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Chapter 1

The focus and content of the

dissertation

Over the last two decades, a number of technologies have emerged to profoundly

advance the efficiency of biological and cellular investigation. The data explosion

caused by these techniques has given rise to the range of scientific -omics subfields

such as genomics, transcriptomics, proteomics, and metabolomics, representing a fo-

cus on the use of large-scale information of the subject under the study. For instance,

proteomics, a more recent -omics term was first proposed by Marc Wilkins in 1995

[1], denoting the large-scale study of the structure and function of proteins. High-

throughput ‘omics’ technologies including micro-arrays, next-generation sequencing

technology, mass spectrometry and many more methods, have been broadly applied.

Mass spectrometry-based proteomics has become established as the method of choice

for protein identification and quantification. Rapid advances in next-generation se-

quencing technology have led to an increase in the amount of genomic information.

The advent of high-throughput technologies in genomics and proteomics promoted

to the development of novel statistical methods for handling and analyzing enormous

amounts of complex data being produced to extract important information regarding

biological processes.

In this dissertation, we propose several methodologies for handling problems that

come up when analyzing proteomics and genomics data.The focus of the first part is

on statistical methods for proteomics.

In Chapter 3, we give a short introduction to proteomics, mass spectrometry,

tandem mass for protein/peptide identification, and database searching methods. In

1



2 Chapter 1. The focus and content of the dissertation

the following two chapters two applications of the isotopic distribution, an important

characteristic of mass spectrometry-based proteomics, are introduced. In Chapter 4,

we illustrate how different similarity measures perform to discern noise from a true

signal by applying features of the isotopic distribution. Consequently, the best per-

formed similarity measure is chosen and used in Chapter 5, in which the accuracy

of the protein/peptide identification by search engines in shotgun proteomics setting

is validated with the isotopic distribution patterns. Chapter 6 compares the statis-

tical agreement between the two most widely used search engines, MASCOT and

SEQUEST, in terms of peptide assignment/identification.

In the second part, the focus shifts to genomics, more explicitly the genetic dis-

section of phenotypic trait based upon next-generation sequencing data. Chapter

7 gives an introduction to genomics, linkage analysis, genetic map, and sequencing

methods. In Chapter 8, we present the overview of the hidden Markov-model and

describe a hidden Markov-model for gene-mapping. The methods presented in Chap-

ter 8 are extended in the subsequent three chapters. In particular, we investigate the

application of the bi-directional hidden Markov-model and non-homogeneous hidden

Markov-model for genetic dissection of the phenotypic traits in Chapter 9 and Chap-

ter 10, respectively. In Chapter 11, an extension of the hidden Markov-model for

identification of causal genes is proposed, which uses multiple related experiments.

To conclude, in Chapter 12, we discuss the proposed methods and introduce topics

for further research.



Chapter 2

Considered datasets

The methods for the analysis of proteomic and genomic data, considered in this

dissertation, are applied to a number of data sets. These data sets will be briefly

described in this chapter.

2.1 Bovine Cytochrome C mass spectra

Bovine Cytochrome C is a relatively small protein related to mitochondria in a cell.

It is a chain of 105 amino acids:

MGDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGFSYT

DANKNKGITWGEETLMEYLENPKKYIPGTKMIFAGIKKKGEREDLIAYLKKA

TNE.

A peptide mixture of tryptic-digested bovine Cytochrome C was purchased from

LC Packings and mixed with five internal standards from Laser BioLabs used for the

calibration of the mass spectrometer. According to the data sheets of the suppliers,

the bovine Cytochrome C tryptic-digest and internal standard mixture contains 17

protein fragments. The amino acid sequences and theoretical monoisotopic masses

(m) of these fragments are known and are presented in Table 2.1. The tryptic-digested

bovine Cytochrome C and internal standards were mixed with the matrix molecules

and automatically spotted 384 times on one stainless-steel plate by a robot. The

plate was processed on a 4800 MALDI-TOF/TOF analyzer (Applied Biosystems)

mass spectrometer, which resulted in 384 mass spectra. Figure 2.1 illustrates a full

scan of mass spectrum of a tryptic digest of bovine Cytochrome C.

These mass spectra are primarily used for the comparison of the similarity mea-

sures described in Chapter 4.

3



4 Chapter 2. Considered datasets

Table 2.1: Peptides from a bovine Cytochrome C tryptic digest and internal standards.

Bovine Cytochrome C (CC)

nr Sequence Monoisotopic mass (m)

CC1 IFVQK 633.38445

CC2 YIPGTK 677.37428

CC3 MIFAGIK 778.44059

CC4 KYIPGTK 805.46924

CC5 EDLIAYLK 963.52715

CC6 TGPNLHGLFGR 1167.61434

CC7 GEREDLIAYLKK 1433.78728

CC8 TGQAPGFSYTDANK 1455.66248

CC9 KTGQAPGFSYTDANK 1583.75744

CC10 IFVQKCAQCHTVEK 1632.81107

CC11 GITWGEETLMEYLENPK 2008.94465

CC12 GITWGEETLMEYLENPKK 2137.03961

Internal standards (IS)

nr Sequence Monoisotopic mass (m)

IS1 RPPGF 572.30653

IS2 DRVYIHPF 1045.53397

IS3 ZLYENKPRRPYIL 1671.90508

IS4 RPVKVYPNGAEDESAEAFPLEF 2464.19051

IS5 FVNQHLCGSHLVEALYLVCGERGFFYTPKA 3493.67346

Figure 2.1: Full scan mass spectrum of bovine Cytochrome C peptides.
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2.2 Whole-cell lysate of Caenorhabditis elegans

tandem mass spectra

The nematode Caenorhabditis elegans is a model organism that has seen extensive use

over the last four decades in multiple areas of investigate. The free-living nematode

C. elegans is one of the best-studied multicellular model organisms. C. elegans is used

in Chapter 5 and 6 for peptide identification. For this purpose, C. elegans N2 (CGC,

University of Minnesota) nematodes were grown on NGM plates seeded with OP50

strains of Escherichia coli (CGC, University of Minnesota). Mixed staged worms

were collected in M9 buffer and sucrose-floated to remove all bacteria. The worms

were then lysed in 50 mM ammonium bicarbonate (pH 7.8) using a Branson Cell

Disrupter (Branson Ultrasonics Corp., USA) for 5 times 20 s followed by 60 s ice

incubation. The lysate was centrifuged 10 min at 4000 rpm at 4◦C to remove cell

debris. Subsequently, the sample was centrifuged 10 min at 14,000 rpm at 4◦C to

separate soluble lysate from insoluble lysate. The sample was then denaturated using

0.1% Rapigest (Waters Corp.) and boiled at 100◦C for 5 min. Protein concentration

was measured using the Pierce BCA Protein assay (Thermo Scientific). Proteins were

reduced using 5 mM DTT for 45 min at 56◦C and alkylated using 15 mM IAA for

15 min in the dark. Samples were digested using trypsin gold (Promega, USA) at

37◦C overnight at a substrate to enzyme ratio 50:1. To remove Rapigest, samples

were treated with 200 mM HCl.

2.2.1 LC-MS setup

The samples were analyzed on a Thermo Scientific LTQ Velos Orbitrap mass spec-

trometer. Proteolytic digests were separated on an Eksigent nanoLC system using a

C18 reverse phase column (Dionex Acclaim pepmap 100, 3 µm particles, 75 µm i.d.×
150 mm). A gradient length of 150 min was used (350 nl/min of 2-35% acetonitrile

in 0.1% formic acid). For data dependent acquisition, the method was set to frag-

ment the top 10 most intense ions observed in the MS scan using CID. The nanoLC

was interfaced to the Velos LTQ orbitrap (Thermo scientific) by means of an advion

nanomate with LC-coupler. Spraying voltage was set to 1.8 kV.

The mass spectrometer was operated in the data-dependent mode, switching auto-

matically between orbitrap MS and LTQ Velos MS/MS. Survey full scan spectra were

acquired from m/z 300 to 2000 in the orbitrap with resolution of 60,000 at m/z 400.

One million charges were accumulated in the linear iontrap for analysis in the orbitrap.

Most intense ions, up to a maximum of 10 per MS1, were sequentially isolated in the
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iontrap for collision induced dissociation. Fragment ions were analyzed in the iontrap;

up to 100,000 charges were accumulated. To obtain sub 3 ppm mass accuracy in MS1,

the lock mass option was activated and the polydimethylcyclosiloxane (PCM) ions,

generated in the electrospray process from ambient air (protonated (Si(CH3)2O))6;

m/z 445.120025), were used for internal recalibration in real time.

2.2.2 Database searching

The spectra were interpreted by Proteome Discoverer 1.3 as a workflow manager. The

20,581 tandem MS data were searched using both SEQUEST and MASCOT against

a C. elegans protein database (wormpep229.fasta) downloaded at ftp://ftp.sanger.ac.

uk/pub/databases/wormpep/wormpep229/. All tandem mass spectra in the range of

300 Da to 10,000 Da were interpreted. Monoisotopic peak assignment, charge state

determination, co-isolation interference, and mass difference between the measured

and theoretical monoisotopic masses were determined by Proteome Discoverer. Pre-

cursor mass tolerance was set at 5 ppm, while fragment mass tolerance was set to

0.8 Da. A maximum of five missed cleavages by trypsine was allowed for. A static

modification of 57.021 Da on cysteine was defined to allow for carbamidomethyla-

tion. Further, a dynamic modification of 15.9955 Da was introduced to account for

possible oxidation of methionine. The use of average precursor masses and average

fragment masses was prohibited. It is worth noting that only first ranked PSMs were

considered for further analysis, i.e., only one sequence annotation for a fragment ion

mass spectrum.

The charge state and monoisotopic mass of the precursor ion for each tandem MS

spectrum were included in a target list and were exported from Proteome Discoverer

to a comma-separated-value file format. The full scan MS data were transformed into

ASCII MS1-file format by using RawXtract 1.9.9.2 downloaded from the Yates-lab

[2].

2.3 Whole genome sequencing data of ethanol-

tolerant S. cerevisiae strains

Saccharomyces cerevisiae, a single-celled eukaryote yeast, is an intensively studied

model organisms in molecular and cell biology. It is the most traditionally used

yeast strain in food processing and industry, specifically as a fermenter of alcoholic

beverages. High ethanol tolerance is one of the most prominent characteristic of
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this organism. S. cerevisiae is used in Chapter 9, 10, and 11 for the mapping of

quantitative trait loci involved in tolerance to high ethanol levels (16% and 17%). For

this intention, a highly ethanol-tolerant yeast strain was crossed with a laboratory

strain (without the trait) of a moderate ethanol tolerance resulting in 5,974 viable

haploid yeast cells. Haploid offspring was screened for high ethanol tolerance, first in

a medium containing 16% of ethanol producing 136 ethanol-tolerant segregants and

subsequently with 17% ethanol giving rise to 31 segregants.

The genomic DNA from both pools, 16% (pool 1) and 17% ethanol (pool 2), and

the parent strains with high ethanol tolerance were submitted to a pooled-segregant

genome-wide sequencing analysis by means of high-throughput next generation se-

quencing (NGS) using the Illumina/Solexa NGS technique. The technique produced

DNA sequences with a length of 40 to 100 basepairs. These reads are subsequently

aligned to a DNA sequence of the parental laboratory yeast strain (without the trait)

and single nucleotide polymorphism (SNPs) as genetic markers are identified. In this

experiment, the bulk segregant analysis (BSA, [3]) is combined with NGS to allow

simultaneous identification of markers.

For each identified SNP, the chromosomal position, the number of sequencing

events (reads), and the number of times nucleotides A, C, G, and T were present

in the offspring were recorded. The larger the proportion of differences in terms of

the nucleotides (mis-match/SNP frequency) between the offspring and the parental

strain, the higher the chance of a presence of a trait-related gene in the vicinity of

the chromosomal location.
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Figure 2.2: The mis-match frequency for SNPs on chromosome XIV, pool 1.
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Chapter 3

Introduction

The term proteomics refers to the study of the proteome [1, 4], the complete set of

proteins including their (post-translational) modifications, produced by an organism

or a cellular system. A single protein can be synthesized by a cell in different forms

and with different modifications, consequently, thousands of genes can produce up

to millions of proteins [5]. The large increase in protein diversity makes proteomics

to be a complex study. The complexity of the proteomics research requires new

technologies and new analytical protocols for sample preparation, protein detection

and subsequent data analysis.

Over the last decade, high-throughput proteomics technologies have evolved

rapidly. This event has resulted in the broadening of applications and potential uses of

proteomics, most importantly in identification and quantification of proteins. Nowa-

days, proteomics has numerous applications, including: (i) study of post-translational

modifications; (ii) protein-protein interactions; (iii) structural proteomics; (iv) func-

tional proteomics; (v) computational proteomics, and many more.

11
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3.1 Amino acids

Amino acids are the basic building blocks of peptides and proteins. They are carbon

compounds that contain two functional groups: an amino group (N-terminus) and a

carboxylic acid group (C-terminus). A side chain (usually denoted as R) attached

to the compound gives each amino acid a unique set of characteristics. Figure 3.1

illustrates a structure of a typical amino acid. The key chemical elements of an

amino acid are carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and sulphur

(S). Each possible set of three nucleotides (codon) in the DNA encodes for one of

the twenty amino acids. However, a specific amino acid can also be coded by several

codons. The twenty possible amino acids are summarized in Table 3.1.

Figure 3.1: Basic chemical structure of an amino acid.

The sequence of amino acids in a protein can be defined by the sequence of nu-

cleotides on the DNA strain. DNA is first transcribed to a messenger-RNA, which is

further translated to a protein.

3.2 Proteins

Proteins (also known as polypeptides) are the most diverse class of biomolecules.

They have evolved to accomplish many tasks in living systems. They can serve

as enzymes, structural materials (e.g., keratin), specific binding (e.g., antibodies),

substance carrier such as hemoglobin, and many more.
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Table 3.1: 20 amino acids found in nature. The abbreviation TLC and OLC stand

for Three Letter Code and One Letter Code, respectively.

Name TLC OLC Formula Mass (Dalton)

Glycine Gly G C2H5NO2 75.07

Alanine Ala A C3H7NO2 89.09

Valine Val V C5H11NO2 117.15

Leucine Leu L C6H13NO2 131.18

Isoleucine Ile I C6H13NO2 131.18

Serine Ser S C3H7NO3 105.09

Threonine Thr T C4H9NO3 119.12

Cysteine Cys C C3H7NO2S 121.15

Methionine Met M C5H11NO2S 149.21

Phenylalanine Phe F C9H11NO2 165.19

Tyrosine Tyr Y C9H11NO3 181.19

Tryptophan Trp W C11H12N2O2 204.23

Proline Pro P C5H9NO2 115.13

Asparagine Asn N C4H8N2O3 132.12

Glutamine Gln Q C5H10N2O3 146.15

Aspartic acid Asp D C4H7NO4 133.1

Glutamic acid Glu E C5H9NO4 147.13

Lysine Lys K C6H14N2O2 146.19

Histidine His H C6H9N3O2 155.16

Arginine Arg R C6H14N4O2 174.2

3.3 Protein structure

Proteins are polymers of 20 different amino acids that are covalently joined together

by peptide bonds. The sequence of the different amino acids in a protein, is its

primary structure (Figure 3.2a). The primary structure determines how the protein

folds into higher level structures. The secondary structure of the polypeptide chain

refers to the spatial arrangement of amino acid residues. The most common types of

secondary structure are the α-helix and the β-pleated sheet. The secondary structure

formed through regular hydrogen-bonding interactions between NH and C=O groups

of the protein back bone (Figure 3.2b). Protein tertiary structure refers to a protein’s

geometric shape (Figure 3.2c). Several proteins are formed by association of the
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folded chains of more than one polypeptide; this results in the quaternary structure

of a protein (Figure 3.2d). Hemoglobin, the oxygen carrying component of blood, is

an example of a protein in a quaternary structure.

Figure 3.2: Levels of protein structure. (a) primary structure, (b) secondary structure,

(c) tertiary structure, and (d) quaternary structure. Taken from [6].
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3.4 Principle of mass spectrometry

Mass spectrometers are devices, that measure the mass-to-charge ratio m/z (in Dal-

ton (Da)) and intensity of ions. It is used for determining masses of particles and the

elemental composition of molecules. The data generated by a mass spectrometer can

be represented by a mass spectrum: a two-dimensional representation of signal inten-

sity (ordinate) versus m/z (abscissa), see Figure 3.3. When applied in proteomics,

an MS is an important method to identify and characterize proteins [7–11]. It allows

separating peptide/protein molecules by their different masses. In its simplest form,

a mass spectrometer consists of three parts, which are essential for their function;

the ion source, the mass analyzer, and the detector. In the next subsections, we

briefly discuss the different parts of the mass spectrometer used in the first part of

this dissertation.

Figure 3.3: Graphical representation of the MS data.

3.4.1 Ionization source

The role of the ionization source is to generate atomic or molecular gas-phase ions.

There are different techniques that can be used for this purpose, however, the type of

ionization technique substantially depends on the disposition of the sample and the

type of information required from the analysis. Ion sources can be broadly grouped

into two classes. Hard ionization techniques, such as electron impact (EI), chemical

ionization (CI), and field ionization (FI), result in breaking the molecule in a sample

partly or completely into fragment ions during the ionization. On the contrary, soft



16 Chapter 3. Introduction

ionization techniques, such as fast atom bombardment (FAB), field desorption (FD),

matrix-assisted laser-desorption ionization (MALDI), and electrospray ionization

(ESI), do not break up the molecule in a sample and provide m/z information on

the intact molecule. The technique used in Chapter 4 of this dissertation, MALDI,

will be briefly described below.

3.4.1.1 Matrix-assisted laser-desorption ionization (MALDI)

MALDI is suitable for the ionization and the analysis of large molecules (> 1 kDa).

It was developed by Tanaka [12] in the 1980s. For a typical MALDI analysis, the

analyte substance is mixed with a high amount of matrix compound in a solution and

spotted onto a stainless steel target plate in an array format. The matrix contains

small organic molecules with an absorbance capacity at the laser wavelength. After

evaporation and introduction of the target into the vacuum region of a mass spec-

trometer, the crystals formed on the target plate are illuminated with a pulsed laser

beam. The energy from the laser pulse causes the matrix/analyte mixture to melt,

evaporate, and eventually ionize resulting in the formation of charged ions.

The matrix, therefore, plays a key role by strongly absorbing the laser light

energy and causing, indirectly, the analyte to vaporize. The ions generated by

MALDI carry only a single charge, which makes the molecular weight determination

straightforward. The basic principle of MALDI is depicted in Figure 3.4.

Figure 3.4: Basic principle of Matrix-Assisted Laster Desorption/Ionization

(MALDI), re- produced from [13].
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3.4.2 Mass analyzer

Once ions have been generated in the ion source, the role of the mass analyzer is

to separate them according to their mass-to-charge-ratio (m/z). Mass analyzers use

electric and magnetic fields to apply a force on charged ions. One of the mass analyzers

used is the time-of-flight (TOF) mass analyzer, primarily interfaced with an MALDI

ionization source. We briefly present the basic principle of the linear Time-Of-Flight

Mass Spectrometer (TOF MS), which is schematically depicted in Figure 3.5.

Essentially, a TOF mass analyzer consists of an ion source, an acceleration region,

a drift tube and a detector. After production of ions by MALDI a fixed potential

difference (typically 20 to 30 kV ) accelerates all the ions into a tube where TOF

separation occurs. As all the ions are accelerated with the same potential, they all

have the same kinetic energy. The linear TOF analyzer works by measuring the time

required for ions generated in the source to fly through the tube and hit the detector

at the other side. The principle is based on an ion of mass m leaving the ionization

source with a charge z and accelerating potential V , thus having energy zV equal to

the kinetic energy of the ion:

k = zV =
mv2

2
. (3.1)

If the time taken, t, for the ion to fly the distance d of the flight tube at velocity V

is given by

t =
d

V
. (3.2)

Substituting (3.2) into (3.1) gives

t
2

=
m

z

(
d2

2V

)
. (3.3)

The terms in parentheses (related to a fixed distance and accelerating potential)

remain constant, thus m/z can be determined from t
2

. As all the ions are accelerated

with the same potential then they all have the same kinetic energy. Because the ions

have the same energy, yet a different mass, the ions reach the detector at different

times. The smaller ions reach the detector first because of their greater velocity while

the larger ions take longer due to their larger mass.

The key parameters of mass analyzers are sensitivity, mass resolution, and mass

accuracy [14]. The sensitivity characterizes the ability of the mass analyzer to detect

weak signals. Mass resolution and mass accuracy describe how well the analyzer is

able to separate peaks with similar mass and how accurately it measures this mass,

respectively. The mass resolution is a dimensionless unit and is expressed as the ratio

of the mass of a signal peak in a mass spectrum and its Full-Width-At-Half-Maximum
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(FWHM). The FWHM of a peak is illustrated in Figure 3.6.

Figure 3.5: Basic principle of a linear time-of-flight mass spectrometer. Taken from

[15].

Figure 3.6: Illustration of the Full-Width-At-Half-Maximum (FWHM) of a peak.

Taken from [13].
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The mass accuracy is defined as the observed difference between the observed mass

of an analyte and the expected mass:

mass accuracy =| massobserved −massexpected | . (3.4)

The mass accuracy is often expressed in parts per million (ppm):

ppm = 106 ×mass accuracy/massexpected. (3.5)

To give an example, if we know that the expected mass of a compound is 1000,0 m/z

and our mass spectrometer measures a signal for this compound at 999,99 m/z, then

the accuracy of this measurement was ≃ 10 ppm.

3.4.3 Ion detector

The last component of the mass spectrometer instrument is the ion detector, which

records the ions separated according to their mass to charge ratios. The role of the

detector is to register the number of ions produced for each m/z, by detecting their

impact on the detector surface. As a result, the mass spectrometer generates an

output with two variables, the mass- to-charge ratio (m/z) and the corresponding

intensity value.

3.5 Tandem mass spectrometry

Tandem MS (also called MS/MS or MS2) is used to determine the amino acid se-

quences of the peptide (identification or characterization) and provide detailed struc-

tural information. Tandem (MS/MS) mass spectrometers are instruments composed

out of two (sometimes three) successive mass analyzers for which only the last mass

analyzer has an ion detector. The first mass analyzer is used to select a particular

m/z value (precursor ion). The selected ions pass through a region when they are

activated and causes them to fall apart to produce fragments. The resulting MS/MS

spectrum consists of product ions from the selected precursors.

3.6 Collision-induced dissociation (CID)

CID is the most common fragmentation method [16]. In CID, molecular ions are

accelerated by an electrical potential and then allowed to collide with neutral atoms

or molecules such as helium, nitrogen or argon. The collision converts some of the
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initial kinetic energy of the molecular ions into internal energy, causing chemical

bonds to break. Two types of fragment ions, b− and y−ions, are commonly observed

in MS/MS spectra obtained by CID fragmentation.

3.7 The shotgun proteomics workflow

An explicit goal of proteomics is to characterize all the proteins expressed in a cell or

tissue. The improvements in MS instruments, protein and peptide separation tech-

niques, and the availability of protein sequence databases for many species has facil-

itated the analysis of complex protein mixtures using shotgun proteomics. Shotgun

proteomics is a powerful technology to study the protein population of a biological

system. This approach generates high-throughput data in complex mixtures using

a combination of LC with tandem MS . It is broadly used for the large-scale pep-

tide and protein identification [14]. Shotgun proteomics is currently the dominant

analytical approach in proteomics research. The typical workflow of a shotgun pro-

teomics can be described as follows: The first step is to digest sample proteins into

peptides. The digestion is typically done by using a specific protease (enzyme) that

will cleave the protein sequence into peptides. The most common protease used for

the protein digestion is trypsin which cleaves proteins on the carboxyl-terminal side

of the arginine and lysine residues. The so-obtained peptide mixture is complex by

nature and is therefore separated by LC to reduce the complexity. Subsequently,

the separated peptides are injected into the mass spectrometer and are measured in

a data-dependent acquisition (DDA) mode. In this acquisition mode, a predefined

number of the most intense parent masses are selected from a full scan mass spec-

trum for a second interrogation by tandem mass spectrometry. During tandem MS, a

selected parent ion, i.e., peptide, enters a collision cell and is fragmented in a pattern

that is a characteristic for a particular amino acid sequence. The stream of data that

is produced by this approach is interpreted by using computational tools.

3.7.1 Peptide identification

Numerous computational tools have been developed to support high-throughput pep-

tide and protein identification by assigning sequences to tandem MS spectra [17]. In

general, the peptide identification algorithms using tandem MS can be roughly catego-

rized into two main paradigms : (i) de novo sequencing algorithms, and (ii) database

search algorithms.
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3.7.1.1 De novo sequencing algorithms

De novo sequencing algorithms obtain peptide sequences directly from the MS/MS

spectrum by interpreting the mass differences between the generated MS/MS fragment

ion sequence [18, 19]. These algorithms do not need a priori sequence information

and hence can potentially identify protein sequences that are not available in a protein

database. In recent years, many de novo sequencing algorithms and software packages

were published. The most widely used de novo sequencing packages include PepNovo

[20, 21] and PEAKS [22, 23]

3.7.1.2 Database search algorithms

In this approach, peptide identification is performed by correlating experimental tan-

dem MS spectra with theoretical spectra predicted for each peptide contained in a

protein sequence database. Many different algorithms have been developed for iden-

tifying tandem MS data using database search engines, including SEQUEST [24],

MASCOT [25], X!Tandem [26], OMSSA [27], and ProbID [28]. All database search

engines operate in a similar manner and follow the same general framework [29, 30].

Acquired tandem MS spectra are compared and correlated against theoretical spectra

constructed for each database search algorithm that satisfies a certain set of database

search parameters, i.e., mass tolerance, enzyme constraint, and types of posttransla-

tional modifications, specified by the user. A scoring scheme is then used to measure

the degree of similarity between the experimental tandem MS spectra and theoretical

fragmentation patterns. Candidate peptides are ranked according to the computed

score, and the highest scoring peptide sequence (best match) is selected for further

analysis.

3.7.2 Search engines

Database searching algorithms remain the most efficient and widely used method for

peptide identification. As a consequence, the computational analysis typically starts

with database searching algorithms, and if needed, for example, de novo sequencing

tools are applied to the remaining unassigned spectra. Our focus here is the database

search algorithms, as they are the most relevant to the research presented in this

dissertation. The main difference between different search algorithms is the scoring

function used to quantify the degree of similarity between the acquired tandem mass

spectrum and the candidate peptides retrieved from the database. As a result, they

differ from one another in terms of speed, accuracy, sensitivity, and false positives
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(i.e., incorrectly identified peptides). The performance of database search algorithms

have been compared in [17]. A detailed review of all different scoring schemes goes

beyond the scope of this chapter; however the following discussion will focus on brief

explanation of the database search tools that are used in this dissertation.

3.7.2.1 SEQUEST

SEQUEST [24] is one of the most widely used algorithms for database searching.

It scores peptide sequences by the cross-correlation between the intensities of peaks

on the observed and the theoretical spectra. The cross-correlation score (Xcorr) is

computed as follows:

Xcorr = R0 −

(
t=+75∑
t=−75

Rt

)
/151, (3.6)

where Rt =
∑n

i=1 xiyi+t, xi and yi are the intensities of the peaks at location i

(shifted along the m/z axis by t mass units) in the observed and theoretical spectra,

respectively. For each experimental spectrum, the best scoring peptide assignment

(highest Xcorr score) is kept for further analysis. In addition to Xcorr, the relative

difference between the best and the second best Xcorr score, ∆Cn, is also computed

and measures how different the top value is from the next best match. Generally,

high values of ∆Cn are regarded as a correct assignment with respect to the top

Xcorr value.

3.7.2.2 MASCOT

MASCOT [25], another commonly used database search algorithm, performs the

probability-based searches of peptide database sequences by an extension of the

MOWSE algorithm [31]. MASCOT estimates the probability of a match occurring by

chance. An ion score is reported as −10log10 (p), where p is the absolute probability.

A higher score indicates a more confident match.

3.7.3 Error sources of peptide identification

All tandem MS database search tools return the best matching peptide found in the

database for each acquired spectrum, what we call peptide-spectrum match (PSM),

except when there are no candidate peptides in the searched database. However, the

best match reported by the database search tool is not necessarily correct [32–34]. The

main reasons why the database search tools fail to assign correct peptide sequences

and a large fraction of the top ranked peptides are still wrong include:
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• Deficiencies of the scoring scheme

• Low MS/MS spectrum quality

• Incorrectly determined charge state or peptide mass

• Restricted database search

Thus, the matches in the database search need to be further evaluated to limit false

positives identifications [32, 33, 35].

3.7.4 Post-processors for improving identification

Different approaches have been developed to validate peptide assignments resulting

from search algorithms. PeptideProphet and Percolator are the most commonly used

post-processing computational tools, which attempt to improve the discrimination

performance between correct and incorrect PSMs. PeptideProphet [33], originally

developed to analyze SEQUEST search results, automatically validates peptide as-

signments to MS/MS spectra made by database search programs. PeptideProphet

utilizes a machine learning algorithm called linear discriminant analysis (LDA) model

to re-score PSMs sampled from a mixture distribution which represents the chance of

a correct PSM and an incorrect PSM. The distribution of the correct and incorrect

PSMs can be characterized. PeptideProphet applies an expectation maximization

(EM) algorithm to generate a posterior error probability (PEP) for each PSM being

a correct peptide identification.

Percolator [36] is an alternative post-processing software relying on target/decoy

database search results to infer the q-value and PEPs. This system employs a semi-

supervised machine learning method that iteratively trains a linear support vector

machine (SVM) [37] classifier to discriminate between target and decoy PSMs.

3.8 Isotopic distribution

Most elements occur in nature as a mixture of isotopes. Isotopes are atom species of

the same chemical element that have different masses, i.e., they have the same number

of protons, but a different number of neutrons. The number of protons is referred to

as the atomic number and determines the chemical element of an atom. Atoms with

equal atomic numbers share the same chemical behavior and cannot be distinguished

chemically.
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As mentioned earlier, a peptide is composed out of amino acids, which are built

from five elements: carbon (C, atomic number 6), hydrogen(H, atomic number 1),

nitrogen (N, atomic number 7), oxygen (O, atomic number 8) and sulphur (S, atomic

number 16). These elements are polyisotopic elements, i.e., they have naturally oc-

curring variants with a different atomic mass (isotope). For example, carbon has two

isotopes that occur in nature, 12C, which is comprised of six protons and six neutrons,

and 13C, which carries six protons and seven neutrons. The most abundant natural

isotope,, such as 1H or 12C, is also called the monoisotope. Note that in the case

of these five atoms the monoisotope is also the lightest natural isotopic variant of

the atom. Isotopes of each element are found in nature with certain abundance. For

instance, the relative abundance of the monoisotopic carbon isotope 12C is 98.93%,

whereas the isotope 13C has the relative abundance of 1.07%. Masses of atoms are

measured in Dalton (Da), or equivalently in unified atomic weight units (u). Accord-

ing to International Union of Pure and Applied Chemistry (IUPAC), one Dalton is

defined as 1/12 of the mass of one atom of the 12C isotope. A list of the standard

isotopes for elements specific to peptides is given in Table 3.2, together with their

corresponding masses and probability of occurrence. When the atomic composition

of a peptide is known, we can calculate the probability of occurrence of a particular

isotopic variant using the probability of occurrence of the polyisotopic elements from

Table 3.2. Therefore, the isotopic distribution is given by the probabilities of occur-

rence of all possible isotopic variants of a peptide. In a mass spectrometry, isotopic

distributions appear as a series of peaks arising within mass spectra that are from

compounds of the same molecular formula, but are different in their atomic isotope

composition. An example of this phenomenon is shown in Figure 3.7. These peaks

are grouped together with a mass-to-charge spacing of ≈ 1/z, where z is the charges

associated with the molecules during the ionization process.

To calculate the isotopic distribution, we need the information about the chemi-

cal composition of the peptide. Given the known chemical composition, the isotopic

distribution can then be calculated, e.g., by using a Fourier transform as proposed by

Rockwood [38], or the BRAIN algorithm [39–41]. However, the chemical composition

of a peptide is often unattainable. As an alternative, the aggregated isotopic distri-

bution can be predicted as a function of the mass. Several approaches [42–45] have

been proposed to this aim. In this dissertation, we consider the polynomial approach

to predict the distribution from the information about the monoisotopic mass of the

peptide as suggested in [45].
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Table 3.2: Isotopic variants of C, H, N, O and S as defined by the IUPAC1997

standard.

Chemical element Isotope Atomic mass (ma/u) Natural abundance (atom%)

Carbon 12C 12.0000000000 0.9893
13C 13.0033548378 0.0107

Hydrogen 1H 1.0078250321 0.999885
2H 2.0141017780 0.000115

Nitrogen 14N 14.0030740052 0.99632
15N 15.0001088984 0.00368

Oxygen 16O 15.9949146 0.99757
17O 16.9991312 0.00038
18O 17.9991603 0.00205

Sulphur 32S 31.97207070 0.9493
33S 32.97145843 0.0076
34S 33.96786665 0.0429
36S 35.96708062 0.0002

Figure 3.7: Isotopic disribution of C95H159N27O36S1 for the mass range [2286, 2292],

calculated by the BRAIN algorithm [39–41].
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The polynomial regression model proposed in [45] allows predicting the first three

isotope ratios of an average peptide. The (x+ 1)-th isotope ratio for a peptide with

monoisotopic mass m is calculated as follows:

R(x+ 1,M) =
H(x+ 1,M)

H(x,M)
, (3.7)

where x (= 0, 1, 2, ...) indicates the particular isotope variant, with x = 0 denoting

the monoisotopic variant, and H(x,m) is the probability of occurrence of the isotope

variant x.

The method is based on the linear peptide model proposed in [42] and builds on

the average amino acid model developed in [44], i.e., averagine. The linear peptide

model spans a particular mass range by concatenating average amino acids. For each

of the so obtained theoretical peptides, the isotopic distribution was calculated using

the ICP isotope pattern calculator [19]. Subsequently, the resulting isotope ratios

were modeled by a 4th order polynomial model in function of the peptide mass in a

similar fashion as proposed in [43]

R(x+ 1,m) = β0 + β1(
m

1000
) + β2(

m

1000
)2 + β3(

m

1000
)3 + β4(

m

1000
)4. (3.8)

Estimates of the parameters β0, β1, β2, β3, and β4 for each isotope ratio were obtained

by maximum likelihood estimation. In [45] was also suggested that models fitted to

the consecutive ratios produce smaller errors than ratios with the monoisotopic peak

as the common reference. This is because the monoisotopic peak is always among the

most abundant peaks which would result in larger errors for the ratio estimation if it

is taken as the common reference for these ratios.
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Comparison of the

Mahalanobis distance and

Pearson’s χ2 statistic as

measures of similarity of

isotope patterns

4.1 Introduction

In high-resolution mass spectrometry, proteins and peptides appear in a mass spec-

trum as a series of locally correlated peaks. This specific characteristic is related to

the isotopic distribution of a peptide (Section 3.8). The isotopic distributions contain

potentially valuable information that can be used in a wide variety of applications.

For example, it can be employed to discern genuine peptide peaks from noise [46, 47],

to determine the monoisotopic peak [48, 49], or to study conformational dynamics

of peptides and proteins using the hydrogen/deuterium exchange (HDX) [50], where

isotopic distributions used to extract information on the isotopic states of exchanging

hydrogens. The use of information about the isotopic distribution is not restricted to

proteomics alone. In the field of metabolomics, isotope information is even more ex-

tensively used for metabolite identification [51] and low-level signal processing [52, 53].

27



28
Chapter 4. Comparison of the Mahalanobis distance and Pearson’s χ2 statistic

as measures of similarity of isotope patterns

As it has already been mentioned, information about the isotopic distribution can be

employed to discern genuine peptide peaks from noise. This is because a series of pep-

tide related peaks in a mass spectrum will express a particular pattern, corresponding

to the underlying isotopic distribution for the peptide. On the other hand, noise peaks

do not follow any particular shape or pattern [10]. In a spectrum, peptide peaks can

be scrutinized by assessing the degree of similarity between the observed pattern of

peaks and the isotopic distribution expected for a peptide with a similar mass [54–

56]. The idea is illustrated in Figure 4.1. The left-hand-side panel of Figure 4.1

presents an observed series of equally distant peaks, which could be originating from

a peptide. The-right-hand-side panel shows the expected isotopic distribution. The

observed pattern is compared to the expected isotope distribution. If the computed

value of a similarity measure is smaller than a pre-defined threshold, the selected peak

is regarded as a genuine monoisotopic peptide peak. To this aim, a similarity measure

is needed. Currently, the standard similarity measure is Pearson’s χ2 statistic and it

has been rigorously investigated [50]. It is based on a weighted sum of the squared

deviations between the expected and observed peaks [42, 43].

However, alternative similarity measures could be considered that can include infor-

mation about possible correlation between the intensity peaks of an isotope distribu-

tion. For this reason we have evaluate the use of Pearson’s χ2 statistic and compare

it to the Mahalanobis distance [57]. The latter similarity metric calculates the gener-

alized distance and was described in a seminal paper by J. C. Mahalonobis. In mass

spectrometry, the Mahalanobis distance is employed as a metric for outlier detection

in the context of data quality assessment and it operates on a particular feature set

[58–60]. Additionally, the metric is often included in the object function of machine

learning methods as a global distance measure [61] to classify spectral data. Nev-

ertheless, the Mahalonobis distance has never been proposed for the interpretation

of the isotope patterns observed in mass spectra. For this purpose, we have con-

ducted a controlled MALDI-TOF experiment on bovine Cytochrome C to evaluate

its performance on resolved isotope peaks.
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Figure 4.1: The panel on the left-hand side displays an observed isotope pattern. The

panel on the right hand side shows a hypothetical isotope distribution. The lightest

isotopic variant of a peptide, i.e., the variant which is composed out of 12C, 1H, 14N ,
16O, and 32S atoms, is called the monoisotopic variant. The peak corresponding to

the monoisotopic variant is called the monoisotopic peak (indicated with an arrow in

the left hand side panel). An isotope distribution can be calculated from the atomic

composition and the elemental isotope distribution.

4.2 Experimental data

The method developed in this chapter are illustrated by using the data set described

in Section 2.1. First, we focus on the series of four consecutive, 1 Da separated peaks,

which are consistently found in more than 90% of the 384 spectra (Table A.1 in the

Appendix). We call such series isotopic clusters. The reason for extracting the first

four isotope peaks is that the mass of the peptides in the sample are predominantly

in the range of 568.1 to 2465.2 Da. Consequently, it is reasonable to assume that the

isotopic distributions of these peptides are sufficiently characterized by the first four

isotope peaks. In total, 35 of such clusters are selected. For 12 clusters, the mass

corresponds to the monoisotopic mass of one of the 17 protein fragments known to

be present in the mixture. The additional 23 candidates were found to be related

to peptides resulting from modifications or artifacts of the proteolytic background

[62]. The heatmap in Figure A.1 in the Appendix indicates the mass location of

the peptides in the 384 spectra. The color is an indication for the abundance of the

corresponding peptide, with red indicating the highest intensity measurement.

In addition to the 35 putative-peptide isotopic clusters, we select 35 clusters putative-
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noise peaks. Figure 4.2 illustrates the selection of the peptide and noise clusters for a

particular spectrum. The selected noise peaks are separated by 1 Da as well, but do

not appear consistently across the 384 spectra. The noise peaks are located in mass

regions in the neighborhood of the selected peptide isotope clusters. The data from

the noise and peptide peak clusters are used as a benchmark to assess the ability of

the similarity measures to discriminate noise peaks from peptide peaks.

Figure 4.2: An example for a selected noise cluster and a peptide isotopic cluster (m/z

2138.1).

4.3 Methodology

The comparison between an observed series of peaks with a hypothetical isotope dis-

tribution can be performed by considering isotope ratios (Section 3.8). The rationale

for working with isotope ratios is that ratios are dimensionless and their use allows

us to avoid scaling of the expected and observed intensity values. In addition, ratios

are not sensitive to multiplicative noise.

Two components are required in order to compare an observed series of peaks

with an hypothetical isotopic distribution. First, a model to predict the expected

isotopic distribution and the corresponding expected isotope ratios of an average

peptide is needed. Second, the measure to score the similarity between the observed

and expected isotope ratios has to be defined. In the next two subsections, we discuss

these issues.
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4.3.1 Prediction of the isotopic distribution

In the proposed methodology, a model is required to predict the expected isotopic

distribution. To this aim, the polynomial regression model described in [45] can be

used. However, to define similarity measures that take into account the correlation,

an estimate of the variance-covariance structure in the data is required. Alternately,

an empirical estimate of the expected isotopic distribution and its corresponding

variance-covariance structure can be applied. For this purpose, the Human HUPO

database was digested in-silico by using trypsine as a protease. The digest led to

126, 376 peptides with masses ranging from 400 to 4000 Da. The program BRAIN

[39–41] was used to calculate the isotopic distribution and monoisotopic masses of the

resulting peptides. For a given mass of m Da, a set of peptides with monoisotopic

masses within the interval of [m− 5,m+5] Da was selected. Next, the mean value of

isotope ratios was calculated for the peptides within the assumed mass interval and

stored in vector R. Additionally, the variance-covariance matrix of the ratios Σ was

estimated based on the selected data as well.

4.3.2 Similarity metric

By assessing the similarity between the observed isotope ratios of an isotope cluster in

a spectrum and the corresponding expected values, we can decide whether the series

of peaks might be generated by a peptide. To this aim, a similarity measure is needed.

The standard measure (i.e., Pearson’s χ2 statistic) is defined as follows:

χ2 =
∑

i=1
(Oi −Ri)

2/Ri, (4.1)

where Oi is the observed value of the ith consecutive isotopic ratio (i = 1, 2, 3) and

Ri is the corresponding expected value. An alternative similarity measure could be

the Mahalanobis distance [57]. The distance takes into account the variability and

correlation of the ratios, and is defined as follows:

M = {(O−R)′Σ−1(O−R)}1/2, (4.2)

whereO andR denote the vectors containing, respectively, the observed and expected

consecutive isotope ratios, and Σ denotes the estimated variance-covariance matrix

of the expected ratios. The expected ratios and corresponding variance-covariance

matrix were calculated using the theoretical isotopic distributions from the Human

HUPO database. Note that the expected values can also be computed by the poly-

nomial model, which is more straightforward from a practical point of view. The



32
Chapter 4. Comparison of the Mahalanobis distance and Pearson’s χ2 statistic

as measures of similarity of isotope patterns

use of the Mahalanobis distance is motivated by the fact that it takes into account

the correlation between isotope ratios, which could allow for a better discriminatory

performance. The motivation is illustrated in Figure 4.3. The figure presents the

scatter plot of the first and second isotope ratio for peptides with a mass between

2000 Da and 2020 Da from the Human HUPO database. The grey diamonds above

the histograms indicate the mean values of 1.1243 and 0.6082 for the first and second

isotope ratios, respectively. The plot indicates that there is a substantial amount of

correlation between the two ratios. Consider the two points, marked by the black

circles. A similarity measure that does not take into account the correlation would

more likely classify point 1 as a genuine peptide because its coordinates are close to

the mean values. However, a measure taking into account the correlation, such as,

e.g., the Mahalanobis distance, would most likely opt for point 2 because the coordi-

nates of this point reflect the (linear) association resulting from the joint distribution

of the two isotope ratios.

Figure 4.3: Scatter plot of the first isotope ratio (x-axis) and the second isotope ratio

(y-axis) of peptides with a mass between 2000 and 2020 Da based on the Human

HUPO database.
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4.4 Results

For the selected peptide and noise peak-clusters, we calculate Pearson’s χ2 statistic

and the Mahalanobis distance based on the data from the HUPO database. The top

panel of Figure 4.4 presents the distribution of the computed Pearsons χ2 values for

the noise and peptide clusters using the data from randomly selected four spectra. The

overlap between the distribution of the peptide (green) and the noise peak clusters

(red) is small. It suggests that the statistic can reliably distinguish between the noise

and peptide clusters. The bottom panel of Figure 4.4 presents the same information

for the Mahalanobis distance. In this case, the overlap is much larger and suggests

that using the distance would lead to more errors in classifying the peak clusters as

peptide- or noise-related.

Figure 4.4: The overlap between the distributions of Pearson’s χ2 statistic and the

Mahalanobis distance.

To check the variability in the overlap area in various spectra, Figures 4.5 and

4.6 present the overlap for the individual spectra. Note that, in both figures, the

horizontal axis has been truncated to expose more details in the interesting region of

the plot. From Figure 4.5 it can be clearly seen that, in agreement with the results
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presented in Figure 4.4, the overlap area between the distribution of the peptide and

the noise peak clusters was very small for all four individual spectra for Pearson’s χ2

statistic. On the other hand, Figure 4.6 shows that, for the Mahalanobis distance,

the overlap is much larger in each of the four spectra. Thus, Pearson’s χ2 statistic is

a better similarity measure to discriminate between peptide and noise signal observed

in mass spectral data.

Figure 4.5: The overlap area between the distributions of the Pearson’s χ2 statistic

values.

Figure 4.6: The overlap area between the distributions of the Mahalanobis distance

values.



4.4. Results 35

Figure 4.7 summarizes the performance of the two similarity measures for a set of

randomly selected spectra. To this aim, the receiver operating characteristic (ROC)

curve is used. Each point on the ROC curve represents a sensitivity/specificity pair

corresponding to a particular cut-off point for the similarity measure. The area under

the ROC curve (AUC) can be interpreted as the probability of the correct classification

for a randomly selected subject (peak cluster in our case) from two populations (in

our case, peptide- or noise-related clusters). In particular, a perfect discrimination is

reflected by a curve passing through the (0, 1) point at the upper-left side, as seen in

the plot for Spectrum 3 for Pearson’s χ2. In that case, AUC is equal to 1. The ROC

curves presented in Figure 4.7 indicate that the discriminative properties of Pearson’s

χ2 statistic are better than the properties of the Mahalanobis distance. It is clear

that AUC for the ROC curves for the Pearson’s χ2 statistic (blue, solid line) is larger

than for the Mahalanobis distance (black, dashed line) for all four spectra. Figure

A.2 in the Appendix illustrates that for the combined data from all four spectra.

Figure 4.7: ROC curves for each of the four analyzed spectra.

We also investigated the use of Pearson’s χ2 statistic calculated by using the

polynomial model. Note that this was not possible for the Mahalanobis distance, as
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the variance-covariance matrix of the expected ratios was not available. Figures 4.8

and 4.9 present for the selected spectra, the scatterplots of the values of Pearson’s

χ2 statistic computed by using the in silico tryptic-digest database and by the

polynomial model. The plots indicate that, for both sets of observed isotopic

clusters, the obtained values were very close to those computed by using the in silico

tryptic-digest database. Thus, they also performed better than the Mahalanobis

distance in distinguishing between the peptide- and noise-related isotopic clusters.

This is an important practical conclusion, as the calculation of the isotopic ratios from

the polynomial models is much simpler than the use of the in silico tryptic-digest

database.
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Figure 4.8: Scatterplots of Pearson’s χ2 statistic computed by using the in silico

tryptic-digest database and by the polynomial model for the putative-peptide clusters.
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Figure 4.9: Scatterplots of Pearson’s χ2 statistic computed by using the in silico

tryptic-digest database and by the polynomial model for the noise-peak clusters.

4.5 Conclusions

Our analysis indicates that Pearson’s χ2 statistic offers a better discriminative power

for detecting the peptide clusters than the Mahalanobis distance. This result is most

likely due to the fact that the Mahalanobis distance is very much based on the as-

sumed form of the variance-covariance matrix Σ. The matrix derived from the in

silico tryptic digest database may not be adequate for the isotope ratios observed in

a spectrum. Moreover, the definition of the Mahalanobis distance is very much based

on multivariate normality, which may not necessarily apply to the values of the con-

secutive ratios observed in a mass spectrum. We checked the multivariate normality

of the observed consecutive ratios by using two multivariate normality tests, includ-

ing Royston’s H test [63], and Henze-Zirkler’s [64] multivariate normality tests. The

small p-values for the Royston’s test and Henze-Zirkler’s test were equal to 1.776357e-

15 and 6.844373e-05, respectively. They do indicate that the multivariate normality

assumption of the observed consecutive ratios might not be tenable, indeed. Thus,

Pearson’s χ2 is the preferred statistic for evaluating the isotope distribution in mass

spectrometry data.

Considering another similarity measure, e.g., Euclidean distance (4.3), is also pos-

sible. √∑
i=1

(Oi −Ri)2. (4.3)
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Figure A.3 in the Appendix summarizes the performance of the three similarity mea-

sures for the noise and peptide clusters using the data from randomly selected four

spectra. The figure indicates that the discriminative properties of the Euclidean dis-

tance are minimally better than the properties of the Pearson’s χ2 statistic. For

noise clusters having similar pattern to peptide clusters, the Euclidean distance offers

a better discriminative power than the Pearson’s χ2 statistic. This result could be

related to the weights corresponding to expected ratios assigned to the Pearson’s χ2

statistic. However, a comprehensive comparison of the performance of the Euclidean

distance and the Pearson’s χ2 statistic can be subjected to future research.

An important practical point related to the use of Pearson’s χ2 statistic is the

choice of the threshold for deciding whether the observed isotope cluster is similar

enough to the expected isotopic distribution. Based on our experiment, a threshold

value of, e.g., 0.2 would be suitable. It is difficult to propose any concrete value for the

threshold in general, though, as it most likely depends on the technological platform

used to generate spectra. To empirically obtain a value of the threshold, an experiment

and analyses similar to the ones presented in this chapter could be performed. The

Pearson’s χ2 statistic can also be extended to account for the correlation between

isotope ratios which can be a subject for future research.



Chapter 5

The use of the isotopic

distribution as a

complementary quality metric

to assess tandem mass spectra

results

5.1 Introduction

Shotgun proteomics employs tandem mass spectrometry for amino acid sequencing

(Section 3.7). Fragmented ion masses that are produced by this approach can be

used in correlative database-searching to identify proteins and peptides from complex

mixtures. As it has already been mentioned in Subsection 3.7.1.2, database-search

methods depend on a score function that evaluates the “match” between the pre-

dicted ion fragment masses and the ones observed in the tandem mass spectrum.

The better the agreement/match between the observed and expected ion fragment

spectrum, the more likely that the PSM confidently identifies the peptide sequence

[24, 25]. The existing computational methods, e.g., Percolator and Peptide Prophet

to improve the quality and confidence of peptide identifications are useful, but still

ignore potentially relevant information present in the data. In particular, peptide

39
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identification based on tandem MS and database-search algorithms operate solely on

fragment information and ignore the information available in the full MS scans about

the isotopic distributions of the precursor ions.

In this chapter, we present a workflow that provides a new perspective on the

quality of PSM from database-searching strategies for peptide identification. Addi-

tional views on a dataset can facilitate a more hypothesis-driven interpretation of the

mass spectrometry signals. The similarity metric on the PSM scores contemplates

the isotopic profile and results in a measure that conveys a degree of biomolecular

similarity observed from the precursor of the selected tandem MS spectra. A close

agreement between the PSM score and the similarity metric will result in a higher

confidence for the identification of the selected precursor ion.

5.2 Materials and methods

The methods developed in this chapter are illustrated by using the experimental work-

flow starting from the whole-cell lysate of Caenorhabditis elegans, shotgun proteomics

set-up, and the data interpretation step described in Section 2.2.

5.3 Implementation

The main question that our implementation aims at is whether the mass region chosen

for further fragmentation in the DDA approach does indeed have a biomolecular

origin. For this purpose, we reevaluate the full scan MS and trace the precursor

ions using the target list exported from the Proteome Discoverer suite of Thermo

Scientific. It should be noted that this list contains only the first-ranked PSMs and

that no thresholds for reporting PSMs are applied in the case of SEQUEST peptide

spectrum matching. In other words, every tandem mass spectrum corresponds to one

PSM identity. Next, an in-house algorithm extracts the related isotope peaks from the

full scan MS data taking into account the charge state and the mass of the molecule

and compares the observed peaks with a theoretical “expected” isotope distribution.

Pearson’s χ2 metric is considered as a goodness-of-fit statistic to indicate the similarity

between the observed isotope peaks and the theoretical expected isotope distribution

of a peptide.

The “expected” isotope distributions were obtained by using a model similar to

the one presented in [45]. Note, however, that in our case the model was built on data

obtained from a complete peptide database, instead of using the averagine peptide
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proposed in [44]. In particular, an in silico digest of the IPI human protein database

version 3.65 was performed with trypsin as a protease. This yielded 3,802,880 pep-

tides in a mass range from 75 to 230,000 Da. Only unique amino acid sequences were

considered. After removing the redundant peptides, we obtained 517,572 peptides

in the aforementioned mass range. The set of unique peptides was further used to

compute the atomic composition. As a result, 258,813 non-redundant atomic compo-

sitions were found in the peptide database. The number of peptides with 0, 1, 2, 3,

4, 5, and 5+ sulfur atoms was equal to 102,986, 81,957, 43,977, 17,879, 6672, 2635,

and 2707, respectively. It should be observed that the set of peptides containing 1

and 2 sulfur atoms is substantial, constituting 31.6% and 16.9% of the total number

of peptides, respectively. For this reason the model described in (5.1) accounts for

these two subsets.

For each atomic composition, the aggregated isotopic distribution was calculated

using the BRAIN algorithm [39–41]. The obtained isotopic distributions were mod-

eled as a function of the monoisotopic mass to arrive at expected distributions. In

particular, the probabilities of occurrence of the aggregated isotope variants were

translated into isotope ratios (Section 3.8). Subsequently, a fourth-order polynomial

model of the form

R(x+ 1,m) = β0 + β1

( m

1000

)
+ β2

( m

1000

)2
+ β3

( m

1000

)3
+ β4

( m

1000

)4
(5.1)

was applied to data for each of the first three isotope ratios obtained for the isotopic

distributions resulting from the in silico digest of the IPI human protein dataset. Note

that the model was applied separately to subsets of data differing by the number of

sulfur atoms contained in the peptide, given the influence of sulfur on the isotope

distribution [54]. Estimates of the parameters β0, β1, β2, β3, and β4 for each isotope

ratio were obtained by maximum likelihood estimation (the estimates can be found

in the Appendix in Table A.2). The residuals of the polynomial model are further

investigated. Figure A.4 in the Appendix presents the histogram of the residuals based

on the parameters estimated from the polynomial model from the IPI human protein

dataset. The plots clearly indicate that we can assume the normal distribution for the

residuals of the polynomial model. In other words, a polynomial normal regression

could be assumed. As a result, a predictive model was obtained, which provided the

expected values of the isotope ratios for peptides with the monoisotopic mass m in the

mass range of 300 to 8000 Da. The expected values for the first three isotope ratios,

computed in the aforementioned manner, are shown in Figure 5.1 as solid lines.
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Figure 5.1: Fit of the fourth-order polynomial model to the in silico digest of the IPI

human protein database with the estimated parameters β0, β1, β2, β3, and β4.

The advantage of this approach, as opposed to the work described in [45], is that

the regression is performed on the entire peptide database instead of only a few data

points related to the average peptide model [44]. Such an approach leads to a more

realistic model and provides additional insight in the variation we might expect in

the isotope distribution of peptides. This variation is noticeable in Figure 5.1 from

the spread of the data points around the mean value for a given mass and should be

considered when applying a cut-off to the goodness-of-fit measure.

The peaks extracted from the full scan MS spectra are also transformed to the

consecutive ratios to make them compatible with the model defined in (5.1). The

observed ratios are then compared with the corresponding expected values, computed

from the polynomial model (see Figure 5.1), by using Pearson’s χ2 statistic:

χ2 =

2∑
x=0

[RE(x+ 1,m)−RO(x+ 1,m)]
2

RE(x+ 1,m)
, (5.2)

where RO(x+ 1,m) is the ratio of the (x+1)-th peak observed in a mass spectrum to

the x-th peak, while RE(x+ 1,m) denotes the corresponding expected ratio obtained

from the polynomial model. Unless specified otherwise, the calculation is performed

by using the values for the first three ratios (x ∈ {0, 1, 2}), representing the first four
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isotope peaks, including the monoisotopic one. The smaller the χ2 score, the better

the agreement between the observed and expected ratios, and the more likely that

the series of peaks is genuinely generated by a peptide.

5.4 Results

The proposed method of scoring the similarity between the observed series of peaks

and the pattern expected for a peptide was applied to the C. elegans N2 dataset. Note

that the dataset contained 20,581 tandem MS data, for which SEQUEST reported

19,881 PSM scores and MASCOT reported 8576 PSM scores above their internal

threshold. The scores were not filtered with respect to a FDR threshold to allow false

positive and false negative identifications in the data.

For the SEQUEST dataset, the mass and charge information in the target list of

the 19,881 precursor ions were used to extract the first four isotope peaks from the

full scan MS data. An error tolerance of 10 ppm was allowed on the mass location of

the isotope peaks. The rationale for extracting the first four isotopic peaks is that,

in the peptide-centric setting, peptides are predominantly in the range of 700 Da to

4000 Da. Consequently, it is reasonable to assume that the isotopic distributions of

these peptides are sufficiently characterized by the first four isotopic peaks.

Out of the 19,881 precursor ions, there were 10,015 cases for which four peaks

could be extracted from the spectrum. For these cases, the first three expected

isotope ratios were computed from the polynomial model and compared to the three

observed ratios. For 5961 ions, the last (fourth) isotopic peak was missing, most often

because it fell below the limit of detection, especially in the case of low-mass ions.

For these ions, the first two expected isotope ratios were computed and compared to

the observed ones. There were also 2801 precursor ions, for which the second and/or

third isotope peak could not be retrieved from the spectrum even with an increased

error tolerance of 20 ppm. These precursor ions were omitted from considerations,

leaving 17,080 PSMs available for the study. Surprisingly, when peak extraction

was performed with an error tolerance of 3 ppm, which is within the precision of

the Orbitrap class instrument, there were 112 precursor ions for which we could not

retrieve the monoisotopic peak. This number decreased to 33 for an increased error

tolerance of 20 ppm. These 33 precursor ions were also disregarded from the dataset.

In case of precursor ions for which multiple peaks occurred inside the tolerance

windows (1071 PSMs), all possible configurations of peaks leading to a four-peak

cluster were considered. Pearson’s χ2 was calculated for all of the configurations and
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the minimum value, i.e., the best fit, was retained.

Both Pearson’s χ2 statistic and the PSM score aim at quantifying the agreement

between experimental data and theoretical in silico-generated information. For this

reason, we would expect to see a negative correlation between the two scores, indi-

cating that high PSM scores (i.e., a good agreement with fragmentation for tandem

MS) would correspond to low Pearson’s χ2 values (i.e., a good agreement with gen-

uine peptide feature in the precursor scan), even though they both represent different

layers of experimental information, i.e., MS1 and MS2 levels, respectively.

Figure 5.2 presents a scatter plot of the values of the SEQUEST Xcorr score and

Pearson’s χ2statistic for the 17,047 precursor ions from the C. elegans N2 dataset. The

abscissa of the plot represents Pearson’s χ2 statistic and the ordinate represents the

SEQUEST Xcorr score. The inserts show the regions with small values of Pearson’s χ2

statistic that indicate a good agreement between the observed and expected isotope

patterns.

Figur 5.2 shows only a limited correlation between the SEQUEST Xcorr scores

and Pearson’s χ2 statistic. The plot illustrates that there are cases when a low Xcorr

score, e.g., below 2.5, is associated with a low value of Pearson’s χ2s statistic, e.g.,

below 0.1. These are cases when an apparently valid peptide-related precursor ion

was not identified. On the other hand, there are cases when a large value of Xcorr

score is associated with a high value of Pearson’s χ2 statistic, implying a positive

identification of a non-peptide-related ion.
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Figure 5.2: A scatter plot of the SEQUEST Xcorr score and Pearson’s χ2 statistic.
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These remarks indicate that, by systematically studying a scatter plot similar to

the one shown in Figure 5.2, it could be possible to identify cases when, e.g., the

identification is reliable or when it would require further scrutiny. To this end, the

plot in Figure 5.2 can be conceptually subdivided in four regions, corresponding to

the four possible combinations of low/high values of the SEQUEST Xcorr scores with

low/high values of Pearson’s χ2 statistic. This principle is presented in Figure 5.3.

In the next subsections, we will discuss characteristics of each of the four regions.

In particular, we will discuss arbitrarily selected tandem MS data to illustrate the

characteristics.

Figure 5.3: Four regions resulting from the scatter plot between the PSM scores and

Pearson’s χ2 statistic.

5.4.1 Region I

In Region I, high SEQUEST Xcorr scores are accompanied with low values of Pear-

son’s χ2 statistic. A high SEQUEST Xcorr score indicates that the observed fragment

masses match well with the theoretical fragment masses and hence lead to a positive

sequence identification. On the other hand, a low value of Pearson’s χ2 statistic in-

dicates that the observed series of MS1 peaks, linked to the precursor ion, is likely

to be genuinely generated by a peptide. This score pair can be taken as a sign of

a reliable identification. An example is the identification of the scan number 25,320

in Figure 5.4A). The figure displays the annotated product ion spectra for sequence

‘YLGAYLLATLGGNASPSAQDVLK’ with an Xcorr score of 6.5295 and ∆M = -0.06

ppm. Figure 5.4B presents the observed series of peaks corresponding to the precursor

ion. The close-up in Figure 5.4B shows the resulting observed (blue) isotope ratios,



46
Chapter 5. The use of the isotopic distribution as a complementary quality

metric to assess tandem mass spectra results

and the corresponding expected values (red). It can be seen that the observed values

of the ratios correspond remarkably well to the expected values, which is confirmed

by the low value of Pearson’s χ2 statistic equal to 0.03525.

5.4.2 Region II

In Region II, high SEQUEST Xcorr scores are accompanied by high values of Pear-

son’s χ2 statistic. A high SEQUEST Xcorr score suggests a good PSM. However, a

high value of Pearson’s χ2 statistic indicates that the observed series of MS1 peaks,

linked to the precursor ion, may not be genuinely generated by a peptide. There are

three possible explanations for this discrepancy. First, the high value of Pearson’s χ2

statistic could be due to overlapping peptides. This overlap does not mean that the

identification, indicated by the high PSM score, is wrong. A wide isolation window

could yield enough ions to be fragmented and identified correctly by the score algo-

rithm. This event could be assessed by calculating the extent of co-isolation based

on the full MS1 scan. Second, the high value of Pearson’s χ2 statistic can be due

to a problem with the monoisotopic mass determination [49]. This case is illustrated

by the data for the scan number 25,651. Figure 5.5A displays the annotated prod-

uct ion spectra for sequence ‘LcYVALDFEQEMATAASSSSLEK’ with an Xcorr score

of 5.9267 and ∆M = -0.89 ppm (‘c’ means carbamidomethyl modification in the se-

quence). Figure 5.5B presents the observed series of four peaks corresponding to the

precursor ion, together with the observed and expected isotope ratios (inset), produc-

ing the high value of Pearson’s χ2 statistic equal to 2.53364. The value suggests that

the algorithm for monoisotopic mass determination might have selected the wrong

peak. In such cases we may be wary about the fragment annotation, because the

peptide database may have been filtered according to the assigned monoisotopic mass

with an error tolerance of 5 ppm. The one Da discrepancy will most likely lead to a

false positive identification. Running the mass spectrum with a corrected monoiso-

topic mass, similarly as is done in Bullseye [49], would resolve the issue. Finally,

the third possible explanation is simply a false positive identification on a nonsense

tandem mass spectrum, as might be the case when inspecting the corresponding frag-

ment spectrum in Figure 5.5A. In conclusion, PSMs in region II should be treated

as questionable and further investigated.
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Figure 5.4: Region I: Panel A) displays the fragmentation spectrum with scan id 25320

of the precursor ion in Panel B) eluted at a retention time of 122.33 min. The isola-

tion window is indicated in yellow and centered on 1162.13 m/z. The monoisotopic

mass, indicated by the blue bar, is equal to 1161.621 m/z with a charge state of z =

2. The close-up displays the observed and expected isotope ratios (Panel B).
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Figure 5.5: Region II: Panel A) displays the fragmentation spectrum with scan id

25651of the precursor ion in Panel B) eluted at a retention time of 123.90 min.The

isolation window is indicated in yellow and centered on 1276.09 m/z. The monoiso-

topic mass, indicated by the blue bar, is equal to 1275.589 m/z with a charge state of

z = 2 .
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5.4.3 Region III

In Region III, low SEQUEST Xcorr scores are accompanied by high values of Pearson’s

χ2 statistic. This region suggests a bad identification, most likely based on a non-

peptide molecule. An example is provided by the data for the scan number 24,141

in Figure 5.6. A Pearson’s χ2 statistic of 2.65587, which implies a bad agreement

between the theoretical and observed isotope patterns, is accompanied by the product

ion spectra for sequence ‘ DVFFccNmcPYKAPTmNRcQR’ with a weak Xcorr score

equal to 0.5519 and ∆M= -2.97 ppm (‘m’ means methionine oxidation modification in

the sequence). There can be several explanations for this case: overlapping peptides,

co-isolation, atypical fragmentation, an error in the monoisotopic mass determination,

etc. Alternatively, the DDA-approach may have selected a noisy peak for the tandem

MS interpretation. In conclusion, PSMs in region III should be treated as unreliable

and discarded. Alternatively, in the case of a defect monoisotopic mass determination,

the database-search could be repeated after correction of the monoisotopic mass.

5.4.4 Region IV

Finally, in Region IV, low SEQUEST Xcorr scores are accompanied with low values

of Pearson’s χ2 statistic. This indicates a bad identification, but one that is most

likely based on a peptide molecule. An example is provided by the data for the scan

number 17,496 in Figure 5.7 with a value of Pearson’s χ2 statistic equal to 0.00227

and the annotated product ion spectra for sequence ‘EEPTDFSEENLVKK’ with a

low Xcorr score equal to 0.8904 and ∆M= -0.374 ppm. Note that the intensity of the

precursor ion is large and it is well discernable from the noise. There can be several

reasons why the PSM score fails to identify the tandem mass spectrum in this case. A

simple explanation is that the correct peptide sequence is not present in the database,

or that a particular post-translational modification is not accounted for in the search.

Another possibility is that the peptide has an atypical fragmentation pattern, which

results in fragment ions not predicted by the score algorithm, as could be the case in

the fragment spectrum in Figure 5.7A. Manual or de novo interpretation of this set of

peptides may address this problem. An enhanced fragmentation model that predicts

more realistic fragment masses might solve the issue as well [65, 66]. Identifications

situated in Region IV would be suited for manual or de novo reevaluation.
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Figure 5.6: Region III: Panel A) displays the fragmentation spectrum with scan id

24141 of the precursor ion in Panel B) eluted at a retention time of 117 min. The

isolation window is indicated in yellow and centered on 930.38 m/z. The monoisotopic

mass, indicated by the blue bar, is equal to 929.715 m/z with a charge state of z = 3.



5.4. Results 51

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

consecutive isotope ratio

ra
ti
o

observed

expected

B)

A)

Figure 5.7: Region IV: Panel A) displays the fragmentation spectrum with scan id

17496 of the precursor ion in Panel B) eluted at a retention time of 91.78 min. The

isolation window is indicated in yellow and centered on 832.91 m/z. The monoisotopic

mass, indicated by the blue bar, is equal to 832.904 m/z with a charge state of z = 2.
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5.5 Conclusions

It is generally accepted that scoring algorithms are essential to support the inter-

pretation of the tremendous amount of tandem MS data generated by current mass

spectrometers. On the other hand, it still occurs that the score algorithm is not

able to discern peptides from noise based on the observed fragment spectra or that

it simply fails to identify a good quality tandem mass spectrum. To address this

problem, we propose to compare the isotope patterns of observed parent ions in the

full MS scans with the expected isotopic distribution. Pearson’s χ2 statistic is well

suited to indicate the agreement between the observed isotope pattern [67] and the

one that is expected for a peptide with a similar monoisotopic mass. By merging this

information with the database match score, additional insight in the reliability of the

identification can be obtained.

The proposed approach will not resolve issues concerning FDR or deep-mining of

tandem MS annotations for enhanced recovery of PSMs below the detection thresh-

old. The approach solely aims at providing the users with an additional and different

perspective on the data, extracted from a separate data layer, i.e., full-scan MS spec-

tra. The definition of the four regions, depicted in Figure 5.3, can support the user

to make decisions about the quality of the PSM. Tandem MS data resulting in scores

situated in Regions I and III are clear-cut cases of go and no-go, respectively. On the

other hand, scores from Regions II and IV should prompt further investigation. For

example, PSMs in Region II could be critically assessed because of the bad resem-

blance with a peptide pattern observed in the full scan MS. Additionally, PSMs which

do not pass the selection criteria could harvest tandem MS data for potential positive

identification. The latter set is mainly situated in Region IV given the presence of

peptidic patterns in full scan MS data and could be selected for further interpretation

(manual, de novo, or with different modifications).

For the practical purpose of implementing the outlined strategy, one should define

the thresholds defining the four regions. It is difficult to provide any general solution

for this aspect. The threshold for Pearson’s χ2 statistic will depend on several factors.

An important factor is the MS platform used, as different instruments generate

a different amount of measurement error for the observed peak intensities. For ex-

ample, trap instrument can distort the isotope profile due to space-charge effects, as

pointed out in [68]. Ion statistics also play a significant role when comparing isotopic

distributions. Complex peptide mixtures combined with limited ion storage capacity

in, e.g., ion traps, can lead to poor ion statistics of the isotopic representations for

some peptides, while more abundant ones will be nicely presented. Spectral accuracy
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is an important requirement for the procedure proposed in this manuscript.

On top of the instrument variability, the natural variability in the atomic composi-

tion of molecules with a similar mass will be reflected in the isotopic distribution.

Another aspect, related to the model used to predict the expected isotope pattern, is

that the model does not account for post-translational modifications. Indeed, some

modifications can alter the isotope profile of molecules severely, as is the case for, e.g.,

bromine or chlorine. As the proposed method adopts a peptide model that is based

on the relation between mass and the atomic composition, it can be assumed that

PTMs that are composed of C, H, N, O, and S are partially covered by the model. A

possible extension of the model could incorporate modifications that are used by the

search strategy to further scrutinize at the MS1-level whether the observed isotope

profile is likely to be generated by modified peptides.

Taking into account the aforementioned sources of variation and factors, to obtain

a concrete value of a threshold, one might need to run a designed experiment with a

known mixture of peptides and to compare the distributions of Pearson’s χ2 statistic

values obtained for the peptides and for randomly-selected peak clusters. Based on

such a comparison, a value could be selected that offers a trade-off between the false-

positive and false-negative assignments of peak clusters as peptide or non-peptide

generated. A threshold value of, e.g., 0.1, could be suitable for our study.

A concept related to the method considered in this chapter is used by the software

program Bullseye [49]. Bullseye also performs a post-acquisition investigation of the

targeted mass region in a full scan MS. However, the additional information is used to

improve the efficiency of a database-search by accurately determining the monoiso-

topic mass of the selected parent ions for tandem MS, instead of providing an ad-

ditional parameter for the evaluation of the database-searches. For this purpose, it

uses persistent isotopic distributions observed in the full scan LC-MS data. A war-

rant monoisotopic mass relieves the need for a wide search space, i.e., less candidate

peptides, as such, the efficiency of the database-search alleviates. On the other hand,

the confidence in the identification increases because the accurate monoisotopic mass

information can be used to filter-down the obtained PSM identifications. The method

proposed in this chapter uses the MS data in a different way as compared to Bullseye.

It applies the concept of the isotopic distribution to interpret the targeted region of

full scan MS. However, instead of focusing on accurately determining the monoiso-

topic mass, as in Bullseye, the proposed method uses Pearson’s χ2 statistic to evaluate

whether the observed peptidic features are legitimate.

Another relevant idea is the concept of a peptide window in which the accurate

monoisotopic mass of a peptide should reside, [69]. We have performed a related
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analysis (see Appendix A.3) starting from the 19,881 tandem MS scans that were

identified by SEQUEST. Regions I and II (see Figure 5.3) were found to be enriched

for molecules outside the peptide window, while region III was found to be depleted.

Finally, it is worth mentioning that the analyses presented in this chapter were also

conducted using MASCOT E-values. The results are presented in the Appandix

(see Figure A.5). The obtained conclusions are similar to those presented for the

SEQUEST Xcorr.



Chapter 6

Assessing the agreement

between peptide assignments

for different search engines

6.1 Introduction

The data stream generated by shotgun proteomics approach (Section 3.7) is tremen-

dous and automated annotation strategies have been devised to plough through the

data. The variety of correlative search algorithms for peptide identification using

MS/MS spectra is quite large [24, 70]. The variation of principles used in the search

engines causes variation in peptide identifications. Thus, it seems that the choice of

the search algorithm plays a role in the identification process of peptides and their

corresponding proteins [71]. To improve the robustness and confidence of peptide and

protein identification, recent studies suggest the use of consensus-based approaches

that combine the results from two or more search engines. Most of these studies

have shown that a consensus approach can greatly enhance mass spectral coverage

and specificity, compared to the use of a single search algorithm [72–79]. For ex-

ample, in [80], seven database search methods were studied using a composite score

approach based on a calibrated expected value. It was concluded that, because of

the possible weak correlation between different methods, accuracy and confidence of

peptide identification can improve if different search engines are combined. Critical

factors for the evaluation of peptide identification are which individual method (e.g.,

55
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MASCOT, SEQUEST, X!Tandem) should contribute to a consensus method and how

the method should be defined. A recent overview of the methods combining multiple

search engines is provided in [76].

Besides improving the confidence, sensitivity, and specificity of peptide identifi-

cation, it is of importance to measure the degree of agreement between the search

algorithms regarding their peptide assignments. In this chapter, we employ Cohen’s

kappa coefficient to measure the agreement between the identification of peptide se-

quences obtained by SEQUEST and MASCOT. The coefficient has been used for

decades by, e.g., pathologists to score concordance of grading of tissue slides [81]. To

illustrate the concept of inter-rater reliability, we used a dataset of our benchmark

organism described in Section 2.2.

6.2 Implementation

The main question that we tried to address was whether there was an agreement in

terms of the PSM assignments between different search engines. The analysis of inter-

rater agreement often provides a useful means of assessing the reliability of a rating

system as is the case in many clinical examples, e.g., histological grading of cancer

tissues. Various approaches have been proposed to study inter rater agreement. Per-

centage agreement [82] have traditionally been used to summarize observer agreement.

It is equivalent to computing the proportion of individuals, in our case spectra, that

received the same rating by both raters (in our case search engines). Although percent-

age agreement has some advantages that include computational simplicity and ease

of interpretation [83], this statistic does not allow for the fact that a certain amount

of agreement can be expected on the basis of chance alone. Cohen [84] proposed a

measure of agreement that corrects for chance agreement. Specifically, Cohen’s kappa

coefficient measures the chance-corrected agreement between two raters (e.g., search

engines) who independently classified the same n objects (e.g, spectra) into one of

the k non-overlapping categories (e.g., non-redundant peptide sequences or protein

accession numbers as defined by the protein database).

Table 6.1 presents the set up of a k× k table for the classifications. let pij , be the

proportion of objects (spectra) that were placed in the i-th category by the first rater

and the j-th category by the second rater (i, j = 1, ...,K). Also, let pi. =
∑
j

pij denote

the proportion of objects (spectra) placed in the i-th row/category (non-redundant

peptide sequence) by the first rater (search engine), and let p.j =
∑
i

pij denote the

proportion of spectra placed in the j-th column/category by the second rater (search
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engine). Then, the kappa coefficient is defined as follows:

κ = (po − pe)/(1− pe) (6.1)

where po =
∑
i

pii denotes the observed proportion of agreement between two

raters (the proportion of spectra that received the same sequence annotation by the

two search engines ,i.e., diagonal of the table), while pe =
∑
i

∑
j

pi.p.j is the proportion

of agreement expected by chance.

Table 6.1: Classification of spectra into k non-redundant peptide categories by two

search engines.

MASCOT

SEQUEST 1 2 k Total

1 p11 p12 · · · p1k p1.

2 p21 p22 · · · p2k p2.
...

... · · ·
...

...

k pk1 pk2 · · · pkk pk.

Total p.1 p.2 · · · p.k 1

Possible values of κ range from -1 to 1, with the value of one indicating a perfect

agreement. The value of zero indicates that the observed agreement is exactly what

would be expected by chance, i.e., if the raters (search engines) had randomly assigned

the ratings (sequence annotations). A value of Cohen’s κ smaller than zero indicates

an agreement worse than chance agreement as in the case when class labels would have

been swapped. The strength of agreement is interpreted using the categories proposed

in [81] as follows: 0.00 − 0.20 = slight agreement, 0.21 − 0.40 = fair agreement,

0.41− 0.60 = moderate agreement, 0.61− 0.80 = substantial agreement, 0.81− 1.00

= almost perfect agreement.

In our study of SEQUEST and MASCOT, the resulting peptide matches, i.e.,

unique modified peptide sequences proposed by any (or both) search programs, define

the rows and columns as in Table 6.1. The cells of a Table 6.1 contain the number

of times a particular combination of sequences was observed for the SEQUEST and

MASCOT identification. Based on the table, percentage agreement and Cohen’s

κ coefficient are calculated and interpreted as a degree of agreement between the

SEQUEST and MASCOT search algorithms.
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6.3 Results

In general, database-searching engines identify only a proportion of the MS/MS spec-

tra of digested proteins. Figure 6.1 presents this proportion of the experimental

MS/MS spectra identified by SEQUEST and MASCOT for the C. elegans dataset

when FDR filtering is disabled. Several causes contribute to this phenomena, such

as unexpected modifications, aberrant fragmentation patterns, sequence database in-

accuracies, etc. Another nuisance factor are differences in the implementation of the

search methods.

Figure 6.1 illustrates that SEQUEST and MASCOT are very different algorithms

when it comes to reporting the search results. Due to differences in the implementa-

tion, SEQUEST reports a score for every tandem mass spectrum, even if this score is

very low. In contrast, MASCOT adopts an internal reporting threshold to immedi-

ately eliminate low quality results. The scheme is explicitly coded into the MASCOT

algorithm and cannot be adjusted by the user. In total, there were 20,233 (99%)

PSMs by SEQUEST out of the 20,482 MS/MS scans. Among them, 12,128 (59%)

were also identified by MASCOT (Figure 6.2). The histogram of the scores for the

20,233 peptides identified by SEQUEST is presented in Figure 6.3a. The histogram

in Figure 6.3b displays the SEQUEST score for the spectra which did not receive a

MASCOT annotation. When comparing Figure 6.3b to Figure 6.3a, it can be seen

that the sequence identification omitted by MASCOT receive mainly low SEQUEST

XCorr scores. This observation justifies the internal reporting threshold of MASCOT,

but complicates the analysis of agreement.

(99%)

(1%)

(59%)

(41%)

Unknown Spectra Unknown Spectra

Identified by
SEQUEST

Identified by
MASCOT

Figure 6.1: The proportion of the unknown spectra and identified spectra by SEQUEST

and MASCOT.
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In particular, when analyzing the agreement between the two search engines,

we have to account for the cases when missing observations occur, i.e., a certain

spectrum receives a (confident) sequence annotation for only one of the search

engines. The fact that there are tandem mass spectra not identified by MASCOT

should be taken into account when computing the value of Cohen’s κ.

Figure 6.2: Venn diagram of defined spectra made by SEQUEST and MASCOT.
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Figure 6.3: (a) Histogram of scores for uniquely identified peptides by SEQUEST

with Xcorr scores. (b) Histogram of SEQUEST Xcorr for non-identified peptides by

MASCOT.
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Toward this aim, one can try to assess the possible range of agreement given various

scenarios for the non-identified spectra. In particular, the agreement is accounted

for by means of a sensitivity analysis that considers the concordance between the

search engines under two extreme case scenarios. In the “conservative” scenario, we

assume that the unannotated spectra by MASCOT would completely disagree with

the SEQUEST findings. Therefore, we distribute the spectra with missing annotations

randomly among the possible categories in the joint table. Note that in this procedure

we prevent the possiblity of a chance agreement. In the “liberal” scenario, we assume

that the spectra with missing annotations do agree with the SEQUEST findings. By

considering the two scenarios, we place an upper and a lower limit on the value of

Cohen’s κ.

Table 6.2: Percentage agreement and Cohen’s κ coefficient calculated for agreement.

Percentage Agreement Chance Agreement Cohen’s κ coefficient

Observed agreement 0.7827 0.00012 0.7826

Minimum agreement 0.4691 0.00006 0.4691

Maximum agreement 0.8697 0.00012 0.8696

Table 6.2 shows the percentage agreement, chance agreement and Cohen’s κ coef-

ficient for three scenarios, i.e., ignoring the non-identified spectra (“Observed agree-

ment”), and assuming that the spectral are discordantly (“Minimum agreement”) or

concordantly identified (“Maximum agreement”). Table 6.2 indicates that the prob-

ability of a chance agreement is very low and does not contribute much to the kappa

statistic in this case. This is understandable, as the number of potential sequences

that can be selected for an identification is very large. The “observed” agreement,

calculated without taking into account the non-identified Mascot tandem spectra,

could be classified as “substantial” agreement. However, the value of the κ coefficient

underlying this conclusion should be interpreted with caution, as it is obtained by

disregarding the missing data. In fact, the observed agreement in Table 6.2 assumes

that the agreement for the missing data is equivalent to the agreement of the observed

portion. However, if we assume that, for the non identified spectra, the two search

engines would be more likely to give discordant identifications, then the obtained

value of the κ coefficient suggests only a “moderate” agreement before the identifica-

tions for the two search engines. On the other hand, if we assume that, for the non

identified spectra, the two search engines would be more likely to give concordant

identifications, then the obtained value of the κ coefficient suggests an “almost per-
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fect” agreement. Unfortunately, given that we have not got MASCOT identifications

for the non identified spectra, we cannot make any more definitive statements other

than those provided above.

6.4 Conclusions

In this chapter, we propose to apply Cohen’s κ to analyze rater reliability in the

context of database search engines. Assessing the agreement between SEQUEST

and MASCOT is obtained by considering a sensitivity analysis that is connected to

different interpretations: minimum agreement and the maximum agreement. The

results of our study indicate that, in general, there is at least moderate agreement

between the peptide identification results obtained for SEQUEST and MASCOT.

Another observation, is that the percentage of chance findings is small, which is

due to the high number of categories (non-redundant peptide sequence) to which a

spectrum can be assigned. In fact, the chance agreement seems ignorable as it does

not influence the kappa score substantially. However, this conclusion refers to the level

of peptide identification. When assessing the rater reliability at the level of proteins,

the number of categories would decrease and the chance findings would become more

likely.

The scores obtained for SEQUEST and MASCOT were not filtered with respect

to a FDR threshold. However, we can compare the two search engines on the set

of confident peptide spectrum identifications, i.e., we filter out peptide identification

results that do not comply with a FDR of 5% according to the target decoy approach.

We could suggest that a combined SEQUEST and MASCOT search would not yield

more peptide identifications when an alternative measure for peptide confidence could

be developed. Moreover, the addition of another search engine will definitely be

informative for the comparison of the agreement of the peptide assignments which

can be a subject for future research.
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Chapter 7

Introduction

Genomics is the study of the genome of an organism - its entire genetic material

and hereditary information in the form of DNA, RNA, genes and chromosomes. It

concentrates on understanding the structure and function of an organism’s genetic

material from the molecular level upwards, including interactions between genes, in-

teractions between genes and the proteins they produce, and interactions between

genes and environmental factors. It has obvious links to proteomics, which focuses

on understanding the structure and function of the proteins produced by the genome.

In the second part of this dissertation, we focus on the genetic dissection of pheno-

typic traits, also known as gene-mapping. This chapter provides a brief overview of

genomics and principles of gene-mapping.

7.1 Chromosomes, DNA, and genes

The genetic information transmitted from parent to offspring is stored on chromo-

somes in the nucleus of eukaryotic cell. Chromosomes are threadlike structures that

contain the genetic information. The number of chromosomes varies from species to

species. In humans, for example, each cell normally contains 23 pairs of chromo-

somes. There are two different types of cells in eukaryotic organisms - haploid cells

and diploid cells. The difference between haploid and diploid cells is related to the

number of chromosomes that the cell contains. Diploid cells have two homologous

copies of each chromosome, while haploid cells such as gametes only have one copy of

each chromosome.

Double-stranded deoxyribonucleic acid (DNA), the basic biological material of

inheritance, is a double-helix molecule and has two strands running in opposite di-
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rections to each other. (There are some examples of viral DNA which are single-

stranded). Each strand is a polymer of complementary subunits called base pairs:

Adenine (A), Guanine (G), Cytosine (C) and Thymine (T). Each strand has a back-

bone made up of (deoxy-ribose) sugar molecules linked together by phosphate groups.

Each sugar molecule is covalently linked to one of 4 possible bases. Complementary

base pairing occurring in double strands of DNA means that the bases pair up in a

specific way, i.e., Adenine binds to Thymine and Cytosine binds to Guanine through

weak hydrogen bonds (Figure 7.1).

Each protein is encoded by a gene (a particular sequence of DNA nucleotides that

specify how a single protein is to be made). Specifically, the order of nucleotides

within a gene specifies the order and types of amino acids that must be put together

to make a protein. In the process called transcription the gene is copied to messenger

RNA (mRNA), which contains the required information of a particular protein. After

the transcription is completed, the mRNA-molecules are translated into a polypeptide

during polypeptide chain synthesis. The DNA sequence in a gene consists of coding

and non-coding regions, i.e., exons and introns, respectively. Exons code for proteins,

whereas introns do not code for proteins.

7.2 Genetic variation and meiotic recombination

Variation in the order of nucleic acids in a DNA molecule allow genes to encode

enough information to synthesize the huge diversity of different proteins and enzymes

needed for life. In addition to differences between genes, the arrangement of nucleic

acids can differ between copies of the same gene. This results in different forms of

individual genes. Variation in nucleic acid sequences can arise from mutations. The

most common mutation is a base pair substitution, for instance, a single base pair

T is replaced by A. Mutations may also involve the insertion or deletion of genetic

materials, at the level of a few base pairs or even whole chromosomes.

Distinctive forms of a gene are called alleles, which are located at the same

position, or genetic locus, on a chromosome but have an altered function. One gene

might have many allelic variants. At any given locus, each diploid individual has

two alleles (one allele for each of the two homologous chromosomes). If an individual

has the same allele for both homologous chromosomes, the individual is homozygous

for that allele. If an individual carries two different alleles, the individual is said to

be heterozygous at that locus. The pair of alleles at a locus is referred to as the

genotype.
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Figure 7.1: Two strands of DNA are aligned anti-parallel to each other (panel a).

Complementary primary nucleotide structures for each strand (panel b). Taken from

[85].
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Genetic variation together with environmental variation contribute to the organ-

ism’s phenotype, the physical appearance of the genotype as it relates to a certain

trait. The phenotypic traits of the different organisms can be of two kinds: qualitative

and quantitative. The qualitative characteristics have distinct (separate) phenotypic

classes. Classic examples are the Mendelian traits observed for pea-seed shape (wrin-

kled form versus smooth round) and blood group in humans. Usually, a single gene

or small group of genes with little or no environmental modifications control quali-

tative traits. Quantitative traits, however, occur as a continuous range of variation.

Some examples of quantitative traits include height and weight. Quantitative traits

are influenced by genetic and environmental factors. A larger group of genes control

quantitative traits as compared to qualitative ones. When multiple genes influence a

trait, we can also describe it as a “polygenic trait”. A genomic region that influences

a quantitative trait is referred to as a quantitative trait locus (QTL).

The resulting offspring of sexually reproducing organisms has sometimes allele

combinations which are not genetically identical to either parent or their siblings.

This novel set of genetic information can be the result of recombination (crossing-over)

during “meiosis”. Meiosis is a process of eukaryotic cell division that produces haploid

sex cells or gametes from diploid cells. During meiosis, homologous chromosomes pair

up and crossing-over occurs. The location where crossing-over occurs is referred to

the chiasma. At this location, part of the chromosomes is exchanged and recombinant

chromosomes with new allele combinations are created. A schematic diagram of this

process is presented in Figure 7.2.

7.3 Genetic linkage

In the mid-1800’s, Mendel suggested that alleles of each gene separate independently

from the other genes. However, in the early 1900s, Bateson and Punnett [86] realized

their results did not conform to Mendel’s law of independent assortment. Based on

these findings, they proposed that certain alleles must somehow be linked with one

another. The genes that are located on the same chromosome, and do not inherit

independently. The understanding of genetic linkage was expanded by the work of

Thomas Hunt Morgan on Drosophila melanogaster. In studying within-chromosome

recombination, Morgan [87] proposed that the farther apart two genes were located

on a chromosome, the more likely that crossing-over occurred. Alfred Sturtevant [88]

took this argument one step further and constructed the first genetic map (also known

as linkage map) of a chromosome in 1913.
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Figure 7.2: Schematic diagram of meiosis. Taken from [89].
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He proposed that the frequency of recombination between two genes can be used

as measure of the chromosomal distances separating them. The (genetic) distance

is expressed in units called genetic map unit (m.u.), or a centimorgan (cM). The

recombination frequency of 1 percent corresponds to one centiMorgan. Sturtevant

suggested that genes can range from being perfectly linked (recombination frequency

= 0) to being perfectly unlinked (recombination frequency = 0.5) when genes are on

different chromosomes or genes are separated very far apart on the same chromosome.

A map function is a mathematical relationship that converts map distance (d,

measured in Morgans) to a recombination frequency (θ). The most widely used is the

Haldane map function [90]. The Haldane function is based on the assumption that

cross-overs occur at random independently of one another. The resulting function is:

θ =
1

2
(1− e−2d), (7.1)

which is derived under the assumption that the locations of cross-overs follow a Pois-

son process.

7.4 Molecular markers

Specific regions on the DNA, both in the coding as well as non-coding regions, can

be identified as markers. A molecular marker (genetic marker) is a fragment of DNA,

ranging from 1 to 60 base pairs (bp), that is associated with a certain location within

the genome. In the context of gene-mapping to infer the position of a gene that

contributes to a specific trait, known chromosomal locations such as genetic markers

play an important rule.

7.4.1 Single nucleotide polymorphisms

A SNP is the most common type of genetic marker. It is defined as a single base

pair change in a DNA sequence. SNPs occur in non-coding regions more frequently

than in coding regions. SNPs which occur in these non-coding regions does not have

a direct genetic effects on disease or trait, but within a coding region, they can be

disastrous.

7.5 Construction of genetic maps and QTL analysis

One of the main uses of molecular markers has been to construct genetic or linkage

maps. The position of an unknown gene is inferred by detecting linkage between that
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gene and genetic markers. Linkage maps indicate the position and relative genetic

distances between markers along chromosomes. One important use of linkage maps is

to identify chromosomal locations containing major genes and QTL associated with

traits of interest. QTL-mapping is a statistical analysis linking phenotypic informa-

tion (the trait of interest) with genotypic data (segregation of molecular marker over

the individuals) to provide specific genomic regions linked with the studied trait. A

QTL-mapping study needs a population with as much variation as possible for the

trait of interest. The mapping population is a cross arranged between two inbred

lines which differ substantially in the quantitative trait of concern. Assume there are

two parents having alleles QQ and qq at a certain locus on the chromosome. The

offspring of these parents is called the F1 generation and have the allele Qq.

The purpose of mapping method is to find the QTL allele Q or q with unknown

locus. All we know are markers along the chromosome. Recombination occurs when

alleles cross over to another chromosome and recombination frequency can be used

as a measure of closeness between two genes or between a gene and a marker. If

the recombination frequency between marker and a QTL is small, then that marker

is closely linked to a QTL. If the recombination frequency is large there may be no

linkage between a QTL and the marker. The more markers, the more precise the

genetic map is and the more accurate the mapping can be.

7.6 DNA sequencing

DNA sequencing is the act of determining the nucleotide sequence of given DNA

molecules.

In 1977, two methods for sequencing DNA were introduced. One method is re-

ferred to as Maxam-Gilbert sequencing [91] and the other approach, developed by

Frederick Sanger [92], is called the chain termination method (also called dideoxy

sequencing). These approaches are used to generate DNA fragments subjected to

polyacrylamide gel electrophoresis to separate strands of DNA that differ in size

by as little as one base pair. The Maxam-Gilbert method is based on nucleotide-

specific cleavage by chemicals and is best used to sequence short nucleotide polymers

(usually smaller than 50 base-pairs in length). This method is rarely used as it is

time-consuming and requires handling of toxic chemicals. Sanger et al., [92] devel-

oped an enzymatic method based on the use of chain-terminating dideoxy nucleotides

(ddNTPs). This method, on the other hand, offered overall higher efficiency after

a series of optimizations, in particular switching from radioactive to dye labelling of
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nucleotides and using capillary gel electrophoresis instead of slab gels. This technique

dominated DNA sequencing for decades.

However, Sanger method had some disadvantages. It was rather labor, reagent,

time-consuming, and expensive. The demand for cheaper and faster sequencing meth-

ods has increased greatly. Consequently, the second-generation sequencing methods,

or next-generation sequencing (NGS) methods has been developed. NGS performs

massively parallel sequencing and decrease the time and cost of sequencing profoundly.

Numerous NGS platforms have been launched [93, 94]. The first three platforms,

which currently are still the most prevalent ones, are: 454 [95], an array-based py-

rosequencing approach, Illumina [96], and SOLiD [97]. Each of these platforms have

their own methods and ways of sequencing [98]. However, some fundamental features

they share (Figure 7.3) are as follows:

• cell-free template amplification using emulsion PCR or solid phase amplification;

• immobilization of templates to some solid structure, which allows massive par-

allel processing ;

• imaging of nucleotides incorporated into synthesized molecules (sequencing-by-

synthesis) or probe-hybridisation to templates (sequencing-by-ligation).

In the next subsection, a brief overview of the Illumina platform is given, as it is the

most relevant to this dissertation.

7.6.1 Illumina

Illumina sequencing begins with the attachment of a specific adapter sequence to the

DNA fragments. The fragment library is poured onto a solid surface, flow cell. Frag-

ments get attached to the flow cell surface through binding to complementary adapter

sequence and clusters of copies of the same DNA fragment are built by bridge amplifi-

cation. The procedure then continues in a cyclic fashion, incorporating one nucleotide

per cycle in each fragment cluster. All four nucleotides are added simultaneously, and

the appropriate nucleotide is added to each fragment. Nucleotides carry reversible

terminators. Furthermore, each nucleotide is fluorescently labeled. After fluorescence

imaging, reactants are washed away, terminators are chemically removed, and another

sequencing cycle can take place. At the end, all reads have the same length, as the

number of sequencing cycles is the same for each cluster
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Figure 7.3: Work flow of next-generation sequencing. Taken from [99].
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7.7 NGS analysis pipeline

NGS technology has become a prominent tool in biological and biomedical research.

However, NGS data analysis and the sequencing error-rate remain a major challenge.

Different sequencing platforms generate various types of error. For example, 454

system has high error rate in insertion and deletion (indel) calls, while for the Illumina

platform, indels are rare and the major sequencing errors come from miscall (with

a typical rate of ∼1%) [100]. In addition to identifying nucleotides, base-calling

algorithms [100, 101] are also provided by NGS sequencers. This algorithm produces

a quality score for each base indicating the probability of an incorrectly called base.

After the NGS reads are generated, the next step is aligning the reads to a reference

genome or doing de novo assembly to reconstruct the original sequenced genome. This

step is required as incorrectly aligned reads may lead to errors in SNP calling.

SNP or variant calling in the context of the NGS data analysis can be defined as the

process of finding bases in the NGS data that differ from the reference genome. SNP

calling is one of the most important applications of the NGS, with the challenge of

separating the real variants from sequencing errors. SNP calling in early NGS studies

is usually based on the simple filtering of quality scores in which only high-confidence

bases would be kept. A commonly used cutoff is a Phred-type quality score of 20.

However, this filtering based methods will lead to false negatives for heterozygosity

calling in low to intermediate coverage datasets. Due to this disadvantage, most

SNP calling methods use Bayesian algorithms to estimate the probability of calling a

variant at a specific position.
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The analysis of polygenetic characteristics for mapping QTL has received a substantial

amount of consideration in molecular genetics over the last decades. QTL analysis

(see Section 7.5) links two types of information - phenotypic data (trait measure-

ments) and genotypic data (usually molecular markers) - in an attempt to interpret

the genetic basis of variation in traits and link certain phenotypes to specific regions

of chromosomes. It requires reliable scoring of many genetic markers covering the

entire genome. The advent of high-throughput technologies such as NGS [99] pro-

vides a new way to score large numbers of genetic markers. Recently, bulk segregant

analysis (BSA, [3]) has been coupled with a high-throughput sequencing method that

allows for simultaneous identification of genetic loci that contribute to the particular

trait or phenotype of interest [102, 103]. QTL-mapping relies on the principle of co-

segregation, i.e., molecular markers that are in close proximity of a specific gene will

have a higher probability to be inherited together than markers that are not in close

proximity of this gene (see Section 7.5).

The use of suitable statistical methods is always pivotal to analyze the genetic

basis of phenotypic traits. A limited number of methods suited for gene-mapping

75
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based on markers identified by NGS have been proposed [103–108]. The methods are

applicable to various quantitative traits with different levels of genetic complexity.

As an example, in [105], a method for BSA using NGS data based on the experi-

mental design with an F2 population was proposed. In this method, each individual

was measured for the trait of concern and subsequently two pools, i.e., with and

without the trait, were selected. For each identified SNP, a G-test-statistic (8.1) was

calculated for each pool using the observed number of reads.

G = 2

4∑
i=1

ni ln
ni

n̂i
, (8.1)

Where ni is the observed count and n̂i is the expected count of a 2×2 contingency

table under the null hypothesis of no QTL in the vicinity of the selected SNP. The

test-statistic was further averaged across neighboring SNPs. This approach was based

on the smoothing version of the G-statistic using a smoothing kernel within a prede-

fined window .The obtained p-values from the test-statistic detect the regions with

contiguous significant SNPs. These regions were defined as a potential gene loci.

MULTIPOOL, a probabilistic model was proposed in [106]. In this model, a dy-

namic Bayesian network was applied to map genetic elements from pooled sequenc-

ing studies. A chromosome was first partitioned into discrete block with equal size.

To each block, a hidden state reflecting the pool allele frequency (unobserved allele

frequency) was assigned. Each block, i, may emit the observed allele frequency yi

according to its hidden state xi. It was assumed that there is at most one casual

block per analyzed chromosome. The value of the unobserved allele frequency was

determined by the number of individuals N in a pool and the population allele fre-

quency p. For each block a value for p was estimated and all estimated values for p

were tested against the null hypothesis of no association, p = 50%. If the population

allele frequency p of a chromosomal region was significantly different from 50%, these

segments could be identified as a potential gene loci related to the trait of interest.

In [108], a semi-parametric approach to map simultaneously gene loci for high-

ethanol tolerance of yeast S. cerevisiae (see Section 2.3) based upon SNPs as molecular

markers was suggested. In this approach, for each identified SNP, observed mismatch

frequencies between the reads of the offspring and the parental reference strain were

modelled by a binomial distribution with the probability of the difference between the

parental and offspring strain. Genomic loci associated with the QTL were detected

by analyzing trends in the mismatch frequencies along the genome. More specifically,

the scatterplot smoother was applied with a smoothing spline as basis and a fixed

number of knots to smooth trends. This method was able to model single as well
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as multiple pools of segregants at the same time. However, the identified region for

potential QTLs were relatively wide.

To decrease the potential QTLs regions identified by scatter plot smoother, a

hidden Markov-model (HMM) was proposed in [109] to map QTLs using NGS-assisted

BSA. The HMM provides a flexible approach to classify each identified SNP into one

of several pre-defined states with their own specific biological interpretation. The

identified states of the HMM allow to identify genomic regions that may be likely to

contain trait-related genes. The identified genomic regions of the HMM model are

subparts of the relatively wide regions by the smoothing approach.

In [109], the HMM model was comprehensively compared with two methods sug-

gested in [105] and [106]. The comparison indicated that for chromosome IX in which

no casual gene(s) were identified [103, 108, 109], both the LOD-scores of MULTI-

POOL and the smoothed G-values suggested that almost the complete chromosome

contained a QTL. This finding is not in accordance with [103]. For chromosome XIV

containing a QTL [103, 108, 109], only after filtering out the unreliable counts, both

methods were able to detect the region of the causal genes. For MULTIPOOL a small

chromosomal subregion was identified [109].

The HMM model proposed in [109] for mapping of multiple gene loci can also be

extended in several ways. This includes, for instance, modelling two Markov-chains

to consider the bi-directional dependance present in the data, including covariates to

allow non-homogeneous transition matrix, and modelling multiple pools of segregants

at the same time. These extensions were not considered in [109]. Therefore, in the re-

mainder of this dissertation, the focus is on possible extensions of the HMM proposed

in [109]. In particular, in Chapter 9, we explain how HMMs will be generalized to the

bi-directional (dual) HMM. Non-homogenous HMM is described in Chapter 10. In

Chapter 11, we present the joint HMM of multiple pools of segregants. First, however,

we discuss the HMM proposed in [109] to map QTLs based on marker information

obtained with high-throughput screening methods.

This chapter is organized as follows. In Section 8.1, we give a general introduction

to the basic HMM. The term basic is defined in the sense that an HMM is based on a

homogeneous Markov-chain without any trend or seasonal variation. The observations

may be either discrete- or continuous-valued and we ignore information that may be

available on covariates. An HMM used for gene localization based on the ethanol-

tolerant yeast dataset (Section 2.3) is described in Section 8.2. Concluding remarks

and topics for further research are given in Section 8.3. In this dissertation we have

limited our focus to the model to involve HMMs with a discrete valued observations.
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8.1 Hidden Markov-models

Hidden Markov-models [110, 111] are a particular kind of mixture models, which

allow for serially dependent observations. An HMM consists of two components.

The first component is a “parameter process”, a sequence {C1, C2, ...} of discrete

random variables that can assume one of m possible values (“states”) from a set

Σ = {s1, s2, ..., sm}. We assume that the sequence of states forms a first-order

Markov-chain, i.e., P (Ci|C1, ..., Ci−1) = P (Ci|Ci−1). Moreover, we assume that,

for all i, P (Ci = sj |Ci−1 = sk) ≡ γjk, where γjk is the probability of transition (in-

dependent of step i) from state sj to state sk. The transition probabilities form the

state transition probability matrix Γ, with the element in j-th row and k-th column

equal to γjk. Additionally, we may need to specify the “initial state” probability

distribution, i.e., P (C1 = sj) ≡ δj , say.

The second part of an HMM is a “state dependent” process {X1, X2, ...}.
The distribution of random variable Xi depends on state Ci, i.e.,

P (Xi|X1, ..., Xi−1, C1, ..., Ci) = P (Xi|Ci). In particular, we assume that

P (Xi = x|Ci = sj) ≡ pj(x) is the “emission probability” of x for state sj that

depends on a (row)vector of parameters θj . We define θ = (θ1, ...,θm).

In practice, we only observe a sequence of values

{X1 = x1, X2 = x2, ..., XN = xN}, without the corresponding sequence of the

generating states {C1 = c1, C2 = c2, ..., CN = cN}. In other words, the Markovian

“parameter process” is hidden from the observer; hence the name of the model.

Figure 8.1 schematically presents the HMM described above. Note that transitions

between the states are indicated by the arrows directed from left to right (“LtoR”). In

applications, for finite sequences, one could also envisaged an HMM with transitions

directed from right to left (“RtoL”).

If the state sequence {C1, C2, ...} is known exactly (i.e., C1 = c1, C2 = c2, ...),

and given an HMM, the likelihood function based on the the observed sequence

{X1 = x1, X2 = x2, ..., XN = xN} and the state sequence can be represented as fol-

lows:

P (x1, x2, ..., xN , c1, c2, ..., cN ) = δc1γc1,c2 ...γcN−1,cN pc1(x1)...pcN (xN ). (8.2)

The likelihood function, given in (8.2), is referred to as the complete-data likelihood,

because it makes an assumption that both the observed sequence and the states are

known.

Define uj(i) to be an indicator variable taking the value 1 if Ci = sj and 0

otherwise. Moreover, consider vjk(i) taking the value 1 if Ci−1 = sj and Ci = sk and
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0 otherwise. Sticking to the notation of an HMM, we can express the logarithm of

(8.2) as follows:

log(P(x1, ..., xN , c1, ..., cN )) =

m∑
j=1

{uj(1) log(δj)}+
m∑
j=1

m∑
k=1

{
N∑
i=2

vjk(i) log(γjk)}+
m∑
j=1

N∑
i=1

{uj (i) log pj(xi)}. (8.3)

Note that the log-likelihood (8.3) is composed of three components, each depending

on a different set of parameters.

However, in an HMM, the states are not observed. Thus, neither (8.2) nor (8.3)

can be used to estimate the parameters of the model. Toward this aim, the observed-

data likelihood has to be used, given by

LN = P (x1, x2, . . . , xN ) =
m∑

j1=1

· · ·
m∑

jN=1

{
δj1γj1,j2 · · · γjN−1,jN pj1 (x1) · · · pjN (xN )

}
.

(8.4)

Figure 8.1: A hidden Markov-model underlying the sequence of data values

(X1, , Xi−1, Xi, Xi+1, , XN ). Ci is the hidden state for the observation Xi, P (Xi|Ci)

is the probability of emission of Xi in state Ci, and P (Ci|Ci−1) is the probability of

transition from state Ci−1 to state Ci .

In essence, the observed-data likelihood results from treating the sequence of states

as missing data.

It is worth mentioning that the direct use of the likelihood (8.4) to estimate the

parameters of an HMM is difficult and involve an enormous number of calculations

even for a moderate N. However, this process can be simplified by using the forward-

backward algorithm (also known as the Baum-Welch algorithm [112]), which is a
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form of the Expectation-Maximization algorithm (EM, [113]). The algorithm is an

iterative method for performing maximum likelihood estimation, while considering

the sequence of the hidden states as missing.

After estimating the parameters of the HMM, the sequence of the hidden states,

which could have generated the observed sequence of symbols, can be predicted. For

instance, the most likely sequence (“global decoding”) can be found with the help

of the Viterbi algorithm [114]. Alternately, for each Xi, the most likely state can

be assigned based on the conditional state-distribution given Xi (“local decoding”).

Note that so-determined most likely state may differ from the one assigned by the

Viterbi algorithm (though in particular applications the differences may be minor).

We discuss the forward-backward algorithm and estimation of the parameters of

the HMM model in the following subsection.

8.1.1 Forward-backward algorithm and parameter estimates

The forward probabilities αi(j) are defined as the joint probability of observing the

sequence {x1, ..., xi} when the state-chain ends in state sj :

αi(j) = Pr(X1 = x1, ..., Xi = xi, Ci = sj). (8.5)

The backward probabilities are the conditional probabilities that we observe the

sequence {xi+1, ..., xN} given that the underlying state-chain starts from state sj :

βi(j) = Pr(Xi+1 = xi+1, ..., XN = xN |Ci = sj). (8.6)

We state the probabilities again below as a product of (row) vectors:

αi = δP (x1)ΓP (x2)...ΓP (xi) for i = 1, ..N, (8.7)

βi = ΓP (xi+1)ΓP (xi+2)...ΓP (xN )1T , (8.8)

where δ ≡ (δ1, δ2, ..., δm), Γ is the m × m matrix of transition probabilities and

Pj(x) is the m ×m diagonal matrix with the emission probability pj(x) as the j-th

diagonal element. From (8.7) and (8.8), we can conclude that

LN = {δP(x1)ΓP(x2)...ΓP(xi)}
{
ΓP(xi+1)...ΓP(xN )1T

}
= αiβ

T
i .

(8.9)

The forward-backward algorithm iteratively computes the forward and backward

probabilities. Each iteration of the algorithm consists of two steps: the expectation
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step (E-step), and the maximization step (M-step). In the E-step, uj(i) and vjk(i)

are estimated given the observed data and current estimates of the model parameters.

In the M-step, the likelihood function (8.2) is maximized with respect to δ, Γ, and

θ, given the estimates of uj(i) and vjk(i). Since the parameters appear in separate

components, we can seek the maximum of each of the three sums in (8.3) separately.

These two steps are repeated until a convergence criterion is met. The convergence cri-

terion used in this dissertation necessitates that the difference between the estimated

parameters of two consecutive iterations should be smaller than the pre-defined tol-

erance. Standard errors of the parameter estimates are obtained by the method of

Louis [115].

8.2 A hidden Markov-model for BSA experiments

8.2.1 The hidden states

In [109], it was proposed to use three states (m = 3) to map QTLs. These states

correspond to linkage or no linkage with genes responsible for the phenotype of inter-

est. For a given SNP, at location i, it is assumed that there is no linkage when the

number of offspring nucleotides concordant with the parental strain without the trait

is equal to the number of discordant nucleotides. As a consequence, the resulting

SNP frequency is 50%. In case of linkage, the number of concordant and discordant

nucleotides are no longer equal to each other. If the number of discordant nucleotides

is larger than the number of concordant counts, linkage with a locus of the parent

with the trait is assumed. In case of the opposite, i.e, the number of concordant is

larger than the number of discordant, it is assumed that there is a linkage with a gene

loci of the parent without the trait. The HMM proposed in [109] is uni-directional,

i.e., the direction of the transitions between the underlying states corresponding to

the observed data is “LtoR” or “RtoL”.

8.2.2 State-dependent emission probabilities

For each identified SNP, the number of times nucleotides A, C, G, and T were present

in the offspring are observed. For a given SNP at a chromosomal location i, there are

four possible nucleotides that can be presented in the reference (parental) strain. Let

us denote by nkl,i the number of times the nucleotides k and l, (k, l ∈ {A,C,G, T})
are observed in the reference strain and in the offspring, respectively. The emission

probabilities of a given SNP at location i can be modeled using the multinomial distri-
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bution for the observed nucleotide counts by considering an m-state (j = 1, 2, ...,m)

HMM model [109]:

P j(nAA,i, ..., nAT,i, nCA,i, ..., nTT,i) =

(
ni

nAA,i, ..., nTT,i

) ∏
k,l∈{A,C,G,T}

(µkl,j)
nkl,i ,

(8.10)

where ni =
∑
k,l

nkl,i and µkl,j is the probability of observing the pair of nucleotides

for the j-th state. It is worth mentioning that, at a particular location i, only one

nucleotide, say r, is presented in the reference strain. As a result, only four nonzero

counts: nrA,i, nrC,i, nrG,i, nrT,i can be observed. Conditioning on the reference nu-

cleotide r, i.e., on the fact that all other counts are necessarily equal to zero, the

emission probabilities derived from (8.10) can be expressed as

Pj(nrA,i, nrC,i, nrG,i, nrT,i) =(
ni

nrA,i, nrC,i, nrG,i, nrT,i

) ∏
l∈{A,C,G,T}

 µrl,j∑
s∈{A,C,G,T}

µrs,j


nrl,i

. (8.11)

Several simplifications of the (conditional) emission probabilities are possible. For

example, it can be assumed that the probability of observing an offspring nucleotide

discordant with the reference one is independent from that nucleotide, i.e., the dis-

cordance probabilities µrl,j , for r ̸= l, can be considered to be all equal to µ′
r,j . In

addition, it can be assumed that these discordance probabilities are also indepen-

dent from the reference nucleotide, i.e., µ′
r,j ≡ µ′

j and the concordance probabilities

µrr,j ≡ µ. Then it follows that

∑
s∈{A,C,G,T}

µrs,j = µj + 3µ′
j (8.12)

and, since
∑
k

∑
l

µkl,j = 1, we obtain that

∑
r∈{A,C,G,T}

µrr,j +
∑

s∈{A,C,G,T},s ̸=r

µrs,j

 = 4µj + 12µ′
j = 1 (8.13)

and

µj + 3µ′
j =

1

4
. (8.14)

Consequently, the total probability of concordance (match) between the reference

(parental) and offspring nucleotide for state j is equal to 4µj , whereas the total
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probability of discordance (mis-match) is equal to 12µ′
j . Taking into account the

equations (8.11), (8.12), and (8.14) the emission probabilities of each state can be

expressed as

P j(nrA,i, nrC,i, nrG,i, nrT,i) =(
ni

nrA,i, nrC,i, , nrG,i, nrT,i

)
4ni(µj)

nrr,i

∏
l ̸=r

(µ′
j)

nrl,i . (8.15)

Thus, the main emission probability parameters are µj , with 3µ′
j = 1/4 − µj .

The concordance (match) and discordance(mis-match) probabilities can be further

reparameterized to an unconstrained scale. This can be achieved by considering the

following transformation:

θj = log

(
µj

3µ′
j

)
. (8.16)

As a consequence, (8.15) assumes the following form:

Pj(nrA,i, nrC,i, nrG,i, nrT,i) =(
ni

nrA,i, nrC,i,nrG,i, nrT,i

)(
eθj

1 + eθj

)nrr,i ∏
l ̸=r

(
1

3(1 + eθj )

)nrl,i

. (8.17)

In [109], the possibility of including sequencing errors in the model have been pro-

posed. For a particular chromosomal location, sequencing errors can appear in the

reference sequence and/or in the offspring sequence. In [109], it was assumed that

there are no sequencing errors in the reference sequence. In addition, the probability

of a sequencing error in the offspring sequence was assumed not to depend on the se-

quenced nucleotide. After incorporation of the sequencing errors, the equation (8.17)

takes the following form:

Pj(nrA,i, nrC,i, nrG,i, nrT,i) =(
ni

nrA,i, nrC,i, nrG,i, nrT,i

)(
eθj (1− 3ε) + ε

1 + eθj

)nrr,i ∏
l ̸=r

(
1 + ε(3eθj − 1)

3(1 + eθj )

)
, (8.18)

where εtot/3 = ε is the sequencing error probability for the offspring. In [109],

εtot = 5% was assumed [116].

8.3 Conclusions

The HMM model proposed in [109] is flexible. It allows to fix one or more parameters

of the model. The number of the hidden states can also be changed. Several extensions
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of the HMM proposed in [109] are possible. For example, including covariates to allow

a non-homogeneous HMM, considering multiple experiments at the same time, and

modelling two Markov chains to consider the bi-directional dependence present in the

data. These extensions were not considered in [109].



Chapter 9

A bi-directional (dual) hidden

Markov-model for

QTL-mapping

The basic HMM proposed in [109] deals with the state transition information in

one direction at the time (left-to-right or right-to-left) across the chromosome. This

means that the state of the i-th SNP depends on the state of the (i − 1)-th SNP

or, in the case of the right-to-left direction, the state of the i-th SNP depends on

the state of the (i + 1)-th SNP. We will refer in the remainder of this dissertation

to such models as uni-directional HMMs. Clearly, both the preceding state (i − 1)

and following state (i + 1) carry useful information about a current state of the i-

th SNP. Thus, there is an understandable reason to expect that a model explicitly

conditioning on both uni-directions at each SNP position could be advantageous.

This model was not considered in [109]. Toward this aim, we present a bi-directional

(“dual”) HMM (DHMM, [117]) for QTL-mapping that accounts for the bi-directional

dependence present in the data. This model consists of two uni-directional HMMs.

One of the HMMs deals with the left-to-right (“LtoR”) state transition, while the

other considers the right-to-left (“RtoL”) state transition. DHMMs consider the full

information on both uni-directions in order to improve the prediction accuracy of

HMMs for parameter estimation.

This chapter is organized as follows. In Section 9.1, we give a general introduction

to DHMMs. We describe the DHMM to map gene loci based upon NGS in Section

9.2. Section 9.3 shows the application of the proposed DHMM on the ethanol-tolerant

85
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yeast dataset (Section 2.3). Concluding remarks are given in Section 9.4.

9.1 A bi-directional (dual) hidden Markov-model

A DHMM was proposed in [117]. It consists of two uni-directional HMMs. Each of

these uni-directional HMMs deals with a particular direction of dependence between

the hidden states, i.e., “LtoR” or “RtoL”. Figure 9.1 illustrates, schematically,

the DHMM construction. The transitions between the states are indicated by the

arrows showing the particular direction of dependence among the hidden states.

Denote, symbolically, the models for the “LtoR” or “RtoL” directions as λ(LtoR) and

λ(RtoL), respectively. Then, the DHMM can be expressed as λ = (λ(LtoR), λ(RtoL))

where λ(LtoR) and λ(RtoL) are defined by the triplets
(
δ(LtoR),Γ(LtoR),θ

)
and(

δ(RtoL),Γ(RtoL),θ
)
, respectively, with δ(LtoR) =

(
δ1

(LtoR), ..., δm
(LtoR)

)
and

Γ(LtoR) denoting, respectively, the initial state distribution and transition probability

matrix for the “LtoR” HMM and δ(RtoL) and Γ(RtoL) are the corresponding quantities

for the “RtoL” HMM. Note that the DHMM involves the emission-probability distri-

bution parameters θ that are assumed to be the same for both uni-directional models.

Figure 9.1: Bi-directional hidden Markov-model underlying the sequence of data val-

ues (X1, , Xi−1, Xi, Xi+1, , XN ), P (Ci|Ci−1) is the probability of transition from state

Ci−1 to state Ci indicating the “LtoR” transition and P (Ci|Ci+1) is the probability of

transition from state Ci+1 to state Ci illustrating the “RtoL” transition .

Consider a random state sequence {C1 = c1, C2 = c2, ..., CN = cN}. The proba-

bility of observing the sequence under the “LtoR” and the “RtoL” directions can be

expressed as follows:

P (C1 = c1, C2 = c2, ..., CN = cN ) =

P
(
C1 = c1|λ(LtoR)

)
× ...× P

(
CN = cN |CN−1 = cN−1, λ

(LtoR)
)
. (9.1)
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P (C1 = c1, C2 = c2, ..., CN = cN ) =

P
(
CN = cN |λ(RtoL)

)
× ...× P

(
C1 = c1|C2 = c2, λ

(RtoL)
)
. (9.2)

In [117], it was proposed to compute the total probability of

{C1 = c1, C2 = c2, ..., CN = cN} under the DHMM as follows:

P (C1 = c1, ..., CN = cN ) ={
P
(
C1 = c1, ..., CN = cN |λ(LtoR)

)
+ P

(
C1 = c1, ..., CN = cN |λ(RtoL)

)}
/2. (9.3)

Consequently, given a particular DHMM, information is used from both directions.

Using a weighting method by applying a mixture density [118], we combine infor-

mation from both directions. In particular, the probability of an observed sequence

{X1 = x1, X2 = x2, ..., XN = xN} can be expresses as

LN =
{
π(LtoR)L

(LtoR)
N + π(RtoL)L

(RtoL)
N

}
, (9.4)

in which π(LtoR) and π(RtoL) are two nonnegative parameters that have to be estimated

such that π(LtoR)+π(RtoL) = 1 and L
(LtoR)
N and L

(RtoL)
N are defined according to (8.4).

The EM algorithms are very well studied for computing the maximum likelihood

estimates of mixture model parameter [118]. In this model, we weight both directions

equally, i.e., π(LtoR) = π(RtoL) = 1/2.

The forward-backward probabilities of the “LtoR” direction can be computed as

explained in Subsection 8.1.1. The forward-backward component probabilities of the

“RtoL” direction can be computed similarly for the “LtoR” direction:

α
(RtoL)
i (j) = Pr(XT = xT , ..., Xi = xi, Ci = sj), (9.5)

β(RtoL)
i

(j) = Pr(Xi−1 = xi−1, ..., X1 = x1|Ci = sj). (9.6)

Define u
(LtoR)
j (i) and v

(LtoR)
jk (i) to be indicator variables of the “LtoR” direction

as explained in Section 8.1. The indicator variables of the “RtoL” direction, i.e.,

u
(RtoL)
j (i) and v

(RtoL)
jk (i), can be considered similarly for the “LtoR” direction. The

parameters involved in (9.4) can be estimated by using the joint forward-backward

algorithm. In the E-step, u
(LtoR)
j (i) , v

(LtoR)
jk (i), u

(RtoL)
j (i), and v

(RtoL)
jk (i) are esti-

mated given the observed data and current estimates of the model parameters. Then,

in the M-step, the logarithm of the likelihood function (9.4) is maximized with respect

to δLtoR, ΓLtoR, δRtoL, ΓRtoL, and θ, given the estimates of u
(LtoR)
j (i), v

(LtoR)
jk (i),

u
(RtoL)
j (i), and v

(RtoL)
jk (i).

After estimating the parameters of the DHMM, the sequence of the hidden states,

which could have generated the observed sequence of symbols, can be predicted. In
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particular, the most likely sequence of states for the DHMM is retrieved by taking

the average of the Viterbi path [114] assigned to each uni-directions.

9.2 A dual hidden Markov-model for BSA experi-

ments

The structure of the proposed DHMM is as follows. We consider three states, i.e.,

m = 3. The hidden states and the state-dependent emission probabilities are defined

as in Subsection 8.2.1 and 8.2.2, respectively.

9.3 Results

We applied the DHMM, outlined in Section 9.2, to the data for chromosome XIV and

chromosome IX of S. cerevisiae that were obtained in the experiment described in

Section 2.3. On chromosome XIV, three genes responsible for high ethanol tolerance,

i.e., APJ1, MKT1 and SWS2, have been identified with the help of artificial markers

and a scatterplot smoother [103, 108]. All three QTLs, were found at approximately

470,000 bp. The same approach did not identify causal genes for ethanol tolerance on

chromosome IX.

9.3.1 Uni-diectional HMMs and filtering

There are several issues about the data produced by BSA-NGS that need to be taken

into account prior to the analysis. As it has already mentioned in Subsection 8.2.2,

NGS process is error-prone, thus the possibility of including sequencing errors in the

model was proposed in [109]. After including the sequencing-error correction a large

number of SNPs with a low mismatch frequency, probably correspond to sequencing

error, are assigned to the first state 1 (top panel of Figure 9.2). To remove the SNPs

corresponding to the sequencing error, we can apply the filtering approach as proposed

in [108] to the dataset, and subsequently use (8.18) (with error sequence equal to 5%).

Filtering approach considers two selection criteria: the nucleotide should be sequenced

at least 20 times [116] and have a SNP frequency of at least 80%. The scatterplot

of mismatch frequencies along chromosome XIV, shown in bottom panel of Figure

9.2, illustrates the substantial increase of the reliable SNPs after including filtering

approach. Table 9.1 presents the parameter estimates of the HMMs for the “LtoR”

and “RtoL” directions.
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Figure 9.2: The mismatch frequency of SNPs on chromosome XIV, pool 1. Top panel:

including (8.18); bottom panel: including filtering approach.
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Table 9.1: Parameter estimation of the three-state uni-directional HMM model for

pool 1 segregants of chromosome XIV with sequencing-error correction and filtering

approach. The values between the brackets are the corresponding 95% confidence

intervals. For the parameters indicated with + a confidence interval could not be

calculated as these parameters are at the boundary of the parameter space.

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.2269 [0.220, 0.230] 0.2268 [0.220, 0.230]

µ2 0.1284 [0.127, 0.129] 0.1284 [0.127, 0.129]

µ3 0.0556 [0.053, 0.057] 0.0559 [0.054, 0.056]

δ1 0+ 0+

δ2 1+ 1+

δ3 0+ 0+

γ11 0.4511 [0.4415, 0.4611] 0.4512 [0.4415, 0.4611]

γ12 0.4333 [0.4242, 0.4426] 0.4348 [0.4257, 0.4441]

γ13 0.1151 [0.1083, 0.1219] 0.1138 [0.1071, 0.1205]

γ21 0.0213 [0.0204, 0.0223] 0.0214 [0.0203, 0.0222]

γ22 0.9222 [0.9217, 0.9227] 0.9226 [0.9222, 0.9230]

γ23 0.0561 [0.0546, 0.0575] 0.0560 [0.0546, 0.0574]

γ31 0.0073 [0.0036, 0.0110] 0.0079 [0.0043, 0.0115]

γ32 0.0739 [0.0723, 0.0755] 0.0737 [0.0723, 0.0751]

γ33 0.9187 [0.9183, 0.9193] 0.9189 [0.9184, 0.9194]

9.3.2 Chromosome XIV, pool 1

Table 9.2 presents the estimates of the parameters of the DHMM. Note that the esti-

mates of the concordance probabilities µj are assumed to be the same for the “LtoR”

and “RtoL” directions. The total probabilities of discordance between the no-trait

reference parent and the offspring can be estimated to be equal to 1-4×0.2268=0.0928,

1-4×0.1284=0.4864, and 1-4×0.059=0.7764 for the first, second, and third state, re-

spectively. According to the interpretation of the hidden states (Subsection 8.2.1), the

SNPs admitted to the second state are considered not to be linked with any gene(s)

responsible for ethanol tolerance, whereas SNPs in the third state are linked to the

gene(s) responsible for high-ethanol tolerance. The SNPs in the first state could be

linked to gene(s) from the parent without the trait. However, due to the low number

of SNPs in the first state (left-hand-side panel of Figure 9.3), and due to the fact

that they are spread across chromosome XIV, one should consider these SNPs to be
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Table 9.2: Parameter estimation of the three-state DHHM model for pool 1 segre-

gants of chromosome XIV with sequencing-error correction. The values between the

brackets are the corresponding 95% confidence intervals. For the parameters indi-

cated with + a confidence interval could not be calculated as these parameters are at

the boundary of the parameter space

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.2268 [0.220, 0.230] 0.2268 [0.220, 0.230]

µ2 0.1284 [0.127, 0.129] 0.1284 [0.127, 0.129]

µ3 0.0559 [0.054, 0.056] 0.0559 [0.054, 0.056]

δ1 0+ 0+

δ2 1+ 1+

δ3 0+ 0+

γ11 0.4512 [0.4414, 0.4610] 0.4512 [0.4415, 0.4611]

γ12 0.4333 [0.4243, 0.4424] 0.4348 [0.4257, 0.4441]

γ13 0.1153 [0.1087, 0.1218] 0.1138 [0.1072, 0.1203]

γ21 0.0214 [0.0204, 0.0223] 0.0213 [0.0203, 0.0222]

γ22 0.9223 [0.9218, 0.9228] 0.9225 [0.9220, 0.9230]

γ23 0.0561 [0.0546, 0.0575] 0.0561 [0.0547, 0.0576]

γ31 0.0073 [0.0038, 0.0108] 0.0074 [0.0038, 0.0110]

γ32 0.0737 [0.0722, 0.0751] 0.0736 [0.0721, 0.0750]

γ33 0.9188 [0.9183, 0.9193] 0.9188 [0.9183, 0.9193]

the result of sequencing errors. The estimated transition probabilities indicate that

the most likely transitions are from a given state to itself, as can be seen from the

estimated values of γ11 = 0.45, γ22 = 0.92, and γ33 = 0.92. The estimated initial

state probabilities indicate that the observed SNP frequency for the first SNP is most

likely generated by the second state. The left-hand side panel of Figure 9.3 illustrates

the states predicted for each SNP based on the most likely state sequence (global

decoding) obtained from the fitted DHMM.

The plot clearly illustrates that state 3 (blue) is associated with a high SNP

frequency, state 2 (green) with an intermediate frequency, and state 1 (red) with a

low frequency. This panel shows a large number of SNPs to be linked to potential

QTLs (blue). The SNPs shown in the right-hand-side panel of Figure 9.3 are in a

chromosomal region which contains three genes responsible for high ethanol-tolerance

[103]. In the plot, consecutive state-3 SNPs were joined by intervals if there was
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no state-2 SNP between them (we ignore state-1 SNPs). These state-3-SNP-series

illustrate the potential region where a QTL might be present.

APJ1

Figure 9.3: Chromosome XIV, pool 1, predicted SNP-specific states for the DHMM

model (left panel). Red stands for state 1, green for state 2, and blue for state 3

and zoom-in into the region (right panel) of three identified genes. The lines connect

consecutive state-3 SNPs. The SNPs that are part of one of the three identified genes

are located between orange lines.

9.3.3 Chromosome XIV, pool 2

The segregants of the second pool were screened for a higher tolerance as compared

to pool 1, i.e., 17% versus 16%. Table 9.3 presents the estimates of the parameters of

the DHMM. Also for this pool the estimates of the concordance probabilities µj are

assumed to be the same for the “LtoR” and “RtoL” direction. The estimated total

discordance probabilities are equal to 0.322 for the first state, 0.608 for the second

state, and 0.87 for the third state. The transition probability estimates are almost

identical for both directions. The interpretation of the second hidden state is no

longer compatible with the one given in the analysis of pool-1 segregants. In contrast

to what was assumed, the total discordance frequency of approximately 60% does not

suggest that the second state is a state where the SNPs are not linked to a QTL. The

second state could represent the SNPs which exhibit a weak linkage with QTL from

the parent with the trait (Figure 9.4). The main reason for finding a second state
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Table 9.3: Parameter estimation of the of the three-state DHHM model for the pool 2

segregants of chromosome XIV with sequencing-error correction. The values between

the brackets are the corresponding 95% confidence intervals. For the parameters

indicated with + a confidence interval could not be calculated as these parameters

are at the boundary of the parameter space.

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.1696 [0.168, 0.171] 0.1696 [0.168, 0.171]

µ2 0.0979 [0.096, 0.099] 0.0979 [0.096, 0.099]

µ3 0.0309 [0.029, 0.032] 0.0309 [0.029, 0.032]

δ1 1+ 0+

δ2 0+ 1+

δ1 0+ 0+

γ11 0.8582 [0.7606, 0.9250] 0.8593 [0.7617, 0.9267]

γ12 0.1249 [0.1176, 0.1325] 0.1288 [0.1215, 0.1364]

γ13 0.0167 [0.0112, 0.0256] 0.0118 [0.0108, 0.0127]

γ21 0.1054 [0.085, 0.12770] 0.1027 [0.0823, 0.1250]

γ22 0.8163 [0.7214, 0.8827] 0.8151 [0.7202, 0.8815]

γ23 0.0781 [0.0775, 0.0786] 0.0821 [0.0815, 0.0826]

γ31 0.0079 [0.0044, 0.0140] 0.0113 [0.0055, 0.0209]

γ32 0.0674 [0.0668, 0.0679] 0.0640 [0.0634, 0.0645]

γ33 0.9246 [0.9073, 0.9384] 0.9246 [0.9073, 0.9384]

with discordance probabilities larger than expected is related to the assumption of

a three-state DHMM model. As a result, regardless of the fact that there could be

more than three states representing the data, the DHMM will classify the SNPs into

three states.

The proposed DHMM with three states can be conveniently modified. For

instance, the number of hidden states can be changed or one or more parameters of

the DHMM can be fixed [109]. However, in this dissertation we do not modify the

number of hidden states of the DHMM. Instead, we illustrate the effect of fixing the

concordance probabilities. The initial state probabilities and transition probabilities

can also be fixed, but we do not consider such a modification in this dissertation. In

particular, we fix µ2 to be equal to 0.125, forcing the total discordance probability

to be equal to 0.50 for the second state. Table 9.4 illustrates the detailed results for

the DHMM with the fixed value of µ2. Fixing the concordance probability influences
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the other estimated parameters (Table 9.4). In particular, the estimated transition

probabilities γjk, initial state probability of the “LtoR” direction, and µ1 change as

compared to the model where no probabilities have been fixed (Table 9.3). These

changes have an effect on the allocation of the SNPs to three states, i.e., the larger

number of SNPs are classified to state 2 (Figure 9.5). This indicates that, in fact, for

most of the state-2 SNPs for the latter model, the discordance probability of 0.5 (i.e,

no linkage) could be assumed.

Figure 9.4: Chromosome XIV, predicted SNP-specific states for pool 2. The colors

indicate the state of the SNP. Red for state 1, green for state 2, and blue for state 3.
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Table 9.4: Parameter estimation of the three-state DHHM model for pool 2 segre-

gants of chromosome XIV with sequencing-error correction, when µ2 is fixed. The

values between the brackets are the corresponding 95% confidence intervals. For the

parameters indicated with + a confidence interval could not be calculated as these

parameters are at the boundary of the parameter space.

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.1821 [0.180, 0.183] 0.1821 [0.180, 0.183]

µ2 0.125+ 0.125+

µ3 0.0356 [0.033, 0.037] 0.0356[0.033, 0.037]

δ1 0+ 0+

δ2 1+ 1+

δ3 0+ 0+

γ11 0.8343 [0.7367, 0.9011] 0.8368 [0.7392, 0.9036]

γ12 0.1453 [0.1380, 0.1529] 0.1482 [0.1409, 0.1558]

γ13 0.0202 [0.0147, 0.0291] 0.0149 [0.0094, 0.0238]

γ21 0.0704 [0.0698, 0.0710] 0.0677 [0.0671, 0.0683]

γ22 0.8555 [0.7606, 0.9219] 0.8555 [0.7606, 0.9219]

γ23 0.0739 [0.0733, 0.0745] 0.0767 [0.0761, 0.0773]

γ31 0.0056 [0.0021, 0.0117] 0.0076 [0.0041, 0.0137]

γ32 0.0613 [0.0607, 0.0619] 0.0594 [0.0588, 0.0600]

γ33 0.9329 [0.9156, 0.9467] 0.9328 [0.9155, 0.9466]

9.3.4 Chromosome IX, pool 1

Table 9.5 presents the parameter estimates of the DHHM obtained for the pool-1 data

for chromosome IX. The total discordance probability is estimated to be equal to 0.08

for the first state, 0.38 for the second state, and 0.532 for the third state. The total

discordance probability of 0.532 for state 3 indicates that SNPs in this state are not

linked to loci from the parent with the trait. This finding is accordance with [103].

Figure 9.6 suggests that the second state does not correspond to a state where

no linkage is present. It suggests a state related to chromosomal regions linked with

gene loci from parent without the trait. The main reason for finding a second state

with lower discordance probability than expected, is related to the assumed number

of states (m = 3). Even if, in reality, there are only two states explaining the different

regions, a three-state DHMM classifies the SNPS into three groups (Figure 9.6).
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Figure 9.5: Chromosome XIV pool 2, predicted SNP-specific states for the DHMM

model with fixed µ2. The colors indicate the state of the SNP. Red for state 1, green

for state 2 ,and blue for state 3.

Figure 9.6: Chromosome IX pool 1, predicted SNP-specific states for the DHMM model

(left panel). Red stands for state 1, green for state 2, and blue for state 3.
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Table 9.5: Parameter estimation of the of the three-state DHHM model for the pool

1 segregants of chromosome IX with sequencing-error correction. The values between

the brackets are the corresponding 95% confidence intervals. For the parameters

indicated with + a confidence interval could not be calculated as these parameters

are at the boundary of the parameter space.

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.2366 [0.231, 0.247] 0.2366 [0.231, 0.247]

µ2 0.1553 [0.153, 0.156] 0.1553 [0.153, 0.156]

µ3 0.1172 [0.115, 0.118] 0.1172 [0.115, 0.118]

δ1 1+ 0+

δ2 0+ 1+

δ3 0+ 0+

γ11 0.5273 [0.5176, 0.5372] 0.5277 [0.5180, 0.5376]

γ12 0.3738 [0.3697, 0.3779] 0.3365 [0.3324, 0.3406]

γ13 0.0987 [0.0981, 0.0993] 0.1356 [0.1152, 0.1560]

γ21 0.0423 [0.0408, 0.0438] 0.0473 [0.0458, 0.0488]

γ22 0.8092 [0.8085, 0.8099] 0.8068 [0.8061, 0.8075]

γ23 0.1483 [0.1417, 0.1549] 0.1457 [0.1401, 0.1513]

γ31 0.0197 [0.0187, 0.0207] 0.0146 [0.0132, 0.0160]

γ32 0.1689 [0.1485, 0.1893] 0.1723 [0.1503, 0.1943]

γ33 0.8113 [0.7164, 0.9062] 0.8130 [0.7181, 0.9079]

The proposed DHMM with three states can be modified by fixing µ2 to be equal

to 0.125, forcing the total discordance probability to be equal to 0.50 for the second

state. The estimated transition probabilities γjk and µ1 change when µ2 is fixed (see

Table 9.6). A very small number of SNPs is classified to state 3 (see Figure 9.7), which

do not form any contiguous region. Thus, we can indeed conclude that chromosome

IX does not contain QTLs responsible for high-ethanol tolerance. Though the number

of SNPs assigned to state 1 is larger than for the model with unconstrained µ2 (Figure

9.6), there also does not seem to be any contiguous region where state 1 SNPs would

be most prevalent. This can be taken as an argument against the suggestion that

state-1 SNPs could be located in chromosomal regions linked with gene loci from the

parent without the trait.
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Table 9.6: Parameter estimation of the three-state DHHM model for the pool 1

segregants of chromosome IX with sequencing-error correction, when µ2 is fixed. The

values between the brackets are the corresponding 95% confidence intervals. For the

parameters indicated with + a confidence interval could not be calculated as these

parameters are at the boundary of the parameter space.

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.1916 [0.185, 0.197] 0.1916 [0.185, 0.197]

µ2 0.125+ 0.125+

µ3 0.0922 [0.081, 0.103] 0.0922[0.081, 0.103]

δ1 1+ 0+

δ2 0+ 1+

δ3 0+ 0+

γ11 0.6182 [0.6085, 0.6279] 0.6201 [0.6106, 0.6296]

γ12 0.3817 [0.3773, 0.3861] 0.3798 [0.3760, 0.3837]

γ13 0+ 0+

γ21 0.1294 [0.1281, 0.1307] 0.1301 [0.1286, 0.1316]

γ22 0.8363 [0.8348, 0.8378] 0.8234 [0.8215, 0.8253]

γ23 0.0341 [0.0270, 0.0412] 0.0463 [0.0386, 0.0540]

γ31 0.0276 [0.0275, 0.0277] 0.0224 [0.0223, 0.0225]

γ32 0.3567 [0.3363, 0.3771] 0.3346 [0.3046, 0.3646]

γ33 0.6156[0.5926, 0.6386] 0.6429 [0.6219, 0.6639]

9.3.5 Chromosome IX, pool 2

Table 9.7 presents the parameter estimates of the DHHM for the pool-2 data of

chromosome IX. The total discordance probabilities are equal to 0.06, 0.48, and 0.624

for the first, second, and the third state, respectively. No QTLs were identified for

this pool [109]. Note that the estimated SNP frequency of the third state is above

0.5. To check the sensitivity of the conclusions to the structure of the model, we

fix µ2 to be equal to 0.125, forcing the total discordance probability to be equal to

0.50 for the second state. The results are presented in Table 9.8. The estimated

total discordance probabilities for state 1 and 3 are now equal to 0.088 and 0.656,

respectively. Smaller number of SNPs are now assigned to state 3 (Figure 9.9) as

compared to the model with unconstrained µ2 (Figure 9.8), which are scattered widely

across the whole chromosome and do not form any contiguous region.
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Figure 9.7: Chromosome IX pool 1, predicted SNP-specific states for the DHMM model

with fixed µ2. The colors indicate the state of the SNP. Red for state 1, green for state

2, and blue for state 3.

Figure 9.8: Chromosome IX pool 2, predicted SNP-specific states for the DHMM model

(left panel). Red stands for state 1, green for state 2, and blue for state 3.
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Table 9.7: Parameter estimation of the of the three-state DHHM model for the pool

2 segregants of chromosome IX with sequencing-error correction. The values between

the brackets are the corresponding 95% confidence intervals. For the parameters

indicated with + a confidence interval could not be calculated as these parameters

are at the boundary of the parameter space.

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.2356 [0.229, 0.238] 0.2356 [0.229, 0.238]

µ2 0.1380 [0.136, 0.139] 0.1380 [0.136, 0.139]

µ3 0.0944 [0.093, 0.095] 0.0944 [0.093, 0.095]

δ1 1+ 0+

δ2 0+ 1+

δ3 0+ 0+

γ11 0.5325 [0.5234, 0.5418] 0.5340 [0.5249, 0.5433]

γ12 0.3764 [0.3723, 0.3805] 0.3349 [0.3306, 0.3392]

γ13 0.0909 [0.0892, 0.0926] 0.1309 [0.1290, 0.1328]

γ21 0.0423 [0.0407, 0.0439] 0.0481 [0.0463, 0.0499]

γ22 0.7261 [0.6642, 0.7880] 0.7235 [0.6533, 0.7937]

γ23 0.2314 [0.2242, 0.2386] 0.2283 [0.2210, 0.2356]

γ31 0.0146 [0.0081, 0.0211] 0.0104 [0.0042, 0.0166]

γ32 0.2045 [0.2002, 0.2088] 0.2062 [0.2021, 0.2103]

γ33 0.7808 [0.7089, 0.8527] 0.7833 [0.7103, 0.8563]



9.3. Results 101

Therefore, we can conclude that chromosome IX does not contain QTLs respon-

sible for high ethanol-tolerance.

Table 9.8: Parameter estimation of the of the three-state DHHM model for the pool

2 segregants of chromosome IX with sequencing-error correction. The values between

the brackets are the corresponding 95% confidence intervals. For the parameters

indicated with + a confidence interval could not be calculated as these parameters

are at the boundary of the parameter space.

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.2279 [0.2185, 0.2329] 0.2279 [0.2185, 0.2329]

µ2 0.125+ 0.125+

µ3 0.0859 [0.0849, 0.0869] 0.0859 [0.0849, 0.0869]

δ1 1+ 0+

δ2 0+ 1+

δ3 0+ 0+

γ11 0.5632 [0.5541, 0.5723] 0.5647 [0.5555, 0.5739]

γ12 0.3556 [0.3513, 0.3599] 0.3549 [0.3507, 0.3591]

γ13 0.0802 [0.0783, 0.0821] 0.0804 [0.0785, 0.0823]

γ21 0.0521 [0.0505, 0.0537] 0.0491 [0.0473, 0.0509]

γ22 0.7261 [0.6642, 0.788] 0.7251 [0.6549, 0.7953]

γ23 0.2218 [0.2149, 0.2287] 0.2258 [0.2189, 0.2327]

γ31 0.0181 [0.0064, 0.0298] 0.0144 [0.0084, 0.0204]

γ32 0.2045 [0.2006, 0.2084] 0.2069 [0.2029, 0.2109]

γ33 0.7774 [0.7059, 0.8489] 0.7732 [0.7012, 0.8452]
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Figure 9.9: Chromosome IX pool 2, predicted SNP-specific states for the DHMM model

(left panel). Red stands for state 1, green for state 2, and blue for state 3.

9.3.6 Comparison of the DHMM with the basic HMM

To appreciate the differences between the DHMM and the uni-directional HMM pro-

posed in [109], we compare the two models in terms of the parameter estimates and

the SNPs allocation for the pool-1 data for chromosome XIV. Table 9.1 in Subsection

9.3.1 presents the parameter estimates of the HMMs for the “LtoR” and “RtoL” di-

rections. It can be seen that the estimates of all the parameters for the two models

are very similar. It is therefore not surprising that the results of the DHMM, shown

in Table 9.2, are also very close to those obtained for the uni-directional HMMs, with

a minimally higher precision for some of the DHMM estimated like, e.g., µ3. As a

result, the state assignment is also similar for the two types of models (see Figure

9.10).
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Figure 9.10: Chromosome XIV, pool 1, predicted SNP-specific states for the DHMM

model with fixed µ2. The colors indicate the state of the SNP. Red for state 1, green

for state 2, and blue for state 3.

9.4 Conclusions

In this chapter, we have presented the application of the DHMM in QTL-mapping

for high ethanol-tolerance. In the uni-directional HMM, the state of the i-th SNP

depends on either the state of the (i− 1)-th SNP in terms of the “LtoR” direction, or

the state of the (i+1)-th SNP when considering the “RtoL” direction. Therefore, the

uni-directional HMM ignores the information present in one of the directions. In the

DHMM, information is used from both directions. The DHMM model was applied

to data for chromosome XIV and chromosome IX of the case study. Based on the

model, the potential regions responsible for high ethanol-tolerance on chromosome

XIV could be identified, whereas no such regions were found on chromosome IX.

These results are consistent with the previous findings [103, 108]. The comparison

of the uni-directional HMM and the DHMM for chromosome XIV revealed only a

slight difference in terms of the parameter estimates, with a minimal gain in precision

of the estimation for the DHMM. As a result, the DHMM and the uni-directional

HMMs assigned the SNPs to the same states. The main advantage of the DHMM is

the fact that it produces a single set of estimates of the parameters of interest, i.e.,

emission (concordance) probabilities. However, this advantage comes at a price of

increasing in the computational time and complexity of the model related to the joint

forward-backward algorithm as compared to the basic HMM. As an example, for pool
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1 segregants of chromosome XIV, fitting the model takes 3h 48m 22s and 9h 26m 01s

for the basic HMM and the DHHM model respectively (on an HP Elitebook 8530p).

The initial estimates of the joint forward-backward algorithm for the state-dependent

emission probabilities are chosen in a way that the first state corresponds to linkage

with a locus of the parent without the trait, the third state presents the linkage with

a locus of the parent with the trait, and the second state does not show any linkage.

Therefore, the total discordance probabilities of 0.2, 0.5, and 0.8 are considered for

the first, second and the third state, respectively. In addition, the initial estimates

of the transition matrix for all states are selected as the probabilities from a given

state to itself is 0.8 and to another is 0.1. For pool 1 segregants of chromosome XIV,

different initial estimates were chosen to check the sensitivity of the model to different

starting points. The initial values and the estimates are presented in Table A.3 in

the Appendix. The comparison of Table 9.2 and Table A.3 indicates that the choice

of the initial values does not have a substantial influence on the parameter estimates.

Although the filtering approach substantially increased the number of reliable SNPs,

some SNPs with low mis-match frequency probably due to the sequencing error still

remain (see red circles in the left-hand-side panel of Figure 9.3). Therefore we kept

the same sequencing error of the basic HMM.

The simplification of the emission model was not assessed in this chapter, as the

main intention was the comparison of the basic HMM proposed in [109] with its

possible extensions while considering the similar emission model and the number of

the hidden states. The simplification of the emission model towards the binomial

distribution is possible and could reduce the complexity of the emission models in

terms of the interpretation and notations. This could be a topic for future research.



Chapter 10

A non-homogeneous hidden

Markov-model for

QTL-mapping

The basic HMM proposed in [109] assumes that the identified SNPs are equally spaced

across the whole genome. This assumption is not necessarily correct. In addition, the

chance of co-segregation may depend on the distance between the SNPs. Hence, an

extension of the HMM that accommodates the distance between SNPs is of interest.

This extension was not considered in [109]. Toward this aim, the assumption that the

latent Markov-chain is homogeneous, i.e., that the transition probabilities are con-

stant, can be weakened. More specifically, the transition probabilities can be assumed

to depend on the distance between SNPs. This results in a non-homogeneous hidden

Markov-model (NH-HMM). NH-HMMs have been considered, e.g., in environmental

studies [119–126].

In this chapter, we discuss an NH-HMM for QTL-mapping which was not evac-

uated in [109]. In particular, in Section 10.1, we give a general introduction to NH-

HMMs. Section 10.2 shows an NH-HMM model to map QTL-loci based upon NGS

data. The application of the proposed NH-HMM to the ethanol-tolerant yeast dataset

is described in Section 10.3. Section 10.4 completes the chapter with conclusions and

a discussion of topics for further research.

105
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10.1 An introduction to non-homogeneous Markov-

models

In a homogeneous Markov-model, the transition probabilities are assumed to be con-

stant. In a non-homogenous HMM, the transition probabilities may depend on the

position of the state sequence {C1, C2, ..., CN}, i.e., the model is characterized by

position-specific transition-probability matrices Γi. For instance, assume that, for

each random variable Xi from the observable sequence {X1, X2, ..., XN}, information

is available about covariates Yi. The transition probability matrix can now depend

on the covariates, i.e., Γi = Γ (Yi). The form of the dependence of the transition

probabilities on the covariates has to be specified in a way that is proper to the par-

ticular application. Several different parameterization for transition probabilities are

possible [120]. A possible form of dependence of transition probabilities on covariates

can be specified as follows:

γjk,i = P (Ci+1 = sk|Ci = sj , yi) =
exp(αjk + βjkyi)

m∑
k=1

exp(αjk + βjkyi)
, (10.1)

in which the transition probabilities are associated to the covariate yi through multino-

mial logit link functions. The unknown parameters of αjk and βjk are the coefficients

of the link function that have to be estimated.

10.1.1 Forward-backward algorithm and parameter estimates

Assuming the non-homogeneous transition matrix as Γi, we state the forward and

backward probabilities of the NH-HMM below as a product of (row)vectors:

αi = δP (x1)ΓiP (x2)...ΓiP (xi) for i = 1, ..N, (10.2)

βi = ΓiP (xi+1)ΓiP (xi+2)...Γi,P (xN )1T , (10.3)

where δ ≡ (δ1, δ2, ..., δm) and Pj(x) is them×m diagonal matrix with the emission

probability pj(x) as the j-th diagonal element. The non-homogeneous transition

matrix Γi is described by the coefficients αjk and βjk. The forward and backward

probabilities are used in the algorithm used to maximize the observed data likelihood

(see Subsection 8.1.1).

After estimating the parameters of the NH-HMM, the sequence of the hidden

states, which could have generated the observed sequence of symbols, can be predicted

with the help of the Viterbi algorithm [114].
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10.2 A non-homogeneous hidden Markov-Model for

BSA experiments

The structure of the proposed NH-HMM is as follows. We consider three states,

i.e., m = 3. The hidden states and the state-dependent emission probabilities are

defined as in Subsection 8.2.1 and 8.2.2, respectively. In the proposed NH-HMM, the

transition probabilities depend upon the distance between adjacent SNPs (in 10,000

base pairs). Denote the distance between the i-th and (i + 1)-th SNP by yi. The

transition probabilities can then be modelled as a function of yi by the multinomial

logistic link-function (10.1). To ensure estimability of the parameters αjk and βjk,

we constrain αjj and βjj to be equal to zero.

10.3 Results

Figure 10.1 presents the distribution of the distance between neighboring SNPs (in

10K bp) for pool 1 of chromosome XIV and chromosome IX of the high ethanol-

tolerance dataset described in Section 2.3. As it can be seen from the histograms, the

SNPs are not equally spaced. Therefore, we applied the proposed NH-HMM outlined

in Section 10.2 to the data. We compare the results of the proposed NH-HMM with

the outcome of the HMM with the homogeneous transition matrix in terms of the

parameters estimates and the allocation of the SNPs to particular states. In all cases

the sequencing-error corrections (εtot = 0.05) and filtering approach are used (see

Subsection 9.3.1).

10.3.1 Chromosome XIV, pool 1

Table 10.1 shows the estimated concordance probabilities, initial probabilities,

Akaike’s information criterion (AIC), and Bayesian information criterion (BIC) for

the H-HMM and NH-HMM.
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Figure 10.1: The histograms of distance (10K bp) between neighboring SNPs in chro-

mosome XIV, pool 1 (top panel) and chromosome IX, pool 1 (bottom panel).
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Table 10.1: Chromosome XIV, pool 1: comparison of two forms of the HMM with

three states and their corresponding parameter estimates (95% confidence intervals

in brackets). For the parameters indicated with + a confidence interval could not be

calculated as these parameters are at the boundary of the parameter space.

Model µ1 µ2 µ3 δ1 δ2 δ3 −logLN AIC BIC

H-HMM
0.2268

[0.220,0.230]

0.1284

[0.127,0.129]

0.0559

[0.054,0.056]
0+ 1+ 0+ 71662.85 143347.7 143409.7

NH-HMM
0.2268

[0.220,0.230]

0.1283

[0.127,0.129]

0.0558

[0.054,0.056]
0+ 1+ 0+ 71638.09 143298.2 143360.1

The comparison of the first and the second row of Table 10.1 reveals that on

the basis of the information criteria, the NH-HMM is worth considering. Note that

the estimates of the concordance probabilities µj are almost similar for both models.

In particular, the total probabilities of discordance between the no-trait reference

parent and the offspring can be estimated to be equal to 1-4×0.2268=0.0928, 1-4×
0.128=0.488, and 1-4×0.0559=0.776 for the first, second, and third state, respectively.

Thus, following the reasoning presented earlier (Subsection 8.2.1), the first state can

be seen as corresponding to SNPs linked with a gene loci of the parent without the

trait, the second state can be considered as corresponding to the SNPs not linked

with any genes, whereas the third state can be seen as SNPs that are potentially

linked to one or more genes responsible to high ethanol-tolerance. The estimated

initial probabilities indicate that the most likely initial state for both fitted models is

the second state (δ̂2 = 1). This means that the first SNP is most likely generated by

the second state for both models.

Table 10.2 shows the estimated coefficients of the logit link-function (10.1) de-

scribing the dependence of the transition probabilities on the distance between the

adjacent SNPs (in 10K base pairs). The estimated transition probabilities of the

Markov-chain, as a function of the distance between SNPs, are shown in Figure 10.2.

The estimated coefficients indicate that, conditional on being in state 1, increasing

the distance to the neighboring SNP increases the probability of transition to the

second state. Similarly, for state 2, the larger the distance between the adjacent

SNPs, the higher the chance of transition to state 3 as compared to state 1. For state

3, results similar to those for state 1 are obtained: increasing the distance between

SNPs increases the probability of transition to the second state. In other words, for

all three states, increasing the distance between the neighboring SNPs increases the

chance of transition to another state. As a consequence, the transition probabilities

of staying in the same state decrease as the distance between the neighboring SNPs
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Table 10.2: Parameter estimates (95% confidence intervals in brackets) for the non-

homogeneous HMM with three states for pool 1 of chromosome XIV.

Parameters j = 1 j = 2 j = 3

αj1 0 -3.591 [-4.055, -3.126] -4.93 [-5.776, -4.084]

αj2 -2.705 [-4.088, -1.323] 0 -2.668 [-2.950, -2.385]

αj3 -3.926 [-5.483, -2.369] -2.866 [-3.149, -2.583] 0

βj1 0 -4.834 [-14.476, 4.806] 3.167 [-2.939, 9.273]

βj2 438.909 [177.203,700.616] 0 3.402 [1.184, 5.619]

βj3 437.078 [175.235, 698.921] 1.444 [-1.074, 3.964] 0

increases. For state 1 (Figure 10.2) this decline is especially large as compared to

SNPs in state 2 and 3. The small number of SNPs, less densely spread out along the

chromosome with SNPs frequency below 20% (Figure 10.3), is most likely responsible

for this effect. On the other hand, the probability of co-segregation decreases as the

distance between the adjacent SNPs increases. The presence of potential QTLs for

high ethanol-tolerance in state 3, could be a possible reason for the high chance of

transition from state 2 to 3 and from state 3 to 2 over large distances.

The left-hand-side panel of Figure 10.3 presents the states predicted for each SNP

based on the most likely state sequence (Viterbi algorithm) obtained from the fitted

NH-HMM (Table 10.2), while the right-hand-side panel presents the states predicted

for each SNP obtained from the NH-HMM. Both plots clearly illustrate that state 3

(blue) is associated with a high frequency of mis-matched nucleotides, state 2 (green)

with an intermediate frequency, and state 1 (red) with a low frequency. Except in

few cases (10 SNPs), NH-HMM and H-HMM assign the SNPs to the same states.
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Figure 10.2: Probabilities of transition from one state to another, as estimated by the

three-state non-homogeneous hidden Markov-model for chromosome XIV, pool 1.

Figure 10.3: Chromosome XIV, pool 1, predicted SNP-specific states for the model

with homogeneous HMM (left panel) and with non-homogeneous HMM (right panel).

Red stands for state 1, green for state 2, and blue for state 3.
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10.3.2 Chromosome XIV, pool 2

Table 10.3 shows the results for the H-HMM and NH-HMM for pool 2 of chromosome

XIV. The corresponding total discordance probabilities are equal to 0.321, 0.609, and

0.876 for state 1, state 2, and state 3, respectively. Table 10.4 shows the estimated

Table 10.3: Chromosome XIV, pool 2: comparison of two forms of the HMM with

three states and their corresponding parameter estimates (95% confidence intervals

in brackets). For the parameters indicated with + a confidence interval could not be

calculated as these parameters are at the boundary of the parameter space.

Model µ1 µ2 µ3 δ1 δ2 δ3 −logLN AIC BIC

H-HMM
0.1696

[0.168,0.171]

0.0979

[0.096,0.099]

0.0309

[0.029,0.032]
1+ 0+ 0+ 74749.81 149521.6 149583.6

NH-HMM
0.1695

[0.168,0.171]

0.0979

[0.168,0.171]

0.0308

[0.168,0.171]
1+ 0+ 0+ 74739.59 149501.2 149563.1

coefficients of the logit link-function describing the dependence of the transition prob-

abilities on the distance between the adjacent SNPs (in 10K bp) for the NH-HMM. It

can be observed that (see Figure 10.4), similarly to pool 1, the probabilities of staying

in the same state decrease as the distance between the neighboring SNPs increases.

However, for state 1 of pool 2, this decline is not as large as for spool 1 (see Figure

10.2). The larger number of SNPs around 20,000 bp, could be a possible reason for

this behavior (Figure 10.5). If the distance between SNPs increases, the possibility

of moving from state 2 to state 3 and for state 3 to 2 also increases. Except for 10

SNPs, NH-HMM and H-HMM assign the SNPs to the same states (see Figure 10.5).

Table 10.4: Parameter estimates (95% confidence intervals in brackets) for the non-

homogeneous HMM with three states for pool 2 of chromosome XIV.

Parameters j = 1 j = 2 j = 3

αj1 0 -2.0530 [-2.324,-1.781] -5.2343 [-6.163,-4.305]

αj2 -2.0421 [-2.323,-1.76] 0 -2.8260 [-3.130,-2.516]

αj3 -4.1373 [-4.868,-3.406] -2.3521 [-2.660,-2.043] 0

βj1 0 0.9012 [-1.529,3.331] 8.0646 [4.057,12.071]

βj2 3.4682 [0.663,6.273] 0 5.646201 [3.095,8.197]

βj3 4.5416 [-0.671,9.755] 1.1887 [-1.414,3.792] 0
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Figure 10.4: Probabilities of transition from one state to another, as estimated by the

three-state non-homogeneous hidden Markov model.

Figure 10.5: Chromosome XIV pool 2, predicted SNP-specific states for the model with

homogeneous HMM (left panel) and with non-homogeneous HMM (right panel). Red

stands for state 1, green for state 2, and blue for state 3.
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10.3.3 Chromosome IX, pool 1

Table 10.5 presented two models fitted for pool 1 of chromosome IX. Similar parameter

estimates indicate that the results do not depend on the assumed non-homogeneous

transition matrix. The total discordance probability can be estimated to be equal to

0.8, 0.38, and 0.532 for the first, second, and the third state, respectively. For both

Table 10.5: Chromosome IX, pool 1: comparison of two forms of the HMM with

three states and their corresponding parameter estimates (95% confidence intervals

in brackets). For the parameters indicated with + a confidence interval could not be

calculated as these parameters are at the boundary of the parameter space.

Model µ1 µ2 µ2 δ1 δ2 δ3 −logLN AIC BIC

H-HMM
0.236

[0.231,0.247]

0.155

[0.153,0.156]

0.117

[0.115,0.118]
1+ 0+ 0+ 64105.1 128232.3 128295.4

NH-HMM
0.237

[0.231,0.247]

0.1556

[0.153,0.156]

0.1178

[0.115,0.118]
1+ 0+ 0+ 64079.9 128181.8 128244.9

models, the discordance probability of state 3 indicates that SNPs in this state are

not linked to loci from the parent with the trait [103]. In addition, the discordance

probability of state 2 shows that second state does not correspond to a state where no

linkage is present. It rather suggests a state in which there are a linked chromosomal

regions with gene loci from parent without the trait. To check the sensitivity of the

conclusions to the structure of the model, we use a model in which µ2 is fixed to be

equal to 0.125, i.e., the total discordance probability for the second state is set to be

equal to 0.50. The results are presented in Table 10.6. The estimated total discordance

Table 10.6: Chromosome IX, pool 1: comparison of two forms of the 3-state HMM

with fixed mismatch probability µ2 = 0.125 and their corresponding parameter esti-

mates (95% confidence intervals in brackets). For the parameters indicated with + a

confidence interval could not be calculated as these parameters are at the boundary

of the parameter space.

Model µ1 µ2 µ2 δ1 δ2 δ3 −logLN AIC BIC

H-HMM
0.1914

[0.172,0.203]
0.125+

0.092

[0.091,0.093]
1+ 0+ 0+ 64654.8 129331.7 129394.8

NH-HMM
0.1905

[0.171,0.202]
0.125+

0.0913

[0.0903,0.0924]
1+ 0+ 0+ 64628.4 129279 129342.1
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probabilities for state 1 and 3 are now equal to 0.234 and 0.632, respectively. The

second state can now be considered as corresponding to the SNPs not linked with any

genes. Table 10.7 shows the estimated parameters of the non-homogeneous transition

matrix for each state after fixing the mismatch probability of the second state. The

estimated transition probabilities are shown in Figure 10.6.

Table 10.7: Parameter estimates (95% confidence intervals in brackets) for the non-

homogeneous HMM with three states for pool 1 of chromosome IX.

Parameters j = 1 j = 2 j = 3

αj1 0 -1.9192 [-2.082,-1.757] -6.3019 [-7.925,-4.679]

αj2 -0.5973 [-0.790 ,-0.403] 0 -3.7624 [-4.957,-2.567]

αj3 -4.1373 [-4.868,-3.406] -2.3521 [-2.660,-2.043] 0

βj1 0 4.2321 [1.3436,7.1214] 443.3612 [290.895,595.820]

βj2 6.50 [0.778, 12.230] 0 433.4266 [283.214,583.631]

βj3 10.468 [-270.120,291.056] -0.6437 [-8.271,6.983] 0

Figure 10.6: Probabilities of transition from one state to another, as estimated by the

three-state non-homogeneous hidden Markov model.
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According to Figure 10.6, for all three states, the transition from each state to itself

is decreasing if the distance between adjacent SNPs increases. In state 1, increasing

the distance between the neighboring SNPs increases the chance of moving from state

1 to state 2. Surprisingly, the probability of transition from state 1 to state 3 is steady

and equal to zero across the whole chromosome. According to Figure 10.7, SNPs

assigned to state 1 and state 2, are located uniformly along the whole chromosome.

In all states, at specific distance point between the adjacent SNPs (0.1 K bp, 0.4 K

bp and 0.3 K bp for state 1, state 2 and state 3 respectively, Figure 10.6) transition

probability between these two states is equal. This indicates that at that particular

distance point, SNPs locating on state 2 or state 3 can either randomly stay in their

own state or depart towards the other state. Increasing the distance after this point,

moves these SNPs towards the other state. For the models with fixed concordance

probability, a very small number of SNPs is classified to be in state 3 (see Figure10.7).

Except in 23 cases, SNPs are classified similarly into states as shown by Viterbi path

in Figure 10.7.

Figure 10.7: Chromosome IX pool 1, predicted SNP-specific states for the model with

homogeneous HMM (left panel) and with non-homogeneous HMM (right panel). Red

stands for state 1, green for state 2, and blue for state 3.

10.3.4 Chromosome IX, pool 2

The estimated parameters of the total discordance probability for pool 2 of chromo-

some IX (Table 10.8) is equal to 0.06, 0.4504 and 0.64 for the first, second, and the
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third state, respectively. The same trend of transition probabilities is observed in

pool 2 of chromosome IX (Table 10.9 and Figure 10.8) as compared to pool 1. The

SNPs assigned to state 3 (blue in Figure 10.9) are scattered widely across the whole

chromosome and do not form any contiguous region. Therefore, we can conclude that

chromosome IX does not contain QTLs responsible for high ethanol-tolerance.

Table 10.8: Chromosome IX, pool 2: comparison of two forms of the 3-state HMM

and their corresponding parameter estimates (95% confidence intervals in brackets).

For the parameters indicated with + a confidence interval could not be calculated as

these parameters are at the boundary of the parameter space.

Model µ1 µ2 µ3 δ1 δ2 δ3 −logLN AIC BIC

H-HMM
0.2350

[0.228,0.238]

0.1377

[0.136,0.138]

0.0941

[0.093,0.095]
1+ 0+ 0+ 69411.3 138844.6 138907.8

NH-HMM
0.2349

[0.228,0.238]

0.1374

[0.136,0.138]

0.0936

[0.092,0.094]
1+ 0+ 0+ 69387.65 138797.3 138860.5

Figure 10.8: Probabilities of transition from one state to another, as estimated by the

three-state non-homogeneous hidden Markov-model.
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Table 10.9: Parameter estimates (95% confidence intervals in brackets) for the non-

homogeneous HMM with three states of pool 2 of chromosome IX.

Parameters j = 1 j = 2 j = 3

αj1 0 -3.0526 [-3.445,-2.658] -3.6818 [-4.299,-3.064]

αj2 -0.3960 [-0.777,-0.013] 0 -1.6406 [-1.827,-1.4563]

αj3 -1.8248 [-2.481,-1.166] -1.5328 [-1.724,-1.338] 0

βj1 0 411.2044 [-2.754,25.164] -19.0388 [-58.362,20.284]

βj2 1.1466[-3.244,5.538] 0 20.12985 [14.476,25.777]

βj3 -0.3409[-9.607,8.925] 23.0909 [16.633,29.545] 0

Figure 10.9: Chromosome IX pool 2, predicted SNP-specific states for the model with

homogeneous HMM (left panel) and with non-homogeneous HMM (right panel). Red

stands for state 1, green for state 2, and blue for state 3.

10.4 Conclusions

In this chapter we have presented the NH-HMM model for QTL-mapping. The ap-

proach adopted by the NH-HMM has a number of advantages over a basic HMM.

Most importantly, by taking into account the distance between adjacent SNPs, an

NH-HMM better models chromosomes where some regions are densely covered and

others are covered at lower density. In addition, an NH-HMM can be extended to

include other covariates except the distance between the adjacent SNPs. However,
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further investigation should be devoted to the choice of the relevant covariates for the

NH-HMM. One of the main concern in an NH-HMM model is choosing a suitable link

function together with an appropriate distance scale. For instance, in our case, we

choose the standard (multinomial) logistic link-function between covariates and the

transition probabilities. Other link functions, such a probit are also possible, however,

we did not investigate such a link function in our model. The distance scale of 10K bp

between the adjacent SNPs was used. This scale is not the only option and different

scaling of distance can also be applied, e.g., log(distance).

Another important issue for using the NH-HMM is the number of parameters

in the model that have to be estimated. Applying the NH-HMM can increase the

number of estimated parameters related to the transition probabilities. For larger

number of states, the number of these parameters increases the computation time of

the forward-backward algorithm. As an example, for pool 1 segregants of chromosome

XIV, fitting the model takes 3h 48m 22s and 7h 14m 09s for the basic HMM and the

NH-HMMmodel respectively (on an HP Elitebook 8530p). To decide which stochastic

model fits the data best, AIC and BIC can be computed. In our case, there was a

slight difference between the values of these information criteria for the basic HMM

and the NH-HMM. Moreover, there was little difference in the estimated values of the

parameters of interest, i.e., the concordance probabilities. Thus, in our application,

the results did not depend on the assumption of (non-)homogeneity of the transition

matrix.





Chapter 11

A joint hidden Markov-model

for QTL-mapping

The basic HMM proposed in [109] analyzed data for only one pool of segregant, i.e.,

either pool 1 or pool 2 for a particular chromosome. However, if multiple segregated

pools are available, one could consider modelling them simultaneously. The possibility

to incorporate multiple segregant pools was considered in [108] with the application

of a scatter plot smoother. The presented results in [108] indicated that differences

between the observed trends of multiple segregated pools are advantageous for iden-

tifying potential loci associated with the trait of concern. The significant difference

between the multiple pools of segregant could also be informative for identifying a

minor QTL present in the reference strain. Therefore, the incorporation of multiple

segregated pools could be an important feature for reducing the size of the identified

chromosomal regions associated with the trait.

In analogy to the scatter plot smoother, we model multiple pools of segregant at

the same time with the application of a joint HMM.

This chapter is organized as follows. In Section 11.1, we give a general introduction

to the joint HMM. Section 11.2 presents a joint HMM model for BSA experiment.

The application of the proposed joint HMM on the ethanol-tolerant yeast dataset

(Section 2.3) is described in Section 11.3. Concluding remarks and topics for future

research are given in Section 11.4.
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11.1 Methodology

The basic HMM described in Section 8.1 dealt with only a single observation sequence

to fit the model. In the joint HMM, we assume the use of multiple observation

sequences that can be observed simultaneously.

Denote the set of k observation sequences as

X =
{
X(1),X(2), ...,X(k)

}
, (11.1)

where X(k) = (X
(k)
1 , X

(k)
2 , ..., X

(k)
N ) is the k-th observation sequence. In addition,

we assume that all observation sequences are independent of each other. Denote the

parameters of the HMM model for the k-th sequence as (δ(k),Γ,θ(k)).

The joint HMM model based on an m-state Markov-chain can be expressed sym-

bolically as λ = (δ,Γ,θ), with δ = (δ(1), ..., δ(k)) = (δ
(1)
1 , ..., δ

(1)
m , ..., δ

(k)
1 , ..., δ

(k)
m ),

Γ and θ = (θ(1), ...,θ(k)) = (θ
(1)
1 , ..., θ

(1)
m , ..., θ

(k)
1 , ..., θ

(k)
m ) denoting, respectively, the

initial state distribution, transition probability matrix, and the emission-probability

distribution parameters of the joint HMM model. Note that the same transition

probability matrix is assumed for all the sequences.

Assuming independency among observation sequences, given a particular join

HMM (δ,Γ,θ), the log-likelihood of an observed sequence X = x can be expressed as

log(LN ) = log{L(1)
N }+ ...+ log{L(k)

N }, (11.2)

where L
(k)
N is defined according to (8.4).

The forward-backward probabilities assigned to each observed sequence can be

computed as follows:

α
(k)
i = δ(k)P(x

(k)
1 )ΓP(x

(k)
2 )...ΓP(x

(k)
i ) for i = 1, ..N, (11.3)

β
(k)
i = Γ P(x

(k)
i+1)ΓP(x

(k)
i+2)...ΓP(x

(k)
N )1T , (11.4)

in which the transition matrix Γ is assumed to be the same for all observed sequences.

Define u
(k)
j (i) and v

(k)
jk (i) to be indicator variables of the k-th observation sequence

as explained in Section 8.1. The parameters involved in (11.2) can be estimated by

using a joint forward-backward algorithm. In the E-step, u
(1)
j (i) , v

(1)
jk (i),..., u

(k)
j (i),

and v
(k)
jk (i) are estimated given the observed data and current estimates of the model

parameters. Then, in the M-step, the log-likelihood function (11.2) is maximized

with respect to (δ(1), ..., δ(k)), (θ(1), ...,θ(k)), and Γ , given the estimates of u
(1)
j (i),

v
(1)
jk (i),..., u

k)
j (i), and v

(k)
jk (i).
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After estimating the parameters of the joint HMM, the sequence of the hidden

states, which could have generated the observed sequence of symbols, can be predicted

for each observed sequence separately. For instance, the most likely sequence (“global

decoding”) can be found with the help of the Viterbi algorithm [114].

11.2 A joint hidden Markov-Model for BSA exper-

iments

The structure of the proposed joint HMM is assumed as follows. We consider three

states, i.e., m = 3. The hidden states and the state-dependent emission probabilities

are defined as in Subsection 8.2.1 and 8.2.2, respectively. Pool 1 and pool 2 of each

chromosome are assumed to be two independent observation sequences. The common

set of SNPs along the chromosome have been selected.

11.3 Results

We apply the joint HMM, outlined in Section 11.2, to chromosome XIV, chromosome

IX, and chromosome II. These chromosomes are selected for validation of the method

due to three possible scenarios, i.e., the presence of a major QTL (chromosome XIV),

the absence of a QTL (chromosome IX), and the presence of a minor QTL (chro-

mosome II). In all cases the sequencing-error correction (εtot = 0.05) and filtering

approach are used (see Subsection 9.3.1).

11.3.1 Chromosome XIV

Table 11.1 presents the parameter estimates of the joint HMM. The total discor-

dance probabilities of chromosome XIV are equal to (1, 1, 1) − 4(µ
(1)
1 , µ

(1)
2 , µ

(1)
3 ) =

(0.1928, 0.5044, 0.7872), and (1, 1, 1) − 4(µ
(2)
1 , µ

(2)
2 , µ

(2)
3 ) = (0.2132, 0.502, 0.8492), for

pool 1 and pool 2, respectively. Thus, following the argumentation presented in

Subsection 8.2.1, for both pools, the first state can be seen as corresponding to SNPs

linked with a gene loci of the parent without the trait, the second state can be treated

as corresponding to the SNPs not linked with any gene(s) responsible for ethanol tol-

erance, while the third state can be seen as identifying SNPs linked to the gene(s).

The estimated transition probabilities indicate that the most likely transitions are

from a given state to itself, as can be seen from the estimated values: γ11 = 0.6882,

γ22 = 0.8857, and γ33 = 0.9285.
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Figure 11.1 presents the states predicted for each SNP based on the most likely

state sequence while considering the joint HMM model. The plot clearly illustrates

that for both pools, state 3 (blue) is associated with a high SNP frequency, state 2

(green) with an intermediate frequency, and state 1 (red) with a low frequency.

We test whether there is a significant difference between the state-dependent

emission-probabilities parameters of each pool. The significant difference could rep-

resent gene loci, therefore, might decrease the size of the identified region. For this

Table 11.1: Parameter estimation of the three-state model for the joint pool segre-

gants of chromosome XIV with sequencing-error correction. The values between the

brackets are the corresponding 95% confidence intervals. For the parameters indi-

cated with + a confidence interval could not be calculated as these parameters are at

the boundary of the parameter space.

Parameters

µ
(1)
1 0.2018 [0.199, 0.205]

µ
(1)
2 0.1239 [0.123, 0.124]

µ
(1)
3 0.0532 [0.053, 0.055]

µ
(2)
1 0.1967 [0.194, 0.199]

µ
(2)
2 0.1245 [0.124, 0.126]

µ
(2)
3 0.0377[0.037, 0.039]

δ
(1)
1 1+

δ
(1)
2 0+

δ
(1)
3 0+

δ
(2)
1 0+

δ
(2)
2 1+

δ
(2)
3 0+

γ11 0.6882 [0.6623, 0.7132]

γ12 0.2769 [0.2678, 0.2862]

γ13 0.0347 [0.0333, 0.0361]

γ21 0.0526 [0.0511, 0.0540]

γ22 0.8857 [0.8634, 0.9060]

γ23 0.0615 [0.0612, 0.0617]

γ31 0.0062 [0.0030, 0.0118]

γ32 0.0652 [0.0637, 0.0666]

γ33 0.9285 [0.9277, 0.9292]
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purpose, the emission-probability distribution parameters of two pools are compared

are compared with each other through the reparametrization θj = log(
µj

3µ′
j
) (equation

(8.16)). The comparision of two pools is based on the value obtained for each of ηj :

θ
(2)
j = θ

(1)
j + ηj . (11.5)

Particularly, we want to test the following hypothesis for each three states:{
H0 : ηj = 0

H1 : ηj ̸= 0
(11.6)

The Wald test
ηj−0

SE(ηj)
∼ N(0, 1) is used and the corresponding statistic and their

p-values are presented in Table 11.2. According to the results, there is a significant

difference between emission-probability distribution parameters in state 1 and state

3. The negative value of ηj for these two states indicates that the concordance

probability for pool 1 is higher than the concordance probability for pool 2 for both

states. The higher concordance probability for pool 1 in the first state can be referred

to an additional effect around 200,000 bp for pool 2 (see Figure 11.1), where the SNP

frequency drops to approximately 20%. This suggests the presence of a minor QTL

in the reference strain, which was not present in the strain of the parent with a high

ethanol-tolerance [108]. The higher concordance probability for the third state could

be related to an enrichment effect in the area around the three QTLs for pool 2 [103],

where the SNP frequency increases to 90%.

Table 11.2: Parameter estimation and the Wald test statistic (Z) of the difference

in relative risk ratios for chromosome XIV. The values between the brackets are the

corresponding 95% confidence intervals.

Parameter MLE Z statistic p-value

η1 -0.2286 [-0.319, -0.137] - 4.241 <0.0001

η2 0.0173 [-0.011, 0.045] 1.198 0.2348

η3 -0.3560 [-0.393, -0.318] -18.651 <0.0001
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Figure 11.1: Chromosome XIV, predicted SNP-specific states for the joint HMM

model. The colors indicate the state of the SNP. Red for state 1, green for state

2, and blue for state 3. The vertical lines indicate the location of the three identified

genes, i.e., MKT1, SWS2 and APJ1.

11.3.2 Chromosome IX

Table 11.3 presents the parameter estimations of the joint HMM for chromosome

IX. The total discordance probabilities are equal to (1, 1, 1) − 4(µ
(1)
1 , µ

(1)
2 , µ

(1)
3 ) =

(0.2192, 0.474, 0.7436), and (1, 1, 1) − 4(µ
(2)
1 , µ

(2)
2 , µ

(2)
3 ) = (0.1608, 0.5352, 0.752) for

pool 1 and pool 2, respectively. Thus, the first state can be seen as corresponding

to SNPs linked with a gene loci of the parent without the trait, the second state can

be treated as corresponding to the SNPs not linked with any gene(s) responsible for

ethanol tolerance, while the third state can be seen as identifying SNPs linked to the

gene(s). Figure 11.2 presents the states predicted for each SNP based on the most

likely state sequence.

According to the values obtained for the ηj (Table 11.4), we can see that there is

a significant deference between the emission-probabilities parameter for state 1 and

state 2. The positive value of η1 = 0.2124 indicates that the discordance probability
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in pool 1 is higher than the discordance probability in pool 2 for state 1 (Figure

11.2). The negative value of η2 represents that concordance probability in pool 1

is higher than the concordance probability in pool 2 for state 2. The significant

Table 11.3: Parameter estimation of the three-state model for the joint pool segregants

of chromosome IX with sequencing-error correction. The values between the brackets

are the corresponding 95% confidence intervals.

Parameters

µ
(1)
1 0.1952 [0.193, 0.197]

µ
(1)
2 0.1315 [0.130, 0.132]

µ
(1)
3 0.0641 [0.056, 0.071]

µ
(2)
1 0.2098 [0.206, 0.212]

µ
(2)
2 0.1162 [0.115, 0.117]

µ
(2)
3 0.0620 [0.059, 0.065]

δ
(1)
1 1+

δ
(1)
2 0+

δ
(1)
3 0+

δ
(2)
1 1+

δ
(2)
2 0+

δ
(2)
3 0+

γ11 0.6365 [0.4963, 0.7298[

γ12 0.3595 [0.2570, 0.4423]

γ13 0.0039 [0.0018, 0.0082]

γ21 0.0542 [0.0525, 0.0558]

γ22 0.9244 [0.9021, 0.9467]

γ23 0.0214 [0.0200, 0.0227]

γ31 0.0213 [0.0138, 0.0261]

γ32 0.4637 ]0.4386, 0.4896]

γ33 0.5148 [0.5104, 0.5192]

difference between two pools in state 1 might suggest minor gene loci present in

this chromosome. However, no potential QTLs were identified for chromosome IX

[103, 108]. According to η3, there is not a significant difference between the emission

parameters in state 3 between pool 1 and pool 2. The total discordance probabilities

in state 3 for both pools indicate that this state can be seen as identifying SNPs linked

to gene(s). Therefore, there is a problem with the model, as it suggests linkage, while
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no gene loci were found in biological analysis.

Table 11.4: Parameter estimation and the Wald test statistic (Z) of the difference

in relative risk ratios for chromosome IX. The values between the brackets are the

corresponding 95%confidence intervals.

Parameter MLE Z statistic p-value

η1 0.2124 [0.126, 0.298] 4.863 <0.0001

η2 -0.2298 [-0.250, -0.209] -22.034 <0.0001

η3 0.0487 [-0.113,0.211] 0.588 0.5563

Figure 11.2: Chromosome IX, predicted SNP-specific states for the joint HMM model.

The colors indicate the state of the SNP. Red for state 1, green for state 2, and blue

for state 3.
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11.3.3 Chromosome II

The parameter estimates of the joint HMM for chromosome II is presented in Table

11.5. The total discordance probabilities are equal to (1, 1, 1) − 4(µ
(1)
1 , µ

(1)
2 , µ

(1)
3 ) =

(0.2296, 0.5104, 0.7908), and (1, 1, 1) − 4(µ
(2)
1 , µ

(2)
2 , µ

(2)
3 ) = (0.2204, 0.546, 0.8128) for

pool 1 and pool 2, respectively.

Therefore, for both pools, the first state can be seen as corresponding to SNPs

linked with a gene loci of the parent without the trait, the second state can be treated

as corresponding to the SNPs not linked with any gene(s) responsible for ethanol

Table 11.5: Parameter estimation of the three-state model for the joint pool segregants

of chromosome II with sequencing-error correction. The values between the brackets

are the corresponding 95% confidence intervals.

Parameters

µ
(1)
1 0.1926 [0.189, 0.195]

µ
(1)
2 0.1224 [0.122, 0.124]

µ
(1)
3 0.0523 [0.051, 0.054]

µ
(2)
1 0.1949 [0.189, 0.199]

µ
(2)
2 0.1135 [0.112, 0.114]

µ
(2)
3 0.0468 [0.046, 0.047]

δ
(1)
1 0+

δ
(1)
2 1+

δ
(1)
3 0+

δ
(2)
1 0+

δ
(2)
2 0+

δ
(2)
3 1+

γ11 0.5675 [0.4650, 0.6503]

γ12 0.3890 [0.3798, 0.3983]

γ13 0.0433 [0.0418, 0.0447]

γ21 0.0276 [0.0260, 0.0291]

γ22 0.8879 [0.8656, 0.9082]

γ23 0.0843 [0.0828, 0.0857]

γ31 0.0077 [0.0042, 0.0148]

γ32 0.1819 [0.1615, 0.1798]

γ33 0.8102 [0.8046, 0.8157]
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tolerance, while the third state can be seen as identifying SNPs linked to the gene(s).

According to the values obtained for ηj (Table 11.6), there is a significant difference

between the emission-probabilities parameters for state 2 and state 3. The negative

values of η2 and η3 represent that the concordance probability in pool 1 is higher than

the concordance probability in pool 2 (Figure 11.3). However, for both pools, the

total discordance probabilities for state 2 indicate that this state can be considered

as corresponding to the SNPs not linked with any gene(s). The significant difference

between the emission-probabilities parameters in state 3 suggests the presents of a

potential QTLs in this regions. The presence of one gene around 470.000 bp, i.e.,

LYS2 , was confirmed in this chromosome [103].

Table 11.6: Parameter estimation and the Wald test statistic (Z) of the difference

in relative risk ratios for chromosome II. The values between the brackets are the

corresponding 95%confidence intervals.

Parameter MLE Z statistic P.value

η1 0.0561 [-0.037, 0.149] 1.172 0.241197

η2 -0.1431 [-0.163, -0.123] -13.956 <0.0001

η3 -0.1396 [-0.113,0.211] -6.521 <0.0001



11.4. Conclusions 131

Figure 11.3: Chromosome II, predicted SNP-specific states for the joint HMM model.

The colors indicate the state of the SNP. Red for state 1, green for state 2, and blue

for state 3. The vertical blue line indicates the location of the identified gene, i.e., LY

S2.

11.4 Conclusions

In this chapter we present the application of a joint hidden Markov model in

QTL mapping. The significant difference between the state-dependent emission-

probabilities parameters can lead us to find a chromosomal location for the phenotype

of interest. In case of the presence of minor QTLs, the significant difference between

pool 1 and pool 2 could be informative as the minor QTLs are more distinctive in

pool 2 (17%) as compared to pool 1 (16%) [103]. In chromosome XIV the estimated

emission-probabilities assigned to state 1 and state 3 are significantly different from

each other. This shows that the first and the third state could be the possible regions

for the potential QTL and results were compatible with previous findings ([103, 108]).

In chromosome IX, the application of the joint HMM led us to spurious regions as

no gene loci have been found in this chromosome. The joint HMM could identified a
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minor QTL presents in the pool-2 data of chromosome II. The initial estimates of the

joint forward-backward algorithm for the state-dependent emission probabilities are

chosen in a way that the first state corresponds to linkage with a locus of the parent

without the trait, the third state presents the linkage with a locus of the parent with

the trait, and the second state does not show any linkage for both pools. Therefore,

for each pool the total discordance probabilities of 0.2, 0.5, and 0.8 are considered for

the first, second and the third state, respectively. In addition, the initial estimates of

the transition matrix for all states are selected as the probabilities from a given state

to itself is 0.8 and to another is 0.1. The application of the joint hidden Markov model

profoundly increased the computational time. As an example, for pool 1 segregants

of chromosome XIV, fitting the model takes 3h 48m 22s and 13h 04m 42s for the

basic HMM and the joint HMM model respectively (on an HP Elitebook 8530p). In

general, a joint HMM can be used to detect potential regions responsible for ethanol

tolerance. However, this method led us to a wider region, where no QTLs have been

identified in a chromosome. Increasing the number of pools, e.g., three pools, could

be result in more precise location of potential QTLs. This work can be subjected to

future research.



Chapter 12

Concluding remarks and

future work

12.1 Concluding remarks

In this dissertation, we proposed statistical methods for datasets from proteomics and

genomics workflow.

Over the past decade, MS-based proteomics has emerged as a high-throughput

method for the identification and quantification of proteins in complex samples. The

high resolution MS data contains a large degree of noisy, redundant, and irrelevant

information. Only a part of it includes the biologically meaningful signal, i.e., peptides

and small proteins, making accurate classification between peptide/protein peaks and

peaks generated by noise difficult. To overcome this obstacle, prior information related

to the physical properties of the peptide/protein, i.e., isotopic distribution, is needed.

However, a similarity measure is also required to distinguish between peptide and

noise peaks clusters. In Chapter 4, we considered the use of Pearson’s χ2 statistic and

the Mahalanobis distance for this purpose. We evaluated the performance of the two

similarity measures by using a designed MALDI-TOF experiment. The results could

extend to any high-resolution mass spectrum and indicated that Pearson’s χ2 statistic

offered a better discriminative power for detecting the putative-peptide clusters than

the Mahalanobis distance.

Protein identification is a key and essential step in the field of proteomics. For this

purpose, shotgun proteomics is recognized as one of the main techniques for protein

identification and quantification. In a standard computational pipeline, MS/MS spec-

133



134 Chapter 12. Concluding remarks and future work

tra from a mass spectrometer are searched against database search engines or de novo

sequencing approaches. In database search algorithms, fragment ions derived from

the unidentified protein are compared with theoretical data, and a score is assigned

according to how well the two sets of data match together. The top score is expected

to identify the unknown protein. The limiting factor in all database search tools is

the tradeoff between false positives and false negatives. It is definitely essential to

keep false positives to a minimum during protein identification. Principally, peptide

identification based on tandem MS and database-search algorithms does not take into

account information about isotope distributions of the precursor ions. To determine

the effectiveness of these search algorithms in terms of their ability to distinguish

between correct and incorrect peptide assignments, in Chapter 5, we proposed an

additional metric that quantifies the similarity between the theoretical isotopic dis-

tributions for the precursor ions selected for tandem MS and the experimental mass

spectra by using Pearson’s χ2 statistic. The observed association between Pearson’s

χ2 statistic and the score function indicated that good scores can be obtained for

molecules which exhibit atypical isotope profiles, while low scores can be obtained

for fragment spectra which have a clear peptide-like isotope pattern. These results

demonstrated that Pearson’s χ2 statistic can be used in conjunction with the score

of database search algorithms to increase the sensitivity and specificity of peptide

identification.

There are many search engines available for the analysis of proteomics data pro-

duced by MS/MS. These search algorithms vary in accuracy, sensitivity, and specificity

due to the different principles in the underlying scoring mechanism. However, mea-

suring the degree of agreement between different search engines in terms of peptide

identification is always in our interest. For instance, how possible is the peptide iden-

tification obtained from SEQUEST can also be observed in MASCOT. In Chapter 6,

we proposed Cohen’s kappa coefficient (chance-corrected agreement) to determine the

level of the agreement, between the MASCOT and SEQUEST. The results suggested

that there is, in general, a good agreement between the peptide assignments for the

two search engines.

The advent of high throughput sequencing methods, such as NGS has greatly

accelerated biological and medical research and discovery. NGS has provided an ef-

fective approach to identify the large scale of DNA polymorphic loci used as molecular

markers to distinguish gene loci responsible for the trait of concern. In Chapter 9,

10, and 11, we introduced different variants and generalizations of the basic HMM

proposed in [109] used to map various QTLs responsible for high ethanol-tolerance

in S. cerevisiae with NGS. One possible extension that can be dealt with the Marko-



12.2. Topics for future work 135

vian model in the basic HMM is the direction of modelling. Both the preceding state

of the (i − 1)-th SNP and following state of the (i + 1)-th SNP carry advantageous

information about a current i-th SNP. Uni-directional HMMs ignore this influence,

hence the motivation of applying the DHMM in Chapter 10. The comparison of the

uni-directional HMM and the DHMM for chromosome XIV revealed only a slight dif-

ference in terms of the parameter estimates, with a minimal gain in precision of the

estimation for the DHMM. As a result, the DHMM and the uni-directional HMMs

assigned the SNPs to the same states. The main advantage of the DHMM is the fact

that it produces a single set of estimates of the parameters of interest, i.e., emission

(concordance) probabilities.

In chapter 10, we proposed the non-homogeneous HMM. The advantage of the

NH-HMM is that it allows the transition probabilities of the basic HMM to vary

in distance by exploiting covariate information. Our model assumed that taking into

account the distance between the neighboring SNP can influence the state assignment

to each SNP. The NH-HMM were able to detect gene loci responsible for high ethanol-

tolerance in S. cerevisiae.

In Chapter 11, we considered joint HMM of two pools of segregants at the same

time. The motivation was, the significant differences between the state-dependent

probabilities between two pools might lead us to the potential regions of gene loci.

Joint HMM was able to detect potential genomic regions for high ethanol-tolerance

in chromosome XIV. However, the same approach was not able to work properly in

chromosome IX.

12.2 Topics for future work

12.2.1 Assessing the agreement between peptide assignments

for different search engines

The scores obtained for SEQUEST and MASCOT to assess the agreement in terms of

the sequence annotations were not filtered with respect to a FDR threshold. However,

we can compare the two search engines on the set of confident peptide spectrum

identifications, i.e., we can filter out peptide identification results that do not comply

with a FDR of 5% according to the target decoy approach. Applying the FDR

threshold, could decrease the number of non-confident peptide identifications and

consequently increase the peptide sequences that are both found by SEQUEST and

MASCOT. However, such an extension would be a subject of further research.
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12.2.2 The hidden Markov-model

The hidden Markov-models, proposed in part II of this dissertation, can be extended

in several ways. The emission-state probabilities stated in (8.18), can be simplified

towards a binomial distribution. This simplification will reduce the notational burden

and provide an easier interpretation in terms of the “total” concordance and discor-

dance probabilities. The first-order DHMM can be replaced by a higher-order chain.

For example, a second-order Markov-chain can be characterized by the transition

probabilities for each direction as follows:

γ
(LtoR)
jky = P (Ci = sy|Ci−1 = sk, Ci−2 = sj) (12.1)

γ
(RtoL)
jky = P (Ci = sy|Ci+1 = sk, Ci+2 = sj) (12.2)

The first-order Markov-chain allow to analyze for serial dependence between successive

observations. Increasing the order of the Markov-chain could allow for the serial

dependance beyond the recent neighboring SNPs.

In the NH-HMM model, one could include other covariates in the model. For

example, besides the inclusion of the distance between the SNPs, the number of

recombination events can also be included as a relevant covariate as the recombination

rate is not uniform along the length of chromosomes.
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A.1 Tables

Table A.1: Peptides found in more than 90% of the 384 bovine cytochrome c tryptic-

digest mass spectra.

Mass % Mass %

568.1 100 1584.8 100

779.4 100 1606.8 99.7

964.5 100 1633.6 100

1046.5 100 1649.6 100

1124.6 99.7 1672.9 100

1152.6 98.1 1820.7 91.7

1168.6 100 2010.0 100

1184.6 100 2026.0 100

1196.6 96.1 2032.0 100

1212.6 99.7 2042.0 98.4

1296.7 100 2058.0 97.1

1306.7 100 2138.1 100

1322.7 90.1 2154.1 100

1367.7 99.59 2160.1 97.4

1434.8 100 2170.1 98.4

1456.7 100 2186.1 95.3

1478.7 93.0 2465.2 100

1562.9 100
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Table A.2: Estimated parameters of model (2) for ratios R(1,m),R(2,m), and R(3,m)

for the indicated mass range.

β R(1) R(2) R(3)

No- sulfur-containing peptides, mass range :406-4000

β0 -0.01824020003960 0.04836786201980 0.03182864110699

β1 0.58774944141321 0.27156117306559 0.21751289233773

β2 -0.04374427526573 -0.00231080382628 -0.01989772300572

β3 0.01569137227889 0.00128199330392 0.00517961166975

β4 -0.00188808146247 -0.00019481372808 -0.00051318105645

One- sulfur-containing peptides, mass range : 406-4000

β0 -0.02967484608832 0.35639302719110 0.07467638437695

β1 0.59144103400519 -0.13157761023047 0.27251901416010

β2 -0.04590195614053 0.22773349494144 -0.07667317606891

β3 0.01707870774360 -0.05797444396238 0.02329108779036

β4 -0.00208417838098 0.00545260364925 -0.00243318653058

Two- sulfur-containing peptides, mass range :406-4000

β0 -0.02384488784289 0.66680371115165 0.04919301885722

β1 0.54435929270485 -0.52043003662670 0.39221454011078

β2 -0.00744230605220 0.43849096392312 -0.15353657635010

β3 0.00573097136927 -0.10969414060664 0.04302666609309

β4 -0.00093432040778 0.01016342015877 -0.00425108044170
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Table A.3: Parameter estimation of the three-state DHHMmodel for pool 1 segregants

of chromosome XIV with sequencing-error correction. The initial estimates of the total

discordance probabilities of 0.1, 0.55, and 0.77 are considered for the first, second and

the third state, respectively. The initial estimates of the transition matrix for all states

are selected as the probabilities from a given state to itself is 0.7 and to another is

0.15. The values between the brackets are the corresponding 95% confidence intervals.

For the parameters indicated with + a confidence interval could not be calculated as

these parameters are at the boundary of the parameter space

Parameters “LtoR” Direction “RtoL” Direction

µ1 0.2255 [0.2187, 0.2320] 0.2255 [0.2187, 0.2320]

µ2 0.1283 [0.1260, 0.1290] 0.1283 [0.1260, 0.1290]

µ3 0.0557 [0.0530, 0.0580] 0.0557 [0.0530, 0.0580]

δ1 0+ 0+

δ2 1+ 1+

δ3 0+ 0+

γ11 0.4614 [0.4519, 0.4709] 0.4614 [0.4519, 0.4709]

γ12 0.4273 [0.4181, 0.4365] 0.4340 [0.4250, 0.4430]

γ13 0.1111 [0.1042, 0.1180] 0.1046 [0.0979, 0.1113]

γ21 0.0210 [0.0201, 0.0219] 0.0210 [0.0201, 0.0219]

γ22 0.9226 [0.9221, 0.9231] 0.9227 [0.9222, 0.9232]

γ23 0.0563 [0.0548, 0.0578] 0.0563 [0.0548, 0.0578]

γ31 0.0074 [0.0038, 0.0111] 0.0075 [0.0039, 0.0111]

γ32 0.0740 [0.0724, 0.0756] 0.0739 [0.0723, 0.0755]

γ33 0.9185 [0.9181, 0.9189] 0.9185 [0.9181, 0.9189]
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A.2 Figures
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Figure A.2: ROC curves for all four analyzed spectra combined.
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Figure A.3: ROC curves for all four analyzed spectra combined.
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Figure A.4: Histograms of the residuals of the estimated polynomial model.
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Figure A.5: Empirical scatter plot between the Mascot and Pearson’s χ2 statistic.
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A.3 Nielsen et al.

Nielsen et al. [69], proposed the concept of a peptide window in which the accurate

monoisotopic mass of a peptide should reside. We have performed such an analysis

starting from the 19,881 tandem MS scans that were identified by SEQUEST. In-

terestingly, 17,838 spectra had a monoisotopic mass that fell within in the defined

peptide window. However, 2,043 spectra fell outside this mass range. For 10,015

spectra, the four consecutive isotope peaks were found and a Pearson’s χ2 statistic

was calculated. From this set 1,878 spectra fell outside the peptide window. The dis-

tribution of the data is presented in Table A.3 according to a XCorr threshold of 3.5

and a Pearson’s χ2 threshold of 0.1. For each region a two-sided hypergeometric test

was performed according to Yates [127]. Region I and II were found to be enriched

for molecules outside the peptide window, whilst region III was found to be depleted.

Table A.3: The distribution of the number of tandem MS scans having monoisotopic

mass reside outside the peptide window for each region.

Outside peptide window All

Region I 190 691

Region II 232 724

Region III 792 5192

Region IV 664 3408

Total 1878 10015



Samenvatting

In dit proefschrift stellen we statistische methodes voor waarmee gegevens over het

proteoom en het genoom kunnen geanalyseerd worden. In het laatste decennium,

wordt massa-spectrometrie-gebaseerde proteomica vaak gebruikt als high-throughput

methode voor de identificatie en kwantificatie van eiwitten in complexe biologische

stalen. Gegevens van dergelijke experimenten bevatten redundante en irrelevante in-

formatie, en zijn vaak onderhevig aan ruis. Hierdoor is het moeilijk om de biologisch

relevante signalen, i.e., de peptiden en eiwitten, te onderscheiden van ruis-signalen.

Een oplossing voor dit probleem is het vergelijken van de gemeten signalen met theo-

retisch berekende, biologische signalen. In hoofdstuk 4 evalueerden we twee similarity

measures, de Pearson χ2 statistiek en de Mahalanobis-afstand, waarmee relevante

biologische signalen, i.e., de isotopen-verdeling, gedetecteerd kunnen worden. Het

onderscheidingsvermogen van de Pearson χ2 statistiek was hoger dan het vermogen

van de Mahalanobis-afstand in een MALDI-TOF experiment.

De identificatie van eiwitten speelt een belangrijke rol in proteomica. Een van

de meest gebruikte technieken voor eiwit-identificatie en -kwantificatie is shotgun

proteomics. Tandem MS spectra worden vergeleken met databanken met de hulp van

gespecialiseerde zoekmachines. Deze zoekmachines vergelijken niet-gedentificeerde

eiwitfragmenten met theoretische data, en kennen een score toe die uitdrukt hoe groot

de gelijkenis is tussen het eiwitfragment en de theoretische data. Des te beter deze

score is , des te waarschijnlijker de identificatie is. Het bepalen wanneer een score goed

is, is niet eenvoudig en is voor vele zoekmachines een uitdaging. Zelden of nooit wordt

door deze zoekmachines de isotopenverdeling van de precursor-eiwitten gebruikt. In

hoofdstuk 5 stelden we de Pearson χ2 statistiek als maatstaf voor om de gelijkenis

tussen de geobserveerde en theoretische isotopenverdeling van de precursor-eiwitten
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te bepalen. Dankzij de Pearson χ2 statistiek konden we aantonen dat een goede score

voor een bepaalde identificatie niet noodzakelijk overeenkomt met een grote gelijkenis

tussen de geobserveerde en berekende isotopenverdeling van de precursor-eiwitten, en

omgekeerd. Het combineren van de Pearson χ2 statistiek en de zoekmachine-scores

leidde tot een verhoogde sensitiviteit en specificiteit van de eiwit-identificatie.

Er bestaan vele zoekmachines voor de analyse van tandem MS data. De resultaten

van deze zoekmachines zijn verschillend qua accuraatheid, sensitiviteit en specifici-

teit. De onderliggende reden hiervoor is de manier waarop de scores berekend worden.

Desondanks deze verschillen, zijn we genteresseerd in de mate van overeenkomst tus-

sen de resultaten van de zoekmachines. We vragen ons bijvoorbeeld af waarom een

identificatie met SEQUEST gelijk of niet gelijk is aan een identificatie met MASCOT.

In hoofdstuk 6, stelden we Cohen’s kappa-cofficint voor om de mate van overeenkomst

te bepalen tussen de MASCOT en SEQUEST identificatie-resultaten. Aan de hand

van de Cohen’s kappa cofficint vonden we dat er een goede overeenkomst is tussen de

resultaten van MASCOT en SEQUEST.

De opkomst van high-throughput sequencing methodes, zoals NGS, heeft voor

een omslag gezorgd in biologisch en biomedisch onderzoek. Dankzij deze techniek

kan men in DNA efficint en op grote schaal polymorfe nucleotiden detecteren. Deze

nucleotiden kunnen onder andere gebruikt worden als moleculaire merkers om de

functie van bepaalde genen vast te stellen. In hoofdstuk 9, 10 en 11 introduceerden

we een aantal aanpassingen aan een hidden Markov model [109] dat gebruikt werd om

verschillende QTLs te identificeren die verantwoordelijk zijn voor abnormale ethanol

tolerantie in S. cerevisiae. En van de mogelijke aanpassingen is gekoppeld aan de

onderliggende afhankelijkheid tussen de moleculaire merkers. In hoofdstuk 10, stelden

we een niet-homogeen HMM voor. In een iet-homogeen HMM zijn de overgangskansen

een functie van n of meerdere covariaten. Op deze manier kunnen we rekening houden

met de afstand tussen twee naburige merkers. Dit niet-homogene model kon eveneens

verscheidene gekende genen identificeren die verantwoordelijk zijn voor een abnormale

ethanol tolerantie. In hoofdstuk 11 breidden we het basis-HMM uit zodat het kan

omgaan met merkers van twee verschillende groepen. Dankzij deze aanpassing kunnen

significante verschillen tussen twee merker-groepen gevonden worden. Dit joint-HMM

kon in chromosoom XIV potentiele chromosomale regio’s identificeren die gerelateerd

zijn aan ethanol tolerantie. In chromosoom IX werkte deze aanpak niet.
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