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Preface

This dissertation puts together a number of research topics in the area of model-based

cluster analysis. The topics are all inspired by consultancy collaborations.

In 1996, I joined the Center for Statistics as a statistical consultant. I graduated

that year from the Master of Statistics program and was confident I had sufficient

statistical training to tackle a wide range of consultancy projects, in terms of study

designs, types of data, and research questions to be investigated.

The first project I got involved in was a collaboration between SPIL and two

research groups of Hasselt University, i.e., Health Psychology represented by Prof.

dr. Jan Vinck and Biostatistics. SPIL is the platform of all psychiatric initiatives in

Limburg. The platform aims at underpinning policy guidelines and reorganisation of

psychiatric care, through data exchange and transparent communication among the

initiatives. For each patient, seeking help, a wealth of information is collected. Of

course, the main objective is to determine the most appropriate and effective therapy

for the patient. But at an aggregated level, this information unfolds the landscape of

mental health in Limburg. To draw the map of psychiatric care, a large set of items,

registered for all patients, was used. Items relating to the geographical setting, patient

characteristics, his/her social situation, diagnostic information, type of care needed,

and items relating to the available expertise. To increase the efficiency of the mental

health care, it is desirable to create wards where patients with similar behavior and

in need of similar treatment are grouped. A group of patients that could benefit from

such a re-location, were patients whose behaviour was disturbing in such a way that

it disrupts the working of the whole ward. These are the so-called PDB (persistent

disturbing behavior) patients. Despite the numerous items registered, the label ‘PDB’

was not available in the data file as such. According to medical caretakers, the PDB

patients were quite diverse in terms of their diagnostic classification, the way they

(mis)behaved, the measures needed to adjust this behavior, the stage setting of the
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wards, etc. In short, the PDB group was not a homogenous group of patients. Rather,

it was believed that subtypes of PDB existed.

From a statistical point of view, this problem seemed not that hard to be inves-

tigated. Cluster analysis was the way to go. But immediately it became clear that

the methods, with which I had familiarized myself during my training, were not fully

addressing all aspects of the data. PDB is not a static condition, nor is the care

that patients need or receive fixed. To capture this, repeated measurements data was

used and a technique to group similar profiles was applied. To reduce the amount of

information, the set of items characterizing PDB was reduced into one PDB-score,

by means of logistic regression. Simplifying the multivariate repeated measurements

setting to a univariate one. It is probably this research project, rooted in the womb

of SPIL, that triggered my curiosity in cluster analysis, and hence was the start of

the research presented in this work.

The following years, I was confronted with a variety of projects where interest

was in revealing natural groupings in the data, groupings for which no labels (yet)

were present in the data. Each of these studies had its own statistical challenges to be

tackled. Data resulting from animal experiments can be high dimensional, in the sense

that the evolution of a large number of parameters is monitored. We used multivariate

repeated EEG observations to cluster rats with similar evolutions. Studies in rats are

well controllable. As long as the animals do not break out or die, a balanced and

complete data structure can be obtained. Studies in humans, on the other hand,

generally result in unbalanced data with complex patterns of missing data. Standard

cluster analysis assumes that the fact that an observation is missing, does not hold

information about the measurement itself, given all data. Presumably this is not true

for the ‘Aortic Abdominal Aneurysms’ (AAA) study. The increase in the artery’s

diameter of patients with an AAA is monitored carefully, since rupture of the artery

is likely to be a death warrant. In case of a fast growing artery, the patient is removed

from the study, resulting in missing observations for the diameter. The informative

missingness in the data should be considered when performing a cluster analysis. The

‘Heart Failure’ (HF) study combines a number of challenges. Heart failure patients are

being monitored by means of electric devices. Daily measurements for blood pressure

(systolic and diastolic), heart rate, and weight are collected. This results in a huge

set of observations — daily measurements for 6 markers during a period of 6 months

— of which part is missing.

It is clear that the topics addressed in the thesis are very applied; the goal is to

better support applied research in human and medical sciences.
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bij psychiatrische patiënten. Acta Hospitalia, 49.

Bruckers, L., Serroyen, S., Molenberghs, G., Slaets, H., Goeyvaerts, W. (2010).

Latent class analysis of persistent disturbing behaviour patients by using lon-

gitudinal profiles. Journal of the Royal Statistical Society: Series C (Applied

Statistics), 59, 495–512.

Serroyen, J., Bruckers, L., Rogiers, G., and Molenberghs, G. (2010). Characterizing

persistent disturbing behavior using longitudinal and multivariate techniques

Journal of applied statistics, 37, 341–355.

Hellenthal, F.A., Pulinx, B., Bruckers, L., Molenberghs, G., Kleinveld, H.A., Welten,

R., van Dieijen-Visser, M.P., Wodzig, W.K., and Schurink, G.W.H. (2014).

Prediction of Abdominal Aortic Aneurysm. European Journal of Vascular and

Endovascular Surgery. Submitted.

Bruckers, L., Molenberghs, G., Pulinx, B., Hellenthal, and Schurink G. (2014) Clus-

ter Analysis for Repeated Data with Dropout: Sensitivity Analysis Using a

Distal Event. Journal of Biopharmaceutical Statistics.Accepted, under review

vii



viii List of Publications

Bruckers, L., Molenberghs, G., Drinkenburg, P., and Geys H. (2014). A Cluster

Algorithm for Multivariate Longitudinal Data. Journal of Biopharmaceutical

Statistics.Accepted, under review

Bruckers, L., Molenberghs, G., Verbeke, G., and Geys, h. (2014). Detecting In-

fuential Observations in a Model-Based Cluster Analysis. Statistical Methods in

Medical Research.Accepted, under review

Bruckers, L., Molenberghs, G., and Dendale, P. (2014) Clustering Multiply Imputed

Multivariate High-Dimensional Longitudinal Profiles. To be submitted.

Additional publications:

Croes, K., De Coster, S., De Galan, S., Morrens, B., Loots, I., Van de Mieroop,

E., Nelen, V., Sioen, I., Bruckers, L., Nawrot, T., Colles, A., Den Hond, E.,

Schoeters, G., van Larebeke, N., Baeyens, W., and Gao, Y. (2014). Health ef-

fects in the Flemish population in relation to low levels of mercury exposure:

from organ to transcriptome level. International Journal of Hygiene and Envi-

ronmental Health, 217, 239–247.

Vrijens, J., Leermakers, M., Stalpaert, M., Schoeters, G., Den Hond, E., Bruckers,

L., Colles, A., Nelen, V., Van den Mierop, E., Van Larebeke, N., Loots, I., and

Baeyens, W. (2014). Trace metal concentrations measured in blood and urine of

adolescents in Flanders, Belgium: Reference population and case studies Genk-

Zuid and Menen. International Journal of Hygiene and Environmental Health,

217, 515–527.

Remy, S., Govarts, E., Bruckers, L., Paulussen, M., Wens, B., Den Hond, E., Nelen,

V., Baeyens, W., van Larebeke, N., Loots, I., Sioen, I., and Schoeters, G. (2014).

Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic

exposure and decreased birth weight. PLOS ONE, 9, 1–11.

Croes, K., Colles, A., Koppen, G., De Galan, S., Vandermarken, T., Govarts, E.,

Bruckers, L., Nelen, V., Schoeters, G., Van Larebeke, N., Denison, M.S., Mam-

paey, M., and Baeyens, W. (2013). Determination of PCDD/Fs, PBDD/Fs and

dioxin-like PCBs in human milk from mothers residing in the rural areas in

Flanders, using the CALUX bioassay and GC-HRMS. Talanta, 113, 99–105.



List of Publications ix

Den Hond, E., Paulussen, M., Geens, T., Bruckers, L., Baeyens, W., David, F.,

Dumont, E., Loots, I., Morrens, B., de Bellevaux, B.N., Nemery, B., Nelen, V.,

Schoeters, G., Van Larebeke, N., and Covaci, A. (2013). Biomarkers of human

exposure to personal care products: Results from the Flemish Environment and

Health Study (FLEHS 2007-2011). Science of The Total Environment, 463,

102–110.

Vundelinckx, B., Dierickx, C., Bruckers, L., and Dierickx, C.H. (2012). Functional

and radiographic medium-term outcome evaluation of the Humerus Block, a

minimally invasive operative technique for proximal humeral fractures. Journal

of Shoulder and Elbow Surgery, 21, 1197–1206.

Kicinski, M., Viaene, M., Den Hond, E., Schoeters, G., Covaci, A., Dirtu, A., Ne-

len, V., Bruckers, L., Croes, K., Sioen, I., Baeyens, W., Van Larebeke, N., and

Nawrot, T.S. (2012). Neurobehavioral function and low-level exposure to bromi-

nated flame retardants in adolescents: a cross-sectional study. Environmental

Health, 11:86.

Morrens, B., Bruckers, L., Den Hond, E., Nelen, V., Schoeters, G., Baeyens, W.,

Van Larebeke, N., Keune, H., Bilau, M., and Loots, I. (2012). Social distri-

bution of internal exposure to environmental pollution in Flemish adolescents.

International Journal of Hygiene and Environmental Health, 215, 474–481.

Schoeters, G., Den Hond, E., Colles, A., Loots, I., Morrens, B., Keune, H., Bruckers,

L., Nawrot, T., Sioen, I., De Coster, S., Van Larebeke, N., Nelen, V., Van de

Mieroop, E., Vrijens, J., Croes, K., Goeyens, K., and Baeyens, W. (2012). Con-

cept of the Flemish human biomonitoring programme. International Journal of

Hygiene and Environmental Health, 215, 102–108.

Croes, K., Colles, A., Koppen, G., Govarts, E., Bruckers, L., Van de Mieroop, E.,

Nelen, V., Covaci, A., Dirtu, A.C., Thomsen, C., Haug, L.S., Becher, G., Mam-

paey, M., Schoeters, G., Van Larebeke, N., and Baeyens, W. (2012). Persistent

organic pollutants (POPs) in human milk: A biomonitoring study in rural areas

of Flanders (Belgium). Chemosphere, 89, 988–994.

Bruckers, L and Smeets, M. (2012). Wie doet beroep op onze Limburgse GGZ-

voorzieningen ? Overspil: informatieblad van het overlegplatform ‘Samenwerk-

ing Psychiatrische Initiatieven Limburg’, 19, 4–7.

Schoeters, G., Den Hond, E., Colles, A., Loots, I., Morrens, B., Bruckers, L., Sioen,

I., Van Larebeke, N., Nelen, V., Van De Mieroop, E., Vrijens, J., Croes, K.,



x List of Publications

Baeyens, W., and Covaci, A. (2012). The Flemish Environment and Health

Study (FLEHS) Second Survey (2007-2011): Establishing Reference Values for

Biomarkers of Exposure in The Flemish Population. Biomarkers and Human

Biomonitoring Volume 1 : Ongoing Programs and Exposures, Knudsen, L.,

Merlo, D.F. (Ed.), 135–165.

Keunen, E., Truyens, S., Bruckers, L., Remans, T., Vangronsveld, J., and Cuypers,

A. (2011). Survival of Cd-exposed Arabidopsis thaliana: Are these plants re-

productively challenged? Plant Physiology and Biochemistry, 49, 1084–1091.

Croes, K., Van Langenhove, K., Den Hond, E., Bruckers, L., Colles, A., Koppen,

G., Loots, I., Nelen, V., Schoeters, G., Nawrot, T., Van Larebeke, N., Denison,

M.S., Vandermarken, T., Elskens, M., and Baeyens, W. (2011). Quantification

of PCDD/Fs and dioxin-like PCBs in small amounts of human serum using

the sensitive H1L7.5c1 mouse hepatoma cell line: Optimization and analysis of

human serum samples from adolescents of the Flemish human biomonitoring

program FLEHS II. Talanta, 85, 2484–2491.

Den Hond, E., Dhooge, W., Bruckers, L., Schoeters, G., Nelen, V., van de Mieroop,

E., Koppen, G., Bilau, M., Schroijen, C., Keune, H., Baeyens, W., and van

Larebeke, N. (2011). Internal exposure to pollutants and sexual maturation in

Flemish adolescents. Journal of Exposure Science and Environmental Epidemi-

ology, 21, 224–233.

Dhooge, W., Den Hond, E., Koppen, G., Bruckers, L., Nelen, V., van de Mieroop, E.,

Bilau, M., Croes, K., Baeyens, W., Schoeters, G., and van Larebeke, N. (2011).

Internal exposure to pollutants and sex hormone levels in Flemish male adoles-

cents in a cross-sectional study: associations and dose-response relationships.

Journal of Exposure Science and Environmental Epidemiology, 21, 106–113.

Morrens, B., Loots, I., and Bruckers, L. (2011). Programme flamand de biomonitor-

ing sur les adolescents : les gradients sociaux observés diffèrent d’un polluant á
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Chapter 1
Overview of the Dissertation

Data clustering is a useful technique to explore multivariate data for a structure of

natural groupings, for which there is no prior information available in the data. The

groups exhibit different relationships among the multivariate outcomes. Clustering

has also been used to identify outliers, and to suggest hypotheses concerning relation-

ships. The term data clustering first appeared in an article published in 1954 with

anthropological data and one of the most popular and simple clustering algorithms,

K-means, was first published in 1955. The problem of organizing observations into

sensible groupings is prevalent in many disciplines, as is clear from the number of

applied and methodological articles published. Clustering has successfully been used.

- In transcriptomics clustering is used to build groups of genes with re-

lated expression patterns, known as coexpressed genes. Often such groups contain

functionally related proteins or genes that are co-regulated.

- Based on multivariate data from surveys and test panels, market re-

searchers use cluster analysis to partition the general population of consumers into

market segments and to better understand the relationships between different groups

of consumers/potential customers.

- In mathematical chemistry, 3000 chemical compounds were clustered in

the space of 90 topological indices based on structural similarity.

- In the fields of plant and animal ecology, clustering is used to describe

as well as to make spatial and temporal comparisons of communities of organisms in

heterogeneous environments.

- In astronomy, stars are classified in categories based on their light intensity

and surface temperature.

1
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- One of the principal research questions in community care is whether

use of resources by different patient groups is aligned with a patient’s clinical and

psychosocial needs. However a patient’s diagnosis alone, e.g., of schizophrenia, can-

not explain differences in severity of illness among patients or their variable needs

for resources. To better map a patient’s use of resources and satisfaction with the

care and a patient’s needs, a cluster analysis of patients with schizophrenia was per-

formed. The analyses revealed four clusters that differ on the basis of the severity of

psychopathology, disability, and family burden (Lora et al., 2001).

Depending on the field, cluster analysis is also known as Q-analysis, typology, clump-

ing, numerical taxonomy, unsupervised learning, learning by observation, etc. Clus-

ter analysis is not one specific algorithm, but refers to the general task to be solved,

i.e., grouping observations in such a manner that observations similar to each other,

according to some measure of distance between data, are grouped together, while

dissimilar observations belong to different groups. A multiplicity of clustering algo-

rithms has been proposed in the literature; they differ significantly in their notion

of what constitutes a cluster and how to efficiently find them. Fraley and Raftery

(1998) suggest dividing the clustering methods into two main groups: hierarchical

and partitioning methods. Han and Kamber (2001) suggest categorizing the methods

into three additional main categories: density-based methods, model-based clustering,

and grid-based methods. Chapter 2 contains a compendious introduction to cluster-

ing and some clustering algorithms.

Although standard hierarchical and partitioning cluster algorithms are widely used

and have shown to be effective, they are less adequate when clusters need to be discov-

ered in data exhibiting complex structures. This is for example the case for repeated

measurements data, for spatially obtained observations, and studies using clustered

sampling. The standard techniques assume observations to be independent random

realizations of some statistical model and similarity metrics are used to deal with sets

of observations. Generally these techniques are not applicable when the data consists

of profiles, as is the case for all case studies considered in this dissertation (see Chap-

ter 3). The directionality information, contained in the profiles, is discarded in the

cluster procedure. No restriction is placed on the mean structure via covariates or

otherwise. Furthermore, traditional clustering algorithms require a fixed-dimensional

size which is usually not the case for longitudinal studies. Measurement times may

be unequally spaced within an individual and may differ across individuals resulting

in highly unbalanced structures.
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In these settings, model-based clustering methods, such as finite-mixture models,

have advantages compared to non-probabilistic techniques. Finite-mixture models

have a long history in statistics. They have been used to model population hetero-

geneity, generalize distributional assumptions, and lately, for providing a convenient

yet formal framework for clustering and classification. In a model-based approach

each cluster is mathematically represented by a parametric distribution, like a Gaus-

sian or a Poisson. The data is described by the mixture of the distributions that

optimizes the fit between the data and the specified model. Clusters are then defined

as observations coming most likely from the same distribution. These models can be

applied to directional data and allow for a parsimonious representation of the mean

by putting restrictions on the model. The methodology conveniently handles missing

and irregularly spaced measurements. Finally, the uncertainty for cluster-membership

assignment of each observation is naturally quantified via the posterior probabilities.

Finite-mixture models and model-based clustering are briefly introduced in Chap-

ter 4. For illustrative purposes the Persistent Disturbing Behavior Data, previously

analyzed by Serroyen et al. (2010), will be used. Serroyen et al. (2010) executed a

conventional cluster analysis on cross-sectional data for this study, we will use the

repeated measurements to reveal latent subgroups in the data.

Although cluster analysis has been used extensively in applied sciences and was a

topic of many methodological papers, there are still a number of open and contro-

versial topics. Some of these issues are specific to model-based clustering, e.g., via

finite-mixture models, and some are common to a variety of clustering algorithms.

- Evaluating if a certain clustering algorithm is appropriate or not is a problematic

and controversial issue. In fact Bonner (1964) was the first to argue that there is no

universal definition for what is a good clustering. The evaluation remains mostly in

the eye of the beholder. Nevertheless, several evaluation criteria have been developed

in the literature. These criteria are usually divided into two categories: internal and

external.

- Cluster performance can be optimized by excluding variables that are uninfor-

mative and irrelevant. The identification of variables with more discriminating power

than others has been discussed by Raftery and Dean (2006).

- The decision about the number of clusters/components K is often equivocal.

The optimal choice of K seeks a balance between maximum conglomeration of the

data using a single cluster, and maximum accuracy by assigning each data point to

its own cluster. The percentage of variance explained as a function of the number of

clusters, the average silhouette of the data, cross-validation, and information criterion
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approaches when a likelihood function is involved, have been used to determine K.

- Melnykov (2013) discusses some problems typically encountered with model-

based clustering. Estimation in finite-mixture models is conveniently done by

maximum-likelihood estimation, implemented via the expectation-maximization al-

gorithm. But the likelihood function may be unbounded, e.g., because of singular

covariance matrices in the case of Gaussian mixtures with heterogeneous dispersions.

The likelihood function can have spurious solutions, with the parameter vector so-

lution lying close to the boundary of the parameters space. The EM algorithm is

iterative and its performance can depend severely on particular starting points be-

cause the likelihood function often has numerous local maxima. Several approaches

have been considered in the literature to find reasonable starting points (e.g., obtain

an initial partition by K-means), but so far no recommendations for global initializa-

tion are available.

In this dissertation, we address a number of aspects and limitations of cluster analysis

that received less attention in the statistical literature, so far. These topics are most

naturally addressed in a model-based cluster approach. Cluster analysis becomes chal-

lenging when the dimensionality of the data increases. In this work, two chapters are

devoted to this topic. Chapter 5 proposes an algorithm to detect similar patterns in

a multivariate longitudinal data setting. Clustering of repeated measurements data,

by means of finite-mixture models, has successfully been demonstrated. However, the

methods described in the literature, are applicable in situations where observations

need to be grouped based on the evolution over time of a limited set of responses,

in general one and at maximum three. In a multivariate repeated measurements set-

ting, where various outcomes are measured simultaneously over time, these cluster

methods break down and easily run into computational problems due to an increase

in the number of parameters to be estimated. To find clusters that are unique in the

evolutions over time for the set of outcomes as well as in the correlation structure,

an algorithm based on pseudo-likelihood estimation is presented in Chapter 5. The

algorithm is inspired by work of Fieuws and Verbeke (2008), they used a bivariate

joint-modelling approach to perform a discriminant analysis.

Modern data collection techniques permit observations to be densely sampled over

a continuum, usually time, again enhancing the dimensionality of the data, even if

only one response is monitored. In such situations, the observed data is seen as a re-

alisation of a smooth underlying process. This type of data is referred to as functional

data and methodology is available to describe and model dependencies between these

so-called functional data curves. In general, a smoother is applied and the curse of
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dimensionality is circumvented by reducing the dimension of the data, e.g., via a prin-

cipal component analysis, prior to statistical analysis. Population heterogeneity in the

functional curves is then reflected as heterogeneity in the reduced data. Jacques and

Preda (2013) demonstrated a cluster analysis for functional data when the data con-

sists of bivariate functions. We apply this method to a setting where each observation

is characterized by six curves and demonstrate that the reduced information about the

dependencies in the data, allows to reveal homogenous groups (Chapter 6). The data

reduction technique, which is an essential building block in the procedure of Jacques

and Preda (2013), restricts its applicability to rectangular complete data structures.

Records with missing values are discarded in the analyses. However, missing data are

almost unavoidable in longitudinal studies. In Chapter 6, we present a solution to cir-

cumnavigate this problem. We propose to use the technique of multiple imputation to

create a set of m complete data sets and subsequently execute a ensemble clustering to

summarize the resulting m partitions into a final cluster result. Ensemble clustering

refers to the situation in which a number of different partitions have been obtained for

a particular dataset and it is desired to find a single (consensus) clustering which is a

better fit in some sense than the existing clusterings. An ensemble can be obtained,

for example, by varying the parameters of the clustering algorithm, by resampling

or reweighting the set of objects, or by employing several different clustering algo-

rithms. To our knowledge, ensemble clustering has not yet been used to summarize

partitions obtained after multiple imputation. Chapter 6 introduces the procedure of

Jacques and Preda (2013) and basic concepts of ensemble clustering. The usefulness

of an assemblage of multiple imputation and ensemble clustering is illustrated for the

functional heart failure data and by means of simulations.

In fact, multiple imputation assumes that the missing-data mechanism is miss-

ing at random (MAR). MAR allows the mechanism describing missingness to depend

on covariates and observed outcomes but, given these, not further on unobserved

outcomes. When the parameter space describing the measurement and missingness

process equals the product of the individual parameter spaces inference can be based

on the marginal observed data density only (ignorability). But MAR is a rather re-

strictive assumption and it can never definitively be excluded that missingness further

depends on unobserved outcomes. This more general missing mechanism is referred

to as missing not at random (MNAR). Under MAR and ignorability, a maximum-

likelihood analysis will produce unbiased estimates. But biased estimates are obtained

when the missingness mechanism is MNAR. The information about the response con-

tained in it being observed or missing, can be incorporated in the statistical analysis

by jointly modeling the measurement and missingness process. Depending on the



6 Chapter 1. Overview of the Dissertation

chosen factorization of the joint likelihood, the model is a so-called selection model

or pattern-mixture model. These models do not necessarily induce the same con-

clusions. The inherent difficulty is that they rely on unverifiable assumptions and

that the data alone is inconclusive in voting for the best model. Chapter 7 applies a

finite-mixture model to the measurement process and a series of missing-data models

to the missingness process. These type of models have been used by Muthén et al.

(2011), to model non-ignorable dropout in the STAR*D antidepressant trial. The au-

thors focussed on the comparison of the results of the different models in terms of the

number of clusters and the average cluster-specific profiles. We will execute a similar

exercise for the abdominal aorta aneurysm (AAA) dataset, but we complement the

model comparison with an evaluation of the sensitiveness of the posterior probabilities

and the final classification of the subjects. Notable differences are seen in the results,

but choosing between the models is very hard. Muthén et al. suggest that external

information, associated with the latent grouping in the data, can assist in a sensible

ranking of the different models. Such an exercise was also implemented for the AAA

study and described in Chapter 7.

Noise and outliers affect the estimates of the parameters describing the components

of a finite-mixture model, and as such the posterior probabilities and partition of the

observations. Different methods have been described in the literature to investigate

this. Cheng and Milligan (1996), for example, define an influential observation as

an observation that, when removed from the data, leads to a different partitioning.

However, interest could be in quantifying the influence of a single observation, not

only on the final partitioning, but also on the parameter estimates describing the

components. Chapter 8 deals with this topic. Influence in the mixed model has been

investigated by Lesaffre and Verbeke (1998). They use a local influence analysis to

assess the effect of perturbations from the usual assumptions in the mixed model.

We obtained local influence diagnostics for finite-mixture models using case-weight

perturbations. For each observation, this results is a set of influence diagnostics, of

which one measures the influence on the mixture probabilities. However, even if no

change in cluster-membership is observed the influence on the posterior probabilities

can still be substantial. In Chapter 8, we show how local influence diagnostics obtained

for finite-mixture models allow to quantify the influence of an observation on the

posterior probabilities of all other observations, without refitting the finite-mixture

model.

Finally, Chapter 9 summarizes the most important findings and sketches some

topics that are still open for future research.



Chapter 2
Brief Resume of Cluster Analysis

Cluster analysis (Johnson & Wichern, 2007) refers to a collection of procedures that

attempt to determine natural groupings (or clusters/classes/components) of objects

(observations, events) in a population. The unsupervised classification is based on

information found in the data describing the objects and their relationships. The

term ‘cluster’ does not have a precise definition, but often a similarity-based definition

is employed: a cluster groups objects such that objects in the same cluster are more

similar to each other (in some sense or another) than to objects in another cluster.

Cluster analysis is often mixed-up with supervised classification, discriminant anal-

ysis or decision analysis. Although the techniques are related they serve different

purposes. In a cluster analysis, a set of unlabeled objects is organized into similar

groups. Whereas the aim of discriminant analysis is to label a new object (or to assign

it to a group), based on a set of labeled objects.

While clustering is used to reveal natural groupings in the data, it also has been

demonstrated to be valuable in detecting incorrect class-labels, outliers, errors, and

bias.

In this chapter, we briefly introduce the building blocks of a cluster analysis. Jain

and Dubes (1988) describe the following steps in a typical cluster analysis: object rep-

resentation, choice of an object proximity measure, choice of a clustering algorithm,

and evaluation of the obtained grouping. Each of these steps will be elaborated upon

in the following paragraphs, without the intention of being complete. For details of

specific clustering methods we refer to, for example, Johnson & Wichern (2007).

7
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Object representation refers to the vector of measurements (also called features,

attributes, variables) for each object used as input for the clustering algorithm. Since

a cluster analysis is not able to differentiate between relevant and irrelevant features,

data is sometimes preprocessed. Identifying a (effective) subset of the collected fea-

tures to be used in the clustering algorithm is feature selection. Transforming the

available features into a lower-dimensional space, e.g., via a principal component

analysis, is feature extraction. The purpose of feature selection and extraction is to

remove noise in the data and to obtain an interpretable final classification. Stan-

dardizing the features, such that clustering is not dominated by the feature with the

widest range, is also part of the choice of the object representation.

Indispensable to most clustering methods is a quantification of the similarity between

two objects. The similarity measure can be a metric or based on a probability distribu-

tion. Often a distance measure on the feature space is used. Among the most popular

metrics are the Euclidean distance, Manhattan distance, Pearsons’ correlation for

continuous features, Spearman’s rank correlation, Kendall’s Tau for ordinal features,

simple matching coefficient and Jaccard coefficient for binary features. Kullback-

Leibler divergence and mutual information are (dis)similarity measures based on a

probability distribution. The choice of the (dis)similarity measure should consider

the features type and scale, the desired interpretation of similarity (e.g., proximity or

association), sensitivity to outliers, and underling distributional assumptions for the

features.

Many clustering algorithms have been described to discover groups of ‘similar’ ob-

jects. A distinction between hierarchical and partitional clustering methods can be

made. The methods can differ in terms of the number of clusters an observation can

be assigned to, i.e., hard versus fuzzy clustering. Furthermore, the methods can differ

in how the features are used.

Hierarchical clustering techniques result in a nested series of partitions, called

a tree or dendogram. The hierarchical clustering can proceed in a agglomerative or

divisive way. The agglomerative approach starts with each object as a separate cluster,

and successively merges the two nearest clusters together. This is done repeatedly

until all objects are in one cluster. Divisive clustering considers all objects as a

cluster and iteratively splits this cluster. The distance between two clusters can be

constructed in multiple ways. Single linkage, complete linkage and average linkage

define the distance between clusters as the minimum, maximum and respectively

average distance between any two objects of the clusters. Ward’s method, on the
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other hand, uses the increase in sum of squares when merging two clusters as the

distance measure.

Partitional techniques produce a single partition of the objects into disjoint clus-

ters, by optimizing a criterion function. For these methods, the number of clusters,

k, needs to be specified. The solution to the optimization problem can be solved by

enumerating all possible ways of dividing the objects into k clusters. The best split

is chosen by evaluating its ‘goodness’ by an objective function. Except for small data

sets, this exhaustive search is computationally not feasible. Many algorithms have

been described in the literature to find solutions of the objective function. The most

popular one is probably the k-means algorithm. This algorithm attempts to minimize

the sum of the squared distances between the objects and their cluster centers, by

iteratively reallocating objects to the clusters until convergence. This algorithm is a

simple local search technique. More advanced stochastic methods like evolutionary

algorithms, genetic algorithms, and simulated annealing explore the solution space

more efficiently.

Model-based clustering is also based on optimizing an objective function. Model-

based clustering fits the data to a mathematical model. Often it is assumed that the

data are generated by a mixture of underlying distributions, each described by a set

of parameters. The clustering algorithm then attempts to find the best estimates of

the parameters by maximizing the log-likelihood function.

Density-based clustering identifies regions in which the density of objects/points is

exceeding a threshold value (e.g., the minimum number of objects in the neighbour-

hood). Regions with a low density of objects indicate clusters of noise or clusters of

outliers.

Hard or crisp clustering algorithms allocate each observation to exactly one clus-

ter. Fuzzy or soft methods assign an observation to multiple clusters, with a degree

of membership. Fuzzy clustering thus allows uncertainty in the clustering task and is

useful when clusters are not well separated.

Most clustering methods are polythetic in nature, meaning that the features are

used simultaneously in the process. Monothetic methods sequentially introduce fea-

tures in the cluster process.

Clustering algorithms define clusters that are unknown a priori. Moreover, if no nat-

ural grouping is present an artificial structure is imposed. Cluster validity methods

inspect aspects such as the optimal number of clusters, the fit of the final partition to

the data, consistency and robustness of the partition when re-sampling the data, etc.

The quality of a cluster result is measured by external (with respect to an a-priori
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structure), internal validity indices, and by the homogeneity of clusters and the sep-

aration between them.

Clustering is a descriptive technique. The solution is not unique and it strongly

depends on the choices made. When deciding upon the clustering algorithm and sim-

ilarity measure, the dimensionality of the data in terms of number of objects and

features, and the type and scale of the features are determining factors. Hierarchical

methods make no assumptions about the data distribution, are applicable to any fea-

ture type, and do not require specification of the number of clusters. However, in the

presence of a lot of noise, overlapping clusters or clusters of different shape and size,

these methods perform poorly. Partitional methods are attractive for large data sets,

but need the specification of the number of clusters. These methods work well for

isolated, compact, spherical clusters. Model-based clustering is an appealing alterna-

tive to these heuristic methods. Since, the underlying framework is probabilistic the

choice of the optimal number of clusters comes down to model selection. Model-based

clustering also allows to take into account complex design features, and to model out-

liers and missing values explicitly. The work presented in this dissertation is situated

in the domain of model-based clustering, therefore an introduction to and application

of model-based clustering is given in Chapter 4.



Chapter 3
Motivating Case Studies

In this chapter, we introduce the longitudinal studies that gave rise to the research

covered in this dissertation. The main data sets have a common application domain,

i.e., human health studies. But each study exhibits specific challenges.

The Persistent Disturbing Behavior (PDB) data set, presented in Section 3.1, will

be used in Chapter 4, to introduce and demonstrate model-based clustering applied

to univariate longitudinal data.

The Electro-Encephalogram (EEG) data in rats, described in Section 3.2, requires

the development of a clustering algorithm for multivariate longitudinal data. This

is the topic of Chapter 5. This data is also used in Chapter 8 to investigate the

sensitivity of a finite-mixture model for longitudinal data to aberrant data points.

The Abdominal Aortic Aneurysm (AAA) data (Section 3.3) and Heart Failure

(HF) data (Section 3.4) are both characterized by the presence of missing data. For

the AAA data, a sensitivity analysis will be performed by fitting MNAR-models in

the context of a cluster analysis (Chapter 7). The technique of multiple imputation

will be used for the HF data. Chapter 6 delineates how a final partition of the data

can be obtained after multiple imputation. Furthermore, the HF data will also be

used to illustrate a clustering method for functional data.

11
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3.1 Persistent Disturbing Behaviour Data (PDB)

3.1.1 Background

Mental health care institutions in Belgium are confronted with a group of chronic

therapy resistant patients, which is problematic in that neither scientific definitions,

theory, nor a legal framework is in place. These patients cannot be treated satisfac-

torily with current therapies and medication. Their behaviour is disturbing in the

sense that living together in their natural environment, or even in a hospital ward,

is extremely difficult. Given that their disease systems are unstable, and that their

behavior is persistent over time, intensive 24-hour supervision is required. This con-

dition is referred to as persistent disturbing behavior (PDB).

The Belgian mental health care system is clearly not accommodating to this group.

The patients are predominantly found in psychiatric hospitals and psychiatric nursing

homes. Psychiatric hospitals are defined as non-residential institutions for intensive

specialist care. As the PDB group needs a prolonged stay in such a setting, a psychi-

atric hospital is not the optimal environment. In addition, a 1996 law states that a

psychiatric nursing home is intended for patients with stabilized chronic psychiatric

conditions. While the law does not specify the meaning of stabilized condition, it is

generally understood that PDB patients are not stable. We therefore have to conclude

that mental health care does not explicitly accommodate the PDB group.

With respect to the PDB group four important questions can be raised. First, how can

the PDB group be distinguished from related but different groups, such as patients

with acute or short-term disturbing behaviour. Second, because a clear definition

is not available, the size of the PDB group is unclear. Third, it is conceivable that

the PDB group consists of a number of subgroups that can be usefully distinguished.

Finally, it is not clear in which residential setting such patients should be accommo-

dated.

To rectify this situation, legislative work is needed. Before this can be done, one

first needs to properly define the PDB group and perform a quantitative analysis,

formulating answers to the aforementioned questions.

In the following sections, we will in turn introduce (1) the Minimal Psychiatric Data

(MPD) registry system used by the Belgian mental health care institutions, (2) a

cross-sectional pilot study set up in 1998 to estimate the size of the PDB group and

to identify MPD items discriminating between PDB and non-PDB patients (Bruckers

et al. (2000), and (3) research by Serroyen et al. (2010) using the data of the pilot
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study and registry data to develop a longitudinal PDB marker.

3.1.2 The Psychiatric Registry Data

For every patient admitted to a residential psychiatric care setting in Belgium specific

data are registered. This registration system was made mandatory in 1996 for psychi-

atric hospitals and in 1998 for the psychiatric nursing homes by the federal Ministry of

Public Health and is called Minimal Psychiatric Data (MPD). The entire set of data is

extensive, organized in a number of modules (medical admission, medical treatment,

intermittent discharge, medical discharge).

A description of the goals of the registration system and a de-

tailed overview of all items included in the registry can be found at

‘http://www.mpg.uhasselt.be/nl/default.htm’. The MPD registration data has

to be send to the Ministry of Public Health twice a year. Data for the period

January-June has to be uploaded in September, data for the period July-December

in February of the next year.

3.1.3 Pilot Study, 1998

In 1998, a cross-sectional pilot study was set up in the psychiatric hospitals and the

psychiatric nursing homes in the Belgian province of Limburg to (1) estimate the

size of the PDB group and (2) explore factors that discriminate between PDB and

non-PDB patients. More information about the study and the results can be found

in Bruckers et al. (2000).

Patients were screened by an interdisciplinary team and classified by expert opin-

ion as PDB when the team judged that living together with the patient is hard and

that s/he needed continuous supervision. The persistence dimension was approached

by restricting attention to patients residing in chronic-patient wards within psychiatric

hospitals or in psychiatric nursing homes. Patients residing in one of these wards had

in general already had intensive therapy in an acute ward and, in case of a psychiatric

nursing home, also a long stay in a chronic ward.

To keep the burden on the field workers as low as possible, it was decided to include

a sample of wards and to rely, as far as possible, on existing information, rather than

initiating further data collection. In November 1998, a number of wards were screened

for PDB behaviour. Information on 611 patients was obtained. For 189 patients the

interdisciplinary team judged that their behavior was persistent disturbing. This

information was supplemented with relevant MPD items (registered in the second

semester of 1998). Based on these MPD items, a function discriminating between



14 Chapter 3. Motivating Case Studies

PDB and non-PDB patients was developed. For each patient, this analysis results

in a score, quantifying the probability to be PDB. When this probability exceeds a

threshold value the patient was classified as PDB.

The functional form of the discriminant function, as obtained from logistic regres-

sion, for the patients admitted in a psychiatric hospital is:

logit(PDBij) = −4.81 + 1.73 ·Aggr.Aij + 0.62 ·Aggr.Pij + 0.33 · Suicidij

+0.47 ·Appearij + 0.40 · Respectij − 0.03 ·Agei + 1.81 · Sexi

−1.50 ·DDACi + 0.56 · Schizoi − 2.32 · Residi. (3.1)

The index i refers to the patient, whereas j is the measurement occasion (second

semester 1998) within a patient. Strictly speaking the index j is not needed in this

expression. The construction of the discriminant function is based solely on MPD data

collected for the second semester of 1998. The purpose of the index j will become

clear in Section 3.1.4 where a longitudinal version of the PDB score is introduced.

The predictive covariates in (3.1) have the following meaning: ‘Aggr.A’ stands for

aggression towards oneself (auto-aggression), ‘Aggr.P’ for aggression against other

people, ‘Suicid’ for suicide danger, ‘Appear’ for appearance, ‘Respect’ for respect

for others, ‘Age’ stands for age (in years) in 1998, ‘Sex’ is a binary indicator for a

patient’s sex with the reference category being the female patients, ‘DDAC’ stands for

the diagnostic class Delirium, Dementia, Amnestic and Cognitive disorders, ‘Schizo’

for the diagnostic class schizophrenia, and ‘Resid’ for the residual diagnostic class (so-

called V-codes, a technical term for conditions that are the focus of clinical attention

without being considered disorders). The scoring of these items is explained further

on in this section. That sex and age, for example, are included in the score might

be met with surprise. Such concern would be warranted when a purely behavioural

approach is envisaged. However, the goal here is to put forward rules that classify

a patient as belonging to the PDB group as accurately as possible. To complicate

matters, in some of the analyses, such as the one reported here, the aim is to do

this at a single point in time. Of course, then only essentially ‘disturbance’-oriented

information is available, rather than reliable longitudinal ‘persistence’ information.

We believe that this offers an extra motivation to employ background covariates.

For the psychiatric nursing home patients, the functional form of the discriminant

function is:

logit(PDBij) = −6.39 + 1.26 ·Aggr.Aij + 1.15 ·Aggr.Oij + 0.65 ·Asocij

+1.21 · Separij + 0.70 · Socialij + 0.59 · Respectij

−0.85 · Retari, (3.2)
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with the same abbreviations as in (3.1) and in addition ‘Aggr.O’ standing for aggres-

sion against objects, ‘Asoc’ for anti-social attitude, ‘Separ’ for need for separation

or isolation, ‘Social’ for socially unacceptable behaviour and ‘Retar’ stands for the

diagnostic class mental retardation.

The mental signs and symptoms, i.e., ‘Aggr.A,’ ‘Aggr.P,’ ‘Aggr.O,’ and ‘Asoc,’

are direct indications for whether or not a patient’s disturbing behaviour contributed

to his/her admission or extension of the medical stay. These problems are rated on

a three-point scale, ranging from 0 to 2, indicating to which extent the problem is

contributing to the admission of the patient or to the extension of the medical stay.

A score of 0 indicates that the problem was not contribution at all, 1 indicates that

the problem was present but not the reason for the admission or extension, a score of

2 indicates that the problem is the direct cause for the admission or extension of the

stay.

Indirect indications for the degree of disturbance are captured by the items refer-

ring to preventive suicidal supervision, ‘Suicid,’ and the need for separation, ‘Separ.’

For each item, a binary variable was created, indicating whether or not the activity

was performed at least once during the treatment period (semester).

‘Respect’, ‘Appear’, and ‘Social’ belong to a set of patient functioning items that

describe the interaction between the patient and his/her immediate surroundings, as

well as the relationship between the patients and their co-residents. Each item is

scored on four-point scale, ranging from 1—4. When no limitations are observed in

a patient’s functioning the item will be equal to 0, whereas a score equal to 4 implies

serious limitations.

The diagnostic classes ‘DDAC’, ‘Schizo’, ‘Retar’, and ‘Resid’ are yes/no indicators

relating to specific diagnostic classes. These diagnostic classes are constructed ac-

cording to a consensus document, designed by the Limburg collaborative network in

psychiatry, SPIL, summarizing the diagnostic DSM-IV codes in 11 classes (SPIL-RPL

1997, Munson 2001).

The logistic-regression-based classification, presented in (3.1) and (3.2), turned out

to have good discriminative power. The screening status and the classification status

agree for about 80% of the screened patients. The ROC c statistic (Agresti 2002),

which quantifies the discriminative ability, equals 0.85 for the psychiatric hospitals

and 0.88 for the psychiatric nursing homes. Bruckers et al. (2000) observed that the

sensitivity and specificity for the psychiatric hospitals (psychiatric nursing homes)

were 77.2% (71.9%) and 78.7% (85.5%), respectively. These values were attained for

a cutoff value of 0.40 (0.28) for the hospitals (nursing homes) on the logit-score.
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An important conclusion from the pilot study was that, following such a discrim-

inant rule, 35.5% of the patient population in a psychiatric hospital might belong to

the PDB group, with a similar figure (32.1%) for the psychiatric nursing homes. The

corresponding 95% confidence intervals for the size of the PDB group are [198; 242]

and [100; 135].

Of course, these findings have to be taken with some caution. First, as stated

before, the data used for the analysis constituted a pilot sample of PDB patients and

controls, 611 in total, intended to build the classification rule from. Hence, its use lies

in the ability to compare both groups, rather than in being representative for a larger

population. Second, and more important, the discriminant function focuses on the

disturbance aspect, neglecting the persistence. Patients residing in one of these wards

in general already had intensive therapy in an acute ward and, in case of a psychiatric

nursing home, also a long stay in a chronic ward. But of course, whether or not the

group considered to be PDB in 1998 indeed was chronic in their disturbing behaviour is

questionable. The fact that these patients are staying in long-stay wards only indicates

that we are dealing with chronic disease statuses, not necessarily that the disturbing

behaviour is persistent. It is possible that the patient was going through an acute

phase of disturbing behaviour, something hard to disentangle based on information

localized in time. Serroyen et al. (2010) addressed this point (Section 3.1.4).

It is clear that the study should be seen as a pilot. Nevertheless, it is important to

know whether the group is sufficiently large to warrant specific components of care.

Even allowing for some overestimation, it is clear that the group is large enough to

render its consideration as a single, monolithic group impractical for organization.

This is particularly challenging, given the disturbing character of the disorder, neces-

sitating special small-scale care units.

3.1.4 Longitudinal PDB Score

By making use of the repeated measurements collected within the psychiatric registry

data, Serroyen et al. (2010) investigated the persistence aspect of the PDB group.

The authors also performed a cluster analysis based on the 1998 data, to initiate

identification of subgroups within the PDB group.

The discriminant function described in Section 3.1.3 was developed based on data

registered in the second part of 1998. But in fact, the items which make up the

discriminant score have been recorded twice annually since 1996 for the psychiatric

hospitals and since 1998 for the psychiatric nursing homes. The score can thus be

calculated at the other registration occasions as well, thus producing a longitudinal
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profile per patient. The minimal psychiatric registry was put in place only at the

second semester of 1996 in psychiatric hospitals and at the first semester of 1998 in

psychiatric nursing homes. Given that 1996 was the year that the registration system

started, it is prudent not to put too much trust in the data for this semester. This

semester will be ignored in subsequent analysis. Furthermore, for the first semester

of 1997, no data are available, owing to the start of the registration system. End

2000, the legal registration framework changed. Therefore attention was restricted

to the period 1997.2–2000.1 for the psychiatric hospitals and 1998.1–2000.1 for the

psychiatric nursing homes. Figure 3.1 shows individual profiles of the PDB scores for

20 randomly selected PDB patients, 10 residing in a psychiatric hospital and 10 in a

psychiatric nursing home.

Serroyen et al. (2010) employed linear mixed models to study the evolution of

the mean discriminant function, for the PDB and non-PDB groups. They conclude

that the evolutions are different for PDB and non-PDB patients and that a non-linear

structure emerges for the non-PDB group. Differences in the variance and correlation

structure of the two groups give more insight in the persistent dimension of the PDB

patients. Relatively more heterogeneity is seen among PDB patients, opening per-

spectives for further subdivision. The correlation structure, for the patients residing

in a psychiatric hospital, is subtly different between both groups. The PDB group

is roughly of a first-order autoregressive type, showing relatively large correlations

between adjacent measurements (around 0.75), which decreases with increasing time

lag, dropping to about 0.35. Thus, the PDB group exhibits a chronic behavior from

the beginning, with fluctuations happening in the long run rather than immediately.

The non-PDB group correlation structure is closer to compound symmetry, amended

by the fact that the correlations increase towards later times. This may suggest there

is an unstable, acute phase at the beginning of the study. For the psychiatric nursing

homes, the picture emerging from the estimated correlation structures is different.

Both are relatively close to compound-symmetry, with a common correlation around

0.65. This is plausible from a field work point of view, because these patients are

almost by definition of a chronic type.

A K-means cluster analysis, using Gower’s distance measure (Gower 1971), sug-

gests the presence of two clusters in the PDB group (data of 1998). Cluster #1 (n=

91) appears to consist of PDB patients with higher scores on the ordinal variables

mobility, recognition of persons, notion of time, initiative, socially unacceptable be-

havior, respect for others, and conflicts, as compared to cluster #2 (n= 98). This

indicates that the patients in cluster #1 show more pathological behavior.
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Figure 3.1: Random sample of individual PDB-score profiles for 20 PDB patients, 10

residing in a psychiatric hospital (full line) and 10 residing in a psychiatric nursing home

(dashed line).

A major issue with conventional clustering is that it starts from cross-sectional data,

thus focusing on similarity at one point in time. However, patients exhibiting the

same characteristics, the same behaviour at one point in time can still evolve, and

diverge, in a multitude of ways. In Chapter 4, the cluster analysis presented by Ser-

royen et al. (2010) is refined by making use of the longitudinal nature of the data.

This is done using conventional linear mixed models and so-called growth-mixture

and latent-class growth models.

3.2 Electro-Encephalogram Data in Rats (EEG)

The aim of EEG studies is to characterize the effects of psychotropic drugs on cortical

brain activity, on the basis of spectral electro-encephalograms. An EEG study in rats,

conducted at Janssen Pharmaceutica (Belgium), is used. Although the brain waves

of rats and humans are observed in comparable frequency bands, not all function-

alities are the same. There are, however, more similarities than differences, making

experiments measuring the electrical brain activity in rats very interesting to study
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the effect of psychoactive agents on the activity of human brains.

Depending on the frequency measurements range, the brain activity is referred to

as delta activity (below 4 Hz per second), theta activity (4–7.5 Hz per second), alpha

activity (8-12.5 Hz per second), beta activity (13–30 Hz per second), and gamma

activity (above 30 Hz per second). With the exception of the delta activity, each

frequency range is further refined in low and high activity (e.g., α1, α2, . . .). Delta

activity is normally seen in babies or in adults in slow-wave sleep. Theta activity is

seen in children or during drowsiness or arousal in adults. Alpha waves are seen when a

person is alert in a relaxed way, closing the eyes. Beta activity (low amplitude) is often

associated with active, busy, or anxious thinking and active concentration. Rhythmic

beta waves are linked with pathological or drug-related causes. Gamma waves are

related with strong mental activity like solving problems, fear, and awareness.

The EEG study includes 10 psychoactive agents at 4 different doses, including a

placebo dose. To each compound, 32 rats were randomly assigned, 8 per dose group.

The compounds included in the study are: (1) Psychostimulants: Amphetamine,

Nicotine; (2) Antidepressant: Buprorion; (3) Cholinesterase inhibitors: Donepezil,

Galantamine, Tacrine; (4) Anti-epileptics: Lamotrigine, Valproate; and (5) NMDA

receptor antagonists: Memantine, PCP. Cholinesterase inhibitors are used to treat

moderate to severe dementia of the Alzheimer’s type. The anti-epileptics listed are

used in the treatment of mania. The NMDA receptor antagonists are used for dif-

ferent purposes. Memantine is used to treat moderate and severe dementia of the

Alzheimer’s type and in that view could be listed with the cholinesterase inhibitors.

PCP in low to moderate doses acts as a stimulant, whilst at higher doses it has a

sedative effect.

Forty-five minutes after administration of the psychoactive agent, the brain signals

of the rats in active wake state are monitored every 15 minutes during 1.5 hours, at

six different positions in the brain (left and right frontal, left and right parietal, left

and right occipital). For each rat, 9 activity profiles are obtained, at the 6 different

positions in the brains.

Chapter 5 introduces a clustering algorithm for multivariate longitudinal data,

as generated in the EEG study. To illustrate the clustering algorithm, we focus on

the frequencies obtained at the left prefrontal cortex. So we are facing 9-variate

longitudinal profiles. To be able to compare the results with analyses done in the

past, we only include the placebo and the highest dose level. This reduces the data

set to 160 rats of which 139 have follow-up data (73 in the placebo and 66 rats in the

highest dose level).

To visualize the data, the individual longitudinal profiles for the 9 frequency mea-
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Figure 3.2: Individual profiles for the delta frequencies (time = 0 is 45 min after baseline)

– EEG study.

surements are given in Figures 3.2 — 3.4. The response of interest is the percentage

change with respect to the measurement at baseline Yib (administration of the drug):

Y
′

ij = 100(Yij−Yib)/Yib. At baseline all percentage changes are by definition equal to

zero. The graphical display therefore excludes the baseline data. In graphical displays

and in the statistical models, time zero refers to the first measurement obtained after

administering the drug (i.e., after 45 minutes). Heterogeneity is seen in all waves,

some rats have a decrease in the frequency while for others an increase is obtained as

an effect of the drug. For some waves extreme profiles are seen, such as for the α1

wave. This heterogeneity is of course induced by administrating 10 different drugs at

different dose levels. When applying the proposed clustering algorithm, this informa-

tion will not be taken into account. The goal of the analyses is to see if, within the

set of 139 rats, it is possible to identify subpopulations that are homogeneous in the

growth parameters for the 9 waves. The information about the compounds and doses

will later be used to assess whether the identified groups are meaningful.
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3.3 Abdominal Aortic Aneurysm Data (AAA)

Abdominal aortic aneurysm (also known as AAA) is a localized dilatation of the ab-

dominal aorta, caused by degeneration of the aortic wall. Abdominal aortic aneurysms

occur most commonly in individuals between 65 and 75 years old and are more com-

mon among men and smokers.

As abdominal aortic aneurysms expand, they may become painful and lead to

pulsating sensations in the abdomen or pain in the chest, lower back, or scrotum.

The risk of rupture is high in a symptomatic aneurysm. Rupture of the artery can

be life-threatening as large amounts of blood spill into the abdominal cavity. The

mortality of AAA rupture is up to 90%. 65 to 75% of the patients die before they

arrive at the hospital and up to 90% die before they reach the operating room.

Therefore, symptomatic and large aneurysms are considered for repair by surgical

methods. An intervention is often recommended if the aneurysm grows more than

1 cm per year or when it is bigger than 5.5 cm.

In 2006, the academic hospital of Maastricht (the Netherlands) started a follow-up

study in patients with an abdominal aorta aneurysm. Between January 2006 en

January 2009, all patients with AAA admitted to the department of Vascular Surgery

of the academic hospital were invited to participate in the study. Two hundred and

eighty-seven AAA patients provided written informed consent. Patients that had a

large aneurysm (≥55 mm) or (symptoms of imminent) AAA rupture and patients with

either an inflammatory or a mycotic aneurysm were excluded from the follow-up study.

Patients with an aneurysm diameter between 30 and 55 mm (n=110) were invited to

participate in an imaging surveillance program. A total of 100 patients formally

entered the follow-up program. These patients were seen every 6 months. During

these follow-up visits the diameter of the artery, a number of patient characteristics

and blood measurements were collected. Figure 3.5 shows the diameter curves for the

patients in the study. The objective of the study was two-fold. Is it possible to predict

the expected diameter of the artery at the next follow-up visit? And secondly, is it

possible to detect subgroups (clusters) of patients whose arteries grow in a similar way?

To study the evolution of the diameter over time and to find clusters of patients with

similar growth, the study researchers applied conventional growth models and growth-

mixture models (Hellenthal et al., 2014). The growth-mixture model is presented in

Section 7.4.2. The analysis revealed two subgroups of patients. But, for a number

of patients, the diameter of the artery is not available at all follow-up visits. Only

7 patients had complete data for all 7 visits, 10 dropped out after the first visit (at
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Figure 3.5: Evolution of the patients’ diameter – AAA study.

6 months of follow-up), 15 after the second visit, 21 after the third visit, 7 after the

fourth visit, 27 after visit five and finally 12 patients dropped out after visit 6 (see

Table 7.1). The diameter of the artery at visit j can be missing because the patient

was not yet j × 6 months in the study, or because the patient did not show up at

the visit, or because the patient underwent repair of the artery by surgery, etc. The

reason for missing a follow-up visit can depend on the diameter of the artery. The

dropout rate is very comparable among the patients that had surgery of the artery

and those who did not (92% versus 93%).

In Chapter 7, we study the vulnerability of the cluster analysis results, i.e., the

estimated trajectories, and the posterior membership probabilities, by applying differ-

ent missing-data growth-mixture models for non-ignorable dropout to the evolution

of the diameter of the artery. The MNAR-models will be extended by including the

information whether or not the patient needed repair of the artery by means of a

surgical method.
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3.4 Telemonitoring in the Management of Heart

Failure Study (HF)

Chronic heart failure (CHF) is characterized by recurrent hospitalizations due to

fluid overload and/or worsening of renal function. To reduce morbidity, mortality

and healthcare cost, regular adjustment of the treatment of CHF patients is needed.

In the TElemonitoring in the MAnagement of Heart Failure study (TEMA-HF1), 160

CHF patients, hospitalized in 7 Belgian hospitals, were included between April 2008

and June 2010. Patients were randomly assigned to receive usual care (UC) after

discharge, or to be intensively followed for up to 6 months by telemonitoring (TM).

The primary objective of the TEMA-HF1 study, was to investigate whether intensive

follow-up of patients through telemonitoring-facilitated collaboration between general

practitioners (GPs) and a heart failure clinic could reduce mortality and rehospital-

ization rate. Details regarding the design and results of TEMA-HF1 are reported

elsewhere (Dendale et al., 2012).

We will focus on the 80 patients in the TM group. For these patients, a tele-

monitoring device daily transferred data on body weight, blood pressure (systolic and

diastolic), and heart rate to a web-site, for a period of 6 months. This web-site trig-

gered e-mail alerts to care providers if data were out of limits, or if data had not been

received on two consecutive days. At baseline, additional patient characteristics were

collected: sex, age, heart rhythm, cardiac muscle fibre stretch as measured through

NTprobBNP, a fitness indicator (according NYHA class indication) and the left ven-

tricle ejection fraction (LVEF), which is a measure of heart performance. Profiles of

the biomarkers during the first month of the study, for 10 patients in the TM group

are displayed in Figure 3.6.

Four TM patients left the study prematurely for motivational reasons, 4 died

during the course of the 6 month study, and 16 were hospitalized at least once for

heart failure related reasons.

Although alerts were sent out when the longitudinal measurement were missing

for two consecutive days, quite some missingness is present in the data. Twenty-

eight percent of the patients did receive an alert concerning missing information for

the heart rate, 64% concerning the blood pressure measurements and 84% concerning

body weight (Dendale et al., 2012). Information about the extent of missingness in the

heart failure data is presented in Tables 3.1 and 3.2. Baseline characteristics are fairly

complete. About one out of four patients does not have information for the six minute

walking test (WALK). On average, 76% of the patients’ daily measurements for the
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biomakers were recorded. Meaning that on average for 137 days out of 180, heart

rate, diastolic and systolic blood pressure were communicated to the heart failure

clinic by means of the telemonitoring device. The heart failure data has particular

features. Heart rate and blood pressure are recorded by the same device and thus

simultaneously missing or present. The periods lacking telemonitoring data, are, in

general, not too long (average duration is 6 days, median duration is 1 day). However,

some patients are featured by longer periods of lacking data. About 5% of the periods,

with missing info on consecutive days, lasts longer than 2 weeks. The mean follow-up

time is 163 days.

Clustering of the patients in this dataset is challenging for two reasons. First of all,

because of the high dimensionality of the data in terms of the number of measurements

available per patient. Secondly, because of the presence of missing data. Chapter 6

discusses clustering of high-dimensional data and sketches how multiple imputation

can be used in combination with a cluster analysis.

Table 3.1: Number of patients with missing information at baseline – HF study.

Characteristic # of patients Characteristic # of patients

Age 0 LVEF 2

Gender 0 NTPROBNP 4

Diastolic Blood Pressure 0 REG-AF 0

Systolic Blood Pressure 0 NYHA 0

Heart Rate 0 WALK 26

Weight 0

Table 3.2: Percentage of days with missing information – HF study.

Biomarker mean median

Diastolic Blood Pressure 24 14

Systolic Blood Pressure 24 14

Heart Rate 24 14

Weight 20 7
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Chapter 4
Model-based Clustering for

Univariate Longitudinal Data

Repeated measures and multivariate outcomes are very common in social, behavioral,

and educational sciences, as well as in clinical trials. A lot of methodological work

has been done to extend cluster analysis to repeated measures. When analyzing re-

peated measurements data, individual differences in evolution are generally captured

by random effects, often via linear mixed models for continuous longitudinal data

(Laird and Ware, 1982; Verbeke and Molenberghs, 2000), while for other data types

generalized linear mixed models can be used (Breslow and Clayton, 1993; Wolfinger

and O’Connell, 1993; Molenberghs and Verbeke, 2005). Individual differences can also

be described by latent trajectory classes (Land and Nagin, 1996; Nagin and Land,

1993, Nagin, 1999; Nagin and Tremblay, 2001) or by extended growth-mixture mod-

els (Muthén and Shedden, 1999; Muthén and Muthén, 1998—2012). These statistical

techniques are briefly reviewed in this chapter. The random-effects methodology is

discussed in Section 4.1. Models allowing the data to consist of unlabeled subpopula-

tions are reviewed in Section 4.2 and Section 4.3. The methodology is illustrated on

the PDB data in Section 4.4.

4.1 Mixed Models for Longitudinal Data

Measurements gathered on the same subject tend to be correlated and this correlation

must be taken into account during the statistical analysis to obtain valid inference.

29
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Such correlation is present in longitudinal studies where information for an outcome

of interest is obtained repeatedly in time. Observations on a subject tend to be more

alike than observations from different subjects.

Methods for continuous longitudinal data are well developed and implemented in

standard statistical software packages, due to the elegant properties of the multivariate

normal distribution. The most popular model for normally distributed longitudinal

data is the linear mixed model (Laird and Ware, 1982; Verbeke and Molenberghs,

2000). The influence of explanatory variables on the mean structure of the data is

modelled via fixed-effects parameters. To capture the variance-covariance structure

of the data, three types of parameters are used: (1) random (subject-specific)-effect

parameters arising from characteristics of individual subjects, (2) serial correlation

allowing measurements taken close in time to be more strongly correlated than mea-

surements taken further apart in time, and (3) measurement error.

The general form of the linear mixed model is:

Yi = Xiβ + Zibi + εi, (4.1)

where Yi denotes the ni-dimensional response vector for subject i = 1, . . . , N. N is the

number of subjects, Xi and Zi are (ni× p) and (ni× q) matrices of known covariates,

β is the p-dimensional vector of population-average regression coefficients called fixed

effects, bi is the q-dimensional vector of random effects for subject i describing how the

evolution of the ith subject deviates from the population-average evolution, and εi is a

ni-dimensional vector of measurement error components. It is assumed that bi and εi

are independent with distributions N(0, D) and N(0,Σi), respectively. Σi depends on

i only through the number of measurements available for subject i. Often, Σi is chosen

to be equal to σ2Ini , where Ini is the identity matrix of dimension ni. More general

forms for the residual covariance structure Σi were proposed by Diggle et al. (2002).

They assume that εi has constant variance and can be decomposed in a component

ε1i, inducing of serial correlation and an independent component ε2i of measurement

errors. The first component results in correlation between serial measurements, and

this serial correlation is generally specified as a decreasing function of the time lag

between the measurements. Of course, the constant variance assumption can be

relaxed for each of the processes.

Conditional on the random effects bi, the distribution of Yi is

Yi|bi ∼ N(Xiβ + Zibi,Σi). (4.2)

Inference is based on maximizing the likelihood function of the marginal response

Yi. The marginal distribution is obtained by integrating over the random effects
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f(yi) =
∫
f(yi|bi)f(bi)dbi, with f(yi|bi) the density function of Yi conditional on bi,

and f(bi) the density function of bi. As a result the marginal distribution of Yi is

given by the density of the ni-dimensional normal distribution N(Xiβ, ZiDZ
′

i + Σi).

When Σi = σ2Ini the model specified by (4.2) is called the conditional indepen-

dence model, since it implies that conditional on bi the measurements of individual i

are independent. The parameters found in Vi = ZiDZ
′

i + Σi are often grouped in a

vector α of variance-covariance parameters, and let θ
′

= (β
′
,α
′
) be the vector of all

parameters in the marginal model for Yi. The following marginal likelihood function

then needs to be maximized with respect to θ:

L(θ) =

N∏
i=1

(2π)−
ni
2 |Vi(α)|− 1

2 × exp[−1

2
(Yi −Xiβ)

′
V −1
i (α)(Yi −Xiβ)].

The population-average evolution of the response can be described in terms of

the β parameters, but when interest is in discovering groups of individuals evolving

differently over time the estimates for the random effects bi are very useful. The

random effects reflect between-subject variability. The marginal distribution of bi is

often assumed to be the multivariate normal distribution N(0, D). Using Bayesian

terminology, this distribution is called the prior distribution since it does not depend

on the data Yi. The posterior distribution of bi, given the data Yi is given by

fi(bi|yi) =
fi(yi|bi)f(bi)∫
fi(yi|bi)f(bi)dbi

.

A point estimator for bi is given by the posterior mode of this posterior density func-

tion, called the empirical Bayes (EB) estimates.

Mixed-effects models are an attractive tool for analyzing longitudinal data, because

of their flexibility to handle data with missing observations, gathered from unbal-

anced designs, and their ability to explicitly acknowledge that variability in repeated

measures is often not constant.

The model assumes that the random effects are sampled from a normal distribu-

tion. To address non-normality, as for example seen in data with outliers, mixed-

effects models with a multivariate t-distribution (Pinheiro et al., 2001), or a skewed

normal distribution (Arellano-Valle et al., 2005) for the random effects have been used

to obtain robust estimates.

However, these models still assume that subjects come from a single population,

which is often an unrealistic assumption.
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4.2 Mixture Models for Longitudinal Data

The assumption of a single-component multivariate normal distribution for the ran-

dom effects in (4.1) implies that the subjects belong to a homogeneous population

that is described by a single mean trajectory and variance-covariance matrix. This

assumption may however be unrealistic when subpopulations of subjects exist, each

with its own trajectory. Different evolutions can for example be seen for treatment

responders and non-responders. In psychiatric studies, different diagnostic classes

could be characterized by different mean trajectories. Ignoring this heterogeneity can

produce biased estimates of the random-effect parameters and their associated vari-

ance terms (Verbeke and Lesaffre, 1996).

This type of non-normality of the random effects can be dealt with by assuming

a finite-mixture distribution. This section introduces the concepts of finite-mixture

models and their application to repeated-measurements data. Finite-mixture models

(McLachlan and Peel, 2000) are latent-variable models that express the distribution of

a variable as a mixture of a finite number of component distributions. These models

have been used in a wide range of applications in marketing, social and psychosocial

sciences, where the data could be seen as arising from two or more populations. A

mixture model allows investigation of the performance of estimators in non-normal

situations and to develop robust estimators, but it also provides a framework for

clustering. Finite-mixture modeling addresses the population heterogeneity in the

observed data by means of categorical latent classes, that represent homogeneous

subpopulations. Class-membership is latent (not observed) and thus needs to be

inferred from the data. In its most general form the finite-mixture model for N p-

dimensional observations Y1, . . . ,YN is written as: f(y,π) =
∑K
k=1 πkfk(y). Here πk

is the kth mixing proportion or the probability that an observation belongs to the kth

subpopulation (class, component) and fk(y) its corresponding density. K represents

the total number of subpopulations and π = (π1, . . . , πK), with 0 ≤ πk ≤ 1, for all

k = 1, . . . ,K and
∑K
k=1 πk = 1. The mixture components are often members of the

same parametric family, but members of different families are also possible.

Mixture models have been applied to longitudinal data in different settings. Latent-

class growth analysis uses a categorical latent variable to represent unobserved het-

erogeneity in growth trajectories. The assumption is made that conditional on class

and covariates the repeated measurements are independent (Land and Nagin, 1996;

Nagin and Land, 1993, Nagin, 1999; Nagin and Tremblay, 2001).
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Verbeke and Lesaffre (1996) allow for heterogeneity by extending the normality

assumption of the random effects bi in (4.1) to incorporate mixtures of normal com-

ponents. This model is referred to as the heterogeneity model.

Muthén and Shedden (1999) proposed an extended mixture modeling framework.

Their approach allows the joint estimation of (1) a conventional finite-mixture growth

model where different curve shapes are captured by class varying random-coefficient

means and (2) a logistic regression of a set of binary disease indicators on the classes.

The model is thus a combination of latent class modeling (for the disease indicators)

and conventional mixture modeling for the repeated measurements.

We first introduce the heterogeneity model proposed by Verbeke and Lesaffre (1996)

and then describe the extended finite-mixture model of Muthén and Shedden (1999).

Verbeke and Lesaffre (1996) and Spiessens et al. (2002) allow for model hetero-

geneity in repeated-measurements data by extending the normality assumption of the

random effects bi to mixtures of normal components,

bi ∼
K∑
k=1

πkN(µk, R),

where, as before, πk is the proportion of subjects belonging to subpopulation k, de-

scribed by the multivariate normal distribution N(µk, R). For identifiability we re-

quire that, µi 6= µj , π1 ≥ π2 ≥ . . . ≥ πK , and E(bi) =
∑K
k=1 πkµk = 0. Under this

assumption, the density function of Yi is a mixture of densities fk(yi) with mixture

probabilities π1, . . . , πK :

f(yi) =
K∑
k=1

πkfk(yi) =
K∑
k=1

πk

∫
f(yi|bi)φµk,R(bi)dbi, (4.3)

with φµk,R(.) the density of a multivariate normal distribution with mean µk and

covariance matrix R.

Estimates for all parameters in the model are obtained by maximizing the log-

likelihood for (4.3) by means of the Expectation-Maximisation algorithm (see Sec-

tion 4.3).

When the goal of the statistical analysis is not only to obtain parameter estimates

but also assignment of the subjects to the subpopulation they belong to, we term

this model-based clustering. A subject’s posterior probabilities, πkfk(yi)/f(yi), are

used to classify its longitudinal profile into one of the K components. Spiessens, Ver-

beke, and Komàrek (2002) have developed a SAS macro, based on the SAS procedure

NLMIXED, that implements the EM algorithm for fitting nonlinear and generalised
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linear models with finite normal mixtures as the random-effect distribution. The

macro also classifies the longitudinal profiles into the different components.

Muthén and Shedden (1999) proposed a extended latent-variable modeling frame-

work. Their extended growth-mixture model incorporates the ideas of random-effects

mixture models and latent-class models.

Their model is formulated as a structural equation model. Note that the linear

mixed model presented in (4.1), with Xi = Zi, can be expressed as a multilevel model,

Yi = Λiηi + εi, (4.4)

ηi = α+ ξi, (4.5)

where Λi = Xi = Zi, α = β, ξi = bi. This model is known as a latent growth curve

model. Muthén, Asparouhov et al. (2009) and Curran (2003) have demonstrated the

isomorphism between these two models analytically and empirically.

To outline the generalized framework of Muthén and Shedden for finite mixtures

of latent growth curve models we use the following notation. As before, consider an

ni-dimensional vector Yi of continuous variables and an r-dimensional vector ui of

binary outcomes, which are related to each other in the model via latent variables.

Xi is the vector of covariates, ηi is a vector of continuous latent variables (growth

factors) and c is a vector of latent categorical variables. Also, let ci = (ci1, . . . , ciK)

have a multinomial distribution, where cik = 1 when subject i belongs to the kth

latent class (subpopulation) and is zero otherwise. The random-effect mixture part

of the model can be written as:

Yi = Ληi + εi, (4.6)

ηi = Aci + ΓXi + ξi, (4.7)

where Λ is a ni × p matrix of constants depending on the data. εi is an error term,

distributed as N(0,Σi), with Σi e.g., diagonal. A and Γ are parameter matrices,

relating the classes and covariates to the outcome. ξi is a residual vector distributed

as N(0,Ψ).

A logistic regression model is used to link the vector πi = (πi1, . . . , πiK−1)
′
, with

πik = p(cik = 1), to covariates:

logit(πi) = γkXi, (4.8)

where γk (k = 1, . . . ,K − 1) are parameters associated with the covariates.
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For the binary variables ui it is assumed that they are independent given class-

membership of subject i. So,

p(ui1, . . . , uir|ci) = p(ui1|ci)× . . .× p(uir|ci). (4.9)

Equations (4.6) — (4.9) represent the extended latent mixture model in a hierar-

chical structure. So, in this framework an individual’s response is related to continuous

latent variables, i.e., growth factors. The growth factors are modelled as a function of

covariates and the latent categorical class. Class-membership is predicted in function

of a set of observed covariates. Simultaneously a latent-class model for a clinical event

measured via a set of binary indicators is estimated.

4.3 Estimation of the Extended Growth Mixture

Model

The likelihood function for the growth mixture model is typically very complex and

characterized by local maxima. Closed form solutions are not available and numerical

optimization are often not successful.

However, maximum likelihood (ML) estimates can be obtained by means of the

expectation-maximization (EM) algorithm (Dempster, Laird and Rubin, 1977). A

detailed description of the EM algorithm for a extended growth-mixture model can be

found in Muthén and Shedden (1999). We briefly sketch the algorithm. To implement

the EM-algorithm one considers the complete-data likelihood. The complete data

consists of the observed data y, u, x and the latent categorical variable c. The

complete-data log-likelihood for the extended growth-mixture model is then given by:

N∑
i=1

K∑
k=1

cik [log(f(ui|ci,xi)) + log(f(yi|ci,xi)) + log(f(ci|xi))] . (4.10)

For ease of notation, we use f(.) to refer to either a probability or a density. This

log-likelihood function is easier to maximize since the sum over the latent classes

and logarithmic function are swapped pertaining to the ordinary log-likelihood func-

tion l =
∑N
i=1 log[

∑K
k=1 πkfk(yi)]. The EM algorithm involves two steps. In the

E-step the expected value of the complete-data log-likelihood (4.10) under the poste-

rior distribution of the latent variable ci is obtained. The conditional probability of

individual i to belong to class k, given the observed data, is obtained as

πik = p(cik = 1|yi,ui,xi) = p(cik = 1)
f(yi|ci,xi)f(ui|ci,xi)

f(yi,ui|xi)
. (4.11)
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To start the algorithm, random starting values are chosen for all parameters in the

model defined by equations (4.6) – (4.9) and for the prior mixing probabilities p(cik =

1). Let Ω0 group all starting values. Using (4.11) this results in values πik(Ω0) and

allows to obtain the expected value of the complete-data log-likelihood (4.10).

In the M step, this expected log-likelihood is maximized for all parameters in Ω,

resulting in updated values Ω1. The maximization is done separately for the (y,x)

part of the model and the (u,x) part of the model. The (y,x) part corresponds to

simultaneous estimation of the K groups with posterior-probability weighted sample

mean vectors and covariance matrix:

E

[
N∑
i=1

logf(yi|ci,xi)|yi,ui,xi
]

=

N∑
i=1

K∑
k=1

πik(Ω0)logfk(yi|xi,Ω). (4.12)

To maximize the (u,x) part of the model, a multinomial regression relating c to

covariates x, is optimized:

N∑
i=1

K∑
k=1

πik(Ω0)log[p(cik = 1|xi,Ω)].

The parameters describing the relation between u and c and x are estimated via a

logistic regression model:

N∑
i=1

K∑
k=1

r∑
j=1

πik(Ω0)log [p(uij)|ci,xi,Ω)].

The ML estimates for Ω, i.e., Ω1, are fed to the E-step, and iteration between the

E-step and M-step goes on until convergence in the log-likelihood value or in the

parameter estimates is obtained.

This EM algorithm for the extended growth-mixture model is implemented in

Mplus (Muthén and Muthén, 1998—2012).

4.4 Growth Mixture Modeling for the PDB Data

The Persistent Disturbing Behavior (PDB) data was introduced in Section 3.1. It

was argued that it is extremely important to be able to break up the group of PDB

patients into natural, smaller groups. The information and description of these refined

subgroups comprise relevant information for policy makers, institution managers and

fieldworkers. To this end, conventional cluster analysis methods, starting from cross-

sectional data, was executed (Serroyen et al., 2010). To study intra-individual change
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and inter-individual differences in the evolution of the PDB scores these authors also

applied a conventional growth model to the data. Classification of the PDB patients

into latent subgroups is not possible with this model, since it treats the data as if

collected from a single population. This assumption is relaxed in the subsequent

analyses, where growth-mixture models are applied to reveal latent PDB trajectory

classes.

Longitudinal PDB-scores were obtained using data from the pilot study of 1998

and the repeated measurements available at patient level in the minimal psychiatric

registry data (Section 3.1.4). The minimal psychiatric registry was put in place only

at the second semester of 1996 in psychiatric hospitals and at the first semester of

1998 in psychiatric nursing homes. Given that 1996 was the year that the regis-

tration system started, it is prudent not to put too much trust in the data for this

semester. This semester will be ignored in subsequent analysis. Furthermore, for the

first semester of 1997, no data are available, owing to the start of the registration

system. End 2000, the legal registration framework changed. Therefore attention was

restricted to the period 1997.2–2000.1 for the psychiatric hospitals and 1998.1–2000.1

for the psychiatric nursing homes. Data of the 169 patients (126 in psychiatric hospi-

tal, 43 in psychiatric nursing home) that according to the interdisciplinary team are

PDB patients, are used in this chapter. Individual profiles of the PDB scores for 20

randomly selected PDB patients are displayed in Figure 3.1.

4.4.1 Modeling Strategy

The following model fitting strategy was employed for the PDB data, in line with the

proposal of Muthén (2004). First, a conventional, one-class growth model was fitted

to obtain some initial insight into the growth factor variation. The repeated PDB

scores, were assumed to change linearly over time. A patient’s evolution was allowed

to deviate from the population average by incorporating a patient-specific intercept

and slope. If Yij denotes the PDB score for patient i at occasion j, tij a time-related

variable then a multilevel formulation of a growth model would specify that,

Yij = η0i + η1itij + εij , (4.13)

η0i = α0 + ξ0i, (4.14)

η1i = α1 + ξ1i. (4.15)

The residuals ε, ξ0 and ξ1 are assumed to be zero-mean normally distributed, level

2 residuals ξ0 and ξ1 are possibly correlated but uncorrelated with level 1 residuals
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ε. The time-specific residuals ε have a covariance matrix Σ, the ξ-residuals have

covariance matrix Ψ.

The time-related variable t was defined such that 1998.2 corresponds to t = 0.

The time variable increases with 1 for each semester. Resulting in a time variable

ranging from -2—3 for the psychiatric hospitals and from -1—3 for the psychiatric

nursing homes.

Growth-mixture models were used to identify latent classes. A growth-mixture

model is obtained by freeing parameters in (4.14) and (4.15), and allowing different

classes (k =1, . . . , K) to vary around different mean growth curves, and by specifying

class-specific covariance matrices Ψk for the ξ-terms and Σk for ε. A series of uncon-

ditional growth mixture models, i.e., not including covariate information, with two to

four classes were considered. Various constraints for the growth factor variances and

residual variances of the PDB scores were investigated. The variances of the growth

factors were set equal to zero in Model I, which corresponds to the approach of Nagin

and Tremblay (2001). They were constrained to be equal across classes in Model II,

and they were allowed to range freely in Model III. The residual variances εij were

constrained to be constant across classes but allowed to change over time, Model A,

to be constant over time but with a different variance per class, Model B, and finally

the residual variances were left unconstrained in Model C.

Selection of a final model was based on the Bayesian Information Criterion value

(Schwarz, 1978) and the sample-size adjusted version of it (Sclove, 1987),

BIC = −2log(L) + plog(N),

and

aBIC = −2log(L) + plog(
N + 2

24
),

where p is the number of model parameters andN is the sample size. Additionally, and

by way of sensitivity analysis, we also consider Akaike’s Information Criterion (Akaike,

1974), AIC = −2log(L) + 2p, supplemented with the likelihood-ratio test proposed

by Lo, Mendell, and Rubin (2001), designed to compare a given model with a model

containing one class less. The associated p-value represents the evidence in favour of

the simpler model. A parametric bootstrapped likelihood-ratio test (McLachlan and

Peel, 2000) could also be considered, but this method is rather time consuming.

To evaluate the certainty in classification the entropy (Ramaswamy et al. 1993)

was used. The relative entropy is defined by the model-based probabilities, i.e.,:

E = 1− −
∑N
i=1

∑K
k=1 πiklog(πik)

N log(K)
, (4.16)
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with πik the posterior probability that subject i belongs to class k. The values of

the relative entropy range from 0 to 1, with higher values indicating high certainty in

classification. Clark (2010) suggests using a cut-off point of 0.80 for good classification

and 0.6 for a medium classification.

The data for the psychiatric hospitals and psychiatric nursing homes are analysed

separately. All models were fitted in Mplus (Muthén and Muthén, 1998-2012).

4.4.2 Psychiatric Hospitals

Model fitting procedures for the single-class model resulted in a log-likelihood value of

−1040.5 and a BIC of 2099.4. The estimated slope is −0.085 (p=0.012) and indicates

that PDB-score decreased over the 6 assessments. The estimated latent intercept

variance of 2.365 (p=0.0114) for the PDB-score, and the variance of the latent slope

score of 0.050 (p <0.0001), indicate that substantial variation exists among the PDB

patients, at time zero, but also in the rate of change over time. The significance of

the random effects were investigated by means of likelihood-ratio statistics with the

asymptotic null distributions given a mixture of two chi-squared distributions. In

graphical displays, the calendar time (semester of the year) will be used, instead of

the time variable used in the statistical models.

Table 4.1 displays model fit results of unconditional growth-mixture models with

two to four classes. Models I, II and III, defining the growth factor variances and

models A, B, and C specifying the residual variances, are defined in Section 4.4.1. We

show the value of the log-likelihood, the sample size adjusted BIC, the AIc, the number

of parameters in the model, and the entropy. Based on the information criteria, the

three-class linear Model IIIB was selected as the optimal model. This choice is a

compromise between goodness-of-fit on the one hand and the desire to select a model

that is not overly complex on the other, bearing in mind that more elaborate models

might be less than optimal for prediction and classification purposes. This three-class

mixture model resulted in a log-likelihood value of -975.8, a BIC of 1985.0 and an

entropy estimate of 0.71. Parameter estimates and standard errors for all fixed effects

and all variance components are reported in Table 4.2. Five percent (n=6) of the

patients were allocated to the first class, 33% (n=41) to the second class and 63%

(n=79) to the third class. Based on the intercept and slope factor, these classes were

labeled: (1) ‘Low group’, (2) ‘High but improving’, and (3) ‘Middle group’.

Figure 4.1 displays the predicted trajectories for the three classes. The linear

trends appear to describe the data well.

Table 4.3 shows the posterior class-membership probabilities for the three-class
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Table 4.1: Models for the psychiatric hospitals: log likelihood `, sample size adjusted BIC

and AIC, the entropy, the Lo-Mendell-Rubin likelihood-ratio test (p value), and the number

of parameters in the model are reported. Growth factor variances are: Model I, equal to

zero; II, equal across classes; III, unconstrained. Residual variances are: A, constant across

classes; B, constant over time; C, unconstrained – PDB study.

Classes ` BIC AIC entropy LMR-LRT (p) #par

Model I

2 A -1162.75 2343.92 2347.51 0.810 173.54 (0.1594) 11

B -1161.81 2335.34 2337.62 0.794 190.04 (0.4205) 7

C -1150.11 2328.67 2334.22 0.801 206.06 (0.3584) 17

3 A -1103.13 2229.70 2234.26 0.879 111.56 (0.4513) 14

B -1082.05 2182.50 2186.09 0.868 151.68 (0.1280) 11

C -1073.26 2190.05 2198.53 0.870 150.24 (0.2031) 26

4 A -1063.46 2155.38 2160.92 0.893 74.23 (0.0647) 17

B -1051.25 2127.62 2132.51 0.901 58.56 (0.0020) 15

C -1038.43 2135.44 2146.85 0.882 68.11 (0.1745) 35

Model II

2 A -1032.62 2088.38 2092.94 0.933 15.03 (0.2139) 14

B -992.31 2001.35 2004.61 0.687 102.13 (0.0000) 10

C -983.00 1999.48 2006.00 0.719 112.42 (0.0001) 20

3 A -1026.95 2082.36 2087.91 0.950 10.33 (0.3051) 17

B -986.95 1997.34 2001.91 0.758 10.18 (0.0050) 14

C -970.01 1988.57 1998.02 0.702 25.40 (0.3117) 29

4 A -1023.33 2080.13 2086.65 0.951 6.96 (0.0800) 20

B -982.37 1994.88 2000.76 0.736 8.71 (0.3831) 18

C -954.10 1971.81 1984.20 0.788 31.11 (0.2241) 38

Model III

2 A -1025.28 2079.02 2084.57 0.478 29.43 (0.0198) 17

B -988.37 1998.50 2002.74 0.664 111.97 (0.0000) 13

C -981.07 2000.64 2008.14 0.688 116.86 (0.0809) 23

3 A -1018.21 2074.91 2082.41 0.395 13.68 (0.3559) 23

B -975.78 1985.03 1991.55 0.708 24.46 (0.0903) 20

C -964.87 1988.33 1999.74 0.694 31.85 (0.3329) 35

4 A -1014.57 2077.69 2087.15 0.528 7.81 (0.7622) 29

B -971.96 1989.11 1985.91 0.806 19.08 (0.0846) 27

C -946.01 1970.70 1986.02 0.720 28.73 (0.1646) 47
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Table 4.2: Summary of the three-class model, selected for the psychiatric hospitals. Pa-

rameter estimates, standard errors and t value for the class-specific intercepts and slopes are

shown – PDB study.

Effect Estimate Standard Error t-value

Fixed effects

Intercepts

Class 1 −0.913 0.758 −1.025

Class 2 1.558 0.296 5.256

Class 3 0.372 0.160 2.325

Slopes

Class 1 0.064 0.009 6.929

Class 2 −0.271 0.092 −2.944

Class 3 0.021 0.030 0.705

Random effects

Variance of intercepts

Class 1 3.507 1.857

Class 2 2.552 0.698

Class 3 1.155 0.279

Variance of slopes

Class 1 −0.006 0.002

Class 2 0.132 0.064

Class 3 0.014 0.010

Covariance of intercept, slope

Class 1 0.038 0.018

Class 2 −0.120 0.164

Class 3 0.007 0.040

Residual Variance

Class 1 0.110 0.045

Class 2 1.849 0.234

Class 3 0.376 0.052
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Figure 4.1: Observed (full lines) and predicted (dashed lines) trajectories for the 3-class

model (psychiatric hospitals) – PDB study.

model. High diagonal and low off-diagonal values indicate good classification. The

agreement between the latent-class membership and status in terms of average class

probability is highest for class 2, the patients with high PDB-scores. Patients of this

class had 91% chance to be assigned to class 2. Classes 1 and 3 are most difficult to

distinguish. Patients classified in class 3, i.e., the stable patients, have 15% chance to

belong to class 1.

More than 50% of the PDB patients belong to class 3, with an average PDB score

of 0.37. About one in three patients has high PDB scores, averaging around 1.56 at

time 0 (1998.2). It is sensible to conclude that the behaviour of this group is more

disturbing than the behaviour of the other groups. That there is no evolution in the

PDB scores over time for class 3 does not mean that the behaviour itself is constant.

The only conclusion that can be drawn, is that the behaviour remains disturbing in

the same degree. The type of disturbing behaviour can however change over time.
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Table 4.3: Agreement between the classification probabilities based on the average class

probabilities and latent class membership, for the three-class model displayed in Table 4.2 –

PDB study.

Latent class

Average class prob. 1 2 3

1 0.840 0.011 0.149

2 0.000 0.914 0.086

3 0.052 0.105 0.842

The variances of the intercepts are relatively large, indicating that even within a

class there is still heterogeneity. The significance of the random effects was investi-

gated with a likelihood-ratio statistic, with as asymptotic null distributions a mixture

of chi-squared distributions. The variance of the intercept is significant for all three

classes, the variance of the slope is highly significant for classes 1 and 2, but not for

class 3.

When studying the sample variances, weighted by the estimated class probabilities

we find that the variances are not constant over time. For classes 1 and 2, the variance

is smallest around times 0 and 1. This is when the pilot study was performed. The

repeated PDB scores are constructed based on a discriminant function that was built

using the data of the pilot study in 1998 (see Section 3.1). It is therefore important

that the analysis can accommodate non-constant variances, as fortunately is the case.

4.4.3 Psychiatric Nursing Homes

Model fitting procedures for the single-class model resulted in a log-likelihood value

of -586.8 and a BIC of 1183.7. PDB patients residing in a psychiatric nursing home

have constant PDB scores over time. The estimated slope of 0.085 is not significant

(p = 0.1905). The large intercept variance of 4.0334 (p < 0.0001) for the PDB-

score shows that variation exists among PDB patients in psychiatric nursing homes in

terms of their (average) PDB-score. The estimate of the slope variance equals zero,

indicating that, under a hierarchical interpretation of the model, the random slope

can be removed.

Table 4.4 displays the results of fitting unconditional growth-mixture models with

two to four classes. Models I, II, and III, defining the growth factor variances and
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models A, B, and C specifying the residual variances, are as in Section 4.4.1. The

two-class Model IIIC is the preferred choice, using logic similar to the one employed

in the case of psychiatric hospitals. This two-class mixture model resulted in a log-

likelihood value of -541.7, a BIC of 1104.6, and an entropy estimate of 0.84. Figure 4.2

displays the observed and predicted trajectories of the classes. The estimate of the

mean PDB-score in 1998.2 equals -0.10 in class 1 and 1.00 in class 2. Two thirds

of patients belong to class 2. The variances of the intercepts show that within a

class patients still differ. The heterogeneity is largest in class 2. The average class 1

probability equals 0.91 for class 1, and the average class 2 probability equals 0.98 for

class 2. This indicates that the groups are well separated.

4.5 Conclusion

Persistent disturbing behaviour (PDB) is a highly disruptive condition. Proper treat-

ment and organization of care pose important challenges. So far, it had not been

properly defined, let alone circumscribed and characterized. Previous analyses, based

on a pilot study, indicated that the group of PDB patients is likely larger than gener-

ally believed, complicating fieldwork organization because, additionally, it is desirable

that PDB wards are small. The growth mixture analyses provide some basis for

grouping patients into organizational units based on the degree and evolution of their

condition. This does not mean that they might be able to socially function together,

but rather that they will be receiving similar types and intensities of care. This will

be advantageous for the care givers involved.

The analyses, based on growth mixture modeling, lead to two important conclu-

sions. First, meaningful, plausible groups may well exist, in spite of previous findings

that were less optimistic (Serroyen et al., 2010). While previous analyses indicated,

at best, the presence of two groups, we reached plausible evidence for three groups,

categorized as high, medium, and low, in terms of PDB-score profiles. Second, the

analyses clearly show that there is a lot of variability, even within a group of patients

whose behaviour is experienced as disturbing by the care team. The group with ex-

tremly disturbing behaviour is about one third, 35%, of the entire group. Setting up

specialized wards for this group could also lead to better living circumstances for the

remaining patients at the wards.

For the entire PDB group in psychiatric hospitals, a linear decrease in the average

PDB scores was reported previously. A repeated-measurements analyses indicated

that patient-specific characteristics are important and that some patients have intrin-
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Table 4.4: Models for the psychiatric nursing homes: log likelihood `, sample size adjusted

BIC and AIC, the entropy, the Lo-Mendell-Rubin likelihood-ratio test (p value), and the num-

ber of parameters in the model are reported. Growth factor variances are: Model I, equal to

zero; II, equal across classes; III, unconstrained. Residual variances are: A, constant across

classes; B, constant over time; C, unconstrained. Empty entries result from convergence

failure – PDB study.

Classes ` BIC AIC entropy LMR-LRT (p) #par

Model I

2 A -622.76 1255.64 1265.53 0.839 99.37 (0.5228) 10

B -619.02 1245.13 1252.05 0.796 110.89 (0.0779) 7

C -615.02 1245.22 1260.04 0.825 119.19 (0.0912) 15

3 A -599.77 1212.68 1225.53 0.876 42.59 (0.0959) 13

B -584.05 1179.22 1190.09 0.900 65.99 (0.0531) 11

C -571.72 1166.71 1189.45 0.945 84.07 (0.0460) 23

4 A -585.62 1186.91 1202.73 0.899 26.67 (0.1752) 16

B -542.17 1099.51 1114.33 0.926 79.01 (0.0639) 15

C -544.11 1119.58 1150.22 0.911 53.62 (0.0432) 31

Model II

2 A -576.45 1166.05 1178.90 0.976 19.11 (0.0141) 13

B -558.30 1126.71 1136.36 0.741 75.05 (0.0003) 10

C -551.18 1120.56 1138.36 0.717 69.10 (0.0023) 18

3 A -575.24 1166.65 1182.47 0.979 2.25 (0.1838) 16

B -553.16 1120.47 1134.31 0.835 9.70 (0.0858) 14

C -541.65 1109.61 1135.31 0.700 18.49 (0.3939) 26

4 A -573.61 1166.44 1185.22 0.895 3.01 (0.7151) 19

B -551.67 1121.54 1139.34 0.818 2.81 (0.3170) 18

C - - - - - -

Model III

2 A -574.88 1165.95 1181.76 0.494 22.86 (0.0485) 16

B -557.53 1128.22 1141.07 0.718 78.40 (0.0009) 13

C -541.66 1104.55 1125.31 0.835 88.30 (0.0900) 21

3 A -565.08 1152.42 1174.17 0.578 10.90 (0.2472) 22

B -545.58 1111.39 1131.16 0.846 23.11 (0.0403) 20

C -516.92 1066.22 1097.85 0.899 48.40 (0.0295) 32

4 A - - - - - -

B -536.71 1100.74 1127.43 0.905 20.17 (0.5365) 27

C -499.18 1041.85 1084.36 0.816 43
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Figure 4.2: Observed (full lines) and predicted (dashed lines) trajectories for the 2-class

model (psychiatric nursing homes) – PDB study.

sically high values, while others have low values (Serroyen et al., 2010). These findings

stemmed from a conventional growth model. Juxtaposing the results of the conven-

tional growth model and the results of the growth mixture model, we discern that

part of the heterogeneity in the PDB population is explainable by it being a mixture

of classes, which differ not only in their mean values but also in their evolution. Most

patients have moderately stable PDB-scores.

For the PDB patients in psychiatric nursing homes, the growth mixture analyses

reveal two classes. The distinction between the groups is essentially the average

level of the score. Thus, the condition does not worsen or improve. This is not

surprising, as we are dealing with a chronic, therapy-resistant group of patients. With

current knowledge of therapy and medication, the behaviour of these patients cannot

be improved. At the same time, the absence of worsening underscores the chronic

nature of the group, which reaches and gets trapped in its worst condition.
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Table 4.5: Summary of the two-class model, selected for the psychiatric nursing homes.

Parameter estimates, standard errors and t value for the class-specific intercepts and slopes

are shown – PDB study.

Effect Estimate Standard Error t-value

Fixed effects Intercepts

Class 1 −0.103 0.446 −0.231

Class 2 0.999 0.372 2.689

Slopes

Class 1 −0.019 0.011 −1.638

Class 2 0.153 0.086 1.774

Random effects

Variance of intercepts

Class 1 2.794 0.608

Class 2 4.375 1.053

Variance of slopes

Class 1 -0.029 0.020

Class 2 -0.068 0.107

Covariance of intercept, slope

Class 1 -0.005 0.012

Class 2 -0.089 0.188

Residual Variance

Class 1

time -1 0.438 0.198

time 0 −0.042 0.025

time 1 0.582 0.340

time 2 0.467 0.271

time 3 0.561 0.399

Class 2

time -1 2.961 1.093

time 0 1.167 0.428

time 1 2.687 0.853

time 2 5.751 2.022

time 3 4.368 1.947





Chapter 5
Model-based Clustering for

Multivariate Longitudinal Data

5.1 Introduction

Latent growth modeling approaches, such as growth-mixture models, were introduced

in Chapter 4. These methods identify, for a heterogeneous population, subgroups of

individuals that are similar in terms of their evolution of a longitudinal response. The

methodology was applied to the PDB data (Section 4.4) and did reveal a meaningful

subdivision of the patients.

When, for each individual, more than a single outcome is measured over time,

a multivariate set of longitudinal profiles is obtained. Interest could be in finding

subgroups of individuals that are similar in their evolution over time for the various

repeated sequences. Thus, the goal is to find clusters that are unique in the evolutions

over time of the different outcomes, as well as in the correlation structure over time

and between these outcomes.

However, when fitting growth-mixture models to a multivariate repeated measure-

ments setting, computational problems are likely to occur. In mixed-effects models,

the correlation between the multivariate longitudinal profiles is dealt with via specifi-

cation of a joint distribution of the random effects. When the dimension of this joint

distribution becomes too high computations will stall.

Section 5.2 describes some existing techniques to find clusters when information about

49
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multiple longitudinally measured responses is available. A clustering algorithm for

multivariate repeated data, using pseudo-likelihood and ideas based on K-means clus-

tering, is proposed in Section 5.3. The algorithm is demonstrated on the EEG data

in Section 5.4. Section 5.5 investigates the performance of the algorithm by means of

a simulation study. Finally, Section 5.6 contains a discussion.

5.2 Review of Relevant Existing Work

The dual trajectory model, to analyze the evolution of two related outcomes,

was presented by Nagin and Tremblay (2001) and by Nagin (2005). Let Y1 =

(Y11, Y12, . . . , Y1T1
) and Y2 = (Y21, Y22, . . . , Y2T2

) denote two longitudinal profiles

to be modeled together. The dual trajectory model assumes that the J trajecto-

ries groups of Y1 are probabilistically linked to the K groups for Y2. In addition,

the model makes the assumption of conditional independence given group member-

ship (as is the case in the single trajectory group-based approach). So, conditional

on j and k, Y1 and Y2 are independently distributed, fjk(y1,y2) = gj(y1)hk(y2),

where f(·), g(·) and h(·) are suitable probability distributions. If πjk is the joint

probability of membership to trajectory j for Y1 and trajectory k for Y2, then

f(y1, y2) =
∑
j

∑
k πjkgj(y1)hk(y2) =

∑
j

∑
k πk|jπjgj(y1)hk(y2). The dual tra-

jectory model results in estimates for the trajectories for both longitudinal responses,

probabilities of group membership for each trajectory and conditional probabilities

linking membership across the trajectory groups of the two profiles. The model can be

used for outcomes that evolve contemporaneously (e.g., depression and alcohol use)

or that evolve over different time periods. In their work, Nagin and Tremblay (2001)

present the Montreal prospective longitudinal study, where children from kindergarten

classes in low socio-economic Montreal neighborhoods were assessed on a wide range

of factors, including hyperactivity and physical aggression. These factors were eval-

uated at age 6 and annually from ages 10 to 15. Much research has documented the

overlap of physical aggression and hyperactivity in children. Nagin and Tremblay

show how jointly estimating the developmental trajectories can illuminate the nature

of this overlap.

Conceptually, the extension of the dual model to more than two outcomes is

straightforward. From a practical point, the addition of outcomes results in an un-

manageable proliferation of probability matrices linking the trajectories for the various

outcomes. Still, there are many circumstances where it is valuable to link trajectories

of three or more outcomes of interest. Applications of the multitrajectory modeling
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approach can be found in Nagin (2005) and Piquero et al. (2002).

An alternative approach for the joint analysis of more than one series of longitudinal

measurements is described by Putter et al. (2008). First, a latent class joint model for

the longitudinal outcomes is used in order to reduce the dimensionality of the prob-

lem. The parameters in this model are estimated in two-stages. In the first stage,

the latent classes, their probabilities and the mean and covariance structure are esti-

mated based on the longitudinal data of the first outcome. In the second stage, the

relation between the latent classes, patient characteristics, and the other outcome(s)

is modelled. This approach is particularly attractive when main interest is in the re-

lation between the longitudinal outcomes. Putter et al. demonstrated the usefulness

of the method for data from 195 lung cancer patients in two outpatient clinics of lung

diseases in The Hague. The relation between denial and longitudinal health measures

was of interest. The analysis revealed an interesting phenomenon: although no dif-

ference between classes could be detected for objective measures of health, patients

in classes representing higher levels of denial consistently scored significantly higher

in subjective measures of health.

Roy and Lin (2000) propose a latent-variable model for repeated measures for

different outcomes that are assumed to measure an underlying quantity of main in-

terest. They relate the observed outcomes to a latent variable by means of random

(intercept) effects regression models. The random intercepts are independent, i.e.,

conditional independence of the outcomes given the latent variable applies. The la-

tent variable is modeled as a function of covariates by a separate linear mixed model.

The method was illustrated using data from a panel study on changes in methadone

treatment practices.

Extensions of the group-based approach for multivariate longitudinal data to the

growth-mixture modeling setting are problematic, stemming from the high dimension

of the joint distribution of the random effects (see Section 5.3.1).

In the next section, we propose a clustering algorithm for multivariate longitudinal

data, based on a bivariate joint-modeling approach.

5.3 Proposed Clustering Algorithm

The clustering algorithm for multivariate longitudinal data that we are proposing re-

sembles a K-means iterative cluster procedure. The idea is to divide the observations

in K clusters such that the full likelihood for the m jointly measured repeated out-
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comes becomes maximized. Therefore, a joint-modeling approach using mixed models

is implemented. Fieuws and Verbeke (2008) use this pairwise modeling strategy in a

discriminant analysis. They predict renal graft failure by fitting bivariate mixed mod-

els to 4 repeatedly measured markers. The obtained estimates were used in Bayes

rule to obtain the prognosis for long-term success of the transplant, at each point in

time.

Before specifying the different steps of the clustering algorithm, some background on

fitting a joint model for multivariate longitudinal data is given.

5.3.1 Joint Model for Multivariate Longitudinal Data

When m longitudinally measured outcomes are available for N subjects, a joint-

modeling approach using mixed models can be followed.

Let Y i = (Y1i, . . . ,Ymi) denote the vector of all measurements obtained for subject

i, where Ymi contains the longitudinal observations of response m. The full log-

likelihood
N∑
i=1

li(y1i,y2i, . . . ,ymi|Θ∗) (5.1)

then has to be maximized with respect to Θ∗. In this expression, li is the log-likelihood

contribution of subject i to the full joint mixed model. This full joint model can be

specified as a series of random-effects models, one for each outcome process, and the

processes are linked by imposing a joint multivariate distribution on the random

effects. So, for each outcome, we specify Ymi|bmi ∼ N(Xmiβm + Zmibmi,Σmi)

with bmi the q-dimensional vector containing the random effects for response m for

subject i. If we assume the same number of random effects for each outcome, bi =

(b1i, b2i, . . . , bmi) is a q ×m-dimensional vector containing all random effects with a

general (q ×m)× (q ×m) covariance matrix.

Although this approach has many advantages (it allows for unbalanced designs

and response variables can be of different nature), its usability is limited by the

dimension (m) of the data. In case the number of repeated outcomes becomes large,

computational problems are likely in the estimation process due to the high dimension

of the joint distribution of the random effects.

Instead of maximizing the likelihood of the full joint model, a pairwise approach

can be used to obtain estimates for all parameters in Θ∗. Pseudo-likelihood estimation

(Besag, 1975) replaces the joint full likelihood by a suitable product of marginal

or conditional densities, where this product is easier to evaluate than the original
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likelihood. Fitting all possible pairwise models is equivalent to maximizing a pseudo-

likelihood function of the following form:

p`(Θ,Y ) =

N∑
i=1

∑
(r,s)

lrs,i(yr,i,ys,i|Θrs), (5.2)

with r = 1,. . . , m−1; s = r + 1,. . . , m, lrs,i the log-likelihood contribution of subject

i in the bivariate model for outcomes r and s, and N the total number of subjects.

Θrs represents the vector of all parameters in the bivariate joint mixed model corre-

sponding to the specific pair (r, s) of repeated outcomes. Let Θ be the stacked vector

combining all pair-specific parameter vectors Θrs. There are m(m − 1)/2 bivariate

joint models to be considered. Some parameters in Θ∗ have a single counterpart in

Θ, e.g., the covariance between random effects from two different outcomes. Other

elements in Θ∗ have multiple counterparts in Θ, e.g., the covariance between ran-

dom effects from the same outcome. Given that the pairwise approach fits within

the pseudo-likelihood framework, an asymptotic multivariate normal distribution for

Θ can be derived. Asymptotic normality of the pseudo-likelihood estimator in the

single parameter case and in the vector-valued parameter case is shown in Arnold and

Strauss (1991) and in Geys et al. (1999). Finally, estimates for the parameters in Θ∗

in (5.1) can be calculated by taking averages over all pairs. This is obtained by

Θ̂
∗

= AΘ̂ ∼ N(Θ∗, AΣ(Θ̂)A′),

with A a matrix containing the appropriate coefficients to calculate the averages and

Σ(Θ̂) equals the covariance matrix for Θ̂ obtained by an expression shown in Arnold

and Strauss (1999). A mean estimate is simply obtained by averaging all corre-

sponding pair-specific estimates in Θ̂. Standard errors of these estimates take into

account the variability amongst the pair-specific estimates. Furthermore estimates

corresponding to two pairwise models with a common outcome are based on overlap-

ping information and hence are correlated. This correlation is also accounted for in

the sampling variability of the combined estimates in Θ̂
∗
.

The idea of replacing the full likelihood by pairwise marginal likelihoods is used

in Step 3 of the proposed clustering algorithm.

5.3.2 Clustering Algorithm for Multivariate Longitudinal

Data

In this section, we propose an algorithm to reveal latent subgroups in multivariate

repeated outcomes. The idea is that the data are not coming from one multivariate
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distribution, but rather that the generation process behind the data is a mixture of a

number of multivariate normal distributions, each described by a density N(µk, V k).

We use superscripts to indicate the kth cluster. In the subsequent expressions, sub-

scripts will be used to refer to the pair (r, s) of responses. The algorithm aims at

allocating the N observations in a number of clusters, such that the full likelihood

is maximal. The algorithm is iterative in nature and resembles a partition cluster

method. The cluster criterion being used is an individual’s pseudo-log-likelihood con-

tribution. An illustration of the algorithm is given in Section 5.4.

The algorithm consists of the following steps:

1. Choose the number of clusters, K.

2. Randomly divide the N observations into K initial clusters.

3. Iterate the following steps until no observation switches cluster anymore:

(a) Fit all bivariate joint models with the K clusters as ‘known’ groups (see

Section 5.3.1). For each bivariate joint model, based on outcomes r and

s, this results in K mean profiles over time, µkrs as well as K covariance

matrices V krs (k = 1, . . . ,K).

(b) For each pair p = (r, s) of longitudinal outcomes (p = 1, . . . , P ) the follow-

ing K likelihoods for observation i are then calculated (k = 1, . . . ,K):

Lkp,i = Lkrs,i = (2π)−np,i/2|V kp |−1/2e
1
2 (yp,i−µ

k
p)′(V k

p )−1(yp,i−µ
k
p).

(c) The full joint likelihood function of all m responses will reach its maximum

value when the pseudo-likelihood is maximal. Therefore, the sum of natural

logarithms of these pseudo-likelihoods over all P pairs is a natural choice

as a cluster criterion:

plki =

P∑
p=1

log(Lkp,i). (5.3)

For each observation i this results in K individual pseudo-likelihood val-

ues. Each observations is (re-)classified into the group having the highest

individual pseudo-likelihood. Steps (a) through (c) are repeated until no

observations change cluster.

We will dwell on Steps 1. and 2. in turn.
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Random Division in K Initial Clusters

It is well known that the results of the partition cluster method can depend on the

starting cluster seeds, both in the number of clusters found and in their centroids.

An unfortunate choice of the division to start the procedure in the first step could

lead to a poor final division of the data into K groups. To minimize this risk, it is

advisable to repeat the proposed clustering algorithm for a number of times, with

different randomly chosen K initial groups. Out of these runs, the replicate giving

the highest value for the pseudo-likelihood value (5.2), has to be selected as the final

solution. This strategy reduces the possibility of accepting a poor solution due to an

inappropriate starting seed. In addition, reproducibility of the pseudo-likelihood value

is an indication of how well a particular number of groups fits the natural structure

of the data.

Number of Clusters

To determine the optimal number of clusters, it is advisable to perform the cluster-

ing algorithm for a range of K-values (e.g., K = 2, 3, 4, . . .). To evaluate the need

to include an additional cluster in the model the Akaike and Bayesian information

criterion could be used.

Counterparts for the AIC and the BIC information criteria for model selection

were derived for the framework of pseudo-likelihood. A pseudo-likelihood is in fact a

misspecified likelihood and consequently the second Bartlett identity does not hold,

meaning that the Hessian and the variance of the score function are not equal. We

refer to Varin and Vidoni (2005) for a derivation of the pseudo AIC criterion, and to

Gao and Song (2010) for the pseudo BIC criterion. The criteria have the usual form,

but the effective number of parameters is to be estimated from the Hessian matrix,

H(Θ) = EΘ (−∇Θu(Θ,y)), and the variability matrix of the pseudo score functions

J(Θ) = VarΘ (u(Θ,y)) with the score functions u(Θ,y) = ∇θp`(Θ,y). The effective

number of parameters is dim(Θ) = tr(J(Θ)H−1(Θ)) and

AIC = −2p`(Θ̂,y) + 2dim(Θ̂),

BIC = −2p`(Θ̂,y) + log(N)dim(Θ̂),

where p` is the pseudo-likelihood function (5.2) evaluated at Θ̂.
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5.4 Application to EEG Data

To illustrate the proposed clustering algorithm, the method was applied to an Electro-

Encephalogram (EEG) study conducted at Janssen Pharmaceutica (Belgium). The

data was introduced in Section 3.2. The aim of study is to characterize the effects

of psychotropic drugs on cortical brain activity, on the basis of spectral electro-

encephalograms. For each rat, 9 activity profiles are obtained, at 6 different positions

in the brains. To illustrate the clustering algorithm, we focus on the frequencies ob-

tained at the left prefrontal cortex. So we are facing 9-variate longitudinal profiles.

To be able to compare the results with analyses done in the past, we only include the

rats, with follow-up data, on the placebo and the highest dose level. This reduces the

data set to 139 rats. That said, very comparable results were obtained when including

all four dose levels in the analyses (data not shown).

The data for the 9 frequency measurements are visually presented in Figures 3.2

to 3.4. The response of interest is the percentage change with respect to the mea-

surement at baseline Yib (administration of the drug): Yij = 100(Yij − Yib)/Yib. At

baseline all percentage changes are by definition equal to zero. Graphical displays

therefore exclude the baseline data. In graphical displays and in the statistical mod-

els, time zero refers to the first measurement obtained after administering the drug

(i.e., after 45 minutes). Heterogeneity is seen in all waves, some rats have a decrease

in the frequency while for others an increase is obtained as an effect of the drug. For

some waves extreme profiles are seen, such as for the α1 wave. This heterogeneity is

of course largely caused by administrating 10 different drugs at different dose levels.

When applying the clustering algorithm, this information was not taken into account.

The goal of the analyses is to see if it is possible to identify subpopulations within the

set of 139 rats. Subpopulations that are homogeneous in the growth parameters for

the 9 waves and in the correlation structure. The information about the compounds

and doses will later be used to assess whether the identified groups are meaningful.

All analyses were performed in SAS/STAT software, Version 9.3 of the SAS System

for Windows.

The cluster analysis method was applied for the 9-variate response profile by fitting 36

bivariate joint models to the follow-up visits, as explained in Section 5.3.2. Generally,

one names the frequency measurement ranges, obtained for each rat, as alpha, beta,

delta, and gamma activity. We will reserve these Greek letters to refer to the fixed or

random effects in our statistical model and use Ym,il for the percentage change of the

mth frequency measurement, obtained for rat i at time til, with ti1=0 referring to the
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first follow-up measurement taken 45 minutes after administration of the drug.

For each longitudinal profile (m = 1, . . . , 9) the following random-effects model

was specified (k = 1, . . . ,K; ti1 = 0, . . . , ti8 = 7):

Ym,il = αkm + akmi + βkmtil + γkmt
2
il + εkm,il.

The parameters αkm, βkm, and γkm describe the average quadratic evolution of out-

come m over time. For each of the K clusters a separate trajectory is fitted. In this

model, the cluster is incorporated as a known group effect.

The random intercept akmi takes into account heterogeneity within cluster k and

introduces correlation between the measurements of response m over time. Associa-

tions between the nine longitudinal profiles were imposed by assuming that the ran-

dom intercepts akmi and akm′i are distributed as a bivariate normal distribution with

mean zero and a 2 × 2 covariance matrix. The errors εkm,il are zero mean normally

distributed with variance σ2
εkm

. More specifically,

(
akmi
akm′i

)
∼ N

 ( 0

0

)
,

 σ2
akm

σak
mm′

σak
mm′

σ2
ak
m′

  .
Note that the random-effect and error-component distributions can be specified to

be cluster specific, allowing the associations between the nine longitudinal response

profiles to differ from cluster to cluster. At maximum, 8 rats are randomized to each

dose-compound combination. Cluster-specific covariance matrices for the multivariate

normal distribution, estimated via the pseudo-likelihood estimation method, turned

out to be singular. This may signal a perfect dependency among some variables,

induced by an overspecified model fitted to a small set of data. In the application,

we therefore assume the random effects and error distributions to be common to all

clusters. This model results in constant correlation over time between measurements

of the same response, and between measurements of different responses.

The AIC and BIC value for pseudo-likelihood estimation were obtained for models

imposing K = 1, 2, 3, 4, 5, 6, 8, 10 clusters. To start the algorithm, the 139 rats were

randomly divided into K groups. To minimize the risk of choosing unfortunate start-

ing values the algorithm was executed 35 times for each value of K. The run resulting

in the highest pseudo-likelihood value is reported here. Table 5.1 shows the pseudo-

likelihood value, the AIC and BIC value, and the effective number of parameters for

the models fitted to the set of 139 rats. A sample size of 139 was used to obtain the

BIC. These criteria balance the increase in pseudo-likelihood value with the increase
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Table 5.1: Minus twice pseudo-log-likelihood values and information criteria for the final

models resulting from the clustering algorithm for multivariate longitudinal data – EEG study.

# clusters -2pl effective # of parameters AIC BIC

1 651260 366 651992 653065

2 640466 755 636317 639923

3 633859 1229 636317 639923

4 627028 1581 630190 634829

5 622189 2108 626406 632592

6 617623 2550 622723 630205

8 612800 3179 619157 628485

10 609677 3808 617293 628467

in model complexity. A graphical display is presented in Figure 5.1. It is seen that the

BIC value gradually decreases from one to five/six components, from where the BIC

appears to level off. The AIC value still decreases when adding components to the

model. The AIC is known for overestimating the number of clusters in data (Hu and

Xu, 2003). In what follows, we will discuss the results for the 5-component model.

The pseudo-likelihood values could be duplicated for the setting with 2–5 clusters (the

maximum value is obtained for respectively 20, 4, 4, and 6 runs out of the 35). For the

models specifying more than five clusters the maximum pseudo-likelihood value could

not be duplicated. For the setting with six clusters a number of runs result in com-

parable pseudo-likelihood values (minus twice pseudo-log-likelihood values: 617.64;

618.14; 618.19; and 618.25).

Figure 5.2 graphically displays the composition of the clusters. It is seen that the al-

gorithm results in a natural grouping of the different doses and compounds included

in the study. The clustering algorithm grouped all rats on the placebo dose levels

of the psychoactive compounds and the majority of the rats on the active dose of

Buproprion in one cluster (cluster 3: n = 81). It is not unexpected that the placebo

dose levels of the compounds are found in one group. But it is interesting to see that

the effect of Buproprion on the brain activity, as quantified by the 9 frequency mea-

surements, cannot be distinguished from the effect of a placebo level. In the model

specifying 8 clusters, the rats on Buproprion are separated from this cluster. The

second to largest cluster (cluster 2: n = 22) contains the rats that were randomized
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to the highest dose level of the cholinesterase inhibitors (Donepezil, Galantamine,

Tacrine) or to Nicotine. In the model specifying 8 clusters, the rats on Nicotine are

separated from this cluster. The rats randomized to the active dose of Memantine

or to PCP are grouped together, both psychoactive compounds are NMDA receptor

antagonists (cluster 5: n = 18). Cluster 1 (n = 11) groups the rats randomized to

the active dose level of the anti-epileptics (Lamotrigine, Valproate). The clustering

algorithm did separate the rats on the highest dose of Amphetamine from the rest

(cluster 4: n = 7). Indicating that the two psycho-stimulants included in the study

(Amphetamine and Nicotine) exhibit different effects on the brains.

The estimated mean growth trajectories for each cluster and for each frequency mea-

surement are displayed in Figures 5.3–5.4. For the placebo dose level cluster, i.e.,

cluster 3, flat wave profiles at a mean percentage change value close to zero are ob-

served. No effect of the psychoactive compounds is noticed on the rats brain activity.

Cluster 4, i.e., the highest dose level of Amphetamine, is characterized by its profiles

for the δ, θ1, and α1 waves. Amphetamine is the only psychoactive compound in the

study that results in a reduction in the δ and θ1 frequencies and an increase in α1

frequencies. The induced change for α1 vanishes by the end of the study. The effect

of administering the highest dose of Memantine or PCP (cluster 5) is best seen in the

β1, β2, α2, and γ2 waves. For this cluster, the reduction in frequency measurement

for the β1, β2, and α2 waves is larger than observed for the other clusters. The γ2

frequencies increased. This increase is larger than seen for the other clusters and the

effect is still present by the end of the study. Cholinesteras inhibitors and Nicotine

at the highest dose (cluster 2) result in distinct profiles for θ1, α1, α2, and γ1. A

positive percentage change is observed for θ1 and γ1, this increase seems to level off

around time point 5. The percentage change of the α waves are negative during the

study. The anti-epileptic compounds (cluster 1) behave different for the δ, β2, θ2,

and γ2 frequencies. The percentage change for the δ frequencies is positive and more

or less constant during the study, the β2 percentage change is also positive but keeps

increasing during the study period.

These results show that rats randomized to the same compounds were nicely clus-

tered together. The compounds constituting a cluster are known to give rise to similar

effects on cortical brain activity, as measured by EEG. Thus, the results could be in-

terpreted from a clinical point of view. The proposed algorithm is an exploratory

tool that has potential value to divide a heterogeneous population in homogeneous

subpopulations.
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Figure 5.1: Minus twice pseudo-log-likelihood, AIC, and BIC for the different models.
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5.5 Performance of the Algorithm: Simulations

In this section, the performance of the proposed clustering algorithm is investigated

through simulations. We explore the performance by means of simulated labelled

data, covering settings for separated and overlapping clusters of equal size.

5.5.1 Settings for the Simulations

Multivariate longitudinal data was generated, for four clusters (indexed by k) and 6

profiles (indexed by m), according to the following model:

Ym,il = αkm + akmi + βkmtil + εkm,il, (5.4)

with m = 1, . . . , 6; l = 0, . . . , 6; and k = 1, . . . , 4. Values for the cluster and profile

specific fixed intercepts and slopes are given in Table 5.2. The random intercepts akmi
and random error terms εkm,il were generated from multivariate normal distributions,

with variance-covariance matrices common to all clusters. The random intercepts, of

Table 5.2: Values for the fixed intercept and slope effects in Model (5.4).

Cluster (k) Response (m) αkm βkm Cluster (k) Response (m) αkm βkm

1 1 -3 3 3 1 -3 4

1 2 3 0 3 2 4 0

1 3 5 6 3 3 5 4

1 4 17 7 3 4 17 8

1 5 74 8 3 5 74 10

1 6 13 6 3 6 20 5

2 1 2 3 4 1 -3 3

2 2 3 3 4 2 -3 3

2 3 6 5 4 3 5 3

2 4 17 7 4 4 16 8.5

2 5 74 9.5 4 5 75 9

2 6 15 5 4 6 19 4
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the 6 profiles, were allowed to co-vary. Their correlation matrix was specified as:

1.00 0.25 0.10 0.30 0.20 0.00

1.00 0.20 0.10 0.10 0.10

1.00 0.10 0.10 0.10

1.00 0.20 0.10

1.00 0.10

1.00


Data representing different degrees of overlap among the clusters, was obtained by

specifying different values for the random intercept variances and residual variances,

see Table 5.3. Setting 1 assumes the following values for the variance of the six random

intercepts, (2.0, 0.5, 3.0, 2.0, 2.0, 1.0) and for the variance of the six residual variances

the following values were specified (1.0, 0.3, 1.0, 1.0, 2.5, 1.0). Settings 2 through 9 are

obtained by multiplying these variance by a factor. Table 5.3 displays the considered

settings for the variance terms and the corresponding average Mahalanobis distance

between the (centers of the) four clusters. The Mahalanobis distance (Mahalanobis,

1936) is a similarity measure that accounts for the variance of each variable and

the covariance between variables. The distance between two observations x1 and

x2, from two multivariate distributions, with covariance matrix V , is given by (x1 −
x2)V −1(x1−x2)

′
. For setting 1 and setting 9, Table 5.4 displays the distances between

the four clusters. The simulated data, consists of four clusters whereby cluster (1,3)

and (2,4) are closer to each other and thus harder to separate, as compared to the

other clusters.

For each setting, 50 data sets were generated. Equal cluster sizes were assumed.

The sample size per cluster were set equal to 7, 10, 15 and 20. Figure 5.5 shows the

profiles for the 6 responses, generated under setting 1 and assuming nk = 10. The

four clusters can not be discerned with the naked eye.

5.5.2 Results

The clustering algorithm was entertained for k = 4, with 15 random initial divisions

and a maximum of 45 iterations. Each iteration involves 15 bi-variate mixed models.

For each response, the model given in (5.4) was applied. The two random inter-

cepts were allowed to co-vary. The variance-covariance matrices for the two random

intercepts and residual errors were specified to be common to the four clusters.

The algorithm allocates each observation into one of four groups. To circumnavi-

gate the label degeneracy all 4! permutations of the labels, assigned by the algorithm,
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Table 5.3: Settings considered in the simulations: Multiplying factors for the random inter-

cept variances (2.0, 0.5, 3.0, 2.0, 2.0, 1.0) and residual error variances (1.0, 0.3, 1.0, 1.0,

2.5, 1.0) in Model (5.4) and average Mahalanobis distance between the four clusters.

Random intercept Residual error Average Mahalanobis

variances variances distance

Setting 1 1 1 20.3

Setting 2 1 1.5 17.1

Setting 3 1 2 15.2

Setting 4 1.5 1 19.4

Setting 5 1.5 1.5 16.2

Setting 6 1.5 2 14.2

Setting 7 2 1 19.0

Setting 8 2 1.5 15.7

Setting 9 2 2 13.8

Table 5.4: Mahalanobis distance between the centers of the 4 clusters, for settings 1 and 9,

specified in Table 5.2 and Table 5.3.

PPPPPPPPPCluster

Cluster
1 2 3 4 1 2 3 4

1

S
et

ti
n

g
1 0 24.7 11.7 25.8

S
et

ti
n

g
9 0 16.5 8.0 18.0

2 0 24.4 13.0 0 16.4 8.3

3 0 22.2 0 15.5

4 0 0

were compared with the true label. Table 5.5 presents the results for the permutation

maximally recovering the true labels.

For each data set the proportion of correctly classified observations is obtained. Ta-

ble 5.5 displays the mean (and standard deviation), minimum and maximum value of

the distribution of correctly classified observations. For example, for data generated

under setting 2 with clusters of size 7, we conclude that on average the clustering

algorithm is able to assign 84% of the observations to the proper cluster.

As is to be expected, we see that the larger the overlap between the clusters, as



66 Chapter 5. Model-based Clustering for Multivariate Longitudinal Data

measured by the Mahalanobis distances between their centers, the harder it is to reveal

the grouping in the data (Table 5.5). The four sub-populations are well recovered by

the algorithm for the settings 1, 2, 4 and 7. Also for settings 3, 5 and 8 the proportion

of correctly classified observations is reasonably good.

One would expect the performance of the algorithm to become better with in-

creasing sample size. This is not seen in this simulation exercise. Possibly the range

of sample sizes under consideration is too narrow.

In this simulation exercise the clustering algorithm was entertained for k=4 only,

i.e. the correct number of clusters. Simulations to see how the clustering algorithm

performs in choosing the correct number of clusters when k is ranged from 3—5 are

ongoing; but preliminary results are promising.
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Figure 5.5: Multivariate longitudinal data for four clusters, generated under setting 1 (Ta-

bles 5.2 and 5.3) and equal cluster size (nk=10).
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5.6 Discussion

In this chapter, we presented an algorithm to reveal clusters in the setting of mul-

tivariate repeated data. The algorithm mimics a K-means algorithm. The means

of the K clusters are obtained via bivariate joint models for the repeated responses.

An individuals’ pseudo-likelihood contribution is used as the criterion to classify an

individual into a cluster.

The longitudinally measured wave responses in the EEG study were all continuous

and recorded at the same time points. The proposed algorithm is, however, not

confined to this type of data. The clustering algorithm breaks down to repeatedly

fitting bivariate mixed models. As such, it benefits from the attractive feature of a

multivariate mixed model that different responses (e.g., binary and continuous) can be

combined, and can be applied to sequential responses. Study design features, such as,

for example, blocking, can be incorporated in the clustering algorithm, by introducing

another random effect in the bivariate model.

The primary practical limitation of the algorithm is computation time. Given

that the algorithm is iterative in nature, computation time increases with increasing

complexity of the data set; i.e., increasing number of individuals, number of repeated

outcome measures and number of specified clusters. Table 5.6 presents average com-

putation time per simulated data set for some of the settings presented in Table 5.3.

The BIC criterion was used to choose the optimal number of clusters. The boot-

strap likelihood-ratio test is an alternative (McLachlan, 1987), but was not imple-

mented because of computing time.

In general, cluster analyses are sensitive to starting values and to outliers. This

is not different for the proposed algorithm. Running the algorithm for a number of

times, each time starting from a different random division in K initial groups, allows

to evaluate sensitivity to starting values. The maximum pseudo-likelihood value is

harder to duplicate when more clusters are specified, again increasing computing time.

The issue of outliers is harder to investigate. Outliers induce clusters with a few

units, centered around the outlier. Bivariate mixed models, as many other statistical

tools, easily run into problems when applied to small and sparse data sets. Chapter 8

discusses local influence as a tool to investigate the effect of one data point on the

results from a model-based clustering.

In this contribution, we did not investigate the effect of model mis-specification

— such as misspecified average time evolutions, error distribution, random terms in

the model, etc. — on the number and the constitution of the discovered clusters.





Chapter 6
Clustering Multiply Imputed

Multivariate High-Dimensional

Longitudinal Profiles

6.1 Introduction

A lot of methodological work has been done to extend cluster analysis to repeated and

multivariate data structures. When analyzing repeated measurements data, individ-

ual differences in evolution are generally captured by random effects, often via linear

mixed models (Laird and Ware, 1982; Verbeke and Molenberghs, 2000). Individual

differences can also be described by latent trajectory classes (Land and Nagin, 1996;

Nagin and Land, 1993, Nagin, 1999; Nagin and Tremblay, 2001) or by growth-mixture

models (Muthén and Shedden, 1999; Muthén and Muthén, 1998–2012).

When, for each patient, more than a single outcome is measured over time, a mul-

tivariate set of longitudinal profiles is obtained. Interest could be in finding subgroups

of patients that are similar in their evolution over time for the various repeated se-

quences. An application of a clustering procedure for this type of data can be found

in Chapter 5 of this dissertation.

Nowadays, data complexity and dimensionality are enhanced by novel data collec-

tion techniques. These techniques permit observations to be densely sampled over a

continuum, usually time as in the TEMA-HF1. The data then reflect the influence

71
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of a (set of) smooth function(s) underlying and generating the observations. Often,

the evolutions are not easily described by a mathematical formula. The dependencies

between these so-called functional data curves can be analyzed by methods from the

functional data analyses framework (Ramsay and Silverman, 2002, 2005; Rice and

Silverman 1991; Rice 2004; Ferraty and Vieu, 2006). As usual, observed heterogene-

ity can be corrected for via explanatory variables. Unobserved sources of population

heterogeneity can be investigated via cluster analyses, where the main objective is

to classify patients into homogenous groups. However, clustering functional data in

general requires first a reduction of the high dimensionality of the data (Abraham et

al., 2003; Tarpey and Kinateder, 2003).

Data reduction techniques are hampered by missing values—an issue often in-

tertwined with longitudinal data. In the regression context, a multiple imputation

procedure (Rubin, 1987; Schafer, 1997; Carpenter and Kenward, 2013) can be ap-

plied to quantify the extra uncertainty in estimators of population parameters due

to the missing values. Applying a cluster algorithm on the imputed data sets of the

TEMA-HF1 results in multiple partitionings of the patients. It is however not so

clear how uncertainty due to the imputation process needs to be reflected in the final

result. Basagaña et al. (2013) present a framework for multiple imputation in cluster

analysis. They suggest ways to report how the final number of clusters, the result of

a variable selection procedure and the assignment of individuals to clusters is affected

by the missing values. Their final decision on a patient’s cluster membership is based

on a majority vote. We propose to approach the problem as a combinatorial optimiza-

tion problem to summarize the cluster ensemble into a single consolidated clustering

and at the same time measure the missing data influence in the cluster analyses.

In this chapter, we assemble techniques from functional data analysis, missing data

analysis and ensemble clustering to reveal groups of similar patients when facing

high-dimensional multivariate data with missing observations. The final data analy-

sis brings together a number of statistical techniques that are briefly introduced: the

idea of multiple imputation is given in Section 6.2, the concept of functional data is

briefly introduced in Section 6.3, multivariate functional data and functional princi-

pal component analyses, as a data reduction technique, are described in Section 6.4.

Section 6.5 describes how the results of a principal component analysis are used to

obtain a probability density for the functional data. A model-based cluster method

for functional data is given in Section 6.6. The ensemble method for clustering is

the topic of Section 6.7. The various steps of the proposed procedure are graphically

displayed in Figure 6.1.
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The ability of the procedure, to reveal latent structures in the data in the presence

of missingness, is investigated by means of a small simulation exercise in Section 6.8.

The potential of the method was brought out on the heart failure data, introduced

in Section 3.4. In the TEMA-HF1 study, 80 chronic heart failure patients were fol-

lowed up intensively for 6 months. A telemonitoring device daily transferred data on

body weight, blood pressure (systolic and diastolic), and heart rate. Although alerts

were sent out when the longitudinal measurements were missing for two consecutive

days, quite some missingness is present in the data. Section 6.9 applies the outlined

procedure and presents the results.

imputed
data set 1

λ1

n incomplete
multivariate
functional pro-
files

imputed
data set 2

λ2 Γ λ

imputed
data set 10

λ10

Φ1

Φ2

Φ10

⇑ ⇑
Multiple Clustering of
Imputation Multivariate FD

Consensus
Function

Consensus
Cluster

1

Figure 6.1: Steps of the proposed procedure to cluster multiply imputed multivariate high-

dimensional longitudinal profiles.

6.2 Multiple Imputation

Data reduction techniques, like principal component analysis, require rectangular data

structures. Often, records with missing values are discarded in the analyses. To
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circumnavigate this problem, multiple imputation was used to create a set of com-

plete/rectangular data sets.

Multiple imputation is a popular tool for dealing with data when they are only

partially observed (Rubin, 1987; Schafer, 1997; Carpenter and Kenward, 2013; Molen-

berghs and Kenward, 2007). The idea is to use the observed information to impute

sensible values for the missing ones. To reflect the uncertainty in this prediction,

missing values are imputed multiple times. Multiple imputation is appealing be-

cause it results in complete data sets, that can be analyzed with standard statistical

techniques. Two routes can be followed: multivariate or fully conditionally specified

imputation (Schafer, 1997; Little and Rubin, 2002; van Buuren et al., 1999; Raghu-

nathan et al., 2001). The multivariate approach assumes that all variables in the

imputation model jointly follow a multivariate normal distribution. Fully conditional

imputation or chained equations, specify for each variable in turn a conditional dis-

tribution, conditional on all other variables in the model. This approach does not

postulate multivariate normality. Both approaches assume the missing data to be

missing at random (MAR, Little and Rubin, 2002). Under the MAR assumption,

the probability that an observation is missing, is driven only by the observed data,

implying that no extra information is contained in the missing part of the data.

Standard imputation models applied to longitudinal data can lead to absurd results

(Honaker and King, 2010), e.g., imputations falling far from previous and subsequent

observations, or imputations that are very implausible on the basis of common sense.

Honaker and King (2010) developed the software package AMELIA that facilitates

imputation of (among others) smooth time-series patterns. Before executing the im-

putations, the data is supplemented with smooth basis functions. To allow subjects

to exhibit different evolutions over time, the imputation model includes interactions

of the basis functions and the subject indicator. On top of that, lead and lag vari-

ables can be specified for the imputation model. Clearly the number of parameters

in the imputation model rapidly increases, resulting in computational difficulties in

the EM algorithm used to obtain the posterior density of the data and taking ran-

dom draws from it (i.e., draws of µ and Σ). AMELIA implements a so-called EMB

algorithm (Basford, 1994). This algorithm combines the classical EM procedure with

a bootstrap approach to take draws from the posterior. For each draw, the data is

bootstrapped to simulate estimation uncertainty. Next, the EM algorithm is used to

find the mode of posterior for the bootstrapped data.
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6.3 Functional Data

Functional data analysis (FDA) can be seen as an extension of classical multivariate

methods where data are not vectors but rather functions or curves (Ramsay and

Silverman, 2002; Ramsay and Silverman, 2005; Rice and Silverman 1991; Rice 2004;

Ferraty and Vieu, 2006). Functional data describe a process that changes smoothly

and continuously over a domain. Often, this domain is time, resulting in repeated

measurement data, but it can be anything, such as, for example space or energy.

Data in many fields result from a process that is functional. Ramsay and Silverman

(2002, 2005) provide many examples: daily weather data about temperature and

precipitation; human growth data for height and weight, yearly non-durable good

index, hip and knee angles observed in a gait cycle, etc.

In functional data analysis, the existence of a smooth function x is assumed. This

function gives rise to data yj , superimposed by measurement error εj , usually observed

at discrete time points tj , such that yj = x(tj) + εj . Although the curves are sampled

for a finite set of time-points, the observations are supposed to belong to an infinite-

dimensional space. The functional form of the data is often reconstructed from the

discrete observations by assuming that the finite-dimensional space is spanned by a

basis of functions. Consider a basis φ = {φ1, . . . , φG} and represent the functional

data xi(t), for patient i, by a linear combination of the G basis functions:

xi(t) =

G∑
g=1

aigφg(t).

The basis coefficients are estimated so that the constructed curve optimally fits the

data for a certain degree of smoothing. The number of basis functions can be chosen

in terms of a bias-variance trade-off.

6.4 Principal Component Analysis of Functional

Data

Principal component analysis for functional data is similar to principal component

analysis for multivariate data (Hotelling, 1933). We therefore precede the introduction

of PCA for functional data with a brief resume of PCA for multivariate data.
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6.4.1 PCA for Multivariate Data

For high-dimensional multivariate data, dimension reduction is usually performed

prior to applying a statistical procedure in order to avoid the effects of the curse

of dimensionality. Principal component analysis reduces the dimensionality by linear

mapping of the data (Hotelling, 1933). The linear combinations are chosen to highlight

types of variation strongly represented in the data. The principal components, in the

multivariate situation when data for N subjects is obtained for p variables, are defined

as:

fim =

p∑
j=1

βjmxij , i = 1, . . . , N, (6.1)

with βjm a set of orthogonal weights that maximize the variation in the fim. The

solutions to this maximization problem are given by the eigenvectors of the eigenequa-

tion V β = λβ, with V the p × p sample variance-covariance matrix. A sequence of

eigenvalue-eigenvector pairs (λm,βm) satisfy this eigenequation, with βm orthogonal.

6.4.2 PCA for Functional Data

6.4.2.1 Univariate Functional Data

The dimensionality for multivariate data is given by the discrete index j in (6.1), for

functional data a continuous index s is taking over this role. The principal compo-

nent scores, for univariate functional data, are obtained as the inner product of two

functions, the weight function and the data function (Ramsay and Silverman, 2005;

Besse and Ramsay, 1986; Castro et al., 1986; Dauxois et al., 1982; Cardot, 2000; Hall

and Hosseini-Nasab, 2006; Jones and Rice, 1992):

fi =

∫
β(s)xi(s)ds, i = 1, . . . , N.

A sequence of weight functions βm(s) is chosen such that they define the most impor-

tant modes of variation in the curves, conditional on the weights to be orthonormal.

So,

1. 1
N (
∫
βmxi)

2 is maximal,

2. ‖β2
m‖ =

∫
(βm)2 = 1,

3.
∫
βmβn = 0, n 6= m.

Functional principal component analysis is also tantamount to solving an eigenequa-

tion. Define the sample variance-covariance function as v(s, t) = 1
N

∑N
i=1 xi(s)xi(t).
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Then V , in the functional version of PCA, is a variance operator and transforms a

function β as V β(.) =
∫
v(., t)β(t)dt. The eigenequation can then be expressed as:

V β(s) =

∫
v(s, t)β(t)dt = λβ(s), (6.2)

where β are eigenfunctions now instead of vectors. Solutions to this continuous func-

tional eigenanalysis problem (6.2) can be obtained by approximating the problem as

a matrix eigenanalysis task. Theretofore the data (a set of N curves xi(t)) and eigen-

functions are presented as linear combinations of the basis φ: xi(t) =
∑G
g=1 aigφg(t)

and β(s) =
∑G
g=1 bgφg(s).

In compact matrix notation, the expansion of the N curves can be expressed as:

x = Aφ,

where A is the N ×K coefficient matrix; x and φ are vector-valued functions with

components respectively (x1, . . . , xN ) and (φ1, . . . , φG). In a similar way the eigen-

functions and variance covariance function can be expressed in matrix notation:

β = b
′
φ,

v(s, t) = N−1φ(s)
′
A
′
Aφ(t).

with β a vector-valued function with components (β1, . . . , βM ).

The eigenequation (6.2) can then be written down as:

λβ(s) =
∫
v(s, t)β(t)dt

λφ(s)
′
b =

∫
N−1φ(s)

′
A
′
Aφ(t)φ(t)

′
bdt

= φ(s)
′
N−1A

′
AWb

(6.3)

with W the G symmetric matrix containing the innerproducts of the basisfunctions,

i.e., wg1,g2 =
∫
φg1φg2 . Equation (6.3) will hold for all s only if

N−1A
′
AWb = λb. (6.4)

The condition of orthogonality of the eigenfunctions β implies that (6.4) is to be solved

with the following constraints: bWb = 1 and b1Wb2 = 0. For an orthonormal basis

W = I, the functional PCA problems reduces to a standard multivariate PCA of the

matrix N−1A
′
A.
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6.4.2.2 Multivariate Functional Data

When extending functional PCA to M -variate functional data, the weight functions

become M -vector functions β = (β1, . . . βM )
′
, with βl depicting the variation in the

lth dimension (Berrendero et al., 2011; Ramsay and Silverman, 2005). The principal

component scores are again linear combinations of the data:

fi =

M∑
m=1

∫
βm(s)xmi (s)ds,

where the weight functions βm are solutions of an eigenequation system V β = λβ.

V is the covariance operator as defined before, vii(s, t) is the covariance operator for

the ith functional data dimension and vij(s, t) the cross-covariance operator between

dimensions i and j. The eigenequation translates to a system of equations:
v11β

1 + v12β
2 + . . .+ v1mβ

m = λβ1,

v21β
1 + v22β

2 + . . .+ v2mβ
m = λβ2,

...

vm1β
1 + vm2β

2 + . . .+ vmmβ
m = λβm.

In practice, a standard principal component analysis is carried out on a vector Zi

concatenating all data functions of patient i.

6.5 Density for Functional Data

Model-based clustering identifies homogenous subgroups of patients using a mixture

model for the density function of the data. Delaigle and Hall (2010) use the Karhunen-

Loève expansion to introduce the notion of a probability density for functional data.

The basis, yielding a minimum value for the total mean squared error when de-

composing a stochastic process X(t) as an infinite linear combination, is the set of

orthogonal eigenfunctions of the process itself:

X(t) = µ(t) +

∞∑
j=1

fjβj(t).

If µ(t) = 0, i.e., for a centered process, the composition is referred to as the Karhunen-

Loève expansion (Karhunen, 1947; Loève, 1978). The basis coefficients are random

variables, in contrast to the coefficients resulting from, for example, a polynomial

basis. The random variables fj are uncorrelated, have zero mean and variance λj .
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We denote the distribution of fj by fj . The variables fj follow a Gaussian distribution

and are stochastically independent for a Gaussian process.

Let p(x|h) = P (‖X −x‖ ≤ h) for h > 0 and ‖X −x‖ the L2-distance between X

and x. Then, p(x|h) is the probability that X belongs to a ball of radius h centered

at x. Delaigle and Hall (2010) show that this probability can be written as a product

of the densities fj , corresponding to the largest eigenvalues:

log[p(x|h)] = C1(r, θ) +

r∑
j=1

logfj(fj) +O(r), (6.5)

where fj(fj) = fj(fj(x)) is the density of the j principal component score evaluated

for the j component score for x; r = r(h) diverges to infinity as h decreases to zero,

and C1 depends on h and on the infinite eigenvalue sequence, θ. Based on (6.5), a

natural surrogate for the log density of functional data is provided by the average

of log densities of the r largest principal components. This log-density l(x|r) =

r−1
∑r
j=1 logfj (fj) captures variation with x up to order r.

6.6 Clustering of Functional Data

An excellent review of approaches to clustering functional data is presented by Jacques

and Preda (2014). They classify the approaches into four categories: raw-data cluster-

ing, two-stage procedures (Abraham et al., 2003; Peng and Müller, 2008), model-based

procedures (Bouveyron and Jacques, 2011; Jacques and Preda, 2012) and nonpara-

metric techniques for clustering functional data (Ferraty and Vieu, 2006; Ieva et al.,

2012; Yamamoto, 2012). Techniques not using the functional form of the data, but

applying cluster algorithms for high-dimensional vector data, directly on the info ob-

served at the discrete time points, are labeled raw-data clustering. Clearly these

techniques do not reckon with time dependencies present in the data. In two-stage

procedures, the dimension of the data is first reduced, e.g., by means of a functional

principal component analyses, in the second step a cluster algorithm is applied on the

newly constructed data summaries. The functional nature of the data is dealt with

in the first step. Model-based clustering techniques assume a probability distribution

for the data, and perform the dimension reduction and clustering simultaneously.

Both the (second step of the) two-stage and model-based procedures can be applied

on the basis coefficients when approximating the curves or on the principal compo-

nent scores. Nonparametric clustering of functional data comes down to executing a

classical clustering algorithm for finite-dimensional data, on distances or similarities

between curves. We opt for model-based clustering, using principal components. This



80
Chapter 6. Clustering Multiply Imputed Multivariate High-Dimensional

Longitudinal Profiles

procedure tackles the functional nature of the data, simultaneously performs a data

reduction and cluster exercise, while at the same time allowing for complex covariance

structures in the multivariate longitudinal profiles.

Jacques and Preda use the approximation of the probability density for functional

random variables to fit a parametric mixture model to univariate functional data

(Jacques and Preda, 2012) and to multivariate functional data (Jacques and Preda,

2014). We briefly summarize the different steps of their algorithm.

Assume the existence of a latent group indicator Zi = (Z1
i , · · · , ZKi ) for K clusters.

For subject i, Zgi = 1 if its curves xi belong to group g, 0 otherwise. Let Zi have a

multinomial distribution with mixing proportions π1, . . . , πK (
∑K
k=1 πk = 1). Under

these assumptions, the unconditional approximated density of X is equal to

f
(q)
X (x; θ) =

K∑
k=1

πk

qk∏
j=1

fj,k(fj,k(x);λj,k).

When X is a Gaussian process, the fj, are Gaussian. The parameters θ =

{(πk, λ1,k, · · · , λqk,k)1≤k≤K} and q = (q1, · · · , qK) are estimated by maximizing the

pseudo completed log-likelihood via an iterative EM algorithm:

L(q)(θ; {X1, · · · , XN}, {Z1, · · · , ZN})

=

N∑
i=1

K∑
k=1

Zki

log(πk) +

qk∑
j=1

log(fj,k(fi,j,k(xi))

 ,

where fi,j,k is the jth principal component of curves xi belonging to group k.

At iteration h, the E-step of the EM-algorithm evaluates the conditional expecta-

tion of the pseudo completed log-likelihood, with respect to unknown Zki , given the

observed data and current parameter estimates, Θ(θ, θ(h)).

Θ(θ, θ(h)) = Eθ(h) [L(q)(θ;X,Z)|X = x]

=
∑N
i=1

∑K
k=1Eθ(h) [Zki |X = x]

×
[
log(πk) +

∑qk
j=1 log(fj,k(fi,j,k(xi;λj,k)))

]
' ∑N

i=1

∑K
k=1

πk

∏qk
j=1 fj,k(fi,j,k(xi);λj,k)∑K

k=1 πk

∏qk
j=1 fj,k(fi,j,k(xi);λj,k)

×
[
log(πk) +

∑qk
j=1 log(fj,k(fi,j,k(xi;λj,k)))

]
(6.6)

where fj,k(fi,j,k(xi);λj,k) is the value of fj,k for Xi = xi.

The M-step maximizes this conditional expectation with respect to θ. Before

executing the M-step, Jacques and Preda (2014) update the group-specific principal
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components fj,k. For this purpose, a weighted principal component analyses is fitted,

with weights Eθ(h) [Zki |X = x]. Furthermore, the class-specific dimensions qk are

selected by means of the scree-test of Cattell (Cattell, 1966). After these intermediate

steps, the M-step maximizes Θ(θ, θ(h)) with respect to θ.

Jacques and Preda note that this procedure does not guarantee an increase in the

pseudo-likelihood between two iterations. The reason for this is that an approximation

to the density of functional data is used. They advise to pre-run the algorithm a couple

of times with different (random) starting values, using a small number of iterations.

The best solution among these is then to be used as the starting point for the algorithm

with a large number of iterations (Biernacki, 2004). This empirical strategy increases

the chance of convergence to a local maximum.

6.7 Consensus Clustering

Cluster ensembles are collections of individual solutions to a given clustering problem

(Strehl and Ghosh, 2002). Let X = {x1, x2, . . . , xN} denote a set of objects/samples,

where each xi is some p-dimensional data vector. A partitioning of the N objects into

K clusters can be represented as a set of K sets of objects (Ck|k = 1, . . .K) or as a

label vector δ ∈ NN . The clustering algorithm (function) to obtain this label vector

is called a clusterer Φ.

The resulting partition can be a soft (fuzzy) or a hard (crisp) partition. If all

non-negative numbers µik, quantifying the probability that object i belongs to class

k, with
∑K
k=1 µik = 1, are in {0,1} the obtained partition is referred to as a hard

partition. Otherwise the partition is soft. The matrix M containing the µik’s is

called the membership matrix, with rows corresponding to objects and columns to

the classes. The co-membership matrix C(M) = MM
′

has entries cij = 1 if objects

i and j are in the same class in a hard partition, and 0 otherwise.

The label vector δ containing the class identification numbers is not unique. The

class labels can be permuted arbitrarily without changing the underlying partition.

For a partition in K clusters there are K! equivalent representations. The canonical

form is the representation that satisfies the following two constraints (i) λ1 =1 (the

first object’s label is cluster 1); (ii) for all i = 1, . . . , N−1 : λi+1 ≤ maxj=1,...,i(λj)+1

(the cluster label λi+1 of any successive object has a label that occurred before or a

label that is one greater than the highest label so far). In terms of the membership

matrix M , permuting class IDs means replacing M by MΠ, where Π is a suitable

permutation.
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Results obtained from applying different clusterers Φ on a dataset can be quite

different but all equally plausible. The problem of combining multiple partitionings

into a single clustering is referred to as cluster ensembles (Strehl and Ghosh, 2002).

Intuitively, the final consensus is the partition of the N objects that shares most

information with the original clusterings. It is assumed that the consensus cluster

is less likely to be biased towards the models (Φ) used in the separate analyses and

more likely to reflect the underlying structure of the data. Day (1986) and Leclerc

(1998) studied the consensus of hard partitions; fuzzy consensus clustering has been

investigated by Gordon and Vichi (2001).

Consensus clustering synthesizes the information in the elements of a cluster en-

semble into a single clustering, often by minimizing a criterion function measuring

how (dis)similar consensus candidates are from the ensemble (the so-called optimiza-

tion approach to consensus clustering). Since there is no relation between the labels

assigned to object i by a clusterer (Φ1) and another clusterer (Φ2) the cluster ensemble

problem is more difficult than a classifier ensemble problem. This label correspon-

dence issue is the main problem that has to be dealt with when clustering ensembles.

The problem can be solved via the Hungarian method (Kuhn, 1955). An additional

issue is that the number and shape of the input clusters may be different and that

the optimal final number of clusters is often not known in advance.

To state the cluster ensemble as a problem of mapping a set of r labelings, δ(1,...,r),

to a single consensus clustering, δ, a consensus function ∆, NN×r → NN is needed

∆ : {δ(q)|q ∈ {1, · · · , r}} → δ. An estimate δ̂ is often obtained by maximizing (min-

imizing) a criterion/objective function measuring how (dis)similar consensus candi-

dates are from the ensemble. Measures for dissimilarity and similarity are key in-

gredient to clustering (ensembles). Let d be a suitable dissimilarity measure; most

popular criterion functions are of the form

L(δ) =
∑

wbd(δb, δ)p, (6.7)

where wb is a weight given to element δb of the ensemble, and p ≥ 1. If p = 1 the

consensus solution is called a median of the ensemble, while p = 2 gives least squares

consensus partitions (Gordon, 1999). A variety of methods are available to minimize

criteria of this form; fixed-point algorithms for soft Euclidean and Manhattan consen-

sus partitions, greedy algorithms, SUMT algorithms, and exact solvers (Hornik, 2005).

A multiplicity of (dis)similarity measures are described in the literature. Among the

ones commonly used are the Euclidean and Manhattan dissimilarity of the mem-

berships (Dimitriadou, Weingessel and Hornik 2002), the Rand index (Rand 1971,

Gordon 1999), Normalized Mutual Information (Strehl and Ghosh 2002), the Katz-
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Powell index (Katz and Powell 1953), the Jaccard index, etc. The maximization in

(6.7) ranges over all possible K-partitions (Strehl and Ghosh, 2002). An exhaustive

search over all possible clusterings with K labels for the one with the maximum cri-

terion is in general not possible. Dimitriadon, Weingessel and Hornik (2002) have

shown that optimal matching can be determined very efficiently when agreement is

expressed as Euclidean partition dissimilarity.

To evaluate the reliability of a partition of a data set, the fuzziness in the par-

titioning can be investigated. In fuzzy clustering, a data point does not completely

belong to just one cluster but has a probability of belonging to each cluster. Denote

by µik the probability that data point i belongs to cluster k. The uncertainty of a

fuzzy partition can be quantified via the the Partition Coefficient,
∑
i,k µ

2
i,k, and the

Partition Entropy,
∑
i,kH(µi,k), where H(u) = ulog(u) − (1 − u)log(1 − u) (Bezdek

1981).

6.8 Simulated Data for Multivariate Functional

Data with Missing Observations

The described approach relies on the approximation of the notion of a probability

density for functional random variables by means of the Karhunen-Loève expansion.

Jacques and Preda (2012, 2014) have illustrated the efficiency of their model-based

clustering algorithm using this functional random variable density approximation.

The data they used, both simulated and real data sets, were complete data matrices.

The obtained correct classification rates compared well with rates obtained using com-

petitors for clustering functional data and methods to cluster traditional multivariate

data.

To illustrate numerically the validity of the proposed procedure, we simulated bi-

variate functional data according to the following model, for two clusters.

Cluster 1 : X1(t) = −5 + t/2 + U2h3(t) + U3h2(t) +
√

0.1ε(t),

X2(t) = −5 + t/2 + U1h1(t) + U2h2(t) + U3h3(t) +
√

0.5ε(t),

Cluster 2 : X1(t) = U3h2(t) +
√

10ε(t),

X2(t) = U1h1(t) + U3h3(t) +
√

0.5ε(t),

with U1 ∼ N(0.5, 1/12), U2 ∼ N(0, 1/12), U3 ∼ N(0, 2/3) and ε(t) ∼ N(0, 1) inde-

pendent normally distributed variables. The functions h1, h2, and h3 are defined for

t ∈ [1, 21], as h1(t) = (6 − |t − 11|)+, h2(t) = (6 − |t − 7|)+, h3(t) = (6 − |t − 15|)+,

where ()+ indicates the positive part. A sample of 50 curves was simulated, with

equal mixing proportions and the curves are observed in 41 equidistant points (t= 1,
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1.5, . . . , 21). Figure 6.2 displays the profiles for the first 100 simulated data sets.
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Figure 6.2: Bi-variate simulated profiles for two clusters, data for first 100 simulated sets.

This is the model used by Jacques and Preda (2014) to simulate bivariate functional

data, for the complete data setting. We used the same model but have put a random

proportion of the data to be unobserved. The percentage of missing data was set equal

to 10, 20, and 30%. For each setting, 250 incomplete data sets were simulated. Ten

imputed data sets were created. The completed profiles were smoothed by means of a

cubic spline basis with 28 basis functions. Each imputed data set was then clustered

via the outlined model-based procedure using the surrogate densities. The algorithm

used 15 initializations for 40 iterations and 200 in the final run with a stopping criteria

of 1e-5, the Cattell scree test threshold was fixed to 0.05. Ensemble clustering, with

a Euclidean distance measure, resulted in the final partition. For each simulated

data set the proportion of correctly classified observations was calculated. Figure 6.3

shows the distribution of the proportion of correctly classified observations over the
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250 simulated data sets. The correct classification rate obtained for the complete data

set is also presented (of course no imputation was done in this case).

It can be seen that the method performs well, for the considered amounts of

missing data. On average 72%–80% of the observations are classified into the correct

cluster. The performance on the incomplete data settings is comparable to the correct

classification rate obtained for the complete data. So, although the procedure faces

a number of sources introducing uncertainty — noise/errors, incomplete observations

and thus uncertainty in the estimated principal component scores and eigenfunctions

— it is well able to recover the latent cluster structure in the data.

0% missing 10% missing 20% missing 30% missing

0.
2
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4
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Figure 6.3: Correct classification rate over 250 simulations, for the complete data sets and

after introducing a proportion of missing observations.

6.9 Cluster Analysis for the Telemonitoring in the

Management of Heart Failure Study

The Heart Failure Study is introduced in Section 3.4. To illustrate the methodology

outlined in this article, only data from the TM group was used. For this group the

telemonitoring device daily transferred data on body weight, blood pressure (systolic

and diastolic), and heart rate. Missing information on two consecutive days provoked

an alert, patients were contacted to motivate them to make the measurements. At

baseline additional patient characteristics were collected. Although alerts were send
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out when the longitudinal measurement were missing for two consecutive days, quite

some missingness is present in the data.

The ability, of the 4 daily-measured biomarkers, to discriminate between patients

needing re-hospitalization in the near future and patients not needing to be hospi-

talized, has been investigate by Njagi et al. (2013). They fitted a joint model for

the time to re-hospitalization and the longitudinal biomarker. The model results in

a dynamic prediction, i.e., a patient-specific probability for re-hospitalization. This

probability is estimated based on information in the longitudinal biomarker (the level

of the biomarker and changes in the biomarker), and can (theoretically) be updated

daily with every new value of the biomarker being collected.

Information about the extent of missingness in the heart failure data is presented

in Tables 3.1 and 3.2. Baseline characteristics are fairly complete. About one out of

four patients does not have information for the six minute walking test (WALK). On

average, 76% of the patients’ daily measurements for the biomakers were recorded,

meaning that on average for 137 days out of 180, heart rate, diastolic and systolic blood

pressure were communicated to the heart failure clinic by means of the telemonitoring

device. The heart failure data has particular features. Heart rate and blood pressure

are recorded by the same device and thus simultaneously missing or present. The

periods lacking telemonitoring data, are, in general, not too long (average duration

is 6 days, median duration is 1 day). However, some patients are featured by longer

periods of lacking data. About 5% of the periods, with missing info on consecutive

days, lasts longer than 2 weeks.

The EMB algorithm implemented in AMELIA (Honaker and King, 2009) was used

to obtain ten complete data matrices. The imputation model included all patients’

baseline characteristics and daily-measured biomarker data. A natural logarithm

transformation was applied to the longitudinal measurements of heart rate, blood

pressure, and body weight in order to normalize the distributions. For these daily-

measured biomakers a smooth model over time was imposed, with patient-specific

time trends. In particular, a cubic spline model was specified. The EM algorithm can

suffer from numerical instability when the number of parameters in the imputation

model is high and/or when the degree of missingness is high. Therefore, a ridge prior of

10% was used. Multiple imputation leads to valid results when the imputation model

is correctly specified and missingness is missing at random (MAR). MAR cannot be

formally tested for. But the accuracy of the imputed values can be judged by over-

imputing. Each observed value, in succession, is treated as if it were missing. After a

large number of imputations, it can be investigated whether the actual observed value

falls within the range of imputed values. Based on this technique it can be concluded
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that the imputation model is acceptable (graph not shown).

The model-based clustering algorithm for multivariate functional data, described

in Section 6.6, was then carried out on each completed data set. Basically the method

boils down to applying a parametric mixture model to the surrogate density of the

functional data. Multivariate functional principal components analysis is a key build-

ing block for as much as the surrogate density function is determined by the PC scores.

Since the units of the four biomarkers are different (kg, bpm, and mm Hg), the data

were first normalized, Y (t) = R(t, t)−1X(t) with R(t, t) =
√

(V (t, t)), whereupon the

contribution of the 4 biomarkers, in defining the principal components, is the same.

The response profiles were first smoothed by means of a cubic spline basis with 69

basis functions. A patient’s evolution in diastolic and systolic blood pressure, heart

rate and weight can be well summarized by the first three principal component scores.

Sixty-nine percent of the variability in these biomarkers is explained by three princi-

pal components: 28% (range 27–29%) is attributable to the first principal component,

22% (range 21–25%) to the second principal component and finally the third compo-

nent adds another 19% (range 18–20%). These are percentages averaged over the ten

imputed data sets.

The model-based clustering algorithm was applied to the surrogate densities of

each of the ten completed data sets separately. For each data set, the algorithm

was initialized by running fifty random initializations, for 40 iterations. The random

initialization resulting in the best solution (i.e., the highest pseudo-likelihood value),

is used as the starting point for a longer algorithm with 500 iterations. The threshold

of the Cattell scree test was set to 0.05. An increase in the pseudo-log-likelihood

value less than 1e-5 was specified as the stopping criteria. Code for R (package

Funclustering) developed by Jacques and Preda (2013) was used.

For the obtained soft two-class solutions, information about the cluster sizes, the

estimated orders for the surrogate density functions, and the fuzziness are given in

Table 6.1. The Euclidean agreement between the 10 elements of the ensemble ranges

from 0.67 (data set 4 and 10) to 0.94 (data set 3 and 6), with a mean Euclidean

agreement of 0.80. The agreement among the ten imputed data sets is of particular

interest. This measurement quantifies the uncertainty in partitioning the heart failure

patients, induced by the presence of missing data. The two-class cluster solution for

member 4 of the ensemble, results in a partition of (31,49) patients, for member 6

this is (15,65).

Subsequently, two-class consensus clustering was used to synthesize the informa-

tion in the 10 partitions—resulting from the model-based clustering— into a single

clustering. The Euclidean distance was used as dissimilarity measure, and the con-
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Table 6.1: Heart failure data: number of patients per cluster, number of selected principal

components, and fuzziness – for each imputed data set and for the consensus partition.

Imputed Dataset

1 2 3 4 5 6 7 8 9 10 consensus

# of patients

Cluster 1 63 62 63 49 62 65 53 62 65 62 63

Cluster 2 17 18 17 31 18 15 27 18 15 18 17

# of principal components

Cluster 1 6 6 6 6 6 6 6 7 6 7 -

Cluster 2 5 5 5 5 5 5 6 6 5 6 -

Fuzziness 0.24 0.22 0.25 0.37 0.28 0.23 0.53 0.27 0.22 0.22 0.36

sensus solution was obtained by maximizing the objective function. A fixed-point

algorithm, implemented in the R package CLUE (Hornik, 2005), was used. This

algorithm results in a soft consensus partition.

The results are presented in Table 6.1. Partitioning of the 80 patients, based on

their profiles for diastolic and systolic blood pressure, heart rate, and weight results

in groups of sizes 63 and 17. The average agreement between the consensus clustering

and the 10 members of the ensemble equals 0.78 (range 0.65–0.86). The fact that a

patient is not necessarily assigned to the same cluster for each of the 10 imputed data

sets introduces uncertainty in the consensus cluster assignment. This uncertainty is

measurable via a patient’s probability of belonging to the cluster. The normalized

partition coefficient—measuring the uncertainty in a fuzzy partition — equals 0.36

for the resulting consensus clustering. The fuzziness for the consensus clustering is

generally higher than the fuzziness of the 10 members of the ensemble. The fuzziness

for the consensus result reflects uncertainty in allocation as present in any cluster

procedure, increased by uncertainty due to missing information in a patient’s profile.

The cluster allocation is clear cut for most patients. For the 63 patients assigned

to cluster 1, the average probability of belonging to cluster 1 is 87%. For cluster

2 this probability equals 89%. No relation has been found between the proportion

of missingness in a patient’s pattern and its cluster membership. Twelve patients

(19%) of cluster 1 were re-hospitalized at least once during the study, in cluster 2 four

patients (24%) were re-hospitalized at least once. This difference is not statistically

significant (χ2 =0.005, p-value = 0.94). The average evolution (with 95% confidence



6.9. Cluster Analysis for the Telemonitoring in the Management of Heart
Failure Study 89

interval) for the four biomarkers, per cluster, is shown in Figure 6.4. The average

evolution for a biomarker, is obtained by averaging the cluster-specific evolution of

the 10 imputed data sets. The variability is estimated as a weighted sum of the within

and between imputation variability, to reflect the uncertainty in the evolution due to

missingness. On average, the patients assigned to cluster 1 have a slightly higher

weight and also their diastolic blood pressure is elevated as compared to the patients

assigned to cluster 2. Given the small differences in evolutions in the biomarkers, we

conclude that there is no substantial evidence for a latent structure in the population

of heart failure patients.



90
Chapter 6. Clustering Multiply Imputed Multivariate High-Dimensional

Longitudinal Profiles

0
50

10
0

15
0

60657075

Da
ys

Diastolic Blood Pressure

0
50

10
0

15
0

110120130140

Da
ys

Systolic Blood Pressure
0

50
10

0
15

0

6065707580

Da
ys

Heart Rate

0
50

10
0

15
0

6570758085

Da
ys

Weight

F
ig
u
re

6
.4
:

A
ve

ra
ge

ev
o

lu
ti

o
n

a
n

d
9

5
%

co
n

fi
d

en
ce

in
te

rv
a
l

fo
r

th
e

fo
u

r
bi

o
m

a
rk

er
s

(a
ve

ra
ge

ev
o
lu

ti
o
n

:b
la

ck
;

9
5

%
co

n
fi

d
en

ce
in

te
rv

a
l:

gr
a
y;

cl
u

st
er

1
:

d
a

sh
ed

li
n

es
;

cl
u

st
er

2
:

fu
ll

li
n

es
).



6.10. Sensitivity of the Procedure 91

It is well documented (Hajnal and Loosveldt, 2000; Bradley and Fayyad (1998);

Pena, Lozano and Larranaga, 1999) that cluster results are sensitive to the preferred

algorithm and the randomly selected starting values. Likewise for the proposed ap-

proach, alternative options and settings could lead to different partitions of the heart

failure data.

The final step in the outlined procedure (Section 6.7), i.e., the consensus clustering,

involves a number of choices. The (dis)similarity measure, the objective function, and

the optimization algorithm have to be decided. For the heart failure data, Section 6.10

describes the susceptibility of the method in terms of some of these choices. The

choice of the distance measure and procedure to optimize the objective function was

not very important. The choice of the scree-test threshold, or the number of principal

components, to be used in the approximation of the surrogate density, on the other

hand did influence the final partition.

6.10 Sensitivity of the Procedure

The algorithm proposed involves a number of choices. The (dis)similarity measure,

the objective function, and the optimization algorithm have to be decided.

Consensus clustering carried out on the two-class partitions of the ten imputed

data sets, using different distance measures and different procedures to optimize the

objective function, resulted in identical results in terms of the hard assignment to the

two consensus clusters. The following four methods were compared: fixed-point algo-

rithm for soft least squares consensus partitioning with a Euclidean (1) and GV1 (2)

(Gordon and Vichi, 2001) dissimilarity, fixed-point algorithm for soft median consen-

sus clustering with a Manhattan dissimilarity (3), and finally the objective function

was minimized with a SUMT algorithm and a co-membership dissimilarity (4). All

methods resulted in exactly the same consensus cluster composition, except for one

patient.

The cluster results obtained for each of the imputed data sets are more susceptible

to the settings specified. The pseudo-density function of the multivariate functional

data is specified in terms of a finite number of principal components. The class-

specific orders (qk) are estimated by means of the scree-test of Cattell (1966). The

scree-test relies on a threshold to be specified. The number of principal components,

selected by the scree-test, increases with decreasing thresholds. Figure 6.5 illustrates

the sensitivity of the procedure to the choice of the scree-test threshold. The results

are obtained for the first imputed data set. The number of principal components,
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to be used in the approximation of the surrogate density, was forced to be equal for

the two clusters and to change from 1–10. For each setting, 50 random initializations

were performed (with 40 iterations) and the best solution among these was subjected

to an additional 500 iterations. The stopping criteria for the EM-like algorithm was

set equal to 1e-5.

The evolution of the pseudo-likelihood in the last 250 iterations is shown in Fig-

ure 6.5. The optimization converges only when four principal components are used

to approximate the surrogate density. Non-convergence is seen when less or more in-

formation (principal components) are used. For the non-converging pseudo-likelihood

profiles, the pseudo-likelihood gets trapped between two values or the evolution is

cyclic. Adding more iterations will not unlock the algorithm. The jumps in pseudo-

likelihood are large, indicating that the cluster sizes can change substantially from one

iteration to the next. This is visualized in Figure 6.6. When five principal components

are selected, a group of 14 patients changes cluster, causing the pseudo-likelihood to

bounce between two values. The number of patients, with unstable group alloca-

tion increases with the number of principal components diverging from 4. The group

membership probabilities of patients with unstable cluster allocations are closer to

0.5, as compared to these probabilities for patients with stable cluster allocation. It

is obvious that the partitions, corresponding to the maximum value in the pseudo-

likelihood profiles, differ. The size of the largest cluster ranges from 46 to 77; and

the percentage of patients classified in the same cluster, when using 4 or 10 principal

components, was as low as 68%. Clearly, the choice of the scree-test threshold, or the

number of principal components, influences the cluster result.

The phenomena, of the likelihood function not converging, does not necessarily

indicate problems, but is a possible by-product of the method. The EM-like algorithm

iterates between the E-step, the weighted principal component analyses and scree-

test, and the M-step. The algorithm stops when the change in pseudo-log-likelihood

becomes negligible. It is important to stress that convergence to a local maxima is not

insured. The pseudo-likelihood is not based on the entire information contained in

the profiles of the four biomarkers, but only on the part of information encompassed

in the finite number (qk) of principal components used to approximate the density

function. These dimensions, are updated at each iteration and therefore the data

used at different iterations can be different. Consequently, the pseudo-likelihood can

increase or decrease during the effectuation of the optimization algorithm.

The maximum number of iterations specified for the EM-like algorithm is not very

critical. Forty iterations executed for each of 50 random divisions seem to offer some

warranty that the algorithm stabilizes, whether or not reaching a local maximum or
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iterating between solutions. From figure 6.5 it is clear that when the pseudo-likelihood

is trapped between two values the difference in pseudo-likelihood is much bigger than

the specified stopping criteria.

6.11 Discussion

In this chapter, an approach for clustering high-dimensional multivariate data with

missing observations was proposed. Functional data analysis often utilizes dimension

reduction techniques such as principal component analysis. Dimension reduction tech-

niques require complete data matrices. To overcome this problem, the data were first

completed by means of multiple imputation. Each imputed data set was subjected

to a cluster procedure for multivariate functional data. Consensus clustering was

subsequently applied to summarize the ensemble of partitions into the final cluster

result.

When the time points vary widely across subjects and are sparse, the functional

principal components scores obtained through the Karhunen-Loève expansion are not

well approximated by the usual integration method. Yao, Müller and Wang (2005)

proposed a nonparametric method to perform functional principal component analysis

for the case of irregularly spaced longitudinal data where the number of repeated

measurements is small. Although a sufficient number of observations per patient is

available in the Heart Failure Study, this procedure could have been applied to the

data. Given the large number of time points and patients, it could take a long time

to execute the analysis.

We have however chosen for an alternative route, i.e., to impute the missing data

and construct a number of complete data matrices. We see two reasons for doing so.

The imputation process can benefit from all available information, e.g., information in

baseline covariates, and associations between the biomarkers. Further, the uncertainty

due to incomplete data is also reflected in and quantified during the clustering process.

The uncertainty in cluster membership, due to missing data, was characterized by

means of the agreement between the members of the ensemble and the fuzziness of

the consensus clustering. The usefulness of the method was illustrated on a simulated

data set and on the heart failure data. However, a number of topics are still open for

further investigation.

The functional representation of raw data in general involves some smoothing.

In this work the data was smoothed by a cubic spline basis with 69 basis functions.

But alternative smoothing methods—including other basis function, local weighting
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methods and roughness penalty approaches—could have been used. They all have in

common that smoothing parameters (e.g., the number of basis functions, bandwidth

of kernel function or penalty parameters) have to be optimally chosen.

The class-specific orders, used to describe the pseudo-likelihood, are chosen

through the threshold of the Cattle scree test. This is a heuristic method. Other

heuristic and statistical procedures could be used to determine the number of com-

ponents to be retained (Jackson, 1993).

Information criteria like AIC and BIC are generally used to determine the optimal

number of clusters. These criteria can be obtained from the pseudo-likelihood, but

are not very useful. Only relative comparisons between a set of models attempting to

fit a given dataset can be done with these. The amount of data used in the algorithm,

depends on the class-specific orders resulting from the Cattle Scree test. Thus it is

not guaranteed that the data used in different models is identical, which hampers the

determination of the number of clusters.

Breaban and Luchian (2011) have defined a new information criterion, CritCF.

This criterion takes into account the number of clusters and the number of variables

for ranking partitions. This criterion could be valuable in addressing two issues at

once, the issue of selecting the class-specific orders and the issue of determining the

optimal number of clusters.

The proposed algorithm was applied on ten completed data sets, but the choice

of the number of imputed data sets is still an open topic.
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Figure 6.6: Number of patients with unstable cluster allocation (the lines for 1 and 5

principal components coincide).



Chapter 7
Sensitivity Analysis for a

Growth-Mixture Model

Missing data are inevitable when collecting information about patients, especially in

studies collecting data repeatedly over time. The pattern and cause for missingness

can vary. Intermittent missing observations are often referred to as non-monotone

missingness. Patients with information for all planned visits until a given point in

time, and no information thereafter are referred to as dropout. The reasons for not

obtaining data at all planned visits can be diverse. Adverse events, no response to

study treatment, protocol violations, and loss to follow-up are frequently reported in

clinical studies as reasons for dropout.

The occurrence of incomplete records introduces specific challenges in statistical

analyses (Little and Rubin, 2002). Not only has the loss of information a negative

impact on the precision and the power, but furthermore a complete case analysis will

often result in biased estimators. Quite a number of methods are available to handle

missing data. Likelihood-based analyses are valid when the missing-data mechanism

is missing at random (MAR), in the sense that the mechanism describing missing-

ness is allowed to depend on covariates and observed outcomes but, given these, not

further on unobserved outcomes or unobserved covariates. However, the possibility

of the more general missing not at random (MNAR) mechanism, where there is fur-

ther dependence of missingness on unobserved outcomes, can never be definitively

excluded. Both MAR and MNAR rely on untestable assumptions.

In this chapter, we introduce MNAR models when clustering of longitudinal pro-

97
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files with missing information, by means of a growth-mixture model, is of interest.

Muthén et al. (2011) have provided an excellent overview of these recent innovations.

We demonstrate the use of these MNAR models as a tool to study the vulnerability

of the cluster analysis results. Where Muthén et al. focussed on the comparison of

the results of the different models in terms of the optimal number of clusters and

the estimated trajectories; we will complement the model comparison with an evalua-

tion of the sensitiveness of the posterior membership probabilities under the different

missing-data models for non-ignorable dropout.

Deciding which of these missing-data models is most suitable is difficult. The log-

likelihoods of MAR under ignorability, pattern-mixture and selection models cannot

be compared. Only comparison of log-likelihoods and BIC within the same family

is meaningful. However, comparison of the models in terms of their predictive value

for an event occurring in the (near) future is possible and could assist in choosing

between the models. Such an event is called a distal event.

This chapter is organised as follows. Section 7.1 introduces terminology, missing-data

mechanisms, and models for analyzing longitudinal data in the presence of missing-

ness. Section 7.2 positions the non-verifiable assumptions, underlying these models,

in the framework of enriched data. Section 7.3 introduces a number of incomplete-

data growth-mixture models, some incorporating a distal event, that were applied to

the abdominal aorta aneurysm (AAA) data (Section 3.3) in the context of a sensi-

tivity analysis. Results are presented in Section 7.4. Conclusions are formulated in

Section 7.5.

7.1 Incomplete Longitudinal Data

We will use the terminology of Rubin (1976) and Little and Rubin (2002) to distin-

guish between the different missing-data mechanisms. A process is said to be missing

completely at random (MCAR) if the missingness is independent of both the unob-

served and observed data. The process is missing at random (MAR) if, conditional on

the observed data, the missingness is independent of the unobserved measurements.

If the process is neither MCAR nor MAR it is missing not at random (MNAR). The

process then depends on the unobserved measurements.

In certain circumstances, the missing-data process is ignored and simple methods

such as complete case analyses are used. A complete case analysis takes into account

only those patients for which all planned measurements are obtained. Although very
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simple, this method has severe drawbacks. Due to the loss of information there is a

negative impact on the precision and the power. The estimators, in a complete case

analysis, will be unbiased only under MCAR.

The method of last observation carried forward (LOCF) replaces every missing

value by the last observed value from the same patient. Many authors describe the

problems with an LOCF analysis (Gibbons et al., 1993; Molenberghs and Verbeke,

2005; Carpenter et al., 2004; Beunckens et al., 2005). Even under the very strong

assumption of MCAR, LOCF can be biased. The direction of the bias depends on the

true but unknown treatment effect, as well as on other aspects of the measurement

and missingness process.

These traditional techniques for analyzing incomplete data work well only in a lim-

ited set of circumstances and are generally prone to bias. Even when the techniques

are unbiased, they tend to be less efficient than modern missing-data methods, such

as direct maximum likelihood (DML) and multiple imputation (MI). DML and MI

make weaker, and probably more realistic, assumptions about the missing data. Con-

sequently, they should produce efficient and broadly unbiased parameter estimates.

An application of multiple imputation in the context of cluster analysis was given in

Chapter 6. In this chapter we use a direct maximum likelihood approach.

7.1.1 Missing Data Modeling Frameworks

In case of missing data in the repeated measurements yi, one needs to specify the

full-data likelihood. The full-data likelihood considers not only the repeated mea-

surements, observed and unobserved, as data but also the missing-data indicators for

each time point. The missing-data indicator for subject i, mi, are binary variables

with values for mit equal to 1 if the repeated measurement at time t, yit, is missing

and 0 if yit is observed. In case of pure dropout, the vector mi can be replaced by a

scalar Di, denoting the time at which the patient drops out from the study.

The observed repeated measurements are grouped in yobs

i and the missing mea-

surements in ymis

i such that yi = (yobs

i , ymis

i ). The full-data density then becomes:

f(yi,mi|Xi,Wi,θ,ψ), (7.1)

with θ and ψ the parameter vectors associated with the measurement process and

the missingness process, and Xi and Wi the associated design matrices.

Different modeling frameworks for incomplete longitudinal data are obtained by

factorizing this full-data density in different ways. This results in selection, pattern-

mixture and shared-parameter models. The interpretation of the results depends on
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the chosen framework and different results and conclusions can be obtained. When

interest is also in unobserved latent constructs (such as latent-class membership) one

should realise that the different models imply different assumptions for the unobserved

data, but that the observed data alone does not allow to choose between these models.

Auxiliary information can be insightful to judge the plausibility of the different models

(see Section 7.1.3).

A selection model (Diggle and Kenward, 1994) factorizes the full-data density as the

product of the marginal density of the measurements and the conditional density of

the missingness process, conditioned on the measurements.

f(yi,mi|Xi,Wi,θ,ψ) = f(yi|Xi,θ)f(mi|yi,Wi,ψ). (7.2)

Whenever mit = 1 the measurement is missing, thus the regression of mi on yi is

inherently inestimable. Only by imposing distributional assumptions for the repeated

measurements, often multivariate normality, the model can be estimated. Departures

from these assumptions can produce biased results.

The pattern-mixture model (Little, 1995) specifies a different measurement model

for each pattern of missing values, and the full-data density is obtained as the mixture

of the models weighted by the probability of each missing value pattern.

f(yi,mi|Xi,Wi,θ,ψ) = f(yi|mi, Xi,θ)f(mi|Wi,ψ). (7.3)

The above specified model is also inestimable without imposing assumptions. A

quadratic growth model with only two observed data points is not identified. There-

fore, values are assumed for the inestimable parameters. Information from across

patterns can be shared (Hedeker and Gibbons, 1997, 2006) or identifying restrictions

can be used (Little, 1995; Thijs et al., 2002; Kenward et al., 2003). Implementing

different constraints can produce different results and unfortunately there is no way

to gauge the credibility of the assumptions. The marginal estimates, obtained via a

pattern-mixture model, are function of the model parameters and therefore standard

errors are not automatically produced. Approximate standard errors are routinely

obtained via the delta method (Hedeker and Gibbons, 1997).

Shared-parameter models (Wu and Caroll, 1988) assume the existence of latent

variables, that are shared between both factors in the full-data density. Often condi-

tional independence is assumed, i.e., the measurement process and missingness pro-

cess are independent conditional on the latent variable. The latent variable can be a

random effect bi, resulting in the following model:

f(yi,mi|Xi,Wi,θ,ψ, bi) = f(yi, |Xi,θ, bi)f(mi|Wi,ψ, bi). (7.4)
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By regressing the missing-data indicators on the random effects (e.g., intercept and

slope), the probability of missingness depends on the entire set of repeated measure-

ments, including the unobserved ones. This model is identified by making assumptions

for the distribution of the random effects, and further by assuming that the measure-

ment process and the missingness process are independent conditional on the random

effects.

Alternatively, a categorical latent variable can be used (Roy, 2003). The missing-

data patterns are assumed to be related to unobserved latent-class membership, where

the number of classes is less than the number of observed missing-data patterns. The

likelihood for the response is a mixture of latent dropout classes, as opposed to the

observed dropout patterns themselves. This approach allows observed patterns to be

sparse without needing to specify additional identifying restrictions.

The full-data density is never available and inference is made on the observed data.

Depending on the postulated missing-data mechanism different implications are en-

sued. The implications of the postulated missing-data mechanism are easiest seen in

a selection-modeling framework as defined by Rubin (1976). The conditional distribu-

tion of the missingness process, conditional on the measurements, plays a central role

in the selection model. This conditional distribution simplifies under the assumption

of MCAR and MAR, and this has implications for the joint density of the observed

data and the missing-data indicators. The selection probability f(mi|yi,Wi,ψ) under

the three missing-data mechanisms is given by:

MCAR : f(mi|Wi,ψ),

MAR : f(mi|yobs

i ,Wi,ψ),

MNAR : f(mi|yobs

i ,ymis

i ,Wi,ψ).

The joint density of the observed data and missing-data indicators thus simplifies as:

MCAR : f(yobs

i |Xi,θ)f(mi|Wi,ψ),

MAR : f(yobs

i |Xi,θ)f(mi|yobs

i ,Wi,ψ),

MNAR :

∫
f(yobs

i ,ymis

i |Xi,θ)f(mi|yobs

i ,ymis

i ,Wi,ψ)dyi
mis.

Under MAR the likelihood factorizes into two components. When the parameter space

of (θ, ψ) is given by the product of the individual parameter spaces (separability
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condition), inference for θ can be obtained on the marginal observed data density

alone, ignoring the missingness process. So, in the likelihood framework and when the

separability condition is satisfied, ignorability is equivalent to MAR ∪ MCAR. Under

MNAR the joint distribution of yi and mi cannot be simplified. Inference is only

possible by making unverifiable assumptions. Whenever mit = 1 the measurement is

missing, thus the regression of mi on yi is inherently inestimable. Only by imposing

distributional assumptions, often multivariate normality, the model can be estimated.

Departures from these assumptions can produce biased results.

7.1.2 Missing Data in Growth-Mixture Models

Chapter 4 introduced finite-mixture models as a tool to identify homogeneous sub-

groups in a heterogeneous population. A finite-mixture model specifies the density

of the measurements as a mixture of K density functions: f(yi) =
∑K
k=1 πkfk(yi).

In the presence of missing observations, the full-data density for a mixture model is

given as (where for simplicity of notation dependence of covariates is suppressed):

f(yi,mi) =

K∑
k=1

f(yi,mi|cik = 1)f(cik = 1), (7.5)

with cik = 1 when subject i belongs to the kth mixture and zero otherwise. Factor-

izing this full-data density according to the selection model and assuming MAR for

the missing-data mechanism conditional on class, implies the following observed-data

likelihood for a growth-mixture model:

f(yobs

i ,mi) =

K∑
k=1

f(yobs

i |cik = 1)f(mi|yobs

i , cik = 1)f(cik = 1). (7.6)

The standard missing-data procedure of using all available data is only valid when,

(1) MAR holds conditional on class (resulting in decomposition (7.6)), and

(2) the missing-data mechanism remains the same for the different classes given the

observed data, i.e., f(mi|yobs

i , cik = 1) = f(mi|yobs

i ), and

(3) the first two terms in (7.6) do not share parameters.

Under these assumptions, maximization of the first term of the likelihood is sufficient

and the missing-data mechanism can be ignored. When assumption (2) is violated

ignorability does not hold for the mixture distribution of f(y). The term f(mi|ci, ∗)
can not be ignored in the EM algorithm. Missingness depends on a latent variable

(in the above situation on ci) leading to a non-ignorable missing-data situation.
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The assumption of MAR leads to convenient simplification of the likelihood, but in

general one cannot justify this assumption. Often one is forced to make assumptions

which cannot be underpinned with the observed data alone.

7.1.3 Sensitivity Analysis Using a Distal Event

Choosing between the MAR, selection models, and pattern-mixture models is diffi-

cult since the models use different sets of dependent variables, resulting in different

likelihoods and information criteria metrics. When auxiliary information about the

reasons for dropout is available, model comparison becomes possible. Given that

such a distal or ultimate outcome contains information about yobs

i but on top of that

also about side-effects and subjects preferences it is useful for MNAR modeling. A

sensitivity analysis incorporating this information in the models can help in choosing

between different models fitted to the data. The relationship between the latent-class

membership and the distal event provides a predictive validity check of the latent-

class formulation. Furthermore, the congruence between the latent class formation

when not including versus including the distal event in the model is a measure for the

ability of the original model to capture non-ignorable missingness.

Muthén and Shedden (1999) describe an extended finite-mixture model that allows

joint estimation of (1) a conventional finite growth-mixture model where different

curve shapes are captured by class-varying random-coefficient means and (2) a logistic

regression of the distal event on the classes. Let ui be a categorical distal outcome

with R categories. A multinomial regression model is used to link the latent class ci

to the distal outcome ui (r = 1, . . . , R):

p(ui = r|ci = k) =
eαrk∑R
r=1 e

αrk

.

The complete-data likelihood is given by:

f(yi,ui) =
∑
c

f(yi|ci)f(ui|ci)f(ci).

Before sketching the MNAR growth-mixture models, that will be applied to the AAA

data (Section 3.3), we place the issues of MNAR and unverifiable assumptions in the

framework of enriched data.
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7.2 Latency and Unidentifiability

Using the terminology of Verbeke et al. (2010) a growth-mixture model encompasses

three types of data. Of course, the observed data (outcomes yobs

i , mi and covariates

xi) are one type of data. The latent variables, continuous ones (bi) and categorical

ones (ci) are so-called augmented data, referring to the addition of constructs to the

observed data. The augmented data are always fully unobserved. The reason for the

augmentation of the data is that in general the model development simplifies. The

term coarsened data is used to refer to the fact that the observed data are coarser

than hypothetically conceived. Ideally, the data are observed fully but in practice

this is not the case. In the growth-mixture model, formulated above, the missing

observations (ymis

i ) are coarsened data. The augmented and coarsened data taken

together are called enriched data.

Verbeke et al. (2010) show that always a part of the model for enriched data is

unidentifiable from the observed data. By replacing these unidentified parts, which

rest completely on assumptions, an entire class of models can be obtained. All of

these models produce the same fit to the observed data. The authors assume that

data zi for an independent unit i = 1, . . . , N are augmented with ai. The ai can take

any enriched data form and is thus broader than the latent classes used before.

The joint model f(zi,ai|θ,ψ) can be factorized in the following ways:

f(zi,ai|θ,ψ) = f(zi|ai,θ,ψ)f(ai|θ,ψ) = f(zi|θ,ψ)f(ai|zi,θ,ψ). (7.7)

Replacing the posterior density, of the enriched data given the observed data

f(ai|zi, θ̂, ψ̂), where θ̂, ψ̂ are the estimates obtained from the original model, by an

arbitrary conditional density f(di|zi,γ) retains the fit to the original model. Here,

di is used to indicate that the original and substituted enriched data can be different.

Using the notation of the previous section, in a growth-mixture model, it is the poste-

rior density f(bi, ci,y
mis

i |yobs

i ,mi, θ̂, ψ̂) that could be replaced without changing the

fit to the data. This posterior function could further be factorized in the following

three terms :

f(bi, ci,y
mis

i |yobs

i ,mi, θ̂, ψ̂) = f(ymis

i |yobs

i ,mi, θ̂, ψ̂)

×f(bi|ci,ymis

i ,yobs

i ,mi, θ̂, ψ̂)

×f(ci|ymis

i ,yobs

i ,mi, θ̂, ψ̂).

(7.8)

A simplification, resulting in the conventional growth-mixture model, assumes that

the random effects bi are influenced by the class, and that prediction of the class is
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done solely by covariates. In this case (7.8) becomes:

f(bi, ci,y
mis

i |yobs

i ,mi, θ̂, ψ̂) = f(ymis

i |yobs

i ,mi, θ̂, ψ̂)

×f(bi|ci, θ̂, ψ̂)

×f(ci|θ̂, ψ̂).

(7.9)

Replacing one of these densities will not change the value of the observed-data log-

likelihood. The first term of (7.9) could, for example, be replaced by its MAR coun-

terpart f(ymis

i |yobs

i ). The posterior density of the random effects given the class, is

generally assumed to be the normal distribution. These densities could be replaced

by other distributions, e.g., gamma random effects. Finally, the last term in (7.9)

specifies the number of latent classes. A model specifying L classes instead of K

could be considered, nevertheless resulting in the same fit.

None of these densities is identifiable from the observed data, they are solely de-

termined by modeling assumptions. To investigate how sensitive the results are to

the assumptions, a sensitivity analysis should be conducted. In a broad sense, a

sensitivity analysis is one in which several statistical models are considered simulta-

neously and/or a statistical model is further scrutinized using specialised tools (such

as diagnostic measures). In terms of a sensitivity analysis for the missing-data model,

the simplest procedure is to fit a selected number of (MNAR) models which seem

plausible, or one in which a primary analysis is supplemented with a number of mod-

ifications. The degree to which conclusions are stable across these models provides

an indication of the confidence that is placed in them. Comparison of the models is

also possible in terms of their predictive value for an event occurring in the (near)

future. By studying the congruence between the latent class formation when includ-

ing and not including a distal event in the model, the ability of the model to capture

non-ignorable missingness can be studied (see Section 7.1.3).

7.3 Incomplete-data Models for the AAA Study

In this section we describe the MAR and MNAR models that were applied to the

AAA data. The purpose of the analysis was to group patients with similar growth

profiles for the diameter of the artery, therefore a finite-mixture model was used.

7.3.1 Measurement Model

The measurement model was kept common for all MAR and MNAR models. Within

the time range of the follow-up, the diameter of the artery exhibits a linear growth



106 Chapter 7. Sensitivity Analysis for a Growth-Mixture Model

(Figure 3.5). Thus, a linear growth model will be assumed. The likelihood functions

are easily maximized with the latent-variable modeling program Mplus. Hence, we

formulate the growth model as a latent-variable model (see Section 4.2). For class k:

yit|cik=1 = η0i + η1it+ εit, (7.10)

where ci is the latent-class variable. The random-effects distributions vary as a func-

tion of the class k:

η0i|cik=1 = α0k + ζ0i,

η1i|cik=1 = α1k + ζ1i.
(7.11)

The residuals are assumed to be normally distributed with zero mean. The ζi have

a 2× 2 covariance matrix D. The εi a 7× 7 diagonal matrix Σk, the error variances

are assumed to be constant over time.

7.3.2 Missing at Random Model

Model (7.10) reflects the first term in (7.6). This model provides unbiased estimates

when in addition to ignorability, MAR conditional on the latent class holds and miss-

ingness is not influenced by the class.

7.3.3 Missing Not at Random Models

Different modeling frameworks have been proposed to jointly model the outcomes

and the missing-data process. We will in turn discuss selection and pattern-mixture

models. The conventional models and the models incorporating a latent-class variable

ci are presented. Some of these models carry features of shared-parameter models.

7.3.3.1 Selection Modeling

Selection models factorize the full-data likelihood f(y,m) as f(y)f(m|y). The first

factor is the marginal density of the measurement process and the second one the den-

sity of the missingness process, conditional on the outcomes. One often assumes the

following form for the conditional density, proposed by Diggle and Kenward (1994):

logit(mit|yit, yi,t−1) = β0t + β1yit + β2yi,t−1. (7.12)

The probability of missing data at time t depends directly on the repeated measure-

ments at time t as on the preceding measurement. MAR holds if β1 = 0 and β1 6= 0

is an indication of MNAR. A logistic regression could be used to make inference
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about the missing-data mechanism. However, the association between mi and yi is

estimated under distributional assumptions.

This Diggle-Kenward model can be extended to a mixture model by specifying the

following model for the missing-data indicators, conditional on the class:

logit(mit|yit, yi,t−1, cik = 1) = β0tk + β1kyit + β2kyi,t−1, (7.13)

The logistic regression coefficients are allowed to vary across the latent classes. In the

AAA study, this can be important when patients in high-trajectory classes tend to

drop out because of large diameters, and patients in the low class tend to drop out

because of small diameters of the artery. When the influence of yit and yi,t−1 on the

dropout probability varies across time, the model can further be generalized:

logit(mit|yit, yi,t−1, cik = 1) = β0tk + β1tkyit + β2tkyi,t−1. (7.14)

To lower the number of parameters in the model, the parameters β∗tk could be spec-

ified to vary as a linear function of time.

An alternative model was proposed by Beunckens et al. (2008). Their model combines

features from a selection model and a shared-parameter model. Dropout is influenced

by the latent-class variable and the random effects. For the AAA study, we specified

the dependence of dropout on latent class as a linear function of time t and as a

function of the random intercept η0i.

logit(mit|η0i, cik = 1) = β0k + β1kt+ β2kη0i. (7.15)

The selection-model features of these models are given by the (random effects of the)

outcome process influencing the dropout indicators. Given that the dropout indicators

and the diameters outcomes are both influenced by the latent-class variable (and the

random intercept), these models also are of the shared-parameter type.

7.3.3.2 Pattern-mixture Modeling

Pattern-mixture models (Little 1993, 1994) factorize the full-data likelihood f(y,m)

as f(m)f(y|m). This is a mixture density over different populations, each defined

by the observed pattern of missingness. A simple version of f(y|m) was specified by

allowing the random effects of the growth model to vary as a function of the missing-

data indicators. For each dropout pattern, a linear growth model was specified.

yit|mi1, . . . ,miT = η0i + η1it+ εit, (7.16)
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and
η0i|mi1, . . . ,miT = α0 +

∑T
t=1 β0tmit + ζ0i,

η1i|mi1, . . . ,miT = α1 +
∑T
t=1 β1tmit + ζ1i.

(7.17)

The slope of the time effect for patients dropping out after the first visit was set equal

to the slope of patients dropping out after the second visit. The slope is not identified

for patients dropping out after the baseline visit.

An alternative model has been proposed by Roy (2003). Where in the conventional

pattern-mixture models the distributions for the different dropout patterns are mixed,

Roy’s model considers a latent class defined by the missing-data indicators, so that

f(y|m) =
∑
c f(y, c|m) =

∑
c f(y|c)f(c|m). Latent-class membership is specified

as a multinomial logistic regression model, with the missing-data indicators as ex-

planatory variables. The random effects of the measurement outcomes are influenced

by this latent-class variable. So, (7.10) and (7.11) describe the measurement process,

where the class variable ci is determined by the missing-data indicators:

logit(cik = 1|mi1, . . . ,miT ) = γ0 +

T∑
t=1

γtmit. (7.18)

A generalization to this model was proposed by Muthén (2011). Two latent cat-

egorical variables are used. One latent class provides information about the outcome

trajectory classes, the second latent class is based on the dropout pattern. We will

refer to this model as the Roy-Muthén model. Define a latent-class variable cd for

the L dropout groups and a latent-class variable cy for K trajectory classes for the

outcome y. The model is specified by the following equations.

yit|cdil=1,cyik=1 = η0i + η1it+ εit,

η0i|cdil=1,cyik=1 = α0lk + ζ0i,

η1i|cdil=1,cyik=1 = α1lk + ζ1i.

(7.19)

The two latent-class memberships are given by a bivariate loglinear model of the form:

logit(cdil = 1, cyik = 1|mi1, . . . ,miT ) = γ0,dl + γ0,yk + γ0,ydkl +
T∑
t=1

γtlmit. (7.20)

Here, γ0,ydkl capture the correlation between cd and cy. Both latent classes influence

the random effects. However, cy is not influenced by the missing-data indicators. So,

cy represent different trajectories which are moderated by cd within each class of cy.

Hence,

f(y|m) =
∑
cy,cd f(y, cy, cd|m)

=
∑
cy,cd f(y|cy, cd)f(cy, cd|m)

=
∑
cy,cd f(y|cy, cd)f(cd|m)f(cy).

(7.21)
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7.3.3.3 Extended Models

The AAA study contains useful auxiliary information. For each patient, it is known

whether or not s/he underwent surgery. Symptomatic and large aneurysms are con-

sidered for repair by surgical methods when the aneurysm grows more than 1 cm per

year or when it is bigger than 5.5 cm. When patients have an operation they are

removed from the follow-up study. The models discussed in Sections 7.3.2 and 7.3.3

were extended incorporating this information. For this, a logistic regression model

for the operational status was used. So, ui = 1 for patients that underwent surgery

and ui = 0 for patients that did not have an operation. The probability to undergo

surgery was allowed to be different for the classes. This sensitivity analysis, incorpo-

rating the auxiliary information in the models can help in choosing between different

models fitted to the data.

7.4 Results for the AAA study

7.4.1 Missing Data in the AAA Study

Of the 100 patients included in the AAA study only 7 patients had complete data for

all 7 visits, 10 dropped out after the first visit (at 6 months of follow-up), 16 after

the second visit, 21 after the third visit, 7 after the fourth visit, 27 after visit five and

finally 12 patients dropped out after visit 6 (Table 7.1). The diameter of the artery

at visit j can be missing for a multitude of reasons: the patient was not yet j × 6

months in the study, the patient did not show up at the visit for a reason not related

to his/her condition, the patient underwent repair of the artery by surgery, etc. But

it is clear that missingness can depend on the diameter of the artery. The percentage

of dropout is very comparable among the patients that had surgery of the artery and

those who did not (92% versus 93%). Figure 7.1 shows the mean diameter curve for

the patients operated and not operated. The figure also includes the mean diameter

among those who did and did not drop out at the next visit. Among the patients

that had surgery, patients leaving the study early have smaller diameters (although

the number of patients is small) and patients dropping out later in the study are the

ones with larger artery diameter. For the group of patients not having surgery the

mean artery diameter of patients dropping out varies with time in a non systematic

way. The difference in sample mean at visit t between patients dropping out at visit

t+ 1 and patients not dropping out is relatively small.

Figure 7.2 shows, per dropout pattern, the mean diameter curve. Patients not
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Table 7.1: Proportion of obtained measurements per visit — AAA Data.

Visit Time (years) Proportion obtained measurements

1 0 1

2 0.5 0.90

3 1 0.74

4 1.5 0.53

5 2 0.46

6 2.5 0.19

7 3 0.07

dropping out or only at the last visit (visit 7) have smaller diameters than patients

dropping out around visits 5 and 6. The results when applying the models discussed

in Section 7.3 to the AAA data are presented in the next section. For all models, 1 to

4 classes are studied. For some models convergence was not obtained. Some Mplus

sample code and information on computing time can be found in Section 7.7.

7.4.2 MAR model

For the missing at random model, the results are presented in Table 7.2. It is clear

that the 1-class model is performing worse than the multi-class models. Based on the

BIC the two-class model is preferable. The parameter estimates will be unbiased if

MAR conditional on class holds, c does not influence the missingness, and ignorability

holds.

Based on the intercept and slope factors (Table 7.6), these classes could be labeled:

(1) ‘small diameter and slowly growing’, and (2) ‘large diameter and faster growing’.

The variances of the intercepts are relatively large, indicating that even within a

class there still is heterogeneity. This heterogeneity seems to be more pronounced

in class 2. The same is seen in terms of the random slope. So, patients of class 2

differ more in their growth than patients of class 1. For both classes, the covariance

between the random intercept and slope is not statistically significant, indicating

that, conditionally on class-membership, the value of the diameter at the start of the

study and the growth are independent. The two-class growth-mixture model solution

estimated under MAR is shown in Figure 7.5. The entropy is 0.64. Forty percent of

the patients are in the low class showing slow growth of the artery. Sixty percent are

in the high class with faster growing arteries.
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Figure 7.1: Evolution of the (sample) average diameter for patients that were not operated

(upper panel) and for patients that under went surgery (lower panel). At each visit the mean

diameter is also presented according to dropout status at the next visit — AAA Data.
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Figure 7.2: Evolution of the (sample) average diameter per dropout pattern — AAA Data.

7.4.3 MNAR Models

Results of the selection models are also presented in Table 7.2. Multi-class models

were not always converging. The number of parameters in the model becomes large

in comparison with the number of patients in the study. Based on the BIC statistic

the 1-class Diggle-Kenward (DK) model is best. The two-class Beunckens model is

comparable. The estimated mean trajectories for the two-class models are shown in

Figure 7.5. The class of patients with small diameters is estimated to be 70% under

the Diggle-Kenward Model (7.13), 43% under the Diggle-Kenward Model (7.14) and

66% in the Beunckens model.

Results of the pattern-mixture models are presented in Tables 7.2 and 7.3. In

terms of BIC, the two and three class Roy and Roy-Muthén models outperform the

traditional pattern-mixture model. The two-class Roy model is preferable. The esti-

mated mean trajectories for the two-class Roy model are shown in Figure 7.5. The

class of patients with small diameters is estimated to be 44% under the Roy Model.

Table 7.6 presents for the different two-class models the parameter estimates for the
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Table 7.2: Summary of the MAR and MNAR models: number of classes, log-likelihood,

number of parameters and BIC — AAA Data.

Model # classes log(L) # par. BIC

MAR 1 -952.040 6 1932.039

MAR 2 -925.211 13 1910.289

MAR 3 -911.006 20 1914.116

MAR 4 -901.437 27 1927.214

Selection Models:

Diggle-Kenward 1 -1132.386 14 2329.244

Diggle-Kenward Model (7.13) 2 -1128.814 29 2391.178

Diggle-Kenward Model (7.13) 3 -1090.499 44 2383.625

Diggle-Kenward Model (7.13) 4 -1069.043 59 2409.791

Diggle-Kenward Model (7.14) 2 -1105.308 41 2399.428

Diggle-Kenward Model (7.14) 3 -1087.660 62 2460.841

Beunckens Model (7.15) 2 -1122.674 19 2332.846

Beunckens Model (7.15) 3 -1107.441 29 2348.432

Pattern-Mixture Models:

Pattern-mixture -964.797 16 1967.277

Roy 2 -920.584 19 1928.666

Roy 3 -900.032 32 1947.430

Roy 4 -884.476 45 1976.184

Table 7.3: Summary of the Roy-Muthén models: number of classes, log likelihood, number

of parameters and BIC — AAA Data.

Model # cy # cd log(L) # par. BIC

Roy-Muthén 2 2 -917.823 22 1936.960

Roy-Muthén 3 2 -897.564 30 1933.282

measurement model.
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7.4.4 Model Comparision

7.4.5 Posterior Probabilities

Figure 7.3 shows, for the 2-class models presented in Sections 7.4.2 and 7.4.3, the pos-

terior probabilities to be classified into the group with the largest and fastest increasing

diameters. The graph clearly shows that for a number of patients this probability can

change substantially, depending on the dropout model that was chosen.
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Figure 7.3: Posterior probability to be classified into the group with the largest and fastest

increasing diameters, for the two-class models presented in Table 7.6. Posterior probabilities

between the dashed horizontal lines (at 0.45 and 0.55) indicate large uncertainty in classifi-

cation — AAA Data.

Table 7.4 shows the agreement in classification in low versus high class for the dif-

ferent models. The table presents the Kappa statistic and the percentage of patients

classified in the same class (high or low). Cohen’s Kappa coefficient is a statistical

measure of inter-rater agreement for categorical items. This measure takes into ac-

count the agreement occurring by chance. According to Fleiss (1981), Kappa over .75

characterize excellent agreement, values between .40 to .75 indicate fair to good agree-

ment, and Kappa below .40 point to poor agreement. These guidelines are, however,
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Table 7.4: Kappa statistic (κ) and percentage of patients in the same class for the two-class

models presented in Table 7.6 — AAA Data.

Kappa statistic % patients in same class

MAR DK DK Beunckens Roy MAR DK DK Beunckens Roy

(7.13) (7.14) (7.13) (7.14)

MAR 1.00 0.44 0.69 0.51 0.88 100 70 85 74 94

DK (7.13) 1.00 0.38 0.86 0.50 100 67 91 74

DK (7.14) 1.00 0.41 0.70 100 69 85

Beunckens 1.00 0.58 100 78

Roy 1.00 100

arbitrary. Based on these measures, we conclude that the classification according to

MAR and Roy’s model are very similar, also that Diggle-Kenward Model (7.13) and

Beunckens’ model result in very similar classifications of the patients. Figure 7.3 also

reveals how certain the classification in the low or high group is. Posterior probabilities

between 0.45 and 0.55 indicate that it is uncertain to which group the patient should

be classified. Some patients have posterior probabilities in this region, and therefore

it is expected that they can switch group when changing dropout model. However,

for a number of patients, the classification according to MAR, Diggle-Kenward Model

(7.14) and Roy’s model is clearly into the high group (posterior probability > 0.6)

where, according Diggle-Kenward Model (7.13) and Beunckens model, it is clearly in

the low group (posterior probability < 0.6).

As a result of the susceptibility of the posterior probability to the chosen dropout

model, it is seen that the number of patients classified in the low or high class, based

on their most likely latent-class membership, strongly depends on the assumptions

made. Under the MAR assumption 40% of the patients are classified in the lowest

latent class, under the Diggle-Kenward Model (7.13) this increases to 70% (Table 7.5).

Sixty patients out of a total of 100 are always classified into the same latent class,

irrespective of the assumptions made for the missing-data mechanism. Using the

classification resulting from the MAR model, we see that the effect of the chosen

missing-data mechanism on the posterior probability is smaller for the patients in the

low group as compared to the ones in the high group. Of the 60 patients belonging to

the group with larger diameter, only 26 (43%) are always classified into the high group

for the selection and pattern-mixture models under consideration. Patients classified

in the low group almost always (34 out of 40, 85%) end up in the low group.
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Table 7.5: Class sizes, entropy, and average posterior probability for the two-class MAR

and MNAR models — AAA Data.

Model Low Class High Class Entropy Average post. prob.

Low Class High Class

MAR 40 60 0.640 0.88 0.90

DK(7.13) 70 30 0.890 0.99 0.94

DK(7.14) 43 57 0.665 0.89 0.91

Beunckens (7.15) 66 34 0.787 0.97 0.88

Roy 44 56 0.662 0.87 0.92

Figure 7.4 graphically shows the relationship between the random slope and ran-

dom intercept. Empirical Bayes estimates for the random effects were obtained for

the two-class MAR model. The figure shows this relationship by dividing the patients

into two groups. A group of patients that, irrespective of the chosen dropout model,

is always classified into the high or low class and a second group of patients whose

classification does depend on the assumptions made for the missing-data mechanism.

For the patients always classified in the same latent class, i.e., always in the low or al-

ways in the high class, the Spearman correlation coefficient between the random slope

and intercept equals 0.73 (p< 0.001). For the patients whose classification depends

on the chosen dropout model the correlation equals -0.17 (p=0.285). It is thus seen

that the relation between a patients’ intercept and slope goes in the reverse direction

for the two groups. The second group consists of patients with small and fast growing

arteries and patients with large but slowly growing arteries.
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Figure 7.4: Empirical Bayes estimates for random intercept and random slope, under the

two-class MAR model. Patients always classified in same latent class are represented by

triangles and dashed line, patients whose classification depends on the chosen dropout model

are represented by dots and full line — AAA Data.
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7.4.6 Parameter Estimates

The choice of the dropout model also influences the parameter estimates for the fixed

effects. Compared with the model assuming MAR, the largest effect on the intercept

and slope is seen in Diggle-Kenward Model (7.13) and the Beunckens Model (Table

7.6). The differences in the fixed effects between the models is most pronounced for

the latent class with largest and fastest increasing diameters. The class-specific mean

evolution for the two latent classes, under the different missing-data mechanisms, are

graphically presented in Figure 7.5. The variance of the random intercept for the high

class in the Diggle-Kenward Model (7.13) and in the Beunckens model is much smaller

then this variance component in the other models, indicating that these models result

in more homogeneous latent classes in terms of the arteries diameter at the start of

the study. The other variance components (variance of the random slope, covariance

of random intercept and slope, and the residual variance) under the different models

did not change substantially.

Choosing between these models is difficult. All these models contain unidentifiable

parts, which rely completely on assumptions that are not testable from the observed

data. The log-likelihoods of MAR, pattern-mixture and selection models cannot be

compared. Only comparison of log-likelihoods and BIC within the same family is

informative. The models can, however, be compared in terms of their predictive value

for a distal event. This is studied in Section 7.4.7.

7.4.7 Extended Models

The two-class models for the AAA study discussed in Sections 7.4.2 and 7.4.3 were

extended with a logistic regression model for the operational status. So, ui=1 for

patients that underwent surgery and ui=0 for patients that did not have an operation.

Overall, 26% of the patients underwent surgery. This probability was allowed to be

different for the 2 classes by adding one additional parameter to the models.

Figure 7.5 shows the mean curves for the two-class models as discussed in Sec-

tions 7.4.2 and 7.4.3. The trajectories estimated under the original model and the

extended versions, including the distal event, are presented in the same graph. In

general, the extended versions retain the trajectory shapes. The Beunckens model

performs worse. For this model, it is also noted that the number of patients classified

in the highest class decreases from 34% under the original model to 20% under the ex-

tended version (Table 7.9). With the exception of the Diggle-Kenward Model (7.13),

the proportion of patients classified in the high class is lower for the extended model
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Figure 7.5: Estimated average trajectories under the MAR and MNAR two-class models

(original model and the extended version to include a distal event) — AAA Data.
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Table 7.7: Class sizes, entropy and average posterior probabilities for the extended two-class

MAR and MNAR models — AAA Data.

Model Low Class High Class Entropy Average post. prob.

Low Class High Class

MAR 44 56 0.665 0.87 0.91

Diggle-Kenward Model (7.13) 70 30 0.889 0.99 0.92

Diggle-Kenward Model (7.14) 53 47 0.733 0.89 0.96

Beunckens Model (7.15) 80 20 0.884 0.98 0.96

Roy 48 52 0.718 0.90 0.94

as compared with the original model. Table 7.8 shows the transitions between low and

high classes for the original and extended models. The percentage of patients that

underwent surgery is also given. As noted before, transition from the low to the high

class is not as frequent as the opposite transition. The few transitions from the low

class in the original model to the high class in the extended model occur for patients

that underwent surgery. None of the patients being classified in the high class in the

original model and in the low class in the extended model, except one, underwent an

operation.
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Table 7.8 also displays Kappa statistics and the percentage of patients classified

in the same class, measuring the agreement between the classification according to

the original and extended versions of the MAR and MNAR models. Diggle-Kenward

Model (7.13) and Roy’s model have κ values of about 0.9 and more than 90% of pa-

tients are classified in the same class under the original and extended model, pointing

to very good agreement. The κ values for the other models are not too bad, but

clearly Diggle-Kenward Model (7.13) and Roy’s model stand out. This shows that

the original Diggle-Kenward Model (7.13) and Roy’s model are best capturing the

potential for non-random missingness.

The predictive power of these extended models is presented in Table 7.9. For all

models, the lowest class is clearly a group of patients not needing surgery. In terms of

the probability to undergo surgery, for the patients being classified in the high class,

Diggle-Kenward Model (7.13) and Beunckens’ models perform best. When classified in

the high class according to the Beunckens’ extended model, the probability the patient

needs surgery is 86%. In summary, for Diggle-Kenward Model (7.13) we see that the

Table 7.9: Estimated probability to undergo surgery given latent-class membership under

two class MAR and MNAR models — AAA data.

Low Class High Class

Extended Model p(u = 1) p(u = 1)

MAR 0.05 0.44

Diggle-Kenward Model (7.13) 0.08 0.74

Diggle-Kenward Model (7.14) <0.01 0.52

Beunckens Model (7.15) 0.11 0.86

Roy 0.06 0.45

shape of the latent trajectories is kept, that the proportion of patients classified in

the latent classes stays the same for the original and extended model and that this

model has reasonably good predictive power for the distal event (Table 7.9). Almost

three out of four patients classified in the high class underwent surgery, whereas

only 8 percent of the patients from the low class underwent surgery. The entropy

of this models equals 0.89, indicating that the two latent classes are well separated.

Therefore we conclude that the Diggle-Kenward Model (7.13) likely best captured the

missingness mechanism.
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7.5 Discussion and Conclusion

In this chapter, a number of models for non-random missingness were fitted to the

abdominal aorta aneurysm data. Similarities in terms of the trajectory shapes are

seen, irrespective of the model chosen for dropout. The division of patients in two

latent classes, however, changed substantially. This phenomenon has been studied by

a number of authors in specific data and model settings.

Verbeke and Molenberghs (2000) applied selection models of the Diggle-Kenward

type to the so-called toenail dermatophyte onychomycosis (TDO) data. They consid-

ered a measurement model including a serial component. This model was expanded

to also include measurement error. Both selection models and a MAR model result in

very comparable estimated mean profiles and non-significant treatment effects. The

sensitivity of the selection model is, however, seen in the estimated correlation matrix.

Inclusion of measurement error results in higher estimated correlations, as compared

to only including serial correlation. This directly has an effect on the dropout model.

The current observation is less needed for predicting dropout, once the previous ob-

servation is known. This analysis clearly shows that finding an appropriate covariance

model is important when dropout is present.

Kenward (1998) presented maximum likelihood estimates of random and non-

random dropout models, deleting a different set of influential observations from the

Mastitis in Dairy Cattle data. He noted that the influence of the deletion scheme on

the measurement model parameters is small. The estimates for the dropout model,

however, changed substantially.

A unifying framework was presented by Verbeke and Molenberghs (2010), bringing

together the frameworks of coarse data (e.g., missing data, censoring, grouping) and

augmented data (e.g., latent classes, latent variables, random effects, mixture model

membership). The term coarse data is reserved for settings where the observed data

are less refined than what ideally might have been observed. The authors refer to

augmented data when convenience or interpretation-enhancing structures are added

to the data, without being observable. These authors term this unification as data

enrichment and showed that every model for enriched-data settings can be factored as

a product of two components. The first one, the marginal model, is fully identifiable

from the observed data. The second one, the predictive model, i.e., the conditional

distribution of the enriched data given the observed data cannot be identified from the

data without additional, non-verifiable model assumptions. To a large extent, infer-

ences purely in terms of the marginal models (e.g., treatment effects), are unaffected

by enrichment, whereas others, such as empirical Bayes estimates or conclusions based
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on latent-class membership, strongly depend on assumptions made.

This stresses the need for sensitivity analysis. Rather than fitting a single model

and putting belief into it, it is advisable to consider a set of alternative models and

asses how vulnerable the results are to the choices made. This has been done for the

AAA study in this chapter. However when results turn out to be sensitive to the

assumptions made (e.g., with respect to the missing-data mechanism) it is hard to

choose between these models since they all rely on non-verifiable assumptions.

In this chapter, model validation was done by incorporating a so-called distal event

in the model. A distal event is an ultimate outcome that relates to the growth curves

studied. The relationship between the latent-class membership and the distal event

provides a predictive validity check of the latent classes. Furthermore, the congruence

between the latent class formation when not including versus including the distal event

in the model is a measure for the ability of the original model to capture non-ignorable

missingness.

For the AAA study, the fact whether or not a patient had surgery of the artery was

used as auxiliary information in the model. We conclude that the Diggle-Kenward

Model (7.13) is preferable. The model has good predictive power for a patients’

need to undergo surgery. The trajectories described by the original and extended

model Diggle-Kenward Model (7.13) are very similar; and they result in the same

classification of the patients. Given these results we conclude that the Diggle-Kenward

Model (7.13) picked up best the missingness mechanism.

7.6 Addendum 1: Performance of Information Cri-

teria in the Presence of Missing Data

In this chapter, the decision on the optimal number of components in the mixture

model was based on the BIC. However, deciding on the number of components in a

mixture model is a difficult task, which has not yet been completely resolved. Often,

the problem of determining the optimal value for K is separated from estimating the

parameters of the component distributions for a fixed K. Two main approaches are

being used to decide on the order of a mixture model. A likelihood-ratio statistic can

be used to test the null hypothesis H0 : K = k0 versus H1 : K = k1 for some k1 > k0.

Unfortunately, in the case of mixture models, regularity conditions do not hold for the

likelihood-ratio test (LRT) statistic, and the asymptotic null distribution is no longer

a χ2-distribution. Lo, Mendell and Rubin (2001) approximated the LRT-distribution

and McLachlan and Peel (2000) proposed a re-sampling approach to the assessment
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of the p-value of the LRT.

The second approach - and most often used in applied research - to estimate the

order of a mixture model is based on penalized information criteria. The likelihood

increases with the addition of components to the mixture model and therefore needs

to be corrected by a term to penalize for model complexity (the number of estimated

parameters in the model). A wide variety of such criteria exists, but the Akaike

information criterion (AIC, Akaike, 1974), the Bayesian information criterion (BIC,

Schwarz, 1978) and the sample-size adjusted BIC (aBIC, Sclove, 1987) are among the

ones most commenly used. Although AIC and (a)BIC both are penalized goodness-

of-fit criteria, the motivation behind them is different.

Akiake’s Information Criterion selects the model that minimizes

−2logL(θ̂) + 2p

where p is equal to the total number of parameters in the model. This criterion is

based on the Kullback-Leibler (1951) discrepancy between the true density f(y) and

its modelled approximation f(y; θ̂).

The Bayesian Information Criterion selects the model that minimizes

−2logL(θ̂) + plog(N).

The Bayesian information criterion is derived within a Bayesian framework for model

selection. The penalty for model complexity increases as the sample size increases.

Sclove (1987) proposed to replace N by (N+2)/24. Adding the sample size correction

reduces the sample size penalty, and should lead to better performance in case of either

a large number of parameters or small sample size (Yang, 2006). Thus the sample

size adjusted BIC, aBIC, equals:

−2logL(θ̂) + plog

(
N + 2

24

)
.

BIC is consistent (Haughton, 1988), so it tends to select the correct model more

frequently when sample size increases. AIC on the other hand is not consistent

(Woodruffe, 1982). AIC is an asymptotically efficient model selection criterion. This

means that for N →∞, with probability approaching one, the model with the mini-

mum AIC score will also possess the smallest Kullback-Leibler divergence.

The performance of the AIC and BIC criterion have been investigated in the

mixture context. AIC tends to overestimate the correct number of components

(Soromenho, 1993; Celeux and Sormenho, 1996). Fraley and Raftery (1998) note

that there is considerable support for the use of BIC in the mixture situation.
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Although these model selection criteria have been evaluated by many researchers,

less is known about the performance in a missing-data setting. Model selection cri-

teria typically depend on the likelihood function based on the observed data. For

missing-data problems this observed data likelihood function can be complicated and

without a closed form. Hence, it is challenging to get an accurate approximation of the

observed data likelihood and to compute AIC and BIC. Ibrahim et al. (2008) present

a general class of information criteria for missing-data problems, which yields the

Akaike and Bayesian information criteria as special cases. Cavanaugh and Shumway

(1998) introduce an Akaike information criterion for model selection in the presence

of incomplete data.

Ibrahim et al. use the fact that the observed data log-likelihood can be expressed

as the difference between two functions, the Q-function of the EM algorithm and a

quantity called the H-function. The H-function can be analytically approximated,

and can then be computed as part of the EM output. The resulting criteria ICH̃(k),Q

depend solely on the EM output. Cavanaugh and Shumway develop an AIC criterion

based on the complete data Kullback-Leibler discrepancy, instead of the discrepancy

based on the incomplete data. They show that the complete-data discrepancy is

potentially more sensitive than the incomplete-data discrepancy to deviations from

the true θ.

In this section we will describe the performance of the traditional information criteria

AIC, aBIC, and BIC in a modest simulation exercise.

7.6.1 Settings for the Simulations

Data were generated for 4 different settings, each consisting of a mixture of two latent

classes with equal class probability. Repeated measurements at four time points were

generated assuming linear individual trajectories. Residual variances were normally

distributed, homoscedastic, uncorrelated and class invariant. Also the residual vari-

ances of the growth factors (random intercept and slope) were specified to be normally

distributed, invariant across the latent classes, and with a zero covariance between

the growth factors. The values specified for the growth parameters and their vari-

ances are presented in Table 7.10. The trajectory for class 1 represents an increasing

trend over time, class 2 represents a zero growth class. The standardized between-

class differences for the intercept and slope is largest for setting 1. The standardized

between-class differences are the same for settings 3 and 4, but the percentage of ex-

plained variance by the growth factor is largest for setting 3 (80% versus 60%). The
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sample size, for each simulated data set, was fixed to be either 100 or 500. For each

setting, 500 data sets were generated.

Table 7.10: Growth Mixture Model Specifications: Growth Factors.

Class 1 Class 2

Intercept Slope Intercept Slope Residual Variance

Setting (variance) (variance) (variance) (variance)

1 100 4.7 89 0 10

(20) (5) (20) (50)

2 100 4.7 89 0 15

(50) (10) (50) (10)

3 100 3.16 93 0 15

(50) (10) (50) (10)

4 100 3.16 93 0 40

(50) (10) (50) (10)

For the follow-up visits, missing observations were introduced according to the

following models:

1. logit(mit = 1) = γ;

2. logit(mit = 1) = γ + δyit.

Model 1 corresponds to MCAR and Model 2 will result in data to be MNAR. Values

used for γ and δ are given in Table 7.11. Figure 7.6 displays the amount of missing

data, introduced by the models specified above, for each of the considered settings.

The MCAR mechanism results in data such that the amount of missing data in the

follow-up measurements is constant and about equal to 27%. The MNAR setting

specifies the probability for a missing observation to depend on the unobserved value

of yit. Under MNAR-1 the model introducing missing data is common for class 1 and

2. Setting MNAR-2, specifies a different missing-data model for class 1 and 2. For

class 1, the probability for a missing observation is larger for large values of y, for

class 2 the probability for an observation to be missing decreases as a function of y.

For the zero-growth class (i.e., class 2) the proportion of missingness is constant over

time. For class 1, the proportion of missingness increases over time (given the positive

growth and positive slope parameter in the MNAR model). Figure 7.7 displays the



7.6. Addendum 1: Performance of Information Criteria in the Presence of
Missing Data 129

Table 7.11: Growth Mixture Model Specifications: Missing Data Model.

Class 1 Class 2

Setting γ δ γ δ

MCAR -1 0 -1 0

MNAR - 1 -12 0.1 -12 0.1

MNAR - 2 -12 0.1 7 -0.1

observed average profiles and a ± two standard deviations interval under the different

settings.

7.6.2 Performance of the IC

Data generation and model estimation were done with the Monte Carlo facilities in

Mplus. A maximum of 5000 iterations was used for convergence of the mixture models.

Nonconvergence occurred because of a singular information matrix. Starting values

were chosen to be close to the values specified to generate the data. Convergence

rates are given in Table 7.12.

We looked at the performance of the information criteria for one- through three-

class models and identified the model were the lowest value was observed. The settings

with non-ignorable missing data (MNAR-1 and MNAR-2) were analysed twice. Once

ignoring the missing-data process, i.e., assuming MAR under ignorability, and once

entertaining the selection model that was used to generate the data. The summary is

displayed in Tables 7.13 and 7.14. For example, for the complete data sets, generated

under setting 3 with a sample size of 500, we note that BIC identifies the correct

number of classes 40% of the times; aBIC and AIC identify the correct number of

classes about 80% of the times.

Although this simulation study is too limited to overly generalize, a few results are

worth mentioning.

We first consider the situation with a sample size of N=500. Not surprisingly, for

the complete data settings the information criteria behave as expected based on theory

and previous simulation studies. For settings 1 and 2, i.e., the settings considering

reasonably well separated classes, all information criteria are able to identify the

correct number of classes (i.e., 2). More overlap between the classes is present in
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settings 3 and 4, and as a result the rate at which the correct number of classes is

identified decreases. In general the penalty term in BIC is larger than in AIC (for N

> 8), therefore BIC tends to underestimate the number of classes and AIC tends to

overestimate.

For settings 1 and 2, the performance of the IC, when 20% of the follow-up data

is missing completely at random, is comparable with the performance under the com-

plete data setting. When the overlap between the clusters is larger (settings 3 and 4),

the loss of information is reflected in a slight reduction in the performance of the IC

(as seen by the more frequent underestimation of the number of clusters).

When considering the settings with non-ignorable missing data (MNAR-1 and

MNAR-2), analysed by means of a selection model, we see that BIC is performing

best at identifying the true number of latent classes, but also aBIC and AIC perform

reasonably well.

For well separated data settings (settings 1 and 2), the MAR analysis under ignor-

ability for the MNAR generated data seems to identify the correct number of classes.

But since missingness was generated to be non-ignorable, the obtained estimates for

the cluster specific growth factors are biased. Table 7.15 diplays the coverage rates for

all parameters under the different settings. Data generated under setting 3, MNAR-1,

and N = 500 results in a coverage rate of 41% for the slope parameter of class 1 when

missingeness is assumed to be ignorable. When a selection model is assumed during

clustering, the coverage rate turns out to be 93.4%.

Similar conclusions can be drawn for a sample size of 100. When the classes are

well separated, BIC performs best, while for settings 3 and 4 AIC and aBIC more fre-

quently select the correct number of classes. Missing data that is missing completely

at random results in a reduced performance of the information criteria for settings

3 and 4 (i.e., more overlap between the classes). When data is MNAR, all informa-

tion criteria perform well in identifying the correct number of classes by means of

a selection model. Results from a MAR analyses results in biased estimates for the

class-specific slopes.

In this inelaborate simulation study, simplifying assumptions were made and a lim-

ited range of settings was considered. Linear profiles over times were assumed for

two equally sized latent classes. Residual variances and the variance-covariance of the

growth factors were specified to be class-invariant. The missing-data model consid-

ered is very simple and more elaborate models can easily be imagined. In fact, this

simulation study investigates the performance of the information criteria for incom-

plete data settings, to correctly identify the number of latent classes, given that the
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correct data and missing-data models are used.

The results should thus be interpreted very cautiously.
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Table 7.12: Convergence rates (number out of 500 runs).

Data Complete MCAR MNAR - 1 MNAR - 2

# classes Model MAR Selection MAR Selection

Setting 1 - N=500

1 500 500 500 500 500 500

2 500 500 50 500 500 500

3 489 495 488 497 493 476

Setting 2 - N=500

1 500 500 500 500 500 500

2 500 500 500 500 500 500

3 495 498 499 500 496 474

Setting 3 - N=500

1 500 500 500 500 500 500

2 500 500 500 500 500 500

3 490 485 490 483 481 476

Setting 4 - N=500

1 500 500 500 500 500 500

2 500 500 500 500 500 500

3 493 483 485 487 482 473

Setting 1 - N=100

1 500 500 500 500 500 500

2 500 500 50 500 500 500

3 496 497 497 500 499 472

Setting 2 - N=100

1 500 500 500 500 500 500

2 500 500 500 500 500 500

3 500 499 500 500 496 478

Setting 3 - N=100

1 500 500 500 500 500 500

2 500 499 500 500 500 500

3 490 481 480 495 479 466

Setting 4 - N=100

1 500 500 500 500 500 500

2 500 500 500 500 500 498

3 489 485 481 487 474 469
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7.7 Addendum 2: Mplus Sample Code

This appendix presents Mplus data format and Mplus commands to execute the mix-

ture models for the AAA study discussed in see Tables 7.2 and 7.6.

7.7.1 Data Format

Mplus data files are ASCII text files. The example below contains the first 5 patients

of the AAA study (AAA.dat). Each row contains the information for a patient, i.e,

the diameter at the seven visits and a missing-data indicator. The values for each of

the variables are separated by a delimiter (here a blank was used) and the variable

names are not on the first line. Missing observations were denoted by a ∗.

41 43 43 43 43 44 44 0 0 0 0 0 0

41 41 43 42 43 43 42 0 0 0 0 0 0

33 32 37 36 36 41 * 0 0 0 0 0 1

45 46 48 52 52 * * 0 0 0 0 1 1

32 32 33 34 35 34 36 0 0 0 0 0 0

7.7.2 Mplus Programs

Mplus command input files (.inp) for the two-class models presented in Tables 7.2

and 7.6 are given in the following sections.

7.7.2.1 MAR Model

TITLE: AAA DATA : MODEL TABLE 6.2 - MAR WITH 2 CLASSES

!provide title for analysis

DATA: FILE = C:\AAASTUDY\AAA.DAT;

!datafile to be used

VARIABLE:

NAMES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7

U2 U3 U4 U5 U6 U7;

!assign names to variables in the data set

USEVARIABLES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7;

!specifies which variables to use in the analysis

MISSING= * ;

CLASSES = C(2);

!assigns a name to the latent categorical variable in the model,

!and the number of components in the mixture

ANALYSIS:

TYPE=MIXTURE;

!specifies a mixture model for the analysis
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STARTS= 50 20;

!50 initial stage random sets of starting values and

!20 final stage optimizations are used

COVERAGE = 0.05;

!mimimum acceptable proportion of cases that contribute

!in calculation of variance/covariance

MODEL:

%OVERALL%

!describes part of the model that is common to all components

I S | Y1@0 Y2@0.5 Y3@1 Y4@1.5 Y5@2 Y6@2.5 Y7@3;

%C#1%

!component specific specifications

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES1);

I (I1); S (S1); I WITH S (IS1);

%C#2%

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES2);

I (I2); S (S2); I WITH S (IS2);

SAVE: FILE IS C:\AAASTUDY\MAR2_CP.DAT;

FORMAT IS FREE;SAVE=CPROBABILITIES;

7.7.2.2 DK Model (7.13)

TITLE: AAA DATA : MODEL TABLE 6.2 - DK MODEL (6.13) WITH 2 CLASSES

DATA: FILE = C:\AAASTUDY\AAA.DAT;

VARIABLE:

NAMES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7

U2 U3 U4 U5 U6 U7 ;

USEVARIABLES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7

D2 D3 D4 D5 D6 D7 ;

MISSING = *;

CATEGORICAL = D2 D3 D4 D5 D6 D7;

CLASSES = C(2);

DEFINE:

D7=0; D6=0; D5=0; D4=0; D3=0; D2=0; D1=0;

IF(U7 EQ 1) THEN D7=1;

IF(U7 EQ 1 AND U6 EQ 1) THEN D6=1;

IF(U7 EQ 1 AND U6 EQ 1) THEN D7=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1) THEN D5=1;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1) THEN D6=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1) THEN D7=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1) THEN D4=1;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1) THEN D5=_MISSING;
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IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1) THEN D6=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1) THEN D7=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D3=1;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D4=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D5=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D6=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D7=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D2=1;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D3=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D4=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D5=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D6=_MISSING;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D7=_MISSING;

ANALYSIS:

TYPE=MIXTURE;

STARTS= 50 20;

COVERAGE =0.05;

ALGO=INT;

INTEGRATION=MONTECARLO;

MODEL:

%OVERALL%

I S | Y1@0 Y2@0.5 Y3@1 Y4@1.5 Y5@2 Y6@2.5 Y7@3;

D2 ON Y1 Y2 ; D3 ON Y2 Y3 ; D4 ON Y3 Y4 ;

D5 ON Y4 Y5 ; D6 ON Y5 Y6 ; D7 ON Y6 Y7 ;

%C#1%

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES1);

I (I1); S (S1); I WITH S (IS1);

D2 ON Y1 (BETA21); D2 ON Y2 (BETA11);

D3 ON Y2 (BETA21); D3 ON Y3 (BETA11);

D4 ON Y3 (BETA21); D4 ON Y4 (BETA11);

D5 ON Y4 (BETA21); D5 ON Y5 (BETA11);

D6 ON Y5 (BETA21); D6 ON Y6 (BETA11);

D7 ON Y6 (BETA21); D7 ON Y7 (BETA11);

%C#2%

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES2);

I (I2); S (S2); I WITH S (IS2);

D2 ON Y1 (BETA22); D2 ON Y2 (BETA12);

D3 ON Y2 (BETA22); D3 ON Y3 (BETA12);

D4 ON Y3 (BETA22); D4 ON Y4 (BETA12);

D5 ON Y4 (BETA22); D5 ON Y5 (BETA12);

D6 ON Y5 (BETA22); D6 ON Y6 (BETA12);

D7 ON Y6 (BETA22); D7 ON Y7 (BETA12);
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7.7.2.3 DK Model (7.14)

This model can be obtained by making the following changes to the model for DK

(7.13):

• allow the coefficients in the logistic regression of di on yi and yi−1 to be class

and time specific,

• specify the intercept in the logistic regression model of di as a linear function of

time.

The class specific description, for example for class C#1, in the Mplus program has
to be changed as follows:

MODEL:

%C#1%

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES1);

I (I1); S (S1);I WITH S (IS1);

D2 ON Y1 Y2 ; D3 ON Y2 Y3 ; D4 ON Y3 Y4 ;

D5 ON Y4 Y5 ; D6 ON Y5 Y6 ; D7 ON Y6 Y7 ;

[D2$1] (P2); [D3$1] (P3); [D4$1] (P4);

[D5$1] (P5); [D6$1] (P6); [D7$1] (P7);

MODEL CONSTRAINT:

NEW(G1);

P3 = P2+G1*.5;

P4 = P2+G1*1;

P5 = P2+G1*1.5;

P6 = P2+G1*2;

P7 = P2+G1*2.5;

7.7.2.4 Beunckens Model

To obtain model (7.15) the model command in the Mplus program should be specified
as follows:

MODEL:

%OVERALL%

I S | Y1@0 Y2@0.5 Y3@1 Y4@1.5 Y5@2 Y6@2.5 Y7@3;

D2 ON I; D3 ON I; D4 ON I;

D5 ON I; D6 ON I; D7 ON I;

%C#1%

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES1);

I (I1); S (S1); I WITH S (IS1);

[D2$1] (P2); [D3$1] (P3); [D4$1] (P4);

[D5$1] (P5); [D6$1] (P6); [D7$1] (P7);

D2 ON I(1); D3 ON I(1); D4 ON I(1);
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D5 ON I(1); D6 ON I(1); D7 ON I(1);

%C#2%

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES2);

I (I2); S (S2); I WITH S (IS2);

[D2$1] (P12); [D3$1] (P13); [D4$1] (P14);

[D5$1] (P15); [D6$1] (P16); [D7$1] (P17);

D2 ON I(2); D3 ON I(2); D4 ON I(2);

D5 ON I(2); D6 ON I(2); D7 ON I(2);

MODEL CONSTRAINT:

NEW(G1 G2);

P3 = P2+G1*.5;

P4 = P2+G1*1;

P5 = P2+G1*1.5;

P6 = P2+G1*2;

P7 = P2+G1*2.5;

P13 = P12+G2*.5;

P14 = P12+G2*1;

P15 = P12+G2*1.5;

P16 = P12+G2*2;

P17 = P12+G2*2.5;

7.7.2.5 Roy Model

TITLE: AAA DATA : MODEL TABLE 6.2 - ROY MODEL WITH 2 CLASSES

DATA: FILE = C:\AAASTUDY\AAA.DAT;

VARIABLE:

NAMES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7

U2 U3 U4 U5 U6 U7 ;

USEVARIABLES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7

D2 D3 D4 D5 D6 D7 ;

MISSING = *;

CLASSES = C(2);

DEFINE:

D7=0; D6=0; D5=0; D4=0; D3=0; D2=0; D1=0;

IF(U7 EQ 1) THEN D7=1;

IF(U7 EQ 1 AND U6 EQ 1) THEN D6=1;

IF(U7 EQ 1 AND U6 EQ 1) THEN D7=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1) THEN D5=1;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1) THEN D6=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1) THEN D7=0;
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IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1) THEN D4=1;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1) THEN D5=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1) THEN D6=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1) THEN D7=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D3=1;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D4=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D5=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D6=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1) THEN D7=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D2=1;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D3=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D4=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D5=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D6=0;

IF(U7 EQ 1 AND U6 EQ 1 AND U5 EQ 1 AND U4 EQ 1 AND U3 EQ 1 AND U2 EQ 1) THEN D7=0;

ANALYSIS:

TYPE=MIXTURE;

STARTS= 50 20;

COVERAGE =0.05;

MODEL:

%OVERALL%

I S | Y1@0 Y2@0.5 Y3@1 Y4@1.5 Y5@2 Y6@2.5 Y7@3;

C ON D2-D7;

%C#1%

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES1);

I (I1); S (S1); I WITH S (IS1);

%C#2%

Y1 Y2 Y3 Y4 Y5 Y6 Y7 (VARRES2);

I (I2); S (S2); I WITH S (IS2);

7.7.3 Computing Time

The time needed to execute the MAR and MNAR models specified in this appendix

are given in Table 7.17. Mplus version 5 was used, on a Dell latitude with 16 GB of

RAM and 2.70GHz CPU.
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Table 7.17: Computing time (min:sec) for the MAR and MNAR models - AAA Data.

Model # classes Elapsed Time

MAR 1 00:00

MAR 2 00:00

MAR 3 00:02

MAR 4 00:04

Selection Models:

Diggle-Kenward 1 01:03

Diggle-Kenward Model (7.13) 2 03:02

Diggle-Kenward Model (7.13) 3 06:41

Diggle-Kenward Model (7.13) 4 18:30

Diggle-Kenward Model (7.14) 2 08:42

Diggle-Kenward Model (7.14) 3 16:12

Beunckens Model (7.15) 2 01:24

Beunckens Model (7.15) 3 02:55

Pattern-Mixture Models:

Pattern-mixture 00:07

Roy 2 00:03

Roy 3 00:09

Roy 4 00:17





Chapter 8
Local Influence Diagnostics for a

Growth-Mixture Model

8.1 Introduction

Outlying and influential observations impact the performance of many clustering al-

gorithms and also the performance of model-based clustering. Methods for identifying

outliers in a finite-mixture model have been described in the literature. Approaches

to identify influential observations are less common.

For hierarchical cluster analysis of multivariate data, Jolliffe et al. (1995) pro-

pose measures that allow quantification of the influence of a single observation on

the clustering process. Prediction of observations with no effect and those with the

greatest effect are done by the minimum spanning tree and the number of neighbours

of each observation. Starting from a single-link dendogram, a subgraph completely

linking all observations in the dendogram, without any closed loops, and minimizing

the sum of the dissimilarities corresponding to the linked observations is constructed.

This subgraph is called a minimum spanning tree. It turns out that observations

with little effect are at the terminal points of the minimum spanning tree, and obser-

vations with the most edges are the most influential ones. Kim et al. (2000) discuss

interactively visualizing hierarchical clustering using multidimensional scaling and the

minimal spanning tree to detect influential observations. Cheng and Milligan (1996)

consider a single data point to be influential when different cluster partitions result

from the removal of the observation from the data set. They provide measures to

147
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quantify the influence of a data point and investigate the nature of the influence,

whether beneficial or detrimental to the clustering.

Methods for detecting influential observations in nonhierarchical cluster analysis have

been studied by Cerioli (1998) and Cuesta-Albertos et al. (1997). Cerioli (1998)

compares the reference partition obtained for the complete data with the partition

obtained after deleting a single case, using the same clustering algorithm. Via a fast

forward search algorithm the multivariate observations are ordered from those most

in agreement with a specified clustering structure to those least in agreement with

it. Identification of multiple outliers and influential observations is then possible via

simple graphical displays. Their procedure is not affected by masking and swamping

problems. An outlier masks a second outlier, if the second outlier can be considered

as an outlier only by itself, but not in the presence of the first outlier. An outlier

swamps a second observation, if the latter can be considered as an outlier only in the

presence of the first one. Cuesta-Albertos et al. (1997) describe a procedure, called

trimmed K-means, to robustify the K-means clustering algorithm. The idea of the

trimmed K-means is that the outliers should be discarded or trimmed in the calcu-

lation of cluster centers. For model-based clustering algorithms, outlier detection is

studied by McLachlan and Peel (2000) and by Wang et al. (1997). McLachlan and

Peel (2000) used the Mahalanobis distance to decide if a suspicious observation is

genuinely outlying for all groups in the finite-mixture model. Wang et al. (1997) pro-

posed a modified likelihood-ratio test, comparing a model built with all observations

included, and a model based on all observations excluding the tested observation.

Identification of influential observations in model-based clustering algorithms has, to

our knowledge, not yet been described. In this chapter, we will apply local-influence

diagnostics, as introduced by Cook (1986), to a finite-mixture model assuming an a

priori given number of components. The chapter is organized as follows. Section 8.2

briefly summarizes the measures introduced by Cheng and Milligan (1996) to quan-

tify the influence of an observation and the outlier detection method proposed by

Wang (1997). The concept of local-influence diagnostics is sketched in Section 8.3

and applied to real-life data in Section 8.4.
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8.2 Outlier Detection and Influence on Cluster Par-

tition

8.2.1 Outlier Detection for a Finite-Mixture Model

Sain et al. (1999), based on Wang et al. (1997), developed an outlier-detection

procedure that applies to mixture populations where no labelled training data is

available. Specifically, the authors assume that the training data of size N is a sample

from a mixture of K distributions, f(y) =
∑K
k=1 πkfk(y;µk,Σk). To investigate

if a new observation, yN+1, is obtained from the mixture population or from an

outlier population they use a likelihood-ratio test statistic that does not require the

distribution of the outlier. The classical likelihood-ratio test statistic is the ratio of

the maximized likelihood functions L0(θ0) = [
∏N
i=1 f(yi;θ0)]f(yN+1;θ0) under H0,

and L1(θ0,θ1) = [
∏N
i=1 f(yi;θ0)]h(yN+1;θ1) under H1, with h(y;θ1) the density

associated with the outlier population. When there is only a single observation from

the outlier population, maximizing L1 is hard. Wang et al. (1997) noted that a

viable test statistic could be based on the ratio L0/L̃1, with L̃1(θ0) =
∏N
i=1 f(yi;θ0),

eliminating the need for h(y;θ1). Thus, in essence, the principle of equi-ignorance is

employed, and the distribution of the outlier is not needed. The resulting modified

likelihood-ratio test statistic

W (yN+1;y1, . . . ,yN ) =

sup
θ0∈Θ

L0(θ0)

sup
θ0∈Θ

L̃1(θ0)

will take small values when yN+1 departs from f . The null distribution of W is

obtained through nonparametric bootstrap (Efron and Tibshirani, 1993). The authors

examined the power of the outlier test based on W , via simulations.

8.2.2 Influence of Individual Data Points on the Cluster Par-

tition

To address the problem of measuring the impact of an individual data point in a clus-

ter analysis, Cheng and Milligan (1996) consider the difference in cluster partitions

resulting from removing an element from the data set as a measure of influence. The

similarity between the partition sets obtained when clustering based on all N observa-

tions and N−1 observations is quantified by means of the Rand Index (1971). For the

influential cases, the nature of the influence, facilitating or inhibiting, was quantified

by two internal criteria. The authors use the γ and the point-biserial internal criterion
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to measure the agreement between the classification resulting from the cluster exer-

cise and the true class-membership. The sign difference of these statistics computed

on the full data set and on the reduced data set with N − 1 observations, suggests

whether or not clustering may have been improved by the introduction of the data

point in question. A positive values for γfull − γreduced indicates that the selected

observation is a facilitator, a negative value points to an inhibiting observation.

Similar ideas can be applied to partitions resulting from a model-based cluster

exercise. Finite-mixture models are used to classify subjects using (1) all N obser-

vations and (2) N − 1 observations into the K components. For each subject, two

weighted γ criteria are obtained, with a subject’s posterior probabilities to belong to

each of the K components as weights. γfull is based on a clustering method using

all N observations, but quantifies the correct classification of the remaining N − 1

observations. γreduced on the other hand quantifies the correct classification of N−1

observations when running the clustering algorithm on these N − 1 observations.

8.3 Review of General Theory for Local Influence

Developments in this review follow Lessafre and Verbeke (1998).

Local influence was presented by Cook and Weisberg (1982) and Cook (1986) and

used by several authors since. The impact of individuals and measurements on the

analysis is assessed by comparing standard maximum likelihood estimates with those

resulting from slightly perturbing the contribution of an individual or a measurement.

The method is to be contrasted with global influence, or case deletion, where impact is

assessed by simply deleting an individual or measurement. While local influence comes

with a certain amount of technicality, it is easy and fast to calculate in practice, and

in many cases leads to interpretable components of influence. Lesaffre and Verbeke

(1998) introduced an influence assessment paradigm for the linear mixed model. A

review of several diagnostic procedures for the linear mixed model is given in Mun

and Lindstrom (2013). Verbeke et al. (2001) used local influence for longitudinal

Gaussian data with dropout, while incomplete binary data were studied by Jansen et

al. (2003). Verbeke and Molenberghs (2000) and Molenberghs and Verbeke (2005)

study the method and provide ample references. Ouwens, Tan, and Berger (2001)

applied local influence to the generalized linear mixed model for count data, i.e., the

Poisson-normal model.
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Let the log-likelihood for the chosen model take the form

`(θ) =

N∑
i=1

`i(θ), (8.1)

in which `i(θ) is the contribution of the ith individual to the log-likelihood. Let

`(θ|ω) =

N∑
i=1

wi`i(θ), (8.2)

now denote the perturbed version of `(θ), depending on an N -dimensional vector ω

of weights, assumed to belong to an open subset Ω of IRN . The original log-likelihood

(8.1) follows for ω = ω0 = (1, 1, . . . , 1)′. Here, the perturbed log-likelihood gives more

or less weight to log-likelihood contributions of single subjects, but other perturbation

schemes are possible (Verbeke and Molenberghs, 2000).

Let θ̂ be the maximum likelihood estimator for θ, obtained by maximizing `(θ),

and let θ̂ω denote the estimator for θ under `(θ|ω). Cook (1986) proposed to measure

the distance between θ̂ω and θ̂ by the so-called likelihood displacement, defined by

LD(ω) = 2
(
`(θ̂)− `(θ̂ω)

)
.

This measure for the difference in estimates, takes into account the variability in θ̂.

LD(ω) will be large if `(θ) is strongly curved at θ̂ (which means that θ is estimated

with high precision) and small otherwise. A graph of LD(ω) versus ω brings out infor-

mation on the influence of the case-weight perturbations. The graph is the geometric

surface formed by the values of the (N + 1)-dimensional vector

ξ(ω) =

(
ω

LD(ω)

)

as ω varies throughout Ω. Following Cook (1986) and Verbeke and Molenberghs

(2000), we will refer to ξ(ω) as an influence graph. It is unfeasible to evaluate LD(ω)

for all ω. Cook (1986) describes the sensitivity of `(θ̂) by looking at small perturba-

tions for case weights around ω0, i.e., the local behaviour of LD(ω) around ω0. This

was done using the normal curvature Ch of LD(ω) at ω0, in the direction of a unit

vector h in Ω. Cook (1986) derived a convenient computational scheme. Let ∆i be

the s-dimensional vector of second-order derivatives of `(θ|ω), with respect to ωi and

all components of θ, and evaluated at θ = θ̂ and at ω = ω0. Also, write ∆ for the

s×N matrix with ∆i in the ith column. Let L̈ denote the s×s matrix of second-order

derivatives of `(θ) w.r.t the components of θ, evaluated at θ = θ̂. For any unit vector
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h in Ω, it follows that:

Ch = 2
∣∣∣ h′∆′L̈−1∆h

∣∣∣ . (8.3)

Various choices for h have received specific attention. First, one can focus on a single

subject i only, by choosing h = hi, the zero vector with a sole value 1 in the ith

position. The normal curvature is then called the total local influence and is given by

Ci ≡ Chi = 2
∣∣∣ ∆′iL̈

−1∆i

∣∣∣ . (8.4)

Large values of Ci are obtained for subjects for which small perturbations in case

weight result locally in a large log-likelihood displacement.

Second, h = hmax can be chosen as the direction of maximal normal curvature

Cmax. It was shown that hmax is the eigenvector of −∆′L̈−1∆ corresponding to the

largest eigenvalue (Beckman, 1987 ; Verbeke, 1997 , 2000; Seber, 1984). hmax permits

detection of individuals that are simultaneously influential.

The total local influence of individual i can be expressed in terms of the nonzero

eigenvalues, λ1 ≥ . . . ≥ λs > 0 and normalized orthogonal eigenvectors ν1 ≡
hmax, . . . ,νs of −∆′L̈−1∆:

Ci = 2

s∑
j=1

λjν
2
ji,

with νji the ith component of νj . Cmax is twice the largest eigenvalue, Cmax = 2 · λ1.

This holds a warning: it is possible for Ci to be large without the same holding for the

ith component in hmax, provided the corresponding components are large for some

of the secondary eigenvectors. It is thus recommended to examine both the Ci and

hmax.

Lesaffre and Verbeke (1998) proposed a threshold for Ci above which an individual

is defined as “remarkable”. They state that the ith subject is influential if Ci is larger

than the cutoff value 2
∑N

i=1 Ci/N .

The methodology still applies when interest is in a subset θ1 of θ = (θ′1,θ
′
2)′. It

follows that (Verbeke and Molenberghs, 2000) the influence on the estimation of the

subset θ1 is given by:

Ch(θ1) = Ch − 2

∣∣∣∣∣h′∆′
(

0 0

0 L̈−1
22

)
∆h

∣∣∣∣∣ ≤ Ch, (8.5)

L̈22 is defined by the partition of L̈ =

(
L̈11 L̈12

L̈21 L̈22

)
according to the dimensions of

θ1 and θ2. Should L̈12 = 0, then Ch = Ch(θ1) + Ch(θ2). For weakly correlated

sub-vectors, this decomposition holds approximately.
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To obtain local-influence diagnostics for a finite-mixture model withK components

(see Section 4.2), second derivatives of l(θ|ω) with respect to ωi and all components

of θ, have to be obtained. But using case-weights perturbations this simplifies to

obtaining first-order derivatives of li(θ) with respect to the components of θ. Second-

order derivatives of l(θ) are also needed. Under the finite-mixture model, θ contains

the fixed- and random-effects parameters describing the profiles for theK components,

and the mixture probabilities. Further, the contribution li(θ) of the ith subject to

the log-likelihood is li(θ,π) = log
[∑K

k=1 πkfk(yi|θ)
]
. Expressions for the first and

second derivatives, involved in Ci, with respect to the components of π and θ are

easily obtained as:

∂li
∂πk

=
1

f(yi)
[fk(yi)− fK(yi)]

∂li
∂θk

=
1

f(yi)

[
K∑
k=1

πk
∂fk(yi)

∂θk

]

∂2li
∂πk∂πl

=
−1

f2(yi)
[(fl(yi)− fK(yi))(fk(yi)− fK(yi))]

∂2li
∂θk∂θl

=
−1

f2(yi)

[
K∑
k=1

πk
∂fk(yi)

∂θk

]
+

1

f(yi)

[
K∑
k=1

πk
∂2fk(yi)

∂θkθl

]
∂2li

∂πk∂θl
=

−1

f2(yi)

[
K∑
k=1

πk
∂fk(yi)

∂θl

]
[fk(yi)− fK(yi)]

+
1

f(yi)

[
∂fk(yi)

∂θl
− ∂fK(yi)

∂θl

]
Often, interest is not only in the stability of the components’ mean profiles, but

also in the stability of the classification of an individual subject.

The theory of local influence, as described above, allows, in an elegant way, quan-

tification of the influence of subject i on the posterior probability of subject j. To

this end, log-likelihood (8.2) has to be parameterized as a function of the posterior

probabilities. Given the relation between the posterior probabilities and the mixture

probabilities, πjk = πkfk(yj)/
∑K
k=1 πkfk(yj), it is straightforward to express the

contribution of the ith individual to the log-likelihood as a function of the posterior

probability of the jth individual. The log-likelihood then takes the form:

l(θ,π) ⇒ l(θ,πj) =

N∑
i=1

li(θ,πj),
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with πj = (πj1, . . . , πjK)
′

the vector of posterior probabilities for subject j and π =

(π1, . . . , πK)
′

the mixing probabilities. The local influence of subject i, on the subset

πj of the vector of all parameters can be obtained via (8.5). The first and second

derivatives of l(θ,πj |ω) are obtained via the chain rule for differentiating composite

functions:

∂li
∂(θ,πj)

=
∂li

∂(θ,π)

∂(θ,π
′
)

∂(θ,πj)
,

∂2li
∂2(θ,πj)

=
∂(θ,π)

∂(θ,πj)

∂2li
∂2(θ,π)

∂(θ,π)

∂(θ,πj)
.

8.4 Data Applications

8.4.1 Orange Tree Data

To illustrate the local influence approach on a nonlinear model we use the orange tree

data of Draper and Smith (1981). The data consists of trunk circumference recordings

of five orange trees, at seven occasions.

A logistic nonlinear mixed model for Gaussian data was used before on these re-

peated measurements by Lindstrom and Bates (1990) and Pinheiro and Bates (1995):

Yij =
β1 + bi

1 + exp[−(tij − β2)/β3]
+ εij , (8.6)

where Yij represents the jth measurement on the ith tree (i = 1, . . . , 5; j = 1, . . . , 7),

tij is the corresponding day, β1, β2, β3 are the fixed-effects parameters, bi are the

random-effect parameters assumed to be i.i.d. N(0, σ2
b ), and εij are the residual errors

assumed to be i.i.d. N(0, σ2
ε) and independent of the bi.

Spiessens and Verbeke (2002) analysed the data assuming that the random effects

follow a mixture of two normal distributions bi ∼ π1N(µ1, σ
2
b ) + π2N(µ2, σ

2
b ) (see

Section 4.2). Based on the posterior probabilities, the five trees were classified into

two clusters. The trees with the highest growth rate (trees 1, 3, and 5) were classified

in the second component, trees 2 and 4 in the first component. The growth profiles

of the five trees are plotted in Figure 8.1. The results of an influence analysis are

displayed in Table 8.1. Tree 5, classified in the first component, has a large impact on

the parameter estimates as shown by a large value of Ci. Tree 5 is the only influential

tree. This tree has a large impact on the fixed parameters µ1 and β2 but also on

µ2, and on the variance component σ2
b of the model. The maximal normal curvature

equals 6.76. The indexplot of hmax shows that tree 5 also has a large contribution
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Figure 8.1: Observed growth profiles for the five orange trees.

in the direction of maximal curvature. Tree 5 is not considered to be influential for

the mixture probability. The effect of perturbing the case-weight of tree 5, on the

posterior probabilities to belong to the first component is given in Figure 8.2. The

heatmap displays the local influence that tree i has on the posterior probability for

tree j, in the crossing of ith column with the jth row. The values in the graph are

standardized, a value of 1 corresponds to a Ci(πj1) equal to the cutoff value above

which tree i is considered to be influential for the posterior probability of tree j to

belong to component 1. It is seen that the influence of tree 5 on the fixed-effect

parameters is reflected in the influence on the posterior probabilities of the remaining

trees. The largest influence is observed on the trees not belonging to the cluster

containing tree 5 (i.e., trees 2 and 4). On the other hand, the posterior probability of

tree 5 is not very sensitive to perturbations in the case-weights of the other trees.

8.4.2 Pharmacokinetic Data

Nonlinear mixed models are also widely used in pharmacokinetics to study how a

drug disperses through subjects. Pinheiro and Bates (1995) present data on serum

concentrations of the drug theophylline in 12 subjects measured over a 25-hour period

after oral administration. They considered a first-order compartment model, allowing

for random variability between subjects. Let Yij denote the observed concentration

of the ith subject at time tij , D the dose of theophylline, kei the elimination rate
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Table 8.1: Local-influence diagnostics for the parameters in model (8.6) - Orange Tree

Data.

Ci hmax,i Ci(β2) Ci(β3) Ci(µ1) Ci(µ2) Ci(σb) Ci(σε) Ci(π1)

tree 1 1.059 -0.399 0.228 0.023 0.262 0.035 0.222 0.008 0.265

tree 2 0.086 -0.146 0.111 0.052 0.059 0.263 0.227 0.047 0.603

tree 3 1.207 -0.346 0.000 0.111 0.396 0.012 0.023 0.265 0.271

tree 4 0.599 0.058 0.055 0.513 0.117 0.004 0.22 0.166 0.609

tree 5 4.697 0.834 1.090 0.211 2.982 0.418 1.643 0.171 0.272
2
∑

i Ci

N 3.059 0.593 0.364 1.527 0.292 0.935 0.263 0.807

Figure 8.2: Local-influence diagnostics for the posterior probabilities to belong to the first

component of the mixture - Orange Tree Data. The crossing of ith column with the jth row

displays the local influence that tree i has on the posterior probability of tree j to belong to

the first component of the mixture. Values above 1 are considered to be influential.

constant for subject i, kai the absorption rate constant for subject i, Cli the clearance

for subject i, and εit normal errors. The model for the observed concentration is

specified as:

Yij =
Dkeikai

Cli(kai − kei)
[exp(−keitij)− exp(−kaitij)] + εij . (8.7)
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The clearance, absorption, and elimination rates for subject i were functions of fixed

and random effects:

Cli = exp(β1 + bi1), (8.8)

kai = exp(β2 + bi2), (8.9)

kei = exp(β3). (8.10)

The random effects allow for heterogeneity between subjects. The bi = (bi1, bi2)
′

are

assumed to follow a multivariate normal distribution with mean zero and an unknown

covariance matrix.

The expected concentration level in the body as a function time, for a typical

patient (i.e., random effects equal to zero) is displayed in Figure 8.3. The model fit
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Figure 8.3: Evolution of the concentrations - Theophylline data. For each component in the

mixture distribution, the evolution for a typical patient is displayed (full line: one-component

model, −.− . : two-component model).

criteria for this homogeneity model are as follows: log-likelihood -178.2, AIC 368.5,

and BIC 371.4. When carrying out a two-component heterogeneity model the fit

criteria are: log-likelihood -162.9, AIC 343.9, and BIC 348.3; indicating a better fit.

The mixing probabilities are .53 and .47. Based on their posterior probabilities, 6

subjects were classified into the first component and 6 in the second. The expected

concentration for both components, for a typical subject, can be found in Figure 8.3.

The two components distinguish in terms of the maximum concentration level attained



158 Chapter 8. Local Influence Diagnostics for a Growth-Mixture Model

and the time after adminstration that the maximum concentration is reached. The

first component reaches its maximum concentration level faster, and the maximum

level attained is higher than compared to the maximum level of the second component.

Ci
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Figure 8.4: Local-influence analysis - Theophylline data. The upper-panel figure displays

the total local influence versus the patient numbers. The horizontal line represents the cut-off

value for Ci. The lower-panel figure shows the indexplot of the components of hmax.

An influence analysis for the two-component heterogeneity model does not reveal

cases being locally influential (see Figure 8.4). All subjects’ Ci are below the cut-
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off value of 2.14. The components of hmax indicate that subjects 1, 2, 5, 10, and

12 exhibit larger contributions in the direction of maximal curvature; Cmax equals

12.76. When looking into the plots of the total local influence for a specific fixed or

random parameter, these subjects have value of Ci exceeding the cut-off (Results not

displayed).

8.4.3 EEG Data

The aim of EEG studies is to characterize the effects of psychotropic drugs on cortical

brain activity, on the basis of spectral electro-encephalograms. The EEG data is

introduced in Section 3.2.

In this chapter, we focus on data of the γ2 waves in the left prefrontal cortex of two

psychoactive agents, PCP and Donepezil, administered at the highest dose. Gamma

waves are related to strong mental activity like solving problems, fear, and awareness.

PCP in low to moderate doses acts as a stimulant, whilst at higher doses it has a

sedative effect. Donepezil is a cholinesterase inhibitor and is used to treat moderate

to severe dementia of the Alzheimer’s type.

To visualize the data, the individual γ2 longitudinal profiles are given in Figure 8.5.

The response of interest is the γ2 percentage change as compared to the measurement

at baseline (administration of the drug): Yij = 100(Yij − Yib)/Yib. In graphical dis-

plays and in the statistical models, time zero refers to the first measurement obtained

after administering the drug (i.e., after 45 minutes). Heterogeneity is seen in the

γ2 waves, some rats have a decrease in the frequency while for others an increase is

obtained as an effect of the drug. This heterogeneity is of course largely caused by

administrating 2 different drugs.

The heterogeneity model will be assumed, with a quadratic evolution of the γ2

percentage change over time and a random intercept that is a mixture of 2 normal

distributions. So for component k (k = 1, 2) in the mixture we have:

Y kij = βk0 + βk1 tij + βk2 t
2
ij + bi + εij , (8.11)

where βk0 , βk1 , and βk2 are component-specific fixed parameters describing the mean

γ2 profiles, bi are rat-specific intercepts sampled from a 2-component model, and

εij ∼ N(0, σε).

When applying the cluster algorithm, information about the drug a rat was given,

was not taken into account. The log-likelihoods (BIC) for the one and two-component

model were respectively -571.1 (1156.1) and -531.7 (1088.4). The model hypothesizing

a mixture is outperforming the one-component model. Classification of the rats into
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Figure 8.5: Smoothed observed %change for γ2 profiles (full lines: PCP, dotted lines:

Donepezil) - EEG data. The origin of the time axis is at the first measurement after admin-

stration of the drug.

the two components, based on their posterior probabilities, perfectly coincides with

the two drug groups. The 8 rats on PCP (IDs 9–16) are classified together into cluster

1, and the 8 rats on Donepezil (IDs 1–8) into cluster 2.

The results of a local-influence analysis for the two-component model are displayed

in Figure 8.6. Three rats (IDs 9, 12, and 16) of the PCP group are locally influen-

tial, based on their Ci value. The observed profiles of these rats are highlighted in

Figure 8.5. These rats also have a large component in the direction of maximal cur-

vature hmax. The maximal curvature equals 10.63. The contribution to hmax of rat

14 is also substantial, although its Ci was rated as not exceptionally high. To study

the influence on subsets of parameters of model (8.11), expression (8.5) was used.

The local-influence diagnostics were obtained for the cluster specific average profiles,

the random components, and the mixture probability. The results are presented in

Figure 8.7.
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Figure 8.6: Total local influence, likelihood displacement, and direction of maximal curva-

ture versus patient identification numbers - EEG data. The horizontal line in the total local

influence graph represents the cut-off value for Ci.
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The influence of rats 9, 12, and 16 is visible in the set of fixed parameters charac-

terizing the average evolution of the cluster they belong too (cluster 1), their influence

on the average profile of cluster 2 is negligible. Rats 12 and 16 are also influential

for the random effects (σb, σε), their diagnostics exceed the cutoff value. The mixture

probability is not subject to small perturbations in the case-weights.

Local-influence diagnostics for the posterior probabilities are presented in a

heatmap (Figure 8.8), summarizing the local influence that rat i has on the pos-

terior probability of rat j, in the crossing of ith column with the jth row. As before,

the values in the graph are standardized, a value of one corresponds to a Ci(πj1)

equal to the cutoff value above which rat i is considered to be influential for the pos-

terior probability of rat j to belong to component 1. The influence on the posterior

probabilities of rats 7, 12, and 14 could not be investigated. The second derivative

of the log-likelihood is singular when parameterizing it as a function of the posterior

probabilities of these rats. It can be seen that a perturbation in the case-weight of

rat 16 influences the posterior probabilities of the other rats. Rat 9 influences the

posterior probability of rats 11 and 16, rat 12 influences the posterior probabilities of

rats 9, 10, 11, 13 and 15. The other influence diagnostics did not exceed the cutoff

values.

Figure 8.8: Local-influence diagnostics for the posterior probabilities to belong to the first

component of the mixture - EEG data. The crossing of ith column with the jth row displays

the local influence that rat i has on the posterior probability of rat j to belong to the first

component of the mixture. Values above 1 are considered to be influential.
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Classical diagnostics are generally based on case deletion. The likelihood displace-

ments obtained by deletion of one rat at a time from the analysis is given in Figure 8.6.

The largest likelihood displacements are seen for rats 9, 12, 14 and 16. It is reassur-

ing that these are also the rats that stand out in the local-influence analysis. The

influence measures do however not agree for the ranking of rats 12 and 14.

For this study, the true cluster membership, i.e., PCP or Donezepil, is in fact

know. Therefore the statistics proposed by Cheng and Milligan (1996) (Section 8.2.2)

can be obtained. All γ values are extremely small (Figure 8.9), indicating that inclu-

sion/exclusion of an observation hardly has any effect on the correct classification of

the other observations. Negative values for the γ criterion are obtained for rats 9, 12

and 16, the values are, respectively −18, −10, and −19 × 10−6. This indicates that,

if any effect, these rats impede correct classification of the other rats. Combining this

with the results from the local-influence analysis for the posterior probability, we can

conclude that rats 9, 12, and 16 have an influence on the posterior probabilities of the

other rats but that the effect is not strong enough to change the cluster allocation.

Figure 8.9: γ-statistics versus the identification numbers of the rats - EEG data. Negative

values for rat i indicate that this rat hinders correct classification of the other rats.

To investigate if rat 16 is to be considered an outlier, the detection procedure

described by Sain et al. (1999) was employed. The profiles of the first 15 rats are

assumed to be sampled from a two-component mixture population, and the modi-

fied likelihood-ratio test is used to see whether the profile of rat 16 belongs to an

outlier population or not. The value of the modified likelihood-ratio test statistic W

equals 0.46. Applying this procedures for rats 9 and 12, the value of the modified
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likelihood-ratio statistic equals 0.74 and 0.84, respectively. The null distribution of

the test statistic was obtained via 999 nonparametric bootstrap samples. The 1st

(5th) percentile of the distribution equals 0.52 (0.68). Thus, the profile of rat 16 is an

outlying observation at the 1% level of significance. On the other hand, the profiles

of rat 9 and 12, also flagged in the local-influence analysis, are considered to belong

to the two-component mixture population, according to this approach.

8.5 Discussion

This chapter elucidates the usefulness of local influence in a model-based cluster anal-

ysis.

Local influence quantifies the impact of observations on the analysis. This can,

for instance, be done by introducing case-weights in the log-likelihood, such that the

contribution of an individual is slightly perturbed. Focus can be put on the effect of

individual i only, by choosing the vector of case-weights to be the zero vector with one

value of 1 in the ith position. The total local influence is then defined as the normal

curvature of the likelihood displacement in the direction of the ith individual.

In this chapter, we demonstrated the usefulness of local-influence diagnostics when

clustering longitudinal profiles by means of a finite-mixture model, with an a priori

given number of components. The total local influence diagnostics quantify an indi-

vidual’s influence on the vector of all parameters in the model. Generally, this param-

eter vector contains (1) a number of fixed-effect parameters to describe the average

evolution of each component in the mixture, (2) random-effect parameters reflecting

heterogeneity in the population, and (3) the mixture probabilities. The influence on a

subset of this vector of parameters – for example the influence on the average profile

of a specific cluster, or on the mixture probabilities – can also be obtained.

When interest is not only in the stability of the parameters describing the compo-

nents in the population, but also in the stability of an individual’s classification the

influence on the posterior probabilities is to be investigated. Local influence is an ele-

gant approach for this. The stability of the posterior probabilities of individual j, can

easily be inspected by re-parameterizing the log-likelihood in terms of the fixed effects,

random effects and the posterior probabilities of individual j. For the two-component

mixtures carried out in this chapter, the i × j influence measures were displayed in

a heatmap. Local-influence diagnostics were obtained for three real-life datasets sub-

jected to a finite mixture model. For the EEG data, the results were compared with

an outlier detection procedure for finite-mixture models and a method quantifying
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the impact of individual data points on the cluster partition when the correct classi-

fication is available. Local-influence diagnostics highlighted influential observations,

that were not revealed by the traditional case-deletion methods.



Chapter 9
Concluding Remarks and Future

Work

In this dissertation, we have addressed clustering for high dimensional data, possibly

subject to missingness. The research was inspired by a number of data sets, ranging

from data collected in a mental care setting, studies in patients with abdominal aortic

aneurysm or heart failure, to an EEG study in rats. The communality in these

studies is the believe that the population under investigation is not homogenous,

but instead consists of subpopulations. A direct labelling of these subpopulations

is not available. But given that these sub-populations are characterized by different

structures in the collected data, it is possible to uncover the latent subpopulations.

Model-based clustering is a statistical tool that can be entertained for this purpose.

However, for the given data sets, clustering is impeded by the high dimensional-

ity and longitudinal character of the data, and by the fact data is not always fully

observed.

Often a set of outcomes is measured over time, resulting in multivariate longi-

tudinal data. Due to the dimension of the joint distribution of the random effects,

computational problems are likely to occur when mixture models are applied to a mul-

tivariate longitudinal setting. In this dissertation, we have proposed an algorithm to

reveal latent subgroups for multivariate repeated outcomes. The approach is inspired

by work of Fieuws and Verbeke (2008), the authors perform a discriminant analysis

for repeatedly measured data. Instead of maximizing the full joint model a pseudo-

likelihood approach, based on bivariate joint models for the repeated outcomes, was

167
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utilized. The iterative algorithm mimics a partition cluster method. The performance

of the proposed algorithm was looked into by means of a simulation study.

Complexity is enhanced when observations are densely sampled over a continuum,

e.g., time. In such a situation, the data are generated by an underlying smooth func-

tion or by a set of smooth functions that are not easily described by a mathematical

expression. Functional data analysis methods are used to reduce the dimensionality

of the data and latent subgroups are then discovered for the reduced data. Such an

approach was, e.g., used in Jacques and Preda (2013). The fact that their approach

uses a data reduction technique, requiring a complete data structure, limits the prac-

tical usefulness of the cluster algorithm. In this dissertation, we combined methods

from functional data analysis, missing data and ensemble clustering to discover la-

tent subgroups in high-dimensional data, in terms of the number of responses and

the number of repeated measurements, contaminated by missing observations. Data

were completed by means of multiple imputation, whereupon the model-based clus-

tering of Jacques and Preda (2013) was used to find latent subgroups in the principal

components, and finally ensemble clustering was employed to summarize the set of

partitions into a final data partition. The amalgamation of statistical techniques al-

lows to cluster complex data and at the same time to quantify the influence of the

missing data on the composed groups. Ensemble clustering has to our knowledge not

yet been used in combination with multiple imputation. A small simulation study

was designed to explore its utility.

When the missing-data mechanism is believed to be non-random, the joint dis-

tribution of the data and the missing-data indicators should be considered. In this

work, we have investigated various mixture models for non-random missingness as

proposed by Muthén et al. (2011). We assessed the vulnerability of the results not

only in terms of the number of clusters, the cluster-specific profiles, but also in terms

of the group-membership probabilities. It is however impossible to decide on the best

model, since all models rely on non-verifiable assumptions. We have illustrated how

an ultimate outcome, related to the growth curves, can be supportive in choosing

between the models.

Cluster results are of course also sensitive to outlying and influential observations.

We used ideas presented by Lesaffre and Verbeke (1998) for a mixed model, and

applied local-influence diagnostics to a mixture model. This allowed quantification

of the influence an observation has on the cluster-specific profiles and on the group-

membership probabilities of the other observations.

A number of issues were not or partially addressed in this dissertation and could be
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topic for further deepening.

The local-influence diagnostics, described in Chapter 8, are obtained by introduc-

ing weights for the log-likelihood contributions of single subjects, where focuss was

on the influence of a single subject. Other perturbation schemes could be worthwhile

to consider. The method of local influence could for example be used to study the

impact of MNAR mechanisms on the cluster result.

The approach presented in Chapter 6, to cluster sets of smooth but incomplete

functions, has a number of flaws. The method is sensitive to the class-specific or-

ders to approximate the pseudo-likelihood for the functional data. A heuristic test

is used to determine these orders. More formal procedures could be implemented.

Determination of the number of clusters is also difficult. An information criterion

similar to the one proposed by Breaban and Luchian (2011) could be developed for

functional data. This would address the selection of the class-specific orders and the

optimal number of clusters at the same time. The set of partitions is reduced into a

final partition by means of consensus clustering. This step could be replaced by other

techniques, for example a latent class analysis with the cluster-indicators as variables.

We have focussed on repeated measurements for continuous responses. But

the methods presented in this dissertation, can be applied to non-continuous re-

sponses/data with other structures. It would be interesting to see how the methods

perform in spatial or temporal-spatial settings and for combinations of responses not

belonging to the same parametric family.





Bibliography

[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans-

actions on Automatic Control, 19, 716–723.

[2] Abraham, C., Cornillon, P.A., Matzner-Lober, E., Molinari, N. (2003). Unsuper-

vised curve clustering using B-splines. Scand J Statist, 30, 581–595.

[3] Agresti, A. (2002). Categorical Data Analysis. New York: John Wiley & Sons.

[4] Arellano-Valle, R.B., Bolfraine, H., and Lachos V.H. (2005). Skew-normal Linear

Mixed Models. Journal of Data Science, 3, 415–438.

[5] Arnold, B.C. and Strauss, D. (1991). Pseudolikelihood estimation: some examples.

Sankhya B., 53, 233–243.
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Samenvatting

Het blootleggen van natuurlijke groeperingen binnen een set van multivariate gege-

vens noemt men clusteren. De term clusteren verscheen voor het eerst in een artikel

gepubliceerd in 1954, met antropologische gegevens. Het K-means algoritme, één van

de populairste cluster technieken, werd voor het eerst in 1955 gepubliceerd. Het orga-

niseren van gegevens in logische en natuurlijke groeperingen vindt toepassingen in een

groot aantal disciplines. Zo werd clusteren succesvol toegepast in o.a. transcriptomics

om genen met dezelfde functie te groeperen, in astronomie om sterren te klasseren, in

plant- en dierkunde om organismen in gemeenschappen te verdelen, in geneeskunde

om patiënten met dezelfde klinische en psychosociale noden te identificeren, . . .

De term ‘cluster analyse’ omvat in feite verschillende algoritmen, alle met als doel

gegevens te groeperen zodat gelijkaardige observaties, volgens een bepaalde afstands-

maat, in dezelfde groep zitten en ongelijksoortige observaties in verschillende groepen.

In de literatuur wordt een waaier van cluster algoritmen beschreven, deze verschil-

len in hun definitie van waaruit een cluster bestaat en hoe deze clusters gedetecteerd

worden.

Traditionele cluster algoritmen, zoals hiërarchische methoden en (iteratieve) ver-

delingsmethoden, worden veelvuldig en met succes toegepast. Maar voor complexe

data structuren –zoals het geval is bij herhaalde metingen, ruimtelijke gegevens, enz.

– blijken deze technieken minder efficiënt in het blootleggen van de natuurlijke groe-

peringen. Voor dit soort van gegevens kan het wenselijk zijn om een onderliggend

model voor de gegevens te veronderstellen. Het model specifieert enerzijds de struc-

tuur van de gegevens (bijv. gemiddelde evolutie, correlatie tussen de metingen van

eenzelfde individu) en laat anderzijds toe dat de populatie heterogeen is en uit een

(eindig) aantal subpopulaties/clusters bestaat. Een dergelijk model is bijvoorbeeld
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het finite-mixture model. In een finite-mixture benadering wordt elke cluster wiskun-

dig vertegenwoordigd door een parametrische verdeling, bijv. de normale of Poisson

verdeling. De volledige set van gegevens wordt beschreven als een gewogen menge-

ling (mixture) van de cluster specifieke verdelingen. De parameters in dit model zijn

enerzijds de parameters uit de cluster specifieke verdelingen en anderzijds de a-priori

kansen om tot de verschillende clusters te behoren. Waarschijnlijkheidstheorie wordt

gebruikt om de parameters te bepalen zodat de fit tussen het opgegeven model en

de gegevens optimaal is. Clusters worden vervolgens gedefinieerd als observaties die,

onder dit model, waarschijnlijk tot dezelfde verdeling behoren. (On)zekerheid over

toewijzing van een observatie tot een bepaalde cluster wordt gevat in de a-posteriori

kans. Hoofdstuk 4 introduceert finite-mixture modellen en illustreert de toepassing

voor gegevens uit de geestelijke gezondheidszorg.

Ondanks het feit dat cluster analyse veelvuldig gebruikt wordt in toegepaste we-

tenschappen en onderwerp is van een groot aantal methodologische artikels, zijn er

nog steeds een reeks open en controversiële vragen: de validiteit van de uiteindelijke

groepering, de keuze van de te beschouwen response-variabelen in de cluster analyse,

de beslissing van het optimaal aantal clusters, het probleem van lokale oplossingen

voor de te maximaliseren waarschijnlijkheidsfunctie (voor model-gebaseerde technie-

ken), gevoeligheid van de uitkomst van het algoritme aan de gekozen startwaarden,

. . .

In dit proefschrift behandelen we een aantal beperkingen van cluster analyses die tot

nu toe minder aandacht kregen in de statistische literatuur. Deze onderwerpen wor-

den het eenvoudigst behandeld in een model-gebaseerde cluster benadering. Specifiek

focussen we op het clusteren van hoog-dimensionale gegevens en bestuderen we het

effect van enerzijds ontbrekende gegevens en anderzijds invloedrijke gegevens.

Cluster analyse wordt uitdagend wanneer de dimensionaliteit van de gegevens stijgt.

De reden hiervoor is het toenemend aantal parameters in de waarschijnlijkheidsfunc-

tie. In deze thesis zijn twee hoofdstukken gewijd aan dit onderwerp. Hoofdstuk 5 be-

schouwt een setting waar de dimensionaliteit toeneemt doordat gelijktijdig een aantal

response-variabelen doorheen de tijd opgemeten worden. Hoofdstuk 6 behandelt de

situatie waarbij één of meerdere responsevariabelen bijna continue opgemeten worden,

wat resulteert in functies.

Hoofdstuk 5 beschrijft een algoritme om soortgelijke patronen te ontdekken in

een multivariate herhaalde metingen setting. Zoals reeds aangegeven kan clusteren
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van herhaalde metingen vlot door middel van een finite-mixture model. Voorbeelden

beschreven in de literatuur bespreken echter enkel situaties waar tot een maximum

van drie response-variabelen gelijktijdig beschouwd worden. Meer response-variabelen

leidt snel tot computationele problemen. Hoofdstuk 5 stelt een procedure voor om

in een set van longitudinale data voor meerdere response variabelen, groepen bloot

te leggen. De procedure is gebaseerd op pseudo-waarschijnlijkheid schattingen. Een

EEG studie bij ratten, waarbij verschillende hersensignalen (α, β, γ, δ, . . . - golven)

geregistreerd worden, dient als case-studie.

Tegenwoordig is men in staat om gegevens bijna continue op te meten, we denken

bijvoorbeeld aan ruimtelijke metingen op een zeer dicht raster of metingen kort in de

tijd. Bloeddruk en hartslag bijvoorbeeld kunnen door middel van een elektronisch ap-

paraat continue gemonitord worden. Zelfs indien men maar in één response-variabele

gëınteresseerd is, resulteert dit in hoog dimensionale gegevens. In dergelijke situaties,

worden de waarnemingen gezien als een verwezenlijking van een vloeiend onderliggend

proces en spreekt men van functionele data. Voorafgaand aan de eigenlijke statistische

verwerking moet de dimensionaliteit van de functionele data omzeild worden. Vaak

gebeurt dit via een principaal-component analyse. Populatie heterogeniteit, m.a.w.

aanwezigheid van natuurlijke groeperingen, in de oorspronkelijke curves wordt ook

weerspiegeld in de gereduceerde gegevens. Een cluster analyse voor functionele gege-

vens, wanneer deze bestaat uit bivariate functies, werd door Jacques en Preda (2013)

beschreven. Een essentiële bouwsteen van deze techniek is de principaal-component

analyse, dewelke volledige datastructuren verondersteld. Hierdoor wordt de toepas-

baarheid van hun procedure beperkt door records met ontbrekende gegevens. Ont-

brekende gegevens zijn echter bijna onvermijdelijk in longitudinale studies.

Hoofdstuk 6 licht toe hoe een combinatie van technieken uit verschillende domeinen

gebruikt kan worden om hoog dimensionale onvolledige gegevens te clusteren. Volle-

dige datasets worden eerst bekomen door meervoudige imputatie van de ontbrekende

informatie. Elk van deze datasets wordt vervolgens onderworpen aan een cluster algo-

ritme voor functionele data. Dit resulteert in een collectie van partities van de data,

ook een ensemble genoemd. Om op basis van de bekomen collectie van groeperingen

tot een finale consensus groepering te komen, wordt ensemble clustering aangewend.

Een studie over hartfalen wordt als illustratie gebruikt. Gedurende 6 maanden, na

ontslag uit het ziekenhuis, wordt dagelijks informatie over gewicht, hartslag, diastole

en systole bloeddruk van de patiënten via een telemonitoring apparaat verzameld.

Voor het merendeel van de patiënten zijn er periodes dat de metingen ontbreken.

Bij het vervolledigen van de gegevens wordt verondersteld dat de onvolledigheid

van de gegevens afhangt van de geobserveerde metingen maar, gegeven deze, niet van
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de niet geobserveerde metingen (MAR, willekeurig ontbreken). Indien dit niet het

geval is, wordt het mechanisme dat aanleiding geeft tot het ontbreken van gegevens

MNAR (niet-willekeurig ontbreken) genoemd. MAR is vaak een beperkende veronder-

stelling en er kan nooit definitief uitgesloten worden dat het mechanisme niet verder

afhangt van ontbrekende informatie. Zodra de onvolledigheid MNAR is, is het nodig

een expliciet model voor de ontbrekende gegevens te formuleren. De gezamenlijke

verdeling van de metingen en het onvolledigheidsproces moet dan beschouwd worden,

dit resulteert in o.a. selectie modellen en pattern-mixture modellen. Er is reeds veel

gepubliceerd over niet-willekeurig ontbrekende gegevens, maar weinig over MNAR mo-

dellen voor cluster-doeleinden. Hoofdstuk 7 presenteert een aantal MNAR-modellen

waarbij een finite-mixture model verondersteld wordt voor de metingen. Elk van

deze modellen gaat uit van niet te verifiëren veronderstellingen. De modellen worden

toegepast op slagader-diameter bepalingen bij patiënten met abdominale aorta aneu-

rysma (AAA-studie). De resultaten van de verschillende modellen worden vergeleken

in termen van de gemiddelde cluster specifieke profielen, voor de a-posteriori kansen

en de definitieve groepering van de patiënten. Er zijn opmerkelijke verschillen in de

resultaten, maar een beste model kiezen is moeilijk. Externe informatie, die samen-

hangt met de groepering kan helpen bij een verstandige ranking van de verschillende

MNAR modellen. Voor de AAA-studie is deze externe informatie vervat in het feit

of de patiënt al dan niet een operatie diende te ondergaan. Dergelijke oefening wordt

gëımplementeerd en beschreven in Hoofdstuk 7.

Hoofdstuk 8, tenslotte, bestudeert de invloed van individuele observaties op het

cluster resultaat. De parameter schatters, die de verschillende verdelingen in een

finite-mixture model beschrijven, zijn onderhevig aan invloedrijke observaties en uit-

schieters. Het identificeren van uitschieters in een cluster analyse is reeds beschreven

in de literatuur. Ook het bepalen van de invloed van individuele observaties in een

herhaalde metingen setting voor homogene populaties en van het ontbreken van ge-

gevens werd reeds bestudeerd. Hiervoor werd onder andere gebruik gemaakt van een

lokale invloedsanalyse. Deze analyse werd tot nu toe echter nog niet toegepast voor

een finite-mixtue model. In Hoofdstuk 8 worden de lokale invloedsstatistieken bere-

kend voor een finite-mixture model. Deze aanpak maakt het mogelijk de invloed van

een observatie op de resultaten van de cluster analyse te kwantificeren. Enerzijds de

invloed op de parameter schatters, m.a.w. op de cluster specifieke gemiddelde profielen

en finale partitie van de gegevens. Maar anderzijds is het ook mogelijk om de invloed

van observatie i op de a-posterior kans van observatie j te bepalen. De invloed op

de a-posterior kans kan aanzienlijk zijn, zelfs als observatie i geen invloed heeft op de

samenstelling van de clusters. De techniek wordt gëıllustreerd op de EEG data.
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