit en de werkzaamheid van de verbinding te evalueren, maar worden co-primaire

eindpunten gebruikt om de toxiciteit te beoordelen. Het gezamenlijk modelleren van

deze uitkomsten is dus aantrekkelijk voor algemene besluitvorming en om associaties

op te meten. Een verdere uitbreiding naar een multivariate setting met hiërarchisch

geclusterd niet-normale uitkomsten met overdispersie wordt voorgesteld in Hoofd-

stuk 5. Beide resultaten worden gezamenlijk geanalyseerd door te veronderstellen dat

de normale verdeling van de random effecten gecorreleerd zijn. De associatie structuur
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tussen de uitkomsten werd analytisch afgeleid.

In Hoofdstuk 6 worden alternatieve verdeling verondersteld voor de overdispersie:

(1) Een discrete verdeling welke uiteindelijk leidt tot een eindige mengeling van mod-

ellen om rekening te houden met overdispersie. (2) ’Zero-inflated’ modelled worden

onderzocht om rekening te houden met de toename aan nullen. (3) Een mengeling

van geconjugeerde verdeling, welke toelaten afwijkingen van een enkele geconjugeerde

verdeling in rekening te brengen, terwijl de eigenschap van geconjugeerd zijn toch ge-

bruikt kan worden om de berekeningen te vereenvoudigen. Dit verhoogt de flexibiliteit

van het gecombineerde model.

De meeste van de statistische modellen beschouwd in deze thesis zijn gebaseerd

op het gecombineerde model van Molenberghs et al. (2010). Het voornaamste prob-

leem bij dit soort modellen is de computationeel complexe schatting ter wille van de

multivariate integralen, net zoals bij veralgemeende lineair gemengde modellen. In

Hoofdstuk 7 wordt het gebruik van Gaussische variationele benadering onderzocht als

een alternatieve schattingsmethode. In deze methode wordt de integrand benaderd

door het invoeren van een set van variationele dichtheden, zodat evaluatie van de

integrand eenvoudig is. De methode is erg nuttig indien er computationele problemen

optreden met standaard schattingsmethoden, of wanneer rekentijd te groot is.

Het tweede deel van deze thesis heeft betrekking op onvolledige gegevens in klin-

ische studies. In klinische studies, hoewel de primaire focus van veel onderzoek op

een specifieke tijd van de meting is, meestal het laatste tijdstip, wordt de uitkomst

opgevolgd in tijd, en onvolledige gegevens en uitval in het bijzonder komen vaak voor.

Deze ontbrekende gegevens hebben in het algemeen een invloed en bëınvloeden de

gevolgtrekking. Dit kan leiden tot vertekende resultaten en kan een ernstig verlies

van onderscheidend vermogen opleveren als het aandeel van de onvolledigheid hoog

is. Sommige experimenten laten een data-gedreven aanpassing toe wanneer de uitval

groot is. Bijvoorbeeld, als de uitval groot is in één van de behandelingsgroepen, kan

deze behandelingsgroep uit de studie gelaten worden en wordt een andere behandel-

ingsgroep met minder ontbrekende data in de plaats daarvan gebruikt. Dus, men

laat toe om de vergelijking tussen behandelingen te wijzigen aan het einde van de

studie. De betrouwbaarheid van de inferentie kan in vraag gesteld worden, aangezien

dit een impact heeft op de type I fout. In Hoofdstuk 10 wordt de impact van dergeli-

jke data-gestuurde aanpassingen onderzocht. In het bijzonder wordt de type I fout

geassocieerd met het wisselen van dosis groepen onderzocht als de primaire uitkomst

longitudinaal is. Een verwachting is dat de type I fout zal toenemen door het wis-
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selen van dosis groep, en dat significantieniveau aangepast moet worden. Langs de

andere kant is het mogelijks niet van toepassing in andere studies, zoals de beschouwde

studie op de ziekte van Alzheimer. De Type I fout kan kleiner zijn voor dergelijke

studies, dus geen toename van de algemene Type I fout, indien de primaire anal-

yse aangepast werd door het wisselen van dosis groepen gebaseerd op hoge uitval

in de hoge dosis groep. In deze studie werd een simulatie uitgevoerd om de type I

fout te onderzoeken, naar analogie met de studie naar de ziekte van Alzheimer. De

Type I fout werd onderzocht in verschillende scenario’s, in functie van verschillende

correlaties tussen effectiviteit en tolerantie, verschillende mechanisme voor ontbrek-

ende data, en verschillende kansen op te wisselen. Een reeks van parameterwaarden

werd gebruikt om de sensitiviteit van de analyse te bestuderen. We besluiten dat,

hoewel het wisselen van dosissen op een data-gestuurde manier in de finale analyse,

waar het criteria voor wisselen gerelateerd is met primaire uitkomst, de type I fout

in het algemeen zal doen toenemen, de toename van de type I fout onder controle

is voor de meeste scenario’s van de Alzheimer studie met longitudinale uitkomsten

waar patiënten verwacht worden te verslechteren met de tijd. Een uitzondering werd

gezien voor het specifieke geval waar uitval sterk geassocieerd is met de effectiviteit.

De criteria gebruikt voor wijziging moet bijgevolg zorgvuldig onderzocht worden met

betrekking tot de associatie met significantie van het behandelingseffect.
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