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Summary

During preclinical drug development the immune system is specifically evaluated
after prolonged treatment with drug candidates, since the immune system may be
an important target system. The response of antibodies against a T-cell dependent
antigen is recommenced by the FDA and EMEA for the evaluation of immunosuppres-
sion/enhancement. For that reason we developed a semi-quantitative enzyme-linked
immunosorbent assay to measure antibodies against keyhole limpet hemocyanin. The
analysis of this kind of data is at this moment not yet fully explored. In this paper
we describe two approaches for modeling immunotoxic data using nonlinear models.
The first is a two stage model in which we fit an individual nonlinear model for each
animal in the first stage and the second stage consists of testing possible treatment
effects using the individual maximum likelihood estimates obtained in the first stage.
In the second approach the inference about treatment effects is based on a nonlinear
mixed model which account for heterogeneity between animals. In both approaches we
use a three parameter logistic model for the mean structure.
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1 Introduction

In humans and in animals the immune system may be an important target system, exhibiting

a unique susceptibility to drugs and other xenobiotics. As a result, the immune system is

specifically evaluated after prolonged treatment with drug candidates during preclinical drug

development. In recently issued guidance of regulatory agencies in Europe (1), the United

States (2) and Japan (3) the antibody response against a T-cell dependent antigen is recom-

mended to evaluate immunosuppression or enhancement. A semi-quantitative enzyme-linked

immunosorbent assay (ELISA) to measure antibodies present in blood after immunisation of

rats with keyhole limpet hemocyanin (KLH), a T-cell dependent antigen was developed and

validated according to ????guideline. The method is considered semi-quantitative because it

does not include a quantified reference standard. The anti-KLH antibodies are measured in

series of dilutions of samples and expressed as optical density values. These optical densities

are a measure of the specific antibody level in a sample. The optical density is high when the

antibody levels are high as a result of a strong immune reaction. The relationship between

the serial dilutions and the optical densities is typically sigmoid. Many classical methods

used to analyse these data concentrate on the OD50 alone (reference to book Nick). That

way differences between curves may not be seen if they originate for example from differences

in the maximums. In this paper we describe two approaches that both provide estimates of

three different shape parameters of the sigmoidal curves using nonlinear models. Parameters

of primary interest are : (1) the maximum optical density, (2) the slope and (3) the dilution

value corresponding to 50% of the maximum (OD50). The first model we consider is a two

stage approach in which we fit an individual nonlinear model for each animal in the first

stage. The second stage consists of testing possible treatment effects using the individual

maximum likelihood estimates obtained in the first stage. In the second method the inference

about treatment effect is based on a nonlinear mixed model which account for heterogeneity

between animals. In both approaches we use a three parameter logistic model for the mean

structure. To our knowledge no comprehensive statistical methods are available for this kind

of ELISA’s applied in immunotoxicology.

This paper is orgenzed as follows. The data are introduced in Section 2 while Section 3
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described the two modeling approaches: the two-stage apparoch and the mixed modeliong

approach. The proposed methods apply to the data in Section 4. In Section 5 we focus on

comutetional issues where we discuss the avilable software (SAS/SPlus).

2 The immunotoxic data

Thirty adult Sprague-Dawley rats (Charles River, Sulzfeld, Germany) were allocated to 2

treatment groups 1 and 2 (5 male and 10 female rats per group). Rats were administered

a single intraperitoneal injection on Day 0 with 200 (group 1) or 800 g KLH (group 2) per

rat. A blood sample was taken on Day 14 for anti-KLH antibody determination by ELISA.

Briefly, microtiter plates were coated with ????KLH for 1 day at 4 C. Plates were then

washed and blocked with ??????? overnight at 4 C. Serum samples were diluted 1:15 in

PBS containing 0.05% Tween 20 (Sigma) and a single 3-fold serial dilution was performed.

Microtiter plates were incubated for ??? at ??? C and then washed. Secondary antibody

anti-rat IgM conjugated to horseradish peroxydase was added to each well. Plates were

incubated and washed before addition of ABTS (Sigma) and enzyme substrate. Plates were

incubated and the optical densities were measured after ??? minutes at 405 nm on a plate

reader (Milenia Kinetic Analyser, Molecular Devices). A serial dilution of a pooled positive

control serum was added.

Figure 2 shows the animal profiles of the response values versus dilution. Both figures

reveal three patterns: (1) a nonlinear relationship between the response and dilution (and

log dilution), (2) considerable amount of variability between animals and (3) decreasing

variability with dilution. For the analysis presented in this report we use log dilution as

predictor.

FIGURE 1 and FIGURE 2 ABOUT HERE
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3 Modeling strategy

The model which was used to describe the relationship between the response and log dilution

is a three parameters logistic model of the form

yij =
θ1i

1 +
(

Cij

θ2i

)θ3i
+ εij, i = 1, . . . , n, j = 1, . . . , J. (1)

Here, yij is the response of animal i at dilution j, Cij is the log(dilution) and εij is the mea-

surement error which is assumed to be normally distributed with mean zero and covariance

matrix Σ. The nonlinear model in (1) can be written as

yij = f(θi, Cij) + εij, (2)

where f is the nonlinear function in (1) and θi = (θ1i, θ2i, θ3i) is an animal-specific parameter

vector to be estimated. The parameter θ1i is the maximum effect which is achieved as

Cij −→ 0, θ2i is the dilution value at which the response is θ1i/2 and θ3i is the slope.

3.1 Two Stage Approach

3.1.1 Formulation of The Two Stage Model

In the first approach a two stage model is considered. The first stage consists of fitting the

nonlinear model in (1) for each animal separately, resulting in animal-specific ML estimates

θ̂i = (θ̂1i, θ̂2i, θ̂3i). In the second stage of the model we specify the joint distribution of θ̂




θ̂1i

θ̂2i

θ̂3i


 ∼ N







θ1i

θ2i

θ3i


 ,A


 , A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 , i = 1, . . . , n. (3)

Here, (θ1i, θ2i, θ3i) are the true animal specific parameters and A is the covariance matrix

which accounts for possible correlation among the ML estimates. It is further assumed that

the true animal specific parameters follow the following structural model




θ1i

θ2i

θ3i


 ∼ N







β1 + γ1Ii

β2 + γ2Ii

β2 + γ2Ii


 ,B


 , B =




b11 b12 b13

b21 b22 b23

b31 b32 b33


 , i = 1, . . . , n. (4)
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Here, Ii is an indicator variable which takes the value of 1 if the i’th animal belongs to the

first treatment group and zero otherwise. Combining the models in (3) and (4) leads to the

marginal model for the ML estimates




θ̂1i

θ̂2i

θ̂3i


 ∼ N







β1 + γ1Ii

β2 + γ2Ii

β3 + γ3Ii


 ,D


 . (5)

3.1.2 Testing For Treatment Effects

In the case both A and B are diagonal matrices, univariate one-way ANOVA can be used

to test treatment effects. Formally, for each one of the parameters, we wish to test the

hypotheses

H0,i : γi = 0,

H1,i : γi 6= 0.
(6)

Taking into account the multivariate distribution of θ in (5), one can test the null hypothesis

H0 : γ = 0 against the alternative H1 : γ 6= 0 using multivariate ANOVA (for example, using

Hotelling’s T 2 or Wilk’s Lambda).

An alternative to multivariate ANOVA for testing treatment effects is to fit the model in (5)

and test the hypotheses

H0 : γ1 = γ2 = γ3 = 0,

H1 : at least one γi is not equal to zero.
(7)

Note that Model (5) can be expressed as

θ̂i ∼ N(X iβ,D),

with

X i =








1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


 if the ith animal from group 1,




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


 if the ith animal from group 2,

(8)
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and the parameter vector β = (β1, β2, β3, γ1, γ2, γ3)′. Hence,




θ1

θ2

θ3


 =





β1 + γ1,

β2 + γ2, animal from group 1,

β3 + γ3,

β1,

β2, animal from group 2,

β3.

In order to test treatment effects one can use the likelihood ratio test in order to compare a

reduced model, which does not include treatment effects, and the model in (5).

3.2 Nonlinear Mixed Effects Model

3.2.1 Formulation of The Mixed Model

Nonlinear mixed effects models combines the two stages in (1) and (3) into one model. For

the ith animal it is assumed

yij = f(θi, Cij) + εij, (9)

where f is the nonlinear function in (1), θi is a animal specific parameter vector and εi =

(εi1, . . . , εin) is a random error term. The animal-specific parameter vector is modelled as

θi = X iβ + Zibi. (10)

Here, β is a fixed parameters vector, bi is a animal-specific random effects vector and X i and

Zi are known design matrices for the fixed effects β and the random effects bi, respectively:

X i = Zi =




1 0 0

0 1 0

0 0 1


 β =




β1

β2

β3


 and bi =




bi1

bi2

bi3


 . (11)

It follows from (10) that the animal-specific parameter vector can be expressed as




θ1i

θ2i

θ3i


 =




β1 + bi1

β2 + bi2

β3 + bi3


 . (12)
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The random effects bi and the error terms εi are assumed to be normally distributed as

bi ∼ N(0,D) and εi ∼ N(0,Σ). The structure of the design matrices D and Σ will be

discussed in the Section 3.

3.2.2 Testing for Treatment Effects

To test for possible treatment effects, one needs to modify the configuration of the design

matrix for the fixed effect in (11) to the configuration given in (8) with the parameter vector

β = (β1, β2, β3, γ1, γ2, γ3)‘. Hence, it follows

θki =





βk + γk + bik if the ith animal from group 1

βk + bik if the ith animal from group 2
(13)

4 Application to the Data

In this section we applied the both methods to the data. We first discuss the results obtained

from the two stage model discussed in Section 2.1 and then present the results obtained using

the mixed effects model discussed in Section 2.2. A sequence of mixed effects models was

fitted in order to find the structure for Σ and D which have the best fit to the data.

4.1 Two Stage Model

The nonlinear model (1) was fitted for each animal separately. Figures 3 and 4 show the

individual models. Figure 5 shows the animal-specific ML estimates (and 95% C.I). The

first 15 lines in this plot show the ML estimates in the first treatment group while the next

15 lines show the ML estimates obtained in the second treatment group. A remarkable

between animal variability is observed among the ML estimates but is seems that there is

no difference between the treatment groups.
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4.1.1 Univariate and multivariate ANOVA

Results obtained from the univariate and multivariate ANOVA are shown in Table 1. The

null hypothesis in (6) of no treatment effects cannot be rejected for all of the univariate

cases. The Wilks Lambda statistics is equal to 0.986 (P=947), i.e. the null hypothesis of no

treatment effects cannot be rejected.

TABLE 1 ABOUT HERE

4.1.2 Marginal Distribution for θ

The marginal model θ̂i ∼ N(X iβ, D) was fitted using the Splus function gls(). Para-

meter estimates obtained from the marginal model are shown in Table 2. The parame-

ter estimates for the treatment effects obtained from the second-stage model, are γ̂1 =

0.000075 (s.e. 0.219), γ̂2 = −0.091 (s.e. 0.291) and γ̂3 = −0.379 (s.e. 0.756) found to be non-

significant. To test for treatment effects we used the likelihood ratio test in order between a

model which includes treatment effects and a model which does not include treatment effects

(i.e. E(θ̂) = (β1, β2, β3)). The likelihood ratio statistics is equal to 0.414 on 3 degrees of

freedom (P-value=0.937) indicates that the null hypothesis of no treatment effects cannot

be rejected.

FIGURE ??,FIGURE ??,FIGURE 3,FIGURE 4,FIGURE 5 and TABLE 2 ABOUT HERE

4.2 Nonlinear Mixed Model

4.2.1 Model 1: Unstructured Covariance Matrix for bi and Uncorrelated Resid-
ual Errors

The nonlinear mixed model specified in (10)-(??) was fitted with covariance structure given

by bi ∼ N(0,D1) and εi ∼ N(0, σ2I). In this stage, the covariance matrix for the random
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effects is assumed to be unstructured, i.e.,

D1 =




d11 d12 d13

d21 d22 d32

d31 d23 d33


 . (14)

Note that we do not, at this stage, include treatment effects into the model. Parameter

estimates for θ are equal to β̂1 = 1.751 (0.107), β̂2 = 5.513 (0.129), β̂3 = 8.002 (0.397) and

they are comparable to those which were obtained from the marginal model of the two stage

model. The residual variance was estimated to be 0.016.

4.2.2 Model 2: Unstructured Covariance Matrix for bi and Power Variance
Function for the Residual Errors

Figure 6 shows the standardized residuals versus Cij. Clearly the variability decreases with

Cij. We therefore modified the structure of Σ and included a power function Σ = σ2 ×

|Cij|2δI. For δ < 0 the variance decreases with Cij.

Parameter estimates are equal to β̂1 = 1.872 (s.e. 0.106), β̂2 = 5.336 (s.e. 0.112), β̂3 =

6.944 (s.e. 0.142). The estimated value for the power is -3.56 and Σ̂ = 16.592|Cij|2(−3.56)I.

Figure 7 (left panel) shows the variance functions for both models. Note that compared with

Model 1, Model 2 predicted decreasing variability with dilution. The AIC for Model 1 is

equal to -67.87 and it decreases substantially for model 2 (-488.55) indicating that the later

model is preferable.

FIGURE 6 and FIGURE 7 ABOUT HERE

4.2.3 Model 3: Block Diagonal Covariance Matrix for bi and Power Variance
Function for the Residual Error

Figure 8 shows the scatterplot matrix for the estimated random effects of Model 2. Fig-

ure 8 suggests that the covariance matrix D1 might be overparameterized. The estimated
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unstructured covariance matrix is given by (off diagonal elements are correlations).

D̂1 =




0.303 (0.372) (0.314)

0.339 (0.856)

0.461


 .

The correlations between b1 to b2 and b3 are (0.372 and 0.314, respectively) relatively small

when compared with the correlation between b2 and b3 (0.856). Therefore, we define a block

diagonal covariance matrix for the random effects,

D2 =




d11 0 0

0 d22 d32

0 d23 d33


 . (15)

FIGURE 8 ABOUT HERE

Note that models 2 and 3 have the same mean structure and variance function for the error

and differ from each other in the covariance matrix D. Thus, we wish to test the hypotheses

H0 : d12 = 0 and d13 = 0 (covariance structure of model 3)

H1 : d12 6= 0 and d13 6= 0 (covariance structure of model 2)

Parameter estimates for Models 2 and 3 are shown in Table 3. According to AIC and BIC

criteria Model 3 is preferable. Formally, the likelihood ratio statistics (equal to 3.873) should

be compared to a critical value from χ2
2 which equals to 5.99 (for significance level of 0.05).

Therefore, the null hypothesis cannot be rejected. The estimated variance components are

(off diagonal elements are correlations)

D̂2 =




0.319 0 0

0 0.346 (0.840)

0 0.458


 and Σ̂ = 15.752|Cij|2(−3.53)I.

4.2.4 Model 4: Testing for Treatment Effects

To test for possible treatment effects, we keep the covariance structure of Model 3 and

replace the design matrix for the fixed effects to the one given in (??). The parameter

estimates for the treatment effects (shown in the third column of Table 3) are all found to be
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nonsignificant. The likelihood ratio statistics, comparing between Models 3 and 2, is equal

to 1.026 on 3 degrees of freedom (p-value=0.7949) indicating that the treatment effects are

not needed in the model.

4.3 Interpretation and Diagnostics for Model 3

The estimated population averaged model is shown in Figure 9, parameters estimates are

given in Table 4. The fixed effect β̂1 = 1.875 is the maximum effect which is achieved

when Cij → 0. β̂2 = 5.369 is the value of log dilution for which the response is β̂1/2, this

correspond to a dilution of 214.77. For the two stage model β̂2 = 5.45 which corresponds

to dilution of 232.96. Population models for model 3 and the two stage model are shown in

Figure 9.

FIGURE 9, AND TABLE 4 ABOUT HERE

For Model 4 (which include treatment effects) the standard error for the parameter estimates

obtained from the mixed-effects model are smaller than those which are obtained from the

two-stage model. Figure ?? shows the observed and fitted values for both fixed effects

and animal specific models. In Figures 10 (treatment group 1) and 11 (treatment group

2) a plot of the observed versus predicted values are shown. For three animal (7.1, 9.1

and 9.2, all marked with arrows) the model overestimated the response at low dilution.

Normal probability plots by dilution and treatment group are shown in Figure 12 and do

not reveal departure for the normality assumption for the error. The standardized residuals

plot (Figure 13) shows that the variance pattern was well captured by the power variance

function which was used in the model.

FIGURE ?? - FIGURE 13 ABOUT HERE
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5 Computational Issues

Nonlinear mixed models can be fitted using the nlme() library in Splus or SAS procedure

NLMIXED. In this section we discuss the main relevant differences between the two packages.

5.1 Fitting Subject-Specific Models

In SAS, Model 1 can be fitted using the PROC NLMIXED procedure. Adding a simple BY
statement in the procedure allows fitting the model for each rat individually.

proc nlmixed data=Datatwo;
by group rat;
parms th1=1.2 th2=7.5 th3=6 sig=2 rho=4.5;
z=(lconc/th2); t=z**th3; den=1+t; mean=th1/den; var=sig*sig*mean**rho;
model y~normal(mean,var);
predict mean out=predicted2;
ODS output ParameterEstimates=Parameterestimates2;

run;

Using Splus, subject-specific model can be easily obtained using nlsList()

fit.Fix<-nlsList(y \sim th1/(1+(lconc/th2)^th3)
, data = immuno.14.GD,start=list(th1=2,th2=5.5,th3=6))

The advantage of SAS is that procedure NLMIXED allows to adjust the residual error
structure while this cannot be done in nlsList which only allows a constant variance. This can be
overcome by using the function gnls() in SPlus. However using gnls() for individuals models
requires to program a loop which fits an individual model at each step. If one of the animals does
not give a fit (which is the case for a few rats in this dataset) the loop will not be completed. In
SAS the procedure is not stopped but results, in the worse case, in missing values for the individual
parameters for such rat.

5.2 Mixed Effects Approach

The mixed effect model (10) can be fitted SAS procedure NLMIXED in the following way

PROC NLMIXED data=Datatwo (where = (day=14));
parms th1=1.89 th2=5.35 th3=6.933 sig=16 rho=-3.56

s2u1=0.3 cu12=0.112 cu13=0.1 s2u2=0.33 cu23=0.25 s2u3=0.46 ;
eta1 = th1 + u1;
eta2 = th2 + u2;

12



eta3 = th3 + u3;
z=(lconc/eta2); t=z**eta3; den=1+t; mean=eta1/den; var=sig*sig*lconc**rho;
model y~normal(mean,var);
random u1 u2 u3 ~ normal([0,0,0],[s2u1, cu12, s2u2, cu13, cu23, s2u3]) subject=rat2;
predict mean out=predicted2;
ODS output ParameterEstimates=Parameterestimates2;

run;

Fitting the same model in Splus requires to use the nlme() function.

Fit.nlme001<-nlme(y~th1/(1+(lconc/th2)^th3), data = immuno.14.GD,
fixed = th1+th2+th3 ~ 1, weight=varPower(form=~lconc),
start=c(2,5.5,6))

The nlme library allows an easy choice between different structures for the random effects
covariance matrix (D matrix) while this is not possible in SAS. In addition, the graphical options
related to the nlme() function allow quick and easy production of a different range of important
graphs. The same graphs can be produced in SAS but need considerably more data manipulation
and programming.

Figure1:
immuno.14.GD<-groupedData(y~lconc|rat,data=immuno.14)
plot(immuno.14.GD,outer=~ group,ylim=c(0,4))

Figure2:
immuno.14.GD2<-groupedData(y~conc|rat,data=immuno.14)
plot(immuno.14.GD,outer=~ group,ylim=c(0,4))

Figure3:
fit.Fix<-nlsList(y ~ ModFun(lconc, th1,th2,th3), data = immuno.14.GD,

start=list(th1=2,th2=5.5,th3=6))
plot(augPred(fit.Fix),layout=c(3,5),aspect=0.5,col=1,pch="*")

Figure5:
plot(intervals(fit.Fix),layout=c(3,1),cex=1.5)

Figure6:
Fit.mixed1<- nlme(fit.Fix)
plot(Fit.mixed1,resid(.,type="p")~lconc|group,abline=0)

Figure8:
Fit.mixed3<-update(Fit.mixed1,weight=varPower(form=~lconc))
pairs(Fit.mixed3)
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Figue 10-11:
xyplot(immuno.14.GD$y~Fit.mixed3c$fitted[,2]|immuno.14.GD$rat,layout=c(5,3),

panel = function(x, y){
panel.grid()
panel.xyplot(x, y,type="p",pch="*",col=1)
panel.abline(0,1)
},

xlab = "Fitted values", ylab = "y",aspect=1)

Figure13:
plot(Fit.mixed3c,resid(.,type="p")~lconc|group,abline=0)

Table 5 presents the parameter estimates for a model which was fitted in SAS and Splus.

TABLE 5 ABOUT HERE

It can be seen that the results are almost identical. Only minor differences between the parameter
estimates as well as the estimated SE exist. The reason for these differences can be explained by the
default methods used by the two softwares to approach the likelihood and find the optimum condi-
tions. In SAS the Adaptive Gaussian Quadrature (Pinheiro and Bates 1995) is used to approximate
the likelihood in combination with the dual Quasi Newton optimization algorithm (Thisted 1988).
Splus carries out the likelihood approximation using the LME proposed by Lindstrom and Bates
(Lindstrom and Bates 1990) in combination with the Gauss-Newton optimization method.

6 Discussion
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Table 1: Univariate and multivariate ANOVA.

Parameter F (P-value)

θ1 1.18 ×10−7 (0.999)

θ3 0.0976 (0.757)

θ3 0.251 (0.620)

multivariate 0.986 (0.947)

Table 2: Parameter estimates for the fixed effects.

Parameter Two stage model

β1 1.791 (0.155)

β2 5.496 (0.205)

β3 8.156 (0.535)

γ1 0.000075 (0.219)

γ2 -0.091 (0.291)

γ3 -0.379 (0.756)

Table 3: Parameter estimates for the fixed effects and the variance components

Parameter Model 1 Model 2 Model 3 Model 4

Cov(b) D1 D1 D2 D2

V ar(ε) σ2 σ2|Cij|2δ σ2|Cij|2δ σ2|Cij|2δ

β1 1.751 (0.107) 1.871 (0.106) 1.875 (0.109) 1.870 (0.110)

β2 5.513 (0.129) 5.366 (0.112) 5.369 (0.113) 5.379 (0.111)

β3 8.002 (0.397) 6.944 (0.141) 6.953 (0.142) 6.970 (0.134)

γ1 -0.011 (0.156)

γ2 0.127 (0.157)

γ3 0.228 (0.189)

σ 0.125 16.592 15.753 14.988

δ2 -3.563 -3.531 -3.494

AIC -67.865 -488.546 -488.673 -483.699

BIC -34.394 -451.728 -458.549 -443.534
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Table 4: Parameter estimates for the fixed effects.

Parameter Two stage model mixed effects model Two stage model mixed effects model

without treat. effects model 3 with treat. effects model 4

β1 1.791 (0.107) 1.875 (0.109) 1.791 (0.155) 1.870 (0.110)

β2 5.450 (0.143) 5.369 (0.113) 5.496 (0.205) 5.379 (0.111)

β3 7.966 (0.373) 6.953 (0.142) 8.156 (0.535) 6.970 (0.134)

γ1 0.000075 (0.219) -0.011 (0.156)

γ2 -0.091 (0.291) 0.127 (0.157)

γ3 -0.379 (0.756) 0.228 (0.189)

Table 5: Parameter estimates for the fixed effects.

Parameter SAS SPlus

β̂1 1.891 (0.105) 1.871 (0.106)

β̂1 5.350 (0.115) 5.366 (0.112)

β̂1 6.933 (0.146) 6.944 (0.141)

Figure 1: animals profiles at day 14 by treatment group. Response versus log dilution.
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Figure 2: animals profiles at day 14 by treatment group. Response versus dilution.

Figure 3: Observed data and animal specific models (for the first treatment group).
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Figure 4: Observed data and animal specific models (for the second treatment group).

Figure 5: ML estimate from θ obtained from the individuals models.
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Figure 6: Standardized residuals by treatment group obtained from model 1.

Figure 7: Left panel: variance functions for model 1 and model 2. Right panel: predicted
model (population models).
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Figure 8: Scatterplot matrix for the random effects.

Figure 9: Population models. Model 3 and the two stage model.
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Figure 10: Model 3. Observed versus predicted values in the first treatment group.

Figure 11: Model 3. Observed and predicted values for the second treatment group.
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Figure 12: Model 3. Quantile-quantile normal probability plot by dose level and treatment
group. The left and the right columns present the qqnormal plots for the first and the second
treatment group, respectively.

Figure 13: Model 3. Standardized residuals obtained from the final model by treatment group.
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