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1 General introduction 

Polycyclic Aromatic Hydrocarbons (PAHs) represent a large class of         

π-conjugated compounds, which are of great importance in many research 

areas, such as astrophysics, material sciences (organic opto-electronics), 

environmental chemistry, and other research areas of physics and chemistry. 

PAHs are very important from a practical point of view, since they have found 

applications in a large variety of industrial branches. They are for instance 

involved in the production of skin conditioning agents [1], of dyes, drugs, and 

pesticides [2], of UV-filters, paints and sensitizers [2].  

PAHs have been identified in the interstellar medium, as well as in 

interplanetary dust particles [3], and in the atmosphere of Titan and Jupiter [4]. 

They have also been unambiguously characterized in meteoritic samples [5]. 

There is a consensus in the literature about the association of the interstellar 

infrared (IR) emission bands to the molecular vibrations of complex mixtures of 

molecular PAHs of different sizes, structures and charge states, or of PAHs as 

subunits of larger carbonaceous grains. PAHs are also considered to contribute 

to major diffuse interstellar absorption bands [6]. PAHs constitute the building 

blocks of interstellar dust grains, and play an important role in mediating 

energetic and chemical processes in the interstellar medium. Many questions, 

such as the formation mechanisms of PAHs and related species, their size 

distribution, their charge and hydrogenation state, etc., remain open. These 

questions have motivated numerous (observational, experimental, and 

theoretical) studies and have led to the conjecture that many unidentified 

spectral features of interstellar origin could be ascribed to PAHs. Therefore, the 

understanding of the molecular properties of PAHs in all their relevant ionization 
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and hydrogenation states is of great relevance for unraveling the physics and 

chemistry of the interstellar medium. 

One of the most important and attractive research fields, where PAHs 

appear to be very promising materials, is organic opto-electronics [7]. Organic 

semiconductors have been subject to intensive research for the last few 

decades, since they are key components in organic field-effect transistors 

(OFET) [8], which are essential for the next generation of electronic devices, 

such as flexible sensors [9], electronic papers [10], radio-frequency 

identification (RFID) tags [11], etc. The ability to replace inorganic 

semiconductors by organic materials will decrease manufacturing costs and 

enable the fabrication of electronic devices over large areas, or on lightweight, 

flexible substrates. Among organic semiconductors, n-acenes and their 

derivatives have found widespread application as active elements in a variety of 

electronic devices, due to their excellent charge carrier transport properties 

[12]. 

The performance of organic semiconducting devices depends upon many 

physical processes, such as charge transport, charge collections at the 

electrodes, molecular packaging in the bulk material, absorption and emission 

properties [13]. Accurate quantum-mechanical studies of basic properties of 

individual PAH molecules, such as their electronic excitation energies and electric 

polarizabilities, can significantly contribute to a better understanding of the 

electronic and optical properties of organic semiconductors with promising 

applications in optoelectronics.  

Polycyclic Aromatic Hydrocarbons (PAHs) are characterized by extremely 

low band gaps and are therefore subject to particulary strong electron 

correlation effects. Accurate quantum mechanical insights into their properties 
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requires thus high level and large scale treatments of electronic correlation, 

requiring prohibitively expensive computational means. As shall be shown in this 

thesis, theoretical studies at benchmark levels of the electronic properties of 

these systems are interesting, not only because of the computational challenge 

they represent, but also because “getting the right numbers for the right 

reasons” has lead us to revise well-established views on the electronic structure 

and properties of these systems.  

A new field of research which is currently raising great excitement among 

material scientists with regards to future applications of large PAHs, referred to 

as zig-zag graphene nanoribbons (ZGNRs) and zig-zag graphene nanoislands 

(ZGNIs), is spintronics (i.e. spin transport electronics) - a new technology where 

it is not the electric charge but the electron spin that carries information. This 

excitement stems from the recent theoretical prediction that (extended) ZGNRs 

(Figure 1) of finite width (thus, with one-dimensional periodicity) [14] and finite 

ZGNIs such as bisanthrene [15] (Figure 2) should be half-metallic, i.e. that 

electrons with one spin orientation should behave in a metallic way whereas the 

electrons of opposite spin would behave according to an insulating regime, when 

an electric field is applied perpendiculary to the zig-zag edge. This prediction 

was drawn on the ground of “first principle” calculations employing (spin-

unrestricted) Density Functional Theory (DFT) [16] along with the local spin 

density approximation (LSDA) [17]. Due to a localization of frontier electrons of 

opposite spin on opposite zig-zag edges, a band gap opens in a given spin-band 

system in a presence of an external perpendicular electric field, whereas 

electrons in the opposite spin-band system are lifted from the occupied 

(valence) to the unoccupied (conduction) bands (Figure 3).  
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Figure 1. Extended zig-zag graphene nanoribbon (ZGNR) of finite width with 
one-dimensional periodicity in the presence of an external electric field 
perpendicular to the zig-zag edge. 

 

Figure 2. Molecular structure of a phenanthro[1,10,9,8
bisanthrene [C28H14]. 

 

The views that ZGNRs are half

experimentally confirmed so far. As shall be shown within this thesis, such 

are incompatible with basic principles and postulates of (non

quantum mechanics. 
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The views that ZGNRs are half-metallic systems have never been 
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Figure 3. Schematic density-of-states diagram of the electronic states of a 
ZGNR in the absence (a) and in the presence (b) of an external electric fiel
perpendicular to zig-zag edge. Figure is taken from ref. [
 

The half-metalicity of ZGNRs and ZGNIs

issue. Indeed, by virtue of the resemblance of the spin

with the information zero or one in 

transports in appropriate materials offers opportunities for a new generation of 

devices combining microelectronics with spin

[18]) due to interactions between the spin of the career and

fields. Spin-field effect transistors and light emitting diodes, spin resonant 

tunnelling devices, optical switches operating at terahetz frequency, modulators, 

encoders, decoders, or quantum bits for quantum computation and 

communication are already envisioned. 

In the first part of the present thesis, we re

Metallicity of ZGNRs and related finite systems. To this end, the influence of 

external electric field on the molecular and electronic structure of larg

model PAHs is comparatively studied on DFT and many

mechanically grounds. The scaling properties of the spin

with symmetry breakings of the electron
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states diagram of the electronic states of a 
ZGNR in the absence (a) and in the presence (b) of an external electric field 

Figure is taken from ref. [14]. 

metalicity of ZGNRs and ZGNIs is a most important and topical 

issue. Indeed, by virtue of the resemblance of the spin-polarization (up or down) 

with the information zero or one in regular electronics, monitoring spin 

transports in appropriate materials offers opportunities for a new generation of 

devices combining microelectronics with spin-dependent effects (“spintronics” 

due to interactions between the spin of the career and local magnetic 

field effect transistors and light emitting diodes, spin resonant 

tunnelling devices, optical switches operating at terahetz frequency, modulators, 

encoders, decoders, or quantum bits for quantum computation and 

re already envisioned.  

In the first part of the present thesis, we re-investigate the issue of Half-

Metallicity of ZGNRs and related finite systems. To this end, the influence of an 

external electric field on the molecular and electronic structure of large but finite 

model PAHs is comparatively studied on DFT and many-body quantum 

mechanically grounds. The scaling properties of the spin-contamination arising 

etry breakings of the electron densities into “singlet open-shell” 
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states is investigated analytically using the formalism of crystalline orbitals for 

extended periodic systems with periodicity in one dimension, and 

computationally, at various theoretical levels, using Hartree-Fock and Density 

Functional Theories. We then proceed with benchmark calculations of the 

singlet-triplet excitation energies, ionization energies, electron affinities and 

polarizabilities of model PAH compounds to demonstrate that highly accurate 

insights into main physico-chemical properties of these systems are amenable 

using symmetry restricted spin-densities. 
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2 Theoretical methods 

2.1 Electronic structure theory 

The central equation of quantum mechanics, from which practically all 

molecular properties can be derived, is the non-relativistic time-independent 

Schrödinger equation [1-5]: 

Ĥ EΨ = Ψ ,                                                                                  (1) 

where Ĥ  represents the Hamiltonian operator for a system of nuclei and 

electrons, Ψ  is the total wave function depending on the Cartesian coordinates 

of these particles, and E is the total energy of the system. The Hamiltonian Ĥ  

contains two terms, describing the kinetic and potential energy contributions. In 

atomic units, the Hamiltonian Ĥ  is given by: 

VTH ˆˆˆ += ,                                                                                 (2) 

where 

21 1 1ˆ
2 2

electrons nuclei

i

i A A

T
M

2
Α= − ∇ − ∇∑ ∑ ,                                                  (3) 

and  

1ˆ A A B

i A i j A BiA ij AB

Z Z Z
V

r r R> <

= + +∑∑ ∑ ∑ .                                                 (4) 

In the above equations, 2
i∇  and 2

A∇  represent the Laplacian operators for the i-

th electron and A-th nucleus, respectively. iAr =
i A
r -R  and ijr = i jr -r  are the 

interdistances between the electron i and the nucleus A, and between the i-th 
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and j-th electrons, respectively, while AZ  and  BZ  denote the nuclear charges 

of atoms A and B. ABR = −A BR R  is
 
the corresponding interdistance.  The two 

terms in eq. (3) represent the kinetic energy operators for electrons and nuclei. 

The first term in eq. (4) represents the Coulomb attraction between electrons 

and nuclei, and the last two terms in the same equation represent the repulsion 

between electrons and between nuclei, respectively. 

The Schrödinger equation can be analytically solved only for very small 

and specific systems, such as hydrogenoid atoms (H, H+, Li2+, …etc.). In 

general, a number of approximations has to be introduced in order for the 

equation to be solved numerically. The first central approximation to quantum 

chemistry is the Born-Oppenheimer approximation [6]. Nuclei are much heavier 

than electrons, and move therefore much more slowly than electrons.  

Therefore, the Schrödinger equation can, to a very good approximation, be 

separated into two equations, a first one which describes the electronic wave 

function for a fixed nuclear geometry, and a second one which describes nuclear 

motions in the average field of electrons. 

Within the framework of the Born-Oppenheimer approximation, on the 

time scale of the electronic motions, the Hamiltonian terms corresponding to the 

kinetic energy of the nuclei and the repulsion energy of the nuclei can be 

considered as constants. Since any constant added to an operator does not have 

any effect on the eigenfunctions of the operator, these two terms can be 

neglected. The remaining terms describe the motions of N electrons in the field 

of M  fixed atomic charges, and define the so-called electronic Hamiltonian: 

2

1 1 1 1

1 1ˆ
2

N N M N N
A

elec i

i i A i j iiA ij

Z
H

r r= = = = >

= − ∇ − +∑ ∑∑ ∑∑ ,                                         (5) 
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where 

1

( )
M

A
i

A iA

Z
v

r=

− =∑ r                                                                              (6) 

represents an “external” potential generated by the charges AZ  of the M fixed 

nuclei. The solution of the Schrödinger equation involving the electronic 

Hamiltonian,   

ˆ
elec elec elec elecH EΨ = Ψ                                                                      (7) 

 is the electronic wave function: 

{ }( );( )elec elec i AΨ = Ψ r R ,                                                               (8) 

which depends explicitly on the electron coordinates ir  and parametrically on 

the nuclear coordinates AR . Thus, the electronic energy elecE  depends also 

parametrically on the nuclear coordinates. 

In order to obtain the total energy for a system of fixed nuclei, one has at 

last to account for nuclear repulsions: 

1

M M
A B

tot elec

A B A AB

Z Z
E E

R= >

= +∑∑ .                                                            (9) 

After solving eq. (7) and obtaining the total energy from eq. (9), it is then 

possible to investigate the motions of nuclei using the same assumptions as 

used in the formulation of the electronic problem, considering that { }( )totE AR

provides a potential energy function for nuclear motions: 

ˆ
nucl nucl nuclH EΨ = Ψ ,                                                                     (10) 

together with: 
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{ }2

1

1 1ˆ ( )
2

M

nucl tot A

A A

H E
M=

= − ∇ +∑ R .                                            (11) 

Solving the nuclear Schrödinger equation ˆ
nucl nucl nuclH EΨ = Ψ  enables us 

therefore to study the rotational, vibrational and translational motions of the 

molecule, and to calculate the Born-Oppenheimer approximation to the total 

energy E, which includes electronic, vibrational, rotational, and translational 

contributions. The total wave function in this approximation is:    

{ } { } { } { } { }( ; ) ( ; ) ( )i elec i nuclΨ = Ψ ΨA A Ar R r R R .                            (12) 

The electronic Hamiltonian of a molecule containing N electrons depends 

on the 3N Cartesian coordinates of the electrons, but does not completely 

describe the states of electrons. In order to specify these states completely, one 

has to account for an additional property of the electron, namely, its spin. In this 

purpose, we introduce for each electron two orthonormal spin functions ( )α ω

and ( )β ω , corresponding to spin up and spin down, respectively. In a non-

relativistic context, an electron is described by three spatial coordinates r and 

by one spin coordinate ω. The wave function of an electron, which describes 

both its spatial distribution and its spin, is referred to as a spin orbital ( )iχ ix , 

which is obtained as a product of a space function ( )ψ ir  and a spin function

( )σ ω : 

( ) ( )( )iχ ψ σ ω=i ix r .                                                                  (13) 
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In the above equation, the four coordinates are denoted collectively by 

{ },ω=x r . The electronic wave function obtained upon solving the electronic 

Schrödinger equation [eq. (7)] must satisfy an independent postulate of 

quantum mechanics, the so-called Pauli’s exclusion principle or antisymmetry 

principle. Specifically, a many electron wave function has to be antisymmetric 

with respect to the interchange of the spin-space coordinates of any two 

electrons: 

),...,,...,,...,,(),...,,...,,...,,( Nij21Nji21 xxxxxxxxxx elecelec Ψ−=Ψ . (14) 

The antisymmetry principle ensures the indistinguishability of electrons, upon 

any interchange of their spin-space coordinates. 

For a system of N  independent and non-interacting electrons occupying 

N spin-orbitals , ,..., )i j k(χ χ χ , the electronic wave function can be expanded as a 

normalized antisymmetric product of these spin orbitals, which are assumed to 

be orthonormal. In a first approximation, the electronic wave function 
elecΨ  is 

therefore usually written in the form of a determinant, referred to as a Slater 

determinant:   

(1) (1) (1)

(2) (2) (2)1

!
( ) ( ) ( )

i j k

i j k

elec

i j k

N

N N N

χ χ χ

χ χ χ
Ψ =

χ χ χ

⋯

⋯

⋮ ⋮ ⋮

⋯

,                             (15) 

where, from here and henceforth, for the purpose of simplifying notations, 1 

stands for 1
x , 2 stands for 2

x ,…etc.  
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One  way  to  find  approximate solutions Ψɶ  to the Schrödinger equation 

( Ĥ EΨ = Ψ ) is by means of the variation principle, which states: 

0

Ĥ
E E

Ψ Ψ
 Ψ = ≥  Ψ Ψ

ɶ ɶ
ɶ

ɶ ɶ
,                                                           (16) 

where 0E  is the exact ground-state energy of the system, Ψɶ  is any arbitrary 

(variational) function which depends on the same coordinates as the exact 

solution of the Schrödinger equation, and Ĥ  is the Hamiltonian of the system 

under consideration (in this case ˆ ˆ
elecH H= ). It follows that the expectation 

value of the Hamiltonian operator corresponding to the variational function Ψɶ  is 

an upper bound to the exact ground state energy. The equality is valid only 

when 0Ψ = Ψɶ , where 0Ψ  is the exact solution of the Schrödinger equation for 

the ground state. 

2.1.1 Hartree-Fock theory 

The Hartree-Fock (HF) method [7, 8] is a variational method which 

expresses the variational wave function of the electronic ground state ( 0Ψ ) in 

the form of a single Slater determinant. In other words, with this method one 

seeks the Slater determinant which results in the lowest mean energy value 

associated to the electronic Hamiltonian [eq. (5)]. The main purpose of the 

Hartree-Fock approximation is to reduce the complicated many electron problem 

into a one electron problem in which electron-electron repulsions are treated in 

an average way. The HF equation is derived by finding the set of orthonormal 
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spin orbitals used to expand the electronic wave function in the form of a single 

Slater determinant, which minimizes the electronic energy of the system: 

ˆ(1) (1) (1)i i if χ = ε χ .                                                                    (17) 

In this equation iε  is the energy corresponding to the spin orbital iχ , and ˆ(1)f

is an effective one-electron operator for electron 1, the so-called Fock operator, 

which is given by: 

( ) ( )ˆ ˆ(1) 1 1HFf h v= + .                                                                 (18) 

The first term ( )ˆ 1h  in eq. (18) is the one-electron operator defined as: 

2
1

1 1

1ˆ(1)
2

A

A A

Z
h

r=

= − ∇ −∑ ,                                                               (19) 

where the first term accounts for the kinetic energy and the second term for the 

nuclear-electronic attraction. The second term in eq. (18) is the Hartree-Fock 

potential: 

ˆ ˆ(1) [ (1) (1)]HF

j j

j

v J K= −∑ ,                                                         (20) 

where the summation 
j

∑ runs over all occupied spin orbitals of the system 

under consideration. ˆ (1)jJ is a local operator, referred to as the Coulomb 

operator: 

12

1ˆ (1) (2) (2)
j j j

J d
r

∗= χ χ∫ 2
x ,                                                        (21) 
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whereas ˆ (1)jK  represents a non-local operator, referred to as the exchange 

operator, which is defined via its action on the spin orbital (1)jχ , according to: 

( ) ( ) ( )*

12

1ˆ (1) (1) 2 2 1
j i j i j

K d
r

 
χ = χ χ χ 

 
∫ 2

x .                                  (22) 

Since the Coulomb and exchange operators depend on the eigenfunctions of the 

Fock operator, it is clear that the Hartree-Fock equation can only be solved 

iteratively. Solving the Hartree-Fock eigenvalue problem [eq. (17)] yields a set 

of orthonormal spin-orbitals { }iχ  with orbital energies { }iε . The first N spin 

orbitals with the lowest orbital energies are called the occupied spin orbitals; 

these will be denoted by indices i, j, k,… Once these orbitals are known, the 

Fock operator becomes a well defined Hermitian operator with an infinite 

number of eigenfunctions. The remaining spin orbitals are called the virtual or 

unoccupied spin orbitals; these will be labeled by indices r, s, t,… 

In order to clarify the physical significance of the energies of occupied and 

virtual spin-orbitals, one has to consider the expression for the corresponding 

energies: 

( )ˆ
i

j i

i h i ij ij ij ji
≠

ε = + −∑ ,                                               (23) 

( )ˆ
r

j

r h r rj rj rj jrε = + −∑ ,                                             (24) 

with ij kl  a bielectron integral of the form: 
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( ) ( ) ( ) ( )* *

12

1
1 2 1 2

i j k l
d d

r
 χ χ χ χ∫∫ 1 2

x x .                                            (25) 

The first contribution ( ˆi h i ) to the energy of an electron associated with the 

spin orbital iχ  is associated with the kinetic energy and attraction to the 

nuclei, while the ij ij  and  ij ji−  contributions correspond to the Coulomb 

and exchange interactions with each of the remaining N-1 electrons occupying 

the spin orbitals 
jχ ( j i≠ ), respectively.  The  energy rε  associated with the 

virtual spin orbital includes the kinetic energy and nuclear attraction in the same 

way ( ˆr h r ) as in the case of occupied orbitals, but Coulomb and exchange 

interactions are included with respect to all N electrons of the Hartree-Fock 

ground state 0Ψ . Performing the summation over the orbital energies iε  

which correspond to the N electrons in the ground state, the following 

expression is obtained: 

( )ˆ
N N N N

i

i i i j

i h i ij ij ij jiε = + −∑ ∑ ∑∑ .                                  (26) 

The above expression can be further reduced to: 

ˆ
N N N N

i

i i i j

i h i ij ijε = +∑ ∑ ∑∑ ,                                                 (27) 

where ij ij  stands for the anti-symmetrised bielectron interaction 

ij ij ij ji− . The expectation value of the total ground state energy is: 
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0 0 0

1ˆˆ
2

N N N

i i j

E H i h i ij ij= Ψ Ψ = +∑ ∑∑ .                            (28) 

Upon comparing between eqs. (27) and (28), it is clear that: 

0

N

i

i

E ε≠ ∑ .                                                                                 (29) 

When summing the occupied spin-orbital energies, the electron-electron 

interaction (Coulomb and exchange interaction) is counted twice, whereas in the 

correct expression for the total electronic energy of the ground state [eq. (28)], 

a factor 1/2 prevents such overcounting. 

In order to find the physical significance of orbital energies within the 

framework of Hartree-Fock theory, one has to investigate the processes of 

subtracting and adding one electron to the N-electron ground state 

0 1 2... ...N

k Nχ χ χ χΨ =  under the assumption that the initial and final states 

in these processes possess the same set of spin-orbitals (i.e. relaxation effect 

are neglected). Removing one electron corresponding to the spin orbital kχ  

from the N-electron state, one obtains the (N-1)-electron state 

1
1 2 1 1

N

k k k N

−
− +Ψ = χ χ χ χ χ… … . In order to evaluate the corresponding 

ionization potential, one has to determine the total energies of these two single 

determinants and calculate their difference. The electronic energy of the N-

electron system in its ground state is: 

0

1ˆ
2

N

i i j

E i h i ij ij= +∑ ∑∑ ,                                                (30) 

while for the (N-1)-electron system, one finds: 
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1 1ˆ
2

N

k

i k i k j k

E i h i ij ij−

≠ ≠ ≠

= +∑ ∑∑ .                                              (31) 

Therefore, the ionization potential is: 

1
0

ˆ

.ε

−= −

= − −

= −

∑

N N

k

j

k

IP E E

k h k kj kj                                                         (32) 

According to eq. (32), the energy of the spin orbital kχ  corresponds to the 

energy (with opposite sing) needed to remove an electron from this spin orbital 

in the single determinant approximation and under the assumption that 

relaxation effects can be neglected. 

When adding one electron to the virtual orbital rχ , one has to consider 

the (N+1)-electron single determinant  1
1 2

N

r r Nχ+ Ψ = χ χ χ…  with an 

electronic energy 1N

rE+ . By means of the same procedure as that used for 

evaluating the ionization potential, one finds for the electron affinity (EA): 

1
0

ˆ

.ε

+= −

= − −

= −

∑

N N

r

i

r

EA E E

r h r ri ri                                                          (33) 

Thus, the electron affinity for adding an electron to the virtual spin orbital rχ  is 

equal to the orbital energy, after a change of a sign, under the assumption that 

the occupied spin orbitals in the (N+1)-electron state ( 1N

r

+ Ψ ) are identical to 

those of the neutral system in its electronic ground state ( 0
N Ψ ). This 



Chapter 2                                                                         Theoretical Methods 

23 
 

conclusion, along with the corresponding statement about ionization potentials, 

is referred to as Koopmans’ theorem [1, 9]. 

2.1.1.1 Restricted closed-shell Hartree-Fock theory 

At this stage, one has to specify in details the form of the spin orbitals 

prior to proceeding further, towards the actual calculation of the Hartree-Fock 

wave function. Two types of spin-orbitals are considered in quantum mechanical 

calculations: the restricted and the unrestricted spin-orbitals. Spin orbitals 

obtained under the restriction that the same spatial function applies to both α  

(spin-up) and β  (spin-down) functions are referred to as restricted spin 

orbitals. The restricted Hartree-Fock formalism is devised for obtaining the 

Hartree-Fock solution for closed-shell systems with an even number of electrons 

(N), which are paired in such a way that n=N/2 spatial functions ( )iψ ir  

(molecular orbitals) are doubly occupied. Since the spatial function is the same 

for spin-up (α ) and spin-down ( β ) orbitals associated to the same energy 

level, the calculation of molecular orbitals is equivalent to the problem of solving 

an integro-differential equation of the form: 

ˆ( ) ( ) ( )i i if ψ = ε χ1 1 1r r r ,                                                                  (34) 

with ˆ( )f 1r the closed-shell Fock operator: 

( ) ( )*
1 1 1

ˆ ˆ( ) ( )f d fω α ω α ω= ∫1 1r x .                                                (35) 

In order to solve eq. (34), Roothaan [10] introduced a set of known basis 

functions and in this way converted the Hartree-Fock equation into a set of 
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simple algebraic equations, which can be solved by means of standard matrix 

diagonalization techniques. 

In this purpose, molecular orbitals ( )iψ r  are expanded as linear 

combinations of K known basis functions ( ){ }1, 2, Kµφ µ =r … , usually refered 

to as atomic orbitals: 

1

K

i icµ µ
µ

ψ φ
=

= ∑ , 1, 2,i K= … .                                                         (36) 

This important approximation is known as the LCAO (linear combination of 

atomic orbitals) approximation. In order to avoid truncation errors in the 

expansion, one should use a complete basis set { }µφ , corresponding formally to 

an infinite number of basis functions. In practice, finite basis sets of K basis 

functions have to be used. As the basis set approaches completeness ( K → ∞ ) 

molecular orbitals converge to the exact eigenfunctions of the Fock operator. In 

practice, once a finite set of basis functions is chosen, one has to determine the 

set of expansion coefficients icµ  in order to obtain the Hartree-Fock molecular 

orbitals.  

By substituting eq. (36) into the Hartree-Fock equation [eq. (34)], one 

obtains a matrix equation, which is usually referred to as the Hartree-Fock-

Roothaan matrix equation: 

= εFC SC ,                                                                                 (37) 

where F denotes the Fock matrix: 
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( ) ( ) ( )* ˆF f dµν µ νφ φ= ∫ 1 1 1 1r r r r ,  , 1, 2 Kµ ν = … ,                          (38) 

and S is the overlap matrix: 

( ) ( )*S dµν µ νφ φ= ∫ 1 1 1r r r ,  , 1, 2 Kµ ν = … .                                   (39) 

C represents a K× K square matrix containing the expansion coefficients icµ , 

and ε  is a diagonal matrix containing the orbital energies iε . 

The basis functions used  in  molecular  calculations  are  not  orthogonal  

to  each  other [( ≠S 1)], and have therefore to be orthogonalized so that eq. 

(37) can be solved by means of standard diagonalization techniques. 

Orthogonalization procedures are described in details in the book by Szabo and 

Ostlund [1]. Upon orthonormalizing the basis set, the transformed Roothaan 

equation is obtained: 

′ ′ ′= εF C C .                                                                                 (40) 

In order to solve the transformed equation, use has to be made of an iterative 

procedure referred to as the Self Consistent Field (SCF) approach. An SCF 

calculation starts with an initial guess of the LCAO expansion coefficients [ icµ  in 

eq. (36)], and a first determination from these coefficients of the Fock matrix 

(F) and transformed Fock matrix ( ′F ). By diagonalizing this matrix, new LCAO 

coefficients and orbital energies are obtained. The iterative procedure proceeds 

further by reevaluating the Fock matrix and transformed Fock matrix from which 

new LCAO coefficients are obtained. This procedure is repeated until self-

consistency is reached. 
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2.1.1.2 Unrestricted open-shell Hartree-Fock theory 

When dealing with systems possessing one or several unpaired electrons, 

the Hartree-Fock-Roothaan equation needs to be modified. Within the frame of a 

spin-unrestricted Hartree-Fock (UHF) treatment, different spatial orbitals iψ α  

and iψ β  are associated to spin-up ( α ) and spin-down ( β ) electrons: 

( ) ( ) ( )
( ) ( )

i

i

i

ψ ω
ψ ω

α

β

 α
χ = 

β

r
x

r
.                                                               (41) 

To find solutions to the spin-unrestricted Hartree-Fock (UHF) equations, one has 

to convert the integro-differential equations into matrix equations by introducing 

a finite set of K basis functions:  

1

K

i icµ µ
µ

ψ φα α

=

= ∑ ,  1, 2, ,i K= … ,                                                      (42) 

1

K

i icµ µ
µ

ψ φβ β

=

= ∑ ,  1, 2, ,i K= … .                                                      (43) 

The final form of the matrix equations, obtained by using the above expressions 

for molecular orbitals, is: 

.

,α α α α

β β β β

= ε

= ε

F C SC

F C SC
                                                                         (44) 

These equations represent a generalization of the Hartree-Fock-Roothaan 

equation. They are called the Pople-Nesbet equations. These equations can be 

solved in essentially the same way Hartree-Fock-Roothaan equation is solved. 

From the explicit expression of the Fock matrix elements [1], one can see that 

the αF  and βF  matrices depend on both the α
C  and β

C  expansion 
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coefficients. The matrix equations in eq. (44) are thus coupled and have to be 

solved iteratively. 

Spin-unrestricted determinants have a serious limitation, they are not 

eigenfunctions of the spin operator 
2Ŝ . One cannot obtain spin-adapted 

solutions by simply combining a small number of spin-unrestricted determinants. 

Spin-unrestricted wave functions are contaminated by components of higher 

spin multiplicity and therefore the expectation values of the 
2Ŝ operator are 

always too large if the number of α  spin electrons ( N α ) is larger or equal to 

the number of β  spin electrons ( N β ). The expectation value of the 
2Ŝ  

operator for an unrestricted one-determinantal wave function is given by: 

22 2ˆ ˆ
N N

ij
UHF EXACT

i j

S S N S

α β

β αβ= + −∑∑ ,                                    (45) 

along with: 

2ˆ 1
2 2EXACT

N N N N
S

α β α β  − −
= +  

  
.                                    (46) 

When N Nα β= , we note from eq. (45) that the expectation value of the 2Ŝ  

operator can differ from the exact value (0) for a singlet state (S=0) if space 

functions associated to spin-up and spin-down electrons localize in different 

regions of space. Such a situation will be referred further to as a symmetry 

breaking situation. 
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2.2 Electron correlation treatments  

The Hartree-Fock method neglects the instantaneous correlation of 

electronic motions, due to the use of the mean field approximation. However, 

some correlation between electrons with the same spin is already taken into 

account by virtue of the determinantal form of the wave function resulting in the 

exclusion principle, which prevents two electrons with the same spin to have the 

same space coordinates. The error in the electronic energy due to the neglect of 

the remaining electron correlation is called the correlation energy and is defined 

as the difference between the exact non-relativistic energy of the system  and 

the HF energy: 

0corr HFE E E= − < .                                                                    (47) 

Rigorous enough treatments of electronic correlation are crucial for accurate 

calculations of molecular properties, obtained as energy differences or energy 

derivatives.  

2.2.1 Full configuration interaction 

The Configuration Interaction (CI) method is conceptually, but not 

computationally, the simplest method to deal with electronic correlation. 

Although this method originates from the 1930’s, its first applications began to 

appear only around forty years later, when sufficient computer capabilities 

became available. Since the publication in 1977 of a review article on CI by 

Shavitt [11], important improvements to the CI approach have been made, 

which are gathered and discussed in the book by McWeeny [3]. A more recent 

review of CI can be found in the paper by Bauschlicher et al, published in 1990 

[12]. 
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The general idea of this method is to represent the exact electronic wave 

function as a linear combination of N-electron trial functions (Slater 

determinants) representing the ground and electronically excited states, and to 

optimize the expansion coefficients in a variational way. 

A fundamental theorem in configuration interaction (CI) theory was 

formulated by Löwdin [13]. This theorem states that every normalizable 

antisymmetric wave function can be expanded as a sum of an infinite series of 

Slater determinants constructed from a complete basis set of one-electron 

functions, which defines an exact solution to the many-electron problem. 

Suppose we have solved the Hartree-Fock problem in the finite basis set 

and have obtained a set of 2K spin orbitals { iχ }. The determinant constructed 

from the N lowest energy spin orbitals is denoted by 0Ψ . In adition to 0Ψ , a 

large number of further N-electron determinants can be constructed by 

distributing N electrons among 2K spin orbitals. We can describe these other 

determinants by stating how they differ from 0Ψ . Thus, if the occupied spin 

orbitals ,i jχ ,χ …are replaced by virtual ones such as , ,r sχ χ …  then the set of 

possible determinants contains singly excited determinants r

iΨ , which differ 

from 0Ψ  by having the spin orbital iχ  replaced by rχ , doubly excited 

determinants rs

ijΨ where the iχ  and jχ  spin-orbitals are replaced by rχ  and 

sχ  spin-orbitals, and so on until the N-tuply excited determinants. In general 
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any excited determinant can be written as rst

ijkΨ …

… . The form of a full CI trial 

wave function is: 

0 0 0
r r rs rs rst rst

i i ij ij ijk ijk

i i j i j k
r s r s t

c c c c
< < <
< < <

Φ = Ψ + Ψ + Ψ + Ψ +∑ ∑ ∑ … ,       (48) 

where the c represents unknown expansion coefficients. The successive 

restrictions on summation indices (e.g. ...i j k< <  and ...r s t< < ) prevent the 

repetition of the same excited determinant in the CI expansion. The energies of 

the electronic ground state and excited states are obtained by means of the 

linear variational method, as eigenvalues of the matrix representation of the N-

electron Hamiltonian in the basis of the N-electron functions used in the 

expansion of eq. (48), which is called the full CI matrix. The corresponding 

method is referred to as Full Configuration Interaction (FCI). The lowest 

eigenvalue of the full CI matrix represents the exact ground state energy E0
exact

. 

Within the subspace spanned by the one-electron basis, the difference in 

between E0
exact

 and the Hartree-Fock ground state energy (E0
HF

) is called the 

basis set correlation energy. The basis set correlation energy obtained from a 

FCI calculation forms a benchmark for judging all other approaches to the 

correlation energy performed with the same basis set. 

When basis set approaches completeness, the FCI result approaches the 

exact solution of the non-relativistic Schrödinger equation. The method consists 

in the diagonalization of an N-electron Hamiltonian in a basis of N-electron 

Slater determinants. These determinantal trial functions are constructed by 

selecting N orbitals from both occupied and virtual Hartree-Fock orbitals. The 
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number of the N-electron Slater determinants, which can be generated from the 

HF spin orbitals, scales like ( ) ( )2 ! ! 2 !K N K N−   , where N is the number of 

electrons and 2K is the number of spin orbitals. The problem of a FCI treatment 

is its feasibility due to the exceedingly large number of excited determinants to 

consider, even for small systems. For larger systems, one has to restrict the CI 

expansion to given classes of electronically excited determinants (e.g. singly and 

doubly excited determinants in a SDCI treatment). An important consequence of 

such approximations is the loss of size consistency in the computed energies. 

2.2.2 Many body perturbation theory 

Many body perturbation theory (MBPT) is a systematic procedure for 

obtaining the correlation energy, which is not variational, but which is size 

consistent at each level. The general frame of MBPT was devised by Rayleigh 

and Schrödinger and hence it is referred to as Rayleigh-Schrödinger Perturbation 

Theory (RSPT). RSPT employing the Hartree-Fock Hamiltonian as a zeroth-order 

Hamiltonian of an N-electron system is more specifically referred to as Møller-

Plesset Perturbation Theory (MPPT) [14].  

The basic idea of RSPT is to divide the total Hamiltonian in two parts: a 

zeroth-order part or unperturbed part 0Ĥ  (the Hartree-Fock Hamiltonian in the 

case of MPPT), and a perturbation V̂ , representing the difference between the 

N-electron Hamiltonian and the unperturbed Hamiltonian 0Ĥ . It is assumed that 
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the unperturbed Hamiltonian 0Ĥ  has known eigenfunctions ( )0(
iΨ ) and 

eigenenergies ( )0(
iE ): 

)0()0()0(
0

ˆ
iii EH Ψ=Ψ .                                                              (49) 

The eigenvalue problem of interest has therefore the form:  

iiii VHH Φε=Φ+=Φ )ˆˆ(ˆ
0 .                                                (50) 

For a small enough perturbation V̂ , it is reasonable to expect that the zeroth-

order approximations )0(
iΨ  and )0(

iE are close to the exact solutions iΦ  and 

iε  of the electronic Schrödinger equation. In order to devise the procedure 

which would systematically improve the eigenfunctions and eigenvalues of 0Ĥ
 

towards the eigenvalues and eigenfunctions of the total Hamiltonian Ĥ , one 

has to introduce an ordering parameter λ : 

0
ˆ ˆ ˆH H Vλ= + ,                                                                            (51) 

and expand the eigenvalues and eigenfunctions of Ĥ  in a Taylor series, as a 

function of this parameter:  

...)2(2)1()0( +λ+λ+=ε iiii EEE ,                                                   (52) 

...)2(2)1()0( +Ψλ+Ψλ+Ψ=Φ iiii ,                                         (53) 

where 
( )n

iE  denotes the n-th order energy, and ( )n

iΨ  the n-th order wave 

function. 
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The main objective of RSPT is to express the higher order energies in 

terms of zeroth-order energies and of matrix elements of the perturbation V̂ , 

over  unperturbed wave functions ( ( ) ( )0 0ˆ
i jVΨ Ψ ). Following the mathematical 

derivation outlined in the book by Szabo and Ostlund [1], the expressions for 

the n-th-order energies are obtained: 

)0(
0

)0()0( ˆ
iii HE ΨΨ= ,                                                             (54a) 

)0()0()1( ˆ
iii VE ΨΨ= ,                                                               (54b) 

)1()0()2( ˆ
iii VE ΨΨ= ,                                                                (54c) 

(3) (0) (2)ˆ
i i iE V= Ψ Ψ ,                                                               (54d) 

and so on until infinite order in the correlation potential. 

Upon expanding the exact wave function 
iΦ  under the constraint of 

intermediate normalization (0) 0i iΨ Φ = , which implies that at all orders 

(0) ( ) 0n

i iΨ Ψ = , the higher order energies are obtained in terms of zeroth-

order energies 
( )0
iE  and zeroth-order wave functions 

( )0
iΨ . For example, at 

second-order, we have: 

2
(0) (0)(0) (0) (0) (0)

(2)
(0) (0) (0) (0)

ˆˆ ˆ
i ni n n i

i

n i n ii n i n

VV V
E

E E E E≠ ≠

Ψ ΨΨ Ψ Ψ Ψ
= =

− −∑ ∑ ,      (55) 

and at third-order we have: 
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( )( )

( )

( )

(0) (0) (0) (0) (0) (0)

(3)

(0) (0) (0) (0)
,

2
(0) (0)

2(0) (0)

ˆ ˆ ˆ

ˆ
.

≠

≠

Ψ Ψ Ψ Ψ Ψ Ψ
= −

− −

Ψ Ψ
−

−

∑

∑

i n n m m i

i

n m i i n i m

i n
i

i

n i
i n

V V V
E

E E E E

V
E

E E

              (56) 

Within the frame of MPPT, the Hartree-Fock Hamiltonian                                    

( 0
ˆˆ ˆ( ) ( )HF

i

H h i v i = + ∑ ) is employed as a zeroth-order Hamiltonian, and the 

corresponding perturbation operator reads as follows: 

1 1ˆ ˆ ˆ ( )HF HF

ij ij

i j i j i

V r V r v i− −

< <

= − = −∑ ∑ ∑ .                                          (57) 

Since the Hartree-Fock energy corresponds to the sum of the zeroth-order         

(
i

i

ε∑ ) and first-order perturbation energies (
1

2 ij

ij ïj− ∑ ), the first 

contribution to the correlation energy arises from the second-order of Møller-

Plesset theory (MP2). Because of the rules by Slater, and Brillouin’s theorem 

which forbids couplings of singly excited states with the electronic ground state, 

the only terms that contribute to eq. (55) are the doubly excited determinants 

rs

ijΨ . It follows therefore that: 

2

(2)
0

1

4 ijrs i j r s

ij rs
E

ε ε ε ε
=

+ − −∑ .                                                        (58) 

By means of a similar procedure one obtains the following expression for the 

third-order perturbation energy (MP3): 
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( )( )

( )( )

( )( )

(3)
0

1

8

1

8

.

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

=
+ − − + − −

+
+ − − + − −

+
+ − − + − −

∑

∑

∑

ijklrs i j r s k l r s

ijrstu i j r s i j t u

ijkrst i j r s i k r t

ij rs kl ij rs kl
E

ij rs rs tu tu ij

ij rs ks tj rt ik

                           (59) 

Expressions for the higher orders of Møller-Plesset theory such as MP4 [15, 16], 

MP5 and MP6 [17, 18] are also available. From a computational point of view, 

the cost of Møller-Plesset theory scales as N5, N6 and N7  for MP2, MP3 and MP4, 

respectively, where N represents the number of basis set functions. With a MP4 

calculation, the most demanding step is the one related to calculating the triple 

contribution. This is the reason why there are two implementations of the MP4 

approach: the MP4(SDQ) approach [19], which neglects the triple contributions, 

and the MP4(SDTQ) approach, which is the complete one.  

2.2.3 Coupled cluster theory 

Due to the high accuracy of the obtained results, Coupled Cluster (CC) 

theory is widely used as benchmark. The method is based on the exponential 

Ansatz introduced by Coester and Kümmel [20, 21]. The exact CC ground state 

can be written by applying upon the reference wave function 0Ψ (usually, the 

Hartree–Fock wave function) an excitation operator T̂ using: 

ˆ 2 3
0 0

1 1ˆ ˆ ˆ1
2! 3!

T

CC e T T T
 Ψ = Ψ = + + + + Ψ 
 

… .                              (60) 
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Now, one has to find the cluster operator T̂ , such that the wave operator 
T̂e  

turns the HF wave function into an exact solution of the Schrödinger equation.  

The cluster operator is defined as a sum:  

1 2 3
ˆ ˆ ˆ ˆ ˆ

MAXlT T T T T= + + + +… ,                                                          (61) 

where l̂T  denotes the excitation operators defined  by  considering  the  action  

of  annihilation ( ˆˆ ˆ, , ...i j k ,) and creation (
† † †ˆˆ ˆ, , ...r s t ) operators, with the 

subscript l indicating the rank of the excitation. For instance, single and double 

excitation operators are defined as follows: 

†
1

,

ˆ ˆˆr

i

i r

T t r i= ∑ ,                                                                              (62) 

† †
2

1ˆ ˆ ˆˆ ˆ
4

rs

ij

ij
rs

T t s r i j= ∑ ,                                                                     (63) 

where the indices i, j, k,... correspond to occupied Hartree-Fock spin orbitals, 

while r, s, t,... correspond to unoccupied ones. The unknown 
...

...
rs

ijt  coefficients 

represent the cluster amplitudes, whose optimization is crucial to practical 

applications of coupled cluster theory. Since the structure of the wave operator 

is well-defined, one obtains these amplitudes by solving the Schrödinger 

equation: 

ˆ ˆ

0 0
ˆ T THe EeΨ = Ψ .                                                                        (64) 

After mathematically manipulating this equation, as outlined in [22] and 

expressing the operators in terms of commutators, one obtains the fundamental 

equation of the CC method: 
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...

...

0

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,
2! 3!

1 ˆ ˆ ˆ ˆ ˆ, , , , 0
4!

,

         + + +           

    + Ψ =      

rs

ij H H T H T T H T T T

H T T T T

              (65) 

where the ...
...

rs

ij represent the determinants obtained from the reference state by 

considering the action of the ˆˆ ˆ, , ...i j k  annihilation and 
† † †ˆˆ ˆ, , ...r s t  creation 

operators. The Coupled Cluster equations are nonlinear, since the searched 

amplitudes appear in powers higher than one (up to fourth order). These 

equations must therefore be solved iteratively. The initial amplitudes are usually 

obtained from eq. (64) after neglecting the non-linear terms. The iterative 

procedure starts by inserting these amplitudes in eq. (65) and proceeds further 

until self-consistency is achieved. 

In the CC expansion with double electronic excitations ( 2
ˆ ˆT T= ) [CCD 

approach], eq. (64) reduces to: 

2
0 2 0 2 0

2 0 2 2 0

1ˆ ˆ ˆ ˆ ˆ
2

ˆ ˆ ˆ ˆ ˆ 0 .

Ψ + Ψ + Ψ

− Ψ − Ψ =

rs rs rs
ij ij ij

rs rs
ij ij

H HT HT

T H T HT

                                   (66) 

For each amplitude 
rs

ijt , one equation has to be solved iteratively. From the 

obtained amplitudes, one can then expand the CCD ground state wave function 

as follows: 

0
rs rs rs tu rstu

CCD ij ij ij kl ijkl

i j r j k l
r s r s t u

t t t
< < < <
< < < <

Ψ = Ψ + Ψ + Ψ +∑ ∑ ….                               (67) 

The corresponding energy reads:  

2 2
ˆ ˆ

0 0
ˆT T

CCDE e He
−= Ψ Ψ .                                                           (68) 
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The CCSD method takes single and double electronic excitations into 

account ( 1 2
ˆ ˆ ˆT T T= + ). If only single excitations are included, there would not be 

any dynamic correlation effect. The 2̂T  operator certainly accounts for most of 

the dynamic correlation effects. In this model, equations for amplitudes r

it  and 

rs

ijt  are obtained [23-30]. The computational cost for the CCD and CCSD 

methods scales like 6N , where N represents the number of basis functions.  

In the CCSDT method also the triple excitations are included                   

( 1 2 3
ˆ ˆ ˆ ˆT T T T= + + ). At this level, the computational cost scales like 8N . Thus, 

the CCSDT approach is extremely expensive and the use of large basis sets is 

impossible unless in the case of calculations upon atoms or small molecules. 

Going beyond CCSDT, the models (CCSDTQ, CCSDTQ5,…) become too 

demanding and practically intractable, except in the case of exceedingly small 

systems. 

In order to reduce the computational cost of CCSDT calculations, the effect 

of triple excitations can be accounted for by means of perturbation theory. This 

approximation is known as CCSD(T) theory [31]. It includes perturbative triple 

corrections and a single and triple interaction term. The triple correction is 

obtained by means of a formula similar to that used in fourth-order Møller-

Plesset (MP4) perturbation theory using the cluster amplitudes corresponding to 

the double excitations 
rs

ijt  obtained from the CCSD wave function. The CCSD(T) 

method provides a very good single-reference correlation treatment in 

conjunction with a very good compromise between the computational cost and 

the achieved accuracy. 
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Coupled cluster methods are single-reference methods, where the 

Hartree–Fock determinant is usually used as the reference function. Therefore, 

one has to be very careful about multi-reference (or static correlation) effects. If 

these effects are sufficiently large i.e. if two or more determinants of 

comparable weight dominate in the expansion of the electronic wave function, 

the results of the CC method become unreliable. In order to assess the influence 

of multi-reference effects, Lee and Taylor [32] devised a method for identifying 

the extent of near-degeneracy effects. The quantity, which measures the 

importance of the multi-reference effects, is called the 1T  diagnostic, which is 

defined as: 

1
1T

N
=

t
,                                                                                   (69) 

where 1t  is the vector of single excitation amplitudes and N  corresponds to the 

number of electrons. The finally retained threshold for the 1T  diagnostic has 

been set to 0.08 [33]: as long as the 1T  value remains below 0.08, a single–

reference treatment should be valid. Further energy-based criteria have been 

more recently devised by Karton et al [34] for recognizing these situations 

where static or dynamical correlation dominates. According to Karton et al, the 

targets are dominated by dynamical correlation if the percentage of the total 

atomization energy which is accounted for by perturbative triple excitations 

(%TAE[(T)]) is below 2 %. 
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2.3 Density functional theory 

Density Functional Theory (DFT) is based upon the idea that the energy of 

an electronic system can be expressed in terms of its density. DFT is based on 

two theorems due to Hohenberg and Kohn. The one-electron density ( )ρ r  for 

a N-electron system is obtained by carrying out the integration of the square of 

the wave function (
2

Ψ ) over the space and spin coordinates of all electrons, 

except one: 

( ) ( )
2

1 1 2 1 2, , , N NN d d dr x x x x xρ = Ψ σ∫ ∫… … … ,                       (70) 

where the coordinates ix  for the i-th electron comprise both space and spin 

coordinates, i.e. ir  and iω , respectively. ( )ρ r  is a non-negative function of 

the three variables x, y, z, which represents the electron density of the electron 

cloud carrying N electrons, such that the integration of ( )ρ r  over space gives 

the total number of electrons: 

( ) d Nρ =∫ r r .                                                                           (71) 

The first theorem of Hohenberg and Kohn states: “The external potential 

( )ν r  is determined within an additive constant by the electron density ( )ρ r .” 

Therefore, ( )ρ r  also determines the ground state wave function Ψ  and all 

other electronic properties of the system. Indeed, suppose one has the 

electronic density of an unknown system. The number of electrons in the system 

is obtained by integrating the electronic density over space. By looking at values 
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of the function ( )rρ  at each point in space in order to find the locations of the 

cusps, one is able to indicate the positions of the nuclei. By examining how fast 

the electron density drops at the position of a nucleus, the charge of the nucleus 

can be determined (Kato’s theorem) [35]. So far, one has thus enough 

information to write down the Hamiltonian and the corresponding Schrödinger 

equation, which determines the wave function of the system. Hence, the 

electron density ( )rρ  contains the same precise information about the system 

just as does the wave function Ψ .  

The energy of the system can be expressed as a functional of the electron 

density ρ , as follows: 

[ ] [ ] [ ] [ ]ne eeE V T Vρ ρ ρ ρ= + + ,                                                   (72) 

where [ ]neV ρ  is the nucleus-electron energy functional, [ ]T ρ  is the kinetic 

energy functional, and [ ]eeV ρ  is the electron-electron interaction energy. 

[ ]neV ρ  is given by: 

[ ] ( ) ( )neV dρ ρ ν= ∫ r r r ,                                                             (73) 

with ( )ν r  the external potential defined by eq. (6). The electron-electron 

interaction energy [ ]eeV ρ  has two terms: the classical Coulomb repulsion term 

[ ]J ρ  and a term with a non-classical origin. The classical Coulomb repulsion 

term [ ]J ρ  is expressed as follows:  
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[ ] ( ) ( )1 1
12

1 1

2
J d d

r
ρ ρ ρ= ∫∫ 2 2

r r r r .                                               (74) 

The exact form of the non-classical contribution to [ ]eeV ρ  is unknown and 

represents the main challenge of DFT. 

The second theorem by Hohenberg and Kohn [36] is an analogue of the 

variation principle, which states that: ”For a given number of electrons and an 

external potential ( )ν r , there exists a functional of ρ  denoted by [ ]HK

vE ρ , 

for which the following variation principle is satisfied: 

[ ] [ ]0 0
HK HK

v vE E Eρ ρ≥ = ,                                                           (75) 

where 0ρ  stands for the ideal electronic density distribution for the ground 

state.” 

The Hohenberg–Kohn functional [ ]HK

vE ρ  attains the minimum 

[ ] 0
HK

vE Eρ =  for the ideal (exact) density distribution. The ultimate goal of DFT 

is to find mathematically suitable forms of the Hohenberg–Kohn energy 

functional. A most basic problem is that there exists no exact formula for this 

functional. The best which can be achieved is to devise good enough 

approximations to the exact energy functional.  

2.3.1 The Kohn-Sham theory  

Kohn and Sham devised an approach for evaluating the kinetic energy 

functional, known as the Kohn-Sham method. They introduced a fictitious 

system of non-interacting electrons, which is referred to as the Kohn–Sham 
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system. The N electrons of this system are considered to be subject to an 

external potential ( )0v r , which replaces the interactions with nuclei. The 

external potential is constructed such that the corresponding electron density 

matches exactly the exact electron density. Let us assume that the 

mathematical form of this potential is known. In order to obtain the electronic 

density, one has only to solve the one-electron equation:  

( )2
0

1

2 i i iψ ψ − ∇ + ν = ε  
r ,                                                         (76) 

where iψ
 
represent spin-orbitals, referred to as Kohn-Sham spin-orbitals. The 

total ground-state wave function is a Slater determinant of the N lowest spin-

orbitals: 

[ ]0 1 2

1
det

!
N

N
ψ ψ ψΨ = … .                                                        (77) 

The exact electronic density distribution ( )ρ r  is given by: 

( ) ( )
2

,
N

i

i

ρ ψ
σ

= σ∑∑r r .                                                             (78) 

The total energy of N-electron system is: 

[ ] [ ] ( ) ( )0 0 0E T dρ ρ ν ρ= + ∫ r r r ,                                                (79) 

where the kinetic energy 0T  is expressed as: 

[ ] 2
0

1

2

N

i i

i

T ρ ψ ψ= − ∇∑ .                                                         (80) 

The general expression for the electronic ground-state energy of a real 

system contains the kinetic energy of the N electrons, their interactions with the 
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nuclei and the electron-electron interactions. In line with eq. (72), the total 

energy is thus written as: 

[ ] ( ) ( ) [ ] [ ]0 XCE T d J Eρ ν ρ ρ ρ= + + +∫ r r r ,                              (81) 

where 

• 0T  represents the electronic kinetic energy of the fictitious Kohn-Sham 

system of non-interacting electrons; 

• ( ) ( ) dν ρ∫ r r r  is the correct electron-nuclei interaction term; 

• [ ]J ρ  stands for the self-interaction of the electron cloud with itself. 

The integral [ ]J ρ  does not describe the electron-electron interaction 

completely, since it does not take the correlation of electronic motions into 

account. A Coulomb hole prevails in the electron density distribution around 

each electron, due to repulsion force between particles with the same charge. A 

Fermi or exchange hole also exists due to the anti-symmetry and exclusion 

principles, which prevent two electrons with the same spin to have the same 

location in space. The term which takes into account these exchange and 

correlation effects is the exchange–correlation energy functional ( )XCE ρ . This 

term also contains a correction to the kinetic energy, which arises from the 

difference in between the kinetic energy calculated for the true (i.e. interacting) 

electron system and for the non-interacting Kohn–Sham one. 

At this stage, we need to establish a connection between the external 

potential 0v  and the exchange-correlation functional. The variation principle is 

applied by varying the spin-orbitals. Upon denoting iδψ  an infinitesimal change 



Chapter 2                                                                         Theoretical Methods 

45 
 

in the spin orbitals, the variations in the successive contributions to the energy 

are: 

2
0

1

2

N

i i

i

Tδ δψ ψ= − ∇∑ ,                                                          (82) 

N

i i

i

d d vδ ν ρ ν δρ δψ ψ= = ∑∫ ∫r r ,                                          (83) 

( ) ( ) ( )2 2 2 2 2
2

,

ˆ, ,
N

i j i

i j

J Jψ ψr r rδ δ σ σ=∑ ,                                    (84) 

N
XC

XC i i

i

E
E

δ
δ δψ ψ

δρ
= ∑ .                                                        (85) 

In eq. (84) 
2

... ...  means integration over the spatial coordinates and 

summation over the spin coordinates of electron 2. The Coulomb operator 

associated with orbital jψ
 
is: 

( ) ( ) ( )
1

1 1 1 1
2 1

1 2

, * ,ˆ j j

jJ d
σ

ψ σ ψ σ
=

−∑∫
r r

r r
r r

.                                      (86) 

The Kohn-Sham (KS) equation is derived upon applying the variation principle to 

the energy obtained as a functional of the electron density, subject to the 

constraint that spin orbitals remain orthonormal. This constraint is enforced by 

introducing a set of Lagrange multipliers ijε : 

,

0
N

ij i j

i j

Eδ ε δ− =∑ ψ ψ .                                                           (87) 
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Upon inserting equations (82-85) in eq. (87), the following expression is 

obtained: 

2

,

1 ˆ 0
2

N N N

XC
i j i ij j

i j i j

E
v J

δ
δ ε

δρ

     − ∇ + + + − =      
∑ ∑ ∑ψ ψ ψ .        (88) 

Since the variations in spin-orbitals are performed independently, the only way 

to verify eq. (88) is that every individual ket  is equal to zero: 

( ) ( ) ( )2

,

1

2

N

coul XC i ij j

i j

v v v ε
   − ∇ + + + = 
   

∑r r r ψ ψ ,                      (89) 

along with: 

( ) ( )ˆ
N

coul j

j

v J=∑r r ,                                                                  (90) 

( )
( )
XC

XC

E
v

δ

δρ
=r

r
.                                                                        (91) 

Since all operators in the curly brackets of eq. (89) are invariant with respect to 

an arbitrary unitary transformation of the spin orbitals, the non-diagonal 

Lagrange multipliers can be discarded and a one-electron equation, referred to 

as the Kohn-Scham equation, is obtained: 

( ) ( ) ( )21

2 coul XC i i iv v v ψ ψr r r ε
   − ∇ + + + = 
   

.                             (92) 

The Kohn-Sham equations are solved iteratively, starting from zeroth-order 

approximations for orbitals, which are used for constructing a zeroth-order 

approximation to the density ρ , which is used in turn for constructing a zeroth-

order approximation to the operators ( )coulv r  and ( )XCv r . Solving the Kohn-

Sham equations gives new orbitals, from which the electron density and the 
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above mentioned operators can be recalculated. This procedure is repeated until 

self-consistency is achieved. 

Density Functional Theory (DFT) is in principle exact. The main limitation 

to this theory is that the exact form of the exchange-correlation functional is 

unknown. 

2.3.2 Exchange, correlation and hybrid functionals 

Since the exact exchange-correlation functional is unknown, 

approximations must be introduced. It is customary to divide  the exchange-

correlation functional [ ]xcE ρ  into two terms: 

[ ] [ ] [ ]xc x cE E Eρ ρ ρ= + .                                                            (93) 

The exchange term [ ]xE ρ  takes into account the exchange energy arising from 

the anti-symmetry of the wave function with respect to the interchange of 

electron coordinates, whereas the correlation term [ ]cE ρ  accounts for the 

correlation of the electronic motions. 

The Kohn-Sham formalism can be generalized by splitting ( )rρ  into two 

parts, where one part corresponds to electrons with an α  spin function and the 

other part corresponds to electrons possessing a β spin function: 

( ) ( ) ( )r r rρ ρ ρα β= + .                                                              (94) 

If these two contributions are not equal (i.e. if the system is spin polarized), a 

set of coupled Kohn-Sham equations for spin-up and spin-down electrons need 

to be solved using a potential which depends on the electron spin. This is the 
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same situation as one faces in the case of unrestricted Hartree-Fock theory, and 

which is referred to as unrestricted DFT. 

2.3.2.1 Local density approximation 

The Local Density Approximation (LDA) [37-40] is based on the 

assumption that the electron density can be locally treated as a uniform electron 

gas. Although the electronic density in molecules is clearly inhomogeneous, it is 

reasonable to assume that it is locally homogeneous within a small 

(infinitesimal) volume element. The contribution to the exchange-correlation 

energy XCE  from these volume elements can be calculated to a good 

approximation as a product of the volume element and of the exchange-

correlation energy density, derived from homogeneous gas theory. The total 

exchange-correlation energy XCE  is then determined as a sum of the locally 

obtained contributions. The exchange energy for a uniform gas is given by Dirac 

formula: 

4 3[ ] ( )LDA

x xE C dρ ρ= − ∫ r r ,                                                         (95) 

where 

1 3
3 3

4xC
π

 =  
 

. 

The local density method which is employed when electron densities 

corresponding to opposite spins differ is referred to as the  Local Spin Density 

Approximation (LSDA). Here the exchange energy functional is given by: 

1 3 4 3 4 3[ ] 2LSDA

x xE C dα βρ ρ ρ = − + ∫ r .                                           (96) 
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The correlation energy functional for the homogeneous electron gas has 

been determined using the Monte Carlo approach by Vosko, Wilk and Nusair, 

which has enabled them to construct an analytic interpolation formula suitable 

for DFT, which is known as the VWN functional [39, 41]. 

2.3.2.2 Gradient expansion approximation 

All methods which go beyond the Local Spin Density Approximation 

(LSDA) assume that the exchange-correlation energy functional, XCE , does not 

just locally depend on the electron density ( )ρ r  at a given point, but also on the 

electron density ( )ρ r  surrounding this point (non-locally). Hence, exchange-

correlation energy functional
 XCE  depends on both the electron density ( )rρ

and its gradient ( )ρ∇ r . Such methods are known as Gradient Expansion 

Approximation (GEA) or Generalized Gradient Approximation (GGA). There exist 

many different gradient-corrected exchange functionals and gradient-corrected 

correlation functionals. 

Well-known examples of gradient-corrected exchange functionals are the 

functionals by Becke (B88) [35, 36b] and by Gill (G96) [42]. Among the 

functionals which contain a gradient-corrected correlation part, the most popular 

ones are the Lee-Yang-Parr (LYP) [39, 43-46], the 1991 Perdew-Wang (PW91) 

and 1992 Perdew-Wang (PW92) [47-49] functionals. 

Some functionals consider at the same time both the exchange and the 

correlation parts. Some of them are the Perdew-Yang 1991 exchange-correlation 

functional [50], Becke-Lee-Parr functional [51] and Becke-Perdew (BP86) 
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functional [39, 40b, 52]. The last one is a combination of the B88 gradient 

corrected exchange and P86 local correlation [52] functionals. 

2.3.2.3 Hybrid methods 

Hybrid approximations to the exchange-correlation functional are very 

popular, due to the fact that the results obtained with these are usually found to 

be in very good agreement with experiment. One of the most popular hybrid 

functional is the B3LYP exchange-correlation functional. The B3LYP exchange-

correlation energy is obtained from the B88 exchange energy, the LYP 

correlation energy, the VWN correlation energy and the difference between the 

Hartree-Fock and LSDA exchange energy, according to: 

( )3

88

0.20

0.72 0.81 0.19 .

= + − +

+ + −

B LYP LSDA HF LSDA

xc xc x x

B LYP VWN

x c c

E E E E

E E E

                                 (97) 

The parameters of eq. (97) were determined by Becke using a linear least 

square fit to a set of 56 atomization energies, 42 ionization potentials, 8 proton 

affinities, and 10 first-row total atomic energies [39, 53, 54]. 

The MPW1PW91 functional has been developed by Barone and Adamo 

[55]. This functional is a combination of the modified version of the PW91 

exchange functional, the original PW91 correlation functional and a mixture of 

the exact  and DFT exchange in a ratio of 1 to 4.  

The MPW1K functional is a modification of the MPW1PW91 functional. It 

corresponds to a combination of the Hartree-Fock non-local exchange operator, 

local DFT exchange-correlation functionals and gradient-corrected density 

functional: 
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1 1 91(1 )( )MPW K HF HF LSDA MPW PW

xc x x x cE E XE X E E E= + + − + + ,               (98) 

where the mixing ratio of the exact and DFT exchange energy terms is 0.428 : 

0.572. HFE  denotes the non-exchange part of the HF operator, 
HF

xE  is the HF 

exchange energy, LSDA
xE  is the exchange energy part within the LSDA 

approximation, 1MPW

xE  is the gradient corrected exchange functional, 91PW

cE  is 

the Perdew-Wang correlation functional, and X is the fraction of Hartree-Fock 

exchange. 

The PBE1PBE functional was constructed by Adamo [56]. This functional is 

a hybrid modification of a 1996 pure functional of Perdew, Burke and Ernzerhof 

[57, 58]. It uses 25% exchange and 75% correlation weighting, and is known in 

the literature as the PBE0 functional. 

The B2PLYP functional is the double hybrid functional devised by Grimme 

[59], which combines exact HF exchange with a MP2-like correlation treatment 

employing Kohn-Sham orbitals and energies. The B2PLYPD functional includes in 

addition empirical corrections for dispersion interactions [60]. 

2.3.3 The self-interaction problem 

Self-interaction of electrons is an important problem in DFT. In atoms and 

molecules an electron interact with other electrons by experiencing the Coulomb 

potential due to the presence of  the other electrons, but cannot interact with 

itself. 
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In the expression for the total electronic energy (eq. (81)), the classical 

electrostatic repulsion term [ ]ρJ  and the exchange-correlation energy term

[ ]xcE ρ  cancel exactly if an exact exchange-correlation functional is used. There 

is thus no self-interaction error within an exact theoretical framework. When 

approximations are used, self-interaction errors are introduced. One 

consequence is that the electronic potential decays faster than 1/r in the 

asymptotic region ( r → ∞ ). 

2.3.4 Computational implementation: LCAO ansatz in the Kohn-Sham 

equations 

Just like for HF theory, the only way to make DFT computationally 

tractable for polyatomic systems is to introduce the LCAO formalism. Within the 

framework of a spin-unrestricted treatment, electrons with opposite spins are 

described by two different sets of orbitals. The set of  orbitals 

{ }1, 2, ,i i nψ α
α= …  corresponds to electrons with spin α, while the set 

{ }1, 2, ,i i nψ β
β= … corresponds to electrons with spin β. The partial densities 

are defined as follows: 

2
n

i

i

ρ ψ
α

α
α = ∑ ,                                                                            (99) 

2
n

i

i

ρ ψ
β

β
β = ∑ ,                                                                           (100) 

and the total density is thus: 
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ρ ρ ρα β= + .                                                                            (101) 

At this point we rewrite the one-electron Kohn-Sham equations: 

( ) ( ) ( )21

2 coul xc i i iv v v ψ ψr r r ε
   − ∇ + + + = 
   

,                               (102) 

into the more compact form: 

f̂ KS

i i iψ ψε= ,                                                                              (103) 

where f̂ KS  represents the one-electron Kohn-Sham operator. The external 

potential ( )ν r  and ( )coulv r  are defined in eqs. (6) and (90), respectively. 

( )xcv r  is the exchange-correlation potential, obtained as the derivative of the 

selected exchange-correlation functional with respect to the density. In order to 

convert these integro-differential equations into a matrix form, a set of basis 

(atomic) functions { }1,2, , Kφµ µ = …  has to be introduced. Molecular orbitals 

are thus expanded as follows: 

1 1

,
K K

i i i ic cψ φ ψ φα α β β
µ µ µ µ

µ= µ=

= =∑ ∑ ,  1, 2, ,i K= … .                             (104) 

After substituting eq. (104) into eq. (103), the one-electron Kohn-Sham 

equations are multiplied from left by atomic basis functions and integrated over 

space. The result is a set   of linear algebraic equations, which can be solved 

using standard diagonalization techniques: 

( )

( )

0

0

K

i v

K

i v

F S c

F S c

µ

µ

α α α
µν µν

ν=1

β β β
µν µν

ν=1


− ε = 


− ε =


∑

∑
,                                                         (105) 
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where i

αε  and i

βε  represents the occupied orbitals energies and where vSµ  

represents the elements of the overlap matrix. A set of Fock-type matrices are 

defined as follows:  

,xcF H J Vα α
µν µν µν µν= + + ,                                                            (106) 

,xcF H J Vβ β
µν µν µν µν= + + .                                                            (107) 

Here vHµ  represents the Hamiltonian matrix of a system of non-interacting 

electrons and Jµν  represents the Coulomb matrix, which is: 

( )
K K

J P
λ σ

µν λσ= µν λσ∑∑ ,                                                          (108) 

with P P Pα β
λσ λσ λσ= +  the total electron density matrix. 

Up to this point, there is no difference with the Hartree-Fock-Roothaan 

formalism. Differences only appear when considering the exchange-correlation 

term, the matrix elements of which read:  

xc

v xc vV vµ µφ φ= ,                                                                    (109) 

with xcv  representing some approximation to the exchange-correlation potential. 

The analogy is clear with the closed-shell Roothaan-Hall equations             

(when c cα β
µν µν= ) and with the unrestricted open-shell equations of Pople-Nesbet 

(when c cα β
µν µν≠ ). Once equations have been solved iteratively by means of a 

self-consistent field procedure, and the Kohn-Sham orbitals are obtained, one 

can determine the electronic density and the total electronic energy. The main 

difficulty is the evaluation of the integrals in the expressions for the energy, 
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which can only be carried out using a numerical procedure. Detailed descriptions 

of the integration grids and values for the different parameters can be found in 

[61-66]. 

2.4 Basis sets 

Both with conventional wave function based approaches and with density 

functional theory, the basis set { µφ } is almost universally chosen to consist of 

so-called Gaussian-type-orbitals (GTOs) of the form: 

2GTO l m n rNx y z e αφ −= ,                                                                (110) 

where α is the orbital exponent and L=l+m+n is used to classify the GTOs as s-

functions (L=0), p-functions (L=1), d-functions (L=2), etc. The GTO basis 

functions are computationally advantageous, since there exist very efficient 

algorithms for calculating exceedingly large numbers of four-center-two-electron 

integrals. GTOs unfortunately do not present a “cusp” at 0r →  and decay too 

fast in the asymptotic region ( r → ∞ ). On the other hand, so-called Slater-

type-orbitals (STOs) seem to be a more appropriate choice from a physical point 

of view, since they exhibit the correct cusp behavior at 0r →  and the correct 

exponential decay in the asymptotic region ( r → ∞ ). STOs are of the form: 

( )1 ,STO n r

lmNr e Yζφ − −= Θ φ ,                                                          (111) 

where n is the principle quantum number, ζ  is a orbital exponent and lmY  are 

spherical harmonics. Although STOs are physically most suitable as atomic basis 

functions, the evaluation of four-center-two-electron integrals with such 

functions represents a too difficult and time consuming task from a 
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computational point of view, considering that there are no analytical expression 

for evaluating such integrals. On the other hand, these integrals are relatively 

easy to evaluate with GTOs, considering that the product of two Gaussian 

functions is also a Gaussian function. Therefore, one usually uses as basis 

functions fixed linear combinations of several GTOs, which are referred to as 

contracted Gaussian functions (CGFs): 

1

L
CGF GTO

p p

p

dµ µφ φ
=

= ∑ .                                                                     (112) 

The coefficients pd µ  are chosen in such a way that the CGF resembles as much 

as possible the relevant STO, in order to compensate the limitations of individual 

GTOs in the cusp and tail regions. 

The simplest expansion of the molecular orbitals uses only one basis 

function (or one contracted function) for each occupied atomic orbital and these 

basis sets are therefore called minimal basis sets. One example of a minimal 

basis set is the STO-3G basis set, where three primitive GTO functions are 

combined into one CGF. In the case of carbon atoms, this basis set has only five 

functions, one for each 1s and 2s atomic orbitals and three atomic orbitals for 

the 2p shell (px, py and pz). The following series of basis sets are the split-

valence double-zeta basis sets. For each orbital contributing to the valence shell, 

there are two functions. The typical example is the 6-31G Gaussian basis set 

developed by Pople and co-workers [2]. The 6-31G acronym implies that the 

basis consists of inner shell functions, inner valence functions, and outer valence 

functions, which are contractions of 6, 3 and 1 primitive functions, respectively. 

Usually, such basis sets are augmented by functions of higher angular momenta 

than those occupied in atoms, which are called polarization functions. In this 
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way the 6-31G* basis [67, 68] has been created by adding d-type functions to 

heavy atoms (Li till F). The 6-31G** basis differs from the 6-31G* basis by the 

addition of one set of p-type GTO functions on each hydrogen. 

Widely used basis sets are the correlation consistent basis sets (cc-pVXZ 

sets with X=D, T, Q, 5...) which have been developed by Dunning and co-

workers [69]. The smallest set in this series is the correlation consistent 

polarized valence double-zeta basis set (cc-pVDZ). The addition of diffuse 

functions to the cc-pVXZ basis sets is denoted by the “aug” prefix. One diffuse 

function of each function type in use for a given atom is added [70, 71]. For 

example, the aug-cc-pVTZ basis incorporates one set of s, p, and d diffuse 

functions on hydrogen atoms, and one set of s, p, d, and f diffuse functions on 

heavy atoms (B through Ne and Al through Ar). 

Energies computed using cc-pVXZ and aug-cc-pVXZ basis sets of 

improving quality (X=D, T, Q, 5,...) converge smoothly at the Hartree-Fock level 

[72] and at correlated levels [73], enabling extrapolations to the limit of an 

asymptotically complete basis set (X=∞). Hartree-Fock electronic energies E∞  

obtained using Dunnings’ series of cc-pVXZ and aug-cc-pVXZ basis sets can be 

extrapolated to the limit of an asymptotically complete basis set using Feller 

formula [72]: 

( ) BlE l E Ae−
∞= + ,                                                                    (113) 

where the cardinal number l equals 2, 3, 4,... when X=D, T, Q,... respectively. 

The electron correlation energies are extrapolated to an asymptotically complete 

basis set, by means of a three-point extension (referred to as Schwartz 6(lmn) 

[74]) of Schwartz’s extrapolation formula [73]: 
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( ) 4 6
1 1

2 2

B C
E l E

l l

∞= + +
   + +   
   

.                                              (114) 

In the present thesis, use has been made of these extrapolation 

approaches along with correlation treatments of improving quality, in order to 

achieve the highest possible accuracy in the computation of the ionization 

energies, singlet-triplet energy gaps, electron attachments and dipole 

polarizabilities of polycyclic aromatic hydrocarbons. 

2.5 Finite field method  

In the sequel, the calculation of the static electronic polarizabilities of 

naphthalene, anthracene, and tetracene will be presented, using the Finite Field 

(FF) method [22, 75]. The present section provides a brief account of this 

method. 

The FF method of Cohen and Roothaan [76] consists in numerical 

evaluations of derivatives (of first- or higher-order) of the electronic energy with 

respect to an external field. By adding a perturbation ⋅
i

F r accounting for the 

effect of the external electric field F to the core one-electron operator defined by 

eq. (19), one gets: 

2
1

1 1

1ˆ(1)
2

A

A A

Z
h

r=

= − ∇ − + ⋅∑ 1F r .                                                       (115) 

Upon inserting this perturbed core one-electron operator into the Fock operator 

of eq. (19), and solving consistently the resulting Hartree-Fock-Roothaan 

eqations, relaxed Hartree-Fock orbitals and energies are obtained, which further 

serve as input for calculations coping with electron correlation, such as: Møller-
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Plesset perturbation theory truncated at second-order (MP2), third-order (MP3), 

and fourth-order with single, double, and quadruple excitations (SDQ-MP4), as 

well as CCSD and CCSD(T) theory. 

The FF method exploits an expansion of the energy in function of the 

external electric field F , according to: 

1 1
( ) ( )

2 6i i ij i j ijk i j k

i ij ijk

E E F F F F F Fµ α β= − − − −∑ ∑ ∑F 0 ⋯ .             (116) 

Where µ  is the permanent dipole moment, α  is the polarizability tensor, and 

β  is the first hyperpolarizability tensor. These properties relate to energy 

derivatives in function of the external electric field, as follows: 

i

i

dE

dF
µ = − ,                                                                                 (117) 

2

ij

i j

d E

dF dF
α = − ,                                                                           (118) 

3

ijk

i j k

d E

dFdF dF
β = − .                                                                     (119) 

In practice, therefore, polarizabilities (and hyperpolarizabilities) can be 

estimated at a given level in correlation and using a specific basis set by 

numerically differentiating the energy in function of the applied external field. 

2.6 Born-Oppenheimer molecular dynamics  

In this section we describe the theory underlying the Born-Oppenheimer 

Molecular Dynamics (BOMD) [77-80] approach for computing classical atomic 

trajectories from forces obtained on a quantum mechanical ground, according to 

Hellmann-Feynman theorem [77]. BOMD simulations are employed in the sequel 



Chapter 2                                                                         Theoretical Methods 

60 
 

in order to evaluate thermal corrections to the polarizabilities of naphthalene, 

anthracene and naphthacene (or tetracene). 

Unlike traditional approaches for dynamics, the BOMD method avoids the 

explicit calculation of the whole potential energy surface. It consists in a 

sequence of local approximations to the true surface, which are calculated along 

the computed trajectory. The converged wave-function, which is optimized at 

each step of the trajectory, is used in order to yield a more accurate potential 

energy surface, which is then used in turn to evaluate accelerations, from the 

gradients and Hessians of the potential. 

The method is based on the construction of a second-order model of the 

exact potential energy, which enables us to restrict the integration only to a 

small region around the expansion point. This small region is the so-called trust 

region, and only in this small region the model is a good enough approximation 

to the true potential energy surface. The calculated trajectory has to remain in 

the trust region for remaining reliable. 

To derive the expressions for the model trajectory, one needs to consider 

first the classical equations of motion of an M-particle system in Cartesian 

coordinates: 

d ( )

d

V
= −

x
mx

x
ɺɺ ,                                                                         (120) 

where x denotes the 3M Cartesian component vector, V(x) stands for the 

potential energy of the system, and m is a 3M dimensional diagonal matrix 

containing the nuclear masses mi of the system: 
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1

3

0

0 N

m

m

 
 

=  
 
 

m ⋱ .                                                              (121) 

In a next step, the potential V(x) is expanded for the trust region around a point 

x
0 on the surface, up to second order in atomic displacements = − 0∆x x x : 

0
model

1
( )

2
V V= + +x G∆x ∆xH∆xɶ ɶ .                                             (122) 

In the above equation, 0V , G and H represent the potential energy, gradient 

and Hessian of the potential, respectively. Upon inserting eq. (122) into eq. 

(120), the equations of motion become: 

= − −m∆x G H∆xɺɺ .                                                                   (123) 

Normal mode coordinates Q are introduced in the usual way by 

diagonalizing the mass-weighted Hessian matrix: 

,= 1/2Q Um ∆xɶ                                                                           (124) 

,-1/2g = Um Gɶ                                                                             (125) 

.2 -1/2 -1/ 2
ω = Um Hm Uɶ                                                                (126) 

Here g and 2
ω  represent the gradient and Hessian in normal coordinates, while 

U denotes some unitary matrix. Diagonal matrix elements 
i

ω  can be positive, 

negative or zero, which corresponds to real, imaginary or zero frequencies, 

respectively. Relation between conjugated momenta P and Cartesian coordinate 

momenta p is: 

-1/2P = Um p .                                                                           (127) 
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Using normal mode coordinates enables us to represent the equation of motion 

in 3M one-dimensional equations: 

i i i iQ g Qω=− −ɺɺ .                                                                        (128) 

Taking into account the initial conditions: 

0iQ = ,                                                                                   (129) 

0=i iP P ,                                                                                   (130) 

one obtains, in the case of real frequencies (
2 0
i

ω > ), a solution of the form: 

0

2
( ) sin( ) [1 cos( )],i i

i i i

i i

P g
Q t t tω ω

ω ω
= − −                                        (131) 

0( ) cos( ) sin( ).i
i i i i

i

g
P t P t tω ω

ω
= −                                                 (132) 

In the special case of zero frequency (
2 0
i

ω = ), the solution has the form: 

0 21
( )

2
= −i i iQ t P t g t ,                                                                  (133) 

0( )i i iP t P g t= − .                                                                         (134) 

At last, in the case of imaginary frequencies (
2 0
i

ω < ), the solution can be 

expressed in terms of hyperbolic functions: 

( ) ( )
0

2( ) sinh 1 coshω ω
ω ω

 = + − 
i i

i i i

i i

P g
Q t t t ,                          (135) 

( ) ( )0( ) cosh sinh .i
i i i i

i

g
P t P t tω ω

ω
= −                                       (136) 
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Once Q(t) and P(t)  have been obtained from the above expressions, it is 

easy to calculate the time evolution of Cartesian coordinates and momenta, 

using: 

0( ) ( )t t-1/2x = x +m UQ ,                                                            

( ) ( ).t t1/2p =m UP                                  

Once the gradient and Hessian of the potential are known, it is easy to calculate 

the trajectory on a second-order potential energy surface [eq. (122)]. The 

complete trajectory is obtained step by step. In a first step, we start by 

calculating the electronic energy, gradient and Hessian at an initial point in order 

to construct a local model surface. The integration [eq. (137)] is then carried out 

to the boundary of the trust region

The same procedure is repeated in the next step, with the difference that the 

final point of the local trajectory from the previous 

initial point for the local trajectory in the next 

repeated until the trajectory is completely calculated. 

Figure 1. Hessian-based predictor
trajectories. A quadratic approximation to the surface at 
step to obtain x2. Then the energies, gradients, and Hessians at 
fitted by a fifth-order polynomial so that a correction step could be taken on this 
fitted surface. The procedure is repeated for the following step starting with the 
quadratic approximation at x2. 

x1

E1,h1, H1 E

corrector step
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have been obtained from the above expressions, it is 

easy to calculate the time evolution of Cartesian coordinates and momenta, 

( ) ( )                                                             (137) 

                                                                    (138) 

Once the gradient and Hessian of the potential are known, it is easy to calculate 

order potential energy surface [eq. (122)]. The 

tained step by step. In a first step, we start by 

calculating the electronic energy, gradient and Hessian at an initial point in order 

to construct a local model surface. The integration [eq. (137)] is then carried out 

trust region, enabling us to calculate a local trajectory. 

The same procedure is repeated in the next step, with the difference that the 

final point of the local trajectory from the previous trust region becomes a new 

initial point for the local trajectory in the next trust region. The process is 

repeated until the trajectory is completely calculated.  

 

based predictor–corrector algorithm [80] for integration of 
trajectories. A quadratic approximation to the surface at x1 is used in a predictor 

. Then the energies, gradients, and Hessians at x1 and x2 are 
order polynomial so that a correction step could be taken on this 

fitted surface. The procedure is repeated for the following step starting with the 

x2

x3

E2,h2, H2

E3,h3, H3
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The quadratic approximation to the potential-energy surface [eq. (122)] is 

valid only for a given trust radius, which is relatively small. More accurate 

approaches have been devised, which allow taking larger steps. Within such 

approaches, the second-order method is used as a predictor step, which is 

followed by a corrector step (Figure 1). In order to get better local 

approximation to the potential-energy surface, one performs a fit of a higher-

order surface to the energy, gradient, and Hessian, which have been calculated 

not only at the beginning but also at the end of the predictor step. 

One type of local fitted surfaces employs a fifth-order polynomial fit [80]. 

During the fitting procedure, the Cartesian coordinates are rotated so that one 

component is parallel to the predictor step, �x , while the others are 

perpendicular to the step, ⊥x . For the parallel ( ∆ �x ) and perpendicular ( ⊥∆x ) 

displacements to the path direction, the energies, first and second derivatives 

parallel to the path are given by: 

1 1 1
,

1
,

2
a t tE E ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= + +g ∆x ∆x H ∆x                                           (139) 

1 1
, ,ag ⊥ ⊥= +g H ∆x� �                                                                      (140) 

1
, ,ah =H� �                                                                                    (141) 

2 2 2
, ,b t tE E ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= + +g ∆x ∆x H ∆x                                              (142) 

2 2
, ,bg ⊥ ⊥= +g H ∆x� �                                                                      (143) 

2
, ,bh =H� �                                                                                    (144) 
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where 1E , 
1g , and 1H are calculated at the beginning of the predictor step, 

while 2E , 
2g , and 2H  are obtained at the end of the predictor step. A good 

approximation to the potential energy surface is constructed by fitting a fifth-

order polynomial to aE , 
ag , ah , bE , 

bg , and bh : 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

3 4

5 6 .

a a

a b

b b

V E y y

h y E y

g y h y

⊥ ⊥

⊥ ⊥

⊥ ⊥

= + +

+ + +

+ +

x ∆x ∆x g ∆x ∆x

∆x ∆x ∆x ∆x

∆x ∆x ∆x ∆x

� �

� �

� �

                        (145) 

The y functions are the appropriate fifth-order interpolating polynomials: 

( ) 3 4 5
1 1 10 15 6 ,y u u u u= − + −                                                    (146) 

( ) ( )3 4 5
2 6 8 3 ,y u s u u u u= − + −                                                 (147) 

( ) ( )2 2 3 4 5
3 2 3 3 ,y u s u u u u= − + −                                             (148) 

( ) 3 4 5
4 10 15 6 ,y u u u u= − +                                                         (149) 

( ) ( )3 4 5
5 4 7 ,y u s u u u= − + −                                                      (150) 

( ) ( )2 3 4 5
6 2 2 ,y u s u u u= − +                                                     (151) 

where =∆ �u x s ,  and 2 1s = −x x . 

Using the Cartesian coordinates for the fitted surface, one faces the 

problem of the rotational invariance of the local potential-energy surface. The 

problem with translational and rotational invariance can be removed by 

projecting the mass-weighted gradient, Pg, using the appropriate projector: 
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6

1

t

i i

i=

= − ∑P I U U ,                                                                       (152) 

where Ui (i=1-6) are the normalized vectors corresponding to overall translation 

and rotation in mass weighted coordinates. 

2.6.1 Hellmann-Feynman theorem 

The exact force corresponds to the first derivative of the energy. Since 

the energy in quantum mechanics is obtained as an expectation value of the 

Hamiltonian operator, for the real wave function the force is given by the 

expression: 

ˆ ˆ ˆ2H H H∇ Ψ Ψ = Ψ ∇ Ψ + ∇Ψ Ψ
� � �

.                               (153) 

The first term on the right hand side of the above equation corresponds to the 

Hellmann-Feynman force, while the second term represents a correction to the 

Hellmann-Feynman force, which is known as the wave function response, Pulay 

force or incomplete basis set force. The second term can be expressed as 

follows: 

ˆ ˆH H E E∇Ψ Ψ = ∇Ψ − Ψ + Ψ ∇Ψ
� � �

,                             (154) 

where the second term on the right hand side of the latter equation usually 

vanishes. 

If the system of interest is in the stationary state described by the 

normalized wave function Ψ  then, according to Hellmann-Feynman theorem, 

the exact force is equal to the Hellmann-Feynman force. An important limitation 

to this theorem is that it is valid only for true stationary wave functions. To 
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prove this theorem, one has to differentiate the quantum mechanical energy 

expression E H= Ψ Ψ : 

ˆ
ˆ ˆ

ˆ
.

E H
H H

x x x x

H
E

x x x

∂ ∂Ψ ∂ ∂Ψ
= Ψ + Ψ Ψ + Ψ

∂ ∂ ∂ ∂

 ∂Ψ ∂Ψ ∂
= Ψ + Ψ + Ψ Ψ ∂ ∂ ∂ 

                           (155) 

Upon differentiating the expression 1Ψ Ψ =  we find: 

0.
x x

∂Ψ ∂Ψ
Ψ + Ψ =

∂ ∂
                                                         (156) 

Using the above expression, and considering that Ĥ  is Hermitian, whereas Ψ  

represents its eigenfunction, we obtain the final form of Hellmann-Feynman 

theorem: 

ˆ
.

E H

x x

∂ ∂
= Ψ Ψ

∂ ∂
                                                                   (157) 

In practice, most ab initio wave functions are obtained according to the 

variation principle, which generally does not yield the exact solution of the 

Schrӧdinger equation. Errors in the computation of forces arise due to 

approximate treatments of electronic correlation and the use of an incomplete 

basis set. 

2.7 Translation symmetry: Bloch theorem, Bloch orbitals and Bloch 

functions  

In the sequel, the scaling of spin contamination arising in applications of 

spin unrestricted treatments with respect to system size will be analyzed using 
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the formalism of crystalline orbitals for stereoangular polymers with one

dimensional periodicity (Figure 2). In this purpose we briefl

structure theory [81] of such systems.

Figure 2. Model of an isolated and periodic (stereoregular) polymer chain, 
where j and a denote the unit cell index and the cell width, respectivelly.
 

For such a periodical system with one dimensional periodicity (along the 

the periodic orbital electron densities satisfy:

2
( ) ( ) ( ) ( ) ( )n n n n njaρ ϕ ρ ρ ϕ= = + = + = +r r r e r R r R

where a is the length of the elementary unit cell of the periodic system in 

space (r ), and j is a cell index defining the position of the cell by a translation 

vector ( j a
j z

R e= ). Bloch’s theorem [82

crystalline orbitals (Bloch orbitals) of periodic systems at periodically related 

points in the direct space: 

( ) e ( ) e ( ) 
i

n n nϕ ϕ ϕ•+ = =jk R

j
r R r r

where k  and k define a wave vector

respectively (in this case: kk e=

                                                               Theoretical Methods 

68 

the formalism of crystalline orbitals for stereoangular polymers with one-

dimensional periodicity (Figure 2). In this purpose we briefly review the band 

] of such systems. 

Model of an isolated and periodic (stereoregular) polymer chain, 
and a denote the unit cell index and the cell width, respectivelly. 

For such a periodical system with one dimensional periodicity (along the z-axis), 

the periodic orbital electron densities satisfy: 

2
( ) ( ) ( ) ( ) ( )n n n n njaρ ϕ ρ ρ ϕ= = + = + = +

z j j
r r r e r R r R ,       (158) 

is the length of the elementary unit cell of the periodic system in direct 

is a cell index defining the position of the cell by a translation 

). Bloch’s theorem [82] states the phase relation of the 

crystalline orbitals (Bloch orbitals) of periodic systems at periodically related 

( ) e ( ) e ( ) ikja

n n nϕ ϕ ϕ+ = =r R r r ,                                         (159) 

wave vector and the associated wave number, 

k
z

k e ). Bloch’s theorem is derived from the 
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commutation properties of the one-electron Hamiltonian operator and the 

translation operator T(
j

R ) defined such as it translates any function f(r) from r 

to ja
z

r e+ : 

( ) ( ) ( ) ( )T f f ja f
j z j

R r r e r R= + = + .                                   (160) 

The one-electron potential function ( )V r  and the orbital electron density ( )n rρ

are eigenfunctions of the translation operator with an eigenvalue equal to 1, due 

to the periodic properties of the infinite lattice: 

( ) ( ) ( ) ( ) 1 ( )T V V ja V V
j z j

R r r e r R r= + = + = ,                       (161) 

( ) ( ) ( ) ( ) 1 ( )n n n nT jaρ ρ ρ ρ= + = + =
j z j

R r r e r R r .                    (162) 

Due to the fact that the one-electron Hamiltonian operator and the translation 

operator commute, they must possess the same set of eigenfunctions. Formally, 

the eigenfunctions of the translation operator can be represented by the 

eigenvalue equation: 

( ) ( ) ( ) ( )n n j nT jaϕ ϕ λ ϕ= + =
j z

R r r e r .                                      (163) 

Because of the periodic properties of the one-electron orbital densities in 

periodic systems: 

2

2 2 22

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ,

ρ ρ ϕ

ϕ λ ϕ ϕ

+ = = =

+ = =

n n n

n j n n

ja T T

ja

z j j

z

r e R r R r

r e r r
                     (164) 

it follows that the eigenvalue λj is a complex number of modulus equal to unity: 

ji

j e
φλ = .                                                                                  (165) 

It can be easily shown that: 
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j k j aφ = • =
j

k R .                                                                   (166) 

Since a has the dimension of a length and j is an integer, in order for the 

exponent to remain dimensionless, k must have the dimension of an inverse 

length, i.e. k is a wave number. Correspondingly, 
j

R  is a vector belonging to 

the lattice in direct space, while k  is a wave vector belonging to the reciprocal 

space. The vector of a reciprocal lattice is denoted by G, and (in z-direction) is 

defined as follows: 

G l g= =
z z

G e e ,                                                                      (167) 

where g is the length of the elementary unit cell in the reciprocal space, and l is 

an integer (0, ±1, ±2, … etc). The values of k allowed within a single reference 

unit cell of the reciprocal lattice give non-redundant information. Therefore, in 

practice a calculation of the electronic structure of an extended periodic chain 

only needs to be performed over a range of k values equivalent to a single unit 

cell of the reciprocal lattice (i.e. corresponding to at most one translation 

g=
z

g e along the reciprocal lattice), and defining the first Brillouin zone (-π/a ≤ 

k ≤ + π/a) of the periodical system. This argument is based on the fact that 

Bloch orbitals which differ by a reciprocal lattice vector (lg z
e ) have the same 

eigenvalue for any translation operator: 

( lg)( ) ( lg, ) e ( lg, ) e ( lg, )i k ja ikja

n n nT k k kϕ ϕ ϕ++ = + = +jR r r r .       (168) 

In the case of one-dimensional periodic systems, an alternative of 

Bloch’s theorem is thus  rather  naturally  obtained  by factorizing  the  Bloch  
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orbitals  into  a  periodic [ ( , ) ( , )n nu k u k+ =
j

r R r ] contribution, referred to as a 

Bloch function, and a non-periodic free electron-like [e
ikz

] contribution: 

( , ) ( , ) ( , )ϕ ⋅= =i ik z

n n nk e u k e u kk r
r r r .                                         (169) 

As the Bloch orbitals to which they relate, Bloch functions are eigenfunctions of 

the translation operator with eigenvalues equal to ikjae : 

( ) ( , ) ( , )ikja

n nT u k e u k=jR r r .                                                     (170) 

The proof that the above crystalline orbitals ( ( , ) ( , )ikja

n nk e u kφ =r r ) satisfy the 

requirement of Bloch’s theorem is easily given by showing that if ( , )nu k r  is 

periodic, one immediately finds: 

( )

( ) ( , ) ( )[ ( , )]

( , )

( , )

( , ) .

ϕ

ϕ

+

=

= +

=

=

i k z

n n

ik z ja

n

ikja ikz

n

ikja

n

T k T e u k

e u k

e e u k

e k

j j

j

R r R r

r R

r

r

                                       (171) 

When considering approximations such as the Linear Combination of 

Atomic Orbitals (LCAO) depiction, the Bloch functions are built up as symmetry-

adapted linear combination of atomic orbitals (referred to as Bloch sums, pγ ) 

for the translation space group, as follows: 

1/2

1

( , ) ( )
N

ikja

p p
j

u k N e jaγ−

=
= − −∑ z p

r r e R ,                                   (172) 

where the [ ikjae ] components are weight factors in the expansion, pR defines 

the position of the atomic center pertaining to orbital pγ  within the reference 
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unit cell, and the sum over j runs over all unit cells. The crystalline orbitals of 

periodic systems (i.e. Bloch orbitals) can thus be expressed as linear 

combinations of Bloch functions [ ( , )pu k r ], whose coefficients in the expansion 

are functions of a band index n and a wave number k: 

1

1/2

1 1

( , ) ( ) ( , )

( ) ( ).

ϕ

γ

=

−

= =

= ∑

= − −∑ ∑

K

n pn p
p

N K
ikja

pn p
j p

k C k u k

N e C k ja
z p

r r

r e R

                    (173) 

Here the sum over p runs over the K atomic functions in the reference unit cell. 

It is necessary to enforce space quantization in infinite systems using the cyclic 

boundary conditions over a super-cell, which contains, in a first approximation, a 

large but finite number (N) of unit cells. When there are many cells in the 

lattice, a very small error is introduced by making the assumption that the ends 

of the lattice can be brought round into a circle and joined. By introducing this 

assumption, the translation symmetry of a system is maintained and the 

influence of the end effects are eliminated. The circularity of the system implies: 

( , ) ( , )n nk Na kϕ ϕ+ =
z

r e r ,                                                         (174) 

or equivalently in terms of Bloch functions: 

(z ) z( , ) ( , )ik Na ik

p pu k Na e u k e++ =zr e r .                                          (175) 

Thus, under the assumption that the periodic system is described as a super-cell 

containing N unit cells under the constraint of Born-Von Karman cyclic boundary 

condition, N
-1/2

 in eqs. (172) and (173) is the normalization factor deriving from 

an orthonormal atomic orbital basis set. Since:  
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( , ) ( , )p pu k Na u k+ =
z

r e r ,                                                         (176) 

it follows from eq. (175) that:  

(z )ik Na ikze e+ = .                                                                           (177) 

The above equality implies that: 

cos( ) sin( ) 1ikNae kNa i kNa= + ⋅ = ,                                              (178) 

which holds only if kNa takes values of the form 2 lπ  where 0, 1, 2,...l = ± ±  

For a super-cell containing N elementary unit cells under cyclic boundary 

constraints, there are therefore N permitted and non-redundant values of k 

within the first Brillouin zone (k ≤ | π/a|): 

2 l l
k g

Na N

π
= = ,                                                                        (179) 

where 0, 1, 2, / 2l N= ± ± ±⋯ . 
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3 Half-metallicity and spin-contamination of the electronic ground 

state of graphene nanoribbons and related systems: an impossible 

compromise? 

3.1 Context and scientific motivation 

Half-metallicity, i.e. the coexistence of metallic nature for electrons with 

one spin orientation and insulating nature for the electrons of opposite spin, has 

been recently predicted for (extended) zig-zag graphene nanoribbons [1] 

(ZGNRs) of finite width (thus, with one-dimensional periodicity), on the ground 

of “first principle” calculations employing (spin-unrestricted) Density Functional 

Theory (DFT) [2] along with the local spin density approximation (LSDA) [3]. 

Peculiar states localize at the edges of the nanoribbon and form a twofold 

degenerate flat band at the Fermi energy (Ef) within one third of the first 

Brillouin zone (BZ) when the single graphite layer is terminated by zig-zag edges 

(i.e. polyacetylenic strands) on both sides [4]. Localized electronic states have 

been correspondingly observed in monoatomic graphitic step edges using 

scanning tunnelling microscopy and spectroscopy [5]. ZGNRs have compensated 

lattices in the sense that the number of carbon atoms belonging to each 

graphene sublattice is balanced. Therefore, according to Lieb’s theorem for 

bipartite lattices [6] they have no total spin moment [7]. In view of the results 

of (spin-unrestricted) DFT calculations, edge states in these systems are thus 

believed to relate to antiferromagnetically ordered and spatially separated spin-

orbitals, with opposite spin orientation across the ribbon, yielding a total spin (S) 

equal to zero [7, 8]. Reversing from condensed matter physics to the 

terminology employed in molecular quantum mechanics, ZGNRs are thus 
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considered to possess a (so-called) “singlet open-shell” electronic ground state 

characterized by symmetry-broken spin-densities, a view that spin-unrestricted 

DFT calculations with various functionals on large enough but finite polycyclic 

aromatic hydrocarbons [9] (PAHs) confirm. These functionals comprise the local 

spin density approximation [3], the gradient corrected functional of Perdew, 

Purke and Ernzehof [10], the standard hybrid B3LYP (Becke-3-parameters-Lee-

Yang-Parr [11]) functional and further screened hybrid exchange functionals. 

The half-metallicity of ZGNRs [1, 8, 9] and of many related systems 

(edge-oxidized, edge-reconstructed or doped graphene nanoribbons [12], zigzag 

single-walled carbon or hybrid BN-C nanotubes of finite width [13], partially 

open armchair carbon nanotubes [14]) is still to date a pure theoretical 

conjecture, which has not been confirmed yet, neither experimentally nor by 

many body quantum mechanics. These predictions systematically find their roots 

into the results of (spin-unrestricted) DFT calculations and invariably the same 

constatation that spatially separated spin-up and spin-down Kohn-Sham orbitals 

are subject to opposite energy shifts when an external electric field is applied 

across the nanoribbon, regardless of the band gap at zero field. Extended ZGNRs 

and finite zig-zag graphene nanoislands (ZGNIs) are thus considered nowadays 

to be highly promising materials with regards to spintronics (i.e. spin transport 

electronics [15]). 

Several groups have been struggling for finding viable molecular 

illustrations of antiferromagetism and half-metallicity among organic 

compounds. In particular (see the work by Hod et al.[9e]), PAHs with a non-zero 

band gap such as C28H14 (phenanthro[1,10,9,8-opqra]perylene, alias 

bisanthrene) or C36H16 (tetrabenzo[bc,ef,kl,no]coronene) have been recently 

predicted to be the smallest possible examples of ZGNIs with 
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antiferromagnetically ordered edge states subject to half-metallicity in the 

presence of a perpendicular external electric field. In line with these 

observations, it has also recently been conjectured [16] that n-acenes larger 

than pentacene or hexacene are “open-shell singlet” [i.e. antiferromagnetic] 

systems, resulting again most logically in half-metallicity in the macroscopic limit 

[17], n → ∞. An electronic (singlet) instability was nevertheless diagnosed from 

the fact that in unrestricted calculations, the two outermost singly occupied α 

and β spin-orbitals deviate from the D2h symmetry point group imposed by the 

nuclear frame, due to a symmetry-breaking in the form of a localization of the 

two frontier electrons on the two zig-zag edges. At the UB3LYP/6-31G* level of 

theory, [n]cyclacenes were similarly found to have a spin-polarized open-shell 

wave function in their singlet ground state when n is greater than 5 [18]. 

Unsurprisingly therefore, when reporting the synthesis of large acenes 

(heptacene, octacene, and nonacene), many synthetic chemists are speculating 

at the moment on the antiferromagnetic nature of these and large related PAHs 

(see e.g. ref. [19]). In sharp contrast with these views, a symmetry-restricted 

depiction is still most commonly employed for unravelling the site-dependence 

of electron transport properties of polycyclic aromatic hydrocarbons in molecular 

junctions, from the topological characteristics and atomic orbital coefficients of 

frontier orbitals [20]. 

From a theoretical viewpoint, large n-acenes, ZGNIs and ZGNRs are 

notoriously difficult, i.e. strongly correlated compounds. A recent study of n-

acenes containing up to n=8 benzenoid rings by means of the variational two-

electron reduced density matrix (2-RDM) approach [21] along with a basis set of 

double zeta quality demonstrates for instance from the evolution of natural 
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occupation numbers the smooth emergence of bi- and polyradical (i.e. 

multireference) character with increasing system size. At another extreme, 

recent GW calculations on zig zag graphene nanoribbons of width 2.4–0.4 nm 

[22] based on symmetry-broken LSDA spin-densities indicate quasi-particle band 

gaps, in the range of 0.5–3.0 eV, which are at first glance large enough to 

impede any spontaneous spin-flip. The existing literature regarding the 

electronic structure of these systems and their electric or magnetic properties is 

thus undeniably extremely confusing and badly needs further benchmark 

theoretical analyses and computational verifications. 

A main conceptual difficulty for many chemists and physicists is that 

symmetry-breakings of spin-densities in the singlet eigenstates of spin-free 

Hamiltonians violate well-established principles and basic theorems of quantum 

mechanics or quantum chemistry (point group theory, spin quantization). A 

singlet ground state in (large but finite) molecules with an even number (2N) of 

electrons implies in particular that canonical orbitals transform according to 

irreducible representations of the molecular symmetry point group [23] and 

most strictly forbids any difference in between α and β spin-densities. Even in 

the presence of an external electric field, there must thus be an equal number of 

spin-up (α) and spin-down (β) electrons (Nα=Nβ=N) when S=0. Regardless of 

the extent of the multi-reference character (i.e. bi- or polyradicalism) of the 

electronic wave function, each α spin-orbital contribution has then a β partner 

with the same space function, and the spin-density is identically zero at every 

point in space. A typical example is H2 in its 1
g
+Σ  electronic ground state [24-

26], which by virtue of the antisymmetry principle has to relate to a 2-electron 
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spin function of the form [ ]1/2(1 / 2) (1) (2) (1) (2)α β β α− , and this up to the 

dissociation limit. Also, in the absence of energy degeneracies, spin-orbitals are 

symmetry-adapted, exactly paired, and the charge density is totally symmetric 

under the molecular point group. In other words, when S=0, departures of spin- 

or charge-densities from the symmetry dictated by the Full Hamiltonian and by 

the nuclear framework are artefactual [27]. 

Physical symmetry breakings pertain to those cases where the molecular 

symmetry dictated by clamped nuclei configurations under the Born-

Oppenheimer approximation does break [27]. There are numerous molecular 

systems exhibiting multiple minima of low symmetry on their potential energy 

surface, which interconvert through transition states of higher symmetry. 

Typical examples are the Jahn-Teller distortions induced by energy degeneracies 

under non-abelian symmetry point groups [25, 28]. However, even in this case, 

only electric charges can localize if the wave function remains a singlet. At this 

stage, it is thus useful to remember that there is nowadays a large consensus on 

the fact that n-acenes exhibit a D2h symmetry point group [16], whatever their 

size, and this up to the macroscopic limit (n→∞). 

If an unrestricted Self-Consistent Field (SCF) calculation upon a singlet 

wave function enforces different localizations for orbitals with opposite spin and 

an energy lowering into a so-called “singlet open-shell” ground state [16, 18], a 

spin-contamination by (magnetically active) triplet, quintet… etc. states arises, 

and the result of the calculation is trivially "unphysical", due to an incomplete or 

too approximate treatment of electron correlation [26, 29]. Spin-orbit coupling 

interactions are at first glance intrinsically far too weak to provide any support 

to the idea of “spontaneous” symmetry breakings in carbonaceous materials: 
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their estimated effect on the band gap of graphene does not exceed 24 µeV 

[30]. Electronic instabilities are the consequence of the non-analyticity of 

variational SCF procedures in symmetry breaking situations [31]. Self-consistent 

field Hamiltonian operators are not dilation analytic upon symmetry lowering, 

because of a non-physical “overcounting” and amplification of the effect of the 

symmetry breaking during the SCF procedure. When using unrestricted wave 

functions as zero-order solutions, one must then pay more tribute in the 

treatment of electronic correlation in order to compensate for the unphysical 

starting point, and recover the correct (charge- and spin-) symmetries. Note 

that, in their discussion of the spin-polarization of edge states of graphene 

islands of finite (nano-metric) dimension, Rudberg et al. [9b] already grasped 

that the half-metallic nature of the ZGNRs structures [1] may be an artefact of 

the employed DFT approaches. 

In continuation of large-scale many-body wave function theoretical 

determinations of the ionization and electron attachments energies of benzene 

and n-acenes [32] within or close to chemical accuracy [1 kcal/mol, i.e. 43 

meV], our group has published recently a focal point analysis of the electronic 

ground state and singlet-triplet energy gap of these compounds [33]. This study 

irrefutably demonstrates that high-level and large scale treatments of electronic 

correlation are necessary for compensating giant symmetry-breakings in 

unrestricted single-reference treatments of the electronic wave function of n-

acenes. Symmetry-breakings are more likely to occur when limiting the size of 

the basis set, or when increasing the fraction of HF exchange in hybrid 

functionals. We noted as an extreme example that even benzene and 

naphthalene can be subject to spurious symmetry breakings of α and β spin-
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densities when treating these compounds at the uncorrelated Hartree-Fock level 

in conjunction with a minimal STO-3G basis set (Slater-type orbital empoying 

linear contractions of 3 primitive Gaussians per atomic function [33a)]. Upon 

studying the performance of post-SCF restricted and unrestricted approaches, it 

was found that in all reported cases the energy difference between the lowest 

singlet closed-shell and so-called “singlet open-shell” states of benzene and 

acenes reverse at the MP2 level, and identically cancel when approaching the 

full-CI (configuration interaction) limit. The composition of multi-configurational 

wave functions, the topologies of natural orbitals in symmetry-unrestricted 

complete active space self consistent field (CASSCF) calculations, the T1 

diagnostics [34] of Coupled Cluster theory and further energy-based criteria 

[35] also demonstrate that acenes up to (at least) undecacene [33b] exhibit a 

1Ag singlet closed-shell single-reference electronic ground state [33]. In line with 

the trends emerging from natural occupation numbers [21], and obviously 

because of the imposed symmetry restrictions on spin-densities, extrapolations 

of our results indicate nonetheless a vanishing singlet-triplet energy gap and, 

thus, a metallic (multi-reference) regime in the limit of an infinite periodic chain. 

This should not be mistaken for a half-metallic regime [1, 8, 9, 12, 13, 14, 17], 

implying that for one set of symmetry-broken orbitals of a given spin the band 

gap opens when an external electric field is applied, whereas the other spin-

band system remains (or becomes) metallic.  

The purposes of the present work are three-fold:  

(1) Assuming that an antiferromagnetic depiction prevails for an electronic 

singlet ground state with a total spin S=0, and, thus, that each unit cell in a 

finite ZGNI or extended ZGNR is subject to a measurable (and thus finite) 

symmetry-breaking in spin-densities, as in the original Nature’s article by Son et 
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al [1], and all publications [8,9,12,13,14,17] on this topic thereafter, we first 

wish to analytically investigate the scaling properties of the spin contamination 

of a symmetry-broken electronic wave function, as a function of the number of 

unit cells in the system, using the formalism [36] of crystalline orbitals for 

extended systems with periodicity in one-dimension (Figure 1). It will be shown 

in particular that, in such a situation and in sharp contrast with the expected 

value (0) for the S2 operator in a singlet (S=0) ground state, the spin 

contamination in an unrestricted HF or DFT treatment has to diverge with 

increasing system size, which implies a complete loss of control upon spin-

related properties in the macroscopic limit.  

(2) Considering that symmetry-breakings of spin-densities can be enforced 

at will on any compound by imposing too strong limitations on the employed 

wave function, we will then resort to unrestricted Hartree-Fock (UHF) 

calculations to show that from its valence electronic structure even naphthalene 

can exhibit features that are reminiscent of the half-metallicity of large but finite 

Zig-zag Graphene NanoIslands (ZGNIs) with a D2h symmetry point group [37] in 

spin-unrestricted treatments. This conclusion will be tested against more robust 

calculations employing basis sets and many-body treatments of improving 

quality, in order to prove by analogy with larger systems and contradiction 

(reductio ad absurdum) of all available theoretical and experimental evidences 

for this compound that the half-metallicity of ZGNIs, ZGNRs, n-acenes and 

related systems will be quenched by an exact treatment of electron correlation 

in quantum mechanical calculations converging to the full-CI limit.  

(3) At last, upon enforcing from the onset of the n-acene and ZGNI series 

the appearance of spin-polarized edge states with a deliberately too approximate 

treatment of electron correlation, we will verify the scaling properties of the 
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spin-contamination as a function of the length of th

computational grounds that half-metallicity in finite ZGNIs and extended ZGNRs 

is nothing else but a measure of the extent of an artefactual symmetry

of spin-densities in spin-unrestricted one

Figure 1. CO-LCAO analysis of symmetry
and related systems with periodicity in one dimension. 
 

3.2 Crystalline orbital analysis of spin

periodic systems   

Any spin-unrestricted wavefunction (e.g. unrestricted HF, unrestricted 

B3LYP, LSDA, …) for a given spin state may be subject to contamination by 

higher-spin states, resulting in an expectation value for the 

exceeds the exact [Sz (Sz+1)] value, because the contaminants have larger 

values of S. In particular, it can be shown that, for any single

spin-unrestricted wave function, the 

26]: 

( )2 1z z i
UX

S S S N= + + −
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contamination as a function of the length of the ribbon, and verify on 

metallicity in finite ZGNIs and extended ZGNRs 

is nothing else but a measure of the extent of an artefactual symmetry-breaking 

unrestricted one-determinantal (HF or DFT) calculations. 

 

LCAO analysis of symmetry-breakings in extended ZGNRs 
and related systems with periodicity in one dimension.  

ystalline orbital analysis of spin-contamination in extended 

unrestricted wavefunction (e.g. unrestricted HF, unrestricted 

B3LYP, LSDA, …) for a given spin state may be subject to contamination by 

spin states, resulting in an expectation value for the S2 operator that 

+1)] value, because the contaminants have larger 

. In particular, it can be shown that, for any single-determinantal 

unrestricted wave function, the 
2S  expectation value is of the form [24, 

2

1

MO

z z i j
ij

S S S N
βα

β φ φ
=

= + + − ∑  ,                     (1) 
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where UX may stand for UHF (unrestricted Hartree-Fock), LSDA (Local Spin 

Density Approximation), UB3LYP (unrestricted B3LYP), or any single-

determinantal spin-unrestricted DFT expansion that may yield spin-polarized 

edge states in a graphene nanoribbon. Note from the above equation that if the 

α and β orbitals are identical in the singlet (Sz=0) ground state, there is no spin 

contamination, and the unrestricted wave function is identical to the restricted 

one. 

For an hypothetical singlet antiferromagnetic ground state in n-acenes or 

finite graphene nanoislands, the error in spin-contamination provides therefore a 

measure of the extent of the symmetry breaking resulting from spin-polarized 

edge states:  

2 2

1 1

NN

i ij j
UX exact i j

S S N
βα β βα α

β φ φ φ φ
= =

− = − ∑ ∑ .  (2) 

In order to evaluate the scaling properties of this error as a function of system 

size, we assume first an expansion of spin-unrestricted molecular orbitals as a 

linear combination of K atomic functions ( )p rγ
�

: 

1
( ) ( )

K

i p i p
p

r C rα αφ γ
=

= ∑
� �

,      (3) 

1
( ) ( )

K

qj q j
q

r C r
β βφ γ

=
= ∑

� �
,      (4) 

under the usual orthonormality constraints for space functions relating to the 

same spin, i.e.,  

†α α =C SC 1 ,       (5) 
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†β β =C SC 1 ,       (6) 

where 

γ γ δ= =p q p q pqS .      (7) 

Suppose: 

( ) ( ) ( )j jj r r r
β αφ φ δ= +
� � �

,      (8) 

( )
1

( ) ( )
K

qj qj qj
q

r C r
β αφ γ

=
= + ∆∑

� �
.     (9) 

Considering that Nα=Nβ=N, and upon taking the orthonormality of orbitals 

relating to the same spin function into account, we find: 

2 2 2 2
1 2

UX exact
S S S S− = ∆ + ∆ ,                                  (10) 

along with: 

( )2
1

1

N

i i i i
i

S α αφ δ δ φ
=

 ∆ = − +∑   
,                       (11)

2
2

1 1

2

1 1
0.

α α

α

φ δ δ φ

φ δ

= =

= =

∆ = − ∑ ∑

= − ≤∑ ∑

N N

i j j i
i j

N N

i j
i j

S

                                         (12) 

Both contributions to the spin contamination identically cancel in the 

absence of any symmetry-breaking (i.e. ( ) 0i rδ =
�

 for i=1,2, … N), and differ 

from zero otherwize. Whereas the second-order contribution ∆2 in terms of the 

symmetry-breaking is obviously zero or negative, further analysis demonstrates 

that the first-order term, ∆1, is necessarily zero or positive:  
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( )
( )

2
1

1

1

2 Re

2 Re 1 0,

α

βα

φ δ

φ φ

=

=

 ∆ = − ∑   

 = − − ≥∑   

N

i i
i

N

i i
i

S

                       (13) 

since 

( )Re 1i i
βαφ φ ≤ .                         (14) 

For instance, in an unrestricted single-determinantal treatment of H2, 

using  a  minimal  basis  set,  ∆1=+2  whereas  ∆2=-1  in  the  dissociation  

limit (RH-H →∞), resulting in a triplet contamination (∆1 + ∆2=1) that represents 

50% of the wave function [24]. If the electronic ground state is a singlet, spin-

contamination can only arise through admixture of states of higher spin-

multiplicity (triplet, quintet, …), and the spin contamination therefore can only 

be positive or equal to zero. It is thus clear that the two contributions can never 

exactly compensate (except if ( ) 0δ = ∀
�

i r  i=1,2, … N): 

2 2
1 2S S∆ ≥ −∆ .             (15) 

We now proceed with an adaptation of equation (11) and (12) to 

extended systems with periodicity in one dimension along with the LCAO anzatz 

(Figure 1), and consider spin-unrestricted crystalline-orbitals (CO) of the form 

[36]:  

01/2
0

1 1
( , ) ( ) ( )

N Kikja j
n pn p

j p

k r N e C k r
α αφ γ−

= =
= ∑ ∑

� �
,                     (16) 

01/2
0

1 1
( , ) ( ) ( )

N Kikja j
n pn p

j p

k r N e C k r
β βφ γ−

= =
= ∑ ∑

� �
,            (17) 
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together with  

( ) ( )j
p p z pr r jae Rγ γ= − −

�� � �
.             (18) 

In these equations, N0 is the number of unit cells of width a of an extended 

periodic system with periodicity in one-dimension along the z-axis, under the 

usual (Born – Von Karman) constraint of cyclic boundary conditions [38]. j, n 

and k stand for the cell index, band index and wave number (electron 

momentum), respectively. As usual, and in straightforward analogy with 

equations (3) and (4), we assume K atomic functions per cell, and that 

crystalline orbitals are orthonormal with regards to band indices, since they are 

eigenfunctions of effective one-electron hamiltonian [hermitian] operators (Fock 

operator, Kohn-Sham hamiltonian, … etc).  

In straightforward analogy with equation (8), we define crystalline spin-

orbital differences as:  

01/2
0

1 1

( , ) ( , ) ( , )

( ) ( ).

β αδ φ φ

γ−

= =

= −

= ∆∑ ∑

� � �

�

n n n

N Kikja j
pn p

j p

k r k r k r

N e k r
           (19) 

( , )n k rαφ
�

, ( , )n k rβφ
�

, and ( , )n k rδ
�

 are obviously periodic functions that can be 

constructed as linear combinations of symmetry adapted functions, referred [39] 

to as Bloch functions, ( , )pu k r
�

: 

1
( , ) ( ) ( , )

K

n pn p
p

k r C k u k rα αφ
=

= ∑
� �

,                       (20) 

1
( , ) ( ) ( , )

K

n pn p
p

k r C k u k rβ βφ
=

= ∑
� �

,             (21) 
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1
( , ) ( ) ( , )

K

n pn p
p

k r k u k rδ
=

= ∆∑
� �

,             (22) 

along with:  

01/2
0

1
( , ) ( )

N
ikja j

p p
j

u k r N e rγ−

=
= ∑

� �
.             (23) 

Bloch functions are eigenfunctions of the translation operators 

( ) ( )j zT R T jae=
� �

 characterizing the periodic lattice with eigenvalues equal to 

ikjae . These functions can be obtained from a function without any particular 

symmetry by means of the projection operator [40]: 

01
0

1

N
ikja

k
j

O N e−

=
= ∑ ,               (24) 

which has most important properties: 

†
' ( , ')k kk

O O k k Oδ= ,               (25) 

and: 

†
kk

O O= .                (26) 

(See ref. [41] for a generalization of translation operators to many-electron 

wave functions). Therefore: 

' ''( ) ( ') ( ) ( ') ( , ')n n n nnnk k k k k k
βα α βφ φ φ φ δ δ= = .           (27) 

More generally, the properties of Bloch functions regarding translation 

symmetry imply a block-diagonalization in k. It is thus clear that any functions 

with different k labels cannot couple. Another important and well-known 

consequence of translation symmetry is periodicity of the electronic structure in 
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the reciprocal (k) space [42], whose elementary unit cell defines the first 

Brillouin zone (BZ), ranging from –π/a to + π/a. For the forthcoming discussion, 

it is essential to remind that if the super-cell contains N0 unit cells, there will be 

only N0 possible discrete values of k in the first Brillouin zone. Each of these 

values corresponds to a particular irreducible representation of the translational 

symmetry point group, containing K spin-up and K spin-down Bloch functions 

characterized by their band index n=1, 2, 3,..., K.  

In the macroscopic limit of an infinite system with finite densities, one 

most customarily makes use of the equivalence:  

0

0

/

10 /

1
lim

2

N a

N j a

a
dk

N

π

ππ

+

→∞ = −
⇔∑ ∫ .            (28) 

Expanding the first-order contribution to spin contamination in terms of 

crystalline spin-orbitals, and carrying out lattice summations, we get: 

( )

( )

0

2
1

( ' )

, ' 10

' '*

1

( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ,

α α

α α

φ δ δ φ

−

=

∗ ∗

=

 ∆ = − +∑ ∑   

−
= ∑ ∑ ∑

× ∆ + ∆∑

BZ

n n n n
n k

NBZ ik j j a

n k j j

K j j j j
pn qn pq pn qn pq

pq

S k k k k

e
N

C k k S C k k S

       (29) 

along with 

' 'j j j j
pq p qS γ γ= .               (30) 

Since 

' 0 " " ',= = −j j j
pq pqS S j j j ,              (31) 
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and  

0 0
0

, ' 1 '' 1

N N

j j j
N

= =
⇔∑ ∑ ,               (32) 

upon exploiting translation symmetry, equation (29) can be reduced to:   

2
1 ( )

BZ

n
n k

S k∆ = − Γ∑ ∑ ,              (33) 

along with: 

( )

0 "

" 1

0 " 0 "*

1

( )

( ) ( ) ( ) ( )

N
ikj a

n
j

K j j
pn qn pq pn qn pq

pq

k e

C k k S C k k Sα α

=

∗ ∗

=

Γ = ∑

× ∆ + ∆∑ .          (34) 

Even in the macroscopic limit N0 → ∞, ( )n kΓ  will obviously remain a 

finite bounded function, since successive terms in the lattice summation decay 

exponentially with j” [43], as the overlap between the atomic functions 

0 ( ) ( )p p pr r Rγ γ= −
�� �

 and "( ) ( " )j
q q z qr r j ae Rγ γ= − −

�� � �
. Since there are only 

N0 possible discrete values of k in the first BZ, it is clear that this first 

contribution to the spin-contamination scales proportionally to the number of 

unit cells in the periodic system. In the macroscopic limit, using the equivalence 

(28), this yields: 

0

/2 1
1 0

/
lim ( )

2

a

n
N na

a
S N k dk

π

ππ

++

→∞ −

 
∆ = − Γ∑∫  

 
.           (35) 

Similarly, for the “second-order” contribution to spin-contamination in terms of 

the spin-polarization of orbitals, we find:  
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  (36) 

Again, because of the periodicity of the lattice, we have: 

1 2

3 4

0 '

"0 0 "

,

,∗

=

= =

j j j
pq pq

j j j j
r s r s s r

S S

S S S
              (37) 

with 2 1'j j j= −  and 3 4"j j j= − , along with the equivalences:  

0 0
0

, 1 ' 11 2

N N

j j j
N

= =
⇔∑ ∑ , 

0 0
0

, 1 " 13 4

.
N N

j j j
N

= =
⇔∑ ∑                                   (38) 

Therefore, because of translation symmetry, the second-order contribution to 

spin-contamination reduces to: 

0

0

2 ( ' ")
2
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0 ' 0 "*
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        (39) 
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Note already that the sole surviving summation over k implies a 

proportionality factor equal to 1
0N + , since there are N0 possible values of k in 

the first Brillouin zone. Again, each term in the lattice summations over j’ and 

j’’ decays exponentially as the charge distributions 0* '( ') ( ')j
p qr rγ γ
� �

 and 

0* "( ') ( ')j
r sr rγ γ
� �

, and these summations therefore both have to converge to a 

finite value in the macroscopic limit 0N → ∞ . Defining: 

0 ' 0 '
, ' '

' 1 1
( ) ( ) ( )αλ ∗

= =
= ∆∑ ∑

N Kikj a j
n n pn qn pq

j pq

k e C k k S ,           (40) 

and correspondingly:  

( )0 ** " * 0 "
, ' '

" 1 1
( ) ( ) ( )

N Kikj a j
n n rn sn r s

j rs

k e C k k S
αλ −

= =
= ∆∑ ∑ ,           (41) 

we therefore find that, in the macroscopic limit:  

0

/ 22 1
2 0 , '

, '/
lim ( )

2

a

n n
N n na

a
S N k dk

π

π
λ

π

++

→∞ −

 
∆ = − ∑ ∫  

 
.          (42) 

Since the first-order and second-order contribution are positive and 

negative, respectively, and cannot exactly compensate (except if they both 

identically and separately vanish), a most important result is that for any 

unrestricted single-determinantal treatment (UHF, LSDA, UB3LYP, … ) which 

results into a net transversal spin-polarization (Figure 1), the spin-contamination 

of the electronic ground state of n-acenes and extended graphene nanoribbons 

of finite width and periodicity into one dimension has to scale proportionally to 

system size, and to diverge therefore to an infinite positive value in the 

macroscopic limit of an extended acene or graphene nanoribbon. This conclusion 



Chapter 3                                             Half-Metallicity and Spin-Contamination 

98 
 

is obviously in most striking contradiction with the implications [8] of Lieb’s 

theorem [7] for compensated bipartite lattices and with what is normally 

expected for a singlet and so-called antiferromagnetic ground state, whose total 

spin has to be equal to zero, 

0

2 2

/ 21 1
0 , ' 0

'/

lim

( ) ( ) .
2

UX exactN

a

n n n
n na

S S

a
N k k dk K N

π

π
λ

π

→∞

++ +

−

− =

 
− Γ + = +∑ ∑∫  

 

     (43) 

In the above equation, K is identically 0 in the absence of symmetry-breaking 

(i.e. ( , ) 0 1,2,... ;n k r n K k BZδ = ∀ = ∀ ∈
�

); otherwise K is equal to a positive 

and bounded constant that depends upon the structural characteristics of the 

target nanoribbon and employed one-determinantal approach (UHF, LSDA, 

UB3LYP, …). 

3.3 Methodology and computational details 

For the sake of consistency in the analysis, all computations that are 

reported in the present work have been made on field-free geometries that were 

optimized at the level of Restricted Hartree-Fock theory [24] or Restricted 

Density Functional Theory, under the constraint of the topologically required D2h 

symmetry point group. 

Admittedly, Hartree-Fock theory may certainly not be regarded as highly 

fashionable nowadays. If use is deliberately made of unrestricted Hartree-Fock 

(UHF) approach, this is to enforce a symmetry-breaking of spin-densities at the 

onset of the n-acene series (naphthalene) and in the absence of any external 

perturbation, in order to study throughout the series the consequences of such 
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symmetry-breakings when an external electric field is progressively switched on, 

using the well-established Finite Field approach [44]. We shall first consider 

Finite Field calculations on naphthalene at the Hartree-Fock level, using basis 

sets of improving quality (STO-3G, 6-31G, 6-31G**) [24]. We then evaluate for 

this compound the influence of the external field on symmetry-broken (i.e. 

unrestricted) and symmetry-restricted spin-densities at varying orders in 

electron correlation, according to single-point calculations employing the same 

HF/STO-3G geometry and STO-3G basis set, at the level of Møller-Plesset theory 

[45] truncated at second-order (MP2) [46,47], third-order (MP3) [47], and 

fourth order with single, double and quadruple terms (MP4SDQ) [48], as well as 

Coupled Cluster Theory along with Single, Double or Single, Double and 

perturbative Triple excitations, shortly CCSD or CCSD(T) [49]. 

The correlation energy is a measure of how much the movement of one 

electron is influenced by the presence of all other electrons. Fermi correlation is 

the outcome of the antisymmetry principle for electrons with the same spin, and 

is already accounted for at the level of Hartree-Fock theory [24]. Electrons with 

opposite spin can correlate in two possible ways, due to the Coulomb force. It is 

most customary to distinguish the dynamic correlation resulting in a deformation 

of orbitals compared to an uncorrelated system, due to repulsions between 

electrons, from the static correlation associated with an admixture of 

electronically low-lying excited states in the ground state wave function, 

resulting in fractional orbital occupation numbers. Note that this distinction is 

essentially methodological: systems with large band gaps and dominated by 

dynamic correlation can be reliably described using single-reference approaches, 

whereas multi-reference techniques such as CASSCF (Complete Active Space 

SCF theory [50]) are required for systems characterized by near energy 
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degeneracies between the ground and excited electronic states. Note also that 

both types of correlation are obviously recovered in the full-CI (Configuration 

Interaction) limit [24], which amounts to a CASSCF treatment with a complete 

active space in the selected basis set. In other words, static correlation is 

indirectly recovered when proceeding towards the full-CI limit through the 

interplay of single-reference treatments (HF, MP2, MP3, MP4SDQ, CCSD, 

CCSD(T), CCSDT, CCSDT(Q) …) of improving quality. At this stage, it is useful to 

remind that naphthalene has a relatively large band gap and sizeable electronic 

excitation energies. The vertical singlet-triplet energy gap of naphthalene 

amounts for instance to 3.31 eV [33]. There is therefore a very large consensus 

on the fact that naphthalene is a closed-shell non-magnetic system that can be 

very reliably described by single-reference approaches [see e.g. ref. [16b]]. 

In a next step, the UHF/6-31G** approach is retained for studying the 

relationships prevailing between the half-metallic spin-polarization of edge 

states in unrestricted treatments of PAH systems of increasing size and the 

underlying spin-contamination, as a measure of the extent of the symmetry-

breaking. The selected target systems (Figure 2) comprise (1) the n-acene 

[2×n] series, from naphthalene up to decacene in the case of spin-unrestricted 

DFT, and (2) finite rectangular graphene nanoislands such as perylene [4×2], 

bisanthene [4×3], tetrabenzo[bc,ef,kl,no]coronene ([4×4], and larger related 

compounds ([4×5], [4×6]). We here employ the notation by Hod et al [9e] for 

discriminating these ribbons according to the number of hydrogen atoms 

passivating the edges, such that an [X×Y] finite ribbon has X hydrogen atoms 

on its armchair edge and Y atoms on its zigzag edge. Comparison is also made 

with spin-unrestricted DFT calculations upon the n-acene [2×n] series, along 

with the 6-31G basis, and a variety of functionals, comprising the gradient 
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corrected Becke-Lee-Yang-Parr (BLYP) functional, the hybrid Becke

parameters-Lee-Yang-Parr (B3LYP) [51] functional, and the Modified 1

parameter Perdew-Wang functional for kinetic (MPW1K [52], as well as

double hybrid dispersion corrected 

 

Figure 2. The n-acene [2×n] nanoribbon series: (a) naphthalene, (b) 
anthracene, (c) tetracene (or naphthacene); (d) pentacene; (e) hexacene; (f) 
octacene; (g) decacene.  The n-acene [4×n]
[4×2]; (i) bisanthene [4×3], (j) 
[4×5], (l) [4×6]. 
 

The MPW1K functional is a modification version of the MPW1PW91 (modified 

Perdew-Wang 991 Perdew Wang) functional [54] with an increase fraction of HF 

versus DFT exchange (0.428:0.572 instead of 0.25:0.75). This functional has 
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Parr (BLYP) functional, the hybrid Becke-3-

Parr (B3LYP) [51] functional, and the Modified 1-

Wang functional for kinetic (MPW1K [52], as well as the 

double hybrid dispersion corrected B2PLYPD [53] functional.  

 

acene [2×n] nanoribbon series: (a) naphthalene, (b) 
anthracene, (c) tetracene (or naphthacene); (d) pentacene; (e) hexacene; (f) 

acene [4×n] nanoribbon series: (h) perylene 
[4×2]; (i) bisanthene [4×3], (j) tetrabenzo[bc,ef,kl,no]coronene [4×4], (k) 

The MPW1K functional is a modification version of the MPW1PW91 (modified 

Wang 991 Perdew Wang) functional [54] with an increase fraction of HF 

versus DFT exchange (0.428:0.572 instead of 0.25:0.75). This functional has 
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been specifically designed for handling situations where HF exchange dominates 

because of enhanced electron delocalization, as for instance in transition states 

on chemical reaction patways. All calculations presented in this work have been 

carried out using the GAUSSIAN09 package of programs [55]. No symmetry 

constraint was enforced when a field was applied along the y axis in the 

standard orientation (Figure 2) defined according to the usual conventions [56] 

for a molecule exhibiting a D2h point group [37], i.e. perpendicularly to the zig-

zag edges. 

3.4 Naphthalene: the smallest half-metallic graphene nanoisland?   

Vibrational analysis at the UHF (Unrestricted Hartree-Fock) level along 

with STO-3G, 6-31G and 6-31G** basis sets confirms that the global energy 

minimum form of naphthalene is perfectly consistent with a D2h symmetry point 

group [37], and that striking deviations of canonical spin-orbitals from this 

symmetry-point group in the absence of an external electric field (Figure 3) are 

thus purely artefactual. At the UHF/STO-3G level, a check upon atomic orbital 

coefficients using a homemade program confirms that at fields (F) smaller than 

~0.1 a.u. (1 a.u. = Eh e
-1 a0

-1 = 5.142 1011 V m-1) these spin orbitals transform 

according to irreducible representations of the C2v point group [37] (at larger 

fields, the effective symmetry for spin-densities further reduces to the Cs point 

group) [37]. Note in particular the striking resemblance of our UHF/STO-3G 

contour plots for the frontier spin-orbitals (HOMO, LUMO) of naphthalene (Figure 

3) with comparable plots of Kohn-Sham orbitals for the edge states of extended 

ZGNRs [1] and large but finite PAHs [9e] in unrestricted DFT treatments. If we 

go on reasoning by contradiction (reductio ad absurdum), it makes sense 

therefore to state that, at the UHF/STO-3G level, naphthalene is the smallest 



Chapter 3                                             

 

possible example of an anti-ferromagnetic

exhibiting spin-polarized edge states.

 

Figure 3. Evolution of the frontier spin
in function of the applied external electric field (in a.u.) at the RHF/STO
and UHF/STO-3G levels. 
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ferromagnetic zig-zag graphene nanoisland 

polarized edge states. 

 

Evolution of the frontier spin-orbitals (HOMO, LUMO) of naphthalene 
applied external electric field (in a.u.) at the RHF/STO-3G level 
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The fact that naphthalene is notoriously known as a single reference closed-shell 

diamagnetic system with a sizeable singlet-triplet energy gap (about 76 kcal/mol 

[33]) most obviously demonstrates the inconvenience of such a statement. 

Remind also that in DFT any PAH compound (e.g. tetracene, alias naphthacene 

[33]) can be converted into an “open-shell singlet” spin-polarized biradical by 

increasing the fraction of non local HF exchange. 

In the absence of an external field, symmetry-broken α and β spin-

orbitals have identical energies. Due to the different space localization of α and 

β spin-densities in an unrestricted treatment, energy degeneracies between spin 

band systems are released when applying an external field in the plane and 

across the longitudinal axis of the molecule (Figure 4). Energy splittings due to 

the symmetry breaking are particularly striking for the π-levels, and barely 

noticeable for the σ-levels. Again in straightforward analogy with extended 

ZGNRs [1] and large but finite PAHs with the proper D2h symmetry point group 

[9e], opposite shifts in the energies of the spatially separated and 

ferromagnetically-ordered spin-edge states are observed in the π -band system, 

both among occupied and unoccupied levels, when applying an external electric 

field of increasing strength across the nanoribbon. At the UHF/STO-3G level 

(Figure 5), we correspondingly observe an opening of the HOMO-LUMO energy 

gap in a given [e. g. α] spin band system, at field intensities lower than 

~0.0225 a.u., whereas a decrease of this energy gap is seen in the opposite 

[say β] spin band system. If we continue to employ the terminology proposed 

by Son et al for extended ZGNRs [1], or by Hod et al for finite ZGNIs [9e], we 

may argue therefore that at the UHF/STO-3G level and at very low electric 
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fields, naphthalene is the smallest

nanoisland exhibiting “half-metallic” spin

that it becomes easier to promote electrons with an 

the unoccupied π-band systems, whereas 

excite. 

Figure 4. Evolution of the UHF/STO
molecular spin-orbitals of naphthalene belonging to the 
a function of the applied electric field. Symmetry labels
consistent with the effective C2v 
reduced by the external field. 
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smallest possible example of a zig-zag graphene 

metallic” spin-polarization properties, in the sense 

that it becomes easier to promote electrons with an α spin from the valence to 

band systems, whereas β electrons become more difficult to 

 

Evolution of the UHF/STO-3G energies of valence and unoccupied 
orbitals of naphthalene belonging to the π and σ band systems as 

a function of the applied electric field. Symmetry labels for π-orbitals are 
 symmetry point group when symmetry is 
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Figure 5. Evolution at the UHF/STO
electronic (HOMO-LUMO) energy gap in the 
naphthalene, in function of the applied external field (in a.u.). Results at the 
lowest fields (F < 0.02 a.u.) are shown in an inset.
 

Pursuing towards larger field intensities 

destabilization of the occupied π and 

the unoccupied π and σ levels of naphthalene, resulting (Figure 5) in a decrease 

of the HOMO-LUMO gaps both in the spin 

very straightforward analogy with the

(Figure 6) [9e] using various functionals (LSDA, PBE, HSE06) upon much larger 

ZGNIs ([4×14], [6×10], [8×7]). 
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Evolution at the UHF/STO-3G level and UHF/6-31G** levels of the 
LUMO) energy gap in the α and β -spin band systems of 

naphthalene, in function of the applied external field (in a.u.). Results at the 
lowest fields (F < 0.02 a.u.) are shown in an inset. 

Pursuing towards larger field intensities (Figure 4), we observe overall a 

and σ levels, and conversely a stabilization of 

levels of naphthalene, resulting (Figure 5) in a decrease 

LUMO gaps both in the spin α and spin β -band systems – again in 

very straightforward analogy with the UDFT results obtained by Hod et al. 

various functionals (LSDA, PBE, HSE06) upon much larger 
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Figure 6. Evolution of UDFT frontier energy levels
systems of ZGNIs ([4×14], [6×10], 
field. Figure is taken from ref. [9e].

 

Note incidently that at the UHF/STO

reverse in the π-band system of naphthalene at field strengths larger than 

0.1175 a.u., in line with an avoided crossing between the HOMO and LUMO, due 

to a reversal of the polarization of 

interactions with electrons in the 

reminiscent of that observed for the frontier orbitals of model hydrogen chains 

subject to longitudinal electric fields [57]. Upon strengthening further the field, 

various crossings in energies are observed between 

fields larger than 0.20 a.u., the highest occupied molecular orbital corresponds 

to the outermost σ-level derived from the 9A
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UDFT frontier energy levels in the α and β -spin band 
ZGNIs ([4×14], [6×10], [8×7]) in function of the applied external 

]. 

Note incidently that at the UHF/STO-3G level (Figure 4), these trends 

band system of naphthalene at field strengths larger than 

0.1175 a.u., in line with an avoided crossing between the HOMO and LUMO, due 

to a reversal of the polarization of π-levels (Figure 3) as a result of push-pull 

interactions with electrons in the σ band system. This behaviour is precisely 

reminiscent of that observed for the frontier orbitals of model hydrogen chains 

subject to longitudinal electric fields [57]. Upon strengthening further the field, 

various crossings in energies are observed between σ- and π-levels, and at 

fields larger than 0.20 a.u., the highest occupied molecular orbital corresponds 

level derived from the 9Ag orbital [40] in the D2h symmetry 
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point group. 

In Figure 3, we also compare contour plots of the frontier molecular 

orbitals of naphthalene at the restricted Hartree-Fock(RHF)/STO-3G and 

UHF/STO-3G levels. The strongest differences in orbital topologies and spreads 

are observed at zero field, and effectively measure the extent of the symmetry-

breaking associated with the HF singlet instability [26,29]. In the absence of a 

field, at the RHF/STO-3G level, these orbitals transform according to the Au 

(HOMO) and B1g (LUMO) irreducible representations of the D2h symmetry point 

group, as they should [58], whereas the extent of the symmetry breaking is the 

greatest at the UHF/STO-3G level. Due to the release of symmetry in the 

environment, these differences tend to disappear when an electric field is 

progressively switched on, an observation which is in line with the energy curves 

displayed in Figure 4. The α and β spin band systems almost converge to the 

same symmetry-restricted solution at a field around 0.115 a.u., before diverging 

again.  

In Figure 7a, we display in function of the field the evolution of the 

expectation value for the S2 operator. The spin contamination is at its maximum 

at zero field. In line with the symmetry breakings that can be detected from the 

contour plots and energy curves given in Figures 3 and 4, the 
2S  value 

smoothly decreases upon increasing fields, to almost vanish at F=0.115 a.u. (a 

value at which the symmetry-breaking between α and β spin-orbitals becomes 

barely noticeable), prior to increasing again up to another maximum at F=0.195 

a.u., presumably because of an electronic transition to an excited state. Indeed, 

according to symmetry-restricted (RHF and ROHF) calculations at the 

CCSD(T)/6-31G level, the (vertical) singlet-triplet energy gap vanishes or even 
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reverses in favour of the lowest triplet s

7b). 

Figure 7. Evolution of (a) the UHF expectation value of the S2 operator and (b) 
CCSD(T)/6-31G singlet-triplet excitation energy of naphthalene in function of the 
applied external electric field (in a.u.).
 

 

Very similar considerations prevail at the HF level when considering larger 

basis sets. Inspection of the HF/6

that improving the basis set obviously helps to limit the extent of the symmetry

breaking in α and β - spin-densities and orbital energies, as well as the avoided 
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reverses in favour of the lowest triplet state at fields larger than 0.1 a.u. (Figure 

 

Evolution of (a) the UHF expectation value of the S2 operator and (b) 
triplet excitation energy of naphthalene in function of the 

applied external electric field (in a.u.). 

Very similar considerations prevail at the HF level when considering larger 

basis sets. Inspection of the HF/6-31G** results displayed in Figure 8 shows 

that improving the basis set obviously helps to limit the extent of the symmetry-

densities and orbital energies, as well as the avoided 
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crossing between the HOMO and LUMO. Note correspondingly that at zero field, 

symmetry-breakings occur at the UHF level, irrespective of the employed basis 

set: see in Figure 9 the evolution of the difference between the RHF and UHF 

energies obtained in conjunction with basis sets of increasing size, among which 

Dunning’s correlation consistent polarized valence basis sets of triple-, 

quadruple- and pentuple-zeta quality [59], along with the corresponding 

estimate in the limit of an asymptotically complete basis set (cc-pV∞Z), 

according to an extrapolation employing Feller’s formula [60]. Also, both at the 

UHF/6-31G and UHF/6-31G** levels, fields comprised between ~0.08 and ~0.1 

a.u. prevent any symmetry-breaking in spin-densities, resulting in a 
2S  value 

equal to zero (Figure 7). Energy degeneracies between the α and β -spin band 

systems correspondingly disappear (Figure 8). 
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Figure 8. Evolution of the UHF/6-31G** energies of the molecular spin
of naphthalene as a function of the applied electric field. Symmetry labels for 
orbitals are consistent with the effective C
reduced by the external field. Results obtained at the UHF/6
almost the same. 
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31G** energies of the molecular spin-orbitals 
of naphthalene as a function of the applied electric field. Symmetry labels for π-
orbitals are consistent with the effective C2v point group when symmetry is 
reduced by the external field. Results obtained at the UHF/6-31G level are 
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Figure 9. Evolution of the energy difference (in kcal/mol) between the RHF and 
UHF wave functions of naphthalene upon using basis s
converging to the limit of an asymptotically complete basis set. The red and blue 
axes correspond to results displayed in red and blue, respectively.

 

Turning on electronic correlation with the interplay of Many

Mechanics [24,50] enlightens the methodological origin of the anti

ferromagnetic and “half-metallic” spin

any UHF level, and by straightforward extension of finite ZGNIs or of extended 

ZGNRs subject to a spin-polarization of edge states in unrestricted H

treatments. In Tables 1, 2 and 3

differences between the spin-unpolarized singlet closed

broken “singlet open-shell” states of naphthalene, accordin
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Evolution of the energy difference (in kcal/mol) between the RHF and 
UHF wave functions of naphthalene upon using basis sets of increasing size and 
converging to the limit of an asymptotically complete basis set. The red and blue 

correspond to results displayed in red and blue, respectively. 

Turning on electronic correlation with the interplay of Many-Body Quantum 

Mechanics [24,50] enlightens the methodological origin of the anti-

metallic” spin-polarization properties of naphthalene at 

any UHF level, and by straightforward extension of finite ZGNIs or of extended 

ization of edge states in unrestricted HF or DFT 

treatments. In Tables 1, 2 and 3, we provide the evolution of the energy 

unpolarized singlet closed-shell and symmetry-

shell” states of naphthalene, according to various restricted 
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(R) and unrestricted (U) treatments of electron correlation in the singlet ground 

state, along with basis sets of improving quality (STO-3G, 6-31G, and 6-31G**) 

and electric fields of increasing strength.  

 

Table 1. Energy difference (in kcal/mol) between the “closed shell” 
RHF/STO-3G and “open-shell” UHF/STO-3G solutions for the singlet electronic 
ground state of naphthalene in function of the applied external electric field 
(in a.u.). 
Level    HF MP2 MP3 MP4SDQ CCSD CCSD(T) 
Electric ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) 
0.00 -24.87 55.29 51.71 43.12 10.03 7.74 
0.01 -24.54 55.19 51.56 42.95 9.93 7.65 
0.02 -23.56 54.86 51.09 42.45 9.64 7.37 
0.03 -21.95 54.23 50.34 41.56 9.14 6.92 
0.04 -19.75 53.21 48.95 40.21 8.46 6.29 
0.05 -17.01 51.61 47.12 38.27 7.58 5.51 
0.06 -13.83 49.16 44.26 35.57 6.54 4.60 
0.07 -10.34 45.46 40.30 31.87 5.34 3.61 
0.08 -6.75 39.86 34.65 26.79 4.03 2.58 
0.09 -3.41 31.27 26.44 19.81 2.64 1.59 
0.10 -0.93 18.10 14.67 10.45 1.25 0.72 
0.11 -0.03 3.32 2.54 1.64 0.18 0.10 
0.12 -0.01 2.02 1.55 0.92 0.07 0.04 
0.13 0.00 0.00 0.00 0.00 0.00 0.00 
0.14 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table 2. Energy difference (in kcal/mol) between the “closed shell” RHF/6-
31G and “open-shell” UHF/6-31G solutions for the singlet electronic ground 
state of naphthalene in function of the applied external electric field (in a.u.).   
Level    HF MP2 MP3 MP4SDQ CCSD CCSD(T) 
Electric ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) 
0.00 -7.99 39.29 28.59 23.07 4.21 3.58 
0.01 -7.75 38.89 28.27 22.78 4.12 3.49 
0.02 -7.02 37.63 27.29 21.90 3.87 3.25 
0.03 -5.88 35.37 25.54 20.34 3.45 2.87 
0.04 -4.40 31.82 22.80 17.96 2.88 2.36 
0.05 -2.74 26.50 18.76 14.54 2.17 1.76 
0.06 -1.17 18.59 12.91 9.78 1.35 1.10 
0.07 -0.12 6.59 4.41 3.24 0.42 0.35 
0.08 0.00 0.00 0.00 0.00 0.00 0.00 
0.09 0.00 0.00 0.00 0.00 0.00 0.00 
0.10 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 3. Energy difference (in kcal/mol) between the “closed shell” RHF/6-
31G** and “open-shell” UHF/6-31G** solutions for the singlet electronic 
ground state of naphthalene in function of the applied external electric field 
(in a.u.).   
Level    HF MP2 MP3 MP4SDQ CCSD CCSD(T) 
Electric ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) ∆E(U-R) 
0.00 -6.90 39.79 26.38 19.64 4.01 3.97 
0.01 -6.70 39.37 26.09 19.39 3.93 3.89 
0.02 -6.09 38.08 25.20 18.64 3.72 3.65 
0.03 -5.14 35.79 23.60 17.32 3.36 3.27 
0.04 -3.92 32.26 21.17 15.34 2.87 2.75 
0.05 -2.55 27.14 17.65 12.57 2.25 2.13 
0.06 -1.23 19.87 12.73 8.85 1.51 1.42 
0.07 -0.26 9.78 6.10 4.10 0.68 0.64 
0.08 0.00 0.00 0.00 0.00 0.00 0.00 
0.09 0.00 0.00 0.00 0.00 0.00 0.00 
0.10 0.00 0.00 0.00 0.00 0.00 0.00 

 

       

Whatever the basis set, Fermi correlation at the UHF level most 

systematically overemphasizes the biradical character of the wave function, 

resulting in a “singlet open-shell” state which is located several tenths kcal/mol 

below the proper singlet closed-shell state. Besides, whatever the employed 

basis set and applied external field, in the event of a symmetry breaking at the 

UHF level, the energy order always reverses in favour of the restricted wave 

functions with spin-unpolarized orbitals when including dynamic electron 

correlation at the UMP2 and higher levels. At last, whatever the basis set and 

applied external field, the spin-unrestricted and symmetry-restricted solutions 

obviously converge smoothly towards the same value in the full-CI limit, through 

the interplay of the well-established hierarchy of MP3, MP4SDQ, CCSD and 

CCSD(T) levels. Convergence of energies to the full-CI limit (or to, at least, the 

CCSD(T) approximation of this limit), is obviously faster when starting from the 

spin-symmetric RHF solution (Tables 4, 5, 6) 
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These observations numerically illustrate the statement that symmetry-

breakings and half-metallic spin-polarizations in spin-unrestricted calculations 

upon singlet states are necessarily the outcome of a too approximate treatment 

of symmetry-restoring electron correlation. Since α and β spin-densities in a 

closed-shell system ( 2 0S = ) have obviously to delocalize symmetrically on 

both edges of the molecule in the full-CI limit (see e.g. the CASSCF contour 

plots of natural spin-orbital densities in ref. [25]), it is also clear that the 

external field can only have exactly the same influence upon the α and β spin-

band systems, and, thus, that the idea [9e] of intrinsic half-metallicity in finite 

systems such as bisanthene or tetrabenzo[bc,ef,kl,no]coronene is physically 

unsound.  

3.5 Spin-contamination and half-metallicity as a function of system 

size.  

The UHF/6-31G** results displayed in Figures 10 and 11 for the n-acene (n=2-

11) and [4×n] ZGNI series demonstrate that artifactual symmetry-breakings in 

spin-densities and half-metallic splits of spin-up and spin-down orbital energies 

in the presence of a transversal electric field are clearly enhanced when 

proceeding to larger PAH compounds, by virtue of a progressive (but inperfect) 

closure of the band gap between occupied and unoccupied levels. Indeed, in 

symmetry breaking situations, the equation that governs the convergence of 

expansion coefficients of (electronic) wave functions in an arbitrary orbital basis 

and in any iterative SCF procedure is of the form [31]: 

( ) ( ) ( ) ( )

1

N
q q q

n n nk
k

C nk k n C Dµ µ µν
ν

ε ε µν µ ν
=
∑ ∑− + + =   ,          (44) 
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with ijαβ  and αε  the standard notation [24] for anti-symmetrized 

bielectron integrals and orbital energies, respectively. In the above equation, q 

denotes the order of the change in the orbitals and in the associated energies, 

according to a one-electron perturbation expansion with respect to an 

infinitesimally small geometrical variation (or complex rotation). For small 

nuclear displacements, the first-order driving term (1)
nDµ  simply relates to minus 

the gradient of the electron-nuclei attraction potential in the direction of the 

symmetry-breaking transformation. Since Hamiltonian operators are necessarily 

Hermitian, ( )q
nCµ is equal to (- ( )q

nC ν ) in any SCF (HF, DFT, or even CASSCF) 

procedure, and only occupied – non-occupied elements of the (q)
C  matrix 

effectively contribute to the SCF energy [31a].  

Therefore, because of the energy-dependence of the first term on the left 

hand side of the above equation, it is clear that the convergence of orbital 

expansion coefficients in SCF calculations becomes particularly problematic in 

the event of near energy degeneracies between occupied and unoccupied levels. 

If the band gap vanishes, tiny distortions in orbital symmetries induced for 

instance by infinitesimally small nuclear displacements (or numerical errors) 

may then amplify during the SCF iterations and ultimately result into an 

asymptotically diverging energy lowering, unless these artefactual symmetry 

breakings prevent in turn a full closure of the band gap, because of an artificial 

stabilization of the outermost occupied orbitals. 
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Figure 10. Half-metallic energy split of the frontier orbitals of n
ribbons, n=2-10) in function of the applied transversal field (UHF/6
results, energies and field values are both in a.u.).
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llic energy split of the frontier orbitals of n-acenes ([2×n]) 
10) in function of the applied transversal field (UHF/6-31G** 

results, energies and field values are both in a.u.). 
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Figure 11. Half-metallic energy split of the frontier orbital
(n=2-6) graphene nanoribbons, n=2
field (UHF/6-31G** results, energies and field values are both in a.u.).
 

Precisely in line with these latter remarks, we note that in the 

[2×n] and [4×n] ZGNI series, the HOMO
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metallic energy split of the frontier orbitals of rectangular [4×n] 
6) graphene nanoribbons, n=2-6) in function of the applied transversal 

31G** results, energies and field values are both in a.u.). 

Precisely in line with these latter remarks, we note that in the n-acene 

] ZGNI series, the HOMO-LUMO band gap decreases up to n~8 
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and n~4 (Figure 12), respectively, prior to slightly increasing again at larger 

values of n. Although the dependence of the band gap upon 

in the n-acene series, the half-metal

level and at a given electric field will rather clearly saturate at much larger 

values in the [4×n] ZGNI series, in the limit 

and this most obviously because of the larger aver

polarized edge states.  

 

Figure 12. Evolution of the HOMO-
length of the ribbon (n) in the n
series (UHF/6-31G** results). 

 

To quantify more precisely this behaviour, we define and compute f
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), respectively, prior to slightly increasing again at larger 

. Although the dependence of the band gap upon n is much stronger 

metallic energy split of frontier orbitals at this 

level and at a given electric field will rather clearly saturate at much larger 

] ZGNI series, in the limit n→∞ (Figure 10 versus Figure 11), 

and this most obviously because of the larger average distance between spin-

 

-LUMO energy gap (in eV) as a function of the 
length of the ribbon (n) in the n-acenes [2×n] and rectangular ZGNI [4×n] 

precisely this behaviour, we define and compute for 



Chapter 3                                             Half-Metallicity and Spin-Contamination 

122 
 

each target system (Figure 12) an Half-Metallicity Index (HMI) (in atomic units, 

1 a.u. = 1 e a0 = 8.479 10-30 J m V-1), as follows:  

0 0

HMI

F F
F F

βα εε

= =

   ∂∂  = −    ∂ ∂   
,               (45) 

where εα and εβ  represent the energies (in atomic units, 1 a.u = 1 Eh = 

4.3597482 10-18 J) of the highest occupied molecular orbitals with spin-up and 

spin-down, respectively. This index increases almost [R2=0.9995] logarithmically 

as a function of n (HMI = A ln(n) + b) both in the n-acene [2×n] and [4×n] 

ZGNI series, until n=10 and 6, respectively (Figure 13a). The pre-logarithmic 

factors in these two series give a A[4×n]/A[2×n] ratio of 3.06, which most 

favourably compares with an average ratio of 3.04 on the inderdistance in 

between carbon atoms on opposite zig-zag edges. The HMI appears therefore to 

be above all a measure of the symmetry-breaking (and thus average of the 

distance) between spin-polarized densities that are in practice fully localized on 

opposite zig-zag edges. In the n-acene series, the HMI becomes simply 

proportional to 2S  at large values of n (Figure 13b). If a non-vanishing HMI 

value was not due to a methodological artefact, more detailed analysis could be 

probably useful to quantitatively unravel its dependence upon the width of the 

nanoribbon. 
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Figure 13. Evolution of the Half
function (a) of the length of the ribbon (n) and (b) spin
acenes [2×n] and rectangular ZGNI [4×n] series (UHF/6
 

Last but not least, and as was to be expected from th

of section 3.2, we find (Figure 14) that, both in the 

ZGNI series, 2S increases linearly with the number of unit cells (

system at the UHF level of theory. Again, the ratio (1.84) of the slopes in these 

two linear regressions rather straightforwardly reflect the increased interdistance 

between artefactually symmetry-broken edge states. 
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Evolution of the Half-Metallicty Index (HMI, equation 45) as a 
of the length of the ribbon (n) and (b) spin-contamination in the n-

acenes [2×n] and rectangular ZGNI [4×n] series (UHF/6-31G** results). 

Last but not least, and as was to be expected from the CO-LCAO analysis 

) that, both in the n-acene [2×n] and [4×n] 

increases linearly with the number of unit cells (n) in the 

. Again, the ratio (1.84) of the slopes in these 

two linear regressions rather straightforwardly reflect the increased interdistance 

broken edge states.  
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Figure 14. Evolution of the spin-contamination as a function of the length of the 
ribbon (n) in the n-acenes [2×n] and rectangular ZGNI [4×n] series (UHF/6
31G** results). 

 

Furthermore, we find (Figure 15) from our 

(n=1-11) that, with all selected functionals,

dependent upon the number of unit cells (

becomes large enough. At the UHF/6

breaking in spin-densities lies at the origin of the 

naphthalene), and the scaling in size of the spin contamination is ther

perfectly linear. The onset of the symmetry

naphthacene (n=4), hexacene (n
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contamination as a function of the length of the 
acenes [2×n] and rectangular ZGNI [4×n] series (UHF/6-

) from our UDFT calculations on model n-acenes 

with all selected functionals, 2S  becomes also linearly 

dependent upon the number of unit cells (n) in the system, when this number 

becomes large enough. At the UHF/6-31G level, the onset of the symmetry 

densities lies at the origin of the n-acenes series (benzene, 

naphthalene), and the scaling in size of the spin contamination is therefore 

perfectly linear. The onset of the symmetry-breaking lies at the level of 

n=6) and octacene (n=8) with the MPW1K, 
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B3LYP and BLYP functionals, respectively. A singlet instability and spin

polarization into a “singlet open-shell” wave function is also observed when 

n ≥  4 with the SCF wave function employed in the B2PLYPD model.

Figure 15. Evolution of the spin-contamination as a function of the length of the 
ribbon (n) in the n-acenes [2×n] series (results obtained using various 
exchange-correlation functionals along with the 6
pVTZ geometries). 

 

Note that, for all systems, at the B2PLYPD/6

reverses in favor of the singlet closed
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B3LYP and BLYP functionals, respectively. A singlet instability and spin-

shell” wave function is also observed when            

4 with the SCF wave function employed in the B2PLYPD model. 

 

contamination as a function of the length of the 
acenes [2×n] series (results obtained using various 

correlation functionals along with the 6-31G basis, upon RB3LYP/cc-

l systems, at the B2PLYPD/6-31G level, the energy-order 

reverses in favor of the singlet closed-shell electronic ground state when the 
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second-order (MP2-like) correlation energy is added to the obtained SCF (HF-

like) energy. These fits numerically confirm that, whenever a non-vanishing 

symmetry-breaking in spin-densities is detected in each unit cell, due to a too 

approximate treatment of electron correlation, 2S  has to diverge 

proportionally to system size in the macroscopic limit. Therefore, unless one 

wants to call Lieb’s theorem [7] into question and its implications [8] for 

compensated bipartite lattices, as well as more fundamental quantum 

mechanical postulates (antisymmetry principle, group theory, spin quantization), 

we are thus forced to conclude that antiferromagnetism and half-metallicity in 

perfectly regular graphene nanoribbons and related systems exhibiting a singlet 

electronic ground state are mathematically impossible in the framework of non-

relativistic many-body quantum mechanics at 0K, therefore in the absence of 

complications such as thermal excitations or magnetic perturbations. 

3.6 Further considerations on spontaneous spin flips and symmetry 

breakings.   

Prior to closing this case, and sort out much confusion in the literature 

regarding the physical relevance of artefactual spin-symmetry-breakings in 

unrestricted DFT calculations, one may wonder whether spontaneous spin flips 

may not ultimately be induced by thermal excitations to higher spin states or 

intrinsic magnetic perturbations. In order to answer this question, recent 

estimates [33] of the singlet-triplet energy gaps are supplied for all target 

species in Table VII, at the confines of the current computational possibilities. To 

our knowledge these data have not been superseded yet by data of higher 

accuracy. Our best (FPA-QZ) estimates of the vertical singlet-triplet energy gaps 
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of n-acenes ([2×n] nanoribbons, n=2-11) are based on dual extrapolations to 

the CCSD(T) level in conjunction with an asymptotically complete basis set (cc-

pV∞Z), by virtue of the principles of a Focal Point Analysis (see our works in 

refs. [33a] and b for methodological details). Similar estimates to the same 

methodological level are supplied for the [4×n] nanoribbons, based on linear 

regressions between the available FPA-QZ results in the n-acene ([2×n]) series 

and B3LYP/cc-pVDZ values for the HOMO-LUMO band gap or singlet-triplet 

energy gaps. Whereas the expected accuracy on the FPA-QZ results is of the 

order of 1 to 2 kcal/mol, a lower accuracy is expected for results inferred for the 

[4×n] series, because of the trend of B3LYP in underestimating band gaps and 

in overestimating the stability of the triplet state of large conjugated species, 

due to the well-known self-interaction error, which the proposed linear 

regressions may not entirely cure. In the present state of the available 

methodologies and computer means, accuracies better than ~1 or ~2 kcal/mol 

are clearly beyond reach for the singlet-triplet energy gap of a model nanoribbon 

as large as the [4×6] nanoribbon. Focal Point Analyses aiming at sub-chemical 

accuracy (~0.1 kcal/mol) imply in particular further calculations of minor 

contributions due to core correlation, scalar relativistic effects, and diagonal 

Born-Oppenheimer corrections on reliable enough correlated (CCSD) grounds. 

Such calculations are simply intractable at present for compounds larger than 

tetracene ([2×4] species, see ref. [33b] and references therein).    

In spite of these uncertainties, our best (FPA-QZ) estimates for singlet-

triplet energy gaps are in general much larger than thermal fluctuations (kT 

~0.58 kcal/mol at 298K) or magnetic perturbations due to C-13 nuclei which are 

bound to be randomly present in matter. Taking into account an average 

interdistance of ~150 Å between such nuclei, the resulting magnetic anisotropic 
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dipole-dipole interactions between unpaired electrons [D] should be indeed of 

the order of a few Mhz at most (~ 0.1 to ~0.02 10-6 kcal/mol), considering the 

results by Lon Knight et al in refs. [61] and [62] (see in particular Figure 10 in 

the latter reference). Spontaneous symmetry-breaking in the absence of 

external magnetic fields due to thermal fluctuations or coupling to magnetic 

nuclei seem therefore most unlikely for large but finite systems. This is 

particularly true for the bisanthrene ([4×3]) compound (VES-T=25 kcal/mol), 

which has been described by Scuseria and his co-workers in ref. [9e] as the 

smallest example of a half-metallic nanographene island, upon simply 

considering the behavior of symmetry-broken spin-densities when external 

electric fields are applied. 

A further important conclusion that can be drawn upon examining Table 7 

is that releasing spin-symmetries in unrestricted (UHF or UB3LYP treatments) 

yields unrealistically large band gaps, in comparison with the restricted values 

and FPA-QZ estimates for the singlet-triplet energy gaps. At this stage, it is thus 

worth reminding that, whereas a vanishing singlet-triplet energy gap may be 

expected for n-acenes in the macroscopic limit (n →∞) [33], recent GW 

calculations on zig zag graphene nanoribbons of width 2.4–0.4 nm [22] indicate 

very large quasi-particle band gaps, in the range of 0.5–3.0 eV. These too large 

values are most certainly the outcome of a symmetry-breaking in the underlying 

LSDA spin-densities, and make us further believe that there exist today no 

consistent (i.e. accurate) enough study of antiferromagnetism and half-

metallicity in graphene nano-islands and nanoribbons. 
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3.7 Conclusions and outlook for the future 

To summarize, we have applied the formalism of crystalline orbitals for 

extended systems with periodicity in one dimension in order to demonstrate that 

any antiferromagnetic and half-metallic spin-polarization of edge states in 

graphene nanoribbons (including n-acenes) of finite width would imply a spin 

contamination 
2S  that increases proportionally to the length of the ribbon. 

The proof is general and valid for any approximate spin-unrestricted one-

determinantal (i.e. HF or DFT) treatment of electron correlation in these 

systems. A diverging 
2S  value implies obviously a complete loss of control 

upon spin- and related electric or magnetic properties in the macroscopic limit, 

in sharp and clear contradiction with the expected value (
2 0S = ) for the 

awaited [8] singlet (S=0) electronic ground state, according to the implications 

of Lieb’s theorem [7] for compensated bipartite lattices.  

In support to this finding, we have applied the most approximate 

UHF/STO-3G methodology along with the finite field approach on naphthalene in 

its field-free equilibrium geometry in order to enforce the largest possible 

symmetry breakings in spin densities at the very beginning of the n-acene series 

and demonstrate that, when using spin-unrestricted wave functions, any 

polycyclic aromatic hydrocarbon can be turned at will into a half-metallic 

system, depending on the selected basis set and retained fraction of HF 

exchange (or on the quality of the employed exchange-correlation functional). 

On the other hand, symmetry breakings and ‘half-metallicity’ in the form of 



Chapter 3                                             Half-Metallicity and Spin-Contamination 

131 
 

opposite shifts of α and β one-electron levels upon applying a transversal 

electric field are no longer observed for naphthalene as soon as electron 

correlation is included in a many-body (perturbation or coupled cluster) 

treatment. Also, whatever the employed basis set and applied external field, 

both spin-unrestricted and symmetry-broken solutions clearly converge to the 

closed-shell non-magnetic singlet (
2S =0) ground state, in the full-CI limit. At 

the UHF level, improving the basis set most significantly reduces the extent of 

the “half-metallic” behaviour of symmetry-broken spin-densities in naphthalene, 

but without totally removing these features. Due to a release of symmetry in the 

environment, the external electric field tends to attenuate the extent of the 

symmetry breaking. Even in this case, a RHF wave function remains clearly a 

better starting point [31] for further electron correlation calculations. Note that 

symmetry-breakings in spin-densities and spin contamination in spin-

unrestricted calculations can also occur in systems with no symmetry point 

group, but are in this case more difficult to detect. In any case, the most basic 

principles of symmetry point group theory should never be violated for singlet 

states, even in the context of Density Functional Theory [64]. 

At last, upon enforcing from the onset of the n-acene [2×n] and [4×n] 

ZGNI series the appearance of spin-polarized edge states, again with a 

deliberately too approximate (UHF/6-31G**) treatment of electron correlation, 

we have computationally verified that, whatever its extent, a finite (i.e. 

observable) symmetry breaking in each unit cell of a nanoribbon of finite width 

results into a spin contamination 
2S  that increases proportionally with its 
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length (i.e., with n). The same scaling properties of the 
2S  value in function 

of system size have been also verified from UDFT calculations at the n-acene 

[2×n] series, using veriety of exchange-correlation functionals in conjunction 

with the 6-31G basis set. We have correspondingly verified on the same 

computational grounds that half-metallicity in finite ZGNIs (and by extension 

extended ZGNRs) is therefore nothing else but a measure of the extent of an 

artefactual symmetry-breaking of spin-densities. 

To conclude, we believe that our analysis using crystalline orbitals and our 

model calculations are altogether robust (and provocative) enough for calling 

into question the idea that graphene nanoislands and nanoribbons of finite width 

(including n-acenes) are anti-ferromagnetic and half-metallic systems, in the 

absence of complications such as thermal excitations, structural defects or 

magnetic perturbations, since these views imply sharp contradictions not only 

with the implications of Lieb’s theorem for compensated bipartite lattices, but 

also with most basic principles and general theorems of (non-relativistic) 

quantum mechanics (antisymmetry principle, group theory, spin quantization). 

At this stage, it is worth mentioning that, to our knowledge, no direct 

experimental proof of edge magnetism in pristine graphene has been reported 

so far [8b]. Magnestim in graphene is most commonly ascribed to structural 

defects or impurities [64]. The greatest care is therefore advocated with 

conclusions that systematically find their root in artefactually broken spin-

symmetry densities, due to a too limited treatment of electron correlation. 

Indeed, finite field calculations upon naphthalene using deliberately symmetry-

broken UHF spin-densities as starting input in post-SCF calculations of improving 

quality demonstrates that antiferromagnetism and half-metallicity in zig zag 
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graphene nanoribbons or islands with a non vanishing energy gap will 

necessarily be quenched by an exact treatment of electron correlation               

(
2S =0), at the confines of non-relativistic quantum mechanics: electron 

correlation restores symmetry breakings [33a].   

At these confines, zig zag graphene nanoislands of large but finite 

dimension cannot exhibit intrinsic half-metallicity at 0K in their singlet closed-

shell ground state, thus in the absence of magnetic fields, structural defects 

(vacancies, adatoms), or complications like thermally induced spin-flips, since 

they possess an even number of electrons. Contrary to recent affirmations 

[12b], doping for instance an extended ZGNR by an equal number of boron and 

nitrogen atoms in order to induce asymmetric charge distributions should 

therefore normally not result into any genuine or enhanced half-metallicity, 

since the system remains singlet closed-shell, and exhibits a larger band gap 

than the undoped ZGNR.  

All studies so far of the half-metallicity of graphene nanoribbons and 

related systems make use of spin-Unrestricted Density Functional Theory. In 

extended systems with translation symmetry in one dimension and with a 

vanishing band gap, a physical symmetry breaking of spin-densities due to a 

spin-dependent potential or thermally induced spin flips may nonetheless still 

result into an intrinsic half-metallic transport behaviour. Further studies 

employing many-body relativistic quantum mechanics are therefore very much 

required for verifying whether extremely weak spin-orbit coupling interactions, 

of the order of a few tenths µeV only [30], or anistropic magnetic dipole-dipole 

interactions between unpaired electrons, could nevertheless be strong enough to 

induce a physical and effectively measurable spin-polarization of edge states in 
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large enough, perfectly planar and undistorted ZGNRs, with vanishingly small 

excitation energies, in the absence of any external magnetic perturbation or 

complications like thermal excitations [33]. When the required methodologies 

will become affordable, it will be worth verifying on the ground of calculations 

reaching at least spectroscopic accuracy (~1 cm-1) whether couplings to 

magnetically active and randomly distributed C13 nuclei or thermal fluctuations 

can overpower the Coulombic couplings of highly delocalized electrons in the 

edge states. It will then also be necessary to consider the outcome of thermal 

fluctuations, which are known to result into wave-like out-of-plane distortions of 

the nanoribbons, and may certainly in turn influence their band gap [33b] and 

propensity to undergo spin-flips. 

Note in particular that it has not been confirmed yet from robust enough 

band structure calculations coping with both static and dynamic correlation that 

the band gap of infinite acenes and ZGNR systems effectively vanishes within a 

few tenths of a kcal/mol, especially when releasing symmetry constraints upon 

the wave function. Even then, one should wonder whether there will ever be a 

non-relativistic unrestricted quantum mechanical treatment of correlation that is 

in practice robust enough for restoring the correct symmetries of spin-densities 

in the singlet (closed-shell) non-magnetic states of these systems, and for 

handling therefore these singlet states on equal grounds with (effectively) spin-

polarized magnetic (open-shell triplet, quintet, septet, …) states.  
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4 Focal point analysis of the singlet-triplet energy gap of octacene 

and larger acenes 

4.1  Introduction 

Compounds like tetracene and pentacene have received considerable 

attention because their planar and rigid structure as well as their low band 

gap make them particularly well-suited for the making of nicely organized 

two-dimensional organic thin films with large charge carrier mobilities [1]. In 

contrast, experimental studies of the electronic structure and excitation 

properties of heptacene, octacene and larger acenes have been long hampered 

by the quickly increasing reactivity in the acene series [2]. Synthesis [3] of 

heptacene in a polymethylmethacrylate matrix at 298K and subsequent analysis 

of the electronic structure at 10 K in solid noble gas have only been achieved 

very recently [4]. By using cryogenic matrix-isolation technique and a protection 

group strategy, C. Tönshoff and H.F. Bettinger succeeded a few years ago to 

complete the synthesis of octacene and nonacene [5]. Although pentacene has 

often been reported to be the best available organic p-type semiconductor, 

larger acenes could be even more useful [6] for material applications [7], in 

particular when using bulky substituents for kinetically moderating their 

reactivity. 

From a theoretical viewpoint, large acenes are also notoriously difficult, 

i.e. strongly correlated compounds, and the nature of their electronic ground 

state has been subject to much debate. Whereas spin-unrestricted Density 

Functional Theory calculations indicate that heptacene and larger acenes should 

possess an antiferromagnetic (AFM) singlet ground state [8], extrapolation of 
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experimental triplet energies from oligoacenes up to hexacene suggests that the 

electronic ground state of nonacene should be a triplet one [9]. 

Antiferromagnetism along with an electronic (singlet) instability was diagnosed 

[8] from the fact that according to unrestricted calculations employing 

Density Functional Theory (DFT) the two outermost singly occupied spin 

orbitals do not transform according to irreducible representations of the D2h 

symmetry point group imposed by the nuclear frame, but undergo an 

overwhelmingly strong symmetry breaking, in the form of a spatial separation 

and localization of the two frontier electrons with spin-up and spin-down on 

the opposite polyacetylenic strands, resulting in strongly polarized spin-

densities for a total spin equal to zero. In support to these theoretical data, 

the presence of strong absorption bands at too short wave lengths (418 and 

377 nm) in the VIS/NIR absorption spectrum of octacene and nonacene 

confirms that these compounds cannot have a triplet state as their ground state 

[5].  

However, in the present state of our knowledge, this certainly does not 

mean that octacene and nonacene exhibit an AFM singlet ground state, 

unless one wants to call into question the most basic laws and principles of non-

relativistic quantum mechanics (group theory, spin-quantization). Indeed, 

according to the Pauli anti-symmetry principle for electronic wavefunctions, 

in an exact quantum mechanical depiction, it is mathematically impossible for 

a system with an even number of electrons, an equal number of spin-up and 

spin-down electrons (Nα=Nβ) and a total spin S=0 to exhibit any difference in 

between spin-up and spin-down densities, and this even if the two frontier 

electrons behave as biradicals, as was suggested for acenes larger than 

pentacene or hexacene [8, 10]. 
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In line with previous works on the ionization and electron attachment 

energies of these systems [11], our original scope was to reach chemical 

accuracy on the computed vertical and adiabatic transition energies [1 kcal/mol; 

i.e. 43 meV], by virtue of an extrapolation of results to the level of Coupled 

Cluster theory [12] incorporating Single, Double and perturbative Triple 

excitations [CCSD(T)], in conjunction with an asymptotically Complete Basis Set 

(CBS), and by taking further complications into account such as zero-point 

vibrations. The most consistent and unquestionable picture that emerges upon 

considering he composition of multi-configurational wave functions, the 

topologies of natural orbitals in symmetry-unrestricted CASSCF calculations, the 

T1 diagnostics [13] of Coupled Cluster theory and further energy-based criteria 

devised by J.M.L. Martin and his co-workers [14] from the computation of 

atomization energies, is that acenes up to heptacene exhibit a 1Ag singlet closed-

shell electronic ground state which is dominantly of single-reference character 

[15].  

In line with the trends emerging from natural occupation numbers [16], 

extrapolations of all our results so far indicate nonetheless a vanishing singlet-

triplet energy gap within an accuracy of ~3 kcal/mol (~0.12 eV) and, thus, a 

metallic regime in the limit of an infinite periodic chain. In continuation to our 

work in ref. [15], the present study aims first at investigating at the 

CCSD(T)/CBS level the singlet-triplet energy differences of acenes ranging from 

octacene to undecacene, and check from the obtained results whether a metallic 

regime still holds in the stereoregular polymer limit. The magnitude of smaller 

corrections terms pertaining to core correlation, scalar relativistic effects [17] 

and diagonal Born-Oppenheimer corrections [18] will be separately ascertained. 

Of relevance for the present work are recent calculations of excited states of 
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octacene [19] with the proper symmetries at the CC2 level or using the 

combined DFT/MRCI approach devised by Grimme [20] – an approach which 

contains nonetheless semi-empirical parameters in order to screen the Coulomb 

integrals. 

4.2 Methodology 

As has been explained in section 3.3, static correlation is indirectly 

recovered when proceeding towards the FCI limit through the interplay of single-

reference treatments (HF, MP2, MP3, MP4SDQ, CCSD, CCSD(T), …) of improving 

quality. Note also that for open-shell states, the UCCSD(T) approach is known to 

be very resilient to complications arising from static correlation, and to sustain 

most favorably the comparison with Complete Active Space Self-Consistent Field 

(CASSCF) calculations in most challenging situations (see e.g. Figure 11.10 

describing the H2O dissociation curve in ref. [21]). In line with our analysis in 

ref. [15], all computations that are presented in this work have been performed 

on geometries that were optimized by means of Density Functional Theory (DFT) 

[22] along with the Becke three-parameter Lee-Yang-Parr (B3LYP) functional 

[23] and the cc-pVTZ basis set [24]. The same approach and basis sets were 

used to compute harmonic vibrational energies and zero-point energies. A main 

reason for using the cc-pVTZ basis set at this stage is that it was shown to yield 

almost negligible intramolecular basis set superposition errors [25]. 

The Focal Point Analyses [FPA] that we present in the sequel are 

comparable to strategies pursuing chemical [1 kcal/mol] or even sub-chemical 

[0.1 kcal/mol] accuracies in benchmark studies of conformational energy 

differences or torsional barriers [26], the barrier to linearity in water [27], 

reaction and activation energies [28], ionization energies [29], heats of 
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formation [30], binding energies of π-complexes [31], polarizabilities [32], etc., 

which also combine (perturbative) MPn and (iterative) CC treatments. Focal 

Point Analyses exploit the idea of a dual extrapolation towards the highest 

attainable level in electron correlation (ideally, the full-CI limit, in practice in this 

case the CCSD(T) level), and in the limit of an asymptotically complete basis set 

(CBS). 

Single point energy calculations have been performed at the level of 

Hartree-Fock theory (HF), of Møller-Plesset theory truncated at second-order 

(MP2), third-order (MP3), and fourth-order with single, double, and quadruple 

terms (SDQ-MP4), as well as at the CCSD and CCSD(T) levels of coupled cluster 

theory in conjunction with basis sets of improving quality, under the frozen core 

approximation at all correlated levels, using Dunning’s correlation consistent 

polarized valence (cc-pVXZ) basis sets of double (X=D), triple (X=T), quadruple 

(X=Q) and pentuple (X=5) zeta quality [24].  

Total HF energies and correlation energies at the MP2, MP3, and MP4SDQ 

levels have been separately extrapolated to the limit of an asymptotically CBS 

from results obtained using the latter basis sets, in conjunction with Feller’s 

three-point extrapolation formula [33], and a three-point extension [34] of 

Schwartz extrapolation formula [35], respectively. In straightforward analogy 

with our recent work [15] on the first seven terms (n=1-7) in the acene series, 

CBS results for the ∆HF singlet-triplet (ST) energy differences or +MP2, +MP3, 

+MP4(SDQ) energy corrections to the ∆HF, ∆MP2 and ∆MP3 energy differences 

are referred in the sequel to as F-QZ or S-QZ (shortly F/S-QZ) results, since in 

the employed Feller or Schwartz extrapolation procedures use is made of data 

obtained using cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. We note that the 

largest employed cc-pVQZ basis sets for decacene and undecacene contain up to 
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3030 and 3310 atomic basis functions. Further results referred to as F/S-AQZ 

and F/S-5Z results derive from 3-point extrapolations employing the aug-cc-

pVXZ (X=D,T,Q) and cc-pVXZ (X=T,Q,5) basis sets, respectively.  

Further extrapolations were performed towards the CCSD(T) level of 

theory in the limit of an asymptotically complete basis set, using the principles 

of a Focal Point Analysis (FPA). In such an approach, the faster convergence of 

the higher-order correlation corrections to the calculated energy differences is 

exploited in well-suited extrapolations of results obtained using CCSD(T) theory. 

To be more specific, reliable estimations of CCSD(T) energy differences in the 

limit of an infinitely large basis set have been made by adding to the MP2/CBS 

[more precisely referred to as SMP2-QZ] result +MP4(SDQ)/cc-pVTZ and 

+CCSD(T)/cc-pVDZ corrections to the ST energy difference. In line with the 

notations we adopted in ref. [15], this CCSD(T)/CBS estimate of the ST energy 

gap will thus be referred as a FPA-QZ result:  

FPA-QZ=SMP2-QZ + (EMP4/cc-pVTZ – EMP2/cc-pVTZ)  

                          + (ECCSD(T)/cc-pVDZ – EMP4/cc-pVDZ).                  (1) 

As in ref. [15], the outcome of further basis set extensions in the FPA has been 

carefully studied beyond the latter level, and more accurate estimations of the 

ST energy gaps of the largest terms in the n-acene series are provided by 

matching through linear regressions results obtained using different FPA 

protocols, at the confines of the current computational possibilities: 

FPA-AQZ = SMP2-AQZ + (EMP4/aug-cc-pVTZ – EMP2/aug-cc-pVTZ)  

                                + (ECCSD(T)/aug-cc-pVDZ – EMP4/aug-cc-pVDZ),           (2) 

FPA-5Z = SMP2-5Z + (EMP4/cc-pVTZ – EMP2/cc-pVTZ)  

                            + (ECCSD(T)/cc-pVDZ – EMP4/cc-pVDZ),            (3) 
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FPA-5Z2 = SMP2-5Z + (EMP4/cc-pVQZ – EMP2/cc-pVQZ)  

                              + (ECCSD(T)/cc-pVTZ – EMP4/cc-pVTZ),            (4) 

FPA-5Z3 = SMP2-5Z + (SMP4-QZ –EMP2-QZ)  

                              + (ECCSD(T)/cc-pVTZ – EMP4/cc-pVTZ).            (5) 

In eq. (2), energies referred to as SMP2-AQZ results are obtained as the sum of 

the HF energy extrapolated at the HF/aug-cc-pV∞Z (F-AQZ) level, and of the 

MP2 electron correlation energy extrapolated in the limit of the same 

asymptotically CBS, according to a three-point Schwartz extrapolation 

employing MP2 results obtained using the augmented Dunning’s correlation 

basis sets (aug-cc-pVXZ) [36] of double (X=D), triple (X=T) and quadruple 

(X=Q) zeta quality. Similarly, in equations (3-5), energies referred to as SMP2-5Z 

results are obtained as the sum of the HF energy extrapolated at the HF/cc-

pV∞Z (F-5Z) level, and of the MP2 electron correlation energy extrapolated to 

the same limit, according to Feller or Schwartz extrapolations employing HF and 

MP2 energies obtained using the cc-pVTZ, cc-pVQZ and cc-pV5Z basis sets. 

Most calculations, comprising geometry optimizations, vibrational 

analyses, as well as the single-point MP2, MP3, and MP4 energy calculations 

have been carried out using the GAUSSIAN09 program package [37]. All CCSD 

and CCSD(T) single-point energy calculations on closed- and open-shell systems 

have been performed using the MOLPRO2010.1 package of programs [38]. 

Whereas the UHF reference wave functions for the triplet states are subject to 

spin-contamination, which subsequent treatments of electron correlation at finite 

order (MP2, MP3, MP4) may not entirely cure, all our Coupled Cluster 

calculations are based on ROHF wave functions, and partially spin-adapted 

coupled cluster treatments, which involves the deletion of most of the terms that 

cause spin-contamination in the Coupled Cluster expansion. Therefore, our 
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CCSD and CCSD(T) calculations and the subsequent FPAs enable an essentially 

correct treatment of spin.  

Scalar relativistic contributions to the singlet-triplet energy gaps have 

been estimated using GAUSSIAN09 according to energy calculations employing 

DFT along with the B3LYP exchange-correlation functional, the second-order 

Douglas-Kroll transformed Hamiltonian [39], and the finite nucleus, spin-free, 

Foldy-Wouthusen recontraction of the correlation consistent polarized valence 

double ζ [cc-pVDZ(fi/sf/fw)] basis set [40]. Core correlation corrections were 

evaluated with MOLPRO at the CCSD level, using the correlation consistent 

polarized core/valence double ζ (cc-pCVDZ) basis of Woon and Dunning [41]. At 

last, the outcome of Diagonal Born-Oppenheimer Corrections (DBOCs) [18] to 

adiabatic energies has been evaluated at the HF-SCF level, along with the cc-

pVDZ and aug-cc-pVDZ basis sets, using the analytic approach by Handy et al 

[18a], which has been implemented in the CFOUR program package [42]. At the 

moment, the only other possible alternative for evaluating DBOCs with the latter 

package of programs is the CCSD approach, which remains intractable for 

computations on large open-shell systems like acenes in their triplet excited 

states. Recent calculations of the atomization energies of benzene, naphthalene, 

anthracene and tetracene indicate that a proper treatment of electron 

correlation should reduce the HF-SCF values for DBOCs by 25-30% [43]. Note 

that, in the latter study, DBOCs could not be generated at the level of second-

order Møller-Plesset theory for anthracene and tetracene, which makes us 

believe that highly precise values for these corrections in systems as large as 

those we wish to address here will remain beyond reach for quite a while. 
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4.3 Results and discussion 

In the present work, compared with ref. [15], the FPA analysis of both the 

singlet-triplet vertical (VES-T) and “well-to-well” (WWES-T) energy gaps was 

improved up to the FPA-5Z3 level for benzene, naphthalene, anthracene, and 

naphthacene. For larger acenes the FPA-5Z, FPA-5Z2, and FPA-5Z3 results that 

are provided in the sequel were extrapolated according to linear regressions 

upon the FPA-QZ results obtained for these four compounds. Similarly, FPA-AQZ 

values for the ST energy gap were computed for benzene, naphthalene, and 

anthracene, and reemployed in linear regressions in order to evaluate at the 

FPA-AQZ level the singlet-triplet energy gap of larger acenes from FPA-QZ 

results. In order to establish such regressions, additional data had to be 

generated for these compounds at intermediate levels (e.g. CCSD(T)/cc-pVDZ, 

MP4(SDQ)/(aug)-cc-pVTZ, SMP4-QZ, SMP4-5Z). For the completeness of the 

analysis, these additional data are provided in an appendix to this chapter, since 

nicely confirm the convergence within chemical accuracy [1 kcal/mol] of each 

successive contribution to the ST energy gap, with respect to further 

improvements of the basis set.  

Prior to considering the results of single-reference calculations on systems 

as large and reactive as octacene, nonacene, decacene and undacene, it is 

certainly useful to assess for these four systems the extent of static correlation, 

compared with smaller terms in the acene series. The T1 diagnostics of Coupled 

Cluster theory (< 0.012) and %TAE[(T)], as well as the percentages of the total 

atomization energy accounted for by parenthetical connected triple excitations 

indicate (Table 1) that all investigated compounds are largely dominated by 

dynamical correlation, and can thus be reliably and accurately described 
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according to high-level single-reference Coupled Cluster approaches converging 

to the full-CI limit.  

 

Table 1. T1 diagnostics  (CCSD/cc-pVDZ level of theory), and contributions (in 
%) from perturbative triple (T) excitations to Total Atomization Energies 
(TAEs), calculations based on the B3LYP/cc-pVTZ geometries for the singlet 
closed-shell electronic ground state). 
 T1 %TAE[(T)]a %TAE[(T)]b %TAE[(T)]c %TAE[(T)]d 

Benzene 0.0098 1.39 1.47 1.83 1.90 

Naphthalene 0.0103 1.56 1.66 2.03  

Anthracene 0.0106 1.66 1.77 2.15  

Naphthacene 0.0109 1.73 1.84 2.22  

Pentacene 0.0112 1.78 1.89   

Hexacene 0.0114 1.82 1.94   

Heptacene 0.0115 1.85 1.97   

Octacene 0.0116 1.87 2.00   

Nonacene 0.0117 1.89 2.02   

Decacene 0.0117 1.91 2.04 ~2.42e ~2.49f 

Undecacene 0.0117 1.92 2.06 ~2.44e ~2.51f 

a) Upon a comparison of CCSD/cc-pVDZ, CCSD(T)/cc-pVDZ and CCSD(T)/cc-
pV∞Z (FPA-QZ) results for TAEs. 
b) Upon a comparison of CCSD/cc-pVDZ with CCSD(T)/cc-pVDZ results for TAEs. 
c) Upon a comparison of CCSD/cc-pVTZ with CCSD(T)/cc-pVTZ results for TAEs. 
d) Upon a comparison of CCSD/cc-pVQZ with CCSD(T)/cc-pVQZ results for TAEs. 
e) Estimate obtained by adding the difference between results obtained for 
naphthacene using the cc-pVQZ and cc-pVTZ basis sets to the result obtained 
using the cc-pVTZ basis set for decacene.  
f) Estimate obtained by adding the difference between results obtained for 
naphthacene using the cc-pVQZ and cc-pVTZ basis sets to the result obtained 
using the cc-pVTZ basis set for undecacene. 
 

According to the analysis by Karton and co-workers [14] of atomization energies 

within chemical accuracy, one of the most stringent tests of many-body 

quantum mechanical theories, %TAE[(T)] values below 2% indicate systems 

dominated by dynamical correlation, %TAE[(T)] values in between 2% and 4%–

5% and in between 4%–5% and ~10% indicate mild and moderate 

nondynamical correlation, whereas values in excess of 10% are indicative of 

severe, nondynamical correlation. Also, T1 diagnostic values above 0.02 were 
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originally retained by Lee and Taylor [13] as indicative of significant non-

dynamical correlation and as foretelling therefore a significant decrease of the 

reliability of CCSD-based results. Although the data reported in Table 1 

undoubtedly reflect a smooth increase of the multi-reference character of the2 

ground state electronic wave function upon enlarging the basis set and with 

increasing system size, they are still far from reaching the recommended 

warning thresholds. We thus conclude from Table 1 that our approach must 

enable highly quantitative insights into the singlet-triplet energy gap of acenes, 

and this up to undecacene.  

Details of the focal point analysis of the vertical singlet-triplet energy gaps 

of octacene, nonacene, decacene and undecacene are displayed in Tables 2-5.  

 

Table 2. Focal point analysis of the vertical singlet-triplet gaps of 
octacene (all results are given in kcal/mol). 
OCTACENE     
 cc-pVDZ cc-pVTZ cc-pVQZ F/S-QZ 
# basis 576 1300 2470  
∆HF -16.22 -16.75 -16.86 -16.87a 
+MP2 57.56 59.98 60.88 61.52b 

+MP3 -17.00 -19.55   
+MP4(SDQ -8.99 -10.11   
+CCSD -2.60    
+CCSD(T) 1.43    
∆CCSD(T) 14.18    

a) F-QZ; b) SMP2-QZ 
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Table 3. Focal point analysis of the vertical singlet-triplet gaps of 
nonacene (all results are given in kcal/mol). 
NONACENE     
 cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
# basis 642 1448 2750 (F/S-QZ) 
∆HF -22.73 -23.34 -23.45 -23.47a 
+MP2 66.86 69.84 70.88 71.60b 
+MP3 -20.39 -23.41   
+MP4(SDQ -10.85 -12.23   
+CCSD -3.63    
+CCSD(T) 2.27    
∆CCSD(T) 11.53    

a) F-QZ; b) SMP2-QZ 
 

Table 4. Focal point analysis of the vertical singlet-triplet gaps of 
decacene (all results are given in kcal/mol). 
DECACENE     
 cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
# basis 708 1596 3030 (F/S-QZ) 
∆HF -28.25 -28.94 -29.07 -29.10a 
+MP2 77.74 81.47 82.69 83.52b 
+MP3 -24.40 -28.00   
+MP4(SDQ -13.17 -14.87   
+CCSD -5.66    
+CCSD(T) 2.59    
∆CCSD(T) 8.86    

a) F-QZ; b) SMP2-QZ 
 

Table 5. Focal point analysis of the vertical singlet-triplet gaps of 
undecacene (all results are given in kcal/mol). 
UNDECACE     
 cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
# basis 774 1744 3310 (F/S-QZ) 
∆HF -32.45 -33.24 -33.40 -33.43a 
+MP2 88.99 93.72 95.18 96.17b 
+MP3 -28.46 -32.77   
+MP4(SDQ -15.62 -17.68   
+CCSD -7.94    
+CCSD(T) 3.20c    
∆CCSD(T) 7.73    

a) F-QZ; b) SMP2-QZ; c) Extrapolated. 
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In these tables, the HF values for the singlet-triplet energies are reported as 

∆HF results. Values reported in the following rows under the +MP2, +MP3, 

+MP4, +CCSD, and +CCSD(T) entries correspond to the corrections obtained at 

the MP2, MP3, MP4, CCSD, and CCSD(T) levels, compared to the HF, MP2, MP3, 

MP4, and CCSD levels, respectively. As was reported already for hexacene and 

heptacene [15], we note that, whatever the employed basis set, the triplet state 

lies markedly below the singlet one at the HF level, whereas electron correlation 

yields a reversal in their energy order, and this whatever the order attained in 

the correlation potential. In other words, due to the neglect of dynamical 

correlation, HF theory incorrectly predicts the triplet state to be the electronic 

ground state of large acenes. For all systems, the second order (+MP2) terms 

are positive and strongly dominate the correlation corrections, and their 

convergence towards the CBS limit is much slower than that observed for the 

∆HF term. In line with the expected closure of the fundamental band gap, 

electron correlation amplifies with increasing system size, whereas the 

convergence of correlation corrections with respect to improving basis sets 

slightly degrades. We note that for decacene or undecacene, extrapolation to the 

SMP2-QZ level is required for ensuring a convergence of the ∆MP2 S0-T1 

excitation energy within chemical accuracy (1 kcal/mol). For all systems, the 

+MP2 corrections are mitigated by the +MP3, +MP4SDQ and +CCSD 

corrections, which are all negative and sharply decrease with the order attained 

in correlation. At last, pertubative triple excitations result into minor positive 

corrections to the vertical ST gaps of large acenes, ranging from 0.21 kcal/mol 

for pentacene up to 2.59 kcal/mol for decacene. In view of the convergence of 

these corrections compared with that observed up to the MP2 level, we expect a 

cc-pVTZ basis set to be large enough for determining the +MP3 and +MP4SDQ 
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corrections within or close to chemical accuracy (1 kcal/mol). Also, the +CCSD 

and +CCSD(T) corrections should be amenable within the same accuracy with a 

basis set of cc-pVDZ quality. Due to limitations in CPU time, it was not possible 

to determine explicitly the +CCSD(T)/cc-pVDZ corrections required for 

undecacene. The values that are reported for these corrections in Table 5 are 

therefore the results of an extrapolation (see Table 6) employing +CCSD(T) 

values obtained with the 6-31G and cc-pVDZ basis sets from lower terms in the 

acene series. In this extrapolation, we evaluate for each terms of the acene 

series the variation (∆[+CCSD(T)/{cc-pVDZ←6-31G}]) induced in the +CCSD(T) 

correction upon replacing the 6-31G basis set by the cc-pVDZ one, which 

appears to monotonously decrease with system size for systems larger than  

naphthacene  (tetracene).  In  view  of  this  evolution,  the                            

∆[+CCSD(T)/{cc-pVDZ←6-31G}] correction is expected to lie at around -0.49 

kcal/mol for decacene. Combined with a +CCSD(T)/6-31G correction of 3.69 

kcal/mol, this results therefore for this compound into an extrapolated 

+CCSD(T)/cc-pVDZ correction of 3.20 kcal/mol to the vertical S0-T1 excitation 

energy. 
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Results obtained so far for the ST energy gap of n-acenes (n=1-11) 

according to various FPA protocols are summarized in Table 7.  

 

Table 7. Estimates of the vertical singlet-triplet gaps of benzene and n-
acenes (n=2-11; all results are given in kcal/mol). “Well to well” S0-T1 
excitation energies (WWES-T) results are in parenthesis. Best estimates in 
boldface. 

 FPA-QZ 
Maximal 

Error 
(FPA-QZ) 

FPA-AQZ FPA-5Z FPA-5Z2 
 

FPA-5Z3 

Benzene 103.91 
(91.97) 

-0.42 
(-0.82) 

104.19 
(–) 

103.68 
(91.79) 

104.38 
(92.23) 

103.90 

(91.73) 

Naphthalene 76.03 
(65.93) 

-0.59 
(-0.77) 

76.17 
(–) 

75.90 
(65.83) 

76.26 
(66.17) 

76.02 
(65.83) 

Anthracene 56.87 
(48.32) 

-0.23 
(-0.34) 

56.79 
(–) 

56.87 
(48.35) 

57.09 
(48.55) 

56.77 
(48.21) 

Naphthacene 40.74 
(33.88) 

-0.47 
(-0.58) 

40.56a 
(–) 

40.74 
(33.91) 

40.78 
(33.99) 

40.36 
(33.49) 

Pentacene 31.66 
(25.54) 

-0.43 
(-0.57) 

31.42a 
(–) 

31.72b 
(25.62)e 

31.67c 
(25.68)f 

31.34d 
(25.27)g 

Hexacene 23.21 
(17.98) 

-0.55 
(-0.68) 

22.90a 
(–) 

23.30b 
(18.10)d 

23.16c 
(18.11)e 

22.84d 
(17.71)g 

Heptacene 18.48 
(13.68) 

-0.64 
(-0.77) 

18.14a 
(–) 

18.60b 
(13.81)d 

18.41c 
(13.80)e 

18.09d 
(13.40)g 

Octacene 13.81 
(9.49) 

-0.84 
(-0.98) 

13.43a 
(–) 

13.94b 
(9.64)d 

13.71c 
(9.60)f 

13.40d 
(9.20)g 

Nonacene 11.15 
(7.29) 

-1.00 
(-1.14) 

10.74a 
(–) 

11.29b 
(7.45)d 

11.03c 
(7.40)f 

10.72d 
(7.00)g 

Decacene 8.49 
(4.94) 

-1.31 
(-1.42) 

8.07a 
(–) 

8.64b 
(5.10)d 

8.36c 
(5.03)f 

8.05d 
(4.64)g 

Undecacene 7.73 
(4.32) 

-1.88 
(-2.06) 

7.12a 
(–) 

7.71b 
(4.12)d 

7.41c 
(4.05)f 

7.10d 
(3.65)g 

a) Extrapolated results; FPA-AQZ=1.0076FPA-QZ-0.4861. 
b) Extrapolated results; FPA-5Z=0.9961FPA-QZ+0.1866. 
c) Extrapolated results; FPA-5Z2=1.0062FPA-QZ-0.1847. 
d) Extrapolated results; FPA-5Z3=1.0052FPA-QZ-0.4854. 
e) Extrapolated results; FPA-5Z=0.9960FPA-QZ+0.1878. 
f) Extrapolated results; FPA-5Z2=1.0021FPA-QZ+0.0880. 
g) Extrapolated results; FPA-5Z3=1.0016FPA-QZ-0.3037. 
 

Differences in between results obtained up to the FPA-5Z3 model for the 

smallest terms of the acene series are far below 1 kcal/mol, which allows 

quantitative extrapolations to the FPA-5Z3 level of results obtained using 

protocols of lower quality for the longest terms of the series, by virtue of linear 

regression of extremely high quality (r2=1.0000). Note in particular that the 
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incorporation of diffuse functions in the basis sets does obviously not 

significantly affect the extrapolated CBS values for the S0-T1 excitation energies. 

FPA-QZ and FPA-AQZ results obtained for benzene, naphthalene and anthracene 

(Table 7) do not differ indeed by more than 0.3 kcal/mol. Discrepancies between 

the different FPA results for the vertical (adiabatic) S0-T1 excitation energies of 

n-acenes do not exceed 0.38 (0.41), 0.46 (0.40), 0.51 (0.41), 0.54 (0.44), 0.57 

(0.45), 0.59 (0.46), 0.60 (0.47) kcal/mol, when n=5–11, respectively, indicating 

convergence of our treatment of electron correlation within chemical (1 

kcal/mol) accuracy, with the FPA-5Z3 values representing our best estimates for 

the vertical (VES-T) and well-to-well (WWES-T) singlet-triplet energy gaps of n-

acenes.  

The interested reader is referred further to Table 8 for statistical 

correlations between our FPA-QZ estimates with the results of lower level 

calculations until decacene. Clearly, the outcome of a dual extrapolation to the 

CCSD(T)/CBS limit by virtue of a Focal Point Analysis can be reliably predicted 

from linear regressions employing MP4SDQ/cc-pVDZ, CCSD/cc-pVDZ or 

CCSD(T)/cc-pVDZ as row inputs.  

Some care is needed however, because it is well-known that at a 

correlated level, the influence of the basis set increases with system size, 

especially when working with large conjugated systems, due to the closure of 

the band gap [11]. Individual estimates for (maximal) errors in dual 

extrapolations of vertical and well-to-well singlet-triplet energy gaps towards the 

CCSD(T)/CBS limit, according to the principles of the FPA-QZ analysis, are 

therefore also reported separately for each compounds in Table 7. These 

estimates are based on comparisons with extrapolated results obtained by 

simply and rather roughly adjusting the +MP3+MP4(SDQ)/cc-pVTZ, and +CCSD 
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+CCSD(T)/cc-pVDZ corrections to the CBS limit according to linear ratios 

between the +MP2/CBS, +MP2/cc-pVTZ and +MP2/cc-pVDZ values. ST-energy 

gaps obtained with this approach are systematically lower than the FPA-QZ 

values. 

Table 8. Correlation between FPA-QZ and lower level 
methods for vertical S0-T1 energy gaps of Benzene and n-
Acenes [n=2-11] ( “Well to well” (WWES-T) results are in 
parenthesis). 
Method A B R2 

MP2/cc-pVDZ 
1.0717 

(1.1435) 
-25.498 

(-32.409) 
0.8981 

(0.8377) 

MP3/cc-pVDZ 1.0349 
(1.1106) 

-10.057 
(-12.442) 

0.9842 
(0.9752) 

MP4SDQ/cc-pVDZ 
0.9746 

(1.0222) 
-0.7734 

(-1.1131) 
0.9981 

(0.9971) 

CCSD/cc-pVDZ 
0.9548 

(0.9861) 
1.5590 

(2.3074) 
0.9990 

(0.9991) 

CCSD(T)/cc-pVDZ 0.9885 
(1.0264) 

-0.1199 
(-0.2302) 

1.0000 
(1.0000) 

 

Therefore, due to the increasing influence of the basis set, expected 

overestimations of the vertical (adiabatic) singlet-triplet energy gap with the 

FPA-QZ approach increases from 0.23 (0.34) kcal/mol for anthracene up to 1.88 

(2.06) kcal/mol for undecacene. Considering that higher-order corrections in 

correlation are known to converge faster with the basis set than lower-order 

ones, these error estimates are most certainly largely overestimated, especially 

for decacene and nonacene.  

The reader is referred to Table 9 for a comparison of our best FPA-5Z3 

theoretical estimates with available experimental values.  In this table, we 

provide theoretical values for adiabatic transition energies obtained by adding 

B3LYP/cc-pVTZ estimates for changes induced by the transition upon zero-point 

vibrational energies (∆ZPVEs) to the WWES-T energy differences.  
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Geometrical relaxation energies (GRXEs) are also evaluated according to the 

FPA-5Z3 protocol by comparing the vertical and well-to-well singlet-triplet 

energy gaps. In line with the increased delocalization of the molecular orbitals, 

geometrical relaxation energies and ∆ZPVE corrections smoothly decrease with 

increasing system size, when n=1-10, due to the increasing delocalization of the 

orbitals that are involved in the transition. A reversal in these trends is 

nonetheless observed around n=10, which may either relate to the onset of a 

localization of the S0-T1 excitation onto an excitonic wave, or be the result of an 

increasing spin-contamination of the B3LYP/cc-pVTZ wave function of the triplet 

excited state, in the form of slight deviations from the expected value (2) for the 

S2 operator in this state. The main factor limiting the accuracy of our 

calculations in vacuum is most probably not the solution of the electronic 

Schrödinger equation, but that of the nuclear Schrödinger equation [47]. 

Besides, large-amplitude motions induced by thermal excitations are also known 

to significantly influence the electronic excitation spectrum of large conjugated 

systems [48]. As was pointed out already [15], our best estimates for the ST 

energy gaps of benzene and acenes at 0K in vacuum systematically 

overestimate the available experimental values by ~3 to ~4 kcal/mol. Most of 

these values were obtained from measurements in solutions and glassy matrices 

and are therefore subject to complications due to intermolecular interactions and 

packing effects. Bathochromic shifts of the order of several kcal/mol are far from 

being uncommon when polycyclic aromatic hydrocarbons become exposed to 

such interactions, as for instance in zeolites [49]. Further geometrical 

complications are also quite likely in the case of photoelectron detachment 

experiments on mass-selected anions, as was for instance the case with 

anthracene.  
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To our knowledge, there are no spectroscopic data available for the lowest 

triplet excited state for acenes larger than hexacene, which prevents us from 

doing any straightforward comparison with experimental S0-T1 excitation 

energies. Extrapolation of our FPA-5Z3 data for benzene and n-acenes ranging 

from naphthalene (n=2) to undecacene (n=11) according to a least-square 

fitting function of the form a+be−c indicates a vanishing S0-T1 energy gap in the 

limit n→ ∞. The accuracy in this limit is of the order of ~1.5 kcal/mol (0.06 eV), 

considering the differences observed between the vertical (VES-T), well-to-well 

(WWES-T) and adiabatic (AES-T) estimates, which ought to converge to the same 

value when n→ ∞, in the absence of complications such as localizations of the 

electronic transitions into excitonic waves and local disruptions thereby of 

translation symmetry. 

Residual differences from these least square fits do not exceed 1.3 

kcal/mol. It is worth noticing therefore that extending our FPA analysis at the 

FPA-5Z3 level until undecacene has enabled us therefore to considerably reduce 

the uncertainty upon the S0-T1 energy gap of an infinite periodic acene chain, 

which will most certainly display all features that characterize a truly metallic 

system, including the possibility of undergoing easily spin-flip transitions. This 

view corroborates the absence of Peierls distortions in the polymer limit [8e],  

i.e. the absence of any alternation between outer bond lengths in this limit 

[8b,8d], and the closure of the fundamental gap therefore (see Fig. 2 in Ref. 

50). It is certainly useful to note at this stage that our final CCSD(T)/cc-pV∞Z 

(FPA-5Z3) estimates (1.4 to 1.8 kcal/mol) of the vertical ST gap in the polymer 

limit is all in all rather close to that (3.33 kcal/mol) proposed by Hatchman et al 

[8c], based on an extrapolation of CASCI/cc-pVDZ data obtained for compounds 

ranging from naphthalene up to hexacene.  
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Since each further excitation which is included in the Coupled-Cluster 

equations is one order of magnitude closer to the FCI energy, we do not expect 

quadruple and higher excitations to result into corrections exceeding ~0.1 

kcal/mol (octacene) to ~0.4 kcal/mol (undecacene). Theoretical studies aiming 

at sub-chemical (~0.1 kcal/mol) or even spectroscopic (a few cm-1) accuracy 

recommend the computations of further small correction terms, like those due to 

core correlation, scalar relativistic effects, and Diagonal Born-Oppenheimer 

Corrections (DBOCs). Prior to closing this discussion, the reader is therefore 

referred to Table 10 for an evaluation of these contributions to the vertical 

and/or adiabatic singlet-triplet energy gaps of benzene and larger acenes up to 

undecacene. All these individual corrections remain individually smaller than the 

requested accuracy (1 kcal/mol). For vertical transition energies, core 

correlation corrections are almost totally insignificant, whereas scalar relativistic 

corrections oscillate in between -0.31 (pentacene) and -0.58 kcal/mol (benzene) 

or -0.38 kcal/mol (undecacene). For adiabatic transition energies, scalar 

relativistic corrections evolve smoothly from 0.57 kcal/mol (benzene) to -0.31 

kcal/mol (undecacene). If core correlation corrections to adiabatic singlet-triplet 

energy gaps appear to be quite significant for the smallest terms of the series 

(up to 0.48 kcal/mol, in the case of benzene), their influence decay rapidly with 

increasing system size, in line with the lesser importance of structural relaxation 

for the longest terms of the series. At last, UHF geometries are not very reliable 

for triplet states of large conjugated systems, due to strong electronic 

instabilities, and result therefore in most doubtful DBOC corrections, that evolve 

erratically with increasing system.  
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Whereas UB3LYP always gives a geometry of D2h symmetry, in their first triplet 

excited state, benzene and n-acenes exhibit correspondingly at the UHF level an 

erratic and most doubtful symmetry point group: D2h (n=1), Cs (n=2), C2v 

(n=3), D2h (n=4-10), corresponding to geometries with far too pronounced and 

unrealistic bond length alternations. Also, the lower symmetry of the nuclear 

framework prevented us to compute DBOCs for the triplet state of undecacene. 

Developments of appropriate schemes employing Density Functional Theory 

seem therefore very much needed for assessing the extent of DBOCs in large 

conjugated systems, especially when considering open-shell excited states. For a 

complete treatment of relativistic effects, spin-orbit coupling interactions should 

also be considered. 

4.4 Conclusions and further challenges to theoreticians 

The vertical singlet-triplet excitation energies of n-acenes ranging from octacene 

to undecacene have been quantitatively determined from an extrapolation of the 

results of single-reference many-body calculations to the confines of 

nonrelativistic quantum mechanics for solving the electronic Schrödinger 

equation in clamped-nuclei configurations, upon considering that the T1 

diagnostics of Coupled Cluster theory and further energy-based criteria indicate 

that a single-reference depiction prevails for the electronic singlet ground state. 

The present study is based on various Focal Point Analyses (FPAs) that exploit 

the overall smooth and regular convergence of electronic energy differences with 

regards to the size of the basis set and level of correlation attained in 

calculations employing the HF, MP2, MP3, MP4SDQ, CCSD, and CCSD(T) 

approaches along with increasingly complete Dunning's correlation consistent 

polarized valence basis sets (up to 3310 basis functions for undecacene). Such 
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analyses allow us to perform extrapolations to the CCSD(T) level in conjunction 

with asymptotically complete basis sets, up to the so called FPA-5Z3 level [Eq. 

(5)], which amounts specifically to an extrapolation to the CCSD(T)/cc-pV∞Z 

level, based on three-point Feller's and Schwartz's extrapolations of HF total 

energies and MP2 correlation energies obtained using Dunning's cc-pVXZ basis 

sets (X={D,T,Q,5}), in combination with +MP3/cc-pV∞Z, +MP4SDQ/cc-pV∞Z, 

+CCSD/cc-pVTZ, and +CCSD(T)/cc-pVTZ corrections. Discrepancies between 

the different FPA results for the vertical and adiabatic S0-T1 excitation energies 

of all n-acenes investigated so far (n=1-11) do not exceed 0.6 kcal/mol (0.026 

eV). This observation along with our analysis of multi-reference effects makes us 

believe that, regardless of possible complications pertaining to nuclear motions 

or relativistic effects, we have managed to grasp the lowest excitation energies 

of acenes up to undecacene in vacuum within or close to chemical accuracy (1 

kcal/mol, i.e. 43.4 meV). In line with data by Hatchmann et al [8c], further 

extrapolations with respect to system size indicate within an accuracy of ~1.5 

kcal/mol (~0.06 eV) that both the lowest vertical and adiabatic ST excitation 

energies tend to vanish in the polymer limit (n →∞). In view of the trends that 

emerge from our calculations, it seems quite likely that finite acenes 

approaching the polymer limit would still possess a singlet electronic ground 

state, with a total spin equal to zero. We wish nonetheless to emphasize that by 

no means this latter conclusion implies that the singlet electronic ground state of 

large acenes converging to the polymer limit would exhibit antiferromagnetically 

ordered edge states, which would most obviously result into a diverging and 

basically uncontrollable spin-contamination, due to giant and artefactual 

symmetry-breakings in spin-densities [15]. 
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There are still at this stage some challenging and most puzzling issues 

regarding the electronic structure and related properties of large n-acenes, that 

certainly deserve further investigations and discussions. For instance, according 

to Tönshoff and Bettinger [5], the optical absorption threshold of octacene and 

nonacene is located at 377 nm (3.29 eV, i.e. 75.84 kcal/mol) and 418 nm (2.97 

eV, i.e. 68.40 kcal/mol), respectively. Zade and Bendikov report correspondingly 

[51] optical and electrochemical HOMO-LUMO gaps of 1.35 and 1.38 eV (i.e. 

31.13 kcal/mol and 31.82 kcal/mol, respectively) – thus far above all calculated 

S0-T1 energy gaps so far. Assuming that no other optical transitions fall below 

the observed and so-called p-bands, extrapolation of available experimental UV-

Vis data through an exponential fit gives an optical gap of 1.18 ± 0.06 eV, i.e. 

27.21 ± 1.39 kcal/mol, in the limit of an infinite periodic acene chain [5], 

whereas the FPA-5Z3 analysis led us to conclude that the S0-T1 energy gap 

identically vanishes in this limit, with an uncertainty of the order of 1.5 kcal/mol 

(0.06 eV). Considering that preliminary B3LYP/cc-pVTZ calculations upon model 

twisted or curved structures (see Figure 1 and the analysis therein) indicate that 

large out-of-plane distorsions may certainly result into a very substantial 

decrease of the HOMO-LUMO gap of nonacene, it is quite possible that this huge 

difference between the theoretical S0-T1 and optical S0-S1 band gaps is the result 

of structural distorsions left by the photogeneration of octacene and nonacene in 

a rigid solid argon matrix from twisted diketone precursors. Note in particular 

that Bettinger et al [4b,5] discarded weak structures in the optical absorption 

spectrum of pentacene, hexacene, heptacene, octacene and nonacene [4b,5], at 

excitation energies below the HOMO-LUMO optical threshold, which were 

precisely thought to be the result of deviations from the expected planarity, due 

to constraints imposed by the matrix host (in their works, Bettinger and co-
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workers locate the HOMO-LUMO gap at the maximum in absorption of the 

optically brightest band). 

 

Figure 1. Preliminary (B3LYP/cc-pVTZ) study of the outcome of out
distortions left by the photogeneration of nonacene in a rigid solid argon matrix 
from twisted diketone precursors. Whereas a planar structure produces a HOMO
LUMO gap of 1.05 eV, a twisted (
LUMO gaps equal to 0.79 and 0.45 eV, respectively. These two latter structures 
lie at 139.89 and 39.94 kcal/mol above the planar structure, respectively. In line 
with the three-dimensional molecular architecture o
[5], the twisted and curved structures were optimized upon freezing all dihedral 
angles in the third and seventh rings to their values prior to removing the two 
diketone bridges in this precursor, and upon imposing
displacements of 5.30 Å and 5.16 Å in between the end and central carbon 
atoms, respectively. 
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LUMO gap at the maximum in absorption of the 

 

pVTZ) study of the outcome of out-of-plane 
distortions left by the photogeneration of nonacene in a rigid solid argon matrix 
from twisted diketone precursors. Whereas a planar structure produces a HOMO-
LUMO gap of 1.05 eV, a twisted (b) and a curved (c) structure exhibit HOMO-
LUMO gaps equal to 0.79 and 0.45 eV, respectively. These two latter structures 
lie at 139.89 and 39.94 kcal/mol above the planar structure, respectively. In line 

dimensional molecular architecture of the photoprecursor 6 in ref. 
[5], the twisted and curved structures were optimized upon freezing all dihedral 
angles in the third and seventh rings to their values prior to removing the two 
diketone bridges in this precursor, and upon imposing  an out-of-plane 
displacements of 5.30 Å and 5.16 Å in between the end and central carbon 
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This huge difference between the theoretical S0-T1 and optical S0-S1 band gaps 

in the polymer limit may also be the outcome of the energy costs required for 

spin-flip processes in finite systems. Indeed, CC2/cc-pVTZ calculations on 

octacene (n=2,3,4,5,6,8) locate for instance the optical absorption threshold 

(S0-S1 energy gap) at 1.43 eV [28], which by comparison with our FPA-5Z3 

value (0.58 eV) for the S0-T1 gap indicates a T1-S1 energy difference around 

0.85 eV (i.e. 6855 cm-1 or 19.60 kcal/mol). This observation is quantitatively in 

line with the T1-S1 energy differences reported by Nijegorodov [52] for n-acenes 

(n=1,6), which regularly decrease from 11660 cm-1 down to 8000 cm-1 when n 

increases from 3 to 6. Nevertheless, by analogy with dissociating H2, or 

considering that bielectronic interactions scale in general like n-1 in 

homogeneous oligomer series [53] (with n the number of monomer units in the 

chain), one would intuitively expect that the T1-S1 energy difference identically 

vanishes at infinite system size, unless electronic excitations localize into 

excitonic waves.  A further complication in the analysis may arise because of the 

role played by double electronic excitations. Indeed, according to recent ADC(2)-

x and DFT/MRCI data (see ref. [54] and references therein), the first doubly 

excited state becomes the lowest singlet excited state of n-acenes larger than 

pentacene or hexacene. Note correspondingly the presence of a very low-lying 

shake-up π-2 π*+1 state in the ADC(3) ionization spectrum of pentacene [55]. 

Further benchmark many-body quantum mechanical studies of energy demands 

for spin-flip and double electronic excitation processes would therefore certainly 

be most necessary for unravelling (or predicting) the electrochemical, magnetic 

and optical properties of large n-acenes. 
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Table A4. Focal point analysis of the vertical singlet-triplet gaps of 
naphthacene. “Well to well” S0-T1 excitation energies (WWES-T) results are in 
parenthesis (all results are given in kcal/mol). 
NAPHTHACENE       

 
cc-

pVDZ 

cc-

pVTZ 

cc-

pVQZ 

cc-

pV5Z 
cc-pV∞Z cc-pV∞Z 

# basis 312 708 1350 2298 (F/S-QZ) (F/S-5Z) 

∆HF 25.05 
(13.09) 

24.53 
(13.20) 

24.40 
(13.15) 

24.36 
(13.12) 

24.36a 
(13.09)a 

24.33b 
(13.10)b 

+MP2 29.35 
(35.76) 

30.30 
(37.39) 

30.79 
(38.05) 

30.99 
(38.31) 

31.16c 
(38.54)c 

31.19d 
(38.56)d 

+MP3 -7.74 
(-10.32) 

-8.96 
(-11.81) 

  -9.63e 
(-12.59)e 

 

+MP4(SDQ) -4.13 
(-4.77) 

-4.49 
(-5.23) 

  -4.83f 
(-5.65)f 

 

+CCSD -0.27 
(-0.56) 

0.31 
(0.17) 

    

+CCSD(T) -1.06 
(-0.16) 

-1.01 
(-0.09) 

    

∆CCSD(T) 41.19 
(33.05) 

40.67 
(33.63)     

a) F-QZ; b) F-5Z; c) SMP2-QZ; d) SMP2-5Z; e) SMP3-QZ; f) SMP4SDQ-QZ. 
 
 

Table A5. Focal point analysis of the vertical singlet-triplet gaps of 
pentacene. “Well to well” S0-T1 excitation energies (WWES-T) results 
are in parenthesis (all results are given in kcal/mol). 
PENTACENE     

 cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 

# basis 378 856 1630 (F/S-QZ) 

∆HF 11.50 
(0.46) 

11.02 
(0.49) 

10.91 
(0.44) 

10.88a 
(0.39)a 

+MP2 34.11 
(42.53) 

35.36 
(44.40) 

35.94 
(45.13) 

36.37b 
(45.66)b 

+MP3 -9.07 
(-12.44) 

-10.54 
(-14.28)   

+MP4(SDQ) -4.83 
(-5.96) 

-5.34 
(-6.60)   

+CCSD 0.08 
(-0.69)    

+CCSD(T) 0.21 
(1.06) 

   

∆CCSD(T) 31.99 
(24.95) 

   

a) F-QZ; b) SMP2-QZ. 
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Table A6. Focal point analysis of the vertical singlet-triplet gaps of 
hexacene. “Well to well” S0-T1 excitation energies (WWES-T) results 
are in parenthesis (all results are given in kcal/mol). 
HEXACENE     

 cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 

# basis 444 1004 1910 (F/S-QZ) 

∆HF 0.18 
(-9.92) 

-0.28 
(-9.96) 

-0.37 
(-10.01) 

-0.39a 
(-10.05)a 

+MP2 40.59 
(49.29) 

42.08 
(51.38) 

42.74 
(52.19) 

43.22b 
(52.77)b 

+MP3 -11.05 
(14.55) 

-12.78 
(-16.69)   

+MP4(SDQ) -5.69 
(-6.90) 

-6.35 
(-7.72)   

+CCSD -0.72 
(-1.41)    

+CCSD(T) 0.23 
(1.08)    

∆CCSD(T) 23.53 
(17.60) 

   

a) F-QZ; b) SMP2-QZ. 
 
 

Table A7. Focal point analysis of the vertical singlet-triplet gaps of 
heptacene. “Well to well” S0-T1 excitation energies (WWES-T) results 
are in parenthesis (all results are given in kcal/mol). 
HEPTACENE     

 cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 

# basis 510 1152 2190 (F/S-QZ) 

∆HF -8.69 
(-18.39) 

-9.17 
(-18.54) 

-9.26 
(-18.60) 

-9.28a 
(-18.63)a 

+MP2 49.20 
(58.50) 

51.10 
(60.93) 

51.86 
(61.83) 

52.41b 
(62.47)b 

+MP3 -14.04 
(-17.70) 

-16.15 
(-20.26)   

+MP4(SDQ) -7.37 
(-8.62) 

-8.25 
(-9.65) 

  

+CCSD -1.41 
(-2.28) 

   

+CCSD(T) 1.16 
(2.03) 

   

∆CCSD(T) 18.86 
(13.54) 

   

a) F-QZ; b) SMP2-QZ. 
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5 Benchmark theoretical study of the ionization energies, electron 

affinities and singlet-triplet energy gaps of azulene, phenanthrene, 

pyrene, chrysene and perylene 

5.1 Introduction 

In continuation of benchmark theoretical studies of the electronic 

properties of benzene and n-acenes [1-4], we aim at investigating at the 

confines of non-relativistic quantum mechanics the ionization energies, electron 

affinities, and singlet-triplet energy gaps of azulene, phenanthrene, pyrene, 

chrysene and perylene, using the well-established principles of a Focal Point 

Analysis (FPA) [5] in order to reach or approach chemical accuracy (1 kcal/mol, 

i.e. 0.043 eV) on the computed energy differences. Our main motivation for this 

work stems from the observation that large discrepancies exist among the 

reported experimental values. For instance, discrepancies as large as 0.62 eV 

have been observed when comparing the available experimental data for the 

electron affinity of perylene [6-8]. Also, the three latest experimental 

determinations of the EAs of phenanthrene [9-11] exhibit deviations around 0.3 

eV. Similarly, recently obtained experimental values for the ionization energy of 

chrysene [12, 13] and perylene [12] exhibit discrepancies around 0.41 eV and 

0.2 eV, respectively. Experimental data for the singlet-triplet energy gap of 

these five compounds are rather scarce [14-18]. To date, no benchmark 

theoretical study of their electronic properties has been reported yet. Such 

studies appear to be very much needed for reliable enough insights into the 

available experimental data. Indeed, the reported theoretical values for the 

electron affinity, ionization energy and excitation energies of the target systems 
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are the results of calculations employing empirical (Hückel) or semi-empirical 

Hamiltonians, Density Functional Theory (DFT) [19] or Time Dependent DFT 

(TDDFT) [20]. Accuracies around 0.1-0.2 eV [21, 22] have been claimed when 

employing DFT in order to evaluate the electron affinities of large PAHs as 

energy differences in between the neutral and anionic states. However, when 

dealing with large conjugated systems, it is well known [23, 24] that 

applications of standard exchange-correlation functionals result in much larger 

uncertainties and errors, because of the too fast decay of the electronic potential 

at large distances resulting from an incomplete compensation of the self-

interaction error.  

The singlet-triplet energy gap (EST) is a most important electronic property 

concerning the areas where photo-luminescent processes take place. For 

instance, singlet-triplet gaps can be used to evaluate the strength of electron-

electron correlation in luminescent polymers [25]. The singlet-triplet energy 

gaps of phenanthrene, pyrene and chrysene have been measured from 

phosphorescence spectra decades ago, and discussed in a paper by Siebrand 

[14] (1967) and in the book by Bircks [26]. The singlet-triplet energy gap of 

chrysene has been determined more recently from photodetachment-

photoelectron spectra (PD-PES) at wavelengths of 266 nm and 355 nm [17]. 

Experimental values for the singlet-triplet energy gap of azulene have been also 

recently obtained by means of the pulse radiolysis technique [15] and flash 

kinetic spectrometry [16]. At last, the singlet-triplet energy gap of perylene has 

been measured [18] by means of the so-called solvent perturbation technique, 

using chloranil in carbon tetrachloride solution, along with oxygen under high 

pressure.  
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Electron affinities (EAs) and ionization energies (IEs) are also most 

important electronic properties [22]. Detailed knowledge about EAs and IEs is 

needed in studies of the toxicity and carcinogenity of PAHs on the ground of 

computer modeling employing Quantitative Structure-Activity Relationship 

(QSAR) theories [27]. Indeed, most important descriptors of biological and 

chemical activity are the energies of the Highest Occupied Molecular Orbital 

(HOMO) and of the Lowest Unoccupied Molecular Orbital (LUMO), which relate to 

vertical ionization energies (VIEs) and vertical electron affinities (VEAs), 

according to Koopmans’ theorem [28, 29]. EAs are also important in the 

modeling of rate constants in gas-phase oxidation reactions in diesel combustion 

[30], and IEs are one of the key features in designing electro-optically active 

materials [31]. Most of the available experimental data for the electron affinities 

of the compounds of interest have been obtained by means of Electron Capture 

Detection (ECD) [10, 11, 32, 33] and Laser Photoelectron Spectroscopy (LPES) 

[7, 17, 34-36], whereas experimental data for ionization energies are essentially 

the results of experiments employing photoionization mass spectrometry (PI) 

[37], ion/molecule equilibrium constant determination (EQ) [12], photoelectron 

spectroscopy (PE) [12, 38], and laser spectroscopy (LS) [12, 39]. On theoretical 

side, most estimates of IEs and EAs so far are the results of calculations 

employing DFT [19, 40-42]. Ab initio multireference configuration interaction 

approach with single and double excitations, and time-dependent density 

functional theory along with the Becke–Lee–Yang–Parr functional (TDDFT/BLYP) 

have also been used for predicting the ionization spectra of PAHs [19, 20]. Our 

group has published detailed studies [43] of the valence one-electron and 

shake-up ionization spectra of azulene, phenanthrene, pyrene, chrysene, and 

perylene using the third-order outer-valence Green’s function (OVGF [44, 45]) 
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and algebraic-diagrammatic construction  [ADC(3)] schemes, as well as basis 

sets of improving quality (6-31G, 6-31G*, cc-pVDZ). Discrepancies around 0.3 

to 0.4 eV were observed for the five target compounds when comparing the 

OVGF/cc-pVDZ values for one-electron binding energies with high resolution 

experimental (He I UPS) data.  

In the present work, vertical electron affinities, ionization energies or 

electronic excitation energies are determined as energy differences between the 

total electronic energies of the neutral molecules and of the anions, cations or 

excited species, respectively, upon the geometries of the initial (neutral) 

electronic ground state. The corresponding “well-to-well” estimates are obtained 

by adding to the vertical values the stabilization energies of the anions, cations 

or excited species due to geometry relaxation from the vertically ionized or 

excited states. Adiabatic estimates are ultimately inferred by adding zero-point 

vibrational energy corrections.  

Focal Point Analyses combining size-consistent (size-extensive) 

approaches such as Møller-Plesset Perturbation theory and Coupled-Cluster 

theory in conjunction with basis sets of improving quality have been extensively 

exploited in highly accurate studies [5] of conformational energy differences or 

torsional barriers, reaction and activation energies, heats of formation, binding 

energies of π-complexes, … or static dipole polarizabilities. The FPA approach 

supplemented by extrapolations to an asymptotically complete basis cc-pV∞Z 

set has been found in particular to provide exceedingly accurate insights into 

negative electron affinities [2], corresponding to meta-stable anions with a life 

time estimated to be around 10-14 s [46], provided diffuse functions are 

deliberately removed from the employed correlation consistent cc-pVXZ 

(X=D,T,Q,∞) basis sets, in order to enforce a localization of the impinging 



Chapter 5       Ionization Energy, Electron Affinity and Singlet-Triplet Energy Gap 

190 
 

electron in the molecular region. FPAs exploit the idea of a dual extrapolation 

towards the highest attainable level in electronic correlation [ideally, the full-CI 

(configuration interaction) limit [29], in practice Coupled Cluster theory [47] 

with single, double and perturbative triple excitations, CCSD(T)], and to the limit 

of an asymptotically Complete Basis Set (CBS).  

5.2 Computational details 

All calculations including geometry optimization, vibrational analysis, 

and single point energy determinations have been carried out using the 

Gaussian09 [48] program package. Geometry optimization and vibrational 

analysis have been performed using DFT [49] in conjunction with the Becke 

three-parameter Lee-Yang-Parr (B3LYP) functional [50] and the cc-pVTZ 

basis set [51]. The tightest optimization convergence criteria have been 

enforced at all stages of the calculations, using the Gaussian09 keyword 

opt=verytight. An ultra-fine pruned integration grid consisting of 99 radial 

shells per atom and 590 angular points per shell has also been requested for 

the DFT calculations, resulting in about 7000 points per atom. Single point 

energy calculations have been performed, in conjunction with various basis 

sets, upon the optimized B3LYP/cc-pVTZ geometries, at the level of Hartree-

Fock (HF) theory [29], Møller-Plesset theory [52] truncated at second-order 

(MP2) [53], third-order (MP3) [54], and fourth-order with single, double, and 

quadruple excitations (SDQ-MP4) [55], and at the CCSD and CCSD(T) [47] 

levels of theory. For the sake of simplicity, the SDQ-MP4 approach will be 

throughout this study referred to as the MP4 level. The employed basis sets 

were the Dunning's correlation consistent cc-pVXZ basis sets [51] 

(X={D,T,Q}).  
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Here also use has been made of the Feller’s three-point extrapolation 

formula [56] for evaluating the total HF energy in the limit of an 

asymptotically complete (cc-pV∞Z) basis set. Electron correlation energies at 

the MP2 level were correspondingly obtained using the Schwarz [57] three-

point extrapolation formula. The total energy obtained at the MP2 level in the 

limit of the asymptotically complete cc-pV∞Z basis set from a three-point 

extrapolation employing l=2,3,4 will be referred to as the SMP2-QZ result. 

This value is obtained by adding to the Feller’s extrapolated HF energy          

[ ( )HFE ∞ ], the result of the Schwartz extrapolation of the MP2 correlation 

energ [ ( )corrE ∞ ]. Further extrapolation has been performed toward the 

CCSD(T) level of theory in the limit of an asymptotically CBS using the 

principles of a FPA, by means of  the extrapolation formula: 

FPA-QZ=SMP2-QZ+(EMP4/cc-pVTZ–EMP2/cc-pVTZ)+ 

+(ECCSD(T)/cc-pVDZ–EMP4/cc-pVDZ).                                (1) 

The latter formula stems from the observation [1-5] that higher-order 

correlation contributions are usually much smaller, and converge much faster 

than the lower-order ones, upon improving the basis set.  

Vertical singlet-triplet energy gaps, electron affinities and ionization 

energies are the results of calculations which have been performed on the 

geometries of the neutrals. Vertical and “well-to-well” energy differences 

have been estimated at the CCSD(T) level in the limit of an infinitely large 

cc-pV∞Z basis set, according to the above equation, by adding to the SMP2-

QZ result almost converged and small high-level correlation corrections, 

obtained at the MP4/cc-pVTZ and CCSD(T)/cc-pVDZ levels of theory. The 

outcome of relaxation effects (Geometry Relaxation Energy (GRXE)) has 
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therefore also been most generally evaluated at the CCSD(T)/cc-pV∞Z level 

by considering the difference in-between the FPA estimates for vertical and 

“well-to-well” transition energies, except in two particular cases, namely the 

determination of the electronic affinity and ionization energy of chysene. 

Rather unfortunately, the coupled cluster iterations upon the anion and 

cation of this compound indeed failed to properly converge when employing 

the cc-pVTZ and cc-pVQZ basis sets. In order to supply anyway reliable 

enough estimates for the missing pieces of information, comparison has been 

systematically made throughout the study with B3LYP/cc-pVTZ values for 

GRXEs. The CCSD(T)/cc-pV∞Z and B3LYP/cc-pVTZ estimates of GRXEs were 

found to be practically equal, within 0.01 eV accuracy, and B3LYP/cc-pVTZ 

relaxation energies have therefore been used to determine the “well-to-well” 

electron attachment and ionization energies of chrysene, which correspond to 

energy differences between minima on the relevant potential energy surface. 

Adiabatic values were ultimately obtained for all studied electronic transitions 

by adding B3LYP/cc-pVTZ estimates for zero-point vibrational energy 

corrections to the FPA estimates of the relevant “well-to-well” transition 

energies. 

5.3 Results and discussion 

5.3.1 The electronic ground state 

Prior to any other consideration, it was necessary to verify whether a 

single-reference wavefunction for the electronic neutral ground state is 

suitable for further many-body calculations on the selected PAHs. This check 

has been made by using the T1 diagnostics [58] of CCSD theory and energy-
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based criteria devised by Karton et al [59] (Table 1). For all studied 

compounds, the T1 values are lower than 0.0121 at the CCSD/cc-pVDZ level 

of theory. Also, the percentage of the total atomization energy accounted for 

by the parenthetical triple excitations %TAE[(T)] is lower than 1.16 % for all 

studied compounds. According to stringent tests of many-body quantum 

mechanical theories [59], and since all %TAE[(T)] values are below 2 %, we 

can safely draw the conclusion that all targets are essentially dominated by 

dynamical correlation and should be reliably described by single-reference 

treatments. 

 

Table 1. T1 diagnostics  (CCSD/cc-pVDZ level of theory), and contributions 
(in %) from perturbative triple (T) excitations to Total Atomization Energies 
(TAEs, calculations based on the B3LYP/cc-pVTZ geometries for the singlet 
closed-shell electronic ground state).  

  T1 %TAE[(T)]a %TAE[(T)]b %TAE[(T)]c 

Azulene 0.0121 0.91 0.94 1.16 

Phenanthrene 0.0104 0.83 0.86 1.08 

Pyrene 0.0106 0.89 0.92 1.15 

Chrysene 0.0105 0.86 0.89   

Perylene 0.0107 0.92 0.95   
a) Upon a comparison of CCSD/cc-pVDZ, CCSD(T)/cc-pVDZ and CCSD(T)/cc-
pV∞Z (FPA_QZ) results for TAEs. 
b) Upon a comparison of CCSD/cc-pVDZ with CCSD(T)/cc-pVDZ results for TAEs. 
c) Upon a comparison of CCSD/cc-pVTZ with CCSD(T)/cc-pVTZ results for 
TAEs. 

 

In all the FPAs that are reported in the sequel, the HF estimates for the 

ESTs, IEs and EAs are given as HF energy differences (∆HF results), and the 

successive improvements in the treatment of electronic correlation are 

denoted by +MP2, +MP3, +MP4, +CCSD, and +CCSD(T). These 

improvements correspond to the corrections obtained at the MP2, MP3, MP4, 

CCSD, and CCSD(T) levels, compared to the HF, MP2, MP3, MP4, and CCSD 

results, respectively. The CCSD(T)/cc-pVDZ values for the EST, IE and EA are 
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given as ∆CCSD(T) entries.  

5.3.2 Singlet-triplet energy gap 

All detailed intermediate results involved in the FPAs of the vertical 

singlet-triplet energy gaps (VEST) of azulene, phenanthrene, pyrene, 

chrysene, and perylene are given as main entries in Tables 2-6, along with 

their “well-to-well” (WWEST) counterparts, which are given in brackets. The 

corresponding triplet excited states are: 3B2 for azulene and phenanthrene, 

3B1u for pyrene and perylene, and 3Bu for chrysene. Upon inspecting these 

tables, it is clear that the ∆HF values for both the vertical and the “well-to-

well” singlet-triplet energy gaps converge rather rapidly to finite values with 

respect to successive improvements of the basis set. Whatever the level 

attained in correlation and the size of the basis set, the lowest singlet (closed 

shell) state of all considered compounds is located below in energy than the 

first triplet state. The +MP2 corrections are systematically positive and 

largely dominate the correlation corrections, especially for systems like 

phenanthrene (Table 3) and perylene (Table 6). On the other hand, the 

+MP3, +MP4 and +CCSD corrections are all negative. The corrections 

corresponding to triple perturbative excitations are positive and very small. 

Convergence of the +MP2 corrections upon improvements of the basis set is 

smooth for all systems and enables safe extrapolations to the limit of an 

asymptotically complete (i.e. infinitely large) basis set. In view of the 

convergence of results upon improving the basis set and upon increasing the 

level attained in correlation, and experience acquired with comparable FPAs 

[1-4] upon n-acenes, highly reliable estimates for the vertical (VEST) and 

“well-to-well” (WWEST) singlet-triplet gap can be obtained for azulene, 
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pyrene and chrysene, within an estimated accuracy of a few hundredths eV, 

upon extrapolating the CCSD(T) results to the limit of an asymptotically 

complete cc-pV∞Z basis set, using equation (1) along with Feller’s and 

Schwarz three-point extrapolation formula. Adiabatic singlet-triplet energy 

gaps (AEST) have been correspondingly determined by adding to the WWEST 

values obtained in this limit the B3LYP/cc-pVTZ estimates for zero-point 

vibrational energy (ZPVE) (Table 7). Geometry relaxation energies (GRXE) 

are displayed as third entry in Table 7. These latter contributions have been 

estimated in the limit of a CCSD(T)/cc-pV∞Z treatment as the energy 

differences in between the vertical and “well-to-well” singlet-triplet energy 

gaps. The reader is referred further to Table 7 for a comparison of our best 

FPA-QZ estimates with experimental results. 

 

Table 2. Focal point analysis of the vertical singlet-triplet 
gap of azulene. “Well to well” S0-T1 excitation energies 
(WWES-T) are in parenthesis (all results are given in eV). 
Azulene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. basis 180 412 790   
∆HF 1.46 1.44 1.43 1.43a 
  (0.72) (0.73) (0.73) (0.73)a 
+MP2 1.61 1.63 1.64 1.64b 
  (2.25) (2.35) (2.37) (2.39)b 
+MP3 -0.54 -0.67     
  (-0.77) (-0.85)     
+MP4(SDQ) -0.18 -0.12     
  (-0.25) (-0.28)     
+CCSD -0.18       
  (-0.30)       
+CCSD(T) 0.14       
  (0.20)       
∆CCSD(T) 2.30       
  (1.84)       
a) Obtained using Feller’s three-point extrapolation formula. 
b) SMP2-QZ result. 
 



Chapter 5       Ionization Energy, Electron Affinity and Singlet-Triplet Energy Gap 

196 
 

Table 3. Focal point analysis of the vertical singlet-triplet gap 
of phenanthrene. “Well to well” S0-T1 excitation energies 
(WWES-T) are in parenthesis (all results are given in eV). 
Phenanthrene       
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 246 560 1070   
∆HF 2.31 2.28 2.28 2.28a 
  (1.63) (1.63) (1.63) (1.63)a 
+MP2 3.37 3.48 3.52 3.54b 
  (3.49) (3.64) (3.69) (3.73)b 
+MP3 -1.03 -1.16     
  (-1.12) (-1.25)     
+MP4(SDQ) -0.47 -0.52     
  (-0.47) (-0.51)     
+CCSD -0.69       
  (-0.66)       
+CCSD(T) 0.08       
  (0.13)       
∆CCSD(T) 3.57       
  (2.99)       
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
 

Table 4. Focal point analysis of the vertical singlet-triplet 
gap of pyrene. “Well to well” S0-T1 excitation energies 
(WWES-T) are in parenthesis (all results are given in eV). 
Pyrene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. basis 274 620 1180   
∆HF 2.08 2.06 2.06 2.06a 

  (1.41) (1.43) (1.43) (1.43)a 

+MP2 1.45 1.49 1.52 1.53b 

  (1.80) (1.89) (1.92) (1.94)b 

+MP3 -0.39 -0.44     
  (-0.55) (-0.62)     
+MP4(SDQ) -0.21 -0.23     
  (-0.23) (-0.26)     
+CCSD -0.23       
  (-0.23)       
+CCSD(T) 0.00       
  (0.07)       
∆CCSD(T) 2.71       
  (2.27)       

a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
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Table 5. Focal point analysis of the vertical singlet-triplet 
gap of chrysene. “Well to well” S0-T1 excitation energies 
(WWES-T) are in parenthesis (all results are given in eV). 
Chrysene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. basis 321 705 1350   
∆HF 2.58 2.55 2.55 2.55a 
  (1.65) (1.66) (1.66) (1.67)a 
+MP2 1.80 1.85 1.88 1.90b 
  (3.65) (3.83) (3.87) (3.91)b 
+MP3 -0.59 -0.66     
  (-1.27) (-1.41)     
+MP4(SDQ) -0.25 -0.28     
  (-0.54) (-0.59)     
+CCSD -0.29       
  (-0.75)       
+CCSD(T) 0.02       
  (0.10)       
∆CCSD(T) 3.27       
  (2.86)       
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
 

 

Table 6. Focal point analysis of the vertical singlet-triplet 
gap of perylene. “Well to well” S0-T1 excitation energies 
(WWES-T) are in parenthesis (all results are given in eV). 
Perylene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 340 768 1460   
∆HF 1.21 1.18 1.17 1.17a 

  (0.59) (0.59) (0.58) (0.58)a 
+MP2 2.66 2.75 2.78 2.80b 
  (2.95) (3.06) (3.10) (3.13)b 
+MP3 -0.77 -0.86 
  (-0.89) (-1.00) 
+MP4(SDQ) -0.38 -0.42 
  (-0.40) (-0.44) 
+CCSD -0.56 
  (-0.55) 
+CCSD(T) 0.03 
  (0.09) 
∆CCSD(T) 2.19 
  (1.79) 
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
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The best agreement between experiment and theory is observed with 

azulene, with a discrepancy of 0.046 eV only. The experimental result for 

azulene has been obtained by means of the pulse radiolysis technique [16] 

applied on non-polar benzene solutions of anthracene (6-8 *10-2 mol L-1) 

containing azulene (4-10 *10-4 mol L-1). Differences between our best 

adiabatic estimates and experimental data for the other compounds are 0.24 

eV (phenanthrene), 0.12 eV (pyrene), 0.12 eV (chrysene), and 0.16 eV 

(perylene). These rather large differences between theory and experiment 

are certainly due to the fact that experimental values were obtained from 

measurements in polar solutions and glassy matrices, which may give rise to 

complications associated with intermolecular interactions. Indeed, the 

experimental values for the singlet-triplet energy gaps of phenanthrene and 

pyrene are the results of measurements in a mixture of ether, isopentane, 

and alcohol at 77 K where it forms a glass. Similarly, the experimental data 

[18] for perylene have been obtained from measurements employing the 

solvent perturbation technique, using chloranil in carbon tetrachloride 

solution along with oxygen under high pressure at room temperature. The 

oxygen forms a contact charge-transfer complex with the hydrocarbon and 

the absorption spectrum corresponds therefore to the superposition of the 

S0→T1 transition, on the charge-transfer band. At last, note that the 

experimental value for chrysene was determined from Photodetachment-

Photoelectron Spectroscopy (PD-PES) spectra at wavelengths of 266 nm and 

355 nm [17] and is subject therefore to geometrical complications arising 

from the removal of an electron from the anion. 
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5.3.3 Electron affinities 

The anions of azulene, phenanthrene, pyrene, chrysene, and perylene 

anions possess a 2B1, 
2A2, 

2Au, 
2Bg, and 2B1g  electronic ground state, 

respectively. The results of the focal point analysis of the vertical electron 

affinities (VEAs) and corresponding “well-to-well” values of these five 

compounds are given in Tables 8-12. Again, ∆HF results converge smoothly 

to a finite value with respect to successive improvements of the basis set. In 

the case of azulene (Table 8), phenanthrene (Table 9) and perylene (Table 

12), the +MP2 corrections are negative while higher order corrections up to 

the CCSD(T) level are positive.  

 

Table 8. Focal point analysis of the vertical electron affinity 
of azulene. “Well to well” electron affinities (WWEA) are in 
parenthesis (all results are given in eV). 
Azulene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 180 412 790   
∆HF -0.19 -0.07 0.00 0.04a 
  (0.05) (0.14) (0.20) (0.24)a 
+MP2 -0.77 -0.56 -0.49 -0.44b 
  (-0.73) (-0.56) (-0.50) (-0.45)b 
+MP3 0.43 0.43     
  (0.44) (0.44)     
+MP4(SDQ) 0.22 0.25     
  (0.22) (0.24)     
+CCSD 0.23       
  (0.21)       
+CCSD(T) -0.11       
  (-0.11)       
∆CCSD(T) -0.19       
  (0.08)       
a) Obtained using Feller’s three-point extrapolation formula. 
b) SMP2-QZ result. 
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Table 9. Focal point analysis of the vertical electron affinity of 
phenanthrene. “Well to well” electron affinities (WWEA) are in 
parenthesis (all results are given in eV). 
Phenanthrene       
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 246 560 1070   
∆HF -1.37 -1.25 -1.19 -1.15a 
  (-1.13) (-1.06) (-1.01) (-0.97)a 
+MP2 -0.49 -0.27 -0.19 -0.14b 
  (-0.53) (-0.35) (-0.29) (-0.24)b 
+MP3 0.36 0.36   
  (0.40) (0.41)     
+MP4(SDQ) 0.25 0.26     
  (0.26) (0.27)     
+CCSD 0.24       
  (0.26)       
+CCSD(T) 0.00       
  (0.01)       
∆CCSD(T) -1.02       
  (-0.73)       
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
 

Table 10. Focal point analysis of the vertical electron affinity of 
pyrene. “Well to well” electron affinities (WWEA) are in 
parenthesis (all results are given in eV). 
Pyrene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 274 620 1180   
∆HF -0.79 -0.70 -0.66 -0.63a 
  (-0.65) (-0.61) (-0.56) (-0.53)a 
+MP2 -0.05 0.19 0.27 0.32b 
  (-0.03) (0.17) (0.24) (0.29)b 
+MP3 0.01 0.16     
  (0.20) (0.18)     
+MP4(SDQ) 0.32 0.16     
  (0.17) (0.17)     
+CCSD 0.10       
  (0.11)       
+CCSD(T) 0.00       
  (0.02)       
∆CCSD(T) -0.41       
  (-0.19)       
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
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Table 11. Focal point analysis of the vertical electron affinity of 
chrysene. “Well to well” electron affinities (WWEA) are in 
parenthesis (all results are given in eV). 
Chrysene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 321 705 1350   
∆HF -1.13 -1.03 -0.97 -0.94a 
  (-0.78) (-0.73) (-0.68) (-0.65)a 
+MP2 0.25 0.51 0.59 0.64b 
  (-1.31) (-1.17) (-1.11) (-1.07)b 
+MP3 0.09 0.06     
  (0.66) (0.70)     
+MP4(SDQ) 0.12 0.13     
  (0.39) (0.42)     
+CCSD 0.04       
  (-c)       
+CCSD(T) 0.03       
  (-c)       
∆CCSD(T) -0.59       
  (-c)       
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
c) Unconverged.  
 

Table 12. Focal point analysis of the vertical electron affinity of 
perylene. “Well to well” electron affinities (WWEA) are in 
parenthesis (all results are given in eV). 
Perylene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 340 768 1460 
∆HF -0.05 0.04 0.09 0.13a 
  (0.07) (0.12) (0.17) (0.20)a 
+MP2 -1.32 -1.11 -1.03 -0.98b 
  (-1.33) (-1.16) (-1.09) (-1.05)b 
+MP3 0.60 0.63 
  (0.62) (0.65) 
+MP4(SDQ) 0.36 0.39 
  (0.37) (0.40) 
+CCSD 0.47 
  (0.50) 
+CCSD(T) -0.01 
  (0.01) 
∆CCSD(T) 0.06 
  (0.24) 
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
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For these three compounds the +MP2 corrections tend to decrease in 

absolute value when going to the limit of an asymptotically complete basis 

set. For chrysene (Table 11) the “well-to-well” +MP2 corrections are also all 

negative, whereas the vertical +MP2 corrections are all positive. For pyrene 

(Table 10), the +MP2 correction reverses from a negative to a positive value 

as the basis set improves. Starting from the MP3 level, the correlation 

energy systematically increases the VEA and adiabatic electron affinity (AEA) 

upon including higher order correlation terms. For pyrene and chrysene 

(Tables 10 and 11), the influence of the high-order correlation energy terms 

on our theoretical estimates of the electron affinity is particularly noticeable. 

The actual electron affinity of those two PAHs is positive, due to the 

contributions of higher order electron correlation corrections and the 

contributions of the ∆ZPE, which are all positive. According to the FPAs and 

extrapolations of results to the CCSD(T)/cc-pV∞Z level, our best estimates 

for the VEAs of azulene, phenanthrene, pyrene, chrysene, and perylene are 

0.4036 eV, -0.4246 eV, 0.1241 eV, -0.0451 eV, and 0.6288 eV, respectively. 

The vertical electron affinity of chrysene at the HF level is negative and it 

remains negative even after incorporating correlation corrections up to the 

CCSD(T) level, in the limit of an asymptotically complete cc-pV∞Z basis set. 

AEAs are calculated by adding to the “well-to-well” electron affinities 

(WWEA) the ∆ZPE correction calculated at the B3LYP/cc-pVTZ level of theory. 

In the case of chrysene, the WWEA could not be obtained at the CCSD(T)/cc-

pV∞Z level, because the coupled cluster iterations failed to converge to the 

correct state when employing the cc-pVTZ and cc-pVQZ basis sets, and 

structural relaxation energies had therefore to be supplied at the B3LYP/cc-

pVTZ and CCSD(T)/cc-pVDZ levels of theory. From a comparison (Table 13) 
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of GRXEs obtained for the electron affinities of all other compounds at these 

two levels as well as the CCSD(T)/cc-pV∞Z level of theory, we expect that 

the error arising from this restriction in our treatment should not exceed 

0.01 eV. Adiabatic estimates, together with the corresponding vertical and 

‘well-to-well” estimates, GRXE, ∆ZPE corrections and experimentally obtained 

values are given in Table 13. Our best estimates for the AEAs obtained by 

means of the FPA are 0.7075 eV, -0.0795 eV, 0.3999 eV, 0.2446, and 0.8709 

eV for azulene, phenanthrene, pyrene, chrysene and perylene, respectively. 

These compare very favourably, within an average accuracy of 0.05 eV (1.25 

kcal/mol), with the most recent experimental values that were reported for 

the electron affinities of these five compounds: 0.690 ± 0.040 eV [35], -0.01 

± 0.04 eV [9], 0.406 ± 0.010 eV [36], 0.32 ± 0.01 eV [17], and 

0.973±0.005 eV [8], respectively. A discrepancy of 0.07 eV is noticed for 

phenanthrene. Note that in this case, the experimental value has been 

obtained from an extrapolation to vacuum of data obtained for water clusters 

[17], and should be apprehended therefore with the greatest care. Besides, 

for molecules with very low electron affinities (< 0.1 eV), as is the case of 

phenanthrene, electron scattering is a most difficult problem [60]. In such 

situations, the experimental values which are obtained by means of Electron 

Capture Detection (ECD) must be regarded as upper limits of the true 

adiabatic EAs.  
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This observation is in line with a recent determination of the EA of 

phenanthrene using the ECD approach, giving an upper limit of 0.269 ± 

0.035 [10], thus 0.35 eV above our benchmark value for the adiabatic EA. 

The rather large disagreements (0.0754 eV and 0.1021 eV) between theory 

and LPES data in the case of chrysene and perylene are also worth some 

further examination. The experimental EA of these two compounds were 

simply directly inferred from the laser photoelectron detachment energies of 

the anions [7, 17]. Very obviously, however, these may not exactly compare 

with the adiabatic electron affinities of the neutrals, due to the different 

geometry implications of the transitions of interest, especially if one 

considers that the experimentally studied photodetachment processes are 

vertical transitions.  

5.3.4 Ionization energies 

The cations of azulene, phenanthrene, pyrene, chrysene, and perylene 

were found to possess a 2A2, 
2B1, 

2B1g, 
2Au, 

2Au  electronic state, respectively. 

Details of the Focal Point Analyses of the associated vertical and well-to-well 

ionization energies are supplied in Tables 14-18, respectively. Again, the ∆HF 

results and the +MP2 corrections converge smoothly with the cardinal 

number (X) characterizing the cc-pVXZ basis set, and can thus be 

extrapolated reliably to an asymptotically complete cc-pV∞Z basis set. The 

estimates obtained on the ground of the FPAs [eq. (1)] by extrapolation of 

results obtained at the CCSD(T) level to the limit of an asymptotically 

complete cc-pV∞Z basis set are supplied in Table 19. Upon inspecting Tables 

14-18, it appears that the +MP2 contributions are systematically positive, 

and that they largely dominate the correlation corrections.  
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Table 14. Focal point analysis of the vertical ionization 
energy of azulene. “Well to well” ionization energies (WWIE) 
are in parenthesis (all results are given in eV). 
Azulene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 180 412 790   
∆HF 5.62 5.63 5.65 5.66a 
  (5.45) (5.47) (5.49) (5.50)a 
+MP2 2.64 2.97 3.07 3.13b 
  (2.64) (2.98) (3.08) (3.14)b 
+MP3 -0.72 -0.83     
  (-0.72) (-0.84)     
+MP4(SDQ) -0.22 -0.26     
  (-0.22) (-0.26)     
+CCSD -0.26       
  (-0.25)       
+CCSD(T) 0.14       
  (0.15)       
∆CCSD(T) 7.22       

(7.05)       
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
 

Table 15. Focal point analysis of the vertical ionization energy of 
phenanthrene. “Well to well” ionization energies (WWIE) are in 
parenthesis (all results are given in eV). 
Phenanthrene       
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. basis 246 560 1070   
∆HF 6.54 6.53 6.54 6.55a 

  (6.36) (6.36) (6.37) (6.38)a 

+MP2 2.46 2.80 2.89 2.96b 

  (2.50) (2.84) (2.94) (3.01)b 

+MP3 -0.64 -0.76     
  (-0.66) (-0.78)     
+MP4(SDQ) -0.26 -0.30     
  (-0.25) (-0.30)     
+CCSD -0.34       
  (-0.34)       
+CCSD(T) 0.03       
  (0.03)       
∆CCSD(T) 7.79       
  (7.64)       
a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
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Table 16. Focal point analysis of the vertical ionization energy 
of pyrene. “Well to well” ionization energies (WWIE) are in 
parenthesis (all results are given in eV). 
Pyrene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. Basis 274 620 1180   
∆HF 6.01 6.00 6.02 6.03a 
  (5.88) (5.89) (5.90) (5.92)a 
+MP2 1.98 2.28 2.36 2.42b 
  (2.03) (2.33) (2.42) (2.48)b 
+MP3 -0.46 -0.61     
  (-0.47) (-0.57)     
+MP4(SDQ) -0.15 -0.12     
  (-0.16) (-0.19)     
+CCSD -0.18       
  (-0.19)       
+CCSD(T) 0.03       
  (0.03)       
∆CCSD(T) 7.23       
  (7.13)       
a) Obtained using Feller’s three-point extrapolation formula. 
b) SMP2-QZ result. 
 

Table 17: Focal point analysis of the vertical ionization energy 
of chrysene. “Well to well” ionization energies (WWIE) are in 
parenthesis (all results are given in eV). 

Chrysene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. basis 321 705 1350   
∆HF 6.39 6.38 6.40 6.41a 

  (6.00) (5.99) (6.01) (6.02)a 

+MP2 1.56 1.82 1.90 1.96b 

  (3.33) (3.72) (3.83) (3.91)b 

+MP3 -0.33 -0.41     
  (-0.95) (-1.11)     
+MP4(SDQ) -0.09 -0.11     
  (-0.39) (-0.45)     
+CCSD -0.14       
  (-c)       
+CCSD(T) 0.02       
  (-c)       
∆CCSD(T) 7.40       
  (-c)       

a) Obtained using Feller’s three-point extrapolation formula.  
b) SMP2-QZ result. 
c) Unconverged. 
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Table 18. Focal point analysis of the vertical ionization energy 
of perylene. “Well to well” ionization energies (WWIE) are in 
parenthesis (all results are given in eV). 
Perylene         
  cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 
No. basis 340 768 1460   
∆HF 5.29 5.28 5.29 5.31a 
  (5.18) (5.17) (5.18) (5.19)a 
+MP2 3.44 3.82 3.94 4.01b 
  (3.48) (3.87) (3.99) (4.07)b 
+MP3 -0.94 -1.11 
  (-0.95) (-1.12) 
+MP4(SDQ) -0.38 -0.44     
  (-0.39) (-0.45)     
+CCSD -0.61     
  (-0.62)     
+CCSD(T) 0.04     
  (0.04)     
∆CCSD(T) 6.83     
  (6.75)     
a) Obtained using Feller’s three-point extrapolation formula. 
b) SMP2-QZ result. 

 

Also, these contributions tend to increase upon improving the basis set. 

For all compounds of interest, corrections at the +MP3, +MP4, and +CCSD 

levels are on the contrary always negative, and tend therefore to 

compensate the +MP2 contribution. Estimates of VIEs obtained by means of 

the FPA amount to 7.5836 eV, 8.1348 eV, 7.5722 eV, 7.7416 eV, and 7.1991 

eV for azulene, phenanthrene, pyrene, chrysene and perylene, respectively.  

The adiabatic ionization energies (AIE) have been obtained by adding 

to the FPA estimates of WWIEs the B3LYP/cc-pVTZ estimates for zero-point 

vibrational energy correction. Estimates of the adiabatic and vertical IE at 

the CCSD(T)/cc-pV∞Z level, “well-to-well” values, GREXs and ∆ZPE 

corrections are provided in Table 19, where they can be compared with the 

experimentally obtained results. Our best FPA estimates of the adiabatic 

ionization energies of azulene, phenanthrene, pyrene, chrysene and perylene 
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are equal to 7.4283 eV, 8.0129 eV, 7.4755 eV, 7.6527 eV, and 7.1487 eV, 

respectively. The experimental IE values were obtained from measurements 

employing gas-phase ion-equilibrium constant determination [13], photo-

ionization mass spectrometry [37], photoelectron spectroscopy [12, 38] and 

laser spectroscopy [12, 39]. The experimentally obtained ionization energies 

amount to 7.38 ± 0.03 eV [12] for azulene, 7.903 eV [38] for phenanthrene, 

7.4256 ± 0.0006 eV [39] for pyrene, 7.60 ±  0.03 eV [12] for chrysene and 

6.960 ± 0.001 eV [12] for perylene. Discrepancies between our best FPA 

estimates for adiabatic ionization energies and experimental values are thus 

0.0438 eV for azulene, 0.0499 eV for pyrene, and 0.0517 eV for chrysene. 

Discrepancies deceptively increase to 0.107 eV in the case of phenanthrene 

and even to 0.199 eV in the case of perylene. These larger discrepancies may 

be indicative of stronger correlation effects, which a CCSD(T) treatment may 

fail to apprehend within chemical accuracy. Indeed, details of the focal point 

analysis of the vertical and well-to-well ionization energy of perylene (Table 

18) clearly demonstrate the very strongly correlated nature of this 

compound. Indeed, the individual +MP2, +MP3, +MP4 and +CCSD 

corrections are in absolute values much larger than usual, and their 

convergence with the basis set appears also to be much slower. 
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For chrysene, because of convergency problem in the coupled cluster 

iterations for the cation, the GREX contribution to “well-to-well” ionization 

energy could only be determined on the grounds of B3LYP/cc-pVTZ 

calculations (Table 19). Comparison of B3LYP/cc-pVTZ and CCSD(T)/cc-pV∞Z 

estimates for the GRXEs associated with the ionization energies of all other 

target PAHs indicate that the error made in estimating the GREX for the 

ionization energy of chrysene at the B3LYP/cc-pVTZ level is around 0.01 eV.  

5.4 Conclusions 

The vertical, well-to-well and adiabatic singlet-triplet energy gaps, electron 

affinities and ionization energies of azulene, phenanthrene, pyrene, chrysene 

and perylene have been quantitatively evaluated, at benchmark theoretical 

levels within the limits of non-relativistic quantum mechanics. The principles of a 

Focal Point Analysis have been systematically applied on energy differences 

calculated at the level of Hartree-Fock [HF] theory, second- [MP2], third- [MP3], 

and fourth-order [SDQ-MP4] Møller-Plesset perturbation theory, as well as 

coupled cluster theory including single, double and perturbative triple excitations 

[CCSD(T)], in conjunction with correlation consistent cc-pVXZ basis sets of 

improving quality (X=D,T,Q), in order to evaluate vertical and well-to-well 

transition energies at the CCSD(T) level in the limit of an asymptotically 

complete (X=∞) basis set. Adiabatic transition energies were ultimately 

obtained by adding to the well-to-well CCSD(T)/cc-pV∞Z energy differences 

B3LYP/cc-pVTZ estimates for the zero-point vibrational corrections.  

Our best estimates for the vertical singlet-triplet energy gaps of azulene, 

phenanthrene, pyrene, chrysene, perylene amount to 2.24 eV, 3.54 eV, 2.70 eV, 

3.24 eV, 2.14 eV, respectively. The best adiabatic estimates obtained by adding 
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the zero-point vibration energies and geometry relaxation energy contribution to 

the vertical estimates, are, in the same order, 1.79 eV, 2.92 eV, 2.22 eV, 2.79 

eV, and 1.71 eV. In view of the complexity and strongly correlated nature of the 

selected molecular targets, these results support favorably the comparison with 

experiment, with discrepancies ranging from 0.046 eV (azulene) up to 0.24 eV 

(phenanthrene). We noted that most experimental data are the results of 

measurements which have been performed in solid matrices or solvents, and are 

thus subject to complications arising from the molecular environment 

(intermolecular forces and polarization effects, packing effects).  

Our best estimates for the vertical electron affinities of azulene, 

phenanthrene, pyrene, chrysene and perylene amount to 0.40 eV, -0.42 eV, 

0.12 eV, -0.05 eV, and 0.63 eV, respectively. Upon taking into account 

geometry relaxation effects and zero point vibrational energy, we obtain 

adiabatic electron affinities that are equal to 0.71 eV, -0.08 eV, 0.40 eV, 0.24 

eV, and 0.87 eV, respectively. Our theoretical results sustain again most 

favorably the comparison with experiment, with discrepancies ranging from only 

0.006 eV and 0.017 eV for pyrene and azulene, up to 0.075 and 0.1 eV in the 

case of chrysene and perylene, respectively. We noted that the latter two 

experimental values were obtained using laser photodetachment electron 

spectroscopy, and are therefore subject to geometrical complications arising 

with the sudden (vertical) removal of an electron from the anion.  

Our best FPA estimates for the vertical ionization energies of azulene, 

phenanthrene, pyrene, chrysene and perylene amount to 7.58 eV, 8.13 eV, 7.57 

eV, 7.73 eV, and 7.20 eV, respectively. Adiabatic estimates obtained upon 

incorporating geometry relaxation energies and zero point vibrational 

contributions are, in the same order, equal to 7.43 eV, 8.01 eV, 7.48 eV, 7.65 
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eV, and 7.15 eV, respectively. Discrepancies between theory and experiment 

range from 0.04 eV, 0.05 eV and 0.05 eV, for azulene, pyrene and chrysene, up 

to 0.11 and 0.19 eV for phenanthrene and perylene. The latter very large 

discrepancy is probably ascribable to the more strongly correlated nature of 

perylene, which a single-reference CCSD(T) treatment may fail to apprehend 

within chemical accuracy. Also, one should examine more closely the outcome of 

steric hindrances and vibronic coupling interactions within the bay regions of 

compounds like phenanthrene and chrysene. 
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6 Benchmark theoretical study of the electric polarizabilities of 

naphthalene, anthracene and tetracene 

6.1 Introduction 

The static electric dipole polarizabilities of molecules are very important 

properties which play an important role in many physical phenomena, such as 

dielectric polarization, intermolecular dispersion forces and Stark effect [1]. 

Polarizabilities are also used as predictors of the biodegradation rates [2] of 

widespread pollutants such as alkylated polycyclic aromatic hydrocarbons. Static 

electric dipole polarizabilities measure the change at first order in the molecular 

dipole moment when an external homogenous and frequency-independent 

electric field is applied: 

( ) (0)i i ij j

j

F Fµ µ α= + +∑
��

⋯.                (1) 

The polarizability tensor [ ijα  {i=x,y,z; j=x,y,z}] is therefore cast in terms of 

second-order energy derivatives with respect to the external static electric field 

[3], in line with the expansion: 

1
( ) (0)

2i i ij i j

i ij

E F E F F Fµ α= − − −∑ ∑
��

⋯.                                     (2) 

A main rotational invariant is the isotropic polarizability, defined as: 

( )1

3 xx yy zzα α α α= + + .                                                     (3) 

The electric polarizabilities of naphthalene, anthracene and tetracene have 

been subject of numerous studies. On theoretical side, most results have been 

obtained using Hartree-Fock (HF) theory [4,5], Density Functional Theory (DFT) 
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[5, 6, 7, 8, 9] in conjunction with different functionals and basis sets, second-

order Møller–Plesset perturbation theory [5, 6], or semi-empirical methods [10]. 

Of particular relevance is a recent work by Hammond et al, [11] which describes 

calculations of the polarizabilities of naphthalene, anthracene and tetracene 

using coupled-cluster singles and doubles linear response (CCSD-LR) theory [12] 

in conjunction with the Sadlej pVTZ basis set [13]. On the experimental side, 

the polarizabilities of naphthalene and anthracene have been measured using a 

variety of techniques, such as Laser Stark-effect spectroscopy [14, 15], Kerr-

effect experiments [16, 17], crystal refraction [18], Electric field NMR [19], and 

Cotton-Moutton-effect [20]. From a quantitative viewpoint the current situation 

is far from being satisfactory, considering the extent of the discrepancies 

observed among experimental values for the isotropic polarizabilities of 

naphthalene [14,16,18,21] and anthracene [15,17,19,20] (up to 23 and 60 a.u., 

respectively, with 1 a.u. = 1 e2 a0
2 Eh

-1 =  1.648778 10-41 C2 m2 J-1), or the 

extent of the discrepancies observed between the latest DFT and CCSD-LR 

theoretical determinations of the polarizabilities of anthracene, up to 22 a.u. 

[see Table VII in ref. [11] for details]. For all these reasons, systematic studies 

of the dependence of the polarizabilities of oligoacenes on the level attained in 

electron correlation and on quality of the basis set are most desirable.   

Three decades ago, agreement between experimentally derived and 

theoretically predicted polarizabilities was a major issue [22]. Since then, 

various aspects of the theoretical determination of polarizabilities have been 

examined in depth in comprehensive reviews [23]. It is now well-established 

that energies and related response properties are very sensitive to electron 

correlation and to the employed basis set [24]. Unfortunately, large scale 

treatments of electron correlation remain in most situations far too prohibitive 
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for straightforward applications upon compounds of great practical relevance, as 

for instance large conjugated systems in non-linear optics [25]. In such 

situations, one of the most affordable options for reaching the so-called chemical 

accuracy on energies [1 kcal/mol; i.e. 0.043 eV] consists in exploiting separately 

the faster convergence with respect to the basis set of the highest-order 

correlation corrections to energies, by virtue of the principles of a Focal Point 

Analysis [26]. The reader is referred in particular to benchmark theoretical 

studies, within or close to chemical accuracy (1 kcal/mol, i.e. 0.043 eV), of the 

ionization energies [27], electron attachment energies [28] or singlet-triplet 

energy gaps [29] of n-acenes, which are notoriously difficult, i.e. strongly 

correlated compounds. The fact that the latter properties could be computed 

within or close to chemical accuracy within the framework of a closed-shell 

symmetry-restricted depiction for the electronic ground state has led us to call 

into question [30] the view [31] that zig-zag graphene nanoribbons are 

antiferromagnetic systems subject to a half-metallic spin-polarization of edge 

states in the presence of a transversal electric field. 

Considering the lack of accurate enough data for these systems, and the 

extent of discrepancies between the currently available theoretical and 

experimental values, the scope of the present work is to investigate at similar 

benchmark levels the electric polarizabilities of naphthalene, anthracene and 

tetracene. In this purpose we aim first at determining how these properties 

converge to the CCSD(T)/CBS level [i.e. Coupled Cluster Theory along with 

Single, Double and perturbative Triple electronic excitations [32], in conjunction 

with an asymptotically complete basis set (CBS)] when resorting to well-

established hierarchies of basis sets and size-consistent many-body wave 

function approaches, along with the Finite Field (FF) approach [33]. The 
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principles of a Focal Point Analysis are thereafter applied in order to evaluate the 

static dipole electric polarizabilities up to the CCSD(T)/CBS level, by combining 

pairwise energies obtained using successive treatments of electron correlation 

and basis sets of improving quality. In line with a comparable and highly 

quantitative study [34] of the polarizabilities of Ne, CO, N2, F2, HF, H2O, HCN, 

and C2H2 (acetylene), we supply at last vibrationally averaged results for the 

isotropic polarizabilities of all target systems at 298K, which are obtained by 

combining our best FPA estimates with thermal corrections derived from classical 

trajectory simulations, using Born-Oppenheimer Molecular Dynamics (BOMD) 

[35]. 

6.2 Computational details  

Relating linear molecular properties to second-order derivatives of the 

energy allows all standard post-SCF quantum chemical techniques for calculating 

energies at a correlated level to be used, and thus bypasses the need for more 

elaborate, specific analytical approaches, as for instance Polarization Propagator 

[36] or Coupled Perturbed Electron Propagator [37] theories. However, in order 

to minimize non-linear effects, which are most commonly enhanced when 

electron correlation is included, one has to limit the extent of the external 

perturbation, and the energy differences to compute are therefore rather small. 

On the other hand, the field has still to be large enough in order to induce 

energy differences that are substantially larger than the uncertainties due to the 

employed approximations and numerical errors. Typically, upon taking 0.0003 

a.u. (1 a.u. = Eh e-1 a0
-1 = 5.142 1011 V m-1) as the basic step size on the 

electric field, polarizabilities can be computed within an accuracy of 1 a.u. (1 

a.u. = 1 e2 a0
2 Eh

-1 =  1.648778 10-41 C2 m2 J-1) when evaluating numerically 
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energy differences within 10-6 a.u. uncertainty (1 a.u. = 1 E

J).  

 

Figure 1. Molecular orientation retained for (a) naphthalene, (b) anthracene 
and (c) tetracene. 

 

All calculations that are presented in the sequel are based on molecular 

geometries which have been optimized by means 

the Becke three-parameter-Lee-Yang

pVTZ basis set [40], using the Gaussian09 program package [

optimization convergence criteria were enforced at all stages of the optimization 

process. All calculations have been performed upon the standard molecular 

orientation defined (Figure 1) from the main symmetry

molecular target, according to the conventions described in the book by Jaffé 
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a.u. uncertainty (1 a.u. = 1 Eh = 4.3597482 10-18 

 

Molecular orientation retained for (a) naphthalene, (b) anthracene 

All calculations that are presented in the sequel are based on molecular 

geometries which have been optimized by means of DFT [38] in conjunction with 

Yang-Parr (B3LYP) functional [39] and the cc-

Gaussian09 program package [41]. The tightest 

optimization convergence criteria were enforced at all stages of the optimization 

process. All calculations have been performed upon the standard molecular 

orientation defined (Figure 1) from the main symmetry elements of the 

molecular target, according to the conventions described in the book by Jaffé 
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and Orchin [42], so that all off-diagonal components of the polarizability tensor 

identically vanish. Naphthalene, anthracene and tetracene were placed in the yz 

plane, with the y-axis set parallel to the long molecular axis, while the z-axis 

was parallel to the short molecular axis and the x-axis was perpendicular to the 

molecular plane. Finite Field calculations have been performed, in conjunction 

with various basis sets, upon the optimized B3LYP/cc-pVTZ geometries, at the 

level of Hartree-Fock (HF) theory [43], Møller-Plesset theory [44] truncated at 

second-order (MP2) [45], third-order (MP3) [46], and fourth-order with single, 

double, and quadruple excitations (SDQ-MP4) [47], and at the CCSD [48] and 

CCSD(T) [32] levels of theory using MOLPRO 2010.1 [49]. The diagonal 

components of the polarizability tensor were determined according to equation 

(2) from second-order derivatives of the energy with respect to the relevant 

components of the field, using a second-order polynomial least squares fit over 

energies obtained after embedding the target of interest in homogenous electric 

fields of strength equal to ±0.9, ±0.3 and 0.0 10-3 a.u. in the x-, y- and z- 

directions.  

The employed basis sets are the Dunning's correlation consistent cc-pVXZ 

basis sets [40, 50] (X={D,T,Q,5}) and aug-cc-pVXZ basis sets [51] 

(X={D,T,Q}). These basis sets allow extrapolations of electronic energies in 

clamped nuclei configurations to the limit of an asymptotically complete basis 

set. Specifically, Feller’s three-point extrapolation formula [52] has been used 

for extrapolating HF energies to this limit, while MP2 electron correlation 

energies are extrapolated separately, according to the so-called 6(lmn) 

extension [53] of Schwartz's [54] formula. 

The total energies estimated at the MP2 level in the limit of the 

asymptotically complete (aug)-cc-pV∞Z basis sets have thus been obtained 
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by adding the extrapolated HF energies [ ( )HFE ∞ ] to the extrapolated value 

obtained for the MP2 correlation energy [ ( )corrE ∞ ]. MP2 energies obtained 

from three-point extrapolations employing l=2,3,4 and l=3,4,5 along with 

the cc-pVXZ basis sets will be referred to as SMP2-QZ and SMP2-5Z results, 

respectively. Similarly, the SMP2-augQZ label will refer to results obtained 

from three-point extrapolations employing l=2,3,4 along with the aug-cc-

pVXZ basis sets. In line with the principles of a FPA, total energies are then 

estimated at the CCSD(T) level of theory in the limit of an asymptotically 

complete (aug)-cc-pV∞Z basis set, according to the following protocols: 

FPA-QZ= SMP2-QZ + (EMP4/cc-pVTZ – EMP2/cc-pVTZ) +  

+(ECCSD(T)/cc-pVDZ – EMP4/cc-pVDZ),                                        (4) 

FPA-AQZ= SMP2-augQZ + (EMP4/aug-cc-pVTZ –EMP2/aug-cc-pVTZ) + 

 +(ECCSD(T)/aug-cc-pVDZ–EMP4/aug-cc-pVDZ),                                (5) 

FPA-5Z= SMP2-5Z + (EMP4/cc-pVQZ – EMP2/cc-pVQZ) + 

+ (ECCSD(T)/cc-pVTZ – EMP4/cc-pVTZ).                                         (6) 

We note that the same protocols have been used recently in quantitative studies 

of the singlet-triplet excitation energies of oligoacenes [29].  

In the case of tetracene, due to the prohibitive cost of these calculations, 

it was not possible to consider MP3 and higher order calculations in conjunction 

with the cc-pVQZ or larger basis sets. Further extrapolation protocols applying 

the principles of a FPA have therefore been retained in this particular case for 
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evaluating energies at the MP3, MP4 and CCSD levels in the limit of an 

asymptotically complete cc-pV∞Z basis set:  

EMP3/cc-pV∞Z= SMP2-QZ + (EMP3/cc-pVTZ – EMP2/cc-pVTZ),                             (7) 

EMP4/cc-pV∞Z= SMP2-QZ + (EMP4/cc-pVTZ – EMP2/cc-pVTZ),                             (8) 

ECCSD/cc-pV∞Z= SMP2-QZ + (EMP4/cc-pVTZ – EMP2/cc-pVTZ) + 

+ (ECCSD/cc-pVDZ – EMP4/cc-pVDZ).                                   (9) 

For naphthalene and anthracene, use has also been made of the extrapolation 

formula:  

ECCSD/cc-pV∞Z= SMP2-5Z + (EMP4/cc-pVQZ – EMP2/cc-pVQZ) +  

+(ECCSD/cc-pVTZ – EMP4/cc-pVTZ).                                   (10) 

All correlated wave function calculations presented in this work have been 

performed under the frozen core approximation. 

BOMD simulations were run along with Density Functional Theory in 

conjunction with the dispersion corrected ωB97XD exchange-correlation 

functional [55] and the cc-pVDZ or aug-cc-pVDZ basis sets, in order to evaluate 

thermal corrections to the polarizabilities of naphthalene, anthracene, and 

tetracene. BOMD calculations were run according to the principles of classical 

trajectory simulations [56], using the implementation [57] of the approach [35] 

which is available in the Gaussian 09 package of programs. In all BOMD 

simulations, the Bulirsch-Stoer method was used for the integration scheme [58, 

59], along with an integration time step of 0.2 fs, and using a fifth-order 

polynomial fit in the integration-correction scheme. The trajectory step size was 

set to 0.250 a.u, and atomic coordinates were dumped at time intervals of 

approximately 1 fs. Thermalization to standard room temperature (298K) was 

ensured by setting the initial rotational energy from a thermal distribution 

assuming a symmetric top. The time average was made on isotropic 
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polarizabilities computed at each point of the calculated BOMD trajectories. 

Runtimes comprised between 1.025 and 1.321 ps, corresponding to time 

averages over 2000 thermally distorted structures. The BOMD simulations were 

performed for a microcanonical (NVE) ensemble and the equilibration time was 

set to 0.1 ps. Thermalization was checked by monitoring the time-dependence of 

the kinetic energies, potential energies and isotropic polarizabilities obtained at 

each point of the computed trajectories. 

6.3 Results and discussion 

6.3.1 Convergence of molecular polarizabilities towards the 

CCSD(T)/CBS level 

Static electric dipole polarizabilities obtained at the HF, MP2, MP3, 

MPQ(SDQ), CCSD and CCSD(T) levels of theory in conjunction with cc-pVXZ 

basis sets of improving quality (X=D,T,Q,5) and extrapolated up to the limit an 

of an asymptotically complete (cc-pV∞Z) basis set are displayed in Figures 2-4 

for naphthalene, anthracene and tetracene, respectively. Upon examining these 

figures, it is systematically apparent that, whatever the treatment retained for 

electron correlation, all components of the polarizability tensor increase and 

converge smoothly to the CBS limit when X evolves from D to ∞. Very clearly 

also, it appears that the differences in the polarizability values, due to the use of 

different basis sets, are much larger than the differences which can be observed 

when resorting to different treatments of electron correlation.  
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Figure 2. Evolution of the static electric dipole polarizability tensor of 
naphthalene as a function of the theoretical level attained in the treatment of 
electron correlation using basis sets of improving quality. HF/cc
MP2/cc-pV∞Z results were obtained by applying the Feller’s and Schwartz’s 
three point extrapolation formula on energies obtained using the cc
(X=T,Q,5) basis sets. The MP3/cc
results of three point extrapolations, but using the cc
sets. The CCSD/cc-pV∞Z and CCSD(T)/cc
result of FPA extrapolations of energies, according to equations 1
respectively. 
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. Evolution of the static electric dipole polarizability tensor of 
naphthalene as a function of the theoretical level attained in the treatment of 

using basis sets of improving quality. HF/cc-pV∞Z and 
∞Z results were obtained by applying the Feller’s and Schwartz’s 

three point extrapolation formula on energies obtained using the cc-pVXZ 
(X=T,Q,5) basis sets. The MP3/cc-pV∞Z and MP4/cc-pV∞Z data are also the 
results of three point extrapolations, but using the cc-pVXZ (X=D,T,Q) basis 

∞Z and CCSD(T)/cc-pV∞Z (FPA-5Z) values are at last the 
result of FPA extrapolations of energies, according to equations 10 and 6, 
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Figure 3. Evolution of the static electric dipole polarizability tensor of 
anthracene as a function of the theoretical level attained in the treatment of 
electron correlation using basis sets of improving quality. HF/cc
MP2/cc-pV∞Z results were obtained by applying the Feller’s and Schwartz’s 
three point extrapolation formula on energies obtained using the cc
(X=T,Q,5) basis sets. The MP3/cc
results of three point extrapolations, but using
sets. The CCSD/cc-pV∞Z and CCSD(T)/cc
result of FPA extrapolations of ene
respectively. 
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Evolution of the static electric dipole polarizability tensor of 
anthracene as a function of the theoretical level attained in the treatment of 
electron correlation using basis sets of improving quality. HF/cc-pV∞Z and 

results were obtained by applying the Feller’s and Schwartz’s 
three point extrapolation formula on energies obtained using the cc-pVXZ 
(X=T,Q,5) basis sets. The MP3/cc-pV∞Z and MP4/cc-pV∞Z data are also the 
results of three point extrapolations, but using the cc-pVXZ (X=D,T,Q) basis 

∞Z and CCSD(T)/cc-pV∞Z (FPA-5Z) values are at last the 
result of FPA extrapolations of energies, according to equations 10 and 6, 
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Figure 4. Evolution of the static electric dipole polarizabi
as a function of the theoretical level attained in the treatment of electron 
correlation using basis sets of improving quality. HF/cc
results were obtained by applying the Feller’s and Schwartz’s three point 
extrapolation formula on energies obtained using the cc
sets. The MP3/cc-pV∞Z, MP4/cc-pV
(FPA-QZ) values are the results of FPA extrapolations of en
equations 7, 8, 9 and 4, respectively.
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Evolution of the static electric dipole polarizability tensor of tetracene 
as a function of the theoretical level attained in the treatment of electron 
correlation using basis sets of improving quality. HF/cc-pV∞Z and MP2/cc-pV∞Z 
results were obtained by applying the Feller’s and Schwartz’s three point 

trapolation formula on energies obtained using the cc-pVXZ (X=D,T,Q) basis 
pV∞Z, CCSD/cc-pV∞Z and CCSD(T)/cc-pV∞Z 

QZ) values are the results of FPA extrapolations of energies, according to 
respectively. 



Chapter 6                                                                        Electric Polarizability 

233 
 

In other words, the basis set appears to be the factor that dominates the quality 

of the computed electric polarizabilities. The xxα  component of the polarizability 

tensor is found to be essentially insensitive to the level attained in electron 

correlation. In contrast, the MP2 approach corresponds in general to maximal 

values for the other components ( yyα  and zzα ) of the polarizability tensor-with 

the exception of the zzα  value reported for anthracene. We note that whereas 

Hammond et al considered that the effect of triple excitations for the static 

polarizabilities of benzene is not large enough to justify concern as to the 

validity of the CCSD calculations of the polarizabilities of larger oligacenes [11], 

we find that, compared with the CCSD results for naphthalene, anthracene and 

tetracene, the effect of the triple excitations on the yyα  and zzα  components of 

the polarizability tensor is very significant and grows with system size. It is clear 

therefore that a CCSD treatment is not sufficient for a computation of the 

polarizabilities of large n-acenes with relative accuracies better than a few %. 

6.3.2 Naphthalene 

The results of our most accurate [CCSD(T)] calculations of the electronic 

polarizabilities of naphthalene in its equilibrium B3LYP/cc-pVTZ geometry are 

summarized in Table 1. Our CCSD(T)/cc-pV∞Z and CCSD(T)/aug-cc-pV∞Z 

estimates of the isotropic value vary from 114.7 to 116.7 a.u. and are found to 

compare favorably with measurements that range from 102.57 a.u. [60] to 

111.35 a.u. [16] and 117.42 a.u. [14]. The latest [14] of these values was 

obtained using Laser Stark spectroscopy, and is considered to be the most 
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accurate. In view of a D2h symmetry point group, there is no permanent electric 

dipole moment and polarizability causes the dominant part to the Stark effect. 

 

Table 1. Polarizability tensor ( xxα , yyα , zzα ) and isotropic polarizability 

(�) of naphthalene at the CCSD(T) level (FPA results; all values are in a.u.). 

xxα    cc-pVXZ   aug-cc-pVXZ   Exp.d 
CCSD(T)/X=D   36.7   65.3     
CCSD(T)/X=T   50.7         
CCSD(T)/X=∞   64.0a   64.3b     
CCSD(T)/X=∞   66.6c       70.8 

yyα              
CCSD(T)/X=D 148.4   162.2     
CCSD(T)/X=T   156.1         
CCSD(T)/X=∞   161.0a   162.0b     
CCSD(T)/X=∞   163.2c       162.0 

zzα              
CCSD(T)/X=D   109.3   120.0     
CCSD(T)/X=T   114.8         
CCSD(T)/X=∞   119.0a   120.1b     
CCSD(T)/X=∞   120.4c       119.5 
α              
CCSD(T)/X=D   98.1   115.8     
CCSD(T)/X=T   107.2         
CCSD(T)/X=∞   114.7a   115.5b     
CCSD(T)/X=∞   116.7c       117.4 

a) FPA-QZ estimate (eq. 6). 
b) FPA-AQZ estimate (eq. 7). 
c) FPA-5Z estimate (eq. 8). 
d) Reference [14]. 

 

Compared with experiment (Table 1), the yyα  and zzα  components are 

slightly overestimated at the CCSD(T)/aug-cc-pV∞Z level, by 0.05 a.u. (0.03 %) 

and 0.60 a.u. (0.50 %), while the xxα  component is slightly underestimated, by 

4.2 a.u. (5.9 %). This seems to be in line with the very smooth convergence of 

our results with the basis set, indicating relative accuracies of the order of 2% 

on theoretical side. The isotropic polarizability increases substantially from 98.1 
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to 114.7 a.u. when the basis set evolves from cc-pVDZ to cc-pV∞Z. In contrast, 

this property has already practically converged to the CBS value when using the 

aug-cc-pVDZ basis set: the isotropic polarizability of naphthalene indeed slightly 

decreases from 115.8 to 115.5 a.u. when the basis set evolves from aug-cc-

pVDZ to aug-cc-pV∞Z. CBS estimates for all components of the polarizability 

tensor and for the isotropic polarizability obtained upon extrapolating results of 

calculations employing the cc-pV∞Z and aug-cc-pV∞Z basis sets do not differ 

by more than ~1 a.u., indicating again relative accuracies of the order of 1 to 2 

% on theoretical side.   

6.3.3 Anthracene 

The reader is referred to Table 2 for an overview of CCSD(T) estimations of the 

polarizabilities of anthracene, using various basis sets and the principles of a FPA 

for extrapolations to the CBS limit. The most accurate CCSD(T)/cc-pV∞Z value 

for the isotropic polarizability (176 a.u.) derives from SMP2-5Z energy estimates, 

and compare most favorably with experimental values of 171 a.u. [20], 171.41 

a.u. [19] and 175 a.u. [15], the latter value being the result of a measurement 

employing high-resolution laser Stark spectroscopy. With absolute (relative) 

deviations of the order of 17.28 a.u. (24.7%), 25.98 a.u. (8.6%), and 12.41 

a.u. (8.1%), our best CCSD(T)/cc-pV∞Z theoretical estimates are also 

essentially in line with the experimental values for the xxα , yyα , zzα  

components of the polarizability tensor which were inferred from the latter 

measurements [15], and which amount to 70, 302, and 153 a.u., respectively. 

CCSD(T)/cc-pV∞Z estimates obtained from extrapolations employing the cc-

pVXZ (X=D,T,Q) and (X=T,Q,5) basis sets do not deviate by more than 1.86%. 
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In contrast with naphthalene, however, extrapolations to the CCSD(T)/cc-pV∞Z 

and CCSD(T)/aug-cc-pV∞Z limits give on the other hand significantly different 

results, which reflects an enhanced influence of diffuse functions onto the xxα  

and yyα  components of the polarizability tensor. 

 

Table 2. Polarizability tensor ( xxα , yyα , zzα ) and isotropic polarizability 

(�) of anthracene at the CCSD(T) level (FPA results; all values are in a.u.). 

xxα    cc-pVXZ   aug-cc-pVXZ   Exp.d 

CCSD(T)/X=D   49.3   55.1     
CCSD(T)/X=T   67.8         
CCSD(T)/X=∞   85.3a   67.0b     
CCSD(T)/X=∞   87.3c       70 

yyα              
CCSD(T)/X=D 252.7   250.2     
CCSD(T)/X=T   265.6         
CCSD(T)/X=∞   272.5a   264.0b     
CCSD(T)/X=∞   276.0c       302 

zzα              
CCSD(T)/X=D   148.3   159.9     
CCSD(T)/X=T   158.2         
CCSD(T)/X=∞   161.1a   163.8b     
CCSD(T)/X=∞   165.4c       153 
α              
CCSD(T)/X=D   150.1   155.1     
CCSD(T)/X=T   163.8         
CCSD(T)/X=∞   173.0a   164.9b     
CCSD(T)/X=∞   176.2c       175 

a) FPA-QZ estimate (eq. 6). 
b) FPA-AQZ estimate (eq. 7). 
c) FPA-5Z estimate (eq. 8). 
d) Reference [15]. 
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6.3.4 Tetracene  

Our CCSD(T)/cc-pVDZ and extrapolated CCSD(T)/cc-pV∞Z values for the 

components of the polarizability tensor and isotropic polarizability of tetracene 

(or naphthacene) are listed in Table 3. In this case, convergence problems in 

finite field calculations prevented us to provide data at the CCSD(T) level of 

theory in conjunction with cc-pVXZ (X=T,Q,5) or aug-cc-pVXZ (X=D,T,Q) basis 

sets. An experimental value of 217.8 a.u. which has been reported in reference 

[8] for the isotropic polarizability of tetracene needs to be considered with the 

greatest caution, because it refers in this latter work to a study [61] of field 

ionization processes from benzene, naphthalene and anthracene in intense laser 

fields. In other words, the origin and nature of this experimental value cannot be 

identified. There is to our knowledge no other experimental information upon the 

polarizabilities of tetracene (naphthacene). 

 

Table 3. Polarizability tensor ( xxα , yyα , zzα ) and isotropic polarizability (α ) of 

tetracene (naphthacene) at the CCSD(T) level (FPA results; all values are in 
a.u.). 

xxα  

CCSD(T)/X=D 61.7 
CCSD(T)/X=∞ 105.3a 

yyα    
CCSD(T)/X=D 381.5 
CCSD(T)/X=∞ 409.7a 

zzα    
CCSD(T)/X=D 188.4 
CCSD(T)/X=∞ 204.0a 

α    
CCSD(T)/X=D 210.5 
CCSD(T)/X=∞ 239.7a 

a) FPA-QZ estimate (eq. 6). 
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6.3.5 Vibrational corrections to electronic polarizabilities 

Empirical contributions of thermally induced nuclear motions (merely 

molecular vibrations) at 298K to the polarizabilities of the target systems are 

supplied in Table 4, according to an averaging procedure resorting to Born-

Oppenheimer dynamical simulations at the ωB97XD/aug-cc-pVDZ level 

(naphthalene) or ωB97XD/cc-pVDZ level (anthracene, tetracene), along with 

calculations at the same levels of analytic energy gradients and of 

polarizabilities at each computed point in the BOMD trajectories. The computed 

thermal corrections increase with system size. Quite remarkably, and in line 

with a similar study [34] on the same grounds of the polarizabilities of Ne, CO, 

N2, F2, HF, H2O, HCN, and C2H2, adding these BOMD corrections to our 

CCSD(T)/aug-cc-pV∞Z estimates of the polarisabilities obtained at equilibrium 

geometries enables us to reproduce the latest experimental values reported 

from measurements [14,15] employing laser Stark spectroscopy for the 

isotropic polarizabilities [14,15] of naphthalene and anthracene within 1.5 and 

6.2 a.u. absolute accuracy, i.e. 1.2 and 3.5 % in relative accuracy, respectively. 

Whereas for naphthalene the FPA-QZ, FPA-5Z and FPA-AQZ estimates of the 

isotropic polarizability at equilibrium geometry (�e) make little difference, in the 

case of anthracene the most accurate insights into the latest experimental data 

are obtained when using the FPA-AQZ estimates of �e, which emphasizes again 

the importance of incorporating diffuse functions in polarizability calculations on 

large conjugated systems. 
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6.4 Conclusions  

The static electric dipole polarizability tensors and isotropic polarizabilities 

of naphthalene, anthracene and tetracene have been inferred at the confines of 

non-relativistic quantum mechanics from second order energy derivatives with 

respect to the external electric field. Using the principles of a Focal Point 

Analysis for energy calculations, we have extrapolated these properties up to the 

CCSD(T) level of theory in conjunction with asymptotically complete cc-pV∞Z 

and aug-cc-pV∞Z basis sets. Including diffuse functions was found to reduce the 

dependence of results upon the cardinal number characterizing the employed 

Dunning’s correlation consistent polarized valence basis sets. The basis set 

appears to be the factor that dominates the quality of the computed electric 

polarizabilities. Nevertheless, the selected compounds are strongly correlated 

systems, which imply that calculations of at least CCSD(T) quality are required 

for computing polarizabilities within a few % accuracy. The examples of 

naphthalene and anthracene demonstrate that relative accuracies of the order of 

1.2 to 3.5% can be reached by adding to the isotropic polarizabilities inferred 

from a Focal Point Analysis corrections that account for thermally induced 

nuclear (merely vibrational) motions. In the present work, these corrections 

have been obtained from Born-Oppenheimer molecular dynamical simulations. 
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7 Summary and conclusions 

In the first part of the present thesis we have re-investigated the issue of 

Half-Metallicity for zig-zag graphene nanoribbons (ZGNRs) of finite width and 

periodicity in one dimension as well as for zig-zag graphene nanoislands 

(ZGNIs), such as bisanthrene and tetrabenzo[bc,ef,kl,no]coronene. This issue is 

currently very popular among material scientists due to theoretical predictions 

published in major scientific journals (Nature [1], Physical Review B [2]) that 

are based on spin-unrestricted Density Functional Theory calculations, which 

invariably predict a symmetry-broken electronic wave function with spin-

polarized edge states. Because these states are localized on opposite zig-zag 

edges, they respond differently to a transversal electric field, hence the very 

unusual property of half-metallicity, i.e. the coexistence of metallic nature for 

electrons with one spin orientation and insulating nature for the electrons of 

opposite spin.   Based on these predictions a new generation of electronic 

devices exploiting the electron spin for carrying binary information is already 

envisioned. ZGNRs and ZGNIs would thus open the way to a new field in 

electronics, referred to as spintronics (i.e. spin transport electronics).  

It has been made clear within the frame of this thesis that these views are 

the outcome of a too approximate treatment of electron correlation within a one-

determinantal approach such as unrestricted Density Functional Theory (which 

has been introduced in Chapter 2, along with Hartree-Fock theory and many-

body theories of improving quality). In the absence of a symmetry-breaking 

spin-dependent potential (e.g. spin orbit interactions), symmetry breakings in 

the spin densities of a system exhibiting a singlet state are necessarily 

artefactual in origin. In Chapter 3, the formalism of crystalline orbitals for 
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extended systems with periodicity in one dimension has been applied in order to 

demonstrate that any antiferromagnetic and half-metallic spin-polarization of 

edge states in n-acenes, and more generally in zig zag graphene nanoislands 

and nanoribbons of finite width, would imply a spin contamination (<S2>) that 

increases proportionally to system size, in sharp and clear contradiction with the 

implications of Lieb’s theorem for compensated bipartite lattices and the 

expected value for a singlet (S=0) electronic ground state. In support to these 

findings, it has been computationally verified with various many-body 

treatments employing Møller-Plesset perturbation theory or Coupled Cluster 

theory that half-metallicity in extended graphene nanoribbons will be quenched 

by a an exact treatment of electron correlation, at the confines of non-relativistic 

many-body quantum mechanics. In this context, such as the size-extensive 

spin-contamination to which it relates, half-metallicity is thus most clearly 

nothing else than a methodological artefact. In extended systems with 

translation symmetry in one dimension and with a vanishing band gap, a 

physical symmetry breaking of spin-densities due to a spin-dependent potential 

or thermally induced spin flips may nonetheless still result into an intrinsic half-

metallic transport behaviour. Further studies employing many-body relativistic 

quantum mechanics are therefore needed for verifying whether extremely weak 

spin-orbit coupling interactions, of the order of a few tenths µeV only [3], or 

anistropic magnetic dipole-dipole interactions between unpaired electrons, could 

nevertheless be strong enough to induce a physical and effectively measurable 

spin-polarization of edge states in large enough, perfectly planar and undistorted 

ZGNRs, with vanishingly small excitation energies, in the absence of any 

external magnetic perturbation or complications like thermal excitations.  
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In Chapter 4, we have presented a benchmark theoretical study of the 

electronic ground state and of the vertical and adiabatic singlet-triplet (ST) 

excitation energies of n-acenes (C4n+2H2n+4) ranging from octacene (n=8) to 

undecacene (n=11), in continuation to a previous study [4] of the singlet-triplet 

energy gap of benzene and n-acenes ranging from naphthalene (n=2) to 

heptacene (n=7). These studies demonstrate that highly accurate insights into 

experimental observable are amenable for these strongly correlated systems, 

using a spin-restricted depiction. These studies exploit, by means of a Focal 

Point Analysis (FPA), the overall smooth and regular convergence of electronic 

energy differences with regards to the size of the basis set and to the level 

attained in correlation, in calculations employing the HF, MP2, MP3, MP4SDQ, 

CCSD, and CCSD(T) approaches, along with increasingly complete Dunning's 

correlation consistent polarized valence basis sets. Since the discrepancies 

between different FPA results for the vertical and adiabatic singlet-triplet 

excitation energies do not exceed 0.6 kcal/mol (0.026 eV), and considering that 

various criteria for multi-reference (i.e. static correlation) effects indicate that a 

single-reference depiction should prevail, we conclude that we have managed to 

grasp the lowest excitation energies of acenes up to undecacene in the vacuum 

within or close to chemical accuracy (1 kcal/mol, i.e. 43.4 meV). Further 

extrapolations of results obtained for benzene (n=1) and all studied n-acenes so 

far (n=2-11) indicate a vanishing singlet-triplet energy gap, in the limit of an 

infinitely large polyacene (n →∞), within an uncertainty of 1.5 kcal/mol (0.06 

eV). Considering the trends that emerge from the calculations we have 

presented, it seems quite likely that finite acenes approaching the polymer limit 

would still possess a singlet electronic ground state with a total spin equal to 

zero. Further studies are nonetheless required for assessing the origin of a 
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rather large difference between our theoretical value for the singlet-triplet 

energy gap in the polymer limit (0.00 ± 0.06 eV) and the optical gap inferred in 

this limit (1.18 ± 0.06 eV) from an extrapolation of UV-Vis experimental data on 

finite acenes. A most likely explanation is that this large experimental band gap 

results from structural distortions left by the photogeneration of octacene and 

nonacene in a rigid solid argon matrix from twisted diketone precursors.  

In Chapter 5, we have presented a benchmark theoretical study of the 

ionization energies, electron affinities and singlet-triplet energy gaps of azulene, 

phenanthrene, pyrene, chrysene and perylene. These various properties were 

again computed by applying the principles of a Focal Point Analysis onto a series 

of single-point calculations at the level of Hartree-Fock theory, second-, third-, 

and fourth-order Møller-Plesset perturbation theory, as well as coupled cluster 

theory including single, double and perturbative triple excitations, in conjunction 

with correlation consistent basis sets of improving quality. Results are 

supplemented with an extrapolation to the limit of an asymptotically complete 

basis set. In view of the complexity and strongly correlated nature of the 

selected molecular targets, our best estimates for the singlet-triplet energy gap 

support favorably the comparison with experiment, with discrepancies ranging 

from 0.046 eV (azulene) up to 0.24 eV (phenanthrene). Also our theoretical 

results for the electron affinities sustain most favorably the comparison with 

experiment, with discrepancies ranging from only 0.006 eV and 0.017 eV for 

pyrene and azulene, up to 0.075 and 0.1 eV in the case of chrysene and 

perylene, respectively. At last, when considering  ionization energies, the 

discrepancies between theory and experiment vary from 0.04 eV, 0.05 eV and 

0.05 eV, for azulene, pyrene and chrysene, up to 0.11 and 0.19 eV for 

phenanthrene and perylene. The latter very large discrepancy is probably 
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ascribable to the more strongly correlated nature of perylene, which a single-

reference CCSD(T) treatment may fail to apprehend within chemical accuracy. 

In Chapter 6, we have applied the principles of a Focal Point Analysis to finite 

field calculations in order to estimate the static electric dipole polarizabilities of 

naphthalene, anthracene and tetracene up to the level of Coupled Cluster theory 

including single, double and perturbative triple excitations [CCSD(T)] in the limit 

of an asymptotically complete basis set, again using a symmetry-restricted 

depiction. Thermal corrections to polarizabilities have been empirically estimated 

according to Born-Oppenheimer Molecular Dynamical simulations at 298K 

employing Density Functional Theory. The basis set appears to be the factor that 

dominates the quality of the computed electric polarizabilities. Confrontation 

with the latest experimental values for isotropic polarizabilities ultimately 

indicates relative accuracies of the order of 1.2 % (for naphthalene) to 3.5 % 

(for anthracene), provided diffuse functions are incorporated in the focal point 

analysis. 
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8 Samenvatting en conclusies 

In het eerste deel van de voorliggende thesis werd de Half-Metaalliciteit 

voor zig-zag grafeen nanolinten (ZGNLn) van eindige breedte en periodiciteit in 

één dimensie heronderzocht, alsook voor zig-zag grafeen nano-eilanden 

(ZGNEn), zoals bisanthreen en tetrabenzo[bc,ef,kl,no]coroneen.). Dit thema 

staat momenteel zeer sterk in de belangstelling bij materiaalonderzoekers, wat 

zich uit in voorspellingen die gepubliceerd werden in prestigieuze internationale 

wetenschappelijke tijdschriften (Nature [1], Physical Review B [2]). Deze 

voorspellingen zijn gebaseerd op berekeningen gebruik makend van spin 

ongerestricteerde Dichtheid Functionaal Theorie, die op een steevaste manier 

een symmetrisch gebroken elektronen golffunctie met spin gepolariseerde 

randtoestanden voorspellen. Omdat deze toestanden zich bevinden op 

tegengestelde zig-zag randen, reageren zij anders op een transversaal elektrisch 

veld, vandaar de zeer ongewone eigenschap van half-metaalliciteit, m.a.w. het 

naast elkaar bestaan van metallische natuur voor de elektronen met één spin-

oriëntatie en isolerende natuur voor de elektronen van de tegengestelde spin. 

Op basis van deze voorspellingen, heeft men reeds een nieuwe generatie 

elektronische apparaten op het oog die de elektronenspin benutten om binaire 

informatie te dragen.  ZGNLn en ZGNEn zouden zo de weg vrijmaken voor een 

nieuw veld in de elektronica, waarnaar verwezen wordt als spintronica (Engels: 

“Spintronics”, voor “spin transport Electronics”).  

Binnen het kader van deze thesis werd het duidelijk gemaakt dat deze 

visies het resultaat zijn van een onvolledige behandeling van elektronen 

correlatie binnen een benadering met één determinant zoals ongerestricteerde 

Dichtheid Functionaal Theorie (deze werd geïntroduceerd in Hoofdstuk 2, 
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samen met Hartree-Fock theorie en veel-deeltjes theorieën van stijgende 

kwaliteit). In de afwezigheid van een symmetrie brekende spinafhankelijke 

potentiaal (m.a.w. spin-orbitaal interacties), symmetrie breuken in de spin-

dichtheden van een systeem, welke een singlet toestand toont, zijn in oorsprong 

een methodologische artefact. In Hoofdstuk 3 werd het formalisme van 

kristallijne orbitalen voor uitgebreide systemen met periodiciteit in één dimensie 

toegepast om aan te tonen dat elke antiferromagnetische en half-metallische 

spin-polarisatie van randtoestanden in n-acenen, en meer algemeen in zig zag 

grafeen nano-eilanden en nano-linten van eindige breedte, een spin-

contaminatie (<S2>) zou impliceren die proportioneel stijgt met de 

systeemgrootte. Dit is een  scherpe en duidelijke tegenstelling met de 

implicaties van Lieb’s theorema  voor gecompenseerde tweedelige roosters en 

de verwachte waarde voor een singlet (S=0) elektronen grondtoestand. Ter 

ondersteuning van deze bevindingen, werd computationeel geverificieerd met 

verschillende veel-deeltjes behandelingen gebruik makend van Møller-Plesset’s 

storingstheorie of van Coupled Cluster theorie dat half-metaalliciteit in 

uitgebreide grafeen nanolinten zal uitgeschakeld zijn met een exacte 

behandeling van elektronencorrelatie, in het kader van niet-relativistische veel-

deeltjes kwantummechanica. In deze context, zoals de “size-extensive” spin-

contaminatie waar het aan verwant is, is half-metaalliciteit dus duidelijk niets 

meer dan een methodologisch artefact. In uitgebreide systemen met translatie 

symmetrie in één dimensie en met verdwijnende band gap, kan een fysische 

breuk van de symmetrie van spin-dichtheden te wijten aan een spin-afhankelijke 

potentiaal of thermisch geënduceerde spin omkeringen, nog steeds resulteren in 

een intrinsieke half-metallisch transport gedrag. Verder onderzoek dat gebruik 

maakt van veel-deeltjes relativistische kwantummechanica is dus nodig om na 
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te gaan of extreem zwakke spin-orbitaal koppelings interacties, van de orde van 

slechts enkele tientallen µeV [3], of anisotropische magnetische dipool-dipool 

interacties tussen niet gepaarde elektronen, toch sterk genoeg kunnen zijn om 

een fysische en effectief meetbare spin-polarisatie van randtoestanden te 

induceren in voldoend groote, perfect vlakke en onvervormde ZGNLn met 

verdwijnend kleine excitatieenergieën, in afwezigheid van enige externe 

magnetische storing of complicaties zoals thermische excitaties [4].  

In Hoofdstuk 4 werd een bench-mark theoretische studie van de 

elektronen grondtoestand en van de verticale en adiabatische singlet-triplet (ST) 

excitatie-energieën van n-acenen (C4n+2H2n+4) gaande van octaceen (n=8) tot 

undecaceen (n=11) gepresenteerd, voortbouwend op een voorgaande studie [4] 

van de singlet-triplet excitatie-energieën van benzeen (n=1) en n-acenen 

gaande van naftaleen (n=2) tot heptaceen (n=7). Deze studies tonen aan dat 

zeer accurate inzichten in experimentele waarden mogelijk zijn voor deze sterk 

gecorreleerde systemen, in het kader van een spin-gerectricteerde 

representatie. Focale Puntanalyse (FPA) maakt gebruik van de gladheid en de 

reguliere convergentie van elektronen energieverschillen met betrekking tot de 

grootte van de basisset en tot het bereikte correlatieniveau, in berekeningen die 

de HF, MP2, MP3, MP4SDQ, CCSD, en CCSD(T) benaderingen aanwenden, 

samen met basissets van stijgende grootte. Omdat de discrepanties tussen 

verschillende FPA resultaten voor de verticale en adiabatische singlet-triplet 

excitatie-energieën 0.6 kcal/mol (0.026 eV) niet overtreffen, en rekening 

houdend dat verschillende criteria voor multi-referentie (statische correlatie) 

effecten er op wijzen dat een single-referentie representatie prevaleert, 

besluiten we dat we in staat waren om de laagste excitatie-energieën van 

acenen tot aan undecaceen in het vacuüm binnen of dicht bij chemische 
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accuraatheid (1 kcal/mol, i.e. 43.4 meV) te bepalen. Verdere  extrapolaties van 

resultaten verkregen voor benzeen (n=1) en alle bestudeerde n-acenen (n=2-

11) duiden een verdwijnende singlet-triplet excitatie-energie aan, in de limiet 

van een oneindig grote polyaceen (n →∞), binnen een onzekerheid van 1.5 

kcal/mol (0.06 eV). Rekening houdend met de trends die ontstaan uit de 

berekeningen die gepresenteerd werden, lijkt het waarschijnlijk dat eindige 

acenen die de polymeer limiet benaderen nog steeds een singlet elektronen 

grondtoestand zouden bezitten met een totale spin gelijk aan nul. 

Desalniettemin is verder onderzoek nodig om de oorsprong van een eerder groot 

verschil te begrijpen tussen onze theoretische waarde voor de singlet-triplet 

excitatie-energie in de  polymere limiet (0.00 ± 0.06 eV) en de optische gap 

verkregen in deze limiet (1.18 ± 0.06 eV) door een extrapolatie van UV-Vis 

experimentele data van eindige acenen. Een mogelijke verklaring is dat deze 

grote experimentele band gap resulteert uit structurele vervormingen als gevolg 

van fotogeneratie van octaceen en nonaceen in een rigide vaste argon matrix, 

uitgaande van verdraaide diketon precursors.  

In Hoofdstuk 5 werd een bench-mark theoretische studie over de 

ionisatie-energieën, elektronenaffiniteiten, en singlet-triplet energie gaps van 

azuleen, fenanthreen, pyreen, chryseen en peryleen gepresenteerd. Deze 

verschillende eigenschappen werden opnieuw berekend door de principes van 

een Focale Puntsanalyse toe te passen op een reeks van single-point 

berekeningen op het niveau van Hartree-Fock theorie, tweede-, derde- en vierde 

orde Møller-Plesset’s storingstheorie, alsook coupled cluster theorie met enkele, 

dubbele en tripele excitaties (deze laatste via storingstheorie) inbegrepen, 

samen met correlatie consistente basissets met stijgende kwaliteit. Resultaten 

worden aangevuld met een extrapolatie tot de basisset limiet. In het licht van de 
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complexiteit en sterk gecorreleerde natuur van de geselecteerde moleculaire 

systemen, stemmen onze beste schattingen van de singlet-triplet energie gap 

vrij goed overeen met experimentele resultaten, met discrepanties gaande van 

0.046 eV (azuleen) tot 0.24 eV (fenanthreen). Ook onze theoretische resultaten 

voor de elektronenaffiniteiten kommen zeer goed overeen met de experimentele 

data, met discrepanties gaande van slechts  0.006 eV en 0.017 eV voor pyreen 

en azuleen, tot 0.075 en 0.1 eV in het geval van respectievelijk chryseen en 

peryleen. Ten slotte, de discrepanties tussen theorie en experimentele data gaan 

in het geval van ionisatie-energieën van 0.04, 0.05 en 0.05 eV, voor azuleen, 

pyreen en chryseen, tot 0.11 en 0.19 eV voor phenanthreen en peryleen. 

Laatstgenoemde zeer grote discrepantie is waarschijnlijk toe te schrijven aan de 

sterker gecorreleerde natuur van peryleen, waardoor een enkelvoudige-

referentie CCSD(T) behandeling kan falen om chemische accuraatheid te 

bereiken. 

In Hoofdstuk 6 werden de principes van Focale Puntsanalyse toegepast 

op eindige veldberekeningen om zo de statische elektrische dipool 

polariseerbaarheid van nafthaleen, anthraceen en tetraceen te bepalen, tot op 

het niveau van coupled cluster theorie met enkele, dubbele en tripele excitaties 

inbegrepen (deze laatste via storingstheorie) [CCSD(T)], in de limiet van een 

asymptotisch volledige basisset, opnieuw gebruik makend van een symmetrisch 

beperkte beschrijving. Thermische correcties aan de polariseerbaarheid werden 

volgens Born-Oppenheimer’s Moleculaire Dynamische simulaties empirisch 

geschat op 298 K, hierbij gebruik makend van de Dichtheid Functionaal Theorie. 

De basisset lijkt de factor te zijn die de kwaliteit van de berekende elektrische 

polariseerbaarheden domineert. De vergelijking met de laatste experimentele 

waarden van isotropische polariseerbaarheden resulteert in relatieve 
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accuraatheden van de orde van 1.2 % (voor naftaleen) tot 3.5 % (voor 

anthraceen), op voorwaarde dat diffuse functies geïncorporeerde zijn in de FPA. 

 

 

 

8.1 References 

[1] Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London), 444, 347 (2006). 

[2] O. Hod, V. Barone, G. E. Scuseria, Phys. Rev. B, 77, 035411 (2008).  

[3] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, J. Fabian, Phys. Rev. 

B, 80, 235431(2009). 

[4] B. Hajgató, D. Szieberth, P. Geerlings, F. De Proft, M.S. Deleuze, J. Chem. 

Phys. 131, 224321 (2009). 

 

 



List of publications and attended conferences 

260 
 

List of publications 

• M. Huzak, B. Hajgató, M. S. Deleuze, “Half-Metallicity and Spin-

Contamination of the Electronic ground State of Graphene Nanoribbons and 

Related Systems: an Impossible Compromise?” J. Chem. Phys., 135 

(2011), 104704. 

• B. Hajgató, M. Huzak, M. S. Deleuze, “Focal Point Analysis of the Singlet-

Triplet Energy Gap of Octacene and Larger Acenes”, J. Phys Chem. A., 115 

(2011), 9282 - 9293. 

• M. Huzak, B. Hajgató, M.S. Deleuze, “Benchmark Theoretical Study of the 

Ionization Energies, Electron Affinities and Singlet–Triplet Energy Gaps of 

Azulene, Phenanthrene, Pyrene, Chrysene and Perylene” Chem. Phys., 406 

(2012), 55–64. 

• M. Huzak, M.S. Deleuze, “Benchmark Theoretical Study of the Electric 

Polarizabilities of Naphthalene, Anthracene and Tetracene”  J. Chem. Phys., 

138 (2013), 24319. 

• M.S. Deleuze, M. Huzak, B. Hajgató, “Half-Metallicity of Graphene 

Nanoribbons and Related Systems: a new Quantum Mechanical El Dorado 

for Nanotechnologies … or a Hype for Materials Scientists?” J. Mol. Model.,  

Accepted July (2012). 

 

 

 

 

 



List of publications and attended conferences 

261 
 

List of attended conferences 

• 14th International Conference on Density Functional Theory, Athens, 

Greece, August 29 - September 2, 2011; poster presentation. 

• WOG meeting on aromaticity, Ghent University, October 28, 2011; oral 

presentation. 

• Quantum Chemistry in Belgium, Tenth Edition (QCB10), Vrije Universiteit 

Brussel, February 10, 2012; oral presentation. 

• 2nd International Symposium on Electron Momentum Spectroscopy, Hasselt 

University (Royal Academy of Belgium for the Sciences and Arts, Brussels), 

Belgium, August 23-24, 2012. 



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20101214132451
       680.3150
       DOCTORAAT
       Blank
       481.8898
          

     Tall
     1
     0
     No
     1271
     235
     None
     Up
     42.5197
     0.0000
            
                
         Both
         1
         AllDoc
         2
              

       CurrentAVDoc
          

     Uniform
     14.1732
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

        
     0
     262
     261
     262
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
     Shift: move down by 56.69 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20101214132451
       680.3150
       DOCTORAAT
       Blank
       481.8898
          

     Tall
     1
     0
     No
     1271
     235
     Fixed
     Down
     56.6929
     0.0000
            
                
         Both
         1
         AllDoc
         2
              

       CurrentAVDoc
          

     Uniform
     14.1732
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

        
     0
     262
     261
     262
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: before current page
     Number of pages: 2
     same as current
      

        
     2
     1
     3
     877
     415
    
            
       CurrentAVDoc
          

     SameAsCur
     BeforeCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base



