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Abstract 

This study has developed a method to city-wide identify all regions with poor 

transport accessibility, using GPS data generated by taxis. This approach is 

composed of four major steps, including travel pattern modeling, accessibility 

measure building, region with poor accessibility detecting, and specific problem 

analyzing.  

Using GPS data collected from all taxis operating in the Chinese city of 

Harbin, the performance of this approach is tested. In total, 10 worst  regions have 

been identified with accessibility measures reaching only 81.3% of the overall 

average across the city. A serious accessibility problem to filling stations has also 

been discovered, in which drivers from nearly 92.6% of the residential areas have to 

travel longer than 30 min to refill their vehicles. The experimental results 

demonstrate the potential and effectiveness of the proposed method in detecting 

accessibility problems and assisting policy makers in improving accessibility 

situations across the city. 

 

1. INTRODUCTION 

Accessibility is defined as the ease and extent to which land-use and transport 

systems enable individuals to reach activities and destinations by means of certain 

transport modes, e.g., the number of jobs accessible within 30 min by car or bus. 

While traditional transport network measures,  e.g. congestion,  capture how quickly 

people can move from one place to another; accessibility indicates how well people 

are able to get to desired destinations. Accessibility takes into account not only travel 

efficiencies but the distribution of land-use and activity locations across the transport 

network. It has been considered as a key dimension of quality of life and a priority 

for sustainable urban transport management and planning.  

Over the last decade, there has been a growing number of studies on the 

development of accessibility measures; the typical process is as follows (e.g. Karou 

& Hull, 2014). (i) A geographical area is chosen as the study region for accessibility 

analysis. (ii) A set of relevant activity regions are represented with the size or 

number of the associated activity opportunities. (iii) The physical separation between 

the study region and each of the activity regions is measured, in terms of certain 

travel characteristics, mostly travel times. (iv) Based on the inferred travel 

characteristics, accessibility measures in various forms are computed. (v) The 
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obtained measures can be used to evaluate how land use and transport network 

changes have affected accessibility situations during different time periods in history. 

Alternatively, accessibility measures have also been estimated based on various 

policy scenarios, providing insights into how different transport plans would lead to 

varied impacts on accessibility and inequity (in terms of accessibility) in the city. 

However, despite the development of accessibility analysis techniques and 

their importance in supporting land use and transport decision-making, the data 

source which is used to derive travel times, raises concerns about the accuracy of the 

obtained travel characteristics, particularly regarding car-based travel. Typically, 

travel surveys, which document full daily activities and travel of a small sample of 

individuals during a time frame of one or several days, are utilized, regardless of the 

limitations inherent to the data collection method. Alongside, travel times have also 

been drawn from sensors, e.g. loop detectors and video cameras, which are installed 

in a road network to monitor traffic flow. However, due to the high installation cost, 

the sensors are usually set up on highways, as it is expensive to instrument a whole 

city with such static devices. Consequently, the traffic data is only limited to the 

high-capacity roads, and sheds little light on the traffic flow in the rest of the city.  

Thus, due to the data constraints, the accuracy of the existing accessibility 

measures has been limited, leading to a certain level of deviation between what is 

revealed by the measures and what the actual situation is. In addition, the existing 

analysis is often restricted to only a statistical average day and a relatively small area 

as well as to a subset of the population, because of the lack of a large dataset that is 

spatially and temporally detailed and extensive as well as involves more individuals. 

Consequently, the results are difficult to be applied to evaluate accessibility at 

different time periods of a day (e.g. accounting for congestion), in various types of 

days (e.g. weekdays and weekend), at a higher geographical scale (e.g. an entire 

city), or in a whole population group. For a long time, data problems have been one 

of the essential challenges of the current research on transport accessibility analysis. 

The advancement of the Global Positioning System (GPS) has created the 

opportunity to use this technology as a new data collection method to overcome the 

lack of reliable travel data. For travelers who carry GPS devices in pockets or with 

their vehicles, the accurate travel routes and travel times can be monitored 

automatically, providing detailed spatial and temporal travel information and near 

real time traffic conditions in the road network. Particularly, in many major cities 

around the world today, GPS devices are already installed in taxis originally for real-

time dispatch systems to optimize client orders, thus no additional cost is incurred for 

the data collection. With the combined advantages, GPS-equipped taxis have the 

potential of collecting travel data across a large sample of the population and 

uncovering the traffic dynamic of the entire city. So far, the data has been explored, 

among others, for urban computing and travel demand modelling. Particularly, travel 

times derived from the data have been applied to dynamic routing and navigation 

tools. In a typical study (Gühnemann et al., 2004), GPS data is first collected from 

132 and 212 taxis in Berlin and Vienna, respectively, over a period of more than two 

years. Based on the data, the average driving speed and travel times in each hour of 

the day at each major road link across the entire network of these two cities are then 

derived, using a routing algorithm, e.g. Dijkstra. The derived velocities are further 
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compared against the speed drawn from static sensors (e.g. Coifman, 2002). For 

high-capacity roads, the GPS-based average velocities are 6.3 km/h lower than the 

sensor-based ones; while on low-level urban roads, the difference reaches more than 

20 km/h. Meanwhile, the GPS-based velocities show considerable variation over 

different hours of the day and among road links, suggesting that the average speed 

and travel times derived from sensors deliver an unrealistic picture for each specific 

link and during specific hours of the day.  

Nevertheless, despite the potential and multitude applications of taxi GPS 

data, the data has not been explored for accessibility analysis. Instead, travel times 

derived from GPS data collected from a few individuals’ private cars, have been 

utilized for accessibility studies. In the research (Huang & Levinson, 2011), GPS 

data is used to analyze the impact of a location’s accessibility on people’ choices for 

non-work activities on the location. During the process,  GPS data of 478 trips 

conducted by 4 individuals is used to infer travel times and distance, from which 

accessibility measures are derived. The study demonstrates the capacity of GPS data 

to record precise trips, and the effectiveness of using the data to estimate 

accessibility. However, the study solely focuses on how accessibility affects 

individuals’ destination choices, and only the accessibility of a limited number of 

locations is analyzed. A method, which is based on GPS data while systematically 

examining the accessibility situations in the entire transport network as well as 

concentrating in the identification and investigation of all problematic regions, has so 

far been lacking.  

This paper extends the current research on transport network analysis by 

means of taxi GPS data, and particularly addresses the above mentioned limitations 

with respect to the development of reliable methods for the city-wide examination of 

accessibility conditions. Specifically, a set of measures is developed for each of the 

regions of the city, based on taxi GPS data. The obtained measures can then be used 

to identify regions with poor accessibility, and thus assisting policy makers in 

seeking optimal solutions that best address the accessibility problems in these areas. 

Compared to traditional techniques, the proposed method offers the following 

advantages. (i) It analyzes transport accessibility situations across an extensive area 

of the city. (ii) It generates more objective and up-to-date measures, catching up with 

the fast pace of urban land development and population growth. (iii) This method 

accounts for varied traffic conditions (e.g. congestion), across different time periods 

of a day. (iv) It is a cost-effective approach and easily transferable to cities where 

taxis are installed with GPS devices. (v) Particularly in this study, GPS data recorded 

from all taxis licensed in the Chinese city of Harbin, is explored. The data provides a 

unique opportunity for the analysis on a significant share of individuals’ trips across 

the city as well as for the examination into the accessibility situations across the 

entire urban network.   

The remainder of this paper is organized as follows. Section 2 describes the 

taxi GPS data and Section 3 details the proposed methodology. A case study is 

carried out in Section 4 and Section 5 further compares the experimental results 

against a baseline model. Finally, Section 6 ends this paper with major conclusions 

and discussions. 
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2. DATA DESCRIPTION 

The GPS data was collected between July and September in 2013 from all 

taxis (i.e. more than 16,000 in total) licensed in Harbin. All of the taxis are equipped 

with GPS devices as a part of security measures to protect drivers from being 

attacked. The devices record the positions of the vehicles every 30 seconds during 

the day and 2 min (minutes) at night, generating data of 1.6G in size each day. Apart 

from the GPS data, the geographic positions and types of all activity locations in the 

city are also utilized, and all the locations are classified into 18 types. 

According to the GPS records, the average number of passenger trips for a taxi is 

30/day. All the 16,000 taxis thus generate a total of 0.48 million passenger trips daily 

in the urban area. In comparison, the city has roughly 1.0 million private cars; if we 

assume of 2.41 trips per day for each private car according to the statistics (“The 

change in travel behavior in WuHan”, 2009), all the private vehicles produce 2.41 

million trips. As a result, the taxi passenger trips account for 16.6% of the total 

personal trips made by both taxis and private cars within the urban area. Although 

the total number of taxis is much less than that of private cars, taxi trips represent a 

significant share of individuals’ trips, and they can thus be considered as a good 

indication of the real travel demand patterns in the city.  

 

3. METHODOLOGY 

3.1. Overview of the approach 

The method is composed of 4 major steps, including  (i) modeling city-wide  

taxi passenger travel patterns, (ii) building accessibility measures for each region in 

the city, (iii) identifying regions with poor accessibility, and (iv) further examining 

the specific transport situations of the problematic regions. Prior to the steps, a 

preliminary step is conducted for raw GPS data processing.  

 

3.2. GPS data processing 

A GPS trajectory from a taxi during a day can be represented as p1 (l1, t1, 

s1)…pn (ln, tn, sn), where n is the length of the sequence, i.e. the total number of the 

GPS points. Each pk(k=1,…,n) denotes a point, consisting of a time stamp tk, a 

latitude and longitude coordinate set lk={xk, yk},  and a status message sk indicating if 

the taxi is ‘occupied’ by clients or ‘empty’ when the taxi driver is looking for clients. 

The GPS data are first processed to remove error records, and passenger trips are 

then identified based on  sk. Let pb (lb, tb, sb)…pe (le, te, se) as a passenger trip, the 

travel time of the trip, i.e. D_ODTrip, is obtained as D_ODTrip =te -tb. 

 

3.3. City-wide taxi passenger travel pattern modeling 

The entire study city is divided into disjoint regions using a grid-based 

partition method, with the number of grids as Grid_X and Grid_Y along the latitude 

and longitude directions, respectively, generating a total of YGridXGrid __  regions. 

Each region ri (i=1,…, YGridXGrid __  ) can also be formulated as a set of double 

numbers specifying the grid positions of the region, denoted as Reg(ix, iy) 

(ix=1,…,Grid_X and iy=1,…,Grid_Y). A day is classified into different types (i.e. 

weekdays, weekend and public holidays) and various time slots. Under the spatial 

and temporal division, two matrices are constructed. The first one is  a travel demand 
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model, represented as OD(ri, rj, TimeP, Day, DayT), with each matrix element 

accommodating all trips that leave from region ri, end in region rj, and start within 

time period TimeP on day Day with type DayT. Two features are then extracted for 

each of the matrix elements, including the total number of the OD trips, i.e. m_ODij, 

and the average travel time over the trips, i.e. u_ODij. The variable u_ODij is 

computed as  

 
ODm ij

ODm ij

Trip

ODD Trip

DayTDayTimeP
_

_

1

)_(

),,,r j,ri(u_ODu_ODij ij





                                             (1) 

The second matrix, referred as OP(ri, rj, TimeP, Day, DayT), features the 

travel path of the trips, with each matrix cell containing all intermediate trips that 

only pass regions ri and rj  but do not start or end there. Two variables are also 

extracted for each of the cells, including the total number of the intermediate OP 

trips, i.e. m_OPij, and the average  travel time over the trips, i.e. u_OPij , as  

 

OPm ij

OPm ij

Trip

OPD Trip

DayTDayTimeP
_

_

1

)_(

),,,r j,ri(u_OPu_OPij ij





                                             (2) 

Where, D_OPTrip refers to the travel time for an OP trip. Specifically, let pb (lb, tb, sb) 

->… pk1 (lk1, tk1, sk1) … pk1+m1 (lk1+m1, tk1+m1, sk1+m1)… pk2 (lk2, tk2, sk2) … pk2+m2 (lk2+m2, 

tk2+m2, sk2+m2)  … -> pe (le, te, se) represent a passenger trip, in which {lk1, …, l k1+m1}  

ri,  {lk2, …, l k2+m2}  rj, m1>=0,  and m2>=0. D_OPTrip for the intermediate trip 

passing  ri and rj is estimated as D_OPTrip=( tk2+tk2+m2)/2-( tk1+tk1+m1)/2. 

Based on the matrix for each day, the average travel time between two 

regions can be derived from all the matrices corresponding to all the survey days. Let 

M_ODij(ri, rj, TimeP, DayT) represent the total number of days of DayT when the 

number of trips, i.e. m_ODij , is higher than a certain threshold value, defined as 

THMOD. If M_ODij >0, the average travel time, i.e. U_ODij, can be computed as  

 
( , , ,DayT) _

_ ( , , , , )
1

_ ( , , , )_ ˆ
( , , ,DayT) _

i j

i j

i j

i j

r r TimePM ODij
u ODij r r TimeP Day DayT

Day
U OD r r TimeP DayTU ODij r r TimePM ODij




 
           (3) 

On the contrary, if M_ODij = 0,  none of the days when m_ODij is higher  than 

THMOD, have been observed from ri to rj in TimeP throughout the survey period, the 

travel time is approximated based on the OP trips, i.e. U_OPij, as 

 
( , , ,DayT) _

_ ( , , , , )
1

_ ( , , , )_ ˆ
( , , ,DayT) _

i j

i j

i j

i j

r r TimePM OPij
u OPij r r TimeP Day DayT

Day
U OP r r TimeP DayTU OPij r r TimePM OPij




 
.                       (4) 

Where, M_OPij(ri, rj, TimeP, DayT) denotes the total number of survey days when 

m_OPij is higher than THMOD. 
In the travel time estimation process, we assume that, although a few of taxi 

drivers might give passengers a roundabout trip, most of them are honest and 

typically find out the fastest route to send passengers to destinations based on their 
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knowledge. The travel time between two regions consists of the actual driving time 

on road links and the waiting time at traffic lights. All the times are dependent on the 

actual driving routes. When choosing a route, besides the distance of the route, 

drivers also consider other factors, such as the time-variant traffic flows on the roads, 

traffic signals and direction changes. Thus, the travel times of the passenger trips can 

properly represent the actual duration of trips in the network. In addition, parameter 

THMOD is defined to select the days when sufficient number of OD trips have been 

observed, in order to ensure the representation and accuracy of the derived travel 

times. For region pairs that do not undertake enough OD trips on any day across the 

entire survey period, the travel times are estimated with the OP trips that only pass 

the regions but do not originate or destine there.  

 

3.4. Accessibility measure building 

To detect accessibility problems, we first identify regions that generate and 

attract trips in the morning and night periods, respectively, more than a threshold 

value, defined as THM. The obtained places would represent high density of 

residential areas and are thus chosen as the study regions.  The large volume of travel 

also ensures the estimated travel times more accurate and better representative of the 

general travel conditions. Alongside, all the activity locations in the city are 

projected into regions based on the positions of the locations, and the obtained 

regions are used as activity regions. 

Various methods have been developed to compute accessibility measures (e.g. Geurs 

& Wee, 2004). The location-based method including the contour measure and  

potential measure, which incorporates the spatially distribution of activities and 

travel time constraints, is adopted in the current study. A contour measure describes 

the total number of activities that could be reached from a region within a certain 

time.  Specifically, the measure for region ri within travel time THT over all activity 

types, i.e. ACi, or for each individual activity type c, i.e.  ACci, can be obtained as  

 

).
RegTotalOfAct

1,

(






jTHTU ij

acjACci

c
ACciACi

                                                                                                        (5)                                                                                                             

Where, Uij is the average travel time between ri and rj, and Uij={U_ODij  or U_OPij}; 

acj is the number of activities of type c in region rj; TotalOfActReg is the total 

number of activity regions in the city.  

A potential measure uses an impedance function, i.e. f(Uij), to reflect the 

declining attractiveness of activities at a destination region as travel times between 

the two corresponding regions increase. Let APi denote as the measure for region ri      

and APci as the measure for each type c in region ri; they can be computed as  

 

 

 

Re

1

ij

i ci

c

TotalOfAct g

ci cj ij

j

U

ij

AP AP

AP a f U

f U e















                                                                                                   (6)                                                                                                                 



7 
 

Where  is a sensitivity parameter to travel times. With values ranging from 0 to 1, 

  controls the effect of travel time changes on the attractiveness of the activities. 

Both contour and potential measures evaluate accessibility at regional levels. 

They consider all people living in a region as a whole, and assume that people have a 

set of social and economic activities which need to be met at different destinations. 

The measures are expressed with the quantity of the activity locations which can be 

approachable within a certain time limit, and they are determined by the travel 

distance between the study region and the activity regions as well as the quality of 

the transport infrastructure linking these places. A low value of the measures signals 

a problem of long time travel in order to reach activity destinations, due to long 

travel distance and/or bad traffic conditions, e.g. congestion. 

 

3.5. Regions with low accessibility detection 

Based on the obtained measures, the regions, which have low accessibility to 

activities at a specific time period of a day, are ultimately identified.  

 

3.6. Specific land use and transport problem examination 

In order to further investigate the specific accessibility problems of the 

detected regions, an in-depth examination into the land use and transport situations 

surrounding the regions is conducted.  

 

4. CASE STUDY  
In this section, adopting the proposed approach and using both the GPS and 

land use data, we carry out a case study. In this process, travel pattern models are 

first constructed and accessibility measures are then developed. Next, the poor 

accessibility regions are detected and the specific problems are analyzed.  

 

4.1. Travel pattern models  

During the model construction, the entire city is divided into regions; the 

parameters Grid_X and Grid_Y decide the total number of the study units. The larger 

these values are, the higher the spatial resolution reaches, but the less the number of 

observed trips between the regions is. In order to derive results that are statistically 

sound and representative, these two variables are set as 40 respectively, resulting in a 

total of 1600 regions with each being 1.87 km2 in size. The day is segmented into 4 

periods including 7-8:30am, 8:30am-16pm, 16pm-18pm and 18pm-7am, i.e. 

morning, daytime, evening and night periods, respectively, according to the 

distribution of travel speed observed from the GPS data. In this case study, only the 

accessibility in the morning period of weekdays is analyzed; the similar process can 

be applied to other periods as well as to the weekend.  

In the morning of each weekday, two matrices including OD and OP are 

constructed. Fig. 1(a)-1(b) describe the distribution of the travel times of all the 99 

OD and 281 OP trips from regions Reg(23, 24) to Reg(24, 25) on a certain day. The 

mean travel times for the OD and OP trips are 13.4 min and 12.3 min, respectively, 

with the OP trips being 1.1 min shorter. This reflects the fact that people usually take 

highways when passing a region while have to go through low capacity roads inside 

a region in order to leave or reach a specific location in the area. 
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Fig. 1. The distribution of travel times of OD trips (a) and OP trips (b) 

 

4.2. Building accessibility measures 

Out of all the 1600 regions of the city, 241 (15.1%) original and 433 (27.1%) 

destination regions generate and attract at least one trip per day in the morning and 

night periods, respectively. Among these regions, 233 undertake both types of 

functions, from which 108 are chosen as the study regions under the setting of 

THM=20. Alongside, 241 regions accommodate at least one activity location, with 

the average number of activities per region as 16.8. Fig. 2(a)-2(c) describe the 

geographic distribution of the original regions that generate morning trips and the 

destination regions that absorb night travel, as well as the distribution of the activity 

regions, respectively. Similar spatial distribution among the three types of regions is 

observed. The correlation coefficient between the number of the morning or night 

trips a day and that of activity locations in a region is 0.85 and 0.83, respectively. 

The high coefficients imply a high level of association between the passenger travel 

demand of a region and the number of activities it accommodates, further suggesting 

that the passenger travel models, derived from all taxis running in the city, can 

sufficiently represent mobility demand patterns for activities across the city. 

 

 
Fig. 2. The distribution of original regions (a), destination regions (b) and activity regions (c) 

 

Out of all the 26,028 pairwise combinations formed by the 108 study and 241 

activity regions, 18,904 pairs (i.e. 72.7%) are filtered out from the OD matrix by 

THMOD specified as 3. U_ODij is used for the travel time between the two 

corresponding regions. Regarding the remaining pairs, the travel times are estimated 

with U_OPij; all these region combinations meet the condition of M_OPij >3. 

In the calculation of accessibility measures, different cut-off values for THT 

and   have been used, depending on the type of considered activity types and travel 

modes (e.g. Anderson et al., 2013). In this experiment, THT is chosen as 30 min and 
 as 0.1. Fig. 3(a)-3(b) describe the distribution of the obtained contour and 

potential measures respectively. Considerable variation across different regions is 

noted. For example, while the average contour measure is 14,779, the minimum and 

maximum are 9,372 and 15,735, respectively. The top 10 and 20 low measure 
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regions have the average as 12,012 and 12,690, i.e. 81.3% and 85.9% of the overall 

average across all regions, reaching merely 74.9% and 79.1% of the total activity 

locations in the city in 30 min, respectively. In addition, the correlations between the 

contour and potential measures as well as between the two contour measures with 

THT as 30 min and 40 min respectively, for a same region, are 0.88 and 0.92, 

implying that the respective pair of measures leads to comparable results.  

 

         
Fig. 3. The distribution of contour measures (a) and potential measures (b) across regions 

 

4.3. Identifying regions with poor accessibility 

Fig. 4(a) shows the spatial distribution of the first 20 poor accessibility 

regions, demonstrating that most of these regions are located outside the city center. 

The detailed information on the top 10 of these regions are also presented in Table 1. 

 
Table 1. The 10 worst regions in the morning period of weekdays

a
 

Rank Reg N Contour 

 

Potent School/ 

university 

Shop Hospital Factory/ 

company 

Filling 

station 

1 8,24 30 9372(58.4) 2052 1 (49.8) 1 (46.6)  1(53.5) 1(61.4) 1(0) 

2 14,20 20 10895(67.9) 2733 2 (63.3) 2(66.9) 3(68.2) 5(69.6) 1(0) 

3 16,19 20 11765(73.3) 3022 3(77.8) 4(78.9 2(79.9) 3(73.2) 1(0) 

4 17,19 21 12341(76.9) 3550 4(80.3) 3(81.5) 4(71.2) 2(74.5) 1(0) 

5 28,19 29 12347(77.0) 3867 5(84.0) 7(77.7) 5(73.6) 4(76.6) 1(0) 

6 16,21 29 12493(77.9) 3982 6(74.3) 10(89.1) 6(76.9) 6(68.9) 1(0) 

7 27,29 23 12496(77.9) 4179 7(78.1) 5(70.0) 7(87.2) 8(79.3) 1(0) 

8 20,19 21 12518(78.0) 4026 9(72.3) 9(74.2) 10(82.0) 7(80.5) 1(0) 

9 23,29 21 12822(78.0) 5048 11(72.9) 8(74.7) 9(73.3) 11(81.7) 1(0) 

10 22,29 24 13073(81.5) 4856 12(75.7) 6(77.3) 8(74.6) 13(75.6) 1(0) 
a 
The columns from left to right represent the following features of a region: the rank, the position, the 

number of average trips generated in the morning per day, the contour measure and potential 

measures, the contour measures to individual activity types of school/university, shop, hospital, 

factory/company and filling station, respectively. The number in bracket indicates the percentage of 

the contour measure relative to the total number of activities of all types (for the 4
th

 column) or the 

corresponding individual type (for the 6
th

 -10
th

 columns). 

 

4.4. The specific land use and transport situations of the problematic regions 

To further analyze the specific problems of the detected regions, we examine 

a region with the typical accessibility problem. This region, i.e. Reg(8,24), located in 

the western part of the city as indicated with the rank as 1 in  Fig. 4(b), generates 

average 30 trips in the morning per day. It is the region with the lowest measure, and 

reaches only 58.4% of the total activities of the city within 30 min. Distance is 

observed between the accessible area within 30 min from this region,  as indicated by 

the black line, and the city center where most activities are established, as delimited 

by the red oval in Fig. 4(b). The average driving speed from this region towards its 

eastern direction is only around 16.9 km/h, which hampers people quickly reaching 

the high density of activity area. According to the Euclidian distance between this 
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region and the city center, in order to reach the activity area within 30 min, a travel 

speed that must be higher than 24.64 km/h is thus required. 

The accessibility problem of this region is also manifested by the difficulties 

to reach most of the individual types of activities. For instance, among all 18 types, it 

has the lowest measure to 16 classes, except ‘financial center’ and ‘public place’. In 

particular, the measure is 0 under both 30 and 40 min thresholds to filling stations, 

suggesting that no filling stations are reachable from this region within 40 min. A 

further investigation discloses that, among all 147 filling stations provided by the 

city, 139 (i.e. 94.6%) are outside the urban area and only 8 are scattered on the edge 

of the city, as demonstrated by small black rectangular in Fig. 4(b). This leads to 

general poor accessibility to filling stations across the city, with only 8 regions 

(i.e.7.4%) capable of getting to a certain station in 30 min by car. Drivers in most 

parts of the city have to travel a long time in order to refill their vehicles.  

 

          
Fig. 4. The distribution of the first 20 poor accessibility regions (a) and the specific situation of 

the worst region (b)  

Note: the number represents the rank of the regions in the decreasing order of the measures.  

 

5. COMPARING THE RESULTS WITH A BASELINE MODEL  

To examine the accuracy of this approach, we compare the results derived 

from the study with a baseline model which only considers the spatial direct distance 

and the typical travel speed. Specifically, we calculate the expected travel time 

between 2 regions, i.e. U_OEij, as ED(ri, rj)/SpeedE. Where, ED(ri, rj) is the Euclidian 

distance between the centroids of regions ri and rj, and SpeedE is the typical travel 

speed in the morning of weekdays which is set as 21.42 km/h as derived from the 

GPS data. Based on U_OEij, the contour measure, i.e. AEi, is calculated according to 

Formula (5). Fig. 5 demonstrates the compared results derived from the baseline 

model and the proposed method. 

In contrast to the proposed method, the baseline model uses the shortest 

distance between two regions, the obtained travel times are anticipated to be shorter, 

thus leading to a higher measure. The characteristics are well reflected in this figure. 

For instance, in Fig. 5(a), the travel times U_ODij are longer than the expected times 

U_OEij for all the region pairs, with the average difference between them as 8.95 

min. While in Fig. 5(b),  AEi is higher than ACi for all study regions, with the 

coefficient between these two measures as 0.73. However, although U_ODij > 

U_OEij and AEi > ACi for all regions, the level of the differences varies across 

regions, reflecting the fact that the actual travel route and travel speed are region-

dependent. A universal travel speed and theoretical distance used in the baseline 

model would not capture the region specific characteristics. Instead, the proposed 
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method based on GPS data is able to account for the actual travel routes that are 

decided based on various factors, such as route directness and traffic conditions. 

 

       
Fig. 5. The distirbution of the differences between U_ODij and U_OEij (a), and the correlation 

between AEi and ACi (b)  

 

6. CONCLUSIONS AND DISCUSSIONS  

The achievement of good transport accessibility and equity in the distribution 

of urban services is one of the supreme goals for transport managers and urban 

planners. As a city grows and attracts more immigrants, the accessibility issue has 

become more important than ever, particularly in many emerging countries. To meet 

the growing challenge, we have developed an approach which measures accessibility 

to different urban services and activities of the city by auto. This method responds to 

several limitations in existing accessibility analysis techniques, and is particularly 

tailored to the emerging world. It offers an alternative and practical tool to help 

policy makers in identifying the current accessibility problems and designing 

transport infrastructure and service plans towards better accessibility and reduced 

inequity across the city. 

The significance of this method mainly lies in the use of the massive taxi 

GPS data as well as the results derived from this utilization. As previously described, 

both conventional travel diaries and traffic monitoring systems using sensors are 

unable to produce reliable information on travel times within the network. Thus, the 

floating car data technique (FCD) has moved into the focus of current research, in 

which travel data are obtained from monitoring vehicles which flow with the traffic. 

However, the FCD technique raises two major challenges, including: (i) requiring a 

sufficiently large number of sample vehicles, which is estimated at about 1% of the 

total fleet (burr & Simmons, 2002); (ii) the high communication costs for data 

transmission. In order to overcome these problems, an alternative FCD technique by 

using data from taxis has been proposed, which presents a solution to both the critical 

mass problem of probe vehicles and the financial concern. To further explore the 

potential of the taxi-based FCD technique, this current study has used GPS data 

collected from all taxis operating in a city, for the development of an accessibility 

analysis method.   

The experiment on the designed method shows the major strength of this 

approach. (i) All 108 residential regions across the city are ranked by the obtained 

measures, from which the 10 worst regions are revealed. (ii) The specific problems 

of the detected regions are examined. For instance, for the city’s poorest accessibility 

region, it is found that the assessable area in 30 min of driving does not reach the city 

center where most of the activities are established. (iii) The detailed examination into 

each individual activity categories discloses that only 7.4% of the study regions are 

able to get to a certain filling station in 30 min by car.  
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Nevertheless, despite the effectiveness of this approach, there are still certain 

areas for future improvement. First, while the current study uses the average travel 

time for the estimation of accessibility measures, it ignores the probabilistic 

distribution of the travel times (see Fig. 1). Instead of using a single average value, 

the distribution of the travel times could be integrated into the calculation of the 

measures. Secondly, the settings of several parameters (e.g. THM and THMOD)  

defined in this method affect the statistical significance and representative of the 

derived results; in the meantime they are subject to the constraint of the GPS sample 

size. A detailed examination into the correlation between different parameter settings 

and the resultant measures would be important to tune up the best parameter 

combinations. Thirdly, this study solely focuses on car travel, targeting a specific 

group of people. Accessibility can also be analyzed for other types of modes, or for a 

multi-modal transport system in which the choices between various modes are 

considered. The accessibility analysis using bus GPS data or combined GPS data 

gathered from a variety of modes would definitely improve the current method. 
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