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Abstract 

In this paper, three risk indicators on road safety are combined into a composite indicator in order to assess the 
overall fatality risk for the 27 Brazilian states using the so-called multiple layer data envelopment analysis model. 
The states are first clustered and next, a range of bootstrapped scores is generated to manifest the estimated 
variability in the road safety performance. Bootstrapping the original DEA scores showed to be a useful strategy to 
assess the robustness of the states’ ranking. 
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1. Introduction 

In macro-level road safety research, country/states 
comparisons are used to evaluate the road safety 
situation. Most commonly, three indicators are used for 
comparison or monitored over time: traffic fatalities per 
inhabitants, traffic fatalities per vehicle and traffic 
fatalities per traveled kilometer. Although any of these 
indicators is useful to classify the road safety level of a 
place, it is possible that different conclusions are drawn 
depending on the adopted indicator. In other words, the 
resulting rank based on each of the three indicators 
might be considerably different and the choice of a 
single reference is sometimes puzzling. In order to 
overcome this difficulty, the Data Envelopment 
Analysis (DEA) methodology is a tool with convenient 
features to combine these three indicators into a single 
index or composite indicator capable to express the road 
safety performance in a more adequate perspective. 
 
DEA is a term used to designate a “data oriented” 
approach in which mathematical programming methods 
are applied to handle large numbers of variables and 
relations (multiple input and multiple output – MIMO 
problems); that way, it has become an attractive tool to 
deal with complex problems. The first concepts on this 
theme emerged in 1957 for measuring the productive 
efficiency of industries (1), although its most widely 
known basic form, the CCR model, was proposed by 
Charnes, Cooper and Rhodes in 1978 on the evaluation 
of production processes through exploring the relation 
between the amount of inputs and outputs. The entities 
under study, responsible to convert inputs into outputs, 
are named decision-making units – DMUs (2,3). 
 
DEA’s attractiveness of no functional form 
requirements for input information contributed to its 
dissemination and application in various fields. 
Additionally, the DEA method involves the optimal 
attribution of weights for each input/output (in this 
study the three indicators), so that each DMU receives 
the weight combination that places it in the best possible 
position among all the other DMUs based on a general 
score. This score or composite indicator results from the 
product between the indicators and their respective 
weights. Therefore, the advantage of this process is that 

there is no excuse of unfair weight allocation and 
consequently unfair assumptions for ranking DMUs. 
 
Suppose five DMUs – A, B, C, D and E (which can be 
five different companies producing the same product) 
each one responsible to transform a certain amount of 
inputs (e.g. raw material) into outputs (e.g. final 
product). The DMU capable to produce more outputs 
with the same amount of input is then the most efficient 
one of the set. According to the example in Table 1, 
DMU D is the most efficient one, scoring 1.00.  

Table 1.  Numerical example to illustrate the basic concept of 
DEA. 

  

DMU Input Output Efficiency 
score 

A 5.00 2.00 0.40 
B 8.00 4.00 0.50 
C 9.00 5.00 0.56 
D 6.00 6.00 1.00 
E 4.00 3.00 0.75 

 
The rest of the DMUs are underperforming units, and 
their efficiency can be expressed in relation to the most 
efficient DMU; this is, DMU A presents 40% of the 
efficiency of DMU D (being the worst performing of 
the five units), B presents 50%, C presents 56% and E 
presents 75%. Now the input (horizontal axis) and 
output values (vertical axis) of the five DMUs are 
plotted in Figure 1.  
 
The slope of the line connecting each point to the origin 
indicates the efficiency score of the corresponding 
DMU; and the line connecting DMU D to the origin 
represents the efficiency production frontier, since no 
other DMU can be more efficient than DMU D. The 
area between the production frontier and the horizontal 
axis is called production possibility set, and all the 
DMUs are “enveloped” within this set, hence the term 
data envelopment analysis.    
 
The underperforming DMUs might achieve the best 
attainable performance (similar to DMU D) if they are 
able to increase their efficiency. For example, DMU A 
could be as efficient as DMU D by increasing its output 
value maintaining its input amount unchanged (A’ 
point) or by decreasing its input amount without 
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changing the output value (A” point). Therefore, the 
production frontier constructed based on DMU D’s is 
valuable within a benchmarking process, which is an 
important tool aimed at promoting the transference of 
good practices from high to low performing DMUs, as it 
can be deduced from which DMUs a particular 
underperforming DMU can learn.  

Fig. 1.  Graphical representation of the efficiency production 
frontier. 

 
For simple examples as the one presented previously, 
this graphical representation is a useful visual 
description of the fundamental mechanisms of DEA, yet 
difficult to reproduce when more parameters are 
considered in the investigation of the DMUs efficiency. 
The usual approach is to employ a linear programming 
formulation for DEA to estimate the efficient 
production frontier and compute the relative, optimum 
efficiency of each DMU.  
 
However, there is still some discussion about the 
statistical properties of the produced scores. The 
obtained optimum scores might represent a very 
particular combination of parameters (e.g. indicators) 
and weights that may be unlikely to be found in realistic 
circumstances. Thus, testing other possible 
combinations is a valuable strategy to overcome this 
limitation. Complementarily, the seeking for more 
realistic results requires the imposition of weight 
restrictions, enveloping the mathematical problem into 
more plausible and realistic solutions. 
 

The application of a deterministic-nature technique, 
such as DEA, to a non-deterministic problem, such as 
road safety, requires the index values to be submitted to 
a sensitivity analysis procedure (bootstrapping), after 
which DEA scores are expressed throughout a range of 
possible values, instead of a single number. 
In addition to these issues, the sensitivity analysis has 
also the purpose of simulating different data sceneries, 
since the exposure and fatality data we use is subjected 
to some level of uncertainty. That is actually the main 
motivation for testing the sensitivity in this study. 
Therefore, the objective of this paper is to propose this 
inedited approach of bootstrapping DEA scores for road 
safety evaluation at the state level and demonstrate the 
aforementioned methodological process using road 
safety indicator data of the 27 Brazilian states (BR-27). 
 
The paper has the following structure. Firstly, in Section 
2, the data envelopment analysis method is presented as 
an approach capable of offering a scientifically sound 
composite indicator on road safety. In the same section, 
the bootstrapping technique is introduced as a method to 
test the sensitivity of DEA scores. Afterwards, in 
Section 3, the 27 Brazilian states are classified into 
clusters. In Section 4 the DEA technique in combination 
with the bootstrapping process is applied for each 
cluster and road safety scores manifesting the overall 
diagnosis are obtained and discussed. Finally, Section 5 
contains the conclusive comments and 
recommendations for future research. 
 

2. DEA in road safety research 

2.1. Computing a composite indicator 

In the road safety framework, the technique of DEA has 
been applied for composite indicator investigations, e.g. 
(4,5), through the application of a minimization model 
(since traffic fatality indicators are undesirable 
outcomes intended to be minimized), as expressed in 
Eq. (1). 

 OISs=min wii=1

p
∑ yi ,s  (1) 

subject to wii=1

p
∑ yi ,s ≥1, s =1,…,n

 

 
 

wi ≥ 0, i =1,…, p
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OISs is the optimum index score (or composite indicator 
– CI) of the s-th DMU, yi,s is the i-th indicator of the s-th 
DMU or state, wi is the weight attributed to indicator yi,s, 
n is the total number of DMUs and p the total number of 
indicators. The scores indicating the best performers 
will present an OIS value equal to one, and 
underperforming DMUs will present a score larger than 
one. Subsequential needs of expressing a hierarchy in 
the set of selected indicators motivated the development 
of the Multiple Layer DEA-based Composite Indicator 
model (ML DEA-CI) (6). By solving Eq. (2), the 
composite indicator based on a K-layered hierarchy of p 
indicators can be calculated for each state s, where ufK is 
the weight given to the f-th category in the K-th layer 
and wfK(K) denotes the non negative internal weights 
associated with the indicators of the f-th category in the 
K-th layer; the sum of all wfK(K) within a particular 
category is equal to one. 
 

 
OISs =max ufKfK1=1

p(K )

∑ ( wK−1
(K−1)

fK−1∈AK
(K )∑

(… wk
(k )

fk∈Ak+1
( k+1)∑ (… w2

(2) (
fk−1∈Af3

(3)∑ wf1
(1) y f1s ))))f1∈Af2

(2 )∑
 (2) 

 
However, the flexibility in selecting the most favorable 
weights for each DMU forbids the comparison on a 
common basis (7,8). To allow direct comparisons, the 
cross-index score (CIS) could be computed by applying 
Eq. (3), where CISs is the cross-index score of the s-th 
DMU, yi,s is the i-th indicator of the j-th DMU which 
CIS is to be computed, wi is the weight attributed to 
indicator yi,s, n is the total number of DMUs and p the 
total number of indicators: 

 CISs = 1 n( ) (wi yi ,s )i=1

p
∑s=1

n
∑  (3) 

2.2. Sensitivity analysis of DEA scores 

The key idea of bootstrapping, firstly addressed by 
Efron in 1979, is to resample from the original data to 
create replicate datasets, which mimic the original 
unknown sampling distribution of the estimates of 
interest (9); in other words, an empirical distribution is 
artificially constructed. The principle is as follows: 
given a specified random variable θ (y,f), depending on 
both y and the unknown distribution f, estimate the 
sampling distribution of θ on the basis of the observed 

data y (10,11). In the flowchart of Fig. 2, the steps to 
bootstrap the index scores are summarized. 

Fig. 2.  Flowchart containing the steps of the bootstrapping 
procedure. 

 
Given a set of n DMUs and their corresponding p 

indicators’ values (y1i,s,...,y1p,n), the first step is to 
normalize these values. Then, the DEA model is run in 
order to compute the original index scores (θ1s, ..., θ1n). 
These scores are resampled with replacement according 
to the empirical distribution, generating the set β1s*, ..., 
β1n* and, afterwards, they should be smoothed, forming 
the set θ1s*, ..., θ1n*.  
 
Smoothening is the term attributed to the process of 
incorporating the properties of the original set of index 
scores into the resampled set, through the use of 
reflection methods (12,13), represented by the 
application of Eq. (4) to (6), in which: 
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Given a set of DMUs Normalized original 
indicators set (y1i,s,...,y1p,n) 

Resample DEA 
scores (β1s

*,…, β1n
*) 

   

Smooth the 
resampled scores and 
define the sequence 

(θ1s
*,…, θ1n

*) 
        

Compute the ratio  
(θ1s/θ1s

* ,...,θ1n/θ1n
*) 

Compute the 
bootstrapped 
indicators set  
(y2i,s ,...,y2i,s) 

  

Empirical distribution of 
DEA scores 

Run DEA model 
to compute scores  

(θ1s ,…, θ1n)  

Normalize the 
bootstrapped 
indicators set  

Set of bootstrapped 
DEA scores 
(θts*,…, θtn*) 
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• h is the smoothing parameter defined by the 
number of indicators p, the number of outputs q and 
the number of DMUs N presenting the set of 

original optimum scores (θ̂1s ,...,θ̂1n ) , 

• εi
*

is a random drawn from a standard normal 
distribution, 

• 
!θi
*

is the smoothed sampled score (
!θ1s
* ,..., !θ1n

* )

adjusted to be ≥ 1.0, 

• σ̂θ
2

is the plug in estimator of the variance of the 

original scores (θ̂1s ,...,θ̂1n ) , 

• σ̂θ
2

is the plug in estimator of the variance of the 

original scores (θ̂1s ,...,θ̂1n ) , 

• βi
*

is the average of the resampled score
(β1s

* ,...,β1n
* ) , 

• θi
*

is the variance corrected bootstrapped score
(θ *1s
* ,...,θ1n

* ) . 
 
The next step is to compute the ratio between the 
original and the bootstrapped scores (θ1s/θ1s*,..., 
θ1n/θ1n*) and then multiply it by the original indicators 
set, producing the new indicators set y2i,s, ..., y2p,n, which 
is normalized prior to computing the second set of index 
scores. By running the DEA model for the second time, 
the first loop (constituted by the steps described in the 
hexagonal forms) is completed and it is repeated t times 
until an adequate set of bootstrapped scores θts*,..., θtn* is 
obtained. 
 

3. Data set 

Brazil consists of 26 member states and 1 federal 
district. Here, they are generically referred to as BR-27, 
meaning the set constituted by Paraná (PR), Rio Grande 
do Sul (RS) and Santa Catarina (SC) – Southern states; 
Espírito Santo (ES), Minas Gerais (MG), Rio de Janeiro 
(RJ) and São Paulo (SP) – Southeastern states; Distrito 
Federal (DF), Goiás (GO), Mato Grosso (MT) and Mato 
Grosso do Sul (MS) – Center-Western states; Alagoas 
(AL), Bahia (BA), Ceará (CE), Maranhão (MA), 
Paraíba (PB), Pernambuco (PE), Piauí (PI), Rio Grande 

do Norte (RN) and Sergipe (SE) – Northeastern states; 
Acre (AC), Amapá (AP), Amazonas (AM), Pará (PA), 
Rondônia (RO), Roraima (RR) and Tocantins (TO) – 
Northern states. The three indicators intended to be 
composed into a single index are presented in Table 1 
for each state. 
 
It is important to emphasize that the three possible 
rankings to obtain based on the mentioned indicators 
provide different figures. AM for example, is the state 
with the 2nd lowest MR, although it sustains only de 
22nd place regarding the FR1 and the 17th place 
regarding FR2. Accordingly, taking MR as a reference, 
PA would be one of the best performing Brazilian states 
in terms of road safety; however, concerning the FR1 
indicator, PA would present a quite unfavorable 
performance; finally, with respect to FR2, PA would 
present a close to average performance. 
 

4. Cluster analysis 

In order to provide more realistic comparisons among 
the states, the bootstrapping was conducted separately 
for the defined clusters. This step is motivated by the 
contrasting figures existing between the Brazilian states. 
The gap in road safety background and standards might 
be substantially large between two states; at a level that 
this comparison is not even reasonable to draw. 

Table 2.  Traffic fatality related indicators for Brazilian states. 

  Indicators 

  
MR  

(fat/105 inh) 
FR1  

(fat/104 veh) 
FR2  

(fat/109 km) 

DMU 

AM 12.90 8.55 46.68 

PA 16.46 12.88 71.96 

BA 16.65 10.32 68.94 

RJ 16.67 5.85 47.32 

SP 17.27 3.49 32.08 

RN 18.38 8.04 60.17 

AP 19.23 11.03 56.43 

AC 19.34 9.33 62.81 

RS 19.52 4.45 41.02 

MA 19.94 16.21 104.68 

PB 21.28 11.53 82.02 

PE 21.46 10.78 85.55 

MG 21.70 6.14 48.61 

CE 22.06 10.96 96.46 



 Paper Title (4 Words maximum) 
 

DF 23.94 5.04 42.50 

AL 24.73 17.70 128.19 

SE 28.43 14.03 95.89 

GO 30.38 7.79 57.88 

SC 30.47 5.66 50.43 

RS 19.52 4.45 41.02 

RR 30.61 10.98 74.45 

ES 30.97 8.65 76.79 

PR 31.44 6.53 63.60 

MS 32.33 8.22 63.61 

PI 32.48 17.48 131.41 

MT 36.35 9.74 66.62 

RO 36.52 10.13 66.08 

TO 37.12 13.14 75.66 

BR-27 21.53 6.50 63.27 

 
The objective of cluster analysis in this study is to reach 
a categorical structure that fits a certain set of 
observations. In other words, the intention is to sort the 
observations into groups such that the degree of “natural 
association” is high among members of the same group 
and low for members from different groups (14). 
 
In hierarchical clustering, the data are not partitioned 
into classes in a single step; instead they are first 
separated into a few broad classes, each of which is 
further split into minor classes and so on, until final 
classes are generated. The researcher needs to decide at 
which stage of the segmentation it is (more) convenient 
to stop (15). 
 
A combination of six available parameters was used for 
the clusters construction of the BR-27: GDP per capita, 
motorization rate (rate between the vehicle fleet and the 
population of a place), fatalities per vehicle rate, 
fatalities per traveled kilometer rate, highway density, 
and a regional parameter. Hierarchical clusters were 
constructed using Ward’s method, leading to four main 
clusters; Fig. 3 shows a map with the location of each 
cluster.  
 
Efficacious actions to improve road safety in a certain 
state are more likely to generate desirable results in 
states with a similar background. This is particularly 
important in a country with continental dimensions and 
very contrasting backgrounds in the different regions. 

These contrasts refer to many aspects, from which the 
most obvious concern socioeconomic issues. 

Fig. 3.  Clusters location. 
 
To a certain extent, the four clusters are representative 
of four particular regional contexts in Brazil. Cluster 1 
contains the Southern, two states and the Federal 
District, where the national capital is located. They 
represent the most urbanized and developed areas of the 
country. Cluster 2 is formed by three Center-Western 
states and the other two Southeastern states, which in 
general present most indicators close to the national 
average. 
 
Cluster 3 consists of the Amazon region, characterized 
by low population density, it contains isolated areas 
with more intense human occupation (predominantly in 
the states’ capital cities). Cluster 4, coincident with the 
Northeast region, is characterized by the contrast 
between the more urbanized and touristic coastal areas 
and the interior with low population density and historic 
social problems due to the semi-arid climate. 
 

5. Application and results 

The ML DEA-CI was computed with the software 
Lingo (developed by Lindo Systems) for a set of 
indicators using average values between 2009 and 2011 
for the 27 Brazilian states. The indicators were 
combined through a hierarchic structure, in which traffic 
fatalities per vehicle (FR1) and traffic fatalities per 



Author’s Names 
 

traveled kilometer (FR2) were combined into a single 
indicator (FR), which was combined with traffic  
fatalities per inhabitants (MR), according to Fig. 4. 
 

Fig. 4.  Hierarchical structure used to compute the composite 
indicator (CI). 

 
This hierarchy implementation was based on the more 
similar nature of FR1 and FR2. As stated in Section 2, 
they bring very similar information in different 
refinement levels regarding the risk exposure parameter. 
 
In order to avoid a unilateral weight distribution, but at 
the same time still preserving adequate flexibility to the 
model, the shares w1*MR and w2*FR were limited in 
the model definition to vary between 10 and 90% of the 
index value. Likewise, to control the weight distribution 
on FR and avoid an exaggerated weight attribution to 
either FR1 or FR2, the weights w2,1 and w2,2 were 
limited to vary within a 20% maximum range. The 
adoption of such procedure is founded on the 
assumption that there is no reason to attribute much 
more weight on any FR indicator, since they are 
supposed to present high association. 
 
Following a calibration process, additional weight 
restrictions were inserted on the shares w1*MR and 
w2*FR, being that w2*FR is larger than or equal to 
1.5*w1*MR. The intention of this intervention is to 
reduce the importance attributed to a somewhat biased 
indicator (the MR) in the composite indicator value in 
the case of a less-motorized state. 
 
In more detail, the traffic fatality per inhabitant rate is 
substantially affected by the motorization level in a non- 
linear pattern. This is, until a certain stage, as higher the 
motorization of a place, the higher the MR tends to be, 
but at a certain breakdown point, this tendency is 

reversed, the increase in motorization is associated with 
a lower MR (the case of the most developed and 
consecrated countries in terms of road safety). 
 
Before running the model, the data were normalized 
using the distance to a reference method (16). The 
boxplot diagrams in Fig. 4 to 7 offer an overview of the 
distribution of the computed CIS values. 
 
The OIS and the CIS computed in each cluster can be 
consulted in Table 3, which also contains the average 
CIS value (𝐶𝐼𝑆) and the standard deviation (𝜎!"#) 
considering all boostrapped scores. The results are 
ordered according to the 𝐶𝐼𝑆. The boxplot diagrams in 
Fig. 5 to 8 offer an overview of the distribution of the 
computed CIS.  
 
The table and the boxplot diagrams suggest SP, MG, 
AM and RN as good examples in their regional 
contexts, instead of the vague and predictable indication 
of SP as the only model state. On the other hand, PR, 
TO, MT and PI appear as the most underperforming 
states in their clusters. The availability of a range of 
scores instead of a merely point estimate provides a 
more clear classification and the identification of non-
obvious performance differences between states from 
the same cluster; this is, best performing DMUs had 
their top position endorsed and underperforming ones 
had their ineptitude on controlling traffic fatalities 
emphasized. 

Table 3.  Numerical results. 

Clusters State OIS CIS 𝐶𝐼𝑆 σ!"# 

Cluster 
1 

SP 
(1st) 1.00 1.00 1.00 0.02 

RS 
(2nd) 1.22 1.24 1.54 0.40 

RJ 
(3rd) 1.34 1.41 1.91 0.37 

DF 
(4th) 1.38 1.39 2.00 0.44 

SC 
(7th) 1.62 1.64 2.75 0.61 

PR 
(12th) 1.88 1.90 3.66 0.88 

Cluster 
2 

MG 
(6th) 1.00 1.00 1.00 0.00 

GO 1.24 1.25 1.54 0.19 
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(11th) 

MS 
(14th) 1.34 1.35 1.82 0.23 

ES 
(16th) 1.46 1.49 2.15 0.26 

MT 
(18th) 1.48 1.50 2.23 0.29 

Cluster 
3 

AM 
(5th) 1.00 1.00 1.00 0.00 

AC 
(9th) 1.23 1.24 1.45 0.21 

AP 
(10th) 1.27 1.29 1.59 0.22 

PA 
(15th) 1.46 1.49 2.13 0.34 

RO 
(20th) 1.46 1.49 2.16 0.31 

RR 
(21st) 1.52 1.54 2.34 0.31 

TO 
(23rd) 1.72 1.75 3.00 0.41 

Cluster 
4 

RN 
(8th) 1.00 1.00 1.02 0.06 

BA 
(13th) 1.08 1.10 1.30 0.28 

PB 
(19th) 1.30 1.31 1.81 0.44 

PE 
(17th) 1.29 1.30 1.84 0.45 

CE 
(22nd) 1.36 1.38 1.94 0.49 

MA 
(25th) 1.54 1.58 2.56 0.62 

SE 
(24th) 1.61 1.62 2.78 0.67 

AL 
(26th) 1.83 1.86 3.56 1.01 

PI 
(27th) 2.01 2.03 4.29 1.04 

 
 
 
 
 

 

Fig. 5.  Cluster 1 bootstrapped CIS. 

Fig. 6.  Cluster 2 bootstrapped CIS. 

 

Fig. 7.  Cluster 3 bootstrapped CIS. 
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Fig. 8.  Cluster 4 bootstrapped CIS. 

 
Similar procedures have been applied for analyzing road 
safety throughout the Brazilian states, however with 
different focuses (17, 18).  
 

6. Conclusions 

This paper described a set of procedures aiming to 
complement and improve the application of DEA 
research on ranking DMUs with respect to road safety. 
This analysis was motivated by the absence of such 
model application for evaluating developing areas such 
as Brazil. The possibility to present a methodology 
capable to deliver a composed traffic fatality related 
diagnosis and to deal with data uncertainty issues, a 
common dilemma in road safety, constitutes an 
important contribution in the field. 
 
The DEA model computes the optimum solution for 
every state considering its respective cluster; thus, there 
is no excuse that the performance of a particular state 
was underestimated due to an unfair weight allocation 
process. This results in the OIS value, which is the CI 
used to identify the best-performing (safer) state; and 
the performance of the underperforming states is 
measured as a share of the best-performing state score. 
 
DEA possesses some features that make its use very 
attractive for the topic of this paper. Firstly, obtaining a 
rank is not the only purpose of DEA; it can be seen as a 
benchmarking tool, since the performance of the DMUs 
is evaluated in relation to the best-performing ones. In 
terms of road safety, it is particularly valuable, because 

states or countries that do not show good road safety 
results can learn from successful initiatives taken in 
best-performing states/countries. 
The application of DEA techniques in association with 
cluster analysis and bootstrapping procedures brought 
singular and valuable insights for diagnosing the traffic 
fatality situation in a “per state” perspective. DEA 
research allowed the use of combined road safety 
indicators, which were traditionally considered 
individually, telling only one part of the story. 
 
Clustering is important to provide a more realistic 
comparison; in other words, one state can better learn 
from another’s performance if they have similar 
contexts. This topic is particularly important in a huge 
country like Brazil, where significant contrasts in terms 
of road safety background can be found in different 
states, requiring more realistic comparisons and 
demonstrate possible achievable examples of relatively 
good performances to be followed by underperforming 
states. 
 
Last but not least, bootstrapping the DEA scores, a 
procedure for the first time applied to road safety DEA 
results in a developing country, was the chosen 
technique to test the sensitivity of the results to possible 
variations in road safety Brazilian data, which might be 
subjected to the influence of unfavorable aspects with 
respect to data quality and availability. It showed how 
susceptible the road safety related data is to 
uncertainties and to which extent it affects the research 
results. 
 
Hence, the bootstrapping permitted the road safety 
assessment with the consideration of uncertainties 
probably present in the indicator data for the country, 
manifested by the delivered values’ ranges. Generally, 
the median or average values of the bootstrapping 
results provided quite similar rankings in comparison to 
the original ranking based on the DEA index scores 
(both OIS and CIS). The advantage now is that we by 
means of Fig. 4 to 7 graphs revealed some knowledge 
on how likely each rank configuration could be 
obtained. 
 
For future research, the combination of DEA and 
bootstrapping for road safety research is still capable of 
delivering evaluation throughout other relevant 
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perspectives, e.g. traffic fatality target setting and safety 
performance indicators research. Thus, the proposal of 
investigating the sensitivity of road safety related 
information is applicable to many issues inside this field 
due to the frequent issue of incomplete or not entirely 
ideal information to base the studies on. 
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