
Towards a composite event-based language for

describing multimodal interactions

Fredy Cuenca

Promotor: Prof. Dr. Karin Coninx
Copromotor: Prof. Dr. Kris Luyten

January 27, 2016

i

I am weary of my wisdom, like the bee that has gathered too
much honey; I need hands outstretched to take it from me.

—Friedrich Nietzsche, Thus Spoke Zarathustra

ii

Abstract

Implementing interactive systems with event languages requires writing sub-
routines, called event handlers, which, at runtime, are automatically called
when external events occur. When implementing multimodal systems with
event languages, the interaction code gets split into several event handlers
within which a multitude of flags and state variables have to be manually
maintained in a self-consistent manner, thus complicating programmers’ work.

The present research aims at simplifying this complexity with a language
that empowers programmers to define event sequences, herein called composite
events, each of which can be bound to one or more event handlers. At run-
time, these event handlers will be called automatically at different stages of
the composite event detection process. Hasselt, the proposed language, comes
accompanied with a supporting tool that includes the editors, compilers, run-
time environment, and debugging tools required to write, syntax-check, run,
and test Hasselt programs, respectively.

Using an event language as a baseline, Hasselt was evaluated by both static
and dynamic testing. First, code inspection was used to evaluate the complex-
ity of equivalent source codes written with both Hasselt and an event language.
Among many results, the inspection showed that Hasselt code is shorter and
simpler since it releases programmers from manually tracking sequences of
events. Second, a user study was conducted to compare programming ef-
ficiency. After modifying an interaction model with both Hasselt and the
baseline language, it was revealed that the former leads to higher completion
rates, lower completion times, and less code testing.

The results obtained during this research imply that augmenting existing
event languages with notations for defining composing events may be one way
to reduce the accidental complexity of implementing multimodal systems.

iv Abstract

Dedication

This thesis is dedicated to the people whose unconditional friendship gave
me the strength to overcome the always present problems of a longstanding
project. To Jan and Sean, my dearest friends, my partners in crime, for filling
the first two years of my Ph.D. studies with a wealth of anecdotes that will
be forever engraved in my memory. And to Yelena, who, with her warm smile
and radiant personality, managed to melt the frost of loneliness in which I was
about to freeze.

vi Dedication

Acknowledgments

The completion of this thesis could not have been accomplished without the
support of many people for whom I feel the moral duty to acknowledge.

Firstly, I would like to express my sincere gratitude to my advisor Prof. Karin
Coninx for giving me the opportunity to do my Ph.D. study in a competitive
environment as I always wanted. Her constant enthusiasm, tolerance, and un-
derstanding, typical of a trustworthy leader, were the motivation that impelled
me in the search for excellence at each stage of the Ph.D. research.

Besides my advisor, I would like to thank Prof. Kris Luyten, Dr. Jan Van
den Bergh, Dr. Davy Vanacken, and Dr. Mieke Haesen for their insightful
comments and encouragement, but also for the constant hard questions which
incented me to widen my research from various perspectives. I am also appre-
ciative with Philippe Palanque, for his suggestions to my work and for hosting
my PhD internship at Université Paul Sabatier de Toulouse, France.

Finally, I cannot let this opportunity pass without expressing my admira-
tion for the work of a handful of researchers, the giants on whose shoulders
I stood up, namely, Robert J. K. Jacob, Michel Beaudouin-Lafon, Brad My-
ers, Sharon Oviatt, Miro Samek, and Bruno Dumas. In the large amount of
scientific literature, these authors inspired me with stimulating papers, full of
beautiful style and perspicuous content.

The present research was financially supported by the Special Research
Fund (BOF) of Hasselt University.

viii Acknowledgments

Contents

Abstract iii

Dedication v

Acknowledgments vii

Contents xiv

List of Figures xx

List of Tables xxii

1 Introduction 1

1.1 Motivation . 2

1.2 Research goals . 4

1.3 Research approach . 4

1.4 Contributions . 6

1.5 Supporting publications . 6

1.6 Thesis outline . 9

1.7 Summary . 10

2 Background and Related Work 13

2.1 Background . 13

2.1.1 Interaction styles: multimodal, multitouch, cross-device 13

2.1.2 Important programming paradigms 17

2.1.3 Prototyping and Rapid Prototyping 18

2.1.4 User Interface Management System (UIMS) 19

2.1.5 Accidental complexity and essential complexity 20

2.1.6 Finite State Automaton and Finite State Machine . . . 22

x CONTENTS

2.2 Related Work . 23

2.2.1 Multimodal interaction description languages 23

2.2.2 Gesture Description Languages 29

2.2.3 Human-machine dialog modeling languages 34

2.3 Summary . 34

I Hasselt, a family of languages 37

3 Hasselt UIMS, a composite event-based tool 39

3.1 Hasselt UIMS overview . 39

3.1.1 Workflow . 40

3.1.2 People and roles involved 42

3.1.3 Startup configuration 43

3.2 Lifecycle of Hasselt programs 43

3.2.1 Design time . 43

3.2.2 Compile time . 44

3.2.3 Runtime . 48

3.3 Algorithms used at compile time 52

3.3.1 CEDL compiler. From composite events to FSA 52

3.3.2 SRDL compiler. From FSA to FSM 53

3.4 Summary . 56

4 CEDL: Composing user events 57

4.1 Composite Event Definition Language (CEDL) 57

4.1.1 Atomic events . 57

4.1.2 Composite events . 63

4.2 Put-That-There in Hasselt UIMS 65

4.2.1 Implementing back-end applications 65

4.2.2 Declaring composite events 65

4.2.3 Binding composite event with event handlers 66

4.2.4 Testing the multimodal interactions 66

4.3 CEDL advanced features . 67

4.3.1 Arbitrary speech input 67

4.3.2 Arrays of variables . 68

4.3.3 Timeout events . 68

4.3.4 Compositional definitions 69

4.4 Limitations of the CEDL . 70

4.5 Summary . 71

CONTENTS xi

5 SRDL: Responding to composite events 73

5.1 System Response Definition Language (SRDL) 74

5.1.1 Multiple system responses at different times 74

5.1.2 Hasselt variables . 75

5.1.3 Hasselt properties . 77

5.1.4 Hasselt guard and triggering conditions 77

5.1.5 Hasselt user-defined events 78

5.1.6 Types of constraints describable by Hasselt 79

5.2 Enhancing put-that-there with SRDL 79

5.3 Describing touch and body gestures 82

5.3.1 Single-stroke touch gestures 82

5.3.2 Multi-stroke touch gestures of arbitrary length 83

5.3.3 Multitouch gestures . 85

5.3.4 Free-form hand gestures 86

5.3.5 Body movements . 88

5.4 Technical details . 91

5.4.1 Management of parallel inputs 91

5.4.2 Interruptibility and rolling-back 92

5.4.3 Evaluation of expressions 93

5.4.4 Speech recognition grammars 94

5.5 Expressiveness of CEDL/SRDL 95

5.5.1 Negation of events . 95

5.5.2 About the CARE properties 96

5.5.3 Types of feedback . 99

5.6 Limitations of SRDL . 100

5.7 Summary . 101

6 HMD2L: Separating events from dialog model 103

6.1 Hasselt’s visual language: The Human-Machine Dialog Defini-
tion Language (HMD2L) . 104

6.1.1 HMD2L within Hasselt 104

6.1.2 HMD2L models . 105

6.1.3 Differences between auto-generated FSMs and HMD2L
models . 106

6.2 Proof-of-concept application . 108

6.2.1 Couch Potato. A Multimodal Video Player 108

6.2.2 Implementation . 109

6.2.3 Passive inputs . 115

6.3 Limitations of HMD2L . 117

xii CONTENTS

6.4 Summary . 117

II Assessment of Hasselt 119

7 Code comparison of two different paradigms 121

7.1 Cognitive Dimensions . 122

7.2 Interaction models . 123

7.2.1 Code inspecting a multimodal interaction 123

7.2.2 Code inspecting a multitouch interaction 129

7.3 Dialog models . 134

7.3.1 Implementation of the baseline system 134

7.4 Wrapping up the results . 139

7.4.1 About interaction models 139

7.4.2 About dialog models . 140

7.5 Threats to validity . 140

7.6 Summary . 141

8 User Study 143

8.1 Hypotheses . 144

8.2 Method . 144

8.2.1 Study Design . 144

8.2.2 Participants . 145

8.2.3 First Experiment. CEDL/SRDL versus C# 145

8.2.4 Second Experiment. HMD2L versus C# 148

8.3 Measures . 148

8.3.1 Observations . 148

8.3.2 Single Ease Question (SEQ) questionnaire 148

8.3.3 System Usability Scale (SUS) questionnaire 149

8.4 Results . 150

8.4.1 Modifying an interaction model: CEDL/SRDL vs. C# . 150

8.4.2 Modifying a dialog model: HMD2L vs. C# 151

8.5 Observations . 154

8.6 Usability and learnability of Hasselt UIMS 156

8.7 Interview highlights . 156

8.8 Threats to validity . 157

8.8.1 Construct validity . 157

8.8.2 Internal validity . 158

8.8.3 External validity . 159

CONTENTS xiii

8.9 Lessons for the future . 160

8.10 Summary . 161

III Discussion, Conclusions, and Future Work 163

9 Discussion 165

9.1 Design of a composite-event based language 165

9.1.1 Why textual? Why event-driven? 165

9.1.2 Why these notations? 168

9.2 Evaluation of a composite event-based language 169

9.2.1 Interaction models . 169

9.2.2 Dialog models . 171

9.3 Engineering problems tackled by CEDL/SRDL 172

9.3.1 The selection ambiguity problem 173

9.3.2 The problem of dual-faced gestures 176

9.4 Contributions of the thesis . 177

9.4.1 Contributions in the tooling 177

9.4.2 Contributed algorithms 179

9.4.3 Contributions in engineering 180

9.4.4 Contributions in user study design 181

9.5 Limitations of Hasselt UIMS 182

9.5.1 Fixed set of atomic events 182

9.5.2 Inability to describe two-handed multitouch gestures . . 183

9.5.3 Negative consequences of separating interaction code from
application code . 183

9.6 Summary . 185

10 Conclusions and Future Work 187

10.1 Conclusions . 187

10.2 Future Work . 189

10.2.1 Evaluation methods . 189

10.2.2 Applied research . 189

10.2.3 Exploring alternative directions 190

10.2.4 Towards a composite event-based language 191

10.3 Long term vision . 193

10.3.1 The need of a guiding star. Stopping the Babel-like
confusion of languages 193

10.3.2 Extrapolating the past for envisioning the future 193

xiv CONTENTS

10.3.3 Composite event-based programming. The guiding star 194
10.4 Summary . 196

Appendices 199

A Theoretical background 199
A.1 Exponential Smoothing Filter 199
A.2 Augmented Transition Network (ATN) 200

B Composite events in other domains 201
B.1 Active databases as composite event processors 201
B.2 Complex Event Processing (CEP) as a service 202

C Source code 205
C.1 Feedback about the error recognition inputs 205
C.2 Rolling back . 206
C.3 Management of of redundant inputs 208
C.4 Ambiguity of gestures plus and equal 209
C.5 Dual-faced gestures problem . 211
C.6 Couch Potato . 213
C.7 Back-end application for the put-that-there 218

D User study 221
D.1 Tutorial for user studies . 221
D.2 User study tasks . 226
D.3 Statistical tools . 226

D.3.1 Boxplot . 226
D.3.2 Q-Q normality plots . 226
D.3.3 Wilcoxon signed-rank test 229

D.4 Raw data . 229
D.5 Other standardized questionnaires 229

D.5.1 Standardized post-task tests 229
D.5.2 Standardized usability tests 232

Bibliography 247

List of Figures

2.1 At runtime, different types of user inputs, such as mouse clicks,
speech inputs, or touch inputs, are received by the runtime
component ¬, which is in charge of launching the methods of
an externally developed application ®, according to the speci-
fications of an interaction model ­. The externally developed
application can combine different types of outputs, such as text,
audio, images, animation, or video, to respond the user. The
interaction model is elaborated with a declarative language that
can be textual or visual; it specifies which methods of the ap-
plication have to be called in response to which user inputs. . . 21

2.2 Multimodal interaction represented with a (a) Flow-based model,
(b) State-based model. 27

2.3 (a) Petri nets-based model for multimodal interaction, (b) Logic-
based code for describing a gesture. 32

2.4 Languages for describing context-of-use-dependent interactions.
CoGenIVE shows how the human-machine dialog changes; each
context-of-use represents a set of interaction techniques avail-
able to the end user. 33

3.1 Artifacts and roles involved in a Hasselt project. At runtime,
Hasselt UIMS senses and responds to the end user actions by
launching the methods of the back-end applications according
to the specifications of the interaction model and dialog model.
Whereas the interaction model and dialog model are specified
with the languages of the Hasselt family, the back-end appli-
cations (EXE applications and/or DLL libraries) are externally
developed with .NET languages. 40

xvi LIST OF FIGURES

3.2 The three tabs of the References window allows declaring the
(1) EXE applications, (2) DLL libraries, and (3) previously de-
fined Hasselt programs that are to be imported into the current
project. Hasselt UIMS allows extensibility and modularization
of code. 42

3.3 Editors for the three languages comprising the Hasselt family,
namely Composite Event definition Language (CEDL), System
response Definition Language (SRDL), and Human-Machine
Dialog Definition Language (HMD2L). 45

3.4 Design time and compile time architectures. A composite event
ce is transformed into a finite state automaton fsa, which is to be
annotated with system responses, sr, thus resulting a finite state
machine, fsm. The system responses may refer to the methods
of externally defined back-end applications. Both CEDL editor
and SRDL editor are integrated into the same form, as shown in
Figure 3.3a. The FSM created in the HMD2L editor, if exists,
will be treated in the same way as the FSMs auto-generated
from CEDL and SRDL at runtime. 46

3.5 Typical flow of compile time activities [Wu 10]. The compilers
incorporated in Hasselt UIMS followed the same flow except
that they do not generate binary files, but finite state machines
(FSMs). 46

3.6 Chain of transformations undergone by the composite event
drag-and-drop. (1) The CEDL code is transformed into a parse
tree by a third-party component. (2) This parse tree is con-
verted into a finite state automaton (FSA) by Algorithm 1.
(3) The SRDL code is parsed, once again, by the Irony library.
(4) The nodes and links of the FSA are augmented with system
outputs, according to the SRDL specifications (Algorithm 2),
thus resulting in a finite state machine (FSM). Algorithm 1 and
Algorithm 2 are shown at the end of this chapter. 49

3.7 Runtime architecture. The finite state machines (FSMs) are
fed with user events detected by the input recognizers and
internally-generated events. Its transitions may activate the
back-end applications and/or the synthesizers. 50

3.8 Hasselt runtime environment. The back-end application (BE)
the end user is interacting with was built in C# and imported
through a designated window. 52

LIST OF FIGURES xvii

3.9 The CEDL provides four types of operators that one can use
to compose events (Section 4.1.2). Each of these operators im-
plies different operations in the internal process of transforming
the CEDL code into FSA. This figure illustrates the effect of
each event operator when applied to state machines sd1 and
sd2, shown in (a). (b) CONCATENATE(sd1, sd2). (c)
OVERLAY(sd1, sd2). (d) PERMUTE(sd1, sd2) and (e)
LOOP(sd1). 55

4.1 Intellisense technology is used by the CEDL editor of Has-
selt UIMS. 58

4.2 The pink-colored circle represents the first of three touches
placed on a touchscreen device. The figure shows how the angles
with respect to the first touch are calculated and, in particular,
what the value of the field avgAngle2First will be for this case. 62

4.3 Artifacts involved in the implementation of the put-that-there
interaction. (a) Windows-form application developed in C#
without support of Hasselt UIMS. (b) Binding the composite
event moveObject to the method PutThatThere implemented
the back-end application. 66

4.4 CEDL editor of the first, deprecated version of Hasselt UIMS,
presented in [Cuenca 14b]. Each composite event could be
bound with one event-handling callback only. Noticed that this
editor was much simpler than the current one, shown in Figure 4.3. 70

5.1 Implementing the put-that-there command. 81

5.2 (a) Event composed of an arbitrary number of flick downs.
(b) FSA-based representation of event flickdown (Equation 5.4),
which describes one of the strokes shown in (a). (c) FSA-
based representation of event repeflicks (Equation 5.6, which
describes the whole multi-stroke gesture shown in (a). (d) FSA-
based representation of the multi-touch gesture zoom (Equa-
tion 5.8) . 84

5.3 (a) The end user must put his left hand in front to start draw-
ing a digit. (b) The points covered by his stroke, and their
timestamps are accumulated in x[] and y[], and t[] respectively.
(c) Common structure for the events lhandfront and lhandback
used in the definition of the event digit. 87

xviii LIST OF FIGURES

5.4 Description of a prototype that supervises the end user during
his training session. A demo of this system is shown in https:

//youtu.be/rKBNi4VEaKM . 89

5.5 (a) To avoid interleavings of mouse.move events during a mouse
click, perfectClick must only be triggered when x is null. (b) Any
system response annotated in node(2) will be conveyed if the
command for deletion is detected either via speech or via key-
board. (c) Any system response annotated in both unstable
nodes, node(2) and node(3), will be conveyed only once even if
the command for deletion arrives redundantly via voice and via
keyboard. 96

98figure.caption.63

6.1 On the left side of the diagram, one can see the different levels of
abstraction used by Dumas et al. [Dumas 10]. On the right side,
one can see how our proposed tool follows the same framework:
our HMD2L is at the dialog level whereas the CEDL and SRDL
are at the events level. 105

6.2 HMD2L editor. A property window is displayed when program-
mers click on an arrow of the user-defined FSM. The drop-down
list contains all composite events previously defined with CEDL
and SRDL. The textboxes can be optionally written with a
guard condition (top) or with a list of assignments statements
(bottom). 106

6.3 At the top, one can see Couch Potato operating in its three
different contexts-of-use: (a) Initial mode, (b) Selection mode,
and (c) Playback mode. These contexts-of-use as well as their
interrelations are modeled in (d). 110

6.4 FSA-based representation of the events (a) left2right to be
triggered when the user flicks to the right, (b) rhandfront, to
be triggered when the user put his right hand forward, and
(c) playvideo to be triggered when (a) and (b) co-occur, in
which case Couch Potato will enter into playback mode. . . . 111

6.5 Coach Potato setup. The Z-axis of the Kinect’s coordinate
space extends in the direction in which the sensor points. When
the user extends his right hand, the z-coordinates of the head
and the hand differs in at least 35 cm. 112

https://youtu.be/rKBNi4VEaKM
https://youtu.be/rKBNi4VEaKM

LIST OF FIGURES xix

6.6 FSA-based representation of composite events (a) digit, trig-
gered when a digit has been drawn, and (b) searchByTouch,
triggered when several digits, whose names are accumulated in
the array d, have been drawn. 113

6.7 FSA-based representation of the composite events (a) xrighthand,
which filters the information provided by MS Kinect, (b) fromR2L,
to be triggered when the user’s right hand moves to the left in
three consecutive frames, and (c) wave, to be triggered when
the wave gesture occurs. 116

7.1 HMD2L model representing the dialog supported by the Put-
That-There system described in Section 7.3. 137

8.1 (a) Sequence of steps followed by each participant in the user
study. The first and second experiments referred to in this se-
quence are carried out in an analogous fashion. (b) Common
flow of activities followed during the first and second experi-
ment. Here Hasselt would mean CEDL and SRDL for the first
experiment; and HMD2L for the second experiment. 146

8.2 Programming experience of the 12 participants. 147

8.3 Single ease question (SEQ) questionnaire. Each participant
filled the SEQ four times –namely after using C# in experi-
ment 1, after using Hasselt in experiment 1, after using C# in
experiment 2, and after using Hasselt in experiment 2. 149

8.4 System Usability Scale (SUS) questionnaire and average scores
per question obtained for Hasselt UIMS. Raw data can be seen
in Appendix D.4. 150

8.5 First experiment (CEDL/SRDL versus C#). Boxplots (a) and
(b) summarize the measurements for the 10 participants who
succeeded with both languages. Boxplot (c) includes all 12 par-
ticipants. Raw data can be seen in Appendix D.4. 152

8.6 First experiment. Q-Q normality plots for the differences in
(a) completion times, (b) code testing effort, and (c) SEQ scores.
Plots (a) and (b) involve data of the 10 participants who suc-
ceeded with both languages; plot (c) includes all 12 participants.
Those many points falling far from the straight line, depicted in
red, indicate that the normality of the pair differences cannot
be guaranteed, i.e. it may not be safe to apply paired t-tests. . 152

xx LIST OF FIGURES

8.7 Second experiment (HMD2L versus C#). Boxplots showing the
data collected from the 12 participants. Raw data can be seen
in Appendix D.4. 153

8.8 Second experiment. Normal Q-Q plots for the differences in
(a) completion times, (b) code testing effort, and (c) SEQ scores,
calculated for the 11 participants whose data was analyzed.
Those many points falling far from the straight line, depicted in
red, indicate that the normality of the pair differences cannot
be guaranteed, i.e. it may not be safe to apply paired t-tests. . 154

10.1 Functionalities that can be delegated to a UIMS [Cuenca 14a].
Hasselt UIMS would fit in the state-based group. 191

10.2 (a) Each user event can be bound to one event handler. (b) Each
composite event, which is a combination of many events, can
be bound to multiple event handlers. 195

C.1 Unambiguous specification of the gestures plus and equal. . . . 210
C.2 Unambiguous specifications of three conflicting gestures, namely

vertical flick, horizontal flick, and plus symbol 212

D.1 Raw data collected in the first experiment. 230
D.2 Raw data collected in the second experiment. 231
D.3 Raw data collected from the SUS questionnaires for the 12 par-

ticipants. 232

List of Tables

2.1 Multimodal interaction description languages. This table was
built by merging our own observations –discussed in this chapter–
with those made in [Dumas 09] and [Navarre 09]. 24

2.2 Touch gesture description languages. This table was built by
merging our own observations –discussed in this chapter– with
those made in [Hoste 14]. In this paper, some criteria (e.g. mod-
ularization and partial feedback) had a continous scale. In this
table, the symbol 3was assigned when the property is present
at some degree (> 0) in the language. 30

4.1 Sets of atomic events that can be detected by the input recog-
nizers incorporated in Hasselt UIMS. 58

4.2 Atomic events and corresponding parameters. 60

4.3 Fields of the data structure carried by kinect.skelpos (Table 4.2). 61

4.4 Fields of the data structure carried by atomic events tscreen.move,
tscreen.down, and tscreen.up (Table 4.2). 62

4.5 Differences between atomic events and composite events. 63

4.6 Operators supported by CEDL in increasing order of precedence 64

5.1 Available types of system responses in Hasselt UIMS 75

6.1 Differences between the FSMs generated by Hasselt UIMS from
CEDL and SRDL code versus user-defined FSMs created with
HMD2L. 107

7.1 Dimensions used for comparing Hasselt with equivalent event-
callback code based on the two equivalent implementations of
the multimodal interaction put-that-there, i.e. Algorithm 3 and
code snippet 7.1. 126

xxii LIST OF TABLES

7.2 Dimensions used for comparing Hasselt with equivalent event-
callback code based on the implementation of the pinch gesture
for resizing screen content. 132

7.3 Dimensions used for comparing Hasselt with equivalent event-
callback code based on the implementation of the dialog-based
Put-That-There system. 138

Chapter 1

Introduction

Traditional WIMP (Windows, Icons, Menus, Pointers) systems present graph-
ical user interfaces (GUIs) containing sets of predefined components that users
manipulate in order to activate the system’s functionality. Pressing a button,
dragging the scrollbar’s thumb, and selecting a menu have been common ways
of interacting with WIMP systems for decades.

Research on WIMP systems started at the Stanford Research Institute,
Xerox Palo Alto Research Center (PARC), and MIT in the 1970s [Myers 00].
Some years later, in 1984, the Apple Macintosh came out with three revolution-
ary applications –namely Finder, MacPaint, and MacWrite– that popularized
WIMP systems [Beaudouin-Lafon 94]. Since then, the mouse-and-keyboard
interactions supported by WIMP systems have been widely adopted with only
small variations, and a relatively slow growth of new techniques [Myers 00].

Multimodal systems aim to extend the interaction styles supported by
WIMP systems. One reason for this enhancement is the appearance of technol-
ogy –e.g. palmtops, digital audio players, e-book readers, and smartphones–
over which the use of GUIs is cumbersome or tiresome [Sturm 02]. Besides,
the emergence of novel display technology such as virtual reality and wearable
computers can help break the information bottleneck caused by the mouse and
keyboard [Sharma 98]. Last but not least, the quest of creating systems that
facilitate communicating in a natural way is a constant motivation towards
the development of multimodal systems [Sharma 98].

Multimodal systems can be commanded through the coordinated use of
multiple input modalities, e.g. touch, speech, gaze, facial expressions, and
body gestures. Because of their capability to integrate several modalities, these

2 Introduction

systems can support a human-machine communication that is robust (e.g.
spoken words can affirm gestural commands), accurate (e.g. lip movements
can disambiguate noisy speech), flexible (e.g. users can choose between touch
gestures or voice commands), and natural (e.g. users can now communicate
through multiple senses). Therefore, multimodal systems have the potential
to be used by a broader spectrum of everyday people and to accommodate
more adverse usage conditions than in the past [Oviatt 03].

The well-known Put-That-There system described in the seminal paper of
Richard Bolt in 1980 [Bolt 80] is generally considered as the first multimodal
interactive system. This system allowed users to manipulate a set of virtual
objects around a large-screen display surface through the concerted use of
speech inputs and pointing gestures. For instance, a user can point to some
spot on the large screen and say ‘create a circle there’ in order to make a new
circle appears on the indicated spot. Because voice can be augmented with
simultaneous pointing, the free usage of pronouns becomes possible, with a
corresponding gain in naturalness. Conversely, gesture aided by voice gains
precision in its power to reference. Since that date, research on multimodal sys-
tems was sparsely carried out until the late 1990s [Lalanne 09] when automatic
gesture recognition, analysis of facial expressions, eye tracking, force sensing,
or electroencephalography started to be considered as potential modalities for
HCI [Sharma 98].

1.1 Motivation

Whereas the functionality of a WIMP system is invoked in reaction to a limited
repertoire of actions on a standard set of widgets (e.g. clicking on buttons and
menus), the functionality of a multimodal system can be invoked through
arbitrarily complex series of coordinated actions (e.g. speaking, pointing, and
gazing). The more complex interactions supported by multimodal systems
come with a cost that programmers have to pay.

When using an event language to implement a WIMP interaction, by which
a windows form is closed in response to a mouse click on the button ‘Close’, for
instance, a function for closing the form has to be implemented and declared
as the event handler of the event click-on-Close, which can be detected by
the event-driven framework. In this way, every time the event click-on-Close
occurs, the function for closing the form will be called automatically, thus
making the system behaves properly. On the other hand, implementing the
aforementioned multimodal interaction, by which the system creates a circle in
response to a speech-and-pointing command, is not as straightforward. The

1.1 Motivation 3

function for creating circles cannot be declared as the event handler of the
event create-circle, simply because, unlike clicks on standard widgets, the event
create-circle does not exist in the repertoire of events recognizable by event-
driven frameworks. Every time the user speaks and points in order to create a
circle, the event driven-framework will detect a sequence of speech inputs and
pointing gestures, but it will never “know” that there is a relation among these
events, nor when the event sequence is going to finish. Thus, programmers
have no other choice but implementing two event handlers (to handle speech
inputs and pointing gestures, separately) from which the user’s intention of
creating a circle has to be deduced, and the function for creating circles has
to be manually called at the right time.

In general, when implementing multimodal interactions with event lan-
guages, programmers have to write code for tracking sequences of related
events, and for launching application-specific functions (e.g. for creating a
circle) in a timely manner. This complex code involves several state variables
that must be updated in different event handlers. By interrogating those state
variables, the system can always decode the current state of the event se-
quence, which is crucial to respond the user in the right time. Since similar
code has to be added up for every multimodal interaction that the system has
to support, the source code of a multimodal system gets rapidly infested with
a multitude of state variables that are updated here and there, which end up
being a serious challenge for programmers to understand and to maintain.

As will be proven in this thesis, the maintenance of state variables, or
more generally, the task of tracking event sequences, can be automated by
changing the way in which events are bound to event handlers. Mainstream
event languages, such as Java or C#, restrict programmers to bind one event
to one event handler only, that is, to instruct the system in the following
manner: when this event occurs → call this function. Unlike mainstream
event languages, the language proposed in this thesis enables programmers
to “say”: when this sequence of events occurs → call this function. In this
way, the responsibility of tracking event sequences and therewith, the task of
maintaining state variables, is put on the underlying framework, in benefit of
programmers. The user-defined event sequences that can be declared with our
language will be referred to as composite events, which is the core concept
of the present work.

We are well aware that multimodal interactions can also involve partial
feedback, passive modalities, user errors, ambiguous inputs, and, in general,
be much more complex than the interaction described herein, but our language
is much more powerful as well. For the moment, we will just keep with this

4 Introduction

introductory definition of composite events and one of the challenges to be
met, i.e. automating the tracking of user-defined event sequences. In the
remainder of the thesis, more complex interactions will be addressed as more
new features of the proposed language will be exhibited.

1.2 Research goals

The overall research goal of this research is to identify the benefits and lim-
itations brought about by a composite event-based language when it comes
to describe multimodal interactions. In turn, this goal was divided into the
following sub goals.

G1 To create a language with notations for defining composite events and
for binding these events to event-handling callbacks. This goal requires
investigating what nature (e.g. textual or visual), what paradigm (e.g.
event-driven or logic-based), and what notations are more convenient for
a language that intends to be adopted by users and with enough expres-
siveness to cover a variety of interactions. The interactions described in
the language must be tested in a runtime environment.

G2 To evaluate the advantages and limitations brought about by a compos-
ite event-driven language when it comes to describe multimodal interac-
tions. The evaluation will include static methods (e.g. code inspection)
and dynamic methods (e.g. user studies).

The language and tooling referred to in the goals G1 are described in Part I
of this thesis. The evaluation of the proposed language, referred to in G2, is
exposed in Part II.

1.3 Research approach

We believe that the hard-to-read “callback soup” resulting from implementing
multimodal interactions with existing event languages can be simplified if these
languages would empower programmers to bind composite events to event-
handling callbacks.

In our vision, a composite event-based language must include general-
purpose constructs (sequence, selection, iteration) as well as notations for com-
posite event binding. Programmers must be able to declare both interaction
code and application code with this language, as with any mainstream event

1.3 Research approach 5

language. The difference is that, whereas mainstream event languages restrict
programmers to bind one event to one event handler, our envisioned language
must allow binding user-defined event sequences, i.e. composite events, to one
or more event handlers that, at runtime, are to be called automatically in the
right moment of the interaction. The envisioned language must be supported
by an Integrated Development Environment (IDE) including all the compre-
hensive facilities that programmers need to develop software, e.g. code editors,
interface builders, compilers, runtime environment, and debugging tools. In
particular, the compiler must be able to transform any program declared with
the composite event-based language into an autonomous EXE file. The scope
of this envisioned solution had to be narrowed for the present PhD project.

This PhD project implemented the notations for describing multimodal
interactions; the application code has to be written externally with a general-
purpose programming language. Concretely, with Hasselt, the proposed lan-
guage, programmers can describe interactions by declaring composite events
and by binding these events to event-handling callbacks, which are externally-
defined C# methods. At runtime, the event-handling callbacks are launched
automatically in response to the (partial) detection of their associated com-
posite event. Hasselt is supported by a User Interface Management System
(UIMS) (see Section 2.1.4) that includes the code editors, runtime environ-
ment, and debugging tools required to write, run, and evaluate Hasselt speci-
fications, respectively.

Hasselt simplifies the implementation of multimodal interactions with re-
spect to event languages. Among other reasons this is because, with Hasselt,
programmers only have to ‘declare’ composite events, not to ‘implement’ a
mechanism for detecting them, as it would be the case when using event lan-
guages. Contrary to what is expected from a full-fledge IDE, Hasselt UIMS
cannot deliver the final version of the intended system; it cannot merge the
interaction code, written with Hasselt, with the application code, externally-
defined with C#, into an autonomous executable file. Despite this, Has-
selt UIMS is still well-suited for rapid prototyping. Programmers can quickly
explore a wide variety of multimodal interactions by defining and redefining
composite events while the application-specific code remains safe and unal-
tered in a canned, externally developed application. This UIMS-as-a-rapid-
prototyping-tool approach has been used for almost all multimodal interaction
description languages and gesture description languages to be studied in the
Related Work chapter.

6 Introduction

1.4 Contributions

The main contributions of this thesis are:

Hasselt, a family of declarative languages for describing multimodal in-
teractions in terms of composite events. The relations between the series of
coordinated actions performed by the end user and the responses conveyed by
the multimodal system throughout the human-machine interaction are imple-
mented by declaring composite events, each of which can be bound to one or
more event-handling callbacks. The programming environment that supports
our language has also introduced novelties in tooling and algorithms, as will
be discussed in Section 9.4.

The identification of two new benchmark problems for touch inter-
actions: the recursive version of the selection ambiguity problem and the
dual-faced gesture problem. Both problems as well as their potential solutions
will be discussed in Section 9.3. These problems can serve as a challenge for
future specification languages and as a guidance for language developers.

An empirical study conducted to compare the programming efficiency of
Hasselt versus a mainstream event language when it comes to modify multi-
modal interactions. By concerted use of observations, standardized question-
naires, and interviews, we managed to measure the completion rates, com-
pletion time, code testing effort, and perceived difficulty of the programming
tasks, as will be shown in Chapter 8.

1.5 Supporting publications

The present work has been disseminated in several papers that have been pre-
sented in both conferences and journals in the domains of Human-Computer
Interaction (HCI) and Software Engineering.

The CoGenIVE Concept Revisited: A Toolkit for Prototyping Mul-
timodal Systems. Proceedings of the 5th ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems (EICS’13). Cuenca, Fredy [Cuenca 13a].
This doctoral consortium paper proposes that a language for describing mul-
timodal systems must include notations for declaring compositions of events,
notations for declaring with system responses, high-level notations for speci-
fying human-machine dialogs, and notations for combining different types of

1.5 Supporting publications 7

system outputs. It was written in the first year of the PhD, before Hasselt
started to be implemented, and it was used as a guidance for its development.

Assessing the support provided by a toolkit for rapid prototyping
of multimodal systems. Proceedings of the 5th ACM SIGCHI symposium
on Engineering interactive computing systems (EICS’13). Cuenca, Fredy and
Van den Bergh, Jan and Luyten, Kris and Coninx, Karin [Cuenca 13b]. This
paper compares the notations of three different multimodal interaction de-
scription languages (MIDLs) for the case of the interaction put-that-there. It
tries to make readers able to distinguish what parts of the intended multi-
modal system need to be described in the MIDLs and what parts need to be
implemented with general-purpose code.

A Domain-Specific Textual Language for Rapid Prototyping of Mul-
timodal Interactive Systems. Proceedings of the 5th ACM SIGCHI sympo-
sium on Engineering interactive computing systems (EICS’14). Cuenca, Fredy
and Van den Bergh, Jan and Luyten, Kris and Coninx, Karin [Cuenca 14b].
This paper presents both the Composite Event Definition Language, the first
member of the Hasselt family, as well as the initial version of Hasselt UIMS,
which was therein referred to as ‘the supporting toolkit of Hasselt’. The paper
illustrates multiple features of CEDL (e.g. event operators, arrays, and time-
out events) and the supporting tool (e.g. code editors and debugging tools).
It also shows an algorithm that transforms composite event descriptions into
semantically-equivalent finite state automata.

Graphical Toolkits for Rapid Prototyping of Multimodal Systems:
A Survey. Interacting with Computers (IwC). Cuenca, Fredy and Coninx,
Karin and Luyten, Kris and Vanacken, Davy [Cuenca 14a]. This article studies
several tools for prototyping multimodal systems. It proposes a classification
of tools based on the savings that programmers can achieved when creating
a multimodal system with these tools. Programmers can be saved from con-
figuring input recognizers, from configuring output synthesizers, from fusing
inputs, from managing the human-machine dialog, and/or for conveying out-
puts in a coordinated manner. We noticed that all the studied tools fall into
three categories –namely, flow-based, state-based, and token-based– that give
programmers a quick idea of how much work can be saved when using each
tool. As commented in the article, the term ‘composite event’ was found im-
plicit in many of the languages underlying the studied tools.

8 Introduction

Hasselt UIMS: a tool for describing multimodal interactions with
composite events. Proceedings of the 7th ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems (EICS’15). Cuenca, Fredy and Van
den Bergh, Jan and Luyten, Kris and Coninx, Karin [Cuenca 15b]. A sum-
mary of the three members of the Hasselt family is presented in this demo
paper. The paper uses a running example to explain how to combine the
Composite Event Definition Language (CEDL), the System Response Defini-
tion Language (SRDL), and the Human-Machine Dialog Definition Language
(HMD2L). The example makes it clear that, with Hasselt, the interaction
models, created with CEDL and SRDL, are separated from the dialog model,
depicted with HMD2L.

Empirical Study: Comparing Hasselt with C to Describe Multi-
modal Dialogs. Proceedings of the First International Workshop on Human
Factors in Modeling (HuFaMo 2015). Cuenca, Fredy and Van den Bergh, Jan
and Luyten, Kris and Coninx, Karin [Cuenca 15a]. A within-subjects exper-
iment, in which twelve participants are asked to perform equivalent modifi-
cations to a dialog model described with both Hasselt HMD2L and C#, is
presented this paper. No statistically significant results were obtained when
comparing the completion times or code testing effort involved with each lan-
guage. But, it was proven that the perceived difficulty of the modelling task
was easier when using HMD2L than when using C#.

A user study for comparing the programming efficiency of modi-
fying executable multimodal interaction descriptions. A domain-
specific language versus equivalent event-callback code. Proceedings
of the sixth workshop on Evaluation and Usability of Programming Languages
and Tools (PLATEAU 2015). Cuenca, Fredy and Van den Bergh, Jan and
Luyten, Kris and Coninx, Karin [Cuenca 15c]. A within-subjects experiment,
in which twelve participants are asked to perform equivalent modifications to
an interaction model described with both Hasselt CEDL/SRDL and C#, is
presented this paper. The results showed that Hasselt led to higher completion
rates, lower completion times, and less code testing. Additionally, Hasselt was
perceived as easier to use according to the results obtained from subjective
questionnaires. The threats that jeopardize the validity of the experiment are
openly discussed and some lessons for the future are commented.

1.6 Thesis outline 9

1.6 Thesis outline

Chapter 2. Definitions and Related Work This chapter presents the core
concepts that are going to be mentioned intensively throughout the thesis. It
also describes other UIMSs and domain-specific languages that inspired our
work. Some languages can describe multimodal interactions whereas others
are specialized in multitouch interaction.

PART I.
The first part describes Hasselt and its supporting tool, Hasselt UIMS. Has-
selt is a family of languages intended to describe a wide variety of multimodal
interactions in a simpler, faster way than when using event languages. It is
composed of three domain-specific languages, each of which is described in a
separate chapter.

Chapter 3. Hasselt UIMS, a composite event-based tool. Here we
describe the steps required to create a project with Hasselt UIMS. A project
typically includes an interaction model and externally defined back-end appli-
cations. The assortment of internal components that Hasselt UIMS invokes
in order to support the whole lifecycle of a Hasselt program, from editing to
execution, are discussed in this chapter.

Chapter 4. CEDL: Composing user events. This section describes the
Composite Event Definition Language (CEDL), which provides the notations
for combining a series of built-in user events (e.g. mouse.down, kinect.rhand)
in a declarative and compositional manner.

Chapter 5. SRDL: Responding to composite events. This section
presents the System Response Definition Language (SRDL), which enables
programmers to declare spatial, temporal, and semantic constraints between
the constituents of a composite event previously declared with CEDL. SRDL
also allows the possibility to bind one composite event with multiple event
handlers that may be triggered at different stages of the interaction.

Chapter 6. HMD2L: Separating events from dialog model. The
Human-Machine Dialog Definition Language (HMD2L) provides visual nota-
tions to specify dialog models. This language is not mandatory when creating
a Hasselt project, but it may be convenient to describe systems whose re-
sponses vary depending on the contex-of-use.

10 Introduction

PART II
The second part of this thesis describes the evaluation of Hasselt and Has-
selt UIMS. The evaluation was performed by means of code inspection and
user studies.

Chapter 7. Code comparison of two different paradigms. This chap-
ter presents three comparisons of equivalent source codes written with both
Hasselt and an event language. The source codes to be compared refer to one
multimodal interaction, one multitouch interaction, and one high-level human-
machine dialog.

Chapter 8. User study. This chapter reports the results of a user study
involving a group of C# programmers that was asked to perform equivalent
modifications with both Hasselt and C#. The study includes two within-
subjects experiments that compare the efficiency of the two languages when
modifying interaction models and dialog models.

PART III
This final part describes the contributions, limitations, conclusions, and im-
plications of the presented research.

Chapter 9. Discussion. This chapter discusses the design decisions behind
Hasselt, identifies the contributions of the research, and lists the limitations
of our particular implementation.

Chapter 10. Conclusions and Future Work. This thesis finishes de-
scribing the conclusions and identifying potential implications of the concept
of composite events in the design of future event languages.

1.7 Summary

The present chapter has highlighted that unlike WIMP systems, multimodal
systems need to identify the interaction state in order to be able to respond
to the end user in the right moment of the interaction. When using event
languages, this functionality has to be manually implemented by maintaining
a multitude of state variables across several event handlers, which complicates
the work of programmers. As mentioned above, the need for manually track-
ing event sequences is one consequence of a fundamental limitation of event

1.7 Summary 11

languages: they restrict programmers to bind one event to one event handler.
Hasselt, our proposed language generalizes this one-to-one mapping of events
to event handlers by allowing programmers to bind many event handlers per
composite event, which is, in turn, a user-defined combination of many re-
lated events. The core of this thesis is the presentation and evaluation of the
Hasselt, but in the meantime, the next chapter will introduce other tools and
approaches aimed at simplifying the creation of multimodal interactions.

12 Introduction

Chapter 2

Background and Related Work

The present chapter starts by describing the terminology that is going to be
used extensively throughout the remainder of this thesis. It then describes
several languages intended for prototyping multimodal interactions and mul-
titouch gestures. Some of these languages were specifically designed for de-
scribing multimodal and/or multitouch interactions whereas others were built
on top of existing general-purpose models or logic-based languages.

2.1 Background

2.1.1 Interaction styles: multimodal, multitouch, cross-device

An interaction style is defined as the user’s perception of a dialogue with a
computer [Hartson 88]. Millions of people around the globe experience WIMP
interactions in a regular basis when using the mouse and the keyboard to
command desktop applications. But aside from this popular way of inter-
action, newer interaction styles are appearing as technology evolves. Below
we describe the interactions styles that can be (partially) supported by the
prototypes created with Hasselt UIMS.

Multimodal interaction

Multimodal interaction is part of everyday human discourse: We speak, move,
gesture, and shift our gaze in an effective flow of communication. In stark con-
trast to human experience, human–computer interaction (HCI) has historically

14 Background and Related Work

been focused on unimodal communication (i.e. information communicated
through a single mode or channel, such as a mouse or a keyboard) [Turk 14].
Multimodal systems aimed at putting the natural human behaviors in the cen-
ter of HCI [Obrenovic 04]; these systems represent a research-level paradigm
shift away from WIMP interfaces toward providing users with greater expres-
sive power, naturalness, flexibility, and portability [Oviatt 99]. Among other
conferences, the International Conference on Multimodal Interfaces (ICMI)1

has become the premier venue for research in multimodal interaction. In recent
years ICMI also merged with a European-focused workshop on machine learn-
ing and multimodal interaction (MLMI), expanding its focus and enlarging its
community [Turk 14].

As mentioned in the previous chapter, the history of multimodal systems
traces back to the Put-That-There system [Bolt 80]. Other multimodal sys-
tems such as CUBRICON [Neal 89], JEANIE [Vo 96], QuickSet [Cohen 97],
and SmartKom [Wahlster 01], which are now classical study cases within the
multimodal community, enriched and expanded the speech-and-pointing in-
teraction supported by the Put-That-There system.

Multimodal interaction offers a set of modalities (e.g. touch, speech, gaze,
pen, head and body movements) that end users can combine in order to inter-
act with the machine [Dumas 09]. There are important advantages in combin-
ing multiple inputs. First, such systems potentially can function more robustly
than unimodal systems [Oviatt 99]. The use of several input modalities can be
exploited to perform disambiguation, e.g. speech recognition can be improved
when supported by lip movements recognition [Gibbon 12]. Furthermore, the
flexibility of a multimodal interface can accommodate a wide range of users,
tasks, and environments [Oviatt 99]. In noisy environments, for instance, one
may prefer to command a smartphone with touch commands rather than with
voice commands. Finally, multimodal systems are more suitable for controlling
sophisticated multimedia output capabilities, such as virtual environments, an-
imated characters, and the like, for which the keyboard and mouse input are
relatively limited and impoverished [Oviatt 99]. On the down side, a major
hindrance is perhaps still in the inadequacies of the individual modalities that
are used in the multimodal interface. The performance of speech recognition
is still highly context dependent, often below the desired robustness. Force
sensing lacks suitable devices with desired accuracy without constraining the
user. Sensing of neural information requires extensive training. These prob-
lems have restricted today’s multimodal interfaces to a very narrow class of

1http://icmi.acm.org/2015/index.php?id=cfp

http://icmi.acm.org/2015/index.php?id=cfp

2.1 Background 15

domains where the problems can be minimized [Sharma 98].

Multitouch interaction

Although touch can be viewed as one input modality in a multimodal system,
the many complex issues to be tackled when implementing multitouch inter-
action (e.g. ever-changing number of touches) have raised this domain to a
study field in its own right. A large community of researchers has periodical
meetings in conferences, such as the International Conference on Interactive
Tabletops and Surfaces (ITS)2, to advance the state of the art in the design,
development, and use of interactive surface technologies.

The technology required for multitouch interaction has been available since
the late 1970s [Schöning 10]. Touchscreens have been used for large and col-
laborative projective walls (e.g. Diamond Touch System [Dietz 01]), for auto-
mated teller machines (ATMs), and for kiosks in museums, airports, or hotels,
where mouse-and-keyboard systems do not allow a suitably intuitive, rapid in-
teraction. But touchscreens became popular in the field of cellular telephony.
After 2007, when Apple launched the iPhone3, the number of smartphone
users has grown considerably during the years. It is estimated that, in 2015,
there are around 1.9 billion smartphone users, a figure that could reach 2.5
billion in 20184.

Multitouch interaction involves series of movements that end users perform
with their hands on a touch-sensitive surface in order to activate an applica-
tion function [Cirelli 14]. This interaction style offers advantages and disad-
vantages. As regards the advantages, it is proven that, the fastest multitouch
interaction is about twice as fast as mouse-based selection, independent of the
number of targets [Kin 09]. This efficiency has been exploited in ATM kiosks
and other similar scenarios, where reducing the waiting time of customers
is convenient for the companies. Moreover, the fact that multiple variables
can be obtained from each single touch (e.g. pressure sensitivity and angle
on several axes) means that it is possible for touch systems to distinguish a
wide variety of multitouch gestures [Wu 03], which may potentially enrich the
interaction vocabulary of the user. On the negative side, multitouch interac-
tion complicates the occlusion problem, as several fingers are clouding even
more parts of the touchscreen than on single-touch devices. This can, how-
ever, be eased by clever interface design approaches, as Wu and Balakrishnan

2http://www.its2015.org/
3http://www.apple.com/iphone/
4http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

http://www.its2015.org/
http://www.apple.com/iphone/
http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

16 Background and Related Work

confirmed [Wu 03]. Another issue is the fat finger problem which enforces
designers to use interaction objects of a certain minimum size, in order to be
precisely touchable by human fingers [Siek 05].

So far, we have defined and discussed some intrinsic problems of multimodal
and multitouch interaction. But, of course, there are also problems related
with the construction of multimodal and multitouch systems. Spano et al.
identified three important problems in the engineering and development of
touch interfaces [Spano 13b]. It turns out that these problems are also present
in the implementation of multimodal systems, as we noticed during our re-
search. The event granularity problem appears when a framework can only
launch callback functions after the full detection of an event pattern, which
prevents systems from providing partial feedback. The spaghetti code problem
refers to the fact that the interaction code has to be split across multiple event
handlers, which increases the mental load of programmers. The selection ambi-
guity problem appears when multiple gestures have the same starting sequence
of events (e.g. when one has to write unambiguous specifications for the plus
gesture and for the equal gesture, both gestures starting with a horizontal
stroke). The solutions to these and other engineering problems are proposed
and discussed yearly in the Symposium on Engineering Interactive Computing
Systems (EICS5). The three fundamental problems found by Spano et al. can
be tackled by Hasselt as will be discussed in Chapter 9.

Cross-device interaction

Many of the tools of HCI originate from a time when interactions involve a
single user using a single device, which used to be a desktop computer. The
realities of our digital lives moved on from this long ago [Rowland 15]. Today,
many people uses multiple computers in a regular basis. Besides traditional
desktop computers, they use computers for home entertainment, smartphones,
tablets, and other special-purpose devices such as music-players or e-book
readers. Computer devices even enter their clothes and bodies as biomedical
or special purpose communication devices. As the number of devices grows,
so does the need to exchange information and mediate interaction between
them [Scharf 13]. People increasingly express their frustration about the lack
of integration between devices and see the need for network standardization
and connectivity [Sørensen 04]. Cross-device interaction (XDI) may help to
overcome these obstacles through interconnection of different devices.

5http://eics2015.org/

http://eics2015.org/

2.1 Background 17

Cross-device interaction requires multiple, separate but interconnected in-
put and output devices so that users can utilize the input devices in order
to manipulate content on output devices within a perceived interaction space
with immediate and explicit feedback [Friedl 15].

This chapter will present several languages, most of them are specially tai-
lored for modeling either multimodal or multitouch interaction. The next
chapters will show that Hasselt can describe both multimodal and multitouch
interactions as well as one specific case of cross-device interaction, namely, a
mobile phone controlling the content displayed on a computer screen.

2.1.2 Important programming paradigms

In his 1978 ACM Turing Award lecture, Robert W. Floyd defined a program-
ming paradigm as the way of conceptualizing how the tasks that are to be
carried out on a computer should be structured and organized [Floyd 79].

The tools and languages to be studied herein require one to use different
programming paradigms in order to create a software system. It is therefore
convenient for the reader to be able to distinguish between the most important
paradigms to be referred to in this thesis.

Imperative programming

With the imperative paradigm, a programmer writes code that describes in
exacting detail the steps that the computer must take to accomplish the goal.
The flow of control of an imperative program is determined by the program
text. Given the initial input, it is possible to foresee all the instructions
that will be executed until the termination of the program. The imperative
paradigm is well-suited to implement transformational systems [Harel 85], i.e.
those systems that can perform their intended computation without the need
of being repeatedly prompted by the outside world (e.g. compilers). Impera-
tive languages trace back to FORTRAN, developed by John Backus at IBM
starting in 1954. Other examples of imperative languages include BASIC,
Pascal, and C.

Event-driven programming

Event-driven programs consist of a series of fine-granularity functions intended
for handling user events such as mouse clicks, keystrokes, speech inputs, and
other events such as timer expirations and network connections. Event-driven

18 Background and Related Work

programs only gain control sporadically when events occur, thus causing the
execution of their corresponding event-handling functions. Since the events
occur in an unpredictable order and timing, the path through the code is
likely to differ every time an event-driven program is run [Samek 03], i.e. the
flow of control is driven by events. WIMP systems make exemplary event-
driven systems [Samek 09]. Event languages as widely used as Visual Basic
and Java appeared in 1991 and 1995 respectively.

Declarative programming

Declarative programming is a non-imperative style of programming in which
programmers describe the desired results without explicitly listing commands
or steps that must be performed. The declarative paradigm is used in many
commercially available database query languages such as SQL and XQuery.

Modern-day languages do not subscribe to one programming paradigm; mul-
tiple programming paradigms may be embedded in one single language. For
example, C# supports the imperative programming paradigm, the object-
oriented programming paradigm, and the event-based programming paradigm.
Java has many characteristics of the imperative programming paradigm, the
object-oriented programming paradigm, the web-based programming paradigm,
the concurrent programming paradigm, and the event-based programming
paradigm [Bansal 13].

This chapter will present several declarative languages aimed at describing
multimodal and/or multitouch interactions. The future work chapter will dis-
cuss the appearance of event languages in an epoch that was dominated by
imperative languages. In that discussion, we will try to foresee, as clearly as
possible, a future scenario in which event languages are replaced (extended)
by a new (augmented) programming paradigm.

2.1.3 Prototyping and Rapid Prototyping

The hardest part of building a software system is deciding precisely what to
build. It is difficult for clients to specify completely, precisely, and correctly
the exact requirements of a modern software product before having built and
tried some version of the product they are specifying. Therefore one direction
to attack the complexity of a software project is the development of approaches
and tools for prototyping of software systems [Brooks 87].

2.1 Background 19

Software prototyping consists of creating a trial version of a system, a
prototype. The purpose of prototyping is to clarify users requirements and
to identify critical design considerations long before the final version is built
[Gordon 95]. Prototypes typically perform the mainline tasks of the intended
system, but make no attempt to handle the exceptions, respond correctly to
invalid inputs, abort cleanly, etc [Brooks 87].

There are different prototyping approaches including rapid prototyping, it-
erative prototyping, and evolutionary prototyping [Beaudouin-Lafon 03]. These
approaches can be applied for any type of system including WIMP systems,
multimodal, and multitouch systems.

The proposed Hasselt UIMS as well as other similar tools to be discussed
in this chapter are intended for rapid prototyping multimodal systems and
multitouch systems. Rapid prototypes must be inexpensive and easy to pro-
duce, since the goal is to quickly explore a wide variety of interactions and then
throw them away [Beaudouin-Lafon 03]. Even if they must be re-implemented
in the final version of the system, rapid prototypes are important for detecting
and fixing interaction problems in a timely manner.

A common strategy used by rapid prototyping tools is to allow program-
mers and designers to represent the behavior of the intended system in a much
simpler way than with low-level code, with a declarative language instead of
with an imperative one. The architecture supporting such a technique is called
User Interface Management System (UIMS).

2.1.4 User Interface Management System (UIMS)

The term User Interface Management System (UIMS) first publicly appeared
in an article entitled “A User Interface Management System” [Kasik 82].

A User Interface Management System (UIMS) is a software tool whose
role is to mediate the interaction between the end user and an application.
A UIMS provides declarative language(s) in which human-machine interac-
tion can be modeled at a high level of abstraction and separately from the
application semantics, which must be encoded with a general-purpose lan-
guage [Beaudouin-Lafon 94] (Figure 2.1). At runtime, the UIMS generates a
user interface that enables the interaction described in the high-level models
[Shaer 08].

The bilingual approach followed by UIMSs –one language for specifying
interaction and another for specifying application– can be traced back to the
Reaction Handler [Newman 68], which is considered the first UIMS [Myers 98]
–even older than the definition of UIMS itself.

20 Background and Related Work

Based on the classification proposed in [Beaudouin-Lafon 94], the history
of UIMSs can be divided into three epochs.

The UIMSs proposed in the first epoch, which reached its apex during the
middle 1980s, focused on graphical systems. Their declarative languages aimed
at describing the mouse interactions required to draw geometrical figures
on graphical applications. ALGAE [Flecchia 87], Sassafras UIMS [Hill 86],
Squeak [Cardelli 85], Syngraph [Olsen Jr 83], MIKE [Olsen Jr 86], and Uni-
versity of Alberta UIMS [Green 85] can serve as examples along with the
aforementioned Reaction Handler [Newman 68].

The second epoch, during the late 1980s, witnessed a set of UIMSs intended
to support the development of WIMP systems. But since the description
of WIMP interactions is strongly coupled to the widgets of the GUIs, these
UIMSs needed to include more tool sets, e.g. interface builders, and not just
language interpreters. Carnegie Mellon University proposed two prominent
UIMSs: Serpent [Bass 88] and Garnet [Myers 90].

The research of the aforementioned UIMSs and their underlying languages
led to very popular uses of event languages in many commercial tools, such as
Microsoft’s Visual Basic [Myers 00]. Using the interface builder of Visual Basic
for the layout and the Visual Basic language for scripting the “glue” that holds
everything together enables people who are not professional programmers to
create sophisticated and useful interactive applications [Myers 00].

The first two epochs dealt with mouse-and-keyboard interactions. But the
third epoch, which started with the new millennium, focuses on multimodal
interactions. Our proposal, Hasselt UIMS, belongs to this epoch along with
MEngine [Bourguet 03], ICon [Dragicevic 04a], OpenInterface [Lawson 09],
CoGenIVE [De Boeck 07], ICO [Navarre 09], HephaisTK [Dumas 10], Squidy
[König 10], and Mudra [Hoste 11], among others. New situations such as par-
allel inputs (i.e. several inputs issued at the same time) and passive inputs
(i.e. inputs such as facial expressions, which are issued without the explicit
intention of commanding the system) have to be addressed by the UIMSs of
this epoch.

2.1.5 Accidental complexity and essential complexity

A software engineering problem can be divided into its accidental and essen-
tial complexity [Brooks 87]. Accidental complexity refers to the difficulties
programmers face due to the choice of software engineering tools. It can be
reduced by selecting or developing better tools. Essential complexity, on the
other hand, relates to the intrinsic characteristics of the target problem and

2.1 Background 21

Figure 2.1: At runtime, different types of user inputs, such as mouse clicks, speech
inputs, or touch inputs, are received by the runtime component ¬, which is in charge
of launching the methods of an externally developed application ®, according to the
specifications of an interaction model ­. The externally developed application can
combine different types of outputs, such as text, audio, images, animation, or video,
to respond the user. The interaction model is elaborated with a declarative language
that can be textual or visual; it specifies which methods of the application have to be
called in response to which user inputs.

22 Background and Related Work

is irreducible.

When implementing multimodal systems, a problem like the presence of
noisy inputs, for instance, can be considered as essential complexity. No matter
how advanced the languages and frameworks one decides to use are, program-
mers will always have to deal with this problem since it is engendered by the
sensors, not by the tools. In contrast, the need of implementing event pat-
tern detection when creating multimodal or multitouch systems qualifies as
accidental complexity. This is caused by a limitation of existing frameworks
and, as commented in the previous chapter, may be reduced by creating a
new type of frameworks: frameworks that permit binding user-defined event
patterns with event-handling callbacks.

The purpose of Hasselt UIMS is to reduce the accidental complexity of
implementing multimodal and multitouch interactions with existing event-
driven frameworks.

2.1.6 Finite State Automaton and Finite State Machine

With Hasselt, several event-handling callbacks can be bound to a user-defined
composite event. This implies that programmers have to be able to specify
the moment in which each callback is to be launched. Hasselt uses finite
state automata as non-linear timelines whose points may be annotated with
event-handling callbacks.

A Finite State Automaton (FSA) is a logical machine composed of states
and transitions. States are usually represented graphically by circles; and
transitions, by arrows between states. The machine works as follows: if it is
in state s1 and input evt arrives, it goes into state s2 as long as there is a
transition labeled evt from s1 to s2 [Beaudouin-Lafon 94].

For the sake of precision, it is important to clarify the differences between
FSA and a similar model. A Finite State Machine (FSM) is a FSA whose
transitions can produce system outputs [Chen 08]. In its graphical represen-
tation, the outputs of a FSM, the same as its events names, are annotated in
the arrows. In the domain of software engineering, FSMs may also have guard
conditions associated to their transitions [Wagner 06].

At design time, Hasselt makes use of both FSAs and FSMs as shown in
Figure 3.6. There the FSA auto-generated by Hasselt is upgraded to a FSM
after annotating their nodes and links with system outputs.

2.2 Related Work 23

2.2 Related Work

The textual notations provided by Hasselt UIMS allow describing multimodal
and multitouch interactions; its high-level visual language permits describing
human-machine dialogs. The present section will compare each of the three
types of models supported by Hasselt with other similar models.

2.2.1 Multimodal interaction description languages

Almost all multimodal interaction description languages are visual languages
whose models are variations from block diagrams, state machines, and Petri
nets [Cuenca 14a].

Multimodal interaction as block diagrams

The visual languages provided by ICon [Dragicevic 04b], Squidy [König 10],
and OpenInterface [Lawson 09] allow representing multimodal interactions as
block diagrams. Block diagrams are directed graphs whose links allow input
data to flow in the direction of their arrowheads towards an externally devel-
oped application (Figure 2.2a). The nodes of a block diagram can represent
(1) input hardware, (2) output devices, (3) an external application that will
eventually receive data, and (4) transformations to be applied to the data
(e.g. data filters). These tools allow programmers to connect a wide variety
of input devices to an application, in a declarative, visual fashion. Applica-
tions no longer have to include code for the initialization and configuration
of input hardware, since these tasks are performed internally by the block
diagram-based tools.

As to the particular characteristics of each tool, it can be mentioned that
ICon and OpenInterface provide a set of predefined transformation nodes
whereas Squidy allows users to customize the transformation nodes by writing
fine-grained code. Moreover, ICon and Squidy models can only include one
external application while OpenInterface can feed data into multiple appli-
cations developed in different languages. These three tools do not combine
data from different input sources. Therefore, the multimodal application has
to store the input data coming from different modalities and identify when a
meaningful event has occurred so that an adequate system response can be
conveyed. In contrast, Hasselt and the tools to be discussed below are able to
identify these meaningful events from user-defined declarative specifications.

24 Background and Related Work

IC
on

O
p

en
In

te
rf

ac
e

S
q
u

id
y

V
R

E
D

N
iM

M
iT

IC
O

H
ep

h
a
is

T
K

M
u

d
ra

H
as

se
lt

Paradigm

Dataflow 3 3 3 3

Event-driven 3 3 3 3 3

Logic-based 3

Type of models

Visual 3 3 3 3 3 3 3

Textual 3 3

Interaction styles

Multimodal 3 3 3 3 3 3 3 3 3

Multitouch 3 3 3 3

Cross-device 3 3

About the language

Separation dialogs/events 3 3 3 3

Time variables + delay events 3 3

Negation of events 3 3 3

Domain-specific notation 3 3 3 3 3 3 3

About the supporting UIMS

Generation of EXEs 3

Available in WWW 3 3 3 3

Used in real-world project 3

Table 2.1: Multimodal interaction description languages. This table was built
by merging our own observations –discussed in this chapter– with those made in
[Dumas 09] and [Navarre 09].

2.2 Related Work 25

Multimodal interaction as finite state machines

Finite state machines (FSM) have been widely used to model multimodal
interaction. The nodes of the FSM represent the possible states of the multi-
modal system, and its arcs represent the events that cause the transitions in
the system’s state.

VRED [Jacob 99] was one of the first approaches targeted towards the
specification of Post-WIMP interaction, which include multimodal interaction.
It splits the graphical interaction specification into a data-flow component and
an event component; this latter is modeled as a FSM. Although the authors
acknowledged that “all continuous inputs must ultimately be quantized in
order to pass them to a digital computer”, they decided to consider certain
events, like the dragging of a mouse, as continuous input just because “the user
does not think of generating individual ‘motion’ events, but rather of making
a continuous gesture”. Our approach is different, we assume that Hasselt users
are programmers, therefore they know that the system will process user actions
as individual events arriving in discrete moments of time. On the one hand,
VRED may be interesting for a wider audience –its potential users do not
necessarily have to know what happens ‘inside the computer’. On the other
hand, Hasselt models give more control to programmers; these can see and use
information that is invisible from the user’s perspective. For instance, with
Hasselt models, one can distinguish which of two simultaneous user inputs
will be perceived first by the system and specify a distinct system response
for each case, whereas, from the user’s perspective, these two inputs will just
arrive at ‘exactly’ the same time, which is not often the case [Oviatt 99].

In MEngine [Bourguet 02], multimodal interactions are described by de-
picting FSMs. Each arch of these machines can be annotated with only one
event name. Each node may be annotated with a handling subroutine, which
is to be launched when the node is reached. One problem of MEgine is that its
models grow too quickly when involving simultaneous inputs. For instance, it
is known that deictic terms can precede pointing or vice versa during speak-
and-point selection; these inputs often do not co-occur [Oviatt 99]. When
using MEngine, these two different orders of arrival have to be explicitly de-
picted by the user. Obviously, this gets more tedious if one has to describe
interactions involving not only two, but three or more simultaneous inputs
–in general, N inputs can arrived in N! different ways. Hasselt UIMS protects
its users from this state explosion through the automatic generation of state
diagrams. Hasselt programmers only have to specify which inputs are to be si-
multaneous (by using the AND operator) and, under the hood, Hasselt UIMS

26 Background and Related Work

will generate a FSM that contemplates all the possible ways in which these
inputs can arrive.

NiMMiT is another visual modeling language based on FSMs [De Boeck 07,
De Boeck 08]. In contrast with MEngine, one can annotate several event
names to one single arc of a NiMMiT model. Such arcs will be traversed
only if all its associated events occur simultaneously. This implies that, unlike
with MEngine, one does not have to explicitly depict all the possible orders of
arrival in which the inputs can be sensed; this will be internally handled by
NiMMiT in benefit of its users. To the best of our knowledge, the supporting
tool of NiMMiT, called CoGenIVE, is the only tool capable of transforming
interaction models into C# code. This confers CoGenIVE with a rank higher
than that of a rapid prototyping tool. NiMMiT models do not have to be
thrown away and re-implemented as it is the case with the other tools to be
studied in this chapter, including Hasselt UIMS. With CoGenIVE, it is always
possible to continue progressing towards the final version of the intended sys-
tem by building up on top of the C# code obtained from NiMMiT models. On
the other hand, NiMMiT has limitations too. One limitation is that its events
do not include parameters, which undesirably increases the number of function
calls. For instance, every time one needs to refer to the cursor position during
a mouse click, a function that returns this information has to be invoked. A
better approach, as implemented by Hasselt, is to include event parameters
in the definitions of user events so that the values of these parameters can be
automatically set, in a timely manner, and without the need of function calls.
Another issue of NiMMiT is that it easily degenerates into bulky diagrams.
To name just one example, a sequence of several events has to be modeled as
a chain of multiple arcs –as many as events in the sequence. If we consider
that each arc of a NiMMiT model must always carry a visual symbol meant to
specify event-handling callbacks (even if one does not want to associate call-
backs to the arc), it is easy to foresee the unnecessarily large size (in space and
in number of symbols) of the resulting model. Situations like this encouraged
us to rule out the option of upgrading NiMMiT, as it was the initial purpose
of this PhD project. Rather, after surveying several multimodal interaction
description languages [Cuenca 14a], we decided to synthesize the important
features of these languages into a concise, easy-to-modify textual notation,
which is what a majority of programmers are used to work with6,7.

HephaisTK is a rapid prototyping tool that offers visual notations for de-
scribing multimodal interactions. In HephaisTK models, there is a clear sep-

6http://spectrum.ieee.org/static/interactive-the-top-programming-languages
7http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

http://spectrum.ieee.org/static/interactive-the-top-programming-languages
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

2.2 Related Work 27

(a) Squidy (b) HephaisTK

Figure 2.2: Multimodal interaction represented with a (a) Flow-based model,
(b) State-based model.

aration between the specifications of events and the dialog model, which, in
our opinion, enhances their readability. In HephaisTK, each arc of a FSM is
annotated with a user-defined event pattern and an event-handling callback.
The callbacks are to be launched when the event patterns occur, thus caus-
ing the system to switch to a new state. The straightforward way of binding
event patterns to event-handling callbacks is the key idea that we used to cre-
ate Hasselt. Such type of binding is something that programmers have been
used to for decades: To define the human-machine interaction with a WIMP
system, one has to bind events such as mouse clicks and keystrokes to event
handlers. To define an event pattern, HephaisTK users have to specify the
relation among its constituent events. In HephaisTK, the relations among
events can be Complementary, Assigned, Redundant, or Equivalent, which
are all the ways in which modalities can interact among each other, according
to a well-known theoretical framework, called CARE [Coutaz 95]. One limi-
tation of this tool is its inability to provide partial feedback. Event-handling
callbacks are launched after some pattern of events has been fully detected,
but cannot be launched in the middle of this process. Although, in theory,
this can be fixed by splitting the event pattern and rewiring the visual model,
this unnecessarily increases the size of the model and the task time. Unlike
HephaisTK, Hasselt allows binding multiple event-handling callbacks to one
single event pattern; this is possible thanks to its notations for specifying the
moment when the callbacks have to be launched.

28 Background and Related Work

Multimodal interaction as Petri nets

ICO is a language intended for formal descriptions of multimodal interac-
tive systems [Navarre 09] and it has been successfully applied in the field of
safety-critical systems. By using PetShop, the tool supporting ICO, one can
describe a wide variety of interactions by depicting Petri nets-based models
(Figure 2.3a). Unlike other languages studied in this chapter, ICO models
can be analyzed in static time, by exploiting the well-studied mathemati-
cal apparatus behind Petri nets [Murata 89]. This static analysis gives the
advantage to prove properties about the intended system, before implemen-
tation commences, thus saving on testing and maintenance time. But the
use of a general-purpose mathematical modeling language has disadvantages
too. Petri nets were not specifically created for modelling computerized sys-
tems, much less for multimodal systems. Not surprisingly, it does not have the
notations for describing the special characteristics of multimodal interaction
in a straightforward way. Other languages, specifically created to describe
multimodal systems, enjoyed an enhanced domain-specificity and map closer
to the multimodal domain than ICO. In Hasselt, for instance, the modali-
ties involved in the interaction are explicitly specified. Besides, each possible
relation between modalities can be represented with one designated symbol.
Empirical studies have shown that the more domain-specific a language is,
the more accurate and more efficient developers are in program comprehen-
sion [Kosar 12]. This efficiency is desirable in the prototyping phase, where
the interaction descriptions have to go through multiple design-implement-test
loops.

Multimodal interaction as a set of logic rules

Instead of providing a domain-specific visual language like the other mul-
timodal interaction description languages studied herein, Mudra [Hoste 11]
offers textual notations. When comparing different models of the interaction
put-that-there, we noticed that the specification obtained with Mudra was
more concise (in space) than other equivalent specifications obtained with dif-
ferent visual languages [Cuenca 14b]. The conciseness of Mudra notation is
definitively beneficial for its users: the less material to be scanned, the higher
the proportion of it that can be held in working memory, and the lower the
disruption caused by frequent searches through the model [Green 96]. Mudra
strongly influenced our decision of creating Hasselt as a textual language. Mu-

2.2 Related Work 29

dra specifications have to be written in CLIPS8. Since CLIPS was specifically
designed for expert systems, the language does not map as close to the mul-
timodal domain as other domain-specific languages such Hasselt or SMUIML
(the language underlying HephaisTK). Whereas WIMP interactions have been
implemented with event languages for decades, Mudra requires viewing mul-
timodal interactions from a different perspective, by using the logic-based
paradigm. In Mudra, the events are not notifications that have to be han-
dled as they occur, as it is the case with Hasselt and mainstream event-driven
languages. Rather, the events have to be seen as information that is to be
accumulated in a database that will be queried by the CLIPS engine from
time to time. This type of approach fails when patterns need to be detected
as soon as they really occur [Anicic 09]. On the other hand, using the existing
CLIPS engine brings about the advantage of exploiting a language with a wide
variety of notations that have been developed and evaluated through a long
period of time (the first versions of CLIPS were developed in 1985) in many
real-world projects9.

2.2.2 Gesture Description Languages

The complexity of describing multitouch interactions causes the appearance of
languages and tools specially designed to prototype touch gesture definitions.
As will be pointed out below, the notations of some of the abovementioned
languages are rich enough to model touch interaction as well as multimodal
interactions.

For Proton++ [Kin 12a], a gesture is a regular expression over the touch
events touch-down, touch-up, and touch-move. Such regular expressions are
auto-generated from a tablature, a visual notation in which users have to
specify, for each finger, the sequences of events that will be triggered during
the gesture. Each touch event may have attributes, which carry important
information about the event, e.g. the (x-y)-coordinate of the touch point.
Additionally, developers can define custom attributes. For instance, one can
write the code for detecting the number of fingers on the touchscreen and use
it to define a total-fingers attribute to be carried by touch-move events. The
concept of attributes is similar to the concept of event parameters used in
Hasselt. But in Hasselt, all event parameters are predefined, which restrains
programmers. As to the handling of time, in order to specify the duration of
a gesture in Proton++, one has to calculate how many mouse-move events

8http://clipsrules.sourceforge.net/Version63.html
9http://clipsrules.sourceforge.net/OtherWeb.html

http://clipsrules.sourceforge.net/Version63.html
http://clipsrules.sourceforge.net/OtherWeb.html

30 Background and Related Work

P
ro

to
n

+
+

M
id

as

IC
O

G
es

tI
T

G
D

L
(K

h
an

d
ka

r)

H
as

se
lt

Paradigm

Event-driven 3 3 3 3 3

Logic-based 3

Type of models

Visual 3 3

Textual 3 3 3 3

Features of the language

Composition of gestures 3 3 3 3 3

Modules of gestures (libraries) 3 3 3 3 3 3

Partial feedback 3 3 3 3 3

Negation of events 3 3 3

Table 2.2: Touch gesture description languages. This table was built by merging
our own observations –discussed in this chapter– with those made in [Hoste 14]. In
this paper, some criteria (e.g. modularization and partial feedback) had a continous
scale. In this table, the symbol 3was assigned when the property is present at some
degree (> 0) in the language.

2.2 Related Work 31

would fit into that gesture and use that number in the specification. Hasselt
does not require manual calculations; it provides time variables and delay
events with which a variety of time restrictions can be specified. Finally,
whereas Proton++ assumes that only one gesture is performed at a time
[Kin 12a], in Hasselt UIMS, one touch event can trigger multiple gestures.
This feature enables users to rotate and scale simultaneously, for instance.

Midas [Scholliers 11] is a framework aimed at supporting gesture recogni-
tion. Like Hasselt UIMS, Midas supports compositionality and modularization
of code. To obtain information about the GUI’s objects, Hasselt programmers
have to invoke a series of callbacks specifically implemented to return those
values. In contrast, Midas specifications can refer directly to the GUI’s ob-
jects, which are reified as shadow facts. Another difference is in the way to
specify constraints. In Midas, the temporal and spatial relations must be
specified through a set of predefined functions (e.g. sNear, movingUp, tBe-
fore, etc.), whereas in Hasselt, programmers can define their own constraints
by using their own user-defined variables connected to arithmetic/logical op-
erators. None of these approaches is perfect. With the predefined functions of
Midas, programmers may feel restricted at some point, whereas the definition
of customized constraints allowed by Hasselt may be difficult for complex ges-
tures. There seems to be an optimal point between these two approaches, but
we do not pretend to identify it. Finally, unlike Hasselt and Proton, Midas
does not use the event-driven paradigm (Figure 2.3b), which is commonly used
to implement interactive systems. For Midas, an event is not ‘something to
be handled’ as soon as it occurs, but a record to be stored into a database,
which will be queried from time to time.

Like Hasselt, ICO [Hamon 13] is more than a multitouch interaction de-
scription language; it also supports descriptions of multimodal interactions.
In the approach of ICO, each finger is seen as an input device that needs to
be dynamically instantiated. The formality of ICO responds to its goal of
providing complete, unambiguous descriptions of safety-critical systems. This
formality brings about advantages (e.g. predictions based on static analysis)
and disadvantages (low domain-specificity) as commented in Section 2.2.1.
Hasselt, in contrast, is not based on a formal mathematical model and its
models cannot be analyzed in design time. One design goal of Hasselt is to
map close to the multimodal, multitouch domain so that programmers can
simply and quickly describe and modify interactions, not being discouraged of
the multiple iterations typical of the prototyping phase.

GestIT [Spano 13b] is a proof-of-concept library, which has been exploited
for managing multitouch and full-body gestures. It is based on a formalism

32 Background and Related Work

(a) ICO

(b) Midas

Figure 2.3: (a) Petri nets-based model for multimodal interaction, (b) Logic-based
code for describing a gesture.

2.2 Related Work 33

(a) CoGenIVE

Figure 2.4: Languages for describing context-of-use-dependent interactions. Co-
GenIVE shows how the human-machine dialog changes; each context-of-use represents
a set of interaction techniques available to the end user.

called Non Autonomous Petri Nets. With GestIT, the provision of partial
feedback requires splitting a gesture into its subparts. With Hasselt, there is no
need to split gesture definitions because due to the visual form of a composite
event programmers can directly refer to the moment when the feedback must
be issued. However, GestIT handles the selection ambiguity problem. When
two gestures start with the same event, GestIT waits for the next event (i.e.
lookahead) to determine the actions to be performed. Hasselt does not perform
lookahead; it is the responsibility of Hasselt programmers to overcome such
ambiguities by using guard conditions in the Hasselt specifications or if-else
statements in the back-end application.

The Gesture Definition Language (GDL) [Khandkar 10] is intended for
simple description of touch gestures that can be used across multiple hardware
platforms. A touch gesture is defined as a set of rules that must be met by
the raw touch data along with the value(s) to be returned when the gesture
is detected. GDL allows defining multi-stroke gestures (e.g. a cross) as long
as the strokes can be issued sequentially. Hasselt, in contrast, allows defining
gestures involving sequential and parallel strokes. Furthermore, unlike Hasselt,
GDL does not allow specifying temporal conditions.

34 Background and Related Work

2.2.3 Human-machine dialog modeling languages

In the visual models elaborated with CoGenIVE [De Boeck 08] and Hep-
haisTK [Dumas 10], there is a clear distinction between the interaction de-
scriptions and the dialog model. Whereas the interactions are described as the
system responses to be given in reaction to certain user actions, the high-level
dialog model specifies the relations between interactions, i.e. which interac-
tions are available in a given system state.

CoGenIVE is not only in charge of interpreting NiMMiT, but also a high-
level language that refers to NiMMiT models. In these high-level models (Fig-
ure 2.4a), each rectangle represents a Enabled Task Set (ETS) [Paterno 12],
which, as the name suggests, represents all the tasks that the user can per-
form in a given moment. These tasks are described with the abovementioned
NiMMiT notation. In order to prototype a multimodal dialog system with
CoGenIVE, their users must utilize four languages: the ETS-based language,
for defining the dialog; NiMMiT for describing the interactions; VRIXML
[Cuppens 04], for describing the presentation; and Lua10, for describing the
application.

In the case of HephaisTK [Dumas 10], there is no high-level language on
top of the language studied above. That does not mean that the interaction
model and dialog model are not clearly distinguishable. The language pro-
vided by HephaisTK contains independent notations for declaring the human-
machine dialog and for combining user events (Figure 2.2b). The interactions
that the intended system can support in a given moment are represented by
using different types of rectangles that can be nested in each other. The in-
fluence of these interactions on the system state can be seen from the circles
and arrows of the FSM-based models.

Hasselt followed the approach of CoGenIVE. We decided to create a visual
language (Chapter 6) that will be completely separated from the interaction
descriptions, which will be done with textual notations (Chapter 4 and Chap-
ter 5). This gave us the opportunity to evaluate both the visual language and
the textual languages separately (Chapter 8).

2.3 Summary

This chapter provided the definition of the main concepts that will be used
throughout the thesis. It then described a wide variety of UIMSs intended for
prototyping multimodal systems and multitouch gestures. All these UIMSs

10http://www.lua.org/

 http://www.lua.org/

2.3 Summary 35

provide declarative languages in which programmers can describe multimodal
and/or multitouch interactions in a declarative manner. Some of these lan-
guages, e.g. HephaisTK and NiMMiT, were specifically designed for describ-
ing multimodal interactions and enjoy enhanced domain-specificity. Others
like ICO, Mudra, and Midas are closely tied to more general languages (e.g.
mathematical modeling languages like Petri nets or logic-based languages like
CLIPS), which lowers their domain-specificity. Hasselt was built from scratch,
and specially tailored for multimodal and multitouch systems. The following
Part I of this thesis will expose the three languages comprising the Hasselt
family and its supporting tool, Hasselt UIMS, each one in a dedicated chap-
ter.

36 Background and Related Work

Part I

Hasselt, a family of languages

Chapter 3

Hasselt UIMS, a composite event-based tool

The purpose of this Part I is to present Hasselt UIMS along with its three
underlying languages, namely Composite Event Definition Language (CEDL),
System Response Definition Language (SRDL), and Human-Machine Dialog
Definition Language (HMD2L). These artifacts allows automating the detec-
tion and handling of user-defined event patterns, which otherwise would have
to be implemented with event languages, by maintaining a multitude of state
variables across different event handlers.

Without providing specific details about the languages, the present chapter
will start giving an overview of the steps required to create a software project
with Hasselt UIMS. It will then describe the lifecycle of Hasselt programs,
i.e. the process through which the interaction descriptions are converted into
finite state machines that, at runtime, are exploited by Hasselt UIMS to track
the interaction state automatically, in benefit of Hasselt programmers. The
main components supporting the creation, transformation, execution, and de-
bugging of Hasselt programs will be discussed throughout this chapter.

The details about the languages comprising the Hasselt family will be
presented, each in a dedicated chapter, in the remainder of Part I.

3.1 Hasselt UIMS overview

Hasselt UIMS provides a set of languages and tools with which programmers
can create a multimodal prototype, a trial version performing the mainline
tasks of the envisioned system. The advantages of creating prototypes as part

40 Hasselt UIMS, a composite event-based tool

of the system lifecycle were explained in Section 2.1.3. The steps required to
create a prototype with Hasselt UIMS are outlined below.

3.1.1 Workflow

In order to load a running interactive system, Hasselt UIMS often requires
two types of inputs: an interaction model and a set of back-end applications.
These are essential components of a Hasselt project (Figure 3.1). Optionally,
one can also define a dialog model on top of the interaction model.

Figure 3.1: Artifacts and roles involved in a Hasselt project. At runtime, Has-
selt UIMS senses and responds to the end user actions by launching the methods of
the back-end applications according to the specifications of the interaction model and
dialog model. Whereas the interaction model and dialog model are specified with the
languages of the Hasselt family, the back-end applications (EXE applications and/or
DLL libraries) are externally developed with .NET languages.

The interaction model describes the interplay between the end user and
the intended prototype, the relations among the user actions and systems re-
sponses. The back-end applications implement the presentation model and
the callback functions that will be launched in response to end user actions.

3.1 Hasselt UIMS overview 41

Whereas the interaction model can be specified with the languages of the Has-
selt family, the back-end applications (EXE applications or DLL libraries) can
be developed with any programming language supported by the .NET frame-
work, e.g. C# or Visual.NET, and have to be imported into Hasselt UIMS
through a designated window (Figure 3.2). The limitation to .NET languages
comes from a similar limitation of the class Assembly1 included in the Reflec-
tion libraries exploited by Hasselt UIMS.

With Hasselt, the interactions are described by mapping composite events
to event-handling methods. For instance, two basic interactions with a touch-
screen photo viewer can be described by binding the user-defined composite
event touch-flicking-left to the method ShowNextPhoto(), and the user-
defined speak-and-touch move-this-here event to the methods Highlight-
Photo() and MoveHighlightedPhoto(). In the latter case, Hasselt
programmers can even specify the moment when the methods have to be
launched.

All the composite events of an interaction model do not have to written in
one single file; different sets of logically related composite events can be saved
in different files to be subsequently imported into one single Hasselt project.
Thus, the composite events defined for one project do not have to be redefined
for another one; rather, they can be reused.

It must be highlighted that the use of back-end applications is not manda-
tory: some prototypes may constrain their responses to audio playback and/or
synthesized voice. In these cases, Hasselt programmers can directly exploit the
synthesizers incorporated into Hasselt UIMS without need of invoking exter-
nally defined .NET code.

Optionally, one can define a dialog model, a high-level model created on
top of the interaction model. Without a dialog model, the user actions will be
responded in the same way through the whole runtime. By declaring a dialog
model, instead, one can specify the mutual influence between the contexts-of-
use of the intended system and the user actions.

The languages required to specify interactions and dialogs will be studied
in the next chapters , but in the meantime, readers can refer to a publicly
available video2 that shows how to use Hasselt UIMS to create and run a pro-
totype that involves an interaction model, a dialog model, and one externally
developed EXE application.

1https://msdn.microsoft.com/en-us/library/system.reflection.assembly%28v=

vs.110%29.aspx
2Hasselt UIMS workflow: https://www.youtube.com/watch?v=jC5EuBYWWRc

https://msdn.microsoft.com/en-us/library/system.reflection.assembly%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.reflection.assembly%28v=vs.110%29.aspx
https://www.youtube.com/watch?v=jC5EuBYWWRc

42 Hasselt UIMS, a composite event-based tool

Figure 3.2: The three tabs of the References window allows declaring the (1) EXE
applications, (2) DLL libraries, and (3) previously defined Hasselt programs that
are to be imported into the current project. Hasselt UIMS allows extensibility and
modularization of code.

3.1.2 People and roles involved

Four different classes of people are involved in a Hasselt project (Figure 3.1).
The first is the person using the resulting prototype, who is called the end
user. The actions that the end user performs (usually in the GUI of an EXE
file) are responded according to the specifications of the interaction model
and the dialog model, which are created by the user of Hasselt, the Hasselt
programmer. Working with the Hasselt programmer will be the application
developer. He implements the .NET applications whose functionality will be
invoked at runtime. Given that the operation of Hasselt UIMS is relatively
stable at the present time, the fourth participant in this role-playing, the UIMS
developer, has now little or no participation in Hasselt projects. Although he
has the power to change every aspect of Haselt UIMS, including the compilers,
the runtime environment, and the Hasselt languages themselves, he will only
make his appearance when a structural change, like for example augmenting
Hasselt UIMS with new input modalities, needs to be performed.

Although this classification discusses each role as a different person, in fact,
there may be many people in each role or one person may perform multiple
roles. The author of this thesis, for instance, used to play the four roles.

For the purposes of this thesis, it will be assumed that the development of

3.2 Lifecycle of Hasselt programs 43

Hasselt UIMS is frozen, i.e. the UIMS developer cannot intervene anymore.

3.1.3 Startup configuration

A XML-based configuration file that is read at startup contains parameters
that define the runtime behavior of Hasselt UIMS.

To Hasselt UIMS, multiple events are considered simultaneous if they are
detected within a time interval. The length of this interval (in milliseconds)
is one parameter of the configuration file. The handling of simultaneity is
exposed in Section 5.4.1.

Another parameter configures the interruptibility of Hasselt UIMS. The
end user can change his mind and interrupt a partially entered command to
start issuing a new one. For these cases, one can declare a special speech input,
a reset command, so when this input is perceived, Hasselt UIMS clears up all its
variables and restarts the tracking of all the composite events. Prototypes can
call roll back functions upon the detection of the reset command, as discussed
in Section 5.4.2.

Finally, other parameters refer to the location of speech recognition gram-
mar files. To use speech as an input modality, one must create two speech
recognition grammar files following the W3C Speech Recognition Grammar
Specification (SRGS)3. The grammar files contain the set of rules that specify
the spoken words and phrases that Hasselt UIMS will recognize at runtime.
The reason why Hasselt UIMS requires two grammar files is discussed in Sec-
tion 5.4.4.

3.2 Lifecycle of Hasselt programs

A program has a lifecycle that includes distinct phases, starting with the
editing of the code that specifies the system behavior, and extending through
execution, which exhibits the specified behavior. This section will describe
how Hasselt UIMS supports these different phases.

3.2.1 Design time

The design time is the phase during which the interaction model and the dialog
model are specified.

For the interaction model, Hasselt UIMS provides two code editors. Both
the composite events to be detected and the system responses to be conveyed

3http://www.w3.org/TR/speech-grammar/

http://www.w3.org/TR/speech-grammar/

44 Hasselt UIMS, a composite event-based tool

throughout this process are to be specified in different code editors. In order
to minimize the effort required for switching attention between two editors,
we integrated both editors into one single windows form (Figure 3.3a). Both
offer syntax highlighting, auto-completion popups, tooltip messages, and line
numbering. The code editors are integrated with a non-editable, auto-refresh
canvas that displays a finite state automaton (FSA), which is the visual rep-
resentation of the composite event under definition. As will be explained
below, the FSAs are automatically generated from the interaction model. The
code editors were implemented with support of the text editing control Scin-
tillaNET4. The FSAs embedded in the editors was depicted with support of
Microsoft Automatic Graph Layout (MSAGL)5.

Optionally, if the system to be modeled has clearly distinguishable contexts-
of-use that have a strong influence on its responses to the end user, it may
be convenient to create a dialog model. Hasselt’s dialog models, like the one
shown in Figure 3.3b, for instance, allow specifying how the interactions alter
the system context-of-use, which in turn, influences on the subsequent inter-
actions. If the visual language is not used, Hasselt UIMS will assume that the
system state is not affected by previous interactions, i.e. the same interaction
has to be handled in the same way over the whole runtime. The graphical
editor was implemented with support of AddFlow6, a powerful flowcharting/-
diagramming component.

3.2.2 Compile time

The compile time is the process that transforms a program written in one
language, called the source language, into an equivalent program in another
language, called the object language, which is usually the machine language
of a computer, or something close to it [Bornat 07]. Although Hasselt UIMS
does not generate machine code, it performs the main tasks of a compiler,
namely lexing, parsing, code analysis, and generation (Figure 3.5).

In general, the lexing consists of transforming a program into a set of
tokens (i.e. data structures representing the terminal symbols of a grammar).
The parsing consists of verifying whether the sequence of tokens produced
by the lexer satisfy the rules of a grammar, in which case, an intermediate
representation, known as parse tree, is generated as a final output of the
parsing process. Later, the parse tree can be used to perform code analysis,

4https://scintillanet.codeplex.com/
5http://research.microsoft.com/en-us/projects/msagl/
6http://www.lassalle.com/

https://scintillanet.codeplex.com/
http://research.microsoft.com/en-us/projects/msagl/
http://www.lassalle.com/

3.2 Lifecycle of Hasselt programs 45

(a) Text editors for the CEDL and SRDL, the languages that are used to create the in-
teraction model. Both offer syntax highlighting, auto-completion popups, and tooltip
messages. The non-editable right bottom frame changes as the cursor moves through
the editors; it always displays the state machine corresponding to the composite event
under definition.

(b) Graphical editor for the HMD2L, the language with which the dialog model is
specified. Arrows can be annotated with composite event names and guard conditions.

Figure 3.3: Editors for the three languages comprising the Hasselt family, namely
Composite Event definition Language (CEDL), System response Definition Language
(SRDL), and Human-Machine Dialog Definition Language (HMD2L).

46 Hasselt UIMS, a composite event-based tool

Figure 3.4: Design time and compile time architectures. A composite event ce is
transformed into a finite state automaton fsa, which is to be annotated with system
responses, sr, thus resulting a finite state machine, fsm. The system responses may
refer to the methods of externally defined back-end applications. Both CEDL editor
and SRDL editor are integrated into the same form, as shown in Figure 3.3a. The
FSM created in the HMD2L editor, if exists, will be treated in the same way as the
FSMs auto-generated from CEDL and SRDL at runtime.

Figure 3.5: Typical flow of compile time activities [Wu 10]. The compilers incor-
porated in Hasselt UIMS followed the same flow except that they do not generate
binary files, but finite state machines (FSMs).

3.2 Lifecycle of Hasselt programs 47

such as type checking or some code optimization. In the end, the compiler
generates the output binaries [Wu 10].

Each of the languages required to create the interaction model, namely
CEDL and SRDL, has a designated compiler. Unlike these textual languages,
the graphical language HMD2L is not compiled (Figure 3.4).

Lexical analysis and syntactic analysis

Hasselt UIMS exploits a third party component that is in charge of lexing and
parsing both CEDL and SRDL code. Thanks to the Irony library7, we did
not have to implement the lexer or the parser required by a compiler; rather,
we only had to specify the CEDL and SRDL grammars against which Hasselt
specifications are matched.

Irony is intended for textual languages and therefore we could not use it for
the visual HMD2L, which is executed directly without checking the correctness
of its syntax or semantics; errors in a HMD2L model will only be detected at
runtime. The user-defined visual model created with HMD2L, if exists, is
treated in the same way as the FSMs auto-generated from CEDL and SRDL
code (Figure 3.4, 5).

The description and failing line of each lexical or syntactic error detected
by Irony will be displayed in an window error message.

Code analysis

The CEDL compiler (Figure 3.4, 3) performs basic code optimization and
semantic analysis.

With regard to code optimization, the CEDL compiler can remove paren-
theses that are unnecessarily used. For instance, the parse tree obtained
from the composite event ((((A;B))))|C can be transformed into a simpler
tree, as the one that would be obtained from the equivalent composite event
(A;B)|C. This optimization is performed by manually pruning some branches
of the parse trees returned by Irony. More precisely, by pruning those long,
thin branches with no ramifications so that they can be reduced to their child
nodes. This optimization prevents the function CreateFSA (see Algorithm 1
in Section 3.3) from going into unnecessarily deep recursion, which may dam-
age the efficiency of the process that transforms the parse trees into FSA, a
task that is critical for the operation of Hasselt UIMS.

7http://irony.codeplex.com/

http://irony.codeplex.com/

48 Hasselt UIMS, a composite event-based tool

As to the semantic analysis, the CEDL compiler can identify and reject
syntactically correct expressions such as A + A, which are meaningless since
an event cannot occur in simultaneous with itself.

Such errors, which are manually detected by navigating the parse trees
returned by Irony, are also displayed in the error message window.

Since the function of the SRDL compiler is much simpler: to annotate an
existing FSA from a specification that explicitly says what to annotate and
where to do it, we did not find opportunities for code optimization or semantic
analysis.

Generation

Neither the CEDL compiler nor the SRDL compiler generate output binaries,
which is the common output of a compiler. Rather, the CEDL compiler gen-
erates a set of finite state automata (FSA) that are then annotated by the
SRDL compiler (Figure 3.4). Both the algorithm that generates the FSA and
the algorithm used for annotating the FSA with system outputs are shown in
Section 3.3, at the end of this chapter.

For illustrative purposes, the main transformations undergone by one par-
ticular composite event (drag-and-drop) at compile time are shown in Fig-
ure 3.6. The transformations labelled as (1) and (2) are performed by the
CEDL compiler; the transformations (3) and (4), by the SRDL compiler.

3.2.3 Runtime

Runtime means the time when the program is executed. This is the phase
when the Hasselt’s framework accomplishes its goal of detecting composite
events and launching event-handling callbacks in response.

Upon entering runtime mode, Hasselt UIMS activates multiple software
recognizers and synthesizers, and loads the back-end applications incorporated
into the project.

Hasselt UIMS has input recognizers for sensing mouse gestures, keystrokes,
speech inputs, touch gestures, and body movements. The mouse events and
keystrokes are intercepted by Hasselt UIMS through hook procedures; speech
recognition is achieved thanks to the speech recognition engine provided by the
Microsoft .NET Framework; touch events are detected via TUIO8; and skele-
ton tracking is performed via Microsoft’s Xbox Kinect in combination with
the MS Kinect SDK. These user events, as well as other internally-generated

8http://www.tuio.org/

http://www.tuio.org/

3.2 Lifecycle of Hasselt programs 49

Figure 3.6: Chain of transformations undergone by the composite event drag-and-
drop. (1) The CEDL code is transformed into a parse tree by a third-party component.
(2) This parse tree is converted into a finite state automaton (FSA) by Algorithm 1.
(3) The SRDL code is parsed, once again, by the Irony library. (4) The nodes and
links of the FSA are augmented with system outputs, according to the SRDL speci-
fications (Algorithm 2), thus resulting in a finite state machine (FSM). Algorithm 1
and Algorithm 2 are shown at the end of this chapter.

50 Hasselt UIMS, a composite event-based tool

Figure 3.7: Runtime architecture. The finite state machines (FSMs) are fed with
user events detected by the input recognizers and internally-generated events. Its
transitions may activate the back-end applications and/or the synthesizers.

events, such as timeout events, composite event notifications, or user-defined
events are sent to an event queue (Figure 3.7, ¶ and º).

The output synthesizers included into Hasselt UIMS enable it to synthesize
human voice from text and audio from a wav file. Both synthesizers are invoked
via the .NET API.

At runtime Hasselt UIMS dispatches the events of the Event Queue (Fig-
ure 3.7, ·) to the finite state machines that were auto-generated at compile
time. The state machines are served one by one, in the order in which their
reciprocal composite events were defined. An event may produce state transi-
tions in some FSMs and be ignored by others. The state transitions of a FSM
may cause the activation of the UIMS synthesizers (Figure 3.7, ¸), the invoca-
tion of the callback functions included in the imported back-end applications
(Figure 3.7, ¹), or the firing of user-defined (composite) events (Figure 3.7, º).
The events are discarded immediately after being dispatched to all the FSMs.

If the Hasselt project included a dialog model, i.e. a user-defined FSM
depicted with HMD2L, this FSM would be the first to receive event notifica-
tions. This preferential treatment permits to update the context-of-use in a
timely manner, right upon composite events occur. Besides this, at runtime,
Hasselt UIMS makes no distinction between the FSMs auto-generated from
CEDL and SRDL code and the user-defined FSM elaborated with HMD2L.

Debugging tools

These tools facilitate programmers to get aware of his errors at runtime.

3.2 Lifecycle of Hasselt programs 51

The variable browser (Figure 3.8, VB) shows how the values of the variables
of the model change over time. By using this window, programmers can notice
whether some variable is unintentionally overwritten, for instance.

The event viewer (Figure 3.8, EV) displays all the input events that are
being detected by Hasselt UIMS. With this viewer, programmers can notice
communication problems with the input devices, e.g. the non-presence of
kinect events may indicate that the Kinect sensor is disconnected.

The automata view (Figure 3.8, AV) displays the composite events in their
visual forms. If the project included a dialog model, this visual model would
be also displayed in the automata view. In this way, one can evaluate the
execution of both the interaction model and the dialog model with one single
tool. As the interaction evolves, the highlighted nodes move to reflect the
changes in the system state. This tool is useful to provide a quick identification
of input recognition problems, e.g. when the UIMS becomes stagnant in a
particular node, it is reasonable to check whether the input hardware that
generates those events associated to its outgoing arcs is working correctly.

The immediate window (Figure 3.8, IW) is a scratchpad window in which
C# statements involving the event parameters can be evaluated during debug-
ging. With this window, one does not have to break execution to get feedback
on how the application is performing. Moreover, unlike the other debuggers,
this provides user-defined feedback, which is displayed in a separate area, so
it does not interfere with outputs that the end user sees.

The initial version of Hasselt UIMS included a back-end inspector, which
allowed invoking the methods of the back-end applications, at design time, so
that one can have an idea of what the imported back-end applications can do
even before creating the interaction model and without having to enter into
runtime mode. Programmers just had to choose the back-end method they
wanted to invoke and set their input parameters. This tool was useful in the
early stages of Hasselt UIMS, for speech-and-mouse interactions, but it was
no longer useful when we started working with touch and body movement
interactions. It was difficult to manually recreate those longs arrays of points
that are generated when a gesture is performed. It was also difficult to guess
what points would be returned by the MS Kinect sensor if one wanted to test
a back-end application for one particular body pose. Thus, the development
of this tool was discontinued.

Based on the experience gained after testing several interactions, we no-
ticed that it would be convenient for future UIMS developers to consider a
tool for recording and replaying interactions automatically. One potential
benefit would be the reduction of the UIMS developer’s mental workload: he

52 Hasselt UIMS, a composite event-based tool

Figure 3.8: Hasselt runtime environment. The back-end application (BE) the end
user is interacting with was built in C# and imported through a designated window.

could unhurriedly observe the evolution of the program state without having
to interact himself.

Information such as the one displayed by the variable browser or the event
viewer used to be collected in log files by other UIMSs, such as CoGenIVE
[De Boeck 09], ICO [Navarre 09], and HephaisTK [Dumas 10]. However, the
automata view (AV) represent a new means of debugging since the stage of
multiple interactions can be followed simultaneously by observing one single
viewer. This parallelism cannot be exploited by the linear, textual log files.
Furthermore, to the best of our knowledge, Hasselt UIMS is the only tool that
permits on-the-fly debugging through the immediate window (IW).

3.3 Algorithms used at compile time

This section provides technical descriptions of the processes used to transform
a textual specification into a set of finite state machines (FSMs).

3.3.1 CEDL compiler. From composite events to FSA

The CEDL compiler generates a parse tree from each valid composite event.
This tree is then transformed into a FSA by the recursive function createFSA

3.3 Algorithms used at compile time 53

(Algorithm 1). The base case of this function occurs when its argument is a
single child node. Such nodes have trivial transformations, e.g. the smallest
graph of Figure 3.9a represents the atomic event e3. Recursive cases involve
intermixing different FSAs. Each event operator defines a different way to
intermix existing FSAs.

When two composite events are linked by a ‘FOLLOWED BY’ (;) opera-
tor, the CEDL compiler concatenates its reciprocal FSAs (Figure 3.9b). When
two composite events are connected by the disjunctive operator ‘OR’ (|), the
compiler creates a new automaton by overlaying the initial and final states
of its graphical counterparts (Figure 3.9c). Two composite events connected
by the conjunctive operator ‘AND’ (+) causes the creation of a FSA whose
paths between its initial and final nodes are the permutations of all the events
contained in their reciprocal automata (Figure 3.9d). In this only case, the in-
termediate nodes are classified as special types of nodes called unstable nodes,
as opposed to all other nodes, which are considered stable nodes. Unstable
nodes are useful to handle parallel inputs as will be explained and illustrated
in the Chapter 5. Finally, a single composite event followed by the ‘ITERA-
TION’ (∗) operator causes the alteration of its parallel FSA: the ingoing arcs
of its final state will be redirected to its initial state (Figure 3.9e).

3.3.2 SRDL compiler. From FSA to FSM

Each FSA generated by the abovementioned algorithm represents a set of user
inputs that the system must track. In order to have a complete interaction
model, the system responses must be specified and link to the user inputs.
This is done by annotating the nodes and links of the FSA according to SRDL
code. Such annotations raise the transition network called FSA to the level of
FSM.

The function GenerateFSM, shown in Algorithm 2, has two parameters:
the first represents the finite state automaton, fsa, generated from a composite
event evt; the second is the parse tree obtained from the SRDL code associated
with evt, i.e. the fragment of code that starts with wrt ce.evt –see SRDL
syntax in Chapter 5. The annotation output may contain a function name, a
text message, an audio file name, or a guard condition, which are runtime are
treated differently (e.g. functions are launched, text messages are synthesized,
audio files are played, and guard conditions are evaluated).

54 Hasselt UIMS, a composite event-based tool

Algorithm 1 Transforms a parse tree into a FSA

procedure createFSA(node) . node is the root of a parse tree

if isAtomic(node.children[1]) then
return trivialSD(node.children[1])

else if isComposite(node.children[1]) & node.children[2] =‘∗’ then
sd1← createFSA(node.children[1])
return loop(sd1)

else if isComposite(node.children[1]) & node.children[2] =‘;’ &
isComposite(node.children[3]) then

sd1← createFSA(node.children[1])
sd2← createFSA(node.children[3])
return concatenate(sd1, sd2)

else if isComposite(node.children[1]) & node.children[2] =‘|’ &
isComposite(node.children[3]) then

sd1← createFSA(node.children[1])
sd2← createFSA(node.children[3])
return overlay(sd1, sd2)

else if isComposite(node.children[1]) & node.children[2] =‘+’ &
isComposite(node.children[3]) then

sd1← createFSA(node.children[1])
sd2← createFSA(node.children[3])
return permute(sd1, sd2)

3.3 Algorithms used at compile time 55

1

2

4

3

e1 e2

e2 e1

1 2e3

(a) sd1 (top)
and sd2 (bottom)

4 51

2

3

e3e1

e2

e2

e1

(b) sd1 ; sd2

41

2

3

e1

e2

e2

e1
e3

(c) sd1 | sd2

1

2

3

4

5

6

7

8

9

A

B
e1
e2
e3

e2

e3

e3

e2
e1

e3

e2
e3
e1
e1
e2

e1

(d) sd1 + sd2

1

2

3

e1

e2

e2

e1

(e) sd1∗

Figure 3.9: The CEDL provides four types of operators that one can use to com-
pose events (Section 4.1.2). Each of these operators implies different operations in
the internal process of transforming the CEDL code into FSA. This figure illustrates
the effect of each event operator when applied to state machines sd1 and sd2, shown
in (a). (b) CONCATENATE(sd1, sd2). (c) OVERLAY(sd1, sd2). (d) PER-
MUTE(sd1, sd2) and (e) LOOP(sd1).

Algorithm 2 Annotates the nodes/links of a fsa with the outputs specified
in the parse tree ptree obtained from SRDL code

procedure generateFSM(fsa, ptree)
for each childNode c in ptree do

if c is of type @node(nd) then
output = c.getChildNode()
annotate node nd of fsa with output

else if c is of type @link(nd, evt) then
output = c.getChildNode()
annotate link (nd, evt) of fsa with output

end for

56 Hasselt UIMS, a composite event-based tool

3.4 Summary

This chapter has presented Hasselt UIMS, a set of tools aimed at creating
multimodal prototypes.

The chapter started by outlining the steps required to create Hasselt
projects, namely, the import of externally developed back-end applications and
the elaboration of a Hasselt model (which includes an interaction model and
a dialog model). Whereas the human-machine interaction can be described
with Hasselt, the back-end applications (EXE applications or DLL libraries)
have to be implemented with a .NET language (e.g. C# or Visual.NET).

Later, the components that support the editing, compilation, execution,
and debugging of Hasselt programs were identified and discussed. Hasselt UIMS
provides code editors and graphical editors with which programmers can spec-
ify multimodal (dialog) systems at design time. At compile time, the interac-
tion specifications are transformed into a set of finite state machines (FSMs)
that Hasselt UIMS uses at runtime for tracking composite events. At runtime,
Hasselt UIMS activates multiple input recognizers to sense and respond to
the end user actions according to the specifications made in the interaction
model and the dialog model. The system responses may include launching the
methods of the back-end applications or activating the output synthesizers in-
corporated in Hasselt UIMS. Finally, Hasselt UIMS also provides a variety of
tools that facilitate the debugging of a running program. The speech vocabu-
lary, the handling of parallel inputs, and the interruptibility of Hasselt UIMS
can be gauged through a configuration file.

The next three chapters will be dedicated to explain each of the three
languages comprising the Hasselt family.

Chapter 4

CEDL: Composing user events

Whereas with mainstream event languages (e.g. Java, C#), programmers are
restricted to bind a set of predefined events (e.g. mouse clicks, speech inputs)
to event handlers, our proposal allows binding user-defined combinations of
events to event handlers. These user-defined combinations of events, hereafter
called composite events, are specified with the Composite Event Definition
Language (CEDL), which will be main topic of the current chapter.

Multimodal interactions are described by (1) defining composite events,
and (2) binding these composite events to callback functions. The specifi-
cation as well as the execution of multimodal interactions are supported by
Hasselt UIMS, the proposed rapid prototyping tool.

This chapter presents the set of primitive events recognizable by the CEDL,
the parameters carried by these events, and the operators used to combine
them into composite events. These and other special features of the CEDL,
e.g. arrays or compositionality, are illustrated by means of running examples.
On top of the technical aspects, the chapter also discusses conceptual aspects
such as the benefits and limitations of the CEDL.

4.1 Composite Event Definition Language (CEDL)

4.1.1 Atomic events

An atomic event is an instance of a data structure generated by an input
recognizer in response to user actions. It is called atomic because, unlike
composite events, it cannot be defined as a combination of other more fine-

58 CEDL: Composing user events

(a) Auto-completion popups

(b) Tooltip messages

Figure 4.1: Intellisense technology is used by the CEDL editor of Hasselt UIMS.

grained events. Like atoms, atomic events are indivisible in a certain sense.
The atomic events that can be detected by the input recognizers incorporated
in Hasselt UIMS are shown in Table 4.1.

Recognizer Atomic events

.Net API mouse.down, mouse.move, mouse.up

.Net API keyboard.keydown, keyboard.keyup
Windows Speech API speech.<words in grammar>, speech.any
MS Kinect SDK kinect.skelpos, kinect.useron, kinect.useroff,

kinect.rhand, kinect.lhand
TUIO tscreen.firston, tscreen.down, tscreen.move,

tscreen.up, tscreen.lastoff

Table 4.1: Sets of atomic events that can be detected by the input recognizers
incorporated in Hasselt UIMS.

Atomic events must be specified in the following way: first the name of
the input hardware that generates the event must be mentioned, followed by
a dot, and the name of the input event. Intellisense technology helps with this
task. Right after placing a dot, an auto-completion popup will display all the
atomic events supported by the input hardware at issue (Figure 4.1a).

4.1 Composite Event Definition Language (CEDL) 59

Event parameters

Many atomic events carry event parameters. The parameters that can accom-
pany the atomic events provided by Hasselt UIMS are shown in Table 4.2;
their syntax, scope, and datatypes are discussed below.

The parameters carried by atomic events are specified within angular
brackets (〈 , 〉) right after the name of an atomic event. All parameters
shown in Table 4.2 do not have to be included in the specification of a
given atomic event. For instance, mouse events exist without parameters (e.g.
mouse.down), with two parameters (e.g. mouse.down〈x, y〉), or with the three
parameters (e.g. mouse.down〈x, y, t〉). Right after opening square brackets
in the CEDL editor, programmers are shown a tooltip message displaying the
sets of parameters available for the atomic event at issue (Figure 4.1b). The
event parameters of a given atomic event were defined based on already offered
information (by the recognizers) and the needs to define several interactions.

The CEDL scopes event parameters by composite event meaning that the
same parameter name can be used in different composite events without risk
of conflicts.

With regard to Table 4.2 and the parameters’ datatypes, the components
of the (x,y) points, the ASCII code c, and the identifiers id are integers; the
timestamps t are datetime variables; the text form str of the speech input
is a string; the speech recognition confidence level conf and the components
of the (spx, spy) touch velocity are float; the variables sk and tscr are data
structures whose fields are shown to the programmer through auto-completion
popups. As to the data structure carried by the atomic event kinect.skelpos,
all its fields are of type double (Table 4.3). As to the data structure carried
by atomic events tscreen.move, tscreen.down, and tscreen.up, the type of
the field numberOfFingers is integer; all the other fields are of type double
(Table 4.4). To Hasselt UIMS, the angle between two touches is the angle
between the ray composed by these two touches and the X-axis of the Window
coordinate system, which is used as a reference direction (Figure 4.2). The
minimum, average, and maximum of these values, which are calculated only
when there is more than one touch, are set to the fields minAngleToF irst,
avgAngleToF irst, and maxAngleToF irst, respectively.

Finally, event parameters are initialized when their associated event is
detected in the right moment of the interaction, e.g. the variables x1 and y1,
shown in Figure 4.1b, will be set with the mouse cursor position when the
mouse is pressed after the speech input move.

60 CEDL: Composing user events

Atomic event Description Parameters

mouse.down, Mouse is depressed (x,y) = cursor position
mouse.up Mouse is released t = timestamp
mouse.move Mouse is moved

keyboard.keydown Key is pressed c = ASCII code of a key
keyboard.keyup Key is released t = timestamp

speech.<wrd> Word wrd was detected conf = speech recognition
confidence level

speech.any Some word was detected str = textual representa-
tion of speech input

conf = speech recognition
confidence level

kinect.skelpos A frame was fired by sk = 3D positions of ske-
MS Kinect SDK leton joints

kinect.useron First person appears on
Kinect field of view

kinect.useroff Last person dissapears
from Kinect field of view

kinect.rhand A frame was fired by (x,y) = hand’s position in
kinect.lhand MS Kinect SDK screen coordinates

t = timestamp

tscreen.firston First finger touches the (x,y) = touch position
screen t = timestamp

tscreen.lastoff Last finger abandons id = touch identifier
the screen

tscreen.down Touch down (x,y) = touch position
tscreen.up Touch up t = timestamp

id = touch identifier
tscr = aggregated inform-

ation of all touches

tscreen.move x, y, spx, spy, t, id, tscr (x,y) = touch position
(spx,spy) = touch velocity
t = timestamp
id = touch identifier
tscr = aggregated inform-

ation of all touches

delay-nnn A timer of nnn millise- id = timer identifier
conds has expired

Table 4.2: Atomic events and corresponding parameters.

4.1 Composite Event Definition Language (CEDL) 61

Field Content

Head.X x-position of the head
Head.Y y-position of the head
Head.Z z-position of the head

ShoulderLeft.X x-position of the left shoulder
ShoulderLeft.Y y-position of the left shoulder
ShoulderLeft.Z z-position of the left shoulder

ShoulderRight.X x-position of the right shoulder
ShoulderRight.Y y-position of the right shoulder
ShoulderRight.Z z-position of the right shoulder

ElbowLeft.X x-position of the left elbow
ElbowLeft.Y y-position of the left elbow
ElbowLeft.Z z-position of the left elbow

ElbowRight.X x-position of the right elbow
ElbowRight.Y y-position of the right elbow
ElbowRight.Z z-position of the right elbow

HandLeft.X x-position of the left hand
HandLeft.Y y-position of the left hand
HandLeft.Z z-position of the left hand

HandRight.X x-position of the right hand
HandRight.Y y-position of the right hand
HandRight.Z z-position of the right hand

Table 4.3: Fields of the data structure carried by kinect.skelpos (Table 4.2).

62 CEDL: Composing user events

Field Content

numberOfFingers number of touches

minDistanceToFirst minimum distance of a touch with
respect to the first touch

avgDistanceToFirst average distance of a touch with
respect to the first touch

maxDistanceToFirst maximum distance of a touch with
respect to the first touch

minAngleToFirst minimum angle formed by a touch
with respect to the first touch

avgAngleToFirst average angle formed by a touch
with respect to the first touch

maxAngleToFirst maximum angle formed by a touch
with respect to the first touch

Table 4.4: Fields of the data structure carried by atomic events tscreen.move,
tscreen.down, and tscreen.up (Table 4.2).

Figure 4.2: The pink-colored circle represents the first of three touches placed on a
touchscreen device. The figure shows how the angles with respect to the first touch
are calculated and, in particular, what the value of the field avgAngle2First will be
for this case.

4.1 Composite Event Definition Language (CEDL) 63

Atomic Composite
events events

Structure CEDL’s building blocks Formed by many events
Indivisible

Event name Predefined User-defined

Syntax used to Input hardware followed Keyword ce followed by
refer to event by event name user-defined name

e.g. mouse.up e.g. ce.myEvent

Parameters Predefined User-defined

Programming effort Hard Easy
for adding new UIMS developer has Hasselt programmers

events to intervene can do the job

Table 4.5: Differences between atomic events and composite events.

4.1.2 Composite events

Through a set of predefined symbols, the atomic events can be combined to
define high-level events, herein called composite events. In turn, composite
events can be part of the definition of other more high-level composite events,
i.e. composite events can be defined in a compositional fashion. A composite
event serves to specify, in a declarative manner, those series of coordinated
actions that the end user performs in order to accomplish a single task (e.g.
to move a virtual object or to zoom in a map).

Composite event names

To declare a composite event, one has to use the keyword event followed by
the name of the composite event, the assignment symbol (=), and a group of
events connected through a set of event operators.

Optionally, one may define an arbitrary number of parameters for a com-
posite event. For this purpose, the composite event name must be followed
by the parameter names, which must enclosed within angular brackets, e.g.
event myEvt〈p1, . . . , pn〉 = {combination of events}.

A composite event can have any arbitrary name (as long as it starts with
a letter). If a composite event is to be referred to in the definition of another

64 CEDL: Composing user events

more high-level composite event, the prefix ce will have to be added to its name
(Table 4.5). This will be later illustrated with an example in Section 4.3.

Event operators

Programmers can combine (atomic or composite) events through a set of event
operators that give rise to an arithmetic of events. The event operators rep-
resent temporal and semantic relations among events. Table 4.6 lists all oper-
ators supported by the CEDL.

Operator Example Semantics

FOLLOWED BY (;) A ;B B must occur after A
OR (|) A|B B or A must occur

AND (+) A+B B and A must occur within a specified
timeframe

ITERATION (∗) A∗ A must occur zero or more times

Table 4.6: Operators supported by CEDL in increasing order of precedence

Explicit use of parentheses is allowed to indicate the evaluation order of
the terms. For instance, the events A;B|C and (A;B)|C are different. The
former will be triggered upon the detection of event A followed by either B or
C. The latter will be triggered after the consecutive occurrence of A and B
or, alternatively, upon the detection of C.

The event operators provided by the CEDL were chosen after studying the
domain of active databases (Appendix B). An active database can notify an ap-
plication whenever a given series of related events is recorded into a database.
Since those series of related events are specified with a specialized notation,
there are many languages similar to our CEDL in the field of active databases.
As will be discussed, in Section 5.5.2, the CEDL supplemented by the SRDL
allow defining prototypes that support Complementary, Assigned, Redundant,
and Equivalent (CARE) inputs. Furthermore, the operator ITERATION (*),
for which there is no equivalent in the CARE framework [Coutaz 95], proved
to be convenient for specifying the arbitrarily long sequences of events, e.g. the
stream of touch-move events generated by touch gestures. One issue with Has-
selt UIMS is the difficulty for augmenting its predefined set of atomic events.
This task requires changing the source code of the UIMS so that the new
event as well as its new set of parameters can be recognized by the compilers
and the intellisense tools incorporated in Hasselt UIMS. It would be desirable
that new events can be added dynamically after importing some DLL, add-in,

4.2 Put-That-There in Hasselt UIMS 65

or configuration file, but due to the complexity of the task, it could not be
implemented in the context of this PhD.

4.2 Put-That-There in Hasselt UIMS

This section illustrates how to write and test CEDL code with the support of
Hasselt UIMS. For this purpose, we will show how to implement a simplified
version of the Put-That-There system mentioned in the first chapter. The sys-
tem to be presented permits users to move virtual objects around a windows
form by uttering the sentence ‘put that there’. The user must utter the pro-
nouns ‘that’ and ‘there’ while simultaneously clicking on the target object and
its intended position respectively. The steps required to obtain an executable
description of this interaction are as follows.

4.2.1 Implementing back-end applications

Hasselt UIMS serves to describe multimodal interactions, whereas fine-grained
.NET code is required to implement the presentation model displaying the
interactive objects and the callback functions that will be launched during the
described interactions.

For the system under discussion, a Windows form containing several boxes
was used as the presentation part of a back-end application that includes a
method, called PutThatThere. This method is capable of moving the object
placed in position (x1, y1) to the point (x2, y2) –where x1, y1, x2, and y2 are
the parameters of the said method. The GUI of the back-end application is
shown in Figure 4.3a; its code is shown in Appendix 6.

The back-end application does not include code for handling user events,
thus it is not interactive by itself. It has to be imported into Hasselt UIMS
since it is Hasselt UIMS that will launch the method PutThatThere upon the
detection of a user-defined composite event.

4.2.2 Declaring composite events

The simplest way to implement the put-that-there interaction requires defining
the composite event moveObject with the following CEDL code.

event moveObject = speech.put ;
speech.that+mouse.down〈x1, y1〉 ;
speech.there+mouse.down〈x2, y2〉

(4.1)

66 CEDL: Composing user events

(a) Back-end application. (b) Hasselt UIMS editor.

Figure 4.3: Artifacts involved in the implementation of the put-that-there in-
teraction. (a) Windows-form application developed in C# without support of
Hasselt UIMS. (b) Binding the composite event moveObject to the method
PutThatThere implemented the back-end application.

4.2.3 Binding composite event with event handlers

The event moveObject must be bound with the event-callback function named
PutThatThere, defined in the back-end application. This function must be
selected from an editable drop-down list. As shown in Figure 4.3b, there is
some additional code required to specify the binding. This code, which belongs
to the SRDL language, will be explained in the next chapter. For this chapter,
which concentrates on CEDL, it should be enough to mention that binding to
externally developed functions is possible with Hasselt.

4.2.4 Testing the multimodal interactions

Through an option menu, end users can test their interaction descriptions by
entering into runtime mode.

For the case under study, the event moveObject will be triggered upon the
detection of the speech input ‘put’ followed by the co-occurrence of the speech
input ‘that’ and a mouse click, and this, in turn, followed by the co-occurrence
of the input ‘there’ and another mouse click.

End users can notice that the speech inputs and the mouse clicks that
disambiguate their meanings do not have to occur exactly at the same time;
rather, Hasselt UIMS expects these inputs to arrive within a short time interval
whose length is defined in a configuration file (Chapter 3). This design feature
was implemented to be in line with existing empirical evidence that reveals that

4.3 CEDL advanced features 67

multimodal signals do not co-occur temporally at all during human-computer
or natural human communication [Oviatt 99].

If when trying to issue a speech input and a mouse click simultaneously,
only one of these inputs is detected (e.g. due to speech recognition error),
when the aforementioned time interval expires, Hasselt UIMS will forget the
recognized input and give the end user a new chance to issue both inputs again.
This contrast with other tools, like HephaisTK [Dumas 09] for example, that
get stagnated once simultaneity fails –as we were told by B. Dumas when he
visited our research lab. The technical details behind this behavior will be
exposed in Section 5.4.1 with more appropriate examples.

4.3 CEDL advanced features

This section illustrates some special features of CEDL. Concretely, it will show
how to capture any speech input into a string variable, how to accumulate
event parameters into arrays, how to define timeout events, and how to reuse
composite events to define other higher level composite events.

The back-end application shown in Figure 4.3a was extended with other
functions, on top of the PutThatThere, and used to implement other multi-
modal interactions.

4.3.1 Arbitrary speech input

End users can remove all the objects of a specific color by uttering a sen-
tence like ‘take the green out’. This interaction was described by binding the
method removeAllColor(string color) –with the obvious functionality– to the
composite event removeColor, which was defined as follows:

event removeColor = speech.take;
speech.any〈color〉;
speech.out

The speech input speech.any causes Hasselt UIMS to consume any speech
input. The textual form of this input will be stored in the variable color. This
contrast with the events speech.take and speech.out, each of them referring
to one specific speech input.

The event parameter of speech.any can carry one single word or one full
sentence. This depends on the user inputs and on the content of a speech
recognition grammar file (Section 5.4.4).

The event speech.any can be connected with other speech inputs through
the disjunctive operator (e.g. speech.any〈color〉|speech.highlighted). In these

68 CEDL: Composing user events

cases, the event speech.any will have the lowest priority: Hasselt UIMS will
first try to match an incoming speech input with every member of the con-
junction, and only if all these matches fail, the speech input will be consumed
as an event speech.any.

4.3.2 Arrays of variables

End users can remove an arbitrary number of objects from the canvas of the
application. The objects to be removed must be pointed with the mouse. The
input stream ‘remove this (click) and this (click) now ’ is an example of how
the said functionality can be activated.

This interaction was implemented by binding the externally-defined method
removeThisAndThis(int xs[], int ys[]) to the following composite event:

event removeMany = speech.remove;
speech.this+mouse.click〈x[], y[]〉;
(speech.and;
speech.this+mouse.click〈x[], y[]〉)∗;
speech.now

Hasselt UIMS will treat variables x and y, included in the definition of
removeMany, as arrays because of the brackets that come upon. At runtime,
every time a click is detected, the mouse coordinates are inserted at the end
of the arrays x and y that will eventually be passed as parameters to the
removeThisAndThis method.

4.3.3 Timeout events

One can define a composite event, manyClicks that matches single, double,
and triple clicks, with each variation leading to a different computation in
the back-end application. To this end, the following composite event must be
defined:

event manyClicks = mouse.down〈xs[], ys[]〉;
(mouse.down〈xs[], ys[]〉;
mouse.down〈xs[], ys[]〉 | delay-250
) | delay-250

The keyword delay serves to define a timeout event. The number that
comes upon the hyphen (‘-’) indicates the number of milliseconds after which
the timeout event is thrown. In the previous expression, no more than 250
milliseconds can elapse between two consecutive clicks when issuing double or
triple clicks.

4.3 CEDL advanced features 69

The composite event manyClicks was bound to the externally defined
method nClicks(int xs[], int ys[]). Based on the size of the arrays xs[]
and ys[] passed as parameters, nClicks implements different responses to the
single, double, and triple click detection. In the future chapter, we will present
simpler and more general description for this and other similar events.

4.3.4 Compositional definitions

The abovementioned put-that-there interaction is too rigid in the sense that
it enforces end users to issue one fixed set of speech inputs. In this new ex-
ample, a wider variety of speech inputs can be issued to displace one selected
object, e.g. move this here, displace this there. To achieve this flexibility, the
composite event moveObject shown below has to be bound to the method
PutThatThere(int x1, int y1, int x2, int y2). Whereas the moveObject pre-
sented here is slightly different than the one shown in Equation 4.1, the method
PutThatThere is the same that was used before.

event verb = speech.move | speech.displace | speech.change

event demonst = speech.that | speech.this

event adverb = speech.here | speech.there

event moveObject = ce.verb;
mouse.down〈x1, y1〉+ ce.demonst ;
mouse.down〈x2, y2〉+ ce.adverb

(4.2)

The composite events verb, demonst, and adverb do not have to be bound
to any method; their purpose is to be reused in the definition of the (upgraded)
composite event moveObject. Notice that when verb, demonst, and adverb
are referred to in the definition of moveObject, their names are extended with
the prefix ce. Because of this keyword, atomic events and composite events
are clearly distinguishable (Table 4.5).

The compositionality of CEDL allows a better organization of the code: the
definition of a complex composite event can be divided into smaller, reusable
composite events. In this case, the four events shown in Equation 4.2 were
declared in one single file; but it could also be possible to save the events verb,
demonst, and adverb into a separated file to be imported (Figure 3.2, Tab 3)
into a project containing the definition of moveObject. In this way CEDL
supports modularization of code.

70 CEDL: Composing user events

Figure 4.4: CEDL editor of the first, deprecated version of Hasselt UIMS, presented
in [Cuenca 14b]. Each composite event could be bound with one event-handling
callback only. Noticed that this editor was much simpler than the current one, shown
in Figure 4.3.

4.4 Limitations of the CEDL

The first version of Hasselt UIMS, presented in [Cuenca 14b], only included
CEDL. The FSAs generated from CEDL code were only used (1) to internally
track the interaction state and (2) to be displayed as an animated diagram in
a debugging tool (Section 3.2.3, Automata View). Although both functions
were important, we later realized that the potential of the FSAs was not being
well exploited.

Up until that moment, with the CEDL alone, programmers were restricted
to bind one event-handling callback per composite event (Figure 4.4 shows
the event CE being bound to the handler H). This implied that the callbacks
could only be called once their associated composite events were fully detected,
which prevented programmers from describing interactions with partial seman-
tic feedback. For instance, with regard to the put-that-there, the highlighting
of the selected object could not be implemented by using only CEDL since
object selection occurs before the put-that-there finishes.

Another issue with the first version of Hasselt UIMS was the inability of
CEDL to allow defining constraints among the atomic events comprising a
composite event. This prevented one from describing touch interactions, for
instance. When a user drags his fingers over a touch-sensitive screen, the time
elapsed between the beginning and ending of a touch gesture may be decisive
to determine whether the end user is flicking or panning.

Thanks to the questions raised during the EICS’14 conference and to the

4.5 Summary 71

discussions of the author with P. Palanque during his internship held in Uni-
versity Paul Sabatier at the end of 2013, we noticed that both limitations
could be redressed if programmers were to enabled to explicitly annotate ev-
ery node and link of the FSAs with both event-callback functions and guard
conditions. This is precisely the purpose of the System Response Definition
Language (SRDL), to be presented in the next chapter.

4.5 Summary

This chapter presented the Composite Event Definition Language (CEDL)
and its supporting tool, Hasselt UIMS. The CEDL is a declarative language
that allows combining several user events into one single high-level event,
herein called composite events. Those composite events are expected to be
bound to externally defined methods. At runtime, Hasselt UIMS will call
those externally defined functions whenever their corresponding composite
events are detected.

With CEDL, unlike with mainstream event languages such as C# or Java,
programmers do not have to implement a mechanism for detecting chains of
events since this task is internally performed by Hasselt UIMS. Despite of
this gain, the set of interactions that can be described with CEDL alone is
restricted due to two limitations: (1) the inability of specifying constraints
among the atomic events comprising a composite event, and (2) the inability
to bind multiple event handlers to one single composite event. But these two
issues were redressed by supplementing the CEDL with another language, as
will be explained in the next chapter.

72 CEDL: Composing user events

Chapter 5

SRDL: Responding to composite events

The preceding chapter presented the Composite Event Definition Language
(CEDL), which was the only language in the first version of Hasselt UIMS,
presented in [Cuenca 14b]. In that version, each composite event could be
bound to only one event-handling callback, which was expected to be called
upon the full detection of the composite event. However, we noticed that for
many interactions, it is important to launch event handlers not only upon the
full detection of a composite event but throughout this entire process so that
partial feedback can be provided.

The possibility to attach multiple handlers to one composite event is brought
about by a new language that supplemented the CEDL. This new language
also allows defining spatial, temporal, and semantic constraints between the
atomic events comprising a composite event. The System Response Definition
Language (SRDL) is the topic of the present chapter.

With the System Response Definition Language (SRDL), the finite state
automata (FSAs) auto-generated from CEDL code start playing a more im-
portant role than in the initial version of Hasselt UIMS, in which CEDL was
alone. Beyond their initial function as animated diagrams and internal data
structures of Hasselt UIMS, with the creation of SRDL, the FSAs can now also
be used as non-linear timelines in which programmers can annotate multiple
event-handling callbacks at different moments of the human-machine interac-
tion.

74 SRDL: Responding to composite events

5.1 System Response Definition Language (SRDL)

The Composite Event Definition Language (CEDL) serves to describe com-
posite events, which, in simple terms, represent the sets of coordinated actions
that the end user performs to activate the system’s functionality. The System
Response Definition Language (SRDL) serves to specify the multiple responses
that the system will convey as the composite events are detected. Both lan-
guages together allow specifying human-machine multimodal interaction.

Hasselt UIMS can respond by launching the event handlers contained in
the imported back-end application(s), by activating its internal software syn-
thesizers (e.g. to synthesize voice from text), or by raising user-defined events.
SRDL allows specifying both the moment and conditions under which the sys-
tem responses are to be conveyed.

5.1.1 Multiple system responses at different times

To specify the moment when a system response has to be conveyed, SRDL
requires programmers to refer to the FSA auto-generated from CEDL code
(Section 3.3). The different nodes of an auto-generated FSA represent dif-
ferent interaction states. By annotating one response (e.g. an event-handling
callback) in a node of a FSA, one is indicating that the response has to be con-
veyed when the interaction state represented by that node is reached. One can
also annotate responses in the links of the FSA meaning that these responses
must be conveyed during the interaction’s state transitions.

Programatically, the multiple system responses to be conveyed in response
to the (partial) detection of a composite event named myEvent are specified
with the following pattern.

wrt ce.{myEvent}
[[@node({nodeID1}) | @link({nodeID1}, {evtName1})] do

list1 of system responses
[when {guard condition1}]]

...
...

...
[[@node({nodeIDn}) | @link({nodeIDn}, {evtNamen})] do

listn of system responses
[when {guard conditionn}]]

[triggers when {triggering condition}]

(5.1)

The keywords wrt and ce stand for with respect to and composite event
respectively. Table 5.1 shows the syntax to be used for each type of system
response supported by Hasselt UIMS.

5.1 System Response Definition Language (SRDL) 75

System response type Description

call : {ns.cls.subName} call named subroutine in back-end application
speak : {expression} speak sentence through text-to-speech
play : {filePath} play an audio file
raise : {evtName} raise an event named ce.evtName
assign : {lstV arAssign} assign values to weakly typed variables

Table 5.1: Available types of system responses in Hasselt UIMS

As mentioned above, to specify the moment in which the system responses
must be conveyed, one has to refer to the nodes/links of the FSA generated
from myEvent. Multiple responses can be associated to one single node/link
(e.g. an event-handling callback can be launched while a beep is played).
The nodes and links may have a guard condition to indicate whether their
associated responses must be executed or not. In the case of a node, the
system responses bound to it will only be executed if its guard condition
returns true. For a link, both their associated responses and the transition it
represents will only be executed if its condition returns true.

Optionally, one can restrain the notification of a composite event by using
a triggering condition, a special type of guard condition that is evaluated
after the whole composite event has been detected. A triggering condition
returning false will prevent the composite event myEvent to go to the Event
Queue (Figure 3.7). In contrast, a triggering condition returning true will
cause myEvent to go to the Event Queue, from where it will be eventually
dequeued and used by other composite events –those including ce.myEvent
in their definitions. By default, composite events go to the Event Queue.

5.1.2 Hasselt variables

The previous chapter showed that the information related to user events comes
encapsulated in a set of variables called event parameters (Table 4.2). There
are other types of variables that Hasselt programmers can define.

Types of variables

User-defined variables are those that programmers can explicitly declare with
the keyword assign (Table 5.1), e.g. assign: count = 0. Programmers do
not have to specify the datatype of the variables they define; Hasselt UIMS
will process these variables as if they had the same datatype of their initial

76 SRDL: Responding to composite events

value. User-defined variables can be integer, double, datetime, or strings.
The keyword assign also allows maintaining variables, e.g. a counter can be
updated with the statement assign: count=count+1. Multiple variables can be
assigned and/or initialized in one single statement, e.g. assign: x=1, sum=0,
f2=f1+10.

Callback-generated variables are those containing the returning values of
the functions implemented in the back-end applications. Right after calling
a callback function, Hasselt UIMS creates a variable with the same name of
the function and sets it with its return value. For instance, after invoking
a function with call: numBoxesOn(x,y), the variable numBoxesOn will be
automatically generated and initialized with the number of boxes placed over
the point (x,y), which is a value calculated in a back-end application. The
callback functions can only return values of type integer, double, datetime, or
string; other data types will cause a runtime error. If a data structure or an
object of a user-defined class has to be returned to Hasselt from a back-end
application, it has to be encoded as a string. An example using callback-
generated variables will be shown in Section 5.3.

Lifetime of variables

Event parameters, user-defined variables, and callback-generated variables are
created at runtime, at exactly the first time in which they are referred to in
the Hasselt code. These variables will be destroyed right after their associated
composite events are fully detected or when the reset command (Section 3.1.3)
is issued. These variables are called local variables.

User-defined variables may have longer lifespans if programmers assign a
value to them at the zero-th node, e.g. @node(0) do assign: x = 1. Although,
no FSA contains such a node, this assignment will create a variable that
retains its value through multiple occurrences of a composite event, i.e. neither
the completion of an interaction nor the reset command will reinitialize this
variable. These variables are called static variables. An example of static
variables is later shown in Section 6.2.2.

Parameter passing

In Hasselt, arguments can be passed to the parameters of an externally defined
function only by value. Similarly, the output of a back-end function is returned
by value to Hasselt UIMS. There is no direct way to modify the value of a
Hasselt variable from the back-application and vice versa.

5.1 System Response Definition Language (SRDL) 77

With respect to event bubbling, when a composite event is triggered, its
event parameters are passed by value to other higher-level composite events.

5.1.3 Hasselt properties

The always difficult specification of time constraints can be eased with the
properties provided by Hasselt, which can be invoked, at any moment, and
from every composite event. The properties Now.Date or Now.TotalSeconds,
for instance, return the current date and the number of seconds elapsed since
a well-known point in time (00:00 UTC January 1, 0001 in the Gregorian
calendar) respectively. The returning value of these properties can be stored
in user-defined variables. For example, one way to measure the time elapsed
between two distinct moments of an interaction is by annotating two different
nodes of a FSA with the statements assign: t1=Now.TotalSeconds and assign:
t2=Now.TotalSeconds and by interrogating the difference t2− t1 at later point
in time, i.e. at a more distant node.

5.1.4 Hasselt guard and triggering conditions

Both guard and triggering conditions may involve event parameters, user-
defined variables, properties, or callback-generated variables that can be joined
through a series of arithmetic and logical connectors. Furthermore, utility
functions can be applied to the variables within the definition of a guard or
triggering condition.

Arithmetic and logical connectors

Variables can be compared with the symbols <,>,<=, >=,=, <> as well as
with the operators in and like. Some examples of valid comparisons include
t1 < t2, color in (‘yellow’, ‘blue’, ‘green’), and color like ‘light*’ –where the
types of both t1 and t2 are datetime variables whereas color is a string.

Guard or triggering conditions can contain several statements, like the ones
mentioned above, joined by logical connectors, i.e. and, or, not. Valid guards
include x > 0 and y < 0 and count > 0 or x is not null.

All basic arithmetic symbols (+,−, ∗, /) can operate on numeric variables
in the usual manner. The symbol +, when applied to strings, serves to con-
catenate strings. The symbol −, when applied for two datetime variables (e.g.
t2− t1), returns the number of milliseconds that have elapsed from t1 to t2.

78 SRDL: Responding to composite events

Utility functions

As mentioned above, Hasselt UIMS can only pass (receive) primitive values
–namely integer, double, datetime, string– to (from) the back-end application.
If an object of a user-defined type had to be passed (received), it has to be
serialized, i.e. transformed into a string. There are utility functions to help
with this process. These functions can be invoked at any time and from any
composite event.

The size of a string can be obtained through the function len(string).
The function trim(expression) removes all leading and trailing blank charac-
ters. The function substring(fullstring, start, length) returns a fragment of
fullstring, a portion of length characters that starts in the start-th position.
The function iif(expr; truepart; falsepart) returns truepart if expr is true or
falsepart in other cases. The function isnull(expression; replacementvalue)
returns true if expression is true or replacementvalue otherwise.

For instance, the function getScore() of a back-end application can return
an object of the class Student as the string ‘ Fredy, Peru,20’. The student
name, country of origin, and score encoded in these fixed-length fields can
be decoded, with Hasselt, by applying the function substring three times on
the callback-generated variable getScore. For this decoding to work correctly,
the Hasselt programmer must know how the back-end application encodes
the messages. That is why we mentioned, in Section 3.1.2, that the Hasselt
programmer and the application developer must work in coordination with
each other.

5.1.5 Hasselt user-defined events

A system may respond to a user action by calling an external function (with
the keyword call), by activating built-in synthesizers (with speak or play), or
by launching user-defined events (with a raise statement).

The statement raise: evtFailure in the SRDL code will make Hasselt UIMS
to put a notification for the event evtFailure in the Event Queue (Figure 3.7).
This would be irrelevant unless there is another composite event including
ce.evtFailure in its definition, which is expected to be the case. User-defined
events do not need to have a definition in CEDL; they are dynamically cre-
ated when found in the SRDL code. User-defined events can carry an arbitrary
number of event parameters. By convention, user-defined event names start
with the prefix evt. A prototype that exploits these type of events is com-
mented below, in Section 5.5.2.

5.2 Enhancing put-that-there with SRDL 79

5.1.6 Types of constraints describable by Hasselt

By using the aforementioned SRDL syntax, programmers can describe spa-
tial, temporal, and semantic constraints among the constituent events that
comprise a composite event.

A spatial constraint describes a relation between the relative positions
where two or more events occur. This can be as simple as requiring a touch
not to move while holding on an interface element, or more complex, such as
those imposed to several sequential gesture strokes that together pretend to
draw a geometrical pattern (e.g. crosses or asterisks). Spatial constraints can
be described with SRDL as part of a guard or triggering condition.

A temporal constraint describes a relation among the timestamps of two
or more events. Temporal constraints can be qualitative or quantitative; the
former establishes the order of occurrence of two or more events; the latter
imposes a more strict relation such as the time elapsed between two events
[Lalanne 09]. Qualitative temporal constraints are described with the symbols
FOLLOWED BY (;) and AND (+) of CEDL; quantitative constraints can be
imposed by using user-defined datetime variables in the guard or triggering
conditions of a SRDL block.

A semantic constraint is an application-specific relation that scopes the set
of possible actions that the end user can take. For instance, a system that
requires end users not to put a second finger on a touchscreen while a first
finger is performing a unistroke gesture.

To illustrate the SRDL, we present another version of the put-that-there in-
teraction, where partial semantic feedback as well as temporal constraints are
specified.

5.2 Enhancing put-that-there with SRDL

Here we present a slight variation of the interaction put-that-there described
in the preceding chapter. First, the selected object is highlighted, which
requires invoking a handler before the completion of the composite event
moveObject. Second, the mouse click is defined as the sequence of mouse.down
and mouse.up events given that both events occur within a time interval of
200 milliseconds (time constraint).

80 SRDL: Responding to composite events

We define this interaction with the composite events in Equation 5.2.

event mclick〈x, y〉 = mouse.down;
mouse.up〈x, y〉

event moveObject = speech.put ;
speech.that+ ce.mclick〈x1, y1〉 ;
speech.there+ ce.mclick〈x2, y2〉

(5.2)

Before binding the aforementioned composite events to event handlers, one
has to syntax-check the CEDL code. During this process, Hasselt UIMS gen-
erates the two automata shown in Figure 5.1. Programmers can use the nodes
and/or links of these automata as reference points, to indicate the moments
when event handlers must be launched and/or when the spatial, temporal,
semantic constraints must be evaluated.

The automaton (b), for instance, represents the different stages on the path
to the detection of moveObject. By referring to this automaton, programmers
can instruct Hasselt UIMS to respond after the full detection of this event, i.e.
state 8, after selecting the target object, i.e. state 5, during the recognition of
the speech input ‘put’, i.e. link (1, put), etc.

The model that describes the interaction put-that-there is completed with
the following SRDL code.

wrt ce.mclick〈x, y〉
@link(1,mouse.down) do

assign : t0 = Now.TotalMilliSeconds;
@link(2,mouse.up〈x, y〉) do

assign : t1 = Now.TotalMilliSeconds;
triggers when t1− t0 <= 200

wrt ce.moveObject
@node(2) do

speak : ‘what?’;
@node(5) do

speak : ‘where?’;
call : ptt.frmPTT.HighlightObjectOn(x1, y1);

@node(8) do
speak : ‘done!’;
call : ptt.frmPTT.PutThatThere(x1, y1, x2, y2);

(5.3)

The event mclick will be triggered whenever the mouse is depressed and
released in a quick succession –no longer than 200 milliseconds. The temporal
constraint can be specified thanks to the variables t0 and t1, which are times-
tamped whenever the end user presses and releases the mouse respectively.

5.2 Enhancing put-that-there with SRDL 81

(a) Event mclick (b) Event moveObject

Figure 5.1: Implementing the put-that-there command.

82 SRDL: Responding to composite events

The event mclick will carry two parameters when triggered; these represent
the (x-y)-cursor position when the mouse was clicked.

With respect to the event moveObject, its gradual detection will be ac-
knowledged through voice feedback, e.g. after saying ‘put’, the UIMS will im-
mediately reply with ‘what?’ so that users can be aware that their intention of
moving an object has been recognized. The selected object will be highlighted
through the method HighlightObjectOn, and moved through the PutThatThere
method. These methods are implemented in the class ptt.frmPTT of the
back-end application. Figure 4.3a on page 66 shows the GUI of the back-end
application.

5.3 Describing touch and body gestures

As commented in the previous chapter, touch and body movement interactions
could not be described with the CEDL alone. This is because CEDL does not
allow establishing constraints among the events comprising composite events.
This section will show that when CEDL is complemented with SRDL, several
types of touch and body movement interactions involving different types of
constraints can be described. The next chapter will show a comprehensive
application that combines these two modalities.

5.3.1 Single-stroke touch gestures

A single-stroke touch gesture is produced when one finger navigates on a
touchscreen with the intention of performing a task. Hasselt allows describing
single-stroke touch gestures as will be shown below.

The flick-down gesture is that where the user puts its finger on a touch-
screen and drags it down in a quick motion. This gesture is characterized by a
touch-down event followed by an arbitrary number of touch-move events and
these, in turn, followed by a touch-up event. The formal description of this
gesture is as follows:

event flickdown = tscreen.down〈x1, y1, t1, id1〉 ;
tscreen.move〈x2, y2, spx, spy, t2, id2〉∗ ;
tscreen.up〈x3, y3, t3, id3〉

(5.4)

The FSA-based representation of the flickdown event is shown in Figure 5.2b.
The system response to this composite event is specified in Equation 5.5. This
equation states that only those touch events coming from the first finger will
be processed (id = 1). The condition y3 > y1 guarantees that the touch moves
down. The condition t3− t1 < 500 restricts the flick to a maximum duration

5.3 Describing touch and body gestures 83

of 500 milliseconds. The event flickdown is only triggered if these spatial and
temporal constraints are met.

wrt ce.flickdown
@link(1, tscreen.down〈x1, y1, t1, id1〉) do
when id1 = 1;

@link(2, tscreen.move〈x2, y2, spx, spy, t2, id2〉) do
when id2 = 1;

@link(3, tscreen.up〈x3, y3, t3, id3〉) do
when id3 = 1;

triggers when y3 > y1 and t3− t1 < 500

(5.5)

5.3.2 Multi-stroke touch gestures of arbitrary length

The event manyClick, defined in Section 4.3.3 on page 68, accumulated the
clicks into an array so that the back-end application had to deduce the number
of clicks from the length of the array. This example shows a more effective
way to describe events that are repetitions of other more fine-grained events,
e.g. double-tap, double-click, etc. We will define an event characterized by an
arbitrary number of flicks quickly performed one after another (Figure 5.2a).
This is described with the following pattern.

event repeflicks = ce.flickdown;
ce.flickdown∗;
delay-500

(5.6)

wrt ce.repeflicks
@node(1) do

assign : cont = 0;
@node(2) do

assign : cont = cont+ 1;
@node(3) do

call : mediaP layer.Form1.decrV olume(cont);

(5.7)

The SRDL code shown in Equation 5.7 describes how to handle the composite
event repeflicks, whose reciprocal FSA is shown in Figure 5.2c. The event
ce.repeflicks is triggered when the end user stops flicking, i.e. after 500 mil-
liseconds of inaction. The user-defined variable cont is used to count the
number of successive flicks. This variable is passed to a back-end application
when the user stops flicking. The back-end application is a video player whose
volume will be decreased depending on the number of flicks performed by the
end user. This interaction is part of the study case presented in Chapter 6.

84 SRDL: Responding to composite events

Figure 5.2: (a) Event composed of an arbitrary number of flick downs. (b) FSA-
based representation of event flickdown (Equation 5.4), which describes one of the
strokes shown in (a). (c) FSA-based representation of event repeflicks (Equation 5.6,
which describes the whole multi-stroke gesture shown in (a). (d) FSA-based repre-
sentation of the multi-touch gesture zoom (Equation 5.8)

5.3 Describing touch and body gestures 85

5.3.3 Multitouch gestures

The touch events recognizable by Hasselt UIMS do not only carry individual
information about each touch (e.g. position, speed, timestamp) but also ag-
gregate information about the whole set of touches on the touchscreen (e.g.
number of touches, maximum distance between the touches, minimum angle
with respect to the first touch). This information does not have to be aggre-
gated from the individual touch events, but it is automatically calculated and
provided to users of Hasselt UIMS.

The availability of aggregate information simplifies the description of those
gestures affected by the finger permutation problem [Cirelli 14]. The pinch ges-
ture, for instance, commonly used to enlarge/collapse a region of the touch-
screen, can be performed by modifying the number of fingers to the whims of
the user, e.g. he can start using three fingers, switch to four in the middle
of the gesture, and finish with two fingers only. It seems unfeasible to create
models that consider all possible finger permutations explicitly.

The aggregate information calculated by Hasselt UIMS allows an alterna-
tive way to model multitouch interaction. Instead of specifying the behavior
of each touch, multitouch interaction can now be described by referring to
properties of the whole set of touches. With this latter approach, the pinch
gesture is robustly described as “if there are multiple fingers on the touch-
screen and the distance between them is changing, then, the screen content
must be resized”. This specification does not refer to any individual touch but
to their relative distance. Therefore, it is indifferent if the number of touches
remains fixed or changes over the gesture, which permits to bypass the finger
permutation problem. The specification of pinch gesture is implemented with
the following CEDL code:

event zoom = tscreen.move〈x0, y0, spX, spY, t0, id0, scr0〉;
tscreen.move〈x1, y1, spX, spY, t1, id1, scr1〉∗;
tscreen.lastoff

(5.8)

As shown in Table 4.6, the last parameter of the event tscreen.move,
i.e. scr, is a data structure containing aggregate information of all the fingers
placed over the touchscreen. This information includes the number of touches,
the minimun/maximum/average distance between the first touch and the other
ones, and the other values shown in Table 4.4.

The event zoom, whose reciprocal FSA is shown in Figure 5.2d, must be

86 SRDL: Responding to composite events

handled according to the following SRDL code.

wrt ce.zoom
@link(1, tscreen.move〈x0, y0, spX, spY, t0, id0, scr0〉) do

assign : prevDist = scr0.avgDistanceToF irst;
when scr0.numberOfFingers > 1;

@link(2, tscreen.move〈x1, y1, spX, spY, t1, id1, scr1〉) do
call : rotation.Form1.resize(scr1.avgDistanceToF irst);
assign : prevDist = scr1.avgDistanceToF irst;

when scr0.numberOfFingers > 1 and
src1.avgDistanceToF irst <> prevDist;

(5.9)

The field avgDistanceToF irst of the data structure src stores the average
distance of all touches to the first touch. The function resize, implemented
in a back-end application, will be launched whenever this distance changes
over time (src1.avgDistanceToF irst <> prevDist). By using the aggregate
information of src, the gesture model does not have to take into account the
(variable) number of touches placed on the touchscreen; their average distance
is the only thing that matters. The more touches used in the pinch-out gesture,
the higher the rate of touch-move events, and thus, the faster the resizing of
the selected object.

Hasselt UIMS remembers the order in which the touches were placed. If the
first touch is removed during the gesture, the second touch will be considered
as first touch.

5.3.4 Free-form hand gestures

Hasselt UIMS cannot only invoke and pass values to the functions of imported
back-end applications. As described above, in Section 5.1.2, one can also
process the values returned from the back-end applications by using callback-
generated variables.

The present example describes a system capable of recognizing the digits
that a user delineates with his right hand on the air (Figure 5.3a). The drawing
mode starts when the end user puts his left hand in front of him, and finishes
when this hand is put back to its normal position.

This system was implemented by defining one event that triggers when
the user’s left hand is in front of him and another event for when the left
hand is in its normal position. Additionally, a DLL had to be imported into
Hasselt UIMS. It contains a function getBestMatch(x[], y[], t[]), which is
able to recognize two-dimensional gestures from a set of timestamped points.

5.3 Describing touch and body gestures 87

(a) Drawing the number three (b) Event digit (c) Event lhandfront

Figure 5.3: (a) The end user must put his left hand in front to start drawing a
digit. (b) The points covered by his stroke, and their timestamps are accumulated in
x[] and y[], and t[] respectively. (c) Common structure for the events lhandfront and
lhandback used in the definition of the event digit.

The code for describing the aforementioned interaction is as follows.

event lhandfront = kinect.skelpos〈j0〉 ;

event lhandback = kinect.skelpos〈j0〉 ;

event digit〈getBestMatch〉 = ce.lhandfront;
kinect.rhand〈x[], y[], t[]〉∗;
ce.lhandback

(5.10)

wrt ce.lhandfront
triggers when j0.Head.Z − j0.HandLeft.Z > 0.20

wrt ce.lhandback
triggers when j0.Head.Z − j0.HandLeft.Z < 0.05

wrt ce.digit〈getBestMatch〉
@node(3) do

call : gest2d.utils.getBestMatch(x, y, t);
triggers when getBestMatch <> ‘none’

(5.11)

The events lhandback and lhandfront are triggered when the user moves
his left hand back and forth respectively. The event digit reuses the events
lhandback and lhandfront to describe the overall interaction. As specified

88 SRDL: Responding to composite events

in the event digit (Equation 5.10), from the moment when the left hand is
put forward, all the (x-y)-points of the right hand are collected into arrays
until the left hand is put back to its normal position. In this final moment,
Hasselt UIMS will call the function getBestMatch(x[], y[], t[]), implemented
in a DLL.

The return value of getBestMatch(x[], y[], t[]) is a string with the name
of the digit encoded in the arrays x and y, or ‘none’ if the free-form gesture
did not match with any digit template. As discussed in Section 5.1.2, this
return value can be read from the callback-generated function getBestMatch,
which will be automatically created and set by Hasselt UIMS.

The condition getBestMatch <> ‘none’ guarantees that the event digit
will only be triggered if the free-form gesture is recognized as a 1-9 digit. In this
case, digit will carry a parameter indicating the name of the digit depicted by
the end user. In Figure 5.3a, for instance, when the event digit will be finally
triggered, it will carry the parameter getBestMatch = ‘three’.

Finally, notice that the recognition of free-form gestures generated with a
mouse or with a finger on a touchscreen device require similar code to the one
used to define the event digit.

5.3.5 Body movements

Here we present a prototype able to track the coordinated movements of the
two hands of a user doing stretching exercises. Once the presence of the end
user is detected, the prototype synthesizes the voice message ‘start’ meaning
that he can start to alternatively raise his left and right hand (Figure 5.4a).
During the supervised training session, the system counts out loud the number
of repetitions the user is doing. The system can also rush the user (by saying
‘go faster’) if he is being too slow. When the user decides to finish his routine,
by saying ‘finish’, the system informs him about the number of repetitions,
the time required to did so, and an overall evaluation about whether the
efficiency achieved is good or bad. This prototype does not require back-end
applications; it is completely described with Hasselt

The aforementioned prototype is implemented by declaring four compos-
ite events: (1) the event lHandUp occurs when the user raises his left hand,
(2) rHandUp occurs when the user raises his right hand, (3) the whole training
session is described as the event training, and (4) one artificial event, called
timing, is used to measure the time between consecutive movements and to
generated voice feedback based on these measurements. Three of these com-
posite events are declared in Equation 5.12. The event rHandUp is not shown

5.3 Describing touch and body gestures 89

(a) End user raising
hands alternatively

(b) Event lHandUp (c) Event training (d) Event timing

Figure 5.4: Description of a prototype that supervises the end user during his
training session. A demo of this system is shown in https://youtu.be/rKBNi4VEaKM

but it is analogous to lHandUp. These three events are handled according to
the specifications of Equation 5.13.

The event lHandUp occurs when the user is detected with his left hand on
top his head (j2.HandLeft.Y > j2.Head.Y) provided that some time earlier
(not necessarily in the previous frame, but no longer than 3 seconds either) he
was caught with the left hand below the head (j1.HandLeft.Y < j1.Head.Y).

The event training starts when the Kinect detects the presence of the user
(i.e. when kinect.useron is fired) and it can include an arbitrary number of
lHandUp and rHandUp events (notice the loop in Figure 5.4c). The event
training maintains a counter, count, that is increased every time the events
lHandUp and rHandUp are detected in the expected order. Finally, every
time that lHandUp and rHandUp occur, a user-defined event, evtHandMove,
is raised carrying the counter count as a parameter. The event evtHandMove
is captured by the composite event timing.

The event timing synthesizes the number of repetitions (‘one’, ‘two’, ...)
so that the user can keep the pace. By using a static variable, t1, the com-
posite event timing also estimates the time elapsed between consecutive hand
raising movements. Every time this number falls below a certain threshold,

https://youtu.be/rKBNi4VEaKM

90 SRDL: Responding to composite events

the prototype synthesizes ‘go faster’ so that the end user have to speed up.

event lHandUp = kinect.skelpos〈j1〉 ;
kinect.skelpos〈j2〉

event training = kinect.useron;
(ce.lHandUp; ce.rHandUp)∗;
speech.finish

event timing = ce.evtHandMove〈n〉

(5.12)

wrt ce.lHandUp
@link(1, kinect.skelpos〈j1〉)do
assign : t1 = Now.TotalMilliSeconds;

when j1.HandLeft.Y < j1.Head.Y ;
@link(2, kinect.skelpos〈j2〉)do
assign : t2 = Now.TotalMilliSeconds;

when j2.HandLeft.Y > j2.Head.Y ;
triggers when t2− t1 < 3000

wrt ce.training
@link(1, kinect.useron)do
assign : count = 0, init = Now.TotalSeconds;
speak :′ start′;

@link(2, ce.lHandUp)do
assign : count = count+ 1;
raise : evtHandMove〈count〉;

@link(3, ce.rHandUp)do
assign : count = count+ 1;
raise : evtHandMove〈count〉;

@link(2, speech.finish)do
assign : fin = Now.TotalSeconds, totaltime = (fin− init);

@node(4)do
speak :′ you did′ + count+′ repetitions in′ + totaltime+′ seconds.

That is ′ + iif(totaltime/count < 2,′ great′,′ very − bad′);

wrt ce.timing
@node(0)do
assign : t1 = Now.TotalMilliSeconds;

@link(1, ce.evtHandMove〈n〉)do
assign : t2 = Now.TotalMilliSeconds;

@node(2)do
assign : t1 = t2;
speak : iif(t2− t1 > 1500andn > 1,′ gofaster′,′ ′ + n);

(5.13)

5.4 Technical details 91

5.4 Technical details

5.4.1 Management of parallel inputs

For Hasselt UIMS, two events are considered simultaneous as long as they are
detected within a short time interval.

What are stable and unstable nodes?

Hasselt UIMS handles parallel inputs by exploiting the fact that the nodes of
the auto-generated FSA are classified as one of two types: stable or unstable.
This classification is performed automatically, when the CEDL code is com-
piled (Section 3.3.1), and cannot be altered later. At runtime, Hasselt UIMS
will never remain more than a certain amount of time in an unstable node. If
this (configurable) time threshold is reached, the UIMS will automatically go
back to the last visited stable node.

To better illustrate this mechanism, let us refer back to the put-that-there,
or, more precisely, to the FSA shown in Figure 5.1b, which was generated
from the composite event moveObject. There the nodes 3, 4, 6, and 7, which
are represented in lighter color, are unstable whereas the others are stable
nodes. At runtime, if the speech input ‘that’ does not co-occur with an already
perceived mouse click (e.g. due to speech recognition error), the UIMS will
go back from node 4 to node 2. And from this point, the end user will have
a new chance to issue the speech input and the mouse click, but this time at
(almost) the same time.

On the one hand, this mechanism guarantees simultaneity. The UIMS will
move to node 5 only if the two involved inputs co-occur. On the other hand,
it also produces error awareness. When entering back into node 2, the UIMS
will synthesize ‘what?’ (again!) and thus, the end user will realize he failed to
select an object; otherwise, the UIMS would have asked him: ‘where (to move
the selected object)?’.

As discussed below, this example can be modified so that the end user can
receive more detailed feedback, not only to acknowledge him about the current
stage of the interaction, but also about the input recognition errors occurred
during the interaction, if any.

Feedback on simultaneity failures

In the Put-That-There system presented in Equation 5.2, the voice messages
what (to move)? and where (to move it)? are not issued only when the

92 SRDL: Responding to composite events

interaction is progressing correctly. As commented above, as a way to provide
end users with error awareness, these messages are also synthesized when
the speech inputs and clicks are not detected simultaneously. But based on
this voice feedback only, the user cannot distinguish one situation from the
other. Fortunately, Hasselt has the expressiveness required to specify specific
feedback for each scenario.

A more sophisticated version of the Put-That-There prototype can be ob-
served in action in a publicly available video1. If everything goes right, the
user will hear, in a timely manner, the typical ‘what do I have to move?’ and
‘where to move it?’. But if the end user fails trying to speak and click in
parallel, he will receive more specific messages. The sentences ‘you had to
click on an object’ or ‘you had to click on the new position’ are synthesized to
make the user aware that he forgot to click when trying to select or to move
an object respectively. Besides, the message ‘I did not hear anything’ will be
synthesized to make the end user notices that he was not heard.

The key to implement the aforementioned feature is to determine whether
the interaction enters into node(2) or node(5) (see Figure 5.1b) by walking
forward towards the final node or after falling back from an unstable node.
This can be achieved by setting a variable msg with different values in each
node adjacent to node(2) and node(5). Later, instead of synthesizing a fixed
string, as in the original case, the voice synthesizer of Hasselt UIMS must now
be fed with the variable msg, e.g. speak: msg. The full code of the commented
interaction is shown in Appendix C.1.

5.4.2 Interruptibility and rolling-back

End users may sometimes decide to interrupt a partially entered command to
start issuing a new one. Hasselt UIMS facilitates the implementation of such
a scenario by allowing programmers to declare a reset command, a special-
ized speech input whose detection causes the immediate reset of the UIMS:
local variables are destroyed and FSMs return to their initial state. The re-
set command is not declared within the programming environment, but in a
configuration file that Hasselt UIMS reads at startup (Section 3.1.3).

In many cases, such as those when the interaction does not involve par-
tial semantic feedback, the reset of Hasselt UIMS is enough and programmers
will not have to do anything else to maintain their prototypes in a consistent
state. But if the reset command is detected after partial semantic feedback

1Hasselt UIMS giving feedback about input recognition errors: https://www.youtube.

com/watch?v=OlETIsCoMq8

https://www.youtube.com/watch?v=OlETIsCoMq8
https://www.youtube.com/watch?v=OlETIsCoMq8

5.4 Technical details 93

was generated programmers may have to roll back the effects produced by the
feedback. For example, if end users cancelled the put-that-there interaction
after object selection, the highlighting produced because of the selection has
to be undone. Hasselt UIMS cannot directly “unhighlight” the selected ob-
ject because this is part of an external back-end application and its internal
representation is not directly visible from Hasselt UIMS.

However, programmers can handle this situation by attaching a back-end
function UnHighlightObjects() to the initial node of the FSM represent-
ing the put-that-there interaction. This initial node will be automatically
reached upon the detection of the reset command. If the back-end application
performed other internal computations during object selection, the function
UnHighlightObjects() must undo their effects too. Just as Hasselt UIMS re-
sets its local variables, the back-end applications are expected to do the same
job with their internal variables.

Finally, there is still one issue with aforementioned solution. The initial
state is reached in two different scenarios: (1) after the reset command is
detected and (2) after the put-that-there interaction is completed. The back-
end function UnHighlightObjects(), or in general, any roll back function, has
to be called only if the initial state is reached because of the reset command
(i.e. first scenario). This discrimination can be implemented in Hasselt by
maintaining one static variable, which can be interrogated in the initial state
to know whether the last state of the put-that-there was the final state or not.
As mentioned in Section 5.1.2, static variables are never reset.

In Appendix C.2, one can see the code of a prototype that allows users
to move and create an arbitrary number of objects through speak-and-mouse
commands. Both the creation and displacement of objects can be cancelled
in the middle of the interaction and the prototype can undo the effects of the
partially entered commands in a proper manner. The prototype can be seen
in action in a publicly available video2.

5.4.3 Evaluation of expressions

Hasselt expressions are operations between constants, variables, properties,
and event parameters. In order to determine the value of an expression (i.e.
to evaluate an expression), Hasselt uses the class DataTable3. Right before
evaluating an expression, Hasselt UIMS creates a table with as many columns
as variables are included in the expression. The table is then filled with the

2Rolling-back with Hasselt: https://youtu.be/zcKFgZTaFhw
3https://msdn.microsoft.com/en-us/library/6zd7cwzh%28v=vs.110%29.aspx

https://youtu.be/zcKFgZTaFhw
https://msdn.microsoft.com/en-us/library/6zd7cwzh%28v=vs.110%29.aspx

94 SRDL: Responding to composite events

values of the involved variables and augmented with one auto-computed col-
umn whose formula is the expression that has to be evaluated. In this way,
the value of the expression will appear automatically in the auto-computed
column right after this column is created. For instance, assume that at the
moment of evaluating the expression x+ y, the Hasselt variables x and y have
the values 10 and 20, respectively. This will cause Hasselt UIMS: (1) to create
a table with two columns, labelled x and y, (2) to fill the first and only row of
the table with the tuple (10, 20), (3) to add one auto-computed column –with
the formula x + y– to the table, and (4) to obtain the value of x + y (= 30)
by querying the auto-computed column. If the expression to be evaluated
contains variables that were never initialized, these will be considered as null
variables.

The use of tables with auto-computed columns gives the UIMS developer
the advantage of not having to parse expressions and obtained their values
from their parse trees; instead, he delegates the evaluation of expressions to
the DataTable class. But this shortcut comes with disadvantages too. The
formulas of the auto-computed columns cannot contain references to array el-
ements meaning that expressions such as xs[1] + xs[2] will not be recognized
neither in guard conditions nor in assignment statements. To reduce the im-
pact of this limitation, at least to some extent, we arranged Hasselt UIMS
so that expressions can refer to aggregate information of arrays. After such
arrangements, expressions like xs.avg > 0 and xs.count > 1 become valid
and allow, at least, some manipulation of arrays; other aggregate functions
that can be used over arrays are min, max, and sum, whose names are self-
explanatory. Besides, the arrays can also be passed as a whole to the back-end
applications, as shown in Section 5.3.4.

5.4.4 Speech recognition grammars

Hasselt requires two speech recognition grammar files that will be automati-
cally merged at startup, meaning that all terminal symbols included in both
grammars will be recognizable by Hasselt UIMS, at runtime.

The reason for separating the set of recognizable speech inputs into two
grammar files is merely cosmetic. Only the terminal symbols of one grammar
file, herein called main grammar, will be displayed in the auto-completion
popups. When modeling voice commands such as ‘create a blue circle’ or
‘remove red squares’, for instance, we used to put only the inputs ‘create’ and
‘remove’ into the main grammar file whereas the potentially long lists of color
names and geometrical shape names will go to the secondary grammar. This

5.5 Expressiveness of CEDL/SRDL 95

way we avoid the situation in which the auto-completion popups displayed
by the CEDL editor (after the keyword speech) are excessively large to the
extent that they become useless. The secondary grammar can also be used to
store all those terminal symbols that include withespaces: sentences like ‘Of
course’, ‘Cancel the command’, and ‘Yes, I do accept’ can be recognized by
Hasselt UIMS as if they were one single word (Section 4.3.1) even though the
CEDL compiler cannot parse atomic events such as speech.Y es, I do accept.
This was another case that encouraged us to provide programmers with a
simple way to make Hasselt UIMS aware that some speech inputs, despite
being recognizable, must be hidden from the auto-completion popups.

5.5 Expressiveness of CEDL/SRDL

5.5.1 Negation of events

Mudra includes notations for negating events. Their authors claimed, without
proofs or examples, that this is a powerful feature in a multimodal interac-
tion description language [Hoste 11]. While searching for additional opinions
about an operator for negating events, we noticed that, in the domain of
Complex Event Processing (see Appendix B), many composite event defini-
tion languages include a negation operator, but the presence of this operator
has also been put into question. For instance, MIT researchers, Mei and Mad-
den, claimed that “there is no way to represent the absence of an occurrence”
[Mei 09]. “Though we could add a special ‘did not occur’ event –the authors
continued–, it is unclear what timestamp to assign such events or how fre-
quently to output them. Semantically, it also makes little sense to combine
negation with disjunction (i.e., A|!B) or Kleene closure (i.e., !A∗)”.

Based on these divided positions, we decided not to implement a nega-
tion of events, first, because we did also foresee the implementation problems
pointed out by Mei and Madden, and second, because Hasselt already al-
lows negating events without having a specialized event operator to represent
negation. For example, the sequential occurrence of the events move.down and
mouse.up without any interleaving instance of mouse.move can be declared
as the event perfectClick = mouse.down;mouse.up | mouse.move〈x, y〉, an-
notated with the triggering condition triggers when x is null. As can be
interpreted from Figure 5.5a, the (undesired) occurrence of mouse.move will
break the non-nullity of their parameters (i.e. x and y will be assigned with
values), which, in turn, will prevent perfectClick from being triggered. As
mentioned in Section 5.4.3, when evaluating triggering conditions, those pa-

96 SRDL: Responding to composite events

(a) Event perfectClick (b) Equivalent events (c) Redundant events

Figure 5.5: (a) To avoid interleavings of mouse.move events during a mouse click,
perfectClick must only be triggered when x is null. (b) Any system response anno-
tated in node(2) will be conveyed if the command for deletion is detected either via
speech or via keyboard. (c) Any system response annotated in both unstable nodes,
node(2) and node(3), will be conveyed only once even if the command for deletion
arrives redundantly via voice and via keyboard.

rameters that were never set –which is the case of x and y when a perfect click
is performed– are considered null.

The same pattern can be repeated to specify interactions like perfectTap
or other more complex scenarios like, for instance, a body gesture that finishes
once it is interrupted by speech input.

5.5.2 About the CARE properties

The CARE properties are a well-known formal framework for reasoning about
the design of multimodal systems [Coutaz 95]. Some researchers have explic-
itly introduced symbols to represent the Complementarity, Assignment, Re-
dundancy, and Equivalence (CARE) of inputs that characterize multimodal
interaction in their modelling languages [Serrano 08, Dumas 10]. Without
direct references to CARE, Hasselt can describe these four types of inputs
combinations and more than that.

Complementary inputs were already described for the interaction put-that-
there. The complementarity between the speech inputs and the mouse clicks
required to disambiguate their meanings was represented by the event operator

5.5 Expressiveness of CEDL/SRDL 97

AND (+). As to the Assignment of a modality, the second CARE property, we
can refer the reader back to Section 5.3, which was full of examples in which
the touch modality was assigned, i.e. it was the only modality involved during
the interaction.

With regard to the equivalence and redundancy of inputs, which are two
related concepts, let us refer to a system that can recognize both the speech
input remove and a keystroke on DEL . These two inputs are said to be equiva-
lent if one of them is necessary and sufficient to call the function rmvSelObjs,
in charge of removing selected objects. This equivalence can be described in
Hasselt by connecting the speech input and the keystroke with the operator
OR (|), and by annotating a function call to rmvSelObjs in the final node
of this composite event (Figure 5.5b). For the same system, the two inputs
are said redundant if each of them can be issued alone or both can be issued
at the same time, but in either case, the system will only respond once, i.e.
the function rmvSelObjs will be executed only once. This redundancy can
be described by connecting the speech event and the keystroke event with the
operator AND (+) and by annotating a function call to rmvSelObjs in each
of its unstable nodes (Figure 5.5c).

Finally, the operator ITERATION (∗) does not have an analogous one
in the CARE properties. This operator is very important to describe the
streams of inputs conveyed by the Kinect sensor, by a moving touch, or by
a moving mouse, as shown in multiple examples throughout the thesis. One
potential explanation for this omission may be that the CARE were designed
to represent the “relations between interaction techniques”, not to represent
the relations between user inputs. In our opinion, the CARE properties may
be at a too high level of abstraction to the taste of a programmer.

A more complex example of redundancy

Hasselt can handle redundancy in more complex interactions, as proven in a
publicly available video4. The video shows that when only one input, either
the speech input ‘remove’ or a keystroke on DEL , is perceived, the system will
require the end user to confirm the deletion of the interface objects. But such
a confirmation is not required when both inputs are issued at the same time.

One of the composite events required to specify this interaction is the event
deleteNow, whose FSA-based representation is shown in Figure 5.6a. As in
the previous, simpler example, the function rmvSelObjs is also annotated
in the the final node of the FSA. But, for this case, the FSA has additional

4Hasselt UIMS handling redundant inputs: https://youtu.be/B4Zwmw6MleI

https://youtu.be/B4Zwmw6MleI

98 SRDL: Responding to composite events

(a) Event deleteNow (b) Event deleteConf

Figure 5.6: (a) Event deleteNow will be triggered when two redundant inputs
are used simultaneously with the intention of removing all objects without need of
confirmation. (b) Event deleteConf will be triggered after receiving a confirmation
message for removing the interface objects. This latter composite event starts when
a notification that only one of the two equivalent inputs (the speech input ‘remove’
or a keystroke on DEL) has been detected is received from event deleteNow.

5.5 Expressiveness of CEDL/SRDL 99

SRDL annotations, which are required to distinguish if the interaction returns
to the initial state after reaching the final state (i.e. after both inputs were
issued redundantly) or after falling back from an unstable node (i.e. after only
one of the two inputs was issued). If the system returns to the initial state
from an unstable state, the user-defined event evtAsk4Confirm will be raised
(with the SRDL command raise shown in Table 5.1) as an indication that the
deletion needs to be confirmed. The occurrence of evtAsk4Confirm will be
noticed by another composite event, the event deleteConf (Figure 5.6b), which
will be completed once the end user confirms the deletion. More concretely,
the node(2) of the composite event deleteConf is annotated with a voice
message for requiring the end user to confirm the deletion; the node(3), which
will be reached after the deletion is confirmed, is annotated with the function
rmvSelObjs. The full code of this system is shown in Appendix C.3.

5.5.3 Types of feedback

As it was already proven by previous examples, Hasselt UIMS supports lexical
and semantic feedback.

Lexical feedback is considered as echo produced in response to user actions
[de Ruiter 88]. The keywords play and speak (Table 5.1), which command
the built-in synthesizers of Hasselt UIMS, were introduced to enable Hasselt
prototypes to provide lexical feedback. This type of feedback was used by our
Put-That-There system, when the end user was responded with voice synthesis
(what? and where?) as a way to making him aware that his inputs were being
correctly detected. To provide this type of feedback, there is no need to take
a look at the application variables, which contrasts with semantic feedback.

Semantic feedback is the type of feedback where determining the appropri-
ate response to user actions requires specialized information about the vari-
ables and objects of the application [Myers 94]. Providing semantic feedback
requires calling the back-end application, which in Hasselt, is achieved with
the command call. In the put-that-there interaction, semantic feedback was
used to inform the end user, through highlighting, that his target object was
correctly selected. Unlike in the previous example of lexical feedback, here the
UIMS cannot help the end user unless it receives support from the back-end
application. This is because the UIMS ignores which object is under the mouse
pointer (actually it ignores that the back-end application has a GUI hosting
many objects) and therefore, it has to delegate this task to the back-end ap-
plication that knows every detail about its hosted objects.

100 SRDL: Responding to composite events

5.6 Limitations of SRDL

• CEDL allows accumulating event parameters in arrays, but the indi-
vidual elements of these arrays cannot be referred to individually with
SRDL code (e.g. CEDL allows move.move〈x[], y[]〉, but SRDL does not
recognize assign: ini = x[1]). In the current version, one can pass the
arrays directly to the back-end applications or to use their aggregate
data (e.g. their average, minimum, or maximum value, or the size of the
array). The technical reason behind this limitation is the technique used
to evaluate expressions, which was exposed in Section 5.4.3. The nega-
tive consequence of this issue is that one has to look for alternative ways
to represent ideas that may be more naturally represented with arrays.
For instance, sometimes one wants to check the final element of an array
in order to determine the final position of a touch trajectory, which may
be achieved by referring to x[x.count] and y[y.count]. Rather, on top of
storing the trajectory points, Hasselt programmers have to declare two
variables lastX, lastY that are to be overwritten for each touch.move
event in an assign statement.

• The data types of the user-defined variables are limited to strings, inte-
gers, double, and datetime types and SRDL does not provide syntax to
define user-defined datatypes, e.g. data structures or customized classes.
This restriction was imposed to favor the simplicity of the SRDL syntax,
which is now free of notations for declaring datatypes. But, this brings
about the negative consequence that programmers may have to use sev-
eral loose variables, which otherwise could have been packaged into one
single data structure.

• It may happen that multiple nodes and links of a FSA have to be anno-
tated with the same set of system responses or the same guard condition.
For these cases, one has to repeat several blocks of SRDL statements for
different elements of a FSA. In the SRDL code for the event flickdown
(Equation 5.5), for instance, the same guard condition was repeated
three times. This need of repeating code, which may discourage some
programmers, can be eliminated by sweetening the SRDL syntax so that
one can assign a block of system responses for multiple elements of a FSA
at once. By putting more syntactic sugar in SRDL, one should be able
to write statements such as @node(1), link(3,mouse.up) do to specify, in
one single line, that the set of responses that follow must be associated
to many elements, in this case, to both node(1) and link(2,mouse.up).

5.7 Summary 101

• The SRDL is too closely coupled to the elements of the FSAs. This
implies that if the programmer changes the CEDL definitions, the SRDL
semantics could be broken, e.g. a certain node of a FSA may have a
different meaning, if it still exists, after its reciprocal composite event is
redefined. SRDL requires a more error-proof referencing solution.

• The guard conditions are associated with the nodes or links of the FSA.
This implies that all the responses will be triggered or not depending on
the value of their guard conditions. It would be more powerful if one
single node or link could have several blocks of instructions, each with a
distinct guard condition. So, instead of specifying something like ‘con-
vey all these responses when this condition is true’, programmers could
command Hasselt UIMS in the following way: ‘convey these responses
if condition1 is true, those other responses if condition2 is true, and so
forth’. Depending on the complexity of the case, multiple conditional
system responses can be achieved by using utility functions, like iif ,
or, in the worst case, by replicating one composite event so that it has
different guard conditions in each definition.

5.7 Summary

An interaction model describes the interplay between the end user and the sys-
tem, the relation between the user actions and the system responses. Whereas
the preceding chapter presented the Composite Event Definition Language
(CEDL) as a notation for specifying sets of user actions as composite events,
this chapter has studied the System Response Definition Language (SRDL),
which allows specifying the system responses that must be conveyed in reac-
tion to the (partial) detection of composite events. Both the CEDL and SRDL
are required to create an interaction model.

SRDL allows binding multiple system responses to one single composite
event. SRDL also permits to specify the moment when the system responses
have to be conveyed. The type of responses one can specify include launching
callback functions of back-end applications, activating the output synthesizers
incorporated in Hasselt UIMS, or firing user-defined events. Furthermore,
SRDL provides notations for declaring and maintaining user-defined (local or
static) variables, which may eventually be interrogated in guard conditions,
used as arguments when calling a back-end function, or used as parameters of
user-defined events.

The chapter presented an extended discussion about the expressiveness of

102 SRDL: Responding to composite events

CEDL and SRDL. It was shown that these languages working together al-
lows specifying Complementary, Assigned, Redundant, and Equivalent events
(CARE), repetitive events, and “did not occur” events. This expressiveness
permits to create prototypes capable of providing different types of feedback
(e.g. lexical and semantic), and supporting different types of interaction (e.g.
single-stroke, multi-stroke, multitouch, and hand gesture) subjected to differ-
ent types of constraints (e.g. spatial, temporal, and semantic).

The next chapter will describe the third and last member of the Hasselt
family, the Human-Machine Dialog Definition Language (HMD2L), which is
expected to create high-level dialog models on top of the interaction models
created with CEDL and SRDL.

Chapter 6

HMD2L: Separating events from dialog model

With the CEDL and SRDL studied in the previous chapters, one can declare
how the system must respond to a set of user-defined composite events. But
this relation between composite events and system responses remains fixed, as
if the system always stayed in the same context-of-use.

Dialog systems operate on different contexts-of-use and are capable of up-
dating the context-of-use on the basis of the human-machine conversation
[Traum 03]. The MMI Navigation system1 incorporated in Audi vehicles is a
good example of dialog system. This system has four distinguishable contexts-
of-use, namely navigation, telephone, radio, and media mode, and allows users
to seamlessly switch from one context-of-use to another through voice com-
mands. In each context-of-use, the system awaits for a specific set of voice
commands, which may not be recognizable in other contexts.

Although it is possible to create dialog systems with CEDL and SRDL
alone, the maintenance of multiple contexts-of-use has to be implemented
with low level code in the back-end application. This chapter investigates
whether a declarative specification of human-machine dialogs may bring about
advantages in the creation of multimodal dialog systems.

A final extension of Hasselt consisted of a dialog modeling language, called
Human-Machine Dialog Definition Language (HMD2L). Its visual notation
allows describing both the potential context-of-uses of a system and the in-
teractions allowed in a given context-of-use. HMD2L was introduced into
Hasselt by following a guideline given by Dumas et al. [Dumas 10]. They

1https://www.youtube.com/watch?v=Z2SJ3oCYy8Q

104 HMD2L: Separating events from dialog model

suggest that the declarative language provided by a UIMS must be such that
the declaration of multimodal events can be separated from the description of
the human-machine dialog (Figure 6.1). We implemented this idea by putting
HMD2L on top of CEDL and SRDL.

6.1 Hasselt’s visual language: The Human-Machine
Dialog Definition Language (HMD2L)

This section starts describing the place of HMD2L within a Hasselt project,
the relation of HMD2L with its siblings CEDL and SRDL. It then provides
details about how to create HMD2L models with the Hasselt’s graphical editor.
Finally, it discusses the differences between the finite state machines elaborated
with HMD2L versus those auto-generated by Hasselt compilers.

6.1.1 HMD2L within Hasselt

HMD2L is a visual language that allows reusing the interactions’ descriptions
elaborated with CEDL and SRDL to create a high-level model, herein called
dialog model. The dialog model represents all the different contexts-of-use of
the intended dialog system as well as the events and conditions that cause the
system’s state transitions.

Whereas CEDL and SRDL code was written in a textual editor, HMD2L
models are created in a separate, graphical editor from which composite events
definitions can be referred to but not changed. Therefore, there is a separation
between the definitions of the composite events and the definition of the multi-
modal dialog. This separation is more strict than the separation obtained with
SMUIML [Dumas 10], where the specialized notations for composing events
and for describing human-machine dialogs are used in the same visual editor.
Hasselt, in contrast, allows both a logical and a physical separation.

The interactions presented in the previous chapters may be considered as
trivial cases of human-machine dialogs: dialogs with one single context-of-use,
where the system response to a given composite event always remains the same
through the whole runtime.

As mentioned before, HMD2L is not mandatory to create dialog systems
with Hasselt. One can alternatively create dialogs systems with CEDL and
SRDL as long as some imperative code for dialog management is written in
the back-end application. A comparison against this alternative solution will
be shown at the end of this chapter.

6.1 Hasselt’s visual language: The Human-Machine Dialog
Definition Language (HMD2L) 105

Figure 6.1: On the left side of the diagram, one can see the different levels of
abstraction used by Dumas et al. [Dumas 10]. On the right side, one can see how our
proposed tool follows the same framework: our HMD2L is at the dialog level whereas
the CEDL and SRDL are at the events level.

6.1.2 HMD2L models

Assuming there is an interaction model defined with CEDL and SRDL code,
one can use the graphical editor of Hasselt, shown in Figure 7.1, to create a
dialog model with HMD2L.

HMD2L allows modeling human-machine dialogs as finite state machines
(FSMs): the nodes of these FSMs represent the potential contexts-of-use where
the dialog system may be; its arcs represent the transitions between different
contexts-of-use. Arcs have to be referred to the composite events previously
defined with the textual notations of Hasselt. At runtime, when a composite
event is triggered, the intended dialog system may switch to a new context-
of-use depending on the specifications of the HMD2L model.

HMD2L models are depicted in the graphical editor provided by Has-
selt UIMS (Figure 7.1). These models can contain two types of nodes: one
initial node and an arbitrary number of intermediate nodes. Programmers
indicate which type of node has to be depicted through the toolbox buttons
placed at the left side of the graphical editor. Arrows can be drawn so that
they join any pair of nodes or a node with itself (i.e. a loop). Each arc can be
annotated with a composite event name, a guard condition, and an assignment
statement. These annotations can be made through a property window that
pops up when an arc is double clicked. In this property window, the names

106 HMD2L: Separating events from dialog model

Figure 6.2: HMD2L editor. A property window is displayed when programmers click
on an arrow of the user-defined FSM. The drop-down list contains all composite events
previously defined with CEDL and SRDL. The textboxes can be optionally written
with a guard condition (top) or with a list of assignments statements (bottom).

of the composite events previously declared with CEDL and SRDL are shown
through a drop-down list, so one does not have to remember the composite
event names or to switch from one editor to the other. Optionally, one can
annotate guard conditions and assignment statements to an arc. The guard
conditions must follow the same syntax rules described in Section 5.4.3, the
same syntax used for the SRDL guard conditions. The assignment statement
must be declared as if they were part of an assign statement, that is, by fol-
lowing the syntax commented in Section 5.1.2. The use of SRDL syntax in
the HMD2L model is to reduce the cognitive effort required to learn this new
language. Once the property window is closed, all the information is passed
to the graphical model. The composite event name will appear in plain text;
the guard condition, within square brackets; and the assignment statement,
within curly braces.

6.1.3 Differences between auto-generated FSMs and HMD2L
models

As shown in Table 6.1, there are some differences between the FSMs auto-
generated from CEDL and SRDL and the user-defined FSMs elaborated with
HMD2L models.

6.1 Hasselt’s visual language: The Human-Machine Dialog
Definition Language (HMD2L) 107

Auto-generated HMD2L models
FSMs

Topology Constrained Arbitrary
Generated by fixed rules User-defined

Final state Mandatory Not necessary

Types of events Composite or Only composite
atomic events events

Dispatching order Order of definition Always first

Table 6.1: Differences between the FSMs generated by Hasselt UIMS from CEDL
and SRDL code versus user-defined FSMs created with HMD2L.

Whereas the links of HMD2L can be placed in any direction and between
any arbitrary pair of nodes, the links of the auto-generated FSMs always point
downstream to the final state reflecting the fact that interactions have a well-
defined, short lifecycle. In contrast, a dialog evolves more arbitrarily. In the
aforementioned MMI vehicle system, for instance, the four contexts-of-use –
namely navigation, telephone, radio, and media mode– can be visited in any
order, depending on the whims of the user. The arbitrariness of a dialog is
the reason why we allow Hasselt programmers to create FSMs of arbitrary
structures with HMD2L.

Furthermore, the lifespan of a human-machine dialog is much longer than
the duration of an interaction. Back to the MMI system, this may be running
a specific radio station in response to a user’s command. In our interpretation,
one interaction is already finished, but the dialog is still going on so that, at
a later point in time, the user can interact with the system again to ask for
another function. Due to the long lifespan of a dialog, which may even be
“on” all the time, HMD2L models do not have to have final states.

The links of the FSMs auto-generated from CEDL and SRDL code may
refer to atomic or composite events. In contrast, the links of a HMD2L model
always refer to composite events, which reflects its higher-level of abstraction.

The HMD2L model will receive a special treatment by Hasselt UIMS. At
runtime, once an event is withdrawn from the Event Queue (Section 3.2.3), it
will be first dispatched to the HMD2L model. In this way, the dialog model
will be the first to be notified about the occurrence of a composite event. Thus,
the maintenance of the context-of-use will not be delayed.

108 HMD2L: Separating events from dialog model

6.2 Proof-of-concept application

To finish with the study of Hasselt UIMS and Hasselt, this section presents a
comprehensive running example that shows that Hasselt can create prototypes
that support multimodal, multitouch, and cross-device interaction.

6.2.1 Couch Potato. A Multimodal Video Player

Couch Potato is a multimodal system that allows wireless and remote control
of a media player. Users can choose, play, pause, and stop their favorite movies
through the coordinated use of touch screen, body posture, and speech. The
system can also react to the user’s passive behavior.

Initially, Couch Potato shows a window with the name and version of the
system (Figure 6.3a). When the user waves ‘hello’, Couch Potato displays
an enumerated list of movie names (Figure 6.3b). The list can be scrolled
through voice commands or touch gestures. By saying ‘next’, ‘previous’, or
more flexible commands like ‘four steps forward’ or ‘ten steps backward’, the
user can quickly select the desired video. Alternatively, the user can depict a
number on the touch-sensitive screen of his mobile phone. In this case, Couch
Potato will interpret this number as the index of the video to be selected.
Both selection methods can be combined, if desired.

Once the intended video is selected, one can play it by flicking to the right
on the screen of his mobile phone while pointing forward. Notice that to decode
this command, Couch Potato has to combine two input modalities in order to
realize that the user is (a) pointing towards the Kinect sensor and (b) flicking
to the right, simultaneously. Similarly, as the video plays (Figure 6.3c), one
can point out to the Kinect sensor and flick to the left or tap on the mobile
phone in order to stop or pause the playback respectively. Right after stopping
the video, the full list of videos will be shown again. The volume of the
video can also be increased/decreased by flicking up/down. Unlike in regular
remote controls, the volume can be changed linearly and exponentially. The
more flicks in a short time interval, the higher the acceleration with which the
volume will change. This feature may be appreciated by impatient users.

Couch Potato also reacts to the user’s passive behavior. If the user leaves
the room –read the Kinect’s field of view– when no video is being played, the
discreet Couch Potato will hide the list of videos the user was watching and
show the initial window again. If the user leaves when a video is being played,
nothing will happen –the user may be watching a rock concert or a football
match and he still can listen to it from another room of the house.

6.2 Proof-of-concept application 109

6.2.2 Implementation

Back-end applications

The interactions supported by Coach Potato were declared with Hasselt, but
its application-specific functionality was implemented using a Windows appli-
cation, a DLL, and a mobile application so that Couch Potato can operate as
described above.

The window application consists of a form hosting a video player and
a listbox containing the names of the video files located in a specific direc-
tory. This window application implements both the presentation part and the
application-specific functionality for controlling the video player.

The DLL contains a single-stroke recognizer. It receives a series of (x-y)-
points and returns a string containing the name of a 0-9 digit or the string
‘none’ when no match is possible. Both the DLL and the window application
were imported into Hasselt UIMS.

The mobile application that translates touch events into TUIO messages
is the open-source TUIOdroid2. TUIOdroid had to be configured so that its
messages are sent to the same port that Hasselt UIMS listens on.

Human-machine dialog

The runtime behavior of Couch Potato is depicted in Figure 6.3d. Here the
node 1 represents the state where the initial window is shown to the user, the
node 2 is the state where the list of videos is displayed, and the node 3 repre-
sents the state where a video is being played. The appearance of Couch Potato
in these three stages was shown in Figure 6.3a-c.

The code implementing some of the composite events used in the HMD2L
model is discussed below. The full code can be seen in Appendix C.6.

Playing the selected video

Flicking to the right and extending the right hand forward are two events
that when occurring simultaneously cause the chosen video to be played. The

2https://code.google.com/p/tuiodroid

https://code.google.com/p/tuiodroid

110 HMD2L: Separating events from dialog model

(a) (b)

(c)

(d)

Figure 6.3: At the top, one can see Couch Potato operating in its three different
contexts-of-use: (a) Initial mode, (b) Selection mode, and (c) Playback mode. These
contexts-of-use as well as their interrelations are modeled in (d).

6.2 Proof-of-concept application 111

Figure 6.4: FSA-based representation of the events (a) left2right to be triggered
when the user flicks to the right, (b) rhandfront, to be triggered when the user put
his right hand forward, and (c) playvideo to be triggered when (a) and (b) co-occur,
in which case Couch Potato will enter into playback mode.

involved events are declared as follows.

event left2right = tscreen.firston〈x1, y1, t1, id1〉
tscreen.move〈x2, y2, t2, id2〉∗;
tscreen.lastoff

event rhandfront = kinect.skelpos〈skl〉;

event playvideo = ce.left2right+ ce.handfront

(6.1)

These events, whose visual representation is shown in Figure 6.4, are to be
handled according to the following specification.

wrt ce.left2right
@link(2, tscreen.move〈x2, y2, t2, id2〉) do
when id1 = id2;

triggers when x2 > x1 and abs(y2− y1) < 0.05

wrt ce.rhandfront
triggers when skl.HandRight.Z < skl.Head.Z − 0.35

wrt ce.playvideo
@node(4) do

call : WinMediaP layer.Form1.play();

(6.2)

112 HMD2L: Separating events from dialog model

Figure 6.5: Coach Potato setup. The Z-axis of the Kinect’s coordinate space extends
in the direction in which the sensor points. When the user extends his right hand,
the z-coordinates of the head and the hand differs in at least 35 cm.

The composite event left2right, declared in Equation 6.1, occurs when the
user flicks towards the right on his mobile phone screen. As specified in Equa-
tion 6.2, this event has two constraints. The semantic constraint id1 = id2
prevents other fingers to dirty the gesture started by the first one. The spa-
tial constraint x2 > x1 and abs(y2 − y1) < 0.05 guarantees that the finger
moves towards the right and almost in a straight line. Notice that (x1, y1)
was captured during the first touch, and (x2, y2), during its last movement.

The composite event rhandfront occurs when the user is pointing forward,
i.e. when his right hand is 35 cm. in front of his body (Figure 6.5).

The composite event playvideo occurs when the previously defined left2right
and rhandfront are detected simultaneously. In this case, the function play()
contained in the back-end application is launched.

Choosing a video through free-form touch gestures

By drawing the number N on his mobile phone screen, the user commands
Couch Potato to select the N th video of the list. Numbers can consist of
multiple unistroke digits drawn in a quick succession.

Every time the user draws a digit, the composite event digit is triggered. A
sequence of these events will cause the triggering of the event searchByTouch,
which will finally cause Coach Potato to select a video. These two events are

6.2 Proof-of-concept application 113

(a) (b)

Figure 6.6: FSA-based representation of composite events (a) digit, triggered when
a digit has been drawn, and (b) searchByTouch, triggered when several digits, whose
names are accumulated in the array d, have been drawn.

defined below.

event digit〈getBestMatch〉 = tscreen.down〈xs[], ys[], ts[], ids[]〉;
tscreen.move〈xs[], ys[], ts[], ids[]〉∗;
tscreen.up〈xn, yn, tn, idn〉

event searchByTouch = ce.digit〈d[]〉;
ce.digit〈d[]〉∗;
delay-2500;

(6.3)

The logic to handle the events digit and searchByTouch, whose visual rep-
resentations are shown in Figure 6.6, is as follows.

wrt ce.digit〈getBestMatch〉
@link(2, tscreen.move〈xn, yn, tn, idn〉) do

call : gest2d.utils.getBestMatch(xs, ys, ts);
triggers when getBestMatch <> ‘none’

wrt ce.searchByTouch
@node(3) do

call : WinMediaP layer.Form1.chooseV ideo(d);

(6.4)

As shown in Equation 6.4, Hasselt UIMS exploits the method getBestMatch
to identify the digit depicted by the user’s stroke. This method belongs to a

114 HMD2L: Separating events from dialog model

DLL that was imported into Hasselt UIMS for the Couch Potato project. The
method getBestMatch returns a string containing the name of the depicted
digit or ‘none’ if the stroke did not match with any digit template. The arrays
xs[], ys[], and ts[], containing the time-ordered series of 2d points contacted
by the gesture stroke are passed as input parameters to this method.

As to the event searchByTouch, this is composed out of a stream of digit
events, e.g. digit〈‘two’〉, digit〈‘six’〉, ..., that finishes 2.5 seconds after the last
received digit event. The composite event searchByTouch collects the param-
eters carried by its constituent events into an array, e.g. d = [‘two’, ‘six’], that
will be passed to the method chooseV ideo. This method will select the video
whose ordinal number is encoded in its input parameter, e.g. the 26thvideo.

Changing the volume

In playback mode, the user can increase/decrease the volume level by flicking
up/down on his mobile phone screen. After performing N flicks in a quick
succession, the volume level will change in N2 levels. This rule takes into
account the intensity with which the user wants to change the volume. Three
quick flicks will not have the same effect as three flicks widely spaced in time.
The former will increase the volume in 9 levels; the latter, in 3 levels only.
In this way, Couch Potato users can change the volume linearly, which is the
usual way, or exponentially, which is an innovation of Couch Potato.

The events volumeUp, volumeDown, seen in Figure 6.3d, have the same
pattern as the event repeflicks discussed in Equation 5.6, in the previous
chapter.

Waving hello

The wave gesture was defined as the sequence of two events: (1) fromR2L,
to be triggered when the user moves his right hand from the right to the left,
and (2) fromL2R, to be triggered when the user moves his right hand from
the left to the right.

A first strategy to implement fromR2L was to collect three consecutive
skeleton frames and check whether the x-position of the right hand decreases
from frame to frame (cf. X-axis in Figure 6.5). Although this strategy is
correct in theory, the imprecision of Kinect measurements causes poor event-
pattern recognition in practice. Instead of defining the event fromR2L in
terms of the imprecise Kinect measurements, the event xrighthand had to be
declared (Equation 6.5). Whereas the built-in event kinect.skelpos carries the
right hand’s position of the last frame fired by Kinect, the event xrighthand

6.2 Proof-of-concept application 115

was defined to carry a weighted average of the right hand’s positions through-
out the whole interaction. This is implemented as follows:

event xrighthand〈xpos〉 = kinect.skelpos〈j〉

event fromR2L = ce.xrighthand〈xpos1〉
ce.xrighthand〈xpos2〉
ce.xrighthand〈xpos3〉

(6.5)

wrt ce.xrighthand〈xpos〉
@node(0) do

assign : prevxpos = 0;
@link(1, kinect.skelpos〈j〉) do

assign : xpos = 0.8 ∗ j.HandRight.X + 0.2 ∗ prevxpos;
@node(2) do

assign : prevxpos = xpos;

wrt ce.fromR2L
triggers when xpos1 > xpos2 and xpos2 > xpos3

(6.6)

In Equation 6.6, the variable xpos carried by the composite event xrighthand
contains the x-position of the right hand after passing through an exponential
smoothing filter (see Appendix A.1). Since the variable prevxpos is attached
to the special node ‘zero’, it will retain its value throughout the whole runtime;
it condenses historical information. Normally, variables are clear up right upon
a composite event is detected.

Finally, the event fromR2L verifies that the value xpos decreases in three
consecutive xrighthand events. The fundamental difference with the afore-
mentioned original strategy is that the x-positions are now smoothed by a
filter, which produces less error recognitions in practice.

Analogously, an event fromL2R declares the hand’s movement to the right
as one composite event that must be detected by Hasselt UIMS. The waving
event was defined as simply fromR2L ; fromL2R (Figure 6.7c) restrained to
a time interval of 2.5 seconds.

6.2.3 Passive inputs

The event leaveoff depicted as an outgoing link in the node 2 of Figure 6.3d,
triggers in response to the built-in event kinect.useroff or to the speech input
speech.bye included in the recognition grammar file used for this project, i.e.
event leaveoff = kinect.useroff |speech.bye. The fact that kinect.useroff
is launched by Hasselt UIMS when the user disappears from the Kinect’s field
of view means that leaveoff can be triggered passively or actively.

116 HMD2L: Separating events from dialog model

(a) (b) (c)

Figure 6.7: FSA-based representation of the composite events (a) xrighthand, which
filters the information provided by MS Kinect, (b) fromR2L, to be triggered when
the user’s right hand moves to the left in three consecutive frames, and (c) wave, to
be triggered when the wave gesture occurs.

6.3 Limitations of HMD2L 117

An interesting possibility is to change Coach Potato so that upon entering
into Selection mode, it uses the distance between the user and the Kinect to
set the font size of the items shown in Figure 6.3, b. This would require to
change the event rhandfront (Equation 6.1) so that it can carry one parameter
storing the z-coordinate of the user’s head. This parameter can be later passed
to the back-end application that controls the video player.

Another example of passive inputs was already given in the previous chap-
ter when a prototype for supervising the training session of a user was discussed
(Figure 5.4 on page 89). There the end user is not commanding the prototype
explicitly; rather, the prototype is an assistant, that can proactively encourage
the end user to keep up the pace whenever he starts to slow down.

6.3 Limitations of HMD2L

• There can only be one HMD2L model per project, which may raise diffi-
culties when modeling real-world systems. It was found that many indus-
trial applications may be modeled with 50-1000 transitions [Jensen 97],
which, with our HMD2L, will degenerate into a spaghetti of wires. The
complexity of such chaotic state diagrams may be alleviated, at least
to some extent, by the fact that each arc of HMD2L model represents
a FSM itself, so there is some implicit hierarchy of FSMs even in one
single HMD2L model.

• Creating and maintaining HMD2L models is not as fast as writing code.
The precision required to wire the diagram and the persistent habit
of rearranging the layout of a visual model almost every time a new
node is added or an existing one is removed slows down the process of
maintaining visual models. The concern for the aesthetics is higher when
maintaining visual model than when maintaining textual models. This
is something we observed during the user studies to be discussed in a
later chapter.

6.4 Summary

This chapter has brought Part I to a close. The study of the Composite Event
Definition Language (CEDL) and the System Response Definition Language
(SRDL), studied in the preceding chapters, was herein complemented with the
study of a visual notation called Human-Machine Dialog Definition Language
(HMD2L).

118 HMD2L: Separating events from dialog model

HMD2L allows describing a dialog model on top of the interaction model
created with CEDL and SRDL. The dialog model is depicted, in a graphical
editor, as a finite state machine (FSM) whose arcs refer to previously declared
composite events. This model represents the potential context-of-uses of the
intended system and the interactions allowed in a given context-of-use. A
Hasselt project can dispensed with a dialog model, in which case, the user
actions will be responded in the same way through the whole runtime. The
syntax of HMD2L and the differences between the user-defined FSMs created
with HMD2L and the FSMs auto-generated from CEDL and SRDL code have
been discussed. At the end of the chapter, a comprehensive example that
involves all members of the Hasselt family was presented. Coach Potato, a
video player controlled by remote, multimodal signals, proves that on top of
the old-fashioned speak-and-mouse interactions described in the first chap-
ters, Hasselt can also combine more ‘modern’ modalities such as touch and
body movements. As proven with Couch Potato, Hasselt allows prototyping
different interaction styles, namely multimodal, multitouch, and cross-device
interactions; these interactions do not only involve active but passive modali-
ties too. Despite its declarative nature, relatively complex tasks, such as joint
filtering, a technique for smoothing imprecise input data, can be described
with Hasselt without need of invoking low level back-end code.

The following Part II will concentrate on the evaluation of the proposed
tools from two different viewpoints: code inspection and user studies.

Part II

Assessment of Hasselt

Chapter 7

Code comparison of two different paradigms

Whereas Part I described how to create interaction models and dialog models
with Hasselt, Part II will present a two-fold evaluation to assess the code
complexity and programming efficiency of Hasselt.

This chapter concentrates on code complexity; it investigates whether the
difficult-to-read callback soup resulted from implementing multimodal inter-
actions with event-callback code can be simplified by the use of Hasselt. For
this purpose, a set of prototypes that were implemented with both Hasselt
and event-callback code were subjected to code inspection. The comparisons
are grouped into two categories.

The first category of comparisons is intended to investigate whether Hasselt
(CEDL/SRDL) brings advantages with respect to event-callback code when
it comes to implement interaction models. The composite event-based models
obtained with Hasselt and the models obtained with event-driven languages
are compared twice: for a multimodal interaction and for a multitouch interac-
tion. For each interaction style, the resulting source codes are compared based
on many dimensions, some of which, were taken from the Green’s Cognitive
Dimensions [Green 89].

The second category of comparisons aims at identifying whether Hasselt
(HMD2L) simplifies the description of dialog models. A multimodal dialog
system will be described with the visual model of Hasselt and with event-
callback code. To restrict the comparison to the high-level dialog model, it
will be assumed that in both cases there is a common interaction model over
which the dialog model has to be specified.

122 Code comparison of two different paradigms

7.1 Cognitive Dimensions

Cognitive Dimensions of Notations (CDs) is a theoretical framework for de-
scribing the usability of notational systems [Green 89]. The CD sets out a
vocabulary of terms designed to capture and discuss about the cognitively-
relevant aspects of a notation as well as the tradeoffs among these aspects.
There are 14 dimensions in the CD framework, but we only used those that
can be discussed with a moderate level of precision. Other dimensions, in our
opinion, are too difficult-to-measure and any conclusion drawn about them
may be too subjective (e.g. one dimension is expected to measure the extent
to which the notation make things complex or difficult to work out in the
programmer’s head, but nothing is said about how to measure that).

The cognitive dimensions considered in our study are as follows:

• Viscosity refers to the resistance to change a program when a given lan-
guage is used. A viscous system needs many user actions to accomplish
one goal.

• Diffuseness refers to the fact that some notations can be annoyingly
long-winded, or occupy too much valuable space within a display area.
Diffuse languages reduce the available working area.

• A program is said to have hidden dependencies when the full understand-
ing of its semantics requires unveiling a piece of code that is hidden by
the programming environment.

• Abstract gradient refers to the minimum and maximum level of abstrac-
tion allowed by a language, i.e. to the possibility of encapsulating and
reusing fragments of code.

For the sake of completeness, the other 10 dimensions are: visibility, prema-
ture commitment, role-expressiveness, error-proneness, secondary notations,
closeness of mapping, hard mental operations, provisionality, and progressive
evaluation. Readers may refer to [Green 89] for the definitions of these dimen-
sions and to [Green 96] for an example of its applications for the evaluation
of visual languages.

Our comparative study also includes other dimensions that we defined
ourselves and can be measured more precisely by inspecting source code.

7.2 Interaction models 123

7.2 Interaction models

This section compares the code required by Hasselt and by C# to describe
the multimodal interaction put-that-there and the multitouch gesture pinch.

7.2.1 Code inspecting a multimodal interaction

The multimodal interaction to be implemented is the put-that-there described
in previous chapters: End users are allowed to move virtual objects by speaking
‘put that there’ while disambiguating the pronouns ‘that’ and ‘there’ with
mouse clicks on the target object and on its intended position, respectively.

Put-that-there with an event language

When implementing the interaction put-that-there with an event language, one
has to implement a presentation part (a windows form hosting several objects
as shown in Figure 4.3a) and to write the code for handling the interaction.
When using those Integrated Development Environments (IDEs) that used to
accompany maintream event languages, the presentation part can be created
with an interface builder. This presentation part has to be supported by
the code outlined in Algorithm 3, which was reverse engineered from a C#
program we created ourselves.

In Algorithm 3, the boolean variables, declared in line 1, are used to check
the occurrence of relevant events. The datetime variables, shown in line 2,
are used to timestamp the event notifications. The variables x1,y1,x2, and
y2, shown in line 3, are used to store the (x-y)-points on which the mouse was
clicked. We distinguish all the variables according to the role they play in the
program. Whereas the event parameters (line 3) carry information brought
by the input devices, the state variables (lines 1-2) are meant to encode the
interaction state.

The method hasPutThatThereOccurred, declared in line 13, is used
to combine the information carried by the boolean and datetime variables (i.e.
state variables), which is necessary to determine whether the interaction put-
that-there has been completed. Finally, the method PutThatThere, shown
in line 18, is intended for moving the selected object. Only a small portion
of the code (method PutThatThere) implements the functionality that the
end user wants to invoke, i.e. to move the selected object. The majority of
the code is in charge of detecting the occurrence of the put-that-there.

124 Code comparison of two different paradigms

Algorithm 3 Put-that-there interaction with event-callback code

1: boolean bPut, bThat, bThere, bClick1, bClick2 . State variables
2: datetime dPut, dThat, dThere, dClick1, dClick2 . State variables
3: int x1, y1, x2, y2 . Event parameters

4: procedure speechRecognized(e) . Detecting speech inputs
5: if e.Text = ‘put’ then bPut← true, dPut← Now()

6: if e.Text = ‘that’ then bThat← true, dThat← Now()

7: if e.Text = ‘there’ then bThere← true, dThere← Now()

8: if HasPutThatThereOcurred() then PutThatThere(x1,y1,x2,y2)

9: procedure mouseClick(e) . Detecting mouse clicks
10: if dClick1 is null then x1← e.X, y1← e.Y, dClick1← Now()
11: else x2← e.X, y2← e.Y, dClick2← Now()

12: if HasPutThatThereOcurred() then PutThatThere(x1,y1,x2,y2)

13: procedure hasPutThatThereOcurred() . Detecting event pattern
14: if bPut & bThat & bThere & bClick1 & bClick2 then
15: if dPut < dThat < dThere then
16: if dThat - dClick1 < 500 & dThere - dClick2 < 500 then
17: return true

18: procedure putThatThere(x1, y1, x2, y2) . Handling event pattern
19: for all o ∈ Controls do
20: if o.contains(x1, y1) then o.Location = new Point(x2, y2)

7.1: Put-that-there interaction with Hasselt

1 : event moveObject = speech.put ;
2 : speech.that+mouse.down〈x1, y1〉 ;
3 : speech.there+mouse.down〈x2, y2〉

4 : wrt ce.ptt
5 : @node(8) do
6 : call : PutThatThere(x1, y1, x2, y2);

(7.1)

7.2 Interaction models 125

Put-that-there with Hasselt

In order to create the put-that-there interaction with Hasselt, we first had to
implement an externally developed, back-end application including the pre-
sentation part and the method PutThatThere. The back-end application
was developed with C# and imported into Hasselt UIMS. As in the previous
case, its presentation part consists of a windows form hosting button boxes.
Its method PutThatThere referred to in the line 6 of the code snippet 7.1 is
exactly the same as the method shown in line 18 of Algorithm 3. As to the in-
teraction code, describing the put-that-there interaction with Hasselt requires
programmers (1) to define the composite event moveObject as the stream ‘put
that (click) there (click)’, as shown in code snippet 7.1, lines 1-3, and (2) to
bind moveObject to the method putThatThere, as shown in lines 4-6.

Comparing the source codes for the put-that-there

The event-callback code, sketched in Algorithm 3, will be compared against
the Hasselt code, shown in code snippet 7.1, based on the dimensions shown
in Table 7.1. The data contained in the table will be discussed below.

1. The programming effort required to build the presentation part and to
implement the application-specific functionality, encoded in the method
PutThatThere, is the same regardless of whether the interaction will
be later described with Hasselt or with event-callback code.

2. The variables x1, x2, y1, and y1, shown in both Algorithm 3 and code
snippet 7.1, serve the same purpose in both cases: storing the coordinates
of the two mouse clicks required for the put-that-there interaction.

3. When using event-callback code, one has to maintain several state vari-
ables (Algorithm 3, lines 1-2) that altogether encode the interaction
state. Hasselt code does not require such state variables since the inter-
action state is internally tracked by Hasselt UIMS.

4. Hasselt code does not include conditional statements to check whether
the method PutThatThere has to be launched or not. When the
programmer refers to node(8) (snippet 7.1, line 5), he is defining, in
a declarative fashion, the moment when PutThatThere has to be
launched. In contrast, with event-callback code, one has to interrogate
several state variables –see method HasPutThatThereOccurred in
Algorithm 3– in order to determine if it is the right time to call the
PutThatThere method.

126 Code comparison of two different paradigms

Dimension Hasselt Event-callback
code

1. Presentation and Same amount of
application code programming effort

2. Number of event Same amount of
parameters event parameters

3. Number of state None Many
variables

4. To-fire-or-not-to-fire Not required Required
condition

5. Scope of event Scoped by Scoped by
parameters composite event event handler

6. Verification of Automatic Manual
time constraints timers/time variables

7. Ease of fine-tuning Limited High

8. De-synchronization Naturally Robustness requires
problem robust programming effort

9. Space occupied by Concise Wordy
code (Diffuseness) notation (compared to Hasselt)

10. Effort for changing Low for adding Moderate for
interaction code (Viscosity) partial feedback partial feedback

11. Hidden dependencies Yes No

Table 7.1: Dimensions used for comparing Hasselt with equivalent event-callback
code based on the two equivalent implementations of the multimodal interaction put-
that-there, i.e. Algorithm 3 and code snippet 7.1.

7.2 Interaction models 127

5. When using event languages, the put-that-there interaction triggers two
event handlers (Algorithm 3, lines 4, 9). Important information about
the interaction, e.g. spoken words and (x,y)-positions of mouse clicks, is
carried by the parameters of the event handlers or calculated inside the
handlers, e.g. timestamps or interaction state flags. But this information
is only visible from within the handlers although it often has to be put
together, for instance, to determine the interaction state (lines 14-16).
One way to make this information visible to all the functions involved in
the management of the put-that-there is by putting it in a wider scope,
as global variables (lines 5-7, 10-11). The trick of moving information
that has local scope to a global scope is not needed with Hasselt. Has-
selt uses a new type of scope that is not as wide as the global scope,
in which global variables live, and not as reduced as the local scope, in
which event parameters exist. Hasselt variables are scoped by composite
event. Every event parameter and user-defined variables created within
a composite event will be visible throughout the whole lifecycle of that
composite event, but not visible from other composite events. The vari-
ables x1 and y1 (Code snippet 7.1) containing the position of the first
click will be still visible, without being overwritten, even after the sec-
ond click arrives. At the same time, these variables cannot be referred
to from other composite events, which may thus use the same variable
names for other purposes.

6. With event-callback code, one requires datetime variables (Algorithm 3,
line 2) in order to verify (1) whether the selection and movement of the
object have been performed in this sequential order (Algorithm 3, line 15),
and (2) whether the speech inputs and mouse clicks are issued simulta-
neously –read within a time frame of 500 ms– (Algorithm 3, line 16). In
Hasselt, the symbols FOLLOWED BY (;) and AND (+) allow program-
mers to specify sequential and simultaneous relations among events, in
a declarative manner. We are aware that the datetime variables used in
Algorithm 3 can be dispensed by using timers1. But this latter option
would introduce more event handlers in which the state variables had to
be maintained.

7. Mainstream event languages such as C# or Java allow more fine-tuning.
The time interval within which two inputs are considered simultaneous
(i.e. the 500 ms shown in Algorithm 3, line 16) can be changed to the

1https://msdn.microsoft.com/en-us/library/system.timers.timer%28v=vs.110%

29.aspx

https://msdn.microsoft.com/en-us/library/system.timers.timer%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.timers.timer%28v=vs.110%29.aspx

128 Code comparison of two different paradigms

whims of the programmer, and it may be different for each couple of
parallel inputs (e.g. it is possible to give to the selection of the object
a time interval of 500 ms, and another of 600 ms, to the selection of
the object’s new position). In Hasselt, in contrast, the length of such
time intervals can also be set to any value through a configuration file
(Section 3.1.3), but it will be the same for every pair of events joined by
the AND (+) operator. This prevents from specialized treatments for
those input modalities whose recognition is too slow.

8. Algorithm 3 works fine in an ideal scenario. Some situations presented
during the interaction may cause that the temporal constraints, specified
in lines 15-16, will never be met, and thus the PutThatThere method
will never be called (e.g. when the new position of an already selected
object could not be established within a time threshold of 500 ms due
to a speech recognition error). Hasselt handles simultaneity in a more
robust way. If only one input arrives in a moment when two simultane-
ous inputs were expected, Hasselt UIMS will wait for some time before
acknowledging the end user that he has a new chance to issue both in-
puts again (Section 5.4.1). This is a remedy against the stagnation of
the interaction tracking process, which was, one of the limitations of
HephaisTK [Dumas 10], as we were told by Dumas when he visited our
research lab.

9. A final, evident observation is that Hasselt code is shorter than the
equivalent event-callback code. The same functionality encoded in Al-
gorithm 3, lines 1-17 (i.e. to invoke the method PutThatThere in
the right moment of the interaction) is concisely specified the code snip-
pet 7.1, lines 5-6.

10. Adapting the Hasselt code so that the selected object can be highlighted
only requires binding some kind of HighlightObject method to the
node(5). In contrast, the same change would require to implement con-
ditional statements, similar to those in lines 14-16 of Algorithm 3, when
using event language.

11. The SRDL code depends on the finite state automata generated from the
composite events: the system responses are associated to the nodes and
links of these automata. However, due to the design of its code editors,
Hasselt UIMS only displays one automaton at a time; the others remain
hidden. On the other hand, the event-callback code is self-contained, it

7.2 Interaction models 129

can be fully interpreted without need of additional references; it does
not have dependencies.

7.2.2 Code inspecting a multitouch interaction

By following the structure of the preceding section, here we show the imple-
mentation of a touch interaction with both event-callback code and Hasselt.
The interaction to be implemented consists on the user placing two fingers
on a touch-sensitive screen and moving them closer together/further apart in
order to see an online contraction/enlargement of the screen content.

To avoid to unintentionally disfavor event languages in our comparison,
this section will present the algorithm elaborated by Kin et al. to discuss the
difficulties of implementing a two-finger rotation gesture with support of an
event-callback framework [Kin 12b]. For the same reason, we will also try to
reproduce the opinions of these authors as accurately as possible.

Pinch gesture with event-callback code

The event-callback code required to handle the two-finger pinch gesture is
shown in Algorithm 4. The only difference with the original of Kin et al. is
that our algorithm explicitly shows that before resizing the screen content, the
system has to first verify that the distance between the touches has changed.
Concretely, the lines 12-14 were collapsed in one single line in [Kin 12b].

The same analysis made in [Kin 12b] for the rotation gesture applies for
the pinch gesture too. As Kin et al. state: “As the user interacts with a
multitouch surface, the framework continuously generates a stream of low-
level touch events corresponding to touch-down, touch-move and touch-up. To
define a new gesture, the developer must implement one callback for each of
these events, touchesBegan(), touchesMoved() and touchesEnded(). It is the
developer’s responsibility to track the state of the gesture across the different
callbacks.”

Similar to the multimodal case, tracking the interaction state (i.e. the state
of the gesture) requires updating and interrogating a set of global variables
(Algorithm 4, lines 1-2) across different event handlers (lines 3, 9, and 13).
Once again, many lines of code are intended to detect the sequence of events
corresponding to the pinch gesture; the application-specific functionality the
end user wants to invoke (i.e. resizing the content screen) is implemented in
line 14.

In the given pseudocode, the state variables are used to count the number
of touches and to track the stage of the two-touch pinch gesture. Although

130 Code comparison of two different paradigms

there are only two state variables, “these adds significant complexity to the
recognition code, even for simple gestures”. As Kin et al. mention, main-
taining multitouch gestures is not possible “without fully understanding how
the different callback functions work together”. “As the number of gestures
grows” –the authors finished–,“understanding how they all work together and
managing all the possible gesture states becomes more and more difficult”.

Pinch gesture with Hasselt

With Hasselt UIMS, one has to implement an external application containing
the presentation part and the function for resizing the touchscreen content.
This latter function is equivalent to the one collapsed in Algorithm 4, line 14.
The attribute avgDistanceToF irst, referred to in code snippet 7.2, returns
the distance between touches. This distance is calculated internally by Has-
selt UIMS whereas with event languages, it requires user-defined code, as the
code collapsed in Algorithm 4, line 12. In an efficient implementation, the re-
sizing should only be performed if the distance between touches has changed.
This verification is made in the line 11 of the Hasselt code (and has its equiv-
alent counterpart in the line 13 of Algorithm 4).

7.2: Pinch gesture with Hasselt

1 : event zoom = tscreen.move〈x0, y0, spX, spY, t0, id0, scr0〉;
2 : tscreen.move〈x1, y1, spX, spY, t1, id1, scr1〉∗;
3 : tscreen.lastoff

4 : wrt ce.zoom
5 : @link(1, tscreen.move〈x0, y0, spX, spY, t0, id0, scr0〉) do
6 : assign : prevDist = scr0.avgDistanceToF irst;
7 : when scr0.numberOfFingers = 2;
8 : @link(2, tscreen.move〈x1, y1, spX, spY, t1, id1, scr1〉) do
9 : call : rotation.Form1.resize(scr1.avgDistanceToF irst);
10 : assign : prevDist = scr1.avgDistanceToF irst;
11 : when scr0.numberOfFingers = 2 and

src1.avgDistanceToF irst <> prevDist;

Comparing the source codes for the pinch gesture

Two equivalent implementations of the pinch gesture will be compared. The
data contained in Table 7.2 is discussed below.

7.2 Interaction models 131

Algorithm 4 Pinch gesture with event-callback code, as shown in [Kin 12b]

1: boolean touchCount = 0 . State variables
2: state gestureState = null . State variables

3: procedure touchesBegan()
4: touchCount = touchCount + 1
5: if touchCount = 2 then
6: gestureState = began
7: else if touchCount > 2 then
8: gestureState = failed

9: procedure touchesMoved()
10: if touchCount = 2 and gestureState! = failed then
11: gestureState = continue
12: ## a. calculate distance between touches ##
13: ## b. compare current vs. previous distance ##
14: ## c. resize the screen content ##

15: procedure touchesEnded()
16: touchCount = touchCount - 1
17: if touchCount = 0 and gestureState! = failed then
18: gestureState = ended

132 Code comparison of two different paradigms

Dimension Hasselt Event-callback
code

1. Presentation and Same amount of
application code programming effort

2. Number of event Many primitive One TouchEventArgs
parameters variables object

3. Number of state None Few
variables

4. To-fire-or-not-to-fire Required Required
condition

5. Scope of event Not applicable Not applicable
parameters

6. Verification Not applicable Not applicable
of time constraints

7. Ease of fine-tuning Not applicable Not applicable

8. De-synchronization Not applicable Not applicable
problem

9. Space occupied by Concise but Wordy
code (Diffuseness) difficult-to-read (compared to Hasselt)

10. Effort for changing Low for the case
interaction code (Viscosity) of adding fingers

11. Hidden dependencies Yes No

Table 7.2: Dimensions used for comparing Hasselt with equivalent event-callback
code based on the implementation of the pinch gesture for resizing screen content.

7.2 Interaction models 133

1. The programming effort made for the presentation part and the appli-
cation part is equivalent with both languages.

2. Hasselt code exhibits several event parameters containing information
about the touches (e.g. position, speed, etc.) whereas event-callback
code only uses two state variables, but not event parameters. This is due
to the fact that the pseudocode copied from [Kin 12b] is not explicitly
showing the parameters of the touch events. Beyond this, we admit that
Hasselt could do better if the list of 7 parameters right after the touch-
move event (code snippet 7.2, lines 1-2) would have been encapsulated
into one single object. These many parameters hinder the readability of
Hasselt code when touch-move events are involved.

3. In Algorithm 4, the variables gestureState and touchCount have to be
updated in line with the ever-changing gesture state. State variables
are not needed when using Hasselt since the gesture state is tracked
automatically by Hasselt UIMS.

4. With event languages, the same as with Hasselt, there is a conditional
statement that determines when to resize the screen content. The afore-
mentioned condition is hidden in the line 13 of Algorithm 4, whereas,
in Hasselt, an equivalent verification is made in the line 11 of the code
snippet 7.2.

5. Algorithm 4 was written at a too high level of abstraction (in [Kin 12b])
and it does not show the event parameters of the touch events. Therefore,
it is fair not to make any comparison about this respect.

6. No hard time constraints are imposed in this example. Any of the two
touches performing the pinch gesture can arrive before the other.

7. The enhanced fine-tuning allowed by event languages is not appreciated
here as in the previous multimodal case.

8. The touches used to pinch may arrive at the same time or at different
times. Any of these two cases is to be considered a problem.

9. Hasselt code is shorter than event-callback code –even if you just com-
pare the real Hasselt code (snippet 7.2) versus the simplified pseudocode
delineated in Algorithm 4.

10. Hasselt code can be adapted to a three or four-touch pinch gesture just
by changing the condition shown in code snippet 7.2, lines 7,11 (e.g.

134 Code comparison of two different paradigms

scr0.numberOfFingers = 3). The same upgrade with event-callback
code would mainly require a modification in the calculation of the dis-
tance between touches (Algorithm 4, line 12).

11. The same discussion of hidden dependencies made in the previous section
applies here. The inability of observing all the finite state automata at
once is caused by the Hasselt’s code editor and will be present in every
interaction model.

7.3 Dialog models

The present section compares one HMD2L model with equivalent event call-
back for the case of a dialog-based Put-That-There system.

In order to constraint the comparison to the high-level dialog model, it
will be assumed that there is already a baseline system from which a dialog
system has to be built on. The baseline system supports three interactions:
it allows users to create virtual objects on a canvas by issuing the command
‘create green box here’. The virtual objects can be moved with the command
‘put that there’. And the canvas, which is initially empty, can be cleared
up with the voice command ‘remove objects’. The behavior of this baseline
system does not depend on the context-of-use: this system can create, move,
or remove objects whenever the end user asks it to do so.

What will be evaluated here is how much effort has to be involved to extend
such a system with dialog management capabilities, to upgrade it to a dialog
system with the following behavior: (1) the boxes can only be moved if there
are more than three of them on the canvas, and (2) the canvas can only be
cleared up after the displacement of at least one object. Neither in the baseline
system, nor in the required dialog system, is partial feedback generated during
the interactions.

7.3.1 Implementation of the baseline system

When implemented with Hasselt, the baseline system consists of three compos-
ite events, namely createObject, putThatThere, and removeObjects, which
are bound to the functions CreateObject(color,x,y), PutThatThere(
x1,y1,x2,y2), and RemoveObjects() of a back-end application. The events
createObject, putThatThere, and removeObjects fire whenever the end user
asks the system to create, move, or delete objects, respectively.

When implemented with event-callback code, the baseline system includes
a supervisory mechanism able to invoke the functions CreateObject(color,

7.3 Dialog models 135

x, y),PutThatThere(x1,y1,x2,y2), RemoveObjects() in a timely man-
ner and in response to the appropriate sets of user inputs.

Dialog-based Put-that-there system with an event language

One of the simplest ways to augment the code of the baseline system in order
to convert it into the required dialog system is by adding the conditional
statements shown in Algorithm 5.

The ability to manage human-machine dialogs is implemented by main-
taining two global variables, state and N , which must be interrogated before
launching a system response (i.e. creation, movement, or deletion of objects).
In this way, the dialog system can be sure that the responses are going to
be conveyed only in the right context-of-use and under the right conditions,
which are encoded in state and N .

The variable state can accept three different values, each representing one
of the three relevant contexts-of-use that the system has to distinguish. The
variable state is assigned with 1 whenever the canvas is empty; the value 2 is
to represent that there are virtual objects on the canvas but none of them has
yet been moved; and the value 3 is to represent that some of the objects has
already been moved. On the other hand, the variable N stores the number
of objects on the canvas, which is relevant to check whether a transition from
state = 2 to state = 3 is valid. These variables determine whether the system
must respond and, at the same time, every system response alters the values
of these variables.

Dialog-based Put-That-There system with Hasselt

With Hasselt, one can extend the baseline system into the required dialog-
based Put-That-There system by depicting the HMD2L model shown in Fig-
ure 7.1. Here the node labelled as 1 represents the state where the canvas
is empty; the node 2 represents the state where there is at least one object
on the canvas; and the node 3, the state where at least one object has been
moved. These states have the same interpretation of those states considered
above, when the dialog was modeled with event-callback code.

According to the HMD2L model, the system moves from the initial state 1
to state 2 upon the creation of the first object. It also moves from state 2 to
state 3 after the first displacement of an object. The variable N is used (a) to
count the number of objects in the form –when this is relevant–, and (b) to
condition the displacement of objects, which should only be possible if there

136 Code comparison of two different paradigms

Algorithm 5 Event-callback code for dialog-based Put-That-There system

1: global: state=1, N=0

2: procedure createObject(color, x, y)
3: if state = 1 then
4: N = 1, state = 2
5: else if state = 2 then
6: N = N + 1

7:

8: # code to create an object on (x,y) #
9:

10: end procedure

11: procedure putThatThere(x1, y1, x2, y2)
12: if (state = 2 and N > 3) or state = 3 then
13: state = 3
14: else
15: return
16:

17: # code to move object from (x1,y1) to (x2,y2) #
18:

19: end procedure

20: procedure removeObjects()
21: if state = 3 then
22: state = 1
23: else
24: N = 0
25: return
26:

27: # code to remove all objects #
28:

29: end procedure
30:

31: # code for the supervisory mechanism that invokes the #
32: # three aforementioned functions in a timely manner #
33:

7.3 Dialog models 137

Figure 7.1: HMD2L model representing the dialog supported by the Put-That-There
system described in Section 7.3.

are more than 3 objects on the form –notice the label [N > 3]. Finally, the
removal of objects sets the system to its initial state: the node labelled as 1.

Comparing the code/model for the dialog-based Put-That-There

The comparison criteria are shown in Table 7.3.

1. When using event callback code, programmers are required to manually
identify the context-of-use of the system, a task that is performed by
maintaining state variables, such as state in Algorithm 5, line 1. Has-
selt programmers, in contrast, can delegate the identification of the ever
changing context-of-use to Hasselt UIMS. This is possible because in a
HMD2L model, the contexts-of-use are explicitly represented (as nodes)
instead of being encoded in variables. As shown in in Algorithm 5,
the maintenance of state variables involves conditional convoluted logic
(nested if-else statements). Although, in the system under analysis, the
presence of these if-else statements seems harmless, this may not be the
case for more complex systems. The conditional logic required to identify
the context-of-use of an interactive system is insidious because it appears
to work fine initially, but does not scale up as the system grows in com-
plexity [Samek 09]. The HMD2L model also has conditional clauses (e.g.
[N > 3]), but since it does not need state variables, these conditional

138 Code comparison of two different paradigms

Dimension Hasselt Event-callback
code

1. Number of state None One
variables

2. Number of extended One One
state variables

3. Viscosity High Low

4. Space occupied by Model is Code is very
code (Diffuseness) compact spread out

5. Abstract gradient One level Multiple level
of abstraction of abstractions

6. Hidden depedencies Yes No

Table 7.3: Dimensions used for comparing Hasselt with equivalent event-callback
code based on the implementation of the dialog-based Put-That-There system.

clauses are always simpler than the clauses written with event-callback
code.

2. The context-of-use of a system represents a qualitative aspect of the
system. However, in a given context-of-use, many changes can be ex-
perienced by the system, without this leading to a new context-of-use
[Samek 09]. The node 2 of the Put-That-There system, for instance,
represents the context-of-use in which there are objects on the canvas,
none of which has yet been moved. The number of objects does not
characterize this context-of-use; it only represents one quantitative as-
pect of the context-of-use. The number of not-yet manipulated objects
on the canvas is called extended state variable [Samek 09]. Both Has-
selt and event callback code require the variable N to keep track of one
quantitative feature (i.e. number of objects) of a certain context-of-use
(i.e. state 2).

3. Small variations in the proposed dialog model may require more changes
with HMD2L. If the studied Put-That-There had to generate a beep
upon the creation of the first object, for instance, the changes with each
language would be as follows. With event callback code, one would
just have to add one statement for generating the beep, which can be
done right next to the statement N = 1 (Algorithm 5, line 4). With

7.4 Wrapping up the results 139

Hasselt, in contrast, one would have to create a new composite event
createF irstObject (in the CEDL editor) whose system responses would
be the invocation of CreateObject and the generation of a beep (to
be declared in the SRDL editor). Later, with the HMD2L editor, one
has to include the event createF irstObject between node 1 and node 2.
The separation of concerns, which confers a clean organization to Hasselt
projects, has a negative impact on the viscosity of Hasselt, when visual
models are involved.

4. With event callback code, the conditional logic (if-else statements) imple-
menting dialog management is split across many methods, which may be
so spread out that one may need scrolling several screens in order to read
and update this code. In contrast, HMD2L models include fewer and
simpler, conditional clauses, all of them centralized in one at-a-glance
diagram.

5. There can only be one HMD2L model per Hasselt project, which means
that the dialog model has to be specified in one single level of abstrac-
tion. This may be a serious drawback for medium-large scale systems,
which may require some degree of modularization. The tools supporting
mainstream event languages, on the other hand, allow programmers to
work at multiple levels of abstraction. The functions CreateObject,
PutThatThere, and, RemoveObjects, shown in Algorithm 5, can be
subjected to other higher-level constraints that can be verified outside
these functions, at a higher level of abstraction.

6. The event callback code is self-contained; it completely describes how
the system manages the dialog with the end user. But HMD2L models,
in contrast, refer to composite events whose definitions are not visible
in the same editor. The full understanding of a dialog model requires
switching between two editors, but always one of these, the text editor
for CEDL/SRDL or the visual editor for HMD2L, will be hidden.

7.4 Wrapping up the results

7.4.1 About interaction models

In comparison with event callback code, Hasselt programs are more concise
(i.e. they occupied less lines of code) and simpler (i.e. they do not have main-
tain the interaction state). But on the other hand, Hasselt has limitations to

140 Code comparison of two different paradigms

fine tune existing code. This is partly due to its declarative nature as well as
to poor design decisions (e.g. the time interval under which two inputs are
considered simultaneous is the same for every pair of inputs regardless of their
recognition speeds). Since Hasselt is expected to be used in the rapid pro-
totyping phase, given the current version of Hasselt UIMS, fine tuning would
have to be postponed to the implementation of the final system. Another non-
negligible problem of Hasselt is that it has many hidden dependencies: due to
the design of the Hasselt editors, the automata required to fully understand
SRDL code are displayed one at a time.

7.4.2 About dialog models

The dialog models elaborated with Hasselt include fewer, simpler, and bet-
ter centralized conditional clauses than the ones described with event-callback
code. This is because the conditional clauses of Hasselt models do not include
state variables. But, on the other hand, Hasselt dialog models have to be
described in one level of abstraction only, which eliminates the well-known
advantages of modularization: reusability and enhanced readability, both be-
ing well-appreciated, especially in medium-large systems. Besides, some small
changes in the dialog system may require Hasselt programmers to navigate
across the three Hasselt editors, which may be tiresome, error-prone, and
time-consuming.

7.5 Threats to validity

It is important to mention the factors that may jeopardize the validity of this
comparative study.

• It is difficult to know the extent to which the presented sample is a good
representation of the universe of multimodal interactions that one may
want to prototype. The chosen sample was simple enough so that it can
be subjected to detailed analysis, but despite its relative simplicity, it
exhibits the fundamental problems of the event callback model, problems
that the proposed composite event-based approach tries to simplify.

On the one hand, when modeling multimodal and multitouch interac-
tions, the event callback model leads to a ‘callback soup’, in which the
code for tracking the state of the interaction is split across several event
handlers [Kin 12b]. This problem is observed the in code of the two stud-
ied interaction models: put-that-there and pinch. On the other hand,

7.6 Summary 141

when modeling human-machine dialogs, the event callback model often
leads to deeply nested if-else constructs, which are difficult to get right
even by experienced programmers [Samek 09]. These nested if-else state-
ments, which are required to constrain the system responses to specific
contexts-of-use, appeared in the dialog system studied above.

• Some may claim that the event callback code shown in this chapter re-
flects our own programming style, but it is not necessarily an ‘average’
programming code, i.e. other programmers can implement it in a differ-
ent way. To reduce the effects of our personal style, the event callback
code was described at a very high-level of abstraction, a level in which
the particular ways of tweaking some very specific aspect of a problem
are blurred, and only the overall structure of the code remains visible
to analysis. Furthermore, to mitigate the effects of personal bias (i.e.
unconsciously coding to favor our approach), we used, at least in one of
three studied cases, code proposed by another group of researchers: as
mentioned above, Algorithm 4 is almost a perfect copy of the pseudocode
shown in [Kin 12b].

7.6 Summary

This chapter compared the code required to create interactive prototypes with
both Hasselt and event-callback code. The comparisons were grouped into two
categories.

In the first category, two interaction models were compared. Concretely, we
inspected the source codes of one multimodal interaction and one multitouch
interaction, each implemented with both Hasselt and event-callback code. The
source codes were compared based on eleven dimensions, some of which, were
taken from a well-known theoretical framework, called Cognitive Dimensions
[Green 89]. Among other results, it was found that Hasselt makes it possible
for programmers to get rid of the code for maintaining the interaction state,
which, was qualified –with sound reasons– as difficult-to-read and difficult-to-
maintain [Kin 12b].

In the second category of comparisons, one dialog model was compared
based on several criteria. The results showed that Hasselt simplifies the
amount and complexity of the conditional statements required to implement
dialog management. But on the other hand, some small changes in an exist-
ing dialog model may be more time-consuming with Hasselt than with event-
callback code. This may be partly to the graphical nature of the visual editor

142 Code comparison of two different paradigms

as well as to the possibility of having to switch between the visual and textual
editors.

The following chapter will investigate whether the simpler, shorter pro-
grams brought about by CEDL/SRDL as well as the fewer, simpler, and bet-
ter centralized conditional clauses brought about by HMD2L are reflected in
higher programming efficiency.

Chapter 8

User Study

To the best of our knowledge, none of the UIMSs mentioned in the Section 2.2.1
has been evaluated in user studies. Nonetheless, outside the multimodal do-
main, we found two user studies that guided us in the design of our experi-
ments.

Oney et al. recruited 20 developers to evaluate the understandability of
the Interstate’s visual notation. Each participant had to modify two systems
(drag-and-drop and a thumbnail viewer) implemented in both RaphaelJS and
InterState. It was verified that InterState models are faster to modify than
equivalent event-callback code written in RaphaelJS [Oney 14].

The creators of Proton++ carried out two experiments with 12 program-
mers. Each participant was shown a gesture specification and set of videos
of a user performing gestures. Gestures may be specified as a regular ex-
pression, tablature, or with event-callback code and the participant had to
match the specification with the video showing the described gesture. The re-
sults showed that the tablatures of Proton++ are easier to comprehend than
equivalent regular expressions and event-callback code [Kin 12a].

Since software projects often require programmers not only to compre-
hend but to write programming code, we followed the schema of Oney et al
[Oney 14]. We asked participants to modify an existing prototype with both
Hasselt and equivalent event-callback code.

144 User Study

8.1 Hypotheses

Based on the results of a pilot test and the code inspection presented in the
previous chapter, this study will test two sets of hypotheses.

First, we hypothesized that the adaptation of a multimodal interaction
model requires (1) less time, (2) less code testing, and (3) less mental effort
with Hasselt (CEDL and SRDL) than with C#.

Second, we hypothesized that the adaptation of a dialog model requires
(1) less time, (2) less code testing, and (3) less mental effort with Hasselt
(HMD2L) than with C#.

Each set of hypotheses will be tested by a within-subjects experiment in
which participants are required to perform equivalent modifications with both
Hasselt and C#.

The variables are operationalized as follows: The amount of time for per-
forming the requested changes is counted from the moment the participant
starts modifying the code/model until he informs the researcher about the
completion of the task. The amount of testing involved during the experiment
will be measured as the number of times the participant enters into runtime
mode. The mental effort required by a programming task will be obtained
with a subjective post-task questionnaire in which participants must indicate
the perceived difficulty of the programming task.

8.2 Method

8.2.1 Study Design

The presented study had two parts. In the first part, we asked participants to
modify a multimodal interaction model that was described with both CEDL/S-
RDL and C#. In the second part, we asked them to perform equivalent modi-
fications to a dialog model described with both HMD2L and C# (Figure 8.1a).

Participants took part in the study one by one; each of them participated
in both experiments. Each experiment is a within-subject experiment that
started right after a short training session. In the experiment, the participant
was shown a multimodal prototype with which he had to interact according to
the indications of the researcher. Once the participant was familiar with the
functionality of the prototype, he was asked to make changes to the prototype
(the changes required for each experiment are described in Section 8.2.3 and
Section 8.2.4). Each participant had to sequentially perform the changes in
both Hasselt and C# (Figure 8.1b). We shuffled the order of the language to

8.2 Method 145

be used first so that the aggregated experience bias can be neutralized. The
changes to be performed were explained orally, but also written on a sheet
that the participant could check during the experiment.

While the participant modified the code, the researcher was observing us-
ing a second monitor showing the same information as the participant’s screen.
This way, the researcher could watch how the participant navigated trough the
code/visual model, count how many times the partial changes were tested in
the runtime environment, and measure the completion time of the program-
ming task.

After the participant performed the requested changes with a certain lan-
guage, he was asked to fill a post-task questionnaire for measuring the per-
ceived difficulty of the programming task. In total, each participant filled four
of these questionnaires –one for Hasselt and one for C# in each experiment.

At the end of the user study, i.e. after both experiments, the partici-
pant was asked to fill a usability questionnaire and was interviewed by the
researcher. The study design is sketched in Figure 8.1.

8.2.2 Participants

We recruited 12 participants, all of which are male. The overall programming
experience of the participants ranges from 4 to 13 years; and their C# ex-
perience, between 1 and 8 years (Figure 8.2). The pool of participants was
quite varied. It includes master and PhD students, post-docs, and industry
programmers, from different universities and countries, with different back-
grounds (computer science and engineering), with and without knowledge in
finite state automata (FSA).

8.2.3 First Experiment. CEDL/SRDL versus C#

Before starting the first experiment, each participant was given a tutorial
about CEDL and SRDL (see Appendix D.1). With this tutorial, participants
were able to describe a simple multimodal interaction by following step-by-
step instructions. The completion of the tutorial took approximately 10-15
minutes, during which participants could ask questions to the researcher in
case of doubts. In this way, the participant got acquainted with the code
editors, debugging tools, and runtime environment of Hasselt UIMS.

Since all participants had experience with C# and MS Visual Studio, there
was no need for training in this respect.

The prototype to be modified allowed end users to create and move virtual
objects from a canvas. New objects could be created, in random positions,

146 User Study

(a) Overview of the user study (b) Detailed view of a within-subject experiment

Figure 8.1: (a) Sequence of steps followed by each participant in the user study.
The first and second experiments referred to in this sequence are carried out in an
analogous fashion. (b) Common flow of activities followed during the first and second
experiment. Here Hasselt would mean CEDL and SRDL for the first experiment; and
HMD2L for the second experiment.

8.2 Method 147

Figure 8.2: Programming experience of the 12 participants.

through the voice command ‘create object’. Existing objects could be moved
by issuing ‘put that there’ while clicking on both the target object and its new
position. The front-end of the prototype is shown in Figure 4.3a.

The participant was asked to adapt the command for creating objects. The
new command had to be multimodal: instead of creating objects in random
positions, the end user had to be able to select, through a mouse click, the po-
sition where the new object had to be placed. The changes only required mod-
ifying the interaction code, not the application-specific code (Appendix D.2).

The aforementioned prototype was described with both C# and Hasselt.
Each participant had to modify both sources within a time limit of 30 minutes
per language. The order of the languages to be used was balanced over the
participants so that the aggregated experience bias can be neutralized.

Finally, we report that the C# code was partitioned into regions, i.e. col-
lapsible blocks of code. Right before starting to perform changes with C#,
participants were shown and explained the purpose of these regions of code.
They were explicitly informed that there was no need to modify the configu-
ration code or the back-end code, that just maintaining the global variables
across the event handlers would suffice to change the interaction. Indeed, we
ensured that all regions containing code for configuration of input sources and
back-end functions were collapsed during the task. We provided this informa-
tion in an attempt to make the comparison as fair as possible. With Hasselt,
the code for configuring input recognizers as well as the back-end code is not
visible either. The former is enclosed into Hasselt UIMS, the latter into a
canned EXE file.

148 User Study

8.2.4 Second Experiment. HMD2L versus C#

Before starting the second experiment, each participant was given a 10-minutes
tutorial about HMD2L (Appendix D.1). Participants had to describe a simple
human-machine dialog by following step-by-step instructions. In this way,
the participant got acquainted with the visual editor, debugging tools, and
runtime environment of Hasselt UIMS. There was no training in C# since all
participants had experience with this language.

For the experiment, the participant was presented with a system similar
to the one shown in Figure 4.3a. It allows users to create and remove virtual
objects from a canvas in response to multimodal input. In the version given to
participants, the objects can be created or removed at any time, after which
the end user is acknowledged with voice feedback.

Participants were asked to change the system so that it can handle two
contexts-of-use: the command to remove objects must only be processed if
there are objects on the screen; otherwise, it should be ignored (Appendix D.2).
The required changes can be made by modifying the human-machine dialog
model only; and participants were orally informed about this fact.

As in the previous experiment, the prototype was described with both
C# and Hasselt. Each participant had 30 minutes to modify each source
code. Once again, the order of the language to be used was balanced over the
participants.

8.3 Measures

8.3.1 Observations

While the participant performs the required modifications with a certain lan-
guage, the researcher is observing how the participant navigates through the
source code. This is to try to identify whether there is a pattern, an order
in which different parts of the code are changed, whether some parts of the
code require more mental effort than others, and whether some programming
errors are repeated by many participants. The researcher also monitors the
participant’s working time and counts the number of times the code is tested.

8.3.2 Single Ease Question (SEQ) questionnaire

Right after completing the changes with each language, each participant was
asked to complete the Single Ease Question (SEQ) questionnaire (Figure 8.3),
a rating scale ranging from 1 (anchored with “Very difficult”) to 7 (anchored

8.3 Measures 149

Figure 8.3: Single ease question (SEQ) questionnaire. Each participant filled the
SEQ four times –namely after using C# in experiment 1, after using Hasselt in ex-
periment 1, after using C# in experiment 2, and after using Hasselt in experiment 2.

with “Very easy”). It aimed to assess the perceived difficulty (or perceived
ease, depending on one’s perspective) of a task. The SEQ has been proven to
be reliable, sensitive, and valid while also being easy to respond [Sauro 09].

8.3.3 System Usability Scale (SUS) questionnaire

After completing both experiments, participants had to fill the System Us-
ability Scale (SUS) questionnaire [Brooke 96] (Figure 8.4), which has become
a well-known questionnaire for end-of-test subjective assessments of usability
[Lewis 09].

The SUS questionnaire consists of 10 items with 5-point scales numbered
from 1 (anchored with “Strongly disagree”) to 5 (anchored with “Strongly
agree”). SUS test scores are normalized to values between 0 and 100.

There is baseline information showing that the average and third quartile
of 324 usability evaluations performed with SUS are 62.1 and 75.0 respectively
[Lewis 09]. This information allows us to put our results in the perspective of
other systems that were evaluated with SUS.

Finally, according to a factor analysis performed by Lewis et al., the SUS
questionnaire does not only measure usability. It also measures learnability,
being Q4 and Q10 the questions that allow estimating the perceived learn-
ability of the system under evaluation [Lewis 09]. In the taxonomy proposed
by Grossman et al. [Grossman 09], this learnability falls within the category
of initial learnability given that participants have been exposed to Hasselt for
the first time during this experiment.

It must be mentioned that, when designing the user study, a pool of post-task

150 User Study

Figure 8.4: System Usability Scale (SUS) questionnaire and average scores per
question obtained for Hasselt UIMS. Raw data can be seen in Appendix D.4.

questionnaires and usability questionnaires were evaluated (Appendix D.5).
Considering that modifying a program is already a time-consuming task that
demands lots of mental effort from the participants, we decided to use short
and simple questionnaires, such as the SEQ and SUS, in order to avoid respon-
dent fatigue, a well-documented phenomenon that occurs when participants
become tired of the survey task and the quality of the data they provide begins
to deteriorate [Lavrakas 08].

8.4 Results

8.4.1 Modifying an interaction model: CEDL/SRDL vs. C#

All 12 participants completed the experiment when using Hasselt; but only 10
succeeded with C# –the others exceeded their allotted time.

Completion time

The following results are based on those 10 participants who completed the
required changes with both languages (Figure 8.5, a).

8.4 Results 151

On average, changes made with Hasselt took 4.4 minutes in comparison
with the 24.7 minutes when using C#. This difference in favor of Hasselt
was statistically significant. A Wilcoxon signed-rank test rejected the null
hypothesis in favor of the alternative hypothesis that Hasselt completion times
are shorter (p-value = 0.0009766, W = 0, Z = −2.8085).

Code testing effort

The following results are based on those 10 participants who completed the
required changes with both languages (Figure 8.5, b).

On average, programmers tested their code 1.8 times when using Hasselt
and 3.3 times when using C#. Once again, this difference in favor of Hasselt
was statistically significant. A Wilcoxon signed-rank test rejected the null
hypothesis in favor of the alternative hypothesis that Hasselt code requires to
be tested less frequently (p-value = 0.009766, W = 2.5, Z = −2.4233).

Perceived ease of the task

The results on perceived ease include all the participants. Even those who
could not complete the changes with C# have a clear idea of the difficulty of
the task (Figure 8.5, c).

The average SEQ scores obtained for Hasselt and C# were 6.08 and 3.42
respectively. The perception that the changes are easier when performed
with Hasselt was statistically significant with 95% of confidence. A Wilcoxon
signed-rank test rejected the null hypothesis in favor of the alternative hypoth-
esis that the SEQ scores obtained by Hasselt are higher (p-value = 0.0002441,
W = 78, Z = 3.0953).

Note: The use of Wilcoxon signed-rank tests instead of paired t-tests re-
sponded to the fact that we could not guarantee the normality assumption
required by the latter. The non-normality of the pair differences was observed
in the Q-Q normality plots shown in Figure 8.6.

8.4.2 Modifying a dialog model: HMD2L vs. C#

All 12 participants could complete the changes with both languages Hasselt
and C#. The data from observations and post-task questionnaires are syn-
thesized in Figure 8.7. After inspecting the data, we decided to drop the only
participant who had no previous experience with FSMs. He was an outlier in

152 User Study

(a) Completion time (b) Code testing effort (c) Perceived ease

Figure 8.5: First experiment (CEDL/SRDL versus C#). Boxplots (a) and (b) sum-
marize the measurements for the 10 participants who succeeded with both languages.
Boxplot (c) includes all 12 participants. Raw data can be seen in Appendix D.4.

(a) Completion time
differences

(b) Code testing effort
differences

(c) SEQ scores
differences

Figure 8.6: First experiment. Q-Q normality plots for the differences in (a) com-
pletion times, (b) code testing effort, and (c) SEQ scores. Plots (a) and (b) involve
data of the 10 participants who succeeded with both languages; plot (c) includes all
12 participants. Those many points falling far from the straight line, depicted in red,
indicate that the normality of the pair differences cannot be guaranteed, i.e. it may
not be safe to apply paired t-tests.

8.4 Results 153

(a) Completion time (b) Code testing effort (c) Perceived ease

Figure 8.7: Second experiment (HMD2L versus C#). Boxplots showing the data
collected from the 12 participants. Raw data can be seen in Appendix D.4.

the three plots shown in Figure 8.7. Therefore, the following results are based
on the remaining 11 participants.

Completion time

On average, changes made with Hasselt took 2.4 minutes in comparison with
the 2.1 minutes when using C#. It could not be proven that Hasselt comple-
tion times are lower than C# completion times: a Wilcoxon signed-rank test
resulted in p-value = 0.9688 > 0.05 (W = 12.5, Z = 1.3828).

Code testing effort

On average, programmers tested their code 1.2 times when using Hasselt and
1.4 times when using C#. But this result was not statistically significant.
We could not reject the null hypothesis in favor of the alternative hypothesis
that the code testing effort is lower with Hasselt than with C#: a Wilcoxon
signed-rank test resulted in p-value = 0.25 (W=0, Z = -1.4142).

Perceived easiness of the task

The average SEQ scores for Hasselt and C# were 6.6 and 5.9 respectively.
In this case, we found that this difference in favor of Hasselt was statisti-
cally significant. A Wilcoxon signed-rank test indicated that the alternative
hypothesis that the SEQ scores are higher for Hasselt than for C# can be
accepted (p-value = 0.0078, W=28, Z = 2.6153).

154 User Study

(a) Completion time
differences

(b) Code testing effort
differences

(c) SEQ scores
differences

Figure 8.8: Second experiment. Normal Q-Q plots for the differences in (a) com-
pletion times, (b) code testing effort, and (c) SEQ scores, calculated for the 11 par-
ticipants whose data was analyzed. Those many points falling far from the straight
line, depicted in red, indicate that the normality of the pair differences cannot be
guaranteed, i.e. it may not be safe to apply paired t-tests.

Note: Like in the previous experiment, the use of Wilcoxon signed-rank tests
instead of paired t-tests responded to the fact that we could not guarantee the
normality assumption required by the latter. The non-normality of the pair
differences was observed in the normal Q-Q plots shown in Figure 8.8.

8.5 Observations

What the researcher observed in the first experiment, while the participants
were modifying C# code, coincides with what was revealed in the interviews.
Lots of time and effort are spent trying to maintain the interaction state, i.e.
a set of global variables, across multiple event handlers. The participants con-
stantly navigate from one portion of the code to another, extremely focused,
trying to figure out what variables have to be maintained and where this is the
case. Even right before entering into runtime mode, they are still mumbling to
themselves, trying to check they did not forget any variable. In contrast, with
Hasselt UIMS, participants never had to perform this time-consuming task
since Hasselt UIMS internally maintains the interaction state while tracking
the composite events.

In the same experiment, there was an incident that is worth mentioning.
Although he was never asked for an explanation, Participant 2, one of those

8.5 Observations 155

who failed finishing the changes with C#, tried to justify himself by claiming
that the prototype he was given never worked correctly despite of the fact he
tested it himself multiple times before the experiment. We did not have any
similar incident with other participants.

In the second experiment, we observed that although the participants
tested Hasselt models fewer times than equivalent C# code, task completion
times were lower with C# than with Hasselt. This may be due to the fact
that the modification of Hasselt visual models was more time-consuming than
the editing of C# textual code. There were cases where programmers had to
try more than once to put a link between a pair of nodes. This is because
the visual editor requires to precisely click on the center of the source node,
which may be hard when one does not have much experience with the Hasselt
visual editor. Although the visual editor can be upgraded in order to alleviate
this issue, there is another cause of delays that cannot be solved by the UIMS
developer. Many participants invest a lot of time rearranging the layout of
the visual model with changes that do not have any intention of altering the
semantics of the model (e.g. changing the positions of the nodes or moving
the elbows of an arc). This may be partly a consequence of the concern for
the aesthetics of some individuals, but we think there are also be objective
reasons that explain this behavior. The code editors conveniently restrict the
set of choices that programmers have to make: the changes in the code ed-
itor are discrete –you can write a statement in one of a discrete number of
lines–, whereas the changes in the visual editor are continuous –you can drag
the nodes through every (x,y) point of the editor. Besides, the code, as any
text, is linear: once you write a sentence, the next sentence must go in the
following line. In contrast, the visual model, is non-linear, meaning that there
is no intrinsic sense of order in the diagram: the position of the first node
does not give any clue about what should be a good position for the second
node. Furthermore, whereas the code editor helps programmers by performing
automatic text indenting, the visual editor does not offer this type of support
and let the whole design in charge of programmers.

One final observation is about the outlier of the second experiment, who
was the only participant lacking knowledge on finite state automata (FSA).
When using CEDL/SRDL, he managed to finish the experiment in a time
that is comparable to the average completion time; however, when using
HMD2L, he took much longer than average. His lack of theoretical knowl-
edge did not prevent him from correctly interpreting the FSA auto-generated
from CEDL/SRDL. However, as he admitted in the interview, that deficiency
may have had a negative impact in his performance to depict HMD2L models.

156 User Study

8.6 Usability and learnability of Hasselt UIMS

Comparing with the data repository provided by Lewis et al., the average SUS
score of 73.96 obtained by Hasselt UIMS indicates that its perceived usability
is well above average but not higher than 75% of the 324 systems reported
in [Lewis 09]. We are aware however that this result can only be used as
a guideline: the SUS scores reported by Lewis et al. are over very diverse
systems, and not only within the subset of over programming environments.

The average scores obtained for each of the 10 items of the SUS question-
naires were 3.5, 2.1, 4.3, 1.9, 3.1, 2.3, 4.4, 1.9, 3.9, and 1.4 (Figure 8.4).

Considering that odd-numbered questions are positively-worded, scores
higher than 3 in these items reflect that participants agree (to a certain degree)
that the evaluated system presents some good aspect/feature. In our study,
all odd-numbered questions were scored with more than 3 points on average.
From this group, Q3, i.e. “I thought the system was easy to use” and Q7,
i.e. “I would imagine that most people would learn to use this system very
quickly”, received the highest scores.

Similarly, since even-numbered items are negatively-worded, scores lower
than 3 would indicate that participants are disagreeing (to a certain degree)
with some negative comment about the system. In our studies, all even-
numbered questions were scored with less than 3 points on average. From this
group, Q10, “I needed to learn a lot of things before I could get going with
this system”, Q4, i.e. “I think I would need support of technical person to
use this system”, and Q8, i.e. “I found the system very cumbersome to use”
received the lowest scores (which in this case it is something positive).

The salient scores obtained for Q4 and Q10, the two questions that de-
fine learnability [Lewis 09], may be indicating that Hasselt is perceived as
easy-to-learn. This matches with the fact that all participants completed the
two experiments with Hasselt even though they received little training.Larger
scale experiments should confirm if this learnability is independent from or
dependent on previous programming experience.

8.7 Interview highlights

With regard to the first experiment, there was unanimous consent that the
required changes were completed more easily when using Hasselt than when
using C#.

When participants were asked “Why do you think it is more difficult with
C#?”, many refer to the fact that with event languages the human-machine

8.8 Threats to validity 157

interaction has to be implemented by splitting code across multiple event
handlers. Concretely, Participant 11 said “It is harder with C# because it
requires modifying the code in multiple places.” Similarly but with his own
words, Participant 3 added: “With C#, you have to check multiple variables
and multiple handlers simultaneously to identify the right state of the system
... and you also have to reset the variables”. Finally, Participant 2, one of
the two participants who could not complete the changes with C#, confessed:
“at the beginning the problem seemed quite simple but eventually you get lost
while trying to maintain all the variables”.

Participant 1 mentioned he had no previous experience with finite state
automata (FSA) –other participants had at least pen-and-paper experience.
This lack of knowledge did not affect his performance for the first experiment;
when using Hasselt, he completed the experiment in 4 minutes. However, when
using HMD2L in the second experiment, he took 19 minutes for completing
the task. This is a big difference with regard to the 2.4 minutes required, on
average, by the other 11 participants. This may be an indication that reading
the FSA generated from CEDL code is so intuitive that programmers may not
need theoretical background. But for depicting FSMs required by HMD2L, a
training session may not be enough and theory about FSMs may be highly
recommended.

Continuing with the second experiment, participants perceived that per-
forming the modifications with Hasselt was simpler than with C#. Some
participants mentioned that HMD2L is simpler because its visual models pro-
vide an overview of the whole dialog in one single screen. In contradiction with
this subjective appreciation, C# led to better completion times than HMD2L.

8.8 Threats to validity

8.8.1 Construct validity

Construct validity is defined as the degree to which a test measures what it
claims, or purports, to be measuring [Brown 95]. The construct validity of our
empirical study coud have been affected as follows.

• We measured the code testing effort as the number of times the partic-
ipant enters in the runtime environment. This means we assumed that
participants have to run the program in order to evaluate whether the
source code is correctly specified. This definition may not be complete
since it leaves out the effort made by the participant while reading the

158 User Study

program and ‘running and testing the code inside his head’.

• We cannot completely guarantee that the observed differences were due
solely to Hasselt rather than to the specific application used as part of
the programming task. This threat could have been mitigated by per-
forming not only one, but many experiments with different applications.
However, this was unfeasible in our case. Getting experienced program-
mers who can volunteer to participate in a relatively stressful experiment
that lasts more than one hour was already a very difficult task. Asking
them to stay for two or three consecutive experiments or to come in
different sessions was simply unfeasible.

• The SUS questionnaire may have measured only certain aspects of the
usability of Hasselt UIMS. An expert in empirical studies made us notice
that usability also includes the long-term experience of using a software
system, which is not considered in our study: all participants used Has-
selt for the first and only time during the study. However, the initial
learnability, which is another dimension of the SUS questionnaire, was
correctly measured by Q4 and Q10, according to the same expert.

Construct validity is not the only type of validity that must be considered
when designing empirical research. An empirical study is said to have internal
validity when the impact of almost all influencing factors are excluded, so
the study is performed in a highly controlled setting. In contrast, external
validity refers to avoiding such a strict control so that the experiment can
emulate a real-world situation instead of an ideal, unrealistic one. Whereas
external validity increases the chances that results can be generalized to more
realistic, every-day situations, internal validity allows researchers to pinpoint
the reasons of improvement or degradation, but at the cost of generalizability
[Siegmund 15].

8.8.2 Internal validity

We pursued for internal validity in the following way.

• The order of the languages, so which language was to be used first,
Hasselt or C#, was balanced over the participants so that the aggregated
experience bias can be neutralized.

8.8 Threats to validity 159

• Since the goal was to measure the effort for implementing multimodal
interaction and not application code, we had to restrict participants to
modifying interaction code only. This was easy to achieve with Hasselt
since it only allows describing interactions. The code for configuring in-
put recognizers as well as the application code is not visible in Hasselt.
The former is enclosed into Hasselt UIMS, the latter into a canned EXE
file. In contrast, the C# program included both application code and
interaction code in the same file. To avoid that the presence of appli-
cation code distracts participants and influences their performances, we
decided to hide it during the experiment. By using regions (i.e. collapsi-
ble blocks of code), the application code (as well as the configuration
code) was collapsed during the experiment. Only the event handler and
the variables encoding the interaction state were shown.

• We offer participants a tutorial on Hasselt but no tutorial on creating
multimodal applications using C#. To reduce the damage caused by this
omission on the internal validity of the experiment, participants were
briefly explained the purpose of each of the aforementioned code regions
right before starting the changes with C#. They were explicitly said that
the goal can be achieved by correctly maintaining and interrogating the
global variables in the event handlers. The variables and event handlers
are within a different code region.

8.8.3 External validity

In order to confer our results with high external validity, we allowed some
‘randomization’ to the experiments.

• From a methodological perspective, there was no structured interaction
between the researcher and participants during the experiments. This
contrasts with other approaches commonly used in empirical studies,
such as the think-aloud protocol and the question-suggestion protocol
[Grossman 09]. The former would require participants to speak out while
programming in order to provide the researcher with insights about their
programming logic. The latter would allow the researcher to give advice
proactively to the participant. In our experiments, the researcher only
interferes when participants ask for questions. In our opinion, this is
a more realistic scenario that reflects the typical case of a programmer
working by his own and eventually asking for advice to more expert
programmers when he got stuck in a problem.

160 User Study

• The pool of participants was quite varied. As mentioned before, there
were master and PhD students, post-docs, and industry programmers,
from different universities and countries, with backgrounds in computer
science and engineering, with and without knowledge in finite state au-
tomata (FSA). Even if the group of participants is relatively small, we
are convinced that the validity of the experiments is positively influenced
by the variation in the pool of participants.

• Despite the fact that event-driven languages require similar work prac-
tices to describe interactive systems (i.e. to implement a series of event
handlers that are to be bound with user events), it may be risky to
assume without further experiments that the advantages obtained by
Hasselt can be repeated for other event-driven languages.

8.9 Lessons for the future

Here we provide some lessons learned with respect to designing comparative
studies of programming languages.

• Researchers must be careful when choosing a method for determining the
duration of the programming tasks. Our decision to give participants a
time limit of 30 minutes per programming task was based on a pilot
test. The pilot test consisted of one participant, who was handpicked
for being one of the most experienced C# developers of our research
lab. He took around 16 minutes to complete the first experiment with
C#, the hardest of the four programming tasks. This made us believe
that a time interval of 30 minutes (almost double) would be enough
for all participants and for all programming tasks. Unfortunately, this
was not an optimal decision. The 30-minute period was not enough
for two participants who failed to complete the first experiment with
C#. As a consequence, we lost two data points for the first experiment:
there is no completion time for those who could not complete the task.
Future researchers may want to consider carrying out pilot tests with
several randomly chosen participants in order to obtain a more realistic
idea of how long the programming tasks could take. An alternative
option consists of using more complex, formal mathematical models for
estimating the maximum acceptable task completion time [Sauro 05].

• The number of lines of code is not a good metric to use when the pro-
gramming task consists of modifying existing code. Initially, we wanted

8.10 Summary 161

to measure the difference of lines between the original program and the
modified version produced by the participant. However, while designing
the study, we noticed that this number was going to be meaningless.
First, the code added to existing lines (e.g. to the condition of an if
clause) is not counted although the programming logic has changed. At
the opposite side, some programmers used to break long statements into
two lines and vice versa, add or remove blank lines, comments, and re-
gion directives, etc. These actions alter the number of lines although the
complexity of the programming logic remains the same.

• The use of standardized questionnaires provides two advantages over ad-
hoc questionnaires. First, the reliability and validity of the former are
already proved, as in the case of SEQ and SUS. Second, since standard-
ized tests are widely used, it may be possible to get baseline information
with which to compare our results.

• For the cases where the training session is designed to be short and
carried out before the test, it is important to gather participants with a
similar background. Otherwise, some participants can benefit more from
the training than others, which may cause the appearance of outliers.

8.10 Summary

This chapter has presented the results of two experiments designed for compar-
ing the programming efficiency achieved with Hasselt and with event-callback
code.

Due to the lack of similar user studies in the domain of multimodal systems,
we used two relatively recent studies, which were carried out to compare In-
terState [Oney 14] and Proton++ [Kin 12a], each against event-callback code.
InterState was tested for mouse-and-keyboard interactions; Proton++, for
touch interactions. To the best of our knowledge, Hasselt is the first lan-
guage to be compared against event-callback code for the case of multimodal
interactions.

In the first experiment, participants were asked to perform equivalent mod-
ifications of a multimodal interaction model with both CEDL/SRDL and C#.
Objective measurements showed that the textual notations of Hasselt (i.e.
CEDL/SRDL) led to higher completion rates, lower completion times, and
less code testing. The SEQ questionnaire also revealed that CEDL/SRDL are
perceived as easier-to-use than equivalent event-callback code.

162 User Study

In the second experiment, participants were asked to perform equivalent
modifications of a dialog model with both HMD2L and C#. In this case, most
results were not statistically significant. Only the subjective SEQ question-
naires showed better results for HMD2L, i.e. participants perceived that the
changes were easier to perform with HMD2L than with event-callback code.

Finally, we close Part II of this thesis by highlighting the correlation be-
tween the results obtained in the previous and the current chapter. On the
one hand, the many advantages of CEDL/SRDL over event-callback code,
identified through code inspection in the previous chapter, are materialized in
higher programming efficiency, as attested in the user study presented herein.
On the other hand, although the code inspection unveiled slight advantages of
HMD2L over event-callback code, though still not strong enough to improve
programming performance.

Part III

Discussion, Conclusions, and
Future Work

Chapter 9

Discussion

This chapter starts by describing how we accomplished the research goals
presented in the introductory part of this dissertation. These two goals refer
to the design and evaluation of a composite event-based language. The chapter
then discusses the contributions and limitations of the present research.

9.1 Design of a composite-event based language

The first goal of this research (Section 1.2) was to design a composite event-
based language and its supporting tool. Both artifacts have already been ex-
tensively discussed in Part I. The design decisions behind the nature, paradigm,
and notations of Hasselt are described below.

9.1.1 Why textual? Why event-driven?

When surveying several multimodal interaction descriptions languages, it was
noticed that many of them were visual languages and/or required using con-
cepts such as CARE properties, transition rules, or logic-based concepts that
were unknown by the author of this thesis, despite of his long experience as
a developer of WIMP interactive systems with event languages. As part of
the investigation, the author downloaded three tools (ICon, Squidy, and Pet-
Shop) and utilized their underlying languages to describe basic interactions,
but every time he got stagnant and frustrated trying to deal with some corner
case, the same question always popped up in his mind: “Why would I use this
language if I can already do whatever I want with event languages?”. This

166 Discussion

repetitive question enlightened us to make the first decision about Hasselt, in
a time when we did not have any idea about how Hasselt should look like:
In order to create a programming language that intends to be adopted and
well-regarded by its users, the language should not deviate too much from
the mental models and work practices that programmers are accustomed to
follow in their day to day work. It is not enough that a language can specify
the behavior of the intended system; it is equally important that its intended
users want to use it.

We later verified that the nuisance generated by having to deviate from the
“native language” was not just a personal reaction. As will be exposed below,
similar reactions were observed in different scenarios when programmers were
asked to work with a new language.

Programmers resistance to unusual concepts

After being involved in the development of four UIMSs, Olsen Jr. stated that
the “success of a UIMS is directly related to the ease with which interface
designs can be expressed” [Olsen Jr 87]. He illustrates his point by confess-
ing that the difficulty for describing interfaces in terms of grammars caused
the SYNGRAPH system [Olsen Jr 83] to not be widely used despite that its
users realized it improved productivity. A few years after, when discussing the
Mickey UIMS, a tool proposed to tackle the problems engendered by MIKE
[Olsen Jr 86], Olsen Jr. reminded us once again of the risks of including un-
familiar languages within a UIMS: “By using interface specifications based
on familiar terms to programmers we were able to overcome the programmer
resistance that plagued our earlier UIMS” [Olsen Jr 89].

Influence of previous programming experience

The previous cases highlighted the resistance of programmers to use unfamil-
iar concepts. The present study warns about the potential consequences of
adopting languages that are clearly different from the languages one is ac-
customed to. In this study, a group of master and doctoral students had to
elaborate a project consisting of describing a system with the language Live
Sequence Charts (LSC), whose syntax as well as underlying concepts were
unknown by participants, who, instead, had experience with other program-
ming languages, mainly C++ and Java [Alexandron 12]. The results showed
that previous programming experience leads programmers not only to misun-
derstand or misinterpret concepts that are new to them, but that it can also
lead them to actively distort the new concepts in a way that enables them

9.1 Design of a composite-event based language 167

to use familiar programming patterns, rather than exploiting the new ones to
good effect. Learners of the new language not only interpret the new models
through the prism of the previous models they are familiar with (this is the
straightforward implication of a theory called constructivism [Ben-Ari 01]),
but they actively try to force the new model to behave like the model they are
familiar with, so they can use previously acquired programming solutions.

Skepticism towards visual languages

Since many of the UIMSs aimed at describing multimodal interactions use
visual languages, it is also important to remind the experiment carried out by
Oney et al. [Oney 14], in which 20 developers performed equivalent modifi-
cations with both InterState, a visual language, and RaphaelJS1, a textual,
event language.

The researchers reported that, during the interviews, the participants (ex-
perienced developers) showed skepticism about using visual languages in prac-
tice since they still feel more comfortable with standard imperative code. The
authors hypothesized, and we agree with them, that this preference may be
“largely due to the relatively long-term exposure to standard code”. Not even
the enhanced efficiency achieved with InterState in comparison with equiva-
lent event-callback code could seduce the participants to consider using visual
languages in real-world scenarios.

Based on these experiences, it is clear that when designing a new language, one
cannot simply overlook the previous programming experience of its potential
users. The rankings of programming language popularity published by IEEE2

and by TIOBE3 agree that most widely-used languages to date are textual,
and a predominant proportion of them subscribe to the event-driven paradigm.
Therefore, Hasselt was designed to retain the textual and event-driven nature
that are fundamental features of commonly-used event languages to which,
after decades of practice, programmers have become accustomed to, and nat-
urally, they will not want to lose.

Finally, it would be unfair to close this section without addressing the ques-
tion: “Why would I use Hasselt if I can already do whatever I want with
event languages?”. The answer is that, in our vision, Hasselt pretends to be

1http://raphaeljs.com/
2http://spectrum.ieee.org/static/interactive-the-top-programming-languages
3http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

http://raphaeljs.com/
http://spectrum.ieee.org/static/interactive-the-top-programming-languages
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

168 Discussion

an event language augmented with notations for declaring composite events
(Section 1.3). This thesis has just explored how these new notations could be
and what benefits they could bring about. This is the first step towards our
envisioned language.

9.1.2 Why these notations?

Although it may not be obvious due to its external appearance, the idea
of composite events was conceived when analyzing the visual notations of
SMUIML [Dumas 14]. The nested boxes used to group simple events into mul-
timodal events were a straightforward indication that composing events was
the key to achieve concise representations of multimodal interactions without
departing too far from event languages. SMUIML models were the first mod-
els where we could read if this sequence of events occur → call this function.
Once we gained this insight, we saw that the intention of composing events
was implicit in other tools too [Cuenca 14a]. There we decided to make it
explicit, that is, to create a language that uses composite events as the main
concept. It was at this point when CEDL was conceived.

After reviewing the literature of several research domains, we found that
the idea of composing events already existed in two fields, namely Complex
Event Processing (CEP) and active databases. The event operators of CEDL
were chosen after surveying those domains. From the beginning, we had se-
rious doubts about including a negation operator in CEDL. Although there
is a negation operator in many languages of the aforementioned domains, the
presence of this operator has also been put into question because “there is no
way to represent the absence of an occurrence” [Mei 09]. We decided not to
include such an operator, but, of course, we verified that the idea of a “did
not occur” event (which is a better name than a “no event”) can be repre-
sented with the CEDL operators (Section 5.5.1). To know more about CEP
or active databases and why Hasselt UIMS did not just exploit these existing
tools, readers are invited to refer to Appendix B.

With regard to the SRDL, it must be said again that it did not exist in
the first version of Hasselt. There the composite events were attached to one
event handler (Figure 4.4 on page 70), over understanding that such a handler
had to be fired upon the full detection of a composite event. Once the need of
invoking event handlers along the whole interaction (e.g. to generate partial
feedback) was noticed, SRDL was created. Initially, it was intended to enable
programmers to annotate every possible node of the auto-generated FSAs,
i.e. every possible interaction state. But even after this upgrade, a new big

9.2 Evaluation of a composite event-based language 169

problem surfaced when we were running multiple interactions in parallel: the
ending of the drag-and-drop always fired the mouse click event. This could
not be solved without using conditional clauses that restrict the firing of the
mouse clicks to certain timing conditions. We investigated different types of
transition networks (e.g. non-deterministic finite state automata, recursive
transition network, etc.) until we noticed that the Augmented Transition
Network (ATN) [Woods 70] can be the solution to our problem. In order to
augment the expressiveness of our model, from a set of parallel FSAs to an
ATN, the SRDL was upgraded to the version presented in this thesis. An
informal proof that our models have the same expressiveness as an ATN is
given in Appendix A.2; a formal proof still needs to be elaborated.

Once it was quite clear that the CEDL/SRDL led to a reduction of the
code required to describe multimodal interactions, we decided to investigate
whether similar gains could be replicated at a higher level of abstraction. This
was the motivation to create HMD2L. To avoid HMD2L to interfere with the
gains already obtained with CEDL/SRDL, HMD2L was created to have a loose
relation with CEDL/SRDL. As mentioned in Section 2.2.3, there were not
too many tools where the dialog models were separated from the multimodal
interaction models, being SMUIML and CoGenIVE two of the few cases. It
was decided to use state diagrams, the same as in the two aforementioned
cases, to create Hasselt dialog models. As mentioned before, HMD2L models
are not mandatory in a Hasselt project.

9.2 Evaluation of a composite event-based language

The second goal of this research (Section 1.2) was to evaluate the compos-
ite event-based language by both analytical methods (code inspections) and
empirical methods (user study). Both types of evaluations were presented in
Part II and the results will be integrated herein. The same as it was done
with the code inspections and the user study, the loosely coupled interaction
models and dialog models will be discussed separately.

9.2.1 Interaction models

Both the code inspections and the user study revealed that the advantages of
using composite events instead of traditional event-callback code are clearer
during the elaboration of interaction models, understanding an interaction
model as a description of how the system responds to the coordinated sets of

170 Discussion

actions that the end user performs in order to accomplish a single task (e.g.
moving a virtual object, enlarging a map).

In the context of developing multimodal systems, three important tasks
that have to be implemented with event-callback code are simpler or not re-
quired at all when using composite events.

First, with event-callback code, the maintenance of the interaction state
requires several manual updates of a multitude of state variables. Some par-
ticipants of our user study referred to the maintenance of the interaction state
as one source of difficulty for modifying multimodal prototypes (Section 8.7).
In contrast, Hasselt programmers do not have to declare or maintain state
variables: Hasselt UIMS automatically updates the interaction state while
tracking the user-defined composite events (Table 7.1, dimension 3). Second,
when using event-callback code, one has to write conditional clauses in order
to identify the moment when the system responses are to be conveyed. These
conditional clauses can be more or less complex depending on the number of
state variables that need to be interrogated. With Hasselt, in contrast, the
moments when the system must respond can be referred to directly, in an
explicit manner, e.g. in this state → call this function, without need of inter-
rogating state variables (Table 7.1, dimension 4). Third, with event callback
code, the information about the user actions (e.g. skeleton joint positions or
angle of a touched point) is carried by the parameters of the event handlers,
which have local scope, i.e. they can only be referred to from within the event
handlers. Therefore, this information may have to be saved in global variables
in order to make it visible to other event handlers that will also deal with the
same multimodal interaction. Hasselt, in contrast saves programmers from
littering the code with global variables. In Hasselt, the event parameters have
a wider scope and can be referred to at any moment of the composite event
lifecycle (Table 7.1, dimension 5).

The enhanced simplicity of Hasselt in comparison with event-callback code
was noticed in practice by twelve participants, who were asked to modify
a multimodal prototype with both languages. They unanimously agree, in
both interviews (Section 8.7) and SEQ questionnaires (whose individual scores
are shown in Figure D.1a on page 230), that the required modifications were
more easily performed with Hasselt than with C#. This subjective perception
is in line with the objective fact that, during the same experiment, Hasselt
led to higher completion rate, lower completion times, and less code testing
(Section 8.4.1).

On the other hand, the creation of multimodal prototypes may be hindered
by the low range of fine-tuning allowed by Hasselt (Table 7.1, dimension 7).

9.2 Evaluation of a composite event-based language 171

Some functionalities offered by Hasselt UIMS are “hermetically sealed” and
cannot be tweaked, which restricts Hasselt programmers to a subset of the
interactions that can be implemented with event-callback code. Defining the
tempo with which the voice messages are to be synthesized, calling the back-
end methods asynchronously, and setting different tolerance periods for each
pair of simultaneous events are operations that cannot be implemented with
Hasselt, but can be coded with an event language like C#. It must be very
clear, however, that this limitation is not caused by the concept of composite
events that this thesis proposes. Rather, it is caused by the limited sets of
functions provided by Hasselt, e.g. a keyword call-async could be defined to
launch functions in asynchronous mode and the event (A+B){500} could be
used to define a tolerance period of 500 ms. for a particular pair of inputs.

9.2.2 Dialog models

By means of code inspection, it was noticed that the interaction models de-
scribed with HMD2L have fewer and simpler conditional clauses than those
required with event callback code. This was due to the fact the conditional
clauses written with event callback often include state variables, which do not
exist in HMD2L models. Apparently, this gain was not enough to give HMD2L
advantages in programming efficiency (Table 7.3).

The user study did not reveal a clear winner at the level of dialog models.
Only one statistically significant result could be drawn from the second exper-
iment. Based on the SEQ scores, it was found that the required changes were
more easily performed with Hasselt visual models than with event-callback
code. This result may be in line with the (non-statistically significant) fact
that Hasselt models were tested fewer times than event-callback code: less
code testing means that the right solution was found with a fewer number of
attempts, which may lead participants to believe that the task was simpler.
But the result is a bit uncorrelated with the (non-statistically significant) fact
Hasselt led to higher completion times. The modifications with Hasselt were
(perceived as) simpler, did not required much testing, but took longer! Based
on our observations, we think that the slight advantage in completion time in
favor of C# (2.4 mins for Hasselt versus 2.1 mins for C#) may be due to the
Hasselt visual editor.

There is more decision making involved in drawing a HMD2L model than
in writing code. First, each node can be placed in a continuous space of
(x,y)-points, which is always larger than the discrete number of lines where
a statement can be written. Furthermore, when a node is drawn, its size has

172 Discussion

to be defined by dragging the mouse –and it is often the case that the nodes
are drawn to have similar sizes. When writing code, in contrast, one does not
have to set the font size for every statement to be written. Finally, there is no
sense of right order when depicting a visual model: the position of one node
does not restrict the position of the next nodes to be drawn; each new node
can be correctly placed at any point of the screen, which invites one to think
where? On the contrary, textual languages impose an intrinsic sense of linear
order: once you write a statement in its semantically right position, it cannot
be moved a single line on top of the previous statement or a single line below
the next statement because that would change the program semantics.

There are also specific issues with the visual editor. To create an HMD2L
model, one has to draw arcs and write annotations on the arcs. Each of these
operations requires clicking on specific points of the diagram. This precision
sometimes leads to errors and thus, to repeat the failed operation (Section 8.5).
Besides, when a pair of nodes is connected by two arcs pointing in opposite
directions, by default, the arcs will be overlapping. To avoid confusions with
the arc annotations, one has to manipulate the elbows of the arcs, which is,
again, an error-prone task due to the small size of the elbows.

The accumulated time dedicated to make the many small decisions men-
tioned above plus the time used to redress the issues of the visual editor may
explain why the modifications of the visual models took longer. But, of course,
all this requires to be proven with another user study.

Finally, it must be highlighted that the weak points found during the code
inspection, namely hidden dependencies and abstract gradient, did not have
an impact in the second experiment since the second programming task never
required changes in the underlying interaction model and it was simple enough
to be solved at one single level of abstraction.

9.3 Engineering problems tackled by CEDL/SRDL

Spano et al. pointed out three important problems in the engineering and de-
velopment of gestural interfaces [Spano 13b]. We noticed that these problems
are also present in the domain of multimodal systems. As will be exposed be-
low, Hasselt allows overcoming these three problems and two other problems
that we found ourselves.

The event granularity problem appears when a framework can only launch
callback functions after the full detection of a gesture. This limitation prevents
from providing partial feedback while the gesture is performed [Spano 13b].
Hasselt tackles this problem by allowing programmers to annotate any node

9.3 Engineering problems tackled by CEDL/SRDL 173

and link of the auto-generated finite state automata (FSA) with system re-
sponses, which, in practical terms means, that the system responses can be
launched at any stage of the gesture lifecycle.

The spaghetti code problem refers to the fact that the implementation
of multimodal/multitouch interactions requires splitting code across multiple
event handlers [Spano 13b]. This problem is because event-driven frameworks
restrict programmers to handle events one by one, without an option to defin-
ing a handling functions for a full sequence of events. In contrast, Hasselt
programmers do not have to handle each event separately. Rather, they can
bind one single handling function to arbitrary sequences of events that, at
runtime, will be automatically tracked by Hasselt UIMS without having pro-
grammers to write a single line of code for the tracking process.

The selection ambiguity problem, the third problem identified by Spano et al.
[Spano 13b], deserves further discussion since, in our opinion, it has not yet
been completely explored by their proponents.

9.3.1 The selection ambiguity problem

Spano et al. defined the selection ambiguity problem as the situation in
which multiple gestures may start with the same initiating sequence of events
[Spano 13b]. We believe that there are actually two types of problems behind
this definition.

Traditional problem

One manifestation of the selection ambiguity problem is when many gestures
have a common prefix and the gestures are larger than this common prefix.
This is the problem analyzed by D. Spano in his doctoral thesis [Spano 13a].
The present section will discuss this ‘traditional’ version of the problem by
comparing the solutions proposed by Spano against our solution; the next
section will unveil a ‘recursive’ version of the selection ambiguity problem.

The traditional version of the selection ambiguity problem can be seen
when, for instance, one has to implement two-stroke gestures like the equal
symbol (=) and the plus symbol (+), each of which starts with the same prefix,
a single-stroke horizontal line. This entails that, at runtime, the detection
of the common prefix can affect the gesture state of both the plus and the
equal symbol, even though, at the end, only one of these two gestures is
going to be performed. Some researchers have tried to avoid this problem at
runtime by performing heavy computations at design time (e.g. by identifying
and merging the definitions of all conflicting gestures [Kin 12b]). In contrast,

174 Discussion

GestIT, the tool developed by Spano et al., does not try to avoid the problem at
runtime; rather, it tracks all conflicting gestures in parallel and once it is clear
which gesture is going to be performed, only that one gesture continues the
recognition process. It may be subtle but there is an underlying assumption
behind this approach: it is assumed that only one gesture can be performed at
a time, which is not necessarily true since one may want to rotate and enlarge
an interface object at the same time, for instance. That is why Hasselt enables
programmers to decide on a case-by-case basis whether a common prefix is
really a “problem” or not.

At runtime, similar to GestIT, Hasselt UIMS tracks all conflicting gestures
in parallel. Once the common prefix is passed and it is clear which gesture
is going to be performed, programmers can decide whether to eliminate the
influence of the common prefix in the state of the other gestures or not. Con-
cretely, Hasselt programmers can decide to stop or to continue tracking all
or some of the other conflicting events, and to perform some actions like in-
voking a rollback function, if needed. The price to pay for this flexibility is
that Hasselt requires more programming effort than GestIT, which only re-
quires joining the conflicting gestures with a choice operator (e.g. plus []
equal). To have an idea of the code required to handle ambiguities with Has-
selt, the specification for the case of the plus and equal symbols is shown in
Appendix C.4. There the composite event plus is specified so that a user-
defined event, evtP lusDetected, is raised when the vertical line of the plus is
detected, thus making it clear that the end user is depicting the plus symbol.
The user-defined event must cancel the tracking of the analogous composite
event equal, i.e. it must immediately move the composite event equal to its
final state without providing any type of feedback. Similarly, during the de-
tection of the event equal, a user-defined event evtEqualDetected is fired when
a second horizontal stroke is detected4. With Hasselt, both the raising of a
user-defined event from a composite event and its capture and processing in
the other conflicting composite event have to be manually described.

Recursive version of the problem

The second manifestation of the selection ambiguity problem occurs when one
gesture is the initial part of another gesture. In this case, the common prefix
would be the “smaller” of the two gestures. The well-known double-tap is
the simplest example of this problem: when double tapping on a touchscreen
device, one does not want the frameworks to notify the first tap but the se-

4Selection ambiguity problem with Hasselt: https://youtu.be/rMwZbXStGRw

https://youtu.be/rMwZbXStGRw

9.3 Engineering problems tackled by CEDL/SRDL 175

quence of two taps only. More complex cases are those that require specifying
arbitrarily long sequences of similar gestures, e.g. a number gesture can be
specified as an arbitrarily long sequence of 0-9 digit gestures arriving in a quick
succession, just as the two taps in the double-tap. In these cases, the selec-
tion ambiguity problem appears multiple times, e.g. a 0-9 digit gesture has
the same starting sequence of events as a 2-digits number gesture, and these
two gestures, in turn, have the same starting sequence as a 3-digits number
gesture, and so forth. To the best of our knowledge, this second scenario has
not been considered within the definition of the selection ambiguity problem.
A distinction, however, is important because this second problem requires a
different treatment than the first one. Once the common prefix is passed, there
is no other gesture that will disambiguate in favor of the “smaller” gesture,
except for a period of user inactivity, whose end can be naturally implemented
as a timeout event. In the remainder of this thesis, we will refer to this second
problem as the recursive version of the selection ambiguity problem.

The GestIT specification of the double-tap, shown in [Spano 13a], uses
time constraints instead of timeout events. Concretely, GestIT must evaluate
a user-defined time constraint in order to determine whether the two taps
are close enough in time. The problem with this specification is that the
constraint is checked only when the second tap is performed, which may be
too late (e.g. maybe the user just wanted to tap only once) for notifying the
first tap as an autonomous, self-sufficient single-tap event. The only way to
implement both a single tap and a double tap with GestIT is by writing one
definition per gesture. This may not be a problem for the single-and-double-
tap case, but, when one needs to specify number gestures (unknown amounts
of 0-9 digit gestures), for instance, writing one specification for each possible
“gesture size” may be unfeasible.

Unlike GestIT, Hasselt allows describing one arbitrarily long sequence of
gestures of the same type (e.g. taps, flicks, 0-9 digits) with one specification
only. This is because of its capability to generate and handle timeout events.
In the concrete example of the double-tap, Hasselt programmers can indicate
Hasselt UIMS to activate a timer (of a user-defined length) once the first
tap is detected. In the same specification, programmers can also indicate
Hasselt UIMS to notify the single-tap unless the second tap manages to make
its appearance before the expiration of the timer, in which case the double-tap
should be fired. Instead of just passively waiting to verify a time constraint,
Hasselt UIMS can be more proactive and activate timers that will eventually
fire timeout events that Hasselt UIMS itself will recognize. When properly
exploited, the capability of Hasselt UIMS for managing timeout events leads

176 Discussion

to efficient specifications for the recursive version of the selection ambiguity
problem. One example of such a specification was explained in Section 5.3.2
for the case of a touch gesture composed of an arbitrary number of horizontal
flicks arriving in a quick succession. The execution of such a specification and
other similar recursive specifications can be seen in a publicly available video5.

9.3.2 The problem of dual-faced gestures

By investigating about the selection ambiguity problem, we came across an-
other complex problem. We found this problem when trying to specify a
system response to the gesture plus (+), which was defined as a composition
of a horizontal stroke followed by a vertical stroke. Although each stroke fires
a particular system response when performed individually, the whole plus ges-
ture should not fire such system responses; rather, it should activate its own
distinct system response.

In this example, the selection ambiguity problem is solved by preventing
conflicts between the horizontal stroke and the gesture plus (both have the
same starting prefix), but it does not say anything about the damage that
can be caused when the vertical stroke is detected. If this vertical stroke was
meant to be part of the gesture plus but the framework fails to notice it,
the response associated with the vertical stroke will be conveyed, which may
potentially disturb the completion of the plus gesture. The response to the
vertical stroke should not be conveyed unless the framework is sure that this is
not part of a plus gesture, neither at the beginning, nor at the end. Whereas
the traditional version of the selection ambiguity problem refers to conflicts
in the starting sequence of events of multiple gestures, this problem refers
to conflicts throughout the whole lifecycle of a composed gesture. Whereas
the recursive version of the selection ambiguity problem refers to gestures
composed of similar “pieces” (e.g. several instances of a tap or a 0-9 digit), in
this problem, the composed gesture may be formed by different pieces, each
with a different gesture specification (e.g. a horizontal stroke and a vertical
stroke).

We solved the problem of the plus gesture by viewing each of its con-
stituent strokes as a gesture that can fire different responses depending on
whether it is performed alone or as part of the plus. When the horizontal
(vertical) stroke is performed alone, a voice message ‘horizontal stroke’ (‘ver-
tical stroke’) is synthesized by the system. But, when the horizontal stroke
is quickly followed by a vertical stroke, the horizontal stroke does not fire

5Selection ambiguity problem (recursive) with Hasselt: https://youtu.be/JO-OBhbC2Lk

https://youtu.be/JO-OBhbC2Lk

9.4 Contributions of the thesis 177

any response whereas the vertical stroke fires ‘plus gesture’. This approach
can be implemented by combining two techniques: raising user-defined events
(as used to solve the traditional version of the selection ambiguity problem)
and raising timeout events (as used to solve the recursive version of the selec-
tion ambiguity problem). The unambiguous specification of the strokes and
plus gestures is presented in Appendix C.5; its execution can be watched in a
publicly available video6.

The problem of elaborating conflict-free specifications for a composed ges-
ture and for all its constituent gestures will be referred to as the dual-faced
gesture problem. This name is because our solution views each elemental
gesture as if it has two different behaviors (when alone and when part of a
composed gesture), but it is not excluded that other approaches can succeed
too.

Besides being a challenge to other specification languages, solving the dual-
faced gesture problem can bring about practical benefits too. Since a set of
gestures can be composed in many different ways (n gestures can be combined
in n! different manners), a small set of simple, easily recognizable gestures can
be exploited so that not only each gesture of the set can be associated with
a system response, but also every possible composition of these gestures can
trigger its own distinct system response. In this way, the gesture vocabulary of
a system can be increased, not necessarily by adding more and more, difficult-
to-specify, difficult-to-recognize gestures in the repertoire of the system, but
also by considering each composition as a new, non-conflicting gesture.

9.4 Contributions of the thesis

The creation and evaluation of a framework capable of detecting and handling
user-defined event patterns resulted in several contributions for future UIMS
developers. These contributions are classified as follows:

9.4.1 Contributions in the tooling

At the level of tooling, this research produced the following novelties.

A composite event-based language

Hasselt is a family of languages that allows declarative descriptions of a wide
variety of interactions (Chapters 4-6). Hasselt and its UIMS permit creating

6Dual-faced gestures problem with Hasselt: https://youtu.be/ZO9vn2eWrxk

https://youtu.be/ZO9vn2eWrxk

178 Discussion

prototypes capable of generating different types of feedback (e.g. lexical and
semantic), handling different types of user errors (e.g. lapses, slips, mistakes,
and violations), and supporting different interaction styles (e.g. multimodal,
multitouch, cross-device) subjected to different types of constraints (e.g. spa-
tial, temporal, and semantic).

Unlike other similar languages, Hasselt retains the textual and event-driven
nature that characterizes mainstream event languages such as Java and C#.
This design decision was to give Hasselt a low threshold of use, to permit pro-
grammers to keep using the same concepts and follow similar work practices
than the ones acquired along the long dominion of the event-driven paradigm.
With Hasselt, the same as with mainstream event languages, programmers
implement interactions with textual notations, by writing event-handling call-
backs that are to be bound to a set of events so that, at runtime, the callbacks
will be automatically fired when their associated events occur. The difference
is that the one-to-one mapping of events to event-handling callbacks supported
by existing event languages is extended by Hasselt to a many-to-many map-
ping: Each composite event, which is a combination of many events, can be
bound to many event-handling callbacks that will be fired automatically in
the right moment of the interaction.

A multipartite editor

Since the CEDL code and the SRDL code are strongly coupled, we integrated
the CEDL editor and the SRDL editor into one single windows form (see
Figure 3.4 on page 43). These code editors were accompanied by an auto-
refreshing frame, which always displays the finite state automaton (FSA) asso-
ciated with the composite event under definition. In this way, within one single
window, programmers can see three important aspects of a human-machine
interaction: the user actions (encoded in the CEDL editor), the system re-
sponses (encoded in the SRDL editor), and the interaction states (encoded in
the FSAs). Our multipartite editor “glues” three logically separated concepts
into one single physical space. Whereas the logical separation of concerns
supported by Hasselt allows reasoning about each aspect of the interaction
separately, which often makes programming less complex [Hürsch 95], the pos-
sibility of observing all these aspects within the same window minimizes the
effort of switching attention between them.

9.4 Contributions of the thesis 179

Online feedback through parallel, visual animations

Many UIMSs [De Boeck 09, Navarre 09, Dumas 10] generate textual log files,
which register the user events occurred at runtime. The analysis of these logs is
valuable when trying to find bugs in the interaction models at a post-runtime
stage. On top of this textual feedback, Hasselt UIMS also provides a new type
of debugging tool, which is more convenient for rapid prototyping.

The automata view, shown in Figure 3.8, AV on page 50, provides online
feedback that shows how the tracking of the composite events is going on. It
shows how the execution state of the system changes as the human-machine
interaction evolves. Thus, programmers can detect problems in their interac-
tion specifications, at runtime, instead of having to wait for a post-runtime
analysis, which is when log files are more useful. Second, the simultaneous
animations managed by the automata view are better aligned with the intrin-
sic parallelism of multimodal interactions. In contrast, log files, as any text
document, are inherently linear, i.e. read in a linear direction, and cannot de-
scribe parallelism in a natural way. Assuming that the user clicked the mouse
and this altered the state of many interactions involving mouse clicks, the
automata view will show all these changes in parallel: a series FSAs will have
a new node as their current state. By using log files, the impact of the same
mouse click can be discovered by navigating line by line, downstream through
the text, until finding a series of lines that have the same or a similar times-
tamp, which is the proof of their co-occurrence. Related to the above, log files
used to accumulate all events in one single document whereas the automata
view with its multiple FSAs can show the impact of each event on several
interactions, separately. Finally, the automata view allows debugging both
the interaction model and the dialog model simultaneously. Since the dialog
model is a user-defined FSA annotated with composite events, we decided to
include it in the automata view so that programmers do not have to switch
attention between separate online debugging tools, which would signify more
mental workload for programmers and higher chances for bugs to slip away.

Not surprisingly, most of the errors we made ourselves when creating in-
teraction models with Hasselt were more easily and quickly identified with the
automata view.

9.4.2 Contributed algorithms

The algorithm that we want to highlight as a contribution herein is Algo-
rithm 1, which transforms composite events into finite state automata (FSA),
as exposed in Section 3.3.1 on page 52. Given the specification of the user

180 Discussion

actions during his interplay with the system, the aforementioned algorithm
infers all the states that will be relevant during the interaction so that pro-
grammers can specify in a direct, declarative fashion: in this state −→ call
this function. This is an important difference with other existing approaches.

With mainstream event languages, the interaction state has to be en-
coded on a multitude of variables and flags that must be maintained in a
self-consistent manner and across several handlers, which requires lots of pro-
gramming effort. With some research languages, instead, the interaction states
can be explicitly depicted in the interaction models (e.g. as nodes of a FSM-
like diagram). In these models, the system responses to be conveyed can be
associated to both the incoming event and the interaction state, which no
longer has to be deduced from the state variables (i.e. programmers no longer
have to write conditional clauses to identify each possible interaction state).
But even in this latter case, programmers still have to make a mental effort
while designing the interaction: they have to identify, in their minds, the rel-
evant states of the interaction, and draw them in the model, a task that is
automatically performed by the aforementioned algorithm.

9.4.3 Contributions in engineering

In the domain of gestural interfaces, we noticed that there were two different
problems hidden within the broad definition of selection ambiguity problem
[Spano 13b], and that only one of these two problems had been discussed
by their proponents. Additionally, we found and solved one instance of a new
type of problem that may be more complex than the two aforementioned ones.
Besides of being a challenge for specification languages, these problems can
also serve as a guidance to keep tool developers aware of the problems that
must be overcome by their tools.

Recursive version of the selection ambiguity problem

The selection ambiguity problem, as proposed in [Spano 13b], consists of elab-
orating unambiguous specifications for a set of gestures that start with the
same sequence of events. The case addressed and discussed by the authors is
the case when the conflicting gestures have the same prefix and the gestures
are larger than this common prefix.

We made explicit another case that occurs when the common prefix is
one of the conflicting gestures –think of the single-tap and double-tap as two
conflicting gestures starting with the same prefix, a tap. In this case, unlike

9.4 Contributions of the thesis 181

the previous one, once the prefix is passed, no other event will come to dis-
ambiguate in favor of this gesture. This different scenario requires a different
solution, and tool developers must be able to distinguish these two problems
so that they can work on specialized solutions for each case. The solution
we used, by the way, was by firing and catching timeout events, as already
discussed in Section 9.3.1.

Dual-faced gestures problem

This problem consists of elaborating unambiguous, conflict-free specifications
for a set of elementary gestures and a composition of these gestures. Each
elementary gesture must fire some specific system response when performed
individually, but this response must be inhibited when the elementary gesture
is performed as part of the composed gesture, which has its own, distinct
system response. The name of the problem is because the elementary gestures
have a dual behavior, which depends on whether they are performed alone or
as part of another gesture. This scenario can potentially raise conflicts at the
beginning, in the middle, and/or at the end of the composed gesture lifecycle.
In our case, the solution of this problem required combining the techniques
used for the two versions of the selection ambiguity problem, namely user-
defined events and timeout events.

9.4.4 Contributions in user study design

To the best of our knowledge, none of the languages developed for prototyping
multimodal systems (Section 2.2.1 of Related Work) was evaluated in user
studies. With regard to the domain of gesture recognition, only Proton++
[Kin 12a] was evaluated, but even in this case, participants were not asked
to write code, just to interpret it. Since this thesis aims at identifying the
benefits and limitations that can be brought about by a composite event-based
language in comparison with mainstream event languages, the user study was
elaborated to compare the efficiencies of programming with versus without
composite events.

As discussed in Chapter 8, our user study combines observations, stan-
dardized questionnaires, and interviews in order to measure the completion
rate, completion time, code testing effort, and perceived difficulty of a pro-
gramming task as well as the perceived usability and perceived learnability of
the programming environment.

Furthermore, the same chapter identifies the threats that may jeopardize
the validity of our results and enumerates the lessons learned during the study.

182 Discussion

This information is to allow future researchers to find potential pitfalls and
improve our experiment design.

9.5 Limitations of Hasselt UIMS

The limitations of each individual language, i.e. CEDL, SRDL, and HMD2L,
were already exposed at the end of Chapter 4, Chapter 5, and Chapter 6,
respectively. This section discusses the limitations of the UIMS as well as the
limitations of the approach.

9.5.1 Fixed set of atomic events

Hasselt UIMS serves to prototype a specific subset of multimodal systems,
namely single-user multimodal systems using a fixed set of input modes such
as mouse clicking, key pressing, speech, touch gestures, and body movements.

For each of these modalities, Hasselt provides a predefined set of events,
each with a predefined set of event parameters, as was shown in Table 4.2 on
page 60. Hasselt programmers cannot extend this set of atomic events (e.g. to
include haptic events) by using external configuration files, DLLs, or add-ins.
Hasselt programmers cannot do too much to redress this limitation. They are
restricted to define their interactions with this relatively small set of events or
to ask the UIMS developer to add more atomic events. It is true that Hasselt
allows creating user-defined events (Section 5.1.5), but the limitation we are
discussing herein is about inputs events, events generated by hardware.

Moreover, the predefined atomic events are also limited at the level of event
parameters. For instance, whereas the speech events (raised by a commercial
event-driven framework) usually comes with a list of strings reflecting the
potential utterances pronounced by the user, the speech events of Hasselt only
include the most likely utterance.

We never felt a strong necessity of providing Hasselt programmers with the
possibility to extend the set of atomic events from configuration files because
it was not related with the main goals of this research. This research tries to
prove the advantages of combining events, which can be well evaluated with the
18 events provided in the current version of Hasselt, given that these events
are generated by a group of hardware devices, each with a clearly different
behavior from the other. It is obvious that in order to let Hasselt UIMS grow
to a commercial product, making the set of input events extensible by the
programmer is a necessity.

9.5 Limitations of Hasselt UIMS 183

9.5.2 Inability to describe two-handed multitouch gestures

Simple multitouch gestures, such as two touches flicking in a vertical direction,
can be implemented by modeling one composite event per finger. Other more
complex multitouch gestures, such as a variable number of touches enlarging
an object, can be easily implemented by using aggregate data (e.g. aver-
age distance between touches), which Hasselt UIMS calculates based on all
the touches. But other more complex gestures like rotating two objects with
two hands, each using a variable number of fingers cannot be implemented.
This would require refining the idea of aggregate information, exposed in Sec-
tion 5.3.3 on page 85, to enable Hasselt to generate aggregate information per
cluster of touches.

9.5.3 Negative consequences of separating interaction code from
application code

Unlike the previous ones, the following limitations are strongly related to the
separation of application code and interaction code.

Inability to create EXE files

As mentioned in the Introduction, Hasselt UIMS can load a running system
by “glueing” the interaction code, described with Hasselt, with the application
code, described in a .NET language, but these two essential pieces of code can-
not be merged into an autonomous, executable file. CoGenIVE [De Boeck 09],
the supporting tool of NiMMiT, can generate executable files, but these files
only encode the interaction code, i.e. the executable file still has to invoke
the back-end application from time to time. In order to generate autonomous,
executable files, Hasselt has to be extended to include general purpose con-
structs (sequence, selection, iteration) so that programmers can define both
application and interaction code within Hasselt UIMS. Obviously, this requires
the challenging task of extending the compilers of Hasselt UIMS so that they
can interpret application code.

Searching for bugs in two different places

The debugging tools of Hasselt UIMS allow tracking the execution state of
Hasselt programs, but not back-end applications. This is because the back-
end applications are developed externally, without Hasselt support. Therefore,
the variables of the back-end application are not visible to Hasselt UIMS.

184 Discussion

Analogously, the back-end application can be independently inspected with
the debugging tools provided by MS Visual Studio; but these tools cannot
track the variables declared in Hasselt programs.

It would be convenient to develop debugging tools that can inspect both
environments at once. That is, tools where the variables of both the interaction
code and the application code can be shown at runtime within one single
window.

Information between Hasselt UIMS and back-end applications have
to be serialized

Passing information from Hasselt to the back-end applications and vice versa
is not always a simple task.

First, in the direction from Hasselt UIMS to the back-end application,
Hasselt UIMS can only pass (lists of) primitive values to the back-end appli-
cations. The data structures used by Hasselt to carry information about the
skeleton joints (Table 4.3) or the aggregated data of the touchscreen device
(Table 4.4) can still be passed to the back-end application, but as sets of prim-
itive values (e.g. several x-y-z tuples, one for each joint), which may damage
programming efficiency, a crucial aspect in the prototyping phase. This lim-
itation is because the back-end application ignores (thus, it is not ready to
receive) the types of internal objects that Hasselt UIMS handles.

In the other direction, the back-end application can only return primi-
tive values but not instances of user-defined datatypes (e.g. class Student,
class Country), because Hasselt UIMS has no clue about the structure of such
classes. In order for the back-end applications to pass objects of such classes,
the objects must be serialized, that is, their information has to be encoded as
a string that will be later broken up by Hasselt programmers (see Section 5.1.4
on page 78). It may be technically possible for Hasselt UIMS to capture ob-
jects of user-defined datatypes as if these were instances of a generic Object
class, but this is not implemented in the current version.

Back-end applications play a passive role

The interaction states, represented in the auto-generated FSA, are defined
by taking only the user inputs into account. This unveils one underlying
assumption of the proposed tool: Hasselt UIMS assumes that the back-end
applications play a passive role in the interaction. If the back-end application
had to perform a long computation (e.g. 10 mins) along which it will fire events
that are supposed to affect the course of the interaction, Hasselt programmers

9.6 Summary 185

would have to coordinate with the application developer in order to reengineer
the system. This issue would not exist if the events triggered by the back-end
applications were visible to Hasselt UIMS, in which case, these events could
be used as part of the composite events definitions.

9.6 Summary

The present chapters started by describing how the two goals proposed in this
thesis were accomplished. With regard to the first goal, i.e. the design of a
composite event-based language, the design decisions made to create Hasselt
were exposed (why is it textual? Why is it event-driven? Why do the CEDL,
SRDL, and HMD2L are as they are?). As to the second research goal, i.e. the
assessment of the language, the results obtained from both code inspections
and user study were integrated.

The chapter then presents the list of contributions made during this re-
search. These were grouped into different categories, namely contributions in
tooling, in algorithms, in engineering, and in user study design.

Finally, in order to give an idea of the scope of the research, the limitations
of Hasselt UIMS were presented. Many of these limitations were strongly
related with the fact that the interaction code (Hasselt code) is separated
from the application code (.NET code).

186 Discussion

Chapter 10

Conclusions and Future Work

As discussed in the previous chapter, this PhD research managed to design,
implement, and evaluate a language that simplifies the creation of multimodal
prototypes by saving programmers from the error-prone task of maintaining
the interaction state, which is mandatory when using event languages. This
last chapter summarizes the current status of the research, i.e. what has been
done and what still remains to be done.

10.1 Conclusions

This research has designed, implemented, and evaluated Hasselt, a family
of declarative languages that allows programmers to bind user-defined event
sequences, herein called composite events, to one or more event handlers. This
many-to-many mapping of events to event handlers is a generalization of the
one-to-one mapping allowed by mainstream event languages, such as Java and
C#, which restrict programmers to bind one event to one event handler only.

As discussed in Part I, Hasselt is composed out of three languages: The
Composite Event Definition Language (CEDL) enables programmers to define
composite events through a set of operators that can be applied in a recursive
manner. Both the constraints among the constituents of a composite event
and the event-handling callbacks to be launched in response to the (partial) de-
tection of composite events are declared with the System Response Definition
Language (SRDL). Finally, the higher-level Human-Machine Dialog Defini-
tion Language (HMD2L) can be optionally used to declare human-machine

188 Conclusions and Future Work

dialogs, high-level models of interaction where the system responses depend
on the current context-of-use. Hasselt comes accompanied with a supporting
tool, Hasselt UIMS, that provides the code editors, compilers, runtime envi-
ronment, and debugging tools required to write, syntax-check, run, and test
Hasselt programs.

Hasselt enables composing several types of events (speech, touch, timeout,
or body movement events), which can be subjected to different types of con-
straints (temporal, spatial, semantic). Despite its declarative nature, Hasselt
allows implementing relatively complex functionalities, such as the smoothing
of imprecise inputs (e.g. by filtering the inputs generated by Kinect). The ex-
pressivity of Hasselt also allows tackling difficult engineering problems such as
the selection ambiguity problem and the dual-faced gesture problem, proposed
herein. The prototypes created with Hasselt can support different interaction
styles (multimodal, multitouch, and cross-device interaction), generate differ-
ent types of feedback (lexical and semantical), handle several types of user
error (lapses, slips, mistakes, and violations), and provide specialized treat-
ments to parallel user inputs depending on whether these are complementary,
redundant, or equivalent.

In Part II, through code inspection, it was revealed that the combined
use of CEDL and SRDL save programmers from using state variables, and
therewith, from the difficult, error-prone task of maintaining the interaction
state across different event handlers. But, in the down side, it was shown that
CEDL and SRDL offer a low-range for code refinement, in partly due to their
declarative nature, and in partly due to suboptimal design decisions. The
same code inspection also revealed that HMD2L models include fewer, sim-
pler, and better centralized conditioned clauses than equivalent dialog models
described with event-callback code. But HMD2L models suffer from hidden
dependencies and high viscosity.

The evaluation of Hasselt also included empirical studies: two experiments
were carried out to compare the programming efficiency of Hasselt and C#.
The results of the first experiment showed that the modification of an inter-
action model with Hasselt leads to higher completion rates, lower completion
times, and less code testing than when using C#. In a second experiment,
after comparing the efficiency of HMD2L and C# for modifying multimodal
dialog models, we could only conclude that the perceived ease of use was a bit
higher for HMD2L than for C#.

Finally, Part III discussed the design decisions behind Hasselt, identified
the contributions of this PhD research, and enumerated the limitations of
Hasselt UIMS.

10.2 Future Work 189

10.2 Future Work

This research can evolve in the following four directions, namely, evaluation
methods, applied research, exploration of alternative directions, and upgrading
towards a full-fledged general-purpose composite event-driven language.

10.2.1 Evaluation methods

User studies for gesture interaction

We managed to prove that describing context-independent speak-and-mouse
interactions (i.e. first experiment) with Hasselt led to higher completion rates,
lower completion time, and less code testing. It would be interesting to evalu-
ate whether these programming benefits are repeated when prototyping mul-
titouch gestures and body gestures.

More user studies for dialog modeling

The visual HMD2L created for elaborating high-level models of human-machine
dialogs did not meet our expectations. The use of this declarative language
did not show any significant gain over prescriptive event-callback code. We
think that the main reason why no clear winner emerged from this study is
that the task was too simple given the programming experience of the partici-
pants. Thus, it would be convenient to repeat the second experiment (HMD2L
versus C#) with more complex programming tasks.

10.2.2 Applied research

At this moment, a plan is being elaborated to use Hasselt in the ClaXon
project1, an applied research aiming at optimizing the interaction between
robots and humans by enabling safer operations and higher efficiency.

In the plan, the cobots (co-working robots) will be commanded through
different hand gestures; each gesture is intended to command the cobot so that
it can support the worker with some difficult/dangerous task (e.g. handing
parts which are heavy or at a high temperature). Since not every worker is
supposed to have the same level of authority over the cobots, it is important
to recognize who is performing the hand gestures. This will require combining
face recognition with hand gesture recognition. Furthermore, since safety is a
critical issue in human-robot environments, it is part of the plan to use cameras

1http://www.iminds.be/en/projects/2015/03/11/claxon

http://www.iminds.be/en/projects/2015/03/11/claxon

190 Conclusions and Future Work

to make the robots aware of the ever-changing positions of their human co-
workers. In this way, the robots can slow down or stop in reaction to the close
presence of workers, for instance. As shown in this thesis, Hasselt has proven
to be effective for combining modalities and for recognizing passive modalities,
both are required to implement the aforementioned scenarios.

10.2.3 Exploring alternative directions

A new member of Hasselt?

In a survey study [Cuenca 14a], we classified several UIMSs by the capabil-
ities of their frameworks (Figure 10.1). In that survey, the potential func-
tionalities of a framework were: (1) recognition of user inputs, (2) fusion of
inputs, (3) management of human-machine dialog, and (4) fission of outputs.
It turns out that Hasselt UIMS fits into the second category, called State-
based. Hasselt UIMS incorporates several software recognizers that perform
recognition of inputs. Based on the CEDL and SRDL code, Hasselt UIMS can
fuse the information carried by several multimodal events (e.g. to evaluate
guard conditions, to accumulate it into arrays, or to pass it to back-end appli-
cations). Through the HMD2L, programmers can delegate the management of
a human-machine dialog to Hasselt UIMS. However, Hasselt does not offer no-
tations for fission of outputs: Programmers cannot delegate the coordination
of multiple outputs to Hasselt UIMS; they have to write some multi-threading
code in the back-end application for this task. But with a new Composite Re-
sponse Definition Language (CRDL), programmers would be able to declare
how multiple system responses are to be conveyed in a coordinated manner,
e.g speak:‘Cusco’ + call:highlight(‘Cusco’); speak:‘belongs to’; speak:‘Peru’ +
call:highlight(‘Peru’). The need of such language was predicted in the first
stage of this PhD project, right before Hasselt started to be built, as attested
in [Cuenca 13a]. The CRDL can still be considered as a part of a future
project.

CEDL as a formal language?

After the CEDL and its supporting tooling were implemented, we noticed the
existence of formal notations for describing interactions in concurrent systems,
e.g. process algebra [Baeten 05]. It is not clear whether these formal notations
would generate a larger interaction space than CEDL, i.e. whether they would
allow describing interactions that are impossible to describe with CEDL. But,
what is clear is that unlike our CEDL, such formal notations are supported

10.2 Future Work 191

Figure 10.1: Functionalities that can be delegated to a UIMS [Cuenca 14a]. Has-
selt UIMS would fit in the state-based group.

by a mathematical apparatus that has been elaborated after decades of study.
If such notations were used, instead of CEDL, to describe interactions, in
theory, they would permit formal reasoning about interaction descriptions.
This potential gain has to be confirmed by future research.

10.2.4 Towards a composite event-based language

Augmenting SRDL with general-purpose constructs

The fundamental constructs of general-purpose languages (i.e. sequence, se-
lection, and iteration) should be used to enrich the expressiveness of SRDL.

(1) SRDL does not allow defining sequential instructions. Declaring inter-
leaved assignment statements and functions calls cannot be performed with
SRDL; all system responses associated with a node or with a link are exe-
cuted in parallel. (2) SRDL only allows one basic case of selection: all the
system responses associated with a node or with a link are executed or not
depending on a guard condition. More sophisticated methods of selection are
not possible, e.g. to map different sets of systems responses to different guard
conditions. (3) SRDL does not allow iterating over a set of statements: the
system responses associated with a node or with a link are executed only once.

After adding these three fundamental constructs into SRDL, each node
and link of a FSA (i.e. each interaction state) no longer has to be associated
with a limited set of predefined actions (e.g. calling a function, raising an
event, assigning variables), but with general-purpose code.

192 Conclusions and Future Work

Overcoming Hasselt’s event-blindness

Currently, Hasselt can call the methods included in the imported back-end
applications; but it cannot sense the events generated by these applications.
Redressing this event-blindness may solve two of the limitations mentioned in
Section 9.5.

First, the set of atomic events, which is fixed in the current version of
Hasselt, could be extended from existing libraries. New events (e.g. Read-
ingChanged) from new devices (e.g. accelerometers) can be used in the com-
posite events definitions if Hasselt UIMS were capable of “seeing” the events
declared in an existing DLL (e.g. Accelerometer API). Furthermore, by re-
dressing the event-blindness of the presented tool, programmers were able
to incorporate their favorite APIs (e.g. Kinect libraries) to refer directly to
the events they are used to work with, e.g. event SkeletonFrameReady, in-
stead of having to refer to the built-in events provided by Hasselt, e.g. event
kinect.skelpos. The latter may cause that, eventually, programmers will stop
using the predefined events of Hasselt to use their favorite libraries instead.
This scenario will allow us to remove all predefined events and thus to lighten
the Hasselt’s core.

Second, the back-end application can start playing a more active role in
the systems described with Hasselt. So far, if a back-end application trig-
gers events during its invocation, those events will not be captured by Has-
selt UIMS, and therefore, they cannot alter the course of the interaction. Has-
selt views back-end applications as entities meant to perform computations
and return a value; in formal terms, Hasselt prototypes fall into the computer-
as-a-tool paradigm [Beaudouin-Lafon 04]. The limitation of Hasselt UIMS to
capture the internally-defined events of the back-end applications can also be
solved by a more comprehensive solution: by allowing programmers to encode
application code into Hasselt UIMS, as discussed below.

Application code within Hasselt UIMS

Many of the limitations mentioned in Section 9.5 were strongly related with
the fact that the interaction code and application code were separated. The
ultimate solution for this problem is to augment Hasselt UIMS with a code ed-
itor for writing application code, which has to be compiled by Hasselt UIMS.
In this way, programmers no longer have to import externally developed back-
end applications whose user-defined data types, internally-defined events, and
internally-defined variables are difficult to “see” from Hasselt UIMS or, in the
best case, can be “seen” after some special treatment that increases the com-

10.3 Long term vision 193

plexity of the Hasselt’s core. If Hasselt UIMS were able to compile application
code, it would entail that every class, method, and variable, which are now in-
cluded in the back-end applications, can be directly referred from the CEDL/
SRDL code and vice versa. Hasselt was designed in line with this vision.

10.3 Long term vision

10.3.1 The need of a guiding star. Stopping the Babel-like
confusion of languages

In a seminal paper [Myers 00], Myers et al. mentioned the possibility that a
new paradigm may be needed to overcome the inadequacy of event languages
for describing interfaces using speech and gestures. To the best of our knowl-
edge, after 15 years, nobody has given a clue about how this new paradigm
would look like. We think that this is a major omission since having a target
would have helped researchers to channel their efforts in the same direction.
Instead, the community has produced a series of reciprocally-different mul-
timodal interaction description languages that vary from block diagrams to
Petri nets, from visual to textual, from event-driven to logic-based, etc. It has
been almost a rule that once a new language is developed and presented to
the academic community, it falls into disuse and a new language starts to be
developed from scratch to repeat the same cycle. In order to finish with the
brainstorming stage in which the community has been immersed for 15 years,
researchers must make an effort and try to start delineating the new program-
ming paradigm that is to be guiding star for future language developers.

Some clues about the new paradigm can be learnt from the past.

10.3.2 Extrapolating the past for envisioning the future

Several UIMSs and event languages, including MIKE [Olsen Jr 86], Univer-
sity of Alberta UIMS [Green 85], and Sassafras UIMS [Hill 86], were proposed
by academia in the middle 1980s, when imperative code was commonly used
[Myers 92, DeMarco 89]. These UIMS and their specification languages in-
spired the creation of commercial event languages like Visual Basic [Myers 00],
released in 1991.

We want to highlight two important facts of the then-newly created com-
mercial event languages. First, these new languages reduced the accidental
complexity of creating WIMP systems with the imperative paradigm. For
instance, commercial event languages and their supporting frameworks gave

194 Conclusions and Future Work

programmers the opportunity to develop WIMP systems without having to
implement the message loop2 which was pivotal when using C or other im-
perative languages. Second, the new event-driven programming languages did
not dispense with the then-dominating imperative paradigm; imperative code
was still used within the event handlers.

We think that the history is going to be repeated again and a new type
of programming language will emerge from the languages and UIMSs studied
in the Related Work section. As in the past, the new languages are going
to be built on top of event-driven languages, which are now widely used for
implementing interactive systems. That is why we suggest future UIMS de-
velopers to stop insisting with describing multimodal interactions with visual
languages. These are obstructing the vision of the new paradigm, which is
going to be built on top of the event-driven paradigm in the same way as this
was built on top of the imperative paradigm in the past. Visual languages can
still be useful to create high-level models.

10.3.3 Composite event-based programming. The guiding star

An event language with support for composite events, as outlined in Fig-
ure 10.2, b, could be the shadow of a language of the new paradigm. First,
composite events reduce accidental complexity. They eliminate the need of
tracking sequences of events, the error-prone, difficult task required when
creating multimodal, multitouch systems with event languages. Second, the
event-callback model is not thrown away in our envisioned composite event-
based language, it is just extended. At a high level of abstraction, WIMP
interactions can be viewed as one-to-one mappings of events to event han-
dlers. With composite events, multimodal interactions are described as many-
to-many mappings of events to event handlers.

This thesis has just provided one example of how to create tools and lan-
guages able to automate the detection and handling of user-defined composite
events. But the future must see new ventures searching for new event opera-
tors, new ways of event binding (maybe dispensing with FSA), new notations
(e.g. Petri nets instead of ATNs), and, in general, aspiring to identify and
deal with the still unfound, deeper, and more subtle consequences introduced
when extending the concept of event to composite event.

Future research on composite event-driven programming languages can
nurture from the theory developed in other well-stablished fields such as Com-

2https://msdn.microsoft.com/en-us/library/windows/desktop/ms644928%28v=vs.

85%29.aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644928%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644928%28v=vs.85%29.aspx

10.3 Long term vision 195

(a) Event-driven language: one-to-one mapping of events to event handlers.

(b) Composite event-driven language: many-to-many mapping of events to event handlers.

Figure 10.2: (a) Each user event can be bound to one event handler. (b) Each
composite event, which is a combination of many events, can be bound to multiple
event handlers.

196 Conclusions and Future Work

plex Event Processing (CEP) and active databases (Appendix B). As with our
research, both of these fields use composite events as the main concept.

A concentrated effort, which has not happened to date, may eventually lead
to a new type of programming language and programmers no longer have to
continue developing multimodal interactive systems with the tooling designed
for the previous WIMP paradigm.

10.4 Summary

This thesis has presented a software solution that reduces the complexity of
describing multimodal interactions with current event-driven languages. This
solution consists of a family of declarative languages that empower program-
mers to define compositions of events, which can be later bind to one or more
event handlers. Although the language we envisioned included not only nota-
tions for composite event binding, but also the general purpose constructs re-
quired to implement the application part of the intended system (Section 1.3),
we had to prove first that the idea of automating the detection and handling
of composite events was feasible and beneficial. We have done that with the
present thesis.

There were two findings that encourage us to continue going in the direction
of our envisioned language. First, when using event-driven programming as a
baseline paradigm, composite events do bring about benefits in code complex-
ity and programming efficiency, as attested by the code inspections and user
study respectively. Second, the major limitations of the proposed UIMS comes
from the fact that, as in any UIMS, the interface code and the application code
are separated into two autonomous software pieces that have difficulties to ex-
change data and to refer to the internal variables of each other. These two
facts push us in the same direction: to extend the proposed notations so that
these can also describe application code, that is, to continue walking towards
a full-fledge event language with support for composite events.

Appendices

Appendix A

Theoretical background

The present appendix starts by presenting the filter applied in the section 6.2.2.
The said filtered was completely implemented with Hasselt showing that it has
the syntax required to smooth the effects of noisy data.

Then, we show that the transition networks generated from CEDL code al-
together fall within the definition of an Augmented Transition Network (ATN).

Finally, the appendix show the algorithm used for transforming composite
events into semantically equivalent finite state automata.

A.1 Exponential Smoothing Filter

An exponential smoothing filter, also known as an exponentially weighted
moving average (EWMA), is a popular filter in many different fields. The
exponential filter output is given by:

X̂n = αXn + (1− α)X̂n−1

Where α is called the dampening factor and 0 ≤ α ≤ 1. By substituting X̂n−1

this can be expanded to obtain:

X̂n =
n∑

i=0
(1− α)iXn−i

Therefore, filter output at time n is a weighted average of all past inputs,
where weights ai = α(1−αi) decrease exponentially with time (more precisely,
with geometric progression, which is the discrete version of an exponential

200 Theoretical background

function). Also, all previous inputs contribute to the smoothed filter output,
but their contribution is dampened by increasing power of parameter 1 − α.
Since X̂n depends on all past inputs, an exponential filter is said to have an
infinite memory of all past inputs.

A.2 Augmented Transition Network (ATN)

The internal data structure with which Hasselt UIMS handles the human-
machine interactions meets the characterizing features of an Augmented Tran-
sition Network (ATN) [Woods 70].

(I) Arcs with arbitrary conditions.- In an ATN, one can add to each of the
transition arcs an arbitrary condition which must be satisfied in order for the
arc to be followed [Woods 70].

The proposed SRDL, through the keyword when, allows attaching guard
conditions to any arc of the transition network. This feature was exploited in
Equation 5.5 for instance. There we only processed touch events if these were
generated by the first finger.

(II) Arcs with instructions for maintaining variables.- Information about
ATNs is encoded in registers, which are updated when the arcs are followed.
The registers can be updated in terms of their previous values, the values
of other registers, the parameters of the current input, and/or the output
of a function. They may also be interrogated by conditions on other arcs
[Woods 70].

The proposed SRDL, through the keyword assign, allows instantiating and
maintaining arbitrary sets of variables. One example is given in the definition
of mclick in Equation 5.3. There both variables t0 and t1 are set with the
value of a function, Now.TotalMilliSeconds, while traversing an arc; they
are also subsequently evaluated in a triggering condition.

(III) Recursiveness.- The labels of any arc may include not only terminal
symbols but also nonterminal symbols. When an arc labelled with a nontermi-
nal symbol is about to be traversed, the control will jump to the subnetwork
represented by that nonterminal symbol. Reaching the final state of this sub-
network will finally cause the transition represented by the arc [Woods 70].

Hasselt exhibits the aforementioned behavior every time it has to handle
composite events defined in a compositional manner. For instance, in the put-
that-there shown in Figure 5.1, every time the end user is expected to click the
mouse, the control is temporarily transferred to the subnetwork mclick and
returned to moveObject after the final state of mclick is reached.

Appendix B

Composite events in other domains

During the development of this research, we notice that the concept of com-
posite events was already discovered and studied in other domains such as
active databases and complex event processing (CEP).

Active databases appeared because the “passive” nature of traditional, re-
lational databases (e.g. they only provide information once they are queried)
damaged the efficiency of those applications requiring real-time information.
Similarly, CEP engines responded to the constant appearance of a large num-
ber of distributed applications that required continuous and timely processing
of information from the periphery to the center of the system [Cugola 12b].

B.1 Active databases as composite event processors

Timely recognition of complex event patterns may be helpful in a variety of
situations: to detect frauds from credit card transactions, to warn of natural
disasters by analyzing variations in climate, to discover misuse of an appli-
cation by tracking its event log, etc. Those series of related happenings that
reveal an occurrence of interest have been referred to as composite events in
the field of active databases for more than two decades [Gehani 92, Gehani 94,
Chakravarthy 94, Adaikkalavan 06]. More precisely, active databases, unlike
traditional relational databases, are able to react to specific circumstances of
relevance for an application [Paton 99].

The maturity reached after many years of academic research led to the de-
velopment of commercial software that performs processing of complex events,

202 Composite events in other domains

e.g. SAP Event Stream Processor1, Oracle Event Processor2, and IBM Info-
Sphere Streams3. For a company, composite events may signify threats or
opportunities that require timely responses from the business.

B.2 Complex Event Processing (CEP) as a service

Complex event processing have also been implemented in middleware plat-
forms that allow consumers to subscribe to certain event patterns. For in-
stance, Sanchez et al. [Sánchez 03] implemented a middleware that notifies
the occurrence of user-defined event patterns to avionics applications. The
publish/suscribe system Cayuga [Demers 06] was able to search for patterns
in a stream of RSS entries, e.g. blog entries, news headlines, etc. Anicic et al
[Anicic 09] created a middleware along with its underlying language and tested
it with real market stock values for the IBM company. And TRex [Cugola 12a]
was tested with simulated data (e.g. air temperature, presence of smoke, hu-
midity, etc.) from which the presence of fire had to be inferred.

There are also composite event detection servers beyond academia. Nowa-
days, companies can avoid the hassles of deploying, maintaining or scaling
infrastructure by subscribing to SaaS services that embed composite event de-
tection under the covers. RuleCore4 and Interstage Big Data Complex Event
Processing Server5 are two of these servers, but the one that will be the great-
est focus of attention will possibly be Google Cloud Dataflow. Google recently
expanded its Cloud Platform with this new service6, which helps users to get
actionable insights from examining real-time streams of data (events).

We found a major problem that prevent implementing multimodal interactions
by exploiting existing CEP engines or active databases: these tools notify their
subscribers only after the full detection of an event pattern. This is not enough
to handle multimodal interactions. Here a system must be notified during the
whole lifecycle of a complex event so that partial feedback can be provided.
Moreover, delegating event pattern detection to a CEP engine or to an active

1http://www.sap.com/pc/tech/e/software/sybase-complex-event-processing/

index.html
2http://www.oracle.com/technetwork/middleware/complex-event-processing/

overview/complex-event-processing-088095.html
3http://www-03.ibm.com/software/products/en/infosphere-streams
4http://www.rulecore.com/
5http://www.fujitsu.com/global/products/software/middleware/

application-infrastructure/interstage/solutions/big-data/bdcep/
6https://cloud.google.com/

http://www.sap.com/pc/tech/e/software/sybase-complex-event-processing/index.html
http://www.sap.com/pc/tech/e/software/sybase-complex-event-processing/index.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/complex-event-processing-088095.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/complex-event-processing-088095.html
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www.rulecore.com/
http://www.fujitsu.com/global/products/software/middleware/application-infrastructure/interstage/solutions/big-data/bdcep/
http://www.fujitsu.com/global/products/software/middleware/application-infrastructure/interstage/solutions/big-data/bdcep/
https://cloud.google.com/

B.2 Complex Event Processing (CEP) as a service 203

database would require recording user events into a database first. This may
damage the response time expected from an interactive system, and especially
if the user events are generated at a high rate, e.g. when using Kinect or
accelerometers.

204 Composite events in other domains

Appendix C

Source code

This appendix shows the Hasselt code of a representative set of applications
discussed throughout the thesis. It also includes the C# code required to
create the back-end application used in the put-that-there example.

C.1 Feedback about the error recognition inputs

Specialized feedback can be generated for each type of error recognition input,
as proven by a prototype implemented with the following code. The prototype
was discussed in Section 5.4.1 on page 91. Its behavior can be seen in the
following video1.

event moveObject = speech.move ;

speech.that + mouse.down<x1,y1> ;

speech.there + mouse.down<x2,y2>

wrt ce.moveObject

@node(1) do

assign: msg2=’what-do-i-have-to-move?’;

@node(2) do

speak: msg2;

@node(3) do

assign: msg2=’you-gotta-click-on-an-object’, msg5=’where-to-move?’;

1https://www.youtube.com/watch?v=OlETIsCoMq8

https://www.youtube.com/watch?v=OlETIsCoMq8

206 Source code

@node(4) do

assign: msg2=’i-didnt-hear-anything’, msg5=’where-to-move?’;

@node(5) do

call:PTT.frmPTT.HighlightObjectHere(x1,y1);

speak: msg5;

@node(6) do

assign: msg5=’you-had-to-click-on-the-new-position’;

@node(7) do

assign: msg5=’i-did-not-hear-anything’;

@node(8) do

call:PTT.frmPTT.PutThatThere(x1,y1,x2,y2);

C.2 Rolling back

Here we show the code of a prototype capable of undoing the highlighting and
creation of an arbitrary number of objects in response to the reset command.
The prototype can be seen in action in a publicly available video2. More
details about roll backing were discussed in Section 5.4.2 on page 92.

event mclick<x,y> = mouse.down; mouse.up<x,y>

event putThatThere = speech.move;

speech.that + ce.mclick<x1,y1>;

speech.there + ce.mclick<x2,y2>

event createObj = speech.create;

(speech.here + ce.mclick<x,y>)*;

delay-1500

event removeMany = speech.remove;

(speech.here + mouse.down<x,y>)*;

delay-1500

wrt ce.mclick<x,y>

@link(1, mouse.down) do

assign: t0 = Now.TotalMilliSeconds;

@link(2, mouse.up<x,y>) do

assign: t1 = Now.TotalMilliSeconds;

2Roll-backing with Hasselt: https://youtu.be/zcKFgZTaFhw

https://youtu.be/zcKFgZTaFhw

C.2 Rolling back 207

triggers when t1 - t0 <= 200

wrt ce.putThatThere

@node(0) do

assign:comefromfinal=0;

@node(1) do

call:PTT.frmPTT.undoLastAction();

when comefromfinal=0;

@node(5) do

speak:’where?’;

call:PTT.frmPTT.HighlightObjectHere(x1,y1);

@node(8) do

speak:’done!’;

assign:comefromfinal=1;

call:PTT.frmPTT.PutThatThere(x1,y1,x2,y2);

wrt ce.createObj

@node(0) do

assign:comefromfinal=0;

@node(1) do

assign:wasLastUnstable=0;

call:PTT.frmPTT.undoLastAction();

when comefromfinal=0;

@node(2) do

call:PTT.frmPTT.CreateObjectHere(x,y);

when x is not null and wasLastUnstable=0;

@node(3) do

assign:wasLastUnstable=1;

@node(4) do

assign:wasLastUnstable=1;

@link(3, ce.mclick<x,y>) do

assign:wasLastUnstable=0;

@link(4, speech.here) do

assign:wasLastUnstable=0;

@node(5) do

speak:’done!’;

assign:comefromfinal=1;

call:PTT.frmPTT.fogetLastActions();

208 Source code

wrt ce.removeMany

@node(0) do

assign:comefromfinal=0;

@link(1, speech.remove) do

assign:wasLastUnstable=0;

@node(1) do

call:PTT.frmPTT.undoLastAction();

when comefromfinal=0;

@node(2) do

call:PTT.frmPTT.RemoveThisObject(x,y);

when x is not null;

@node(3) do

assign:wasLastUnstable=1;

@link(3, mouse.down<x,y>) do

assign:wasLastUnstable=0;

@link(4, speech.here) do

assign:wasLastUnstable=0;

@node(4) do

assign:wasLastUnstable=1;

@node(5) do

speak:’done!’;

assign:comefromfinal=1;

call:PTT.frmPTT.fogetLastActions();

C.3 Management of of redundant inputs

This section show the code required to describe the interaction shown in a
video3 discussed in Chapter 5.

The composite event deleteNow is triggered when the end user utters ‘re-
move’ and presses the key DEL at the same time. The user-defined event
evtAsk4Confirm is triggered when only one of these two equivalent com-
mands is detected. In this case, the system will continue waiting for a confir-
mation and the composite event deleteConf will therefore be completed.

The FSA of the deleteNow and deleConf were shown in Figure 5.6 on
page 98.

event deleteNow = speech.remove + keyboard.keydown<c>

3https://www.youtube.com/watch?v=B4Zwmw6MleI

https://www.youtube.com/watch?v=B4Zwmw6MleI

C.4 Ambiguity of gestures plus and equal 209

event deleteConf = ce.evtAsk4Confirm; speech.any<answer>

event createobjs = speech.create; speech.object

wrt ce.deleteNow

@node(0) do

assign: finalreached = 1;

@node(1) do

raise: evtAsk4Confirm;

when finalreached = 0;

@node(2) do

assign: finalreached = 0;

@node(3) do

assign: finalreached = 0;

@link(1, keyboard.keydown<c>) do

when c = 46;

@link(2, keyboard.keydown<c>) do

when c = 46;

@node(4) do

call:PTT.frmPTT.RemoveAll();

assign: finalreached = 1;

wrt ce.deleteconf

@node(2) do

speak:’Do you confirm?’;

@link(2, speech.any<answer>) do

when answer = ’of course’;

@node(3) do

call:PTT.frmPTT.RemoveAll();

wrt ce.createobjs

@node(3) do

call:PTT.frmPTT.CreateObject();

C.4 Ambiguity of gestures plus and equal

The following code shows that Hasselt allows tackling the selection ambiguity
problem, which appears when two or more gestures start with the same chain

210 Source code

(a) Event equal (b) Event plus

Figure C.1: Unambiguous specification of the gestures plus and equal.

of events, or equivalently, when two gesture specifications start with the same
prefix. Here readers can see how to specify a plus and a equal gestures in
Hasselt so that the recognition of one gesture does not hinder the recognition
of the other. Both gestures start with a horizontal line whose occurrence fires
the composite event ce.left2right, declared in a separate Hasselt file. If the
ambiguity were not handled, two consecutive plus symbols would mistakenly
trigger the event equal, which is not the case for the code shown below.

event equal = ce.left2right ; ce.left2right | ce.evtplusdetected

event plus = ce.left2right ; ce.top2down | ce.evtequaldetected

wrt ce.equal

@link(2, ce.left2right) do

assign: isymbolequal = 1;

raise:evtequaldetected;

@link(2, ce.evtplusdetected) do

assign: isymbolequal = 0;

@node(3) do

speak:’equal symbol’;

when isymbolequal = 1;

C.5 Dual-faced gestures problem 211

wrt ce.plus

@link(2, ce.top2down) do

assign:isplussymbol=1;

raise:evtplusdetected;

@link(2, ce.evtequaldetected) do

assign:isplussymbol=0;

@node(3) do

speak: ’plus symbol’;

when isplussymbol=1;

The composite events left2right and top2down are defined in separated
files. What is important to know from these two events is that they will be
triggered whenever the end user performs a horizontal click or a vertical flick,
respectively.

As to the composite event equal, this is described as a sequence of two hori-
zontal flicks (Figure C.1a). The description also includes the user-defined event
evtplusdetected, which is manually fired from the composite event plus in order
to notify that the symbol plus has just been drawn. As to the composite event
equal, this is described as a sequence of two horizontal flicks (Figure C.1a).
The description also includes the user-defined event evtplusdetected, which
is manually fired from the composite event plus in order to notify that the
symbol plus has just been drawn. At runtime, the event equal will move to
node(2) every time a horizontal flick is perceived. And it will correctly go back
to its initial node if evtplusdetected is detected at this stage: the occurrence
of evtplusdetected will be indicating that the horizontal flick was just part of
the symbol plus and this the event equal should have never moved to node(2).
Because the user-defined event evtplusdetected cannot throw equal directly
to its initial state, it does that indirectly through the final state (every time
a composite event reaches the final state, it will automatically goes back to
the initial state). The flag issymbolequal is just to distinguish if the final
state was reached because the symbol equal was fully performed or because
the symbol plus was detected in the interim.

As to the composite event plus, its description is analogous to equal.

C.5 Dual-faced gestures problem

Section 9.3.2 described a complex problem therein called the dual-faced ges-
tures problem, which was illustrated with an example that involves two ges-
tures, namely a horizontal and a vertical stroke, which can be composed to

212 Source code

(a) Event horizontaldel (b) Event verticaldel (c) Event plus

Figure C.2: Unambiguous specifications of three conflicting gestures, namely vertical
flick, horizontal flick, and plus symbol

delineate a plus (+) gesture. The problem consists of specifying a vertical and
a horizontal stroke so that each stroke can fire a different system response de-
pending on whether it is performed individually or as part of the plus gesture.
Our specification for this simple instance of the dual-faced gesture problem is
shown below. This code uses a library containing the definition of horizontal
and vertical, which are triggered when the horizontal and vertical strokes
occur, respectively.

event horizontaldel= ce.horizontal; delay-600 | ce.evtplusDetected

event verticaldel= ce.vertical; delay-600 | ce.evtplusDetected

event plus= ce.horizontal ; ce.vertical | ce.evtHorizontalAlone

wrt ce.horizontaldel

@link(2, delay-600) do

speak:’horizontal-line’;

raise:evtHorizontalAlone;

wrt ce.verticaldel

@link(2, delay-600) do

speak:’vertical-line’;

raise:evtVerticalAlone;

wrt ce.plus

C.6 Couch Potato 213

@link(2, ce.vertical) do

speak:’plus-symbol’;

raise:evtplusDetected;

As to the composite event horizontaldel, it will be fired 600 milliseconds af-
ter the occurrence of a horizontal flick unless the plus gesture occurs within this
interim (Figure C.1a). The time interval of 600 milliseconds is an arbitrary pe-
riod used to decide whether ‘something else’ will come after the horizontal line
or not. If no events are detected after 600 milliseconds (i.e. if evtplusDetected
never arrives), a timeout event will be triggered (i.e. the arc labelled delay-600
in Figure C.1a will be traversed), and thus, the message ‘horizontal line’ will
be synthesized and the user-defined event evtHorizontalAlone will be fired,
as annotated in the timeout event.

As to the composite event verticaldel, it is analogous to horizontaldel.

As to the composite event plus, it will be fired when the vertical flick
is detected right after the horizontal flick (Figure C.2c), in which case, the
voice message ‘plus symbol’ (annotated in the arc labelled vertical in Fig-
ure C.2c) will be synthesized. But if there is a ‘silence’ longer than 600
milliseconds after the horizontal flick, as explained before, the user-defined
event evtHorizontalAlone will be fired. This will move the event plus to its
final state through an alternative way, lacking of system responses –the sys-
tem responses are annotated in the arc labelled vertical, but not in the arc
evtHorizontalAlone or in the final node.

C.6 Couch Potato

Part II closed with a comprehensive example showing that Hasselt UIMS can
be used to prototype multimodal, multitouch, and cross-joint interactions.
The composite events used to describe the interactions supported by Coach
Potato (see Chapter 6) are shown below. Some of these composite events were
already discussed in the thesis.

event xrighthand<xpos>= kinect.skelpos <j>

event fromR2L = ce.xrighthand<xpos1>;

ce.xrighthand<xpos2>;

ce.xrighthand<xpos3>

event fromL2R = ce.xrighthand<xpos1>;

214 Source code

ce.xrighthand<xpos2>;

ce.xrighthand<xpos3>

event wave = ce.fromR2L ; ce.fromL2R

event hi = ce.wave | speech.any<str>

event finish = kinect.useroff

event left2right = tscreen.firston<x1,y1,t1,id1>;

tscreen.move<x2,y2,spx,spy,t2,id2>*;

tscreen.lastoff

event right2left = tscreen.firston<x1,y1,t1,id1>;

tscreen.move<x2,y2,spx,spy,t2,id2>*;

tscreen.lastoff

event top2down = tscreen.firston<x1,y1,t1,id1>;

tscreen.move<x2,y2,spX,spY,t2,id2>*;

tscreen.lastoff

event down2top = tscreen.firston<x1,y1,t1,id1>;

tscreen.move<x2,y2,spX,spY,t2,id2>*;

tscreen.lastoff

event volumeDown = ce.top2down; ce.top2down*; delay-500

event volumeUp = ce.down2top; ce.down2top*; delay-500

event tap = tscreen.down<x1,y1,t1,id1>; tscreen.up<x2,y2,t2,id2>

event handfront = kinect.skelpos<skl>

event playvideo = ce.left2right + ce.handfront

event stopvideo = ce.right2left + ce.handfront

event pausevideo = ce.tap + ce.handfront

C.6 Couch Potato 215

event searchBySpeech = speech.any<str>

event digit<getBestMatch> = tscreen.down<xs[],ys[],ts[],ids[]>;

tscreen.move<xs[],ys[],spx[],spy[],ts[],ids[]>*;

tscreen.up<xn,yn,tn,idn>

event searchByTouch = ce.digit<d[]>; ce.digit<d[]>*; delay-2500

wrt ce.xrighthand<xpos>

@node(0) do

assign: prevxpos = 0;

@link(1, kinect.skelpos<j>) do

assign: xpos = 0.8 * j.HandRight.X + 0.2 * prevxpos;

@node(2) do

assign: prevxpos = xpos;

wrt ce.fromR2L

@link(1, ce.xrighthand<xpos1>) do

when xpos1 > 0;

triggers when xpos1 > xpos2 and xpos2 > xpos3

wrt ce.fromL2R

@link(1, ce.xrighthand<xpos1>) do

when xpos1 < 0;

triggers when xpos1 < xpos2 and xpos2 < xpos3

wrt ce.wave

@link(1, ce.fromR2L) do

assign: t1 = Now.TotalMilliSeconds;

@link(2, ce.fromL2R) do

assign: t2 = Now.TotalMilliSeconds;

@node(3) do

when t2 - t1 < 2000;

wrt ce.top2down

@link(2, tscreen.move<x2,y2,spX,spY,t2,id2>) do

when id1=id2;

triggers when y2 > y1 and x2 - x1 < 0.05 and x2 - x1 > -0.05

216 Source code

wrt ce.down2top

@link(2, tscreen.move<x2,y2,spX,spY,t2,id2>) do

when id1=id2;

triggers when y2 < y1 and x2 - x1 < 0.05 and x2 - x1 > -0.05

wrt ce.volumeDown

@link(1, ce.top2down) do

assign:N=1;

@link(2, ce.top2down) do

assign:N=N+1;

@node(3) do

call:WinMediaPlayer.Form1.volumeDown(N);

wrt ce.volumeUp

@link(1, ce.down2top) do

assign:N=1;

@link(2, ce.down2top) do

assign:N=N+1;

@node(3) do

call:WinMediaPlayer.Form1.volumeUp(N);

wrt ce.hi

@link(1, speech.any<str>) do

when str in (’hello’, ’hi’);

@node(2) do

call:WinMediaPlayer.Form1.makePlayerVisible();

wrt ce.finish

@node(2) do

call:WinMediaPlayer.Form1.makePlayerInisible();

wrt ce.left2right

@link(2, tscreen.move<x2,y2,spx,spy,t2,id2>) do

when id1 = id2;

triggers when x2 > x1 and y2 - y1 < 0.05 and y2 - y1 > -0.05

wrt ce.right2left

@link(2, tscreen.move<x2,y2,spx,spy,t2,id2>) do

C.6 Couch Potato 217

when id1 = id2;

triggers when x2 < x1 and y2 - y1 < 0.05 and y2 - y1 > -0.05

wrt ce.tap

@link(1, tscreen.down<x1,y1,t1,id1>) do

assign: tini = Now.TotalMilliSeconds;

@link(2, tscreen.up<x2,y2,t2,id2>) do

assign: tfin = Now.TotalMilliSeconds;

triggers when id1=id2 and tfin-tini <= 200 and x1=x2 and y1=y2

wrt ce.handfront

triggers when skl.HandRight.Z < skl.Head.Z - 0.35

wrt ce.playvideo

@node(4) do

call:WinMediaPlayer.Form1.play();

wrt ce.stopvideo

@node(4) do

call:WinMediaPlayer.Form1.stop();

wrt ce.pausevideo

@node(4) do

call:WinMediaPlayer.Form1.pause();

wrt ce.searchBySpeech

@node(2) do

call:WinMediaPlayer.Form1.scrollVideos(str);

wrt ce.digit<getBestMatch>

@link(2, tscreen.up<xn,yn,tn,idn>) do

call:gest2d.utils.getBestMatch(xs,ys,ts);

triggers when getBestMatch <> ’none’

wrt ce.searchByTouch

@node(3) do

call:WinMediaPlayer.Form1.chooseVideo(d);

218 Source code

C.7 Back-end application for the put-that-there

The back-end windows form used in the put-that-there example and whose GUI
is seen in Figure 4.3a, was encoded as follows. Notice that this application does
not require sensing the external environment since is done by Hasselt UIMS.
Programmers only have to implement application-specific functionality.

A high percentage of the presented C# code is auto-generated by MS Vi-
sual Studio.

C.7 Back-end application for the put-that-there 219

Algorithm 6 C# back-end code for the put-that-there system

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms

namespace ptt {

[Description(“Back-end of a PutThatThere system”)]
public partial class frmPTT:Form {

public frmPTT()
{

InitializeComponent();
}
public void PutThatThere(x1, y1, x2, y2)
{

Button b = (Button) this.GetChildAtPoint(new Point(x1, y1));
if(b!= null)
{

b.Location = new Point(x2, y2);
b.FlatStyle = FlatStyle.Flat;
}
}
public void HighlightObjectOn(x, y)
{

Button b = (Button) this.GetChildAtPoint(new Point(x, y));
if(b!= null) b.FlatStyle = FlatStyle.Standard;
}
}
}

220 Source code

Appendix D

User study

The first part of this appendix will show the tutorial used for training partic-
ipants before the user study. The second part will show the two instruction
sheets participants used during the study. Then, we will give a brief overview
to help the reader understand the statistical analysis carried out in this re-
search. Finally, the appendix presents the raw data collected during the user
study. Finally, the appendix provides

D.1 Tutorial for user studies

The tutorial consists of creating and running two Hello world-like examples
with Hasselt. Similar to the user study, the tutorial is divided into two parts.
The first part requires participants to use the textual languages CEDL and
SRDL; the second part requires them to use the visual language HMD2L.

As it can be seen, the tutorial is quite simple. It does not give any definition
about composite events or mention its advantages. It does not mention the
syntax of Hasselt, e.g. that the variables within angular brackets are event
parameters. The user is expected to infer this on the fly.

The goal of the tutorial is to provide participants with practical knowl-
edge about how to edit, test, and debug Hasselt programs. Participants are
expected to have a feeling of how to use the auto-completion popups, how to
draw the nodes, links, etc.

The content of the tutorial is shown below.

EVALUATION OF HASSELT

Hasselt is a family of interrelated languages aimed at describing multimodal interfaces. It consists of:

- Composite Event Definition Language (CEDL)
- System Response Definition Language (SRDL)
- Human-Machine Dialog Definition Language (HMD2L)

In the first part of the experiment we are going to evaluate the CEDL and SRDL. In the second part, we will
evaluate the HMD2L. The following is intended to get the user acquainted with the programming environment.

FIRST PART

A) My first program: Hello World!

Click on the option “Hasselt editor” of the “View” menu (or press Ctrl + H). The Hasselt’s text editor shown in

Figure 1 must be opened.

Figure 1. Hasselt’s text editors for the CEDL and SRDL

222 User study

a) Use the CEDL editor to declare a composite event as follows:

event foo = mouse.down<x,y> ; keyboard.keydown<ch>

You are defining the occurrence of a mouse click followed by a keystroke as one composite event called
foo. Click on the option “Parse Composite Events” of the menu “Debug” (or press Ctrl+1).

b) Now, let’s instruct the toolkit to synthesize the sentence ‘Hello World!’ after detecting the composite
event foo. To do this, go to the SRDL editor and write

wrt ce.foo
 @node(3) do
 speak:'Hello world!';

Notice that after writing the first line, i.e. wrt ce.foo, a finite state automaton appears in the right bottom
frame of the Hasselt’s editor. The number 3 in @node(3) matches with the final state of this automaton.
The term wrt stands for ‘with respect to’; and ce, for ‘composite event’.

c) To verify the correctness of this code, click on the option “Parse Feedback Annotations” of the menu
“Debug” (or press Ctrl+2). If an error window message appears, you must solve the issue.

d) Click on the option “Run Prototype” of the menu “Debug” (or press F5).

e) A ‘green light’ in the status bar will indicate that runtime mode is activated. Most importantly, every time a
mouse click is followed by a keystroke, you will hear ‘Hello World!’

f) Click on “Stop Prototype” (or press Ctrl+F5). The green light will switch to ‘red’.

D.1 Tutorial for user studies 223

How to debug Hasselt programs?

Open the Variable Browser (Ctrl + B), Event Viewer (Alt + V), and State Diagrams Viewer (Ctrl + M).

Now, run the program again (F5).

For the foo example, the variable browser will display the position of the mouse click and the ASCII

code of the key that was pressed. The event viewer will list every event detected by the toolkit

recognizers regardless of it is involved in the definition of foo or not. The state diagrams viewer

displays animations indicating how the progressive detection of foo is going on.

Figure 2. Runtime environment. Debugging tools.

224 User study

SECOND PART

Creating context-dependent dialogs

The Human-Machine Dialog Definition Language (HMD2L) aims at describing context-dependent human-

machine dialogs. To use it, click on the “Context System Visual Editor” of menu “View” (or press Ctrl + Q).

a) Load the file Hasselt_tutorial2.xml located in the Desktop\UserStudies\tutorial2 directory.

b) Syntax-check the composite events (Ctrl + 1) and the system responses (Ctrl + 2)

c) Depict the model seen in Figure 3 in the Hasselt’s visual editor.

d) Run the program (F5). Notice that the commands create-object, move-that-there, and remove-everything

can only be issued in this particular order.

Figure 3. Hasselt visual editor.

[Test the editor. How to draw loops]

D.1 Tutorial for user studies 225

226 User study

D.2 User study tasks

This section shows the instruction sheets given to participants during the user
study. Participants were given one instruction sheet at a time.

The content of the instruction sheets is shown in the next pages.

D.3 Statistical tools

Some of the statistical tools used to analyze our data is described below.

D.3.1 Boxplot

In descriptive statistics, a boxplot is a convenient way of graphically depict-
ing groups of numerical data through their quartiles. Boxplots also have lines
extending vertically from the boxes (whiskers) indicating variability outside
the upper and lower quartiles. Outliers are plotted as individual points. Box-
plots are non-parametric: they display variation in samples of a statistical
population without making any assumptions of the underlying statistical dis-
tribution.

According to the R documentation, by default, R places the plot whiskers
at the lowest datum still within 1.5×IQR of the lower quartile, and the highest
datum still within 1.5 × IQR of the upper quartile –where the interquartile
range (IQR) is the difference between the upper and lower quartiles1.

D.3.2 Q-Q normality plots

The Q-Q normality plot is a graphical technique to identify substantive de-
partures from normality. The package R can generate this plots with the
command qqnorm2. If the data are truly sampled from a Gaussian distribu-
tion, the points of the Q-Q plot are expected to line up on the line of Identity
(i.e. y = x). Systematic deviation from this ideal is evidence that the data
are not sampled from a Gaussian distribution.

In our comparisons, we want to use paired t-tests to evaluate our hypothe-
ses. However, we could not guarantee the normality of the pair differences
(e.g. Completion timeHasselt–Completion timeC#), which is an assumption
to be met before applying t-tests.

1http://127.0.0.1:28234/library/graphics/html/boxplot.html
2http://127.0.0.1:16862/library/stats/html/qqnorm.html

http://127.0.0.1:28234/library/graphics/html/boxplot.html
http://127.0.0.1:16862/library/stats/html/qqnorm.html

EXPERIMENT 1. Evaluating the Hasselt CEDL and the Hasselt SRDL.

You will be presented with a windows form that supports the following commands:

a) Creation of objects: By uttering ‘create object’, the user can create colored

buttons on the form (in a random position).

b) Displacement of objects: The user can utter ‘move that there’ while pointing

on an object and on its intended position.

You will have to make modify the creation:

 The user must choose the location of the objects he/she creates. He/she must utter

‘create object here’. The word ‘here’ must be disambiguated with a mouse click.

Note 1: Do not make any assumption about the order in which the speech
input or the mouse click will be detected. The speech input ‘here’ and the
mouse click are considered simultaneous if they are detected within an interval
of 1500 milliseconds.

Note 2: Save your source code before entering into runtime mode.

D.3 Statistical tools 227

EXPERIMENT 2. Evaluating the Hasselt HMD2L

The system you will have to work with can support the following commands:

a) Create objects: The user can create a objects in a given position by

uttering

create object + (click)

b) Remove objects: The user can remove all the objects from the canvas by

saying

remove everything

You will have to make the following modifications to the system:

 Unlike the original version, all the commands will not be active at every

time. Users will only be able to issue the command remove-everything if there are

objects in the canvas. The canvas is initially empty.

Note 1: Compile the composite events (Ctrl + 1) and system responses

(Ctrl + 2) before editing the visual model.

Note 2: Save your source code before entering into runtime mode.

228 User study

D.4 Raw data 229

D.3.3 Wilcoxon signed-rank test

The Wilcoxon signed-rank test can be used to compare paired data as non-
parametric alternatives to the paired t-test; it is used when you cannot justify
a normality assumption for the differences [Elliott 07]. Nonparametric tests
are used when the assumptions for a standard parametric (e.g. normality)
cannot be reasonably assumed. Nonparametric tests are often less powerful
than their parametric cousins and should be used only when the parametric
tests is not appropriate [Elliott 07].

The package R performs this nonparametric test through the command
wilcoxsign test3.

D.4 Raw data

The data collected from the 12 participants in both experiments is shown
below. The two zeroes in the table shown in Figure D.1, a indicate that the
participants could not finish the test.

D.5 Other standardized questionnaires

As we mentioned in the thesis, we used the SEQ questionnaire to measure
the difficulty of the programming tasks and the SUS questionnaire to evaluate
the usability of Hasselt UIMS. These decisions were made after evaluating the
following pool of standardized tests.

D.5.1 Standardized post-task tests

• The NASA task load index (NASA-TLX) is a multi-dimensional rating
procedure that provides an overall workload score based on a weighted
average of ratings in six subscales. Each dimension is rated for each task
within a 100-points range with 5-point steps [Hart 88].

• The Subjective Mental Effort Questionnaire (SMEQ) is a single item
questionnaire in which participants have to put a checkmark on a vertical
line that serves as a continuous scale. The scale includes nine labels –
from “Not at all hard to do” to “Tremendously hard to do” [Sauro 09].

3http://127.0.0.1:16862/library/coin/html/SymmetryTests.html

http://127.0.0.1:16862/library/coin/html/SymmetryTests.html

230 User study

(a) Completion time. Those participants who could not
complete a programming task are shown with a completion
time of 0 mins.

(b) Code testing effort

(c) Perceived ease

Figure D.1: Raw data collected in the first experiment.

D.5 Other standardized questionnaires 231

(a) Completion time. Those participants who could not
complete a programming task are shown with a completion
time of 0 mins.

(b) Code testing effort

(c) Perceived ease

Figure D.2: Raw data collected in the second experiment.

232 User study

(a) SUS scores per question

Figure D.3: Raw data collected from the SUS questionnaires for the 12 participants.

• The Single Ease Question (SEQ) questionnaire, which is a 7-point rating
scale (Figure 8.3) aimed to assess the perceived difficulty (or perceived
easiness, depending on one’s perspective) of a task [Sauro 09].

D.5.2 Standardized usability tests

• The Cognitive Dimensions Questionnaire [Blackwell 00] consisting of five
sections, one of which includes 34 open questions enclosed in 14 groups,
each group referring to one of the well-known Cognitive Dimensions
[Green 89]. The participants are not expected to answer all the ques-
tions; rather, they can choose by themselves depending on what aspects
of the system they want to criticize.

• The System Usability Scale (SUS) consisting of 10 items with 5 response
options (Figure 8.4). To have a benchmark to compare SUS scores,
Lewis et al. shared statistical information that summarizes more than
300 usability evaluations. [Lewis 09].

Bibliography

[Adaikkalavan 06] Raman Adaikkalavan & Sharma Chakravarthy.
SnoopIB: interval-based event specification and de-
tection for active databases. Data & Knowledge
Engineering Jour., vol. 59, no. 1, pages 139–165, 2006.

[Alexandron 12] Giora Alexandron, Michal Armoni, Michal Gordon &
David Harel. The effect of previous programming expe-
rience on the learning of scenario-based programming.
In Proceedings of the 12th Koli Calling International
Conference on Computing Education Research, pages
151–159. ACM, 2012.

[Anicic 09] Darko Anicic, Paul Fodor, Roland Stuhmer & Nenad
Stojanovic. Event-driven approach for logic-based com-
plex event processing. In Computational Science and
Engineering, 2009. CSE’09. International Conference
on, volume 1, pages 56–63. IEEE, 2009.

[Baeten 05] JCM Baeten. A brief history of process algebra. The-
oretical Computer Science, vol. 335, no. 2-3, page 131,
2005.

[Bansal 13] A.K. Bansal. Introduction to programming languages.
CRC Press, 2013.

[Bass 88] Len Bass, Erik Hardy, Kurt Hoyt, M Reed Little Jr &
Robert Seacord. Introduction to the Serpent User In-
terface Management System. Rapport technique, DTIC
Document, 1988.

234 BIBLIOGRAPHY

[Beaudouin-Lafon 94] Michel Beaudouin-Lafon. User interface management
systems: Present and future. In From object mod-
elling to advanced visual communication, pages 197–
223. Springer, 1994.

[Beaudouin-Lafon 03] Michel Beaudouin-Lafon & Wendy E Mackay. Proto-
typing tools and techniques. Human Computer Interac-
tion—Development Process, pages 122–142, 2003.

[Beaudouin-Lafon 04] Michel Beaudouin-Lafon. Designing interaction, not in-
terfaces. In Proceedings of the working conference on
Advanced visual interfaces, pages 15–22. ACM, 2004.

[Ben-Ari 01] Mordechai Ben-Ari. Constructivism in computer sci-
ence education. Journal of Computers in Mathematics
and Science Teaching, vol. 20, no. 1, pages 45–73, 2001.

[Blackwell 00] Alan F Blackwell & Thomas RG Green. A Cognitive
Dimensions questionnaire optimised for users. In Pro-
ceedings of the Twelfth Annual Meeting of the Psychol-
ogy of Programming Interest Group, pages 137–152,
2000.

[Bolt 80] Richard Bolt. Put-that-there: Voice and gesture at the
graphics interface. In Proc. of SIGGRAPH’ 80. ACM,
1980.

[Bornat 07] Richard Bornat. Understanding and Writing
Compilers–A Do-it-yourself Guide. 2007.

[Bourguet 02] Marie-Luce Bourguet. A toolkit for creating and test-
ing multimodal interface designs. In Proc. of UIST’02,
pages 29–30, 2002.

[Bourguet 03] Marie-Luce Bourguet. Designing and Prototyping Mul-
timodal Commands. In Proceedings of INTERACT’03,
pages 717–720, 2003.

[Brooke 96] John Brooke. SUS-A quick and dirty usability scale.
Usability evaluation in industry, vol. 189, no. 194, pages
4–7, 1996.

BIBLIOGRAPHY 235

[Brooks 87] Frederik P Brooks & No Silver Bullet. Essence and acci-
dents of software engineering. IEEE computer, vol. 20,
no. 4, pages 10–19, 1987.

[Brown 95] James Dean Brown. The elements of language curricu-
lum: A systematic approach to program development.
ERIC, 1995.

[Cardelli 85] Luca Cardelli & Rob Pike. Squeak: a language for com-
municating with mice. In ACM SIGGRAPH Computer
Graphics, volume 19, pages 199–204. ACM, 1985.

[Chakravarthy 94] Sharma Chakravarthy & Deepak Mishra. Snoop:
An Expressive Event Specification Language for Ac-
tive Databases. Data & Knowledge Engineering Jour.,
vol. 14, no. 1, pages 1–26, 1994.

[Chen 08] W W L Chen. Discrete mathematics. Macquarie Uni-
versity, 2008.

[Cirelli 14] Mauricio Cirelli & Ricardo Nakamura. A Survey
on Multi-touch Gesture Recognition and Multi-touch
Frameworks. In Proc. of the Ninth ACM Interna-
tional Conference on Interactive Tabletops and Sur-
faces, pages 35–44. ACM, 2014.

[Cohen 97] Philip R Cohen, Michael Johnston, David McGee,
Sharon Oviatt, Jay Pittman, Ira Smith, Liang Chen &
Josh Clow. QuickSet: Multimodal interaction for dis-
tributed applications. In Proceedings of the fifth ACM
international conference on Multimedia, pages 31–40.
ACM, 1997.

[Coutaz 95] Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann
Blandford, Jon May & Richard M Young. Four easy
pieces for assessing the usability of multimodal inter-
action: the CARE properties. In InterAct, volume 95,
pages 115–120, 1995.

[Cuenca 13a] Fredy Cuenca. The CoGenIVE Concept Revisited: A
Toolkit for Prototyping Multimodal Systems. In Pro-
ceedings of the 5th ACM SIGCHI Symposium on En-

236 BIBLIOGRAPHY

gineering Interactive Computing Systems, EICS ’13,
pages 159–162, New York, NY, USA, 2013. ACM.

[Cuenca 13b] Fredy Cuenca, Davy Vanacken, Karin Coninx & Kris
Luyten. Assessing the support provided by a toolkit for
rapid prototyping of multimodal systems. In Proceed-
ings of the 5th ACM SIGCHI symposium on Engineer-
ing interactive computing systems (EICS’13), pages
307–312. ACM, 2013.

[Cuenca 14a] Fredy Cuenca, Karin Coninx, Kris Luyten & Davy
Vanacken. Graphical Toolkits for Rapid Prototyping of
Multimodal Systems: A Survey. Interacting with Com-
puters, 2014.

[Cuenca 14b] Fredy Cuenca, Jan Van der Bergh, Kris Luyten & Karin
Coninx. A Domain-Specific Textual Language for Rapid
Prototyping of Multimodal Interactive Systems. In Proc.
of EICS’14. ACM, 2014.

[Cuenca 15a] Fredy Cuenca, Jan Van den Bergh, Kris Luyten &
Karin Coninx. Empirical Study: Comparing Hasselt
with C# to Describe Multimodal Dialogs. In Proceed-
ings of the First International Workshop on Human
Factors in Modeling (HuFaMo 2015), MODELS’15,
pages 25–32. CEUR Workshop Proceedings, 2015.

[Cuenca 15b] Fredy Cuenca, Jan Van den Bergh, Kris Luyten &
Karin Coninx. Hasselt UIMS: A Tool for Describing
Multimodal Interactions with Composite Events. In
Proceedings of the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS ’15,
pages 226–229, New York, NY, USA, 2015. ACM.

[Cuenca 15c] Fredy Cuenca, Jan Van den Bergh, Kris Luyten &
Karin Coninx. A user study for comparing the program-
ming efficiency of modifying executable multimodal in-
teraction descriptions. A domain-specific language ver-
sus equivalent event-callback code. In To appear in
the Proceedings of the sixth workshop on Evaluation
and Usability of Programming Languages and Tools
(PLATEAU 2015), PLATEAU’15. ACM, 2015.

BIBLIOGRAPHY 237

[Cugola 12a] Gianpaolo Cugola & Alessandro Margara. Complex
event processing with T-Rex. Journal of Systems and
Software, vol. 85, no. 8, pages 1709–1728, 2012.

[Cugola 12b] Gianpaolo Cugola & Alessandro Margara. Processing
flows of information: From data stream to complex
event processing. ACM Computing Surveys (CSUR),
vol. 44, no. 3, page 15, 2012.

[Cuppens 04] Erwin Cuppens, Chris Raymaekers & Karin Coninx.
{VRIXML}: A User Interface Description Language
for Virtual Environments. 2004.

[De Boeck 07] Joan De Boeck, Davy Vanacken, Chris Raymaekers &
Karin Coninx. High level modeling of multimodal in-
teraction techniques using NiMMiT. Journal of Virtual
Reality and Broadcasting, vol. 4, no. 2, 2007.

[De Boeck 08] Joan De Boeck, Chris Raymaekers & Karin Coninx.
A tool supporting model based user interface design in
3d virtual environments. In Grapp 2008: proceedings of
the third international conference on computer graphics
theory and applications, pages 367–375, 2008.

[De Boeck 09] Joan De Boeck, Chris Raymaekers & Karin Coninx.
CoGenIVE: Building 3D Virtual Environments Using a
Model Based User Interface Design Approach. In Com-
puter Vision and Computer Graphics. Theory and Ap-
plications, pages 83–96. Springer, 2009.

[de Ruiter 88] Maurice M de Ruiter. Advances in computer graphics
iii, volume 3. Springer Science & Business Media, 1988.

[DeMarco 89] Tom DeMarco & Tim Lister. Software development:
state of the art vs. state of the practice. In Proceed-
ings of the 11th international conference on Software
engineering, pages 271–275. ACM, 1989.

[Demers 06] Alan Demers, Johannes Gehrke, Mingsheng Hong,
Mirek Riedewald & Walker White. Towards expressive
publish/subscribe systems. In Advances in Database
Technology-EDBT 2006, pages 627–644. Springer,
2006.

238 BIBLIOGRAPHY

[Dietz 01] Paul Dietz & Darren Leigh. DiamondTouch: a multi-
user touch technology. In Proceedings of the 14th an-
nual ACM symposium on User interface software and
technology, pages 219–226. ACM, 2001.

[Dragicevic 04a] Pierre Dragicevic & Jean-Daniel Fekete. Support for
Input Adaptability in the ICON Toolkit. In Proc. of
the ICMI, pages 212–219, New York, NY, USA, 2004.
ACM.

[Dragicevic 04b] Pierre Dragicevic & Jean-Daniel Fekete. Support for
input adaptability in the ICON toolkit. In Proc. of
ICMI’04, pages 212–219. ACM, 2004.

[Dumas 09] B. Dumas, D. Lalanne & S. Oviatt. Multimodal In-
terfaces: A Survey of Principles, Models and Frame-
works. Human Machine Interaction, vol. 5440, pages
3–26, 2009.

[Dumas 10] Bruno Dumas, Denis Lalanne & Rolf Ingold. Descrip-
tion Languages for Multimodal Interaction: A Set of
Guidelines and its Illustration with SMUIML. Journal
of multimodal user interfaces, vol. 3, no. 3, pages 237–
247, 2010.

[Dumas 14] Bruno Dumas, Beat Signer & Denis Lalanne. A graphi-
cal editor for the SMUIML multimodal user interaction
description language. Science of Computer Program-
ming, vol. 86, pages 30–42, 2014.

[Elliott 07] Alan C Elliott & Wayne A Woodward. Statistical anal-
ysis quick reference guidebook: With spss examples.
Sage, 2007.

[Flecchia 87] Mark A Flecchia & R Daniel Bergeron. Specifying com-
plex dialogs in ALGAE. In ACM SIGCHI Bulletin, vol-
ume 18, pages 229–234. ACM, 1987.

[Floyd 79] Robert W Floyd. The paradigms of programming. Com-
munications of the ACM, vol. 22, no. 8, pages 455–460,
1979.

BIBLIOGRAPHY 239

[Friedl 15] Susanne Friedl. Design Solutions for Cross-Device In-
teraction Issues. 2015.

[Gehani 92] Narain H Gehani, Hosagrahar V Jagadish & Oded
Shmueli. Event Specification in an Active Object-
Oriented Database. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, pages 81–90, 1992.

[Gehani 94] Narain Gehani, HV Jagadish & Oded Shmueli. COM-
POSE A System For Composite Event Specification and
Detection. In Book chapter in Advanced Database Con-
cepts and Research Issues. Springer Verlag, 1994.

[Gibbon 12] Dafydd Gibbon, Inge Mertins & Roger K Moore. Hand-
book of multimodal and spoken dialogue systems: re-
sources, terminology and product evaluation, volume
565. Springer Science & Business Media, 2012.

[Gordon 95] V Scott Gordon & James M Bieman. Rapid prototyping:
lessons learned. IEEE software, vol. 12, no. 1, pages 85–
95, 1995.

[Green 85] Mark Green. The University of Alberta user inter-
face management system. ACM SIGGRAPH Computer
Graphics, vol. 19, no. 3, pages 205–213, 1985.

[Green 89] Thomas RG Green. Cognitive dimensions of notations.
A. Sutcliffe and Macaulay, editors, People and Com-
puters V, pages 443–460, 1989.

[Green 96] T. Green & M. Petre. Usability analysis of visual pro-
gramming environments: a cognitive dimensions frame-
work. Journal of Visual Languages & Computing, vol. 7,
no. 2, pages 131–174, 1996.

[Grossman 09] Tovi Grossman, George Fitzmaurice & Ramtin Attar. A
survey of software learnability: metrics, methodologies
and guidelines. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages
649–658. ACM, 2009.

240 BIBLIOGRAPHY

[Hamon 13] Arnaud Hamon, Philippe Palanque, José Lu´s Silva,
Yannick Deleris & Eric Barboni. Formal description
of multi-touch interactions. In Proceedings of the
EICS’14, pages 207–216. ACM, 2013.

[Harel 85] David Harel & Amir Pnueli. On the development of
reactive systems. Springer, 1985.

[Hart 88] Sandra G Hart & Lowell E Staveland. Development
of NASA-TLX (Task Load Index): Results of empiri-
cal and theoretical research. Advances in psychology,
vol. 52, pages 139–183, 1988.

[Hartson 88] H.R. Hartson & D. Hix. Advances in human-computer
interaction. Numeéro v. 2 in ADVANCES IN HUMAN-
COMPUTER INTERACTION. Ablex Publishing Cor-
poration, 1988.

[Hill 86] Ralph D. Hill. Supporting Concurrency, Communica-
tion, and Synchronization in Human-computer Interac-
tion&Mdash;the Sassafras UIMS. ACM Trans. Graph.,
vol. 5, no. 3, pages 179–210, July 1986.

[Hoste 11] Lode Hoste, Bruno Dumas & Beat Signer. Mudra: a
unified multimodal interaction framework. In Proc. of
ICMI’11, pages 97–104. ACM, 2011.

[Hoste 14] Lode Hoste & Beat Signer. Criteria, Challenges and
Opportunities for Gesture Programming Languages.
Proc. of EGMI, pages 22–29, 2014.

[Hürsch 95] Walter L Hürsch & Cristina Videira Lopes. Separation
of concerns. 1995.

[Jacob 99] R. Jacob, L. Deligiannidis & S. Morrison. A software
model and specification language for non-WIMP user
interfaces. ACM Transactions on Computer-Human In-
teraction (TOCHI), vol. 6, no. 1, pages 1–46, 1999.

[Jensen 97] Kurt Jensen. A brief introduction to coloured petri nets.
In Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 203–208. Springer, 1997.

BIBLIOGRAPHY 241

[Kasik 82] David J Kasik. A user interface management system.
In ACM SIGGRAPH Computer Graphics, volume 16,
pages 99–106. ACM, 1982.

[Khandkar 10] Shahedul Huq Khandkar & Frank Maurer. A domain
specific language to define gestures for multi-touch ap-
plications. In Proceedings of the 10th Workshop on
Domain-Specific Modeling, page 2. ACM, 2010.

[Kin 09] Kenrick Kin, Maneesh Agrawala & Tony DeRose. De-
termining the benefits of direct-touch, bimanual, and
multifinger input on a multitouch workstation. In Pro-
ceedings of Graphics interface 2009, pages 119–124.
Canadian Information Processing Society, 2009.

[Kin 12a] K. Kin, B. Hartmann, T. DeRose & M. Agrawala. Pro-
ton++: a customizable declarative multitouch frame-
work. In Proceedings of the 25th annual ACM sym-
posium on User interface software and technology
(UIST’12), pages 477–486, 2012.

[Kin 12b] Kenrick Kin, Björn Hartmann, Tony DeRose & Ma-
neesh Agrawala. Proton: multitouch gestures as regular
expressions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’12),
pages 2885–2894, 2012.

[König 10] Werner König, Roman Rädle & Harald Reiterer. Inter-
active design of multimodal user interfaces. Journal on
Multimodal User Interfaces, vol. 3, no. 3, pages 197–
213, 2010.

[Kosar 12] Tomaž Kosar, Marjan Mernik & Jeffrey C Carver. Pro-
gram comprehension of domain-specific and general-
purpose languages: comparison using a family of exper-
iments. Empirical software engineering, vol. 17, no. 3,
pages 276–304, 2012.

[Lalanne 09] Denis Lalanne, Laurence Nigay, philippe Palanque,
Peter Robinson, Jean Vanderdonckt & Jean-François

242 BIBLIOGRAPHY

Ladry. Fusion Engines for Multimodal Input: A Sur-
vey. In Proceedings of the 2009 International Confer-
ence on Multimodal Interfaces, ICMI-MLMI ’09, pages
153–160, New York, NY, USA, 2009. ACM.

[Lavrakas 08] Paul J Lavrakas. Encyclopedia of survey research meth-
ods. Sage Publications, 2008.

[Lawson 09] Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean
Vanderdonckt & Benoit Macq. An open source work-
bench for prototyping multimodal interactions based on
off-the-shelf heterogeneous components. In Proceedings
of the EICS’09, pages 245–254. ACM, 2009.

[Lewis 09] James R Lewis & Jeff Sauro. The factor structure of
the system usability scale. In Human Centered Design,
pages 94–103. Springer, 2009.

[Mei 09] Y. Mei & S. Madden. Zstream: a cost-based query pro-
cessor for adaptively detecting composite events. In Pro-
ceedings of the 2009 ACM SIGMOD International Con-
ference on Management of data, pages 193–206. ACM,
2009.

[Murata 89] Tadao Murata. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, vol. 77, no. 4,
pages 541–580, 1989.

[Myers 90] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Edward Pervin,
Andrew Mickish & Philippe Marchal. Garnet: Compre-
hensive support for graphical, highly interactive user in-
terfaces. Computer, vol. 23, no. 11, pages 71–85, 1990.

[Myers 92] Brad A Myers & Mary Beth Rosson. Survey on user
interface programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 195–202. ACM, 1992.

[Myers 94] Brad Myers. User Interface Software Tools. Rapport
technique, Pittsburgh, PA, USA, 1994.

BIBLIOGRAPHY 243

[Myers 98] Brad A Myers. A brief history of human-computer in-
teraction technology. interactions, vol. 5, no. 2, pages
44–54, 1998.

[Myers 00] Brad Myers, Scott E Hudson & Randy Pausch. Past,
present, and future of user interface software tools.
ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 7, no. 1, pages 3–28, 2000.

[Navarre 09] David Navarre, Philippe Palanque, Jean-Francois
Ladry & Eric Barboni. ICOs: A Model-Based User In-
terface Description Technique dedicated to Interactive
Systems Addressing Usability, Reliability and Scalabil-
ity. ACM Transactions on Computer-Human Interac-
tion, vol. 16, no. 4, 2009.

[Neal 89] Jeannette G Neal, CY Thielman, Zuzanna Dobes, Su-
san M Haller & Stuart C Shapiro. Natural language
with integrated deictic and graphic gestures. In Pro-
ceedings of the workshop on Speech and Natural Lan-
guage, pages 410–423. Association for Computational
Linguistics, 1989.

[Newman 68] William M Newman. A system for interactive graphical
programming. In Proceedings of the April 30–May 2,
1968, spring joint computer conference, pages 47–54.
ACM, 1968.

[Obrenovic 04] Zeljko Obrenovic & Dusan Starcevic. Modeling multi-
modal human-computer interaction. Computer, vol. 37,
no. 9, pages 65–72, 2004.

[Olsen Jr 83] Dan R Olsen Jr & Elizabeth P Dempsey. SYNGRAPH:
A graphical user interface generator. In ACM SIG-
GRAPH Computer Graphics, volume 17, pages 43–50.
ACM, 1983.

[Olsen Jr 86] Dan R Olsen Jr. MIKE: the menu interaction kontrol
environment. ACM Transactions on Graphics (TOG),
vol. 5, no. 4, pages 318–344, 1986.

244 BIBLIOGRAPHY

[Olsen Jr 87] Dan R Olsen Jr. Larger issues in user interface manage-
ment. ACM SIGGRAPH Computer Graphics, vol. 21,
no. 2, pages 134–137, 1987.

[Olsen Jr 89] Dan R Olsen Jr. A programming language basis for user
interface. In ACM SIGCHI Bulletin, volume 20, pages
171–176. ACM, 1989.

[Oney 14] Stephen Oney, Brad Myers & Joel Brandt. InterState:
Interaction-Oriented Language Primitives for Express-
ing GUI Behavior. In Proc. of UIST’14. ACM, 2014.

[Oviatt 99] Sharon Oviatt. Ten myths of multimodal interaction.
Communications of the ACM, vol. 42, no. 11, pages
74–81, 1999.

[Oviatt 03] Sharon Oviatt. Multimodal Interfaces. In The Hu-
man Computer Interaction Handbook: Fundamen-
tals, Evolving technologies and Emerging Applications,
2003.

[Paterno 12] Fabio Paterno. Model-based design and evaluation of
interactive applications. Springer Science & Business
Media, 2012.

[Paton 99] Norman W Paton & Oscar D´az. Active database sys-
tems. ACM Computing Surveys (CSUR), vol. 31, no. 1,
pages 63–103, 1999.

[Rowland 15] Claire Rowland, Elizabeth Goodman, Martin Charlier,
Ann Light & Alfred Lui. Designing connected products:
Ux for the consumer internet of things. ” O’Reilly Me-
dia, Inc.”, 2015.

[Samek 03] Miro Samek. Who Moved My State? Dr. Dobb’s Jour-
nal, 2003.

[Samek 09] Miro Samek. A crash course in UML state machines.
Embedded. com, 2009.

[Sánchez 03] César Sánchez, Sriram Sankaranarayanan, Henny
Sipma, Ting Zhang, David Dill & Zohar Manna. Event

BIBLIOGRAPHY 245

correlation: Language and semantics. In Embedded
Software, pages 323–339. Springer, 2003.

[Sauro 05] Jeff Sauro & Erika Kindlund. How long should a task
take? identifying specification limits for task times in
usability tests. In Proceeding of the Human Computer
Interaction International Conference (HCII 2005), Las
Vegas, USA, 2005.

[Sauro 09] Jeff Sauro & Joseph S Dumas. Comparison of three
one-question, post-task usability questionnaires. In Pro-
ceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1599–1608. ACM, 2009.

[Scharf 13] Florian Scharf, Christian Wolters, Michael Herczeg &
Jörg Cassens. Cross-Device Interaction : Definition,
Taxonomy and Application. In Maarten Weyn, edi-
teur, AMBIENT 2013 : The Third International Con-
ference on Ambient Computing, Applications, Services
and Technologies, pages 35–41, Porto, Portugal, 2013
2013. IARIA, IARIA.

[Scholliers 11] Christophe Scholliers, Lode Hoste, Beat Signer & Wolf-
gang De Meuter. Midas: a declarative multi-touch in-
teraction framework. In Proc. of TEI, pages 49–56.
ACM, 2011.

[Schöning 10] Johannes Schöning, Jonathan Hook, Tom Bartindale,
Dominik Schmidt, Patrick Oliver, Florian Echtler,
Nima Motamedi, Peter Brandl & Ulrich von Zadow.
Building interactive multi-touch surfaces. In Tabletops-
Horizontal Interactive Displays, pages 27–49. Springer,
2010.

[Serrano 08] Marcos Serrano, David Juras & Laurence Nigay. A
three-dimensional characterization space of software
components for rapidly developing multimodal inter-
faces. In Proc. of ICMI’08, pages 149–156. ACM, 2008.

[Shaer 08] Orit Shaer, Robert JK Jacob, Mark Green & Kris
Luyten. User interface description languages for next

246 BIBLIOGRAPHY

generation user interfaces. In CHI’08 Extended Ab-
stracts, pages 3949–3952. ACM, 2008.

[Sharma 98] R. Sharma, V.I. Pavlovic & T.S. Huang. Toward mul-
timodal human-computer interface. In Proceedings of
the IEEE, pages 853–869. IEEE, 1998.

[Siegmund 15] Janet Siegmund, Norbert Siegmund & Sven Apel.
Views on internal and external validity in empirical
software engineering. In Proceedings of the 37th In-
ternational Conference on Software Engineering, ICSE
2015,(to appear), 2015.

[Siek 05] Katie A Siek, Yvonne Rogers & Kay H Connelly. Fat
finger worries: how older and younger users physically
interact with PDAs. In Human-Computer Interaction-
INTERACT 2005, pages 267–280. Springer, 2005.

[Sørensen 04] Carsten Sørensen & David Gibson. Ubiquitous visions
and opaque realities: professionals talking about mobile
technologies. info, vol. 6, no. 3, pages 188–196, 2004.

[Spano 13a] Lucio Davide Spano. A Model-Based Approach for Ges-
ture Interfaces. PhD thesis. 2013.

[Spano 13b] Lucio Davide Spano, Antonio Cisternino, Fabio Paternò
& Gianni Fenu. GestIT: a declarative and compositional
framework for multiplatform gesture definition. In Pro-
ceedings of the 5th ACM SIGCHI symposium on Engi-
neering interactive computing systems, pages 187–196.
ACM, 2013.

[Sturm 02] J. Sturm, I. Bakx, B. Cranen, J. Terken & F. Wang.
The Effect of Prolonged Use on Multimodal Interaction.
In Proceedings ISCA Workshop on Multimodal Inter-
action in Mobile Environments, Kloster Irsee. ACM,
2002.

[Traum 03] David R Traum & Staffan Larsson. The information
state approach to dialogue management. In Current and
new directions in discourse and dialogue, pages 325–
353. Springer, 2003.

BIBLIOGRAPHY 247

[Turk 14] Matthew Turk. Multimodal interaction: A review. Pat-
tern Recognition Letters, vol. 36, pages 189–195, 2014.

[Vo 96] Minh Tue Vo & Cindy Wood. Building an application
framework for speech and pen input integration in mul-
timodal learning interfaces. In Acoustics, Speech, and
Signal Processing, 1996. ICASSP-96. Conference Pro-
ceedings., 1996 IEEE International Conference on, vol-
ume 6, pages 3545–3548. IEEE, 1996.

[Wagner 06] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner
& Peter Wolstenholme. Modeling software with finite
state machines: a practical approach. CRC Press, 2006.

[Wahlster 01] Wolfgang Wahlster, Norbert Reithinger & Anselm
Blocher. Smartkom: Towards multimodal dia-
logues with anthropomorphic interface agents. In
In International Status Conference: Lead Projects
HumanComputer-Interaction. Citeseer, 2001.

[Woods 70] William A Woods. Transition network grammars for
natural language analysis. Communications of the
ACM, vol. 13, no. 10, pages 591–606, 1970.

[Wu 03] Mike Wu & Ravin Balakrishnan. Multi-finger and
whole hand gestural interaction techniques for multi-
user tabletop displays. In Proceedings of the 16th an-
nual ACM symposium on User interface software and
technology, pages 193–202. ACM, 2003.

[Wu 10] Chaur Wu. Pro dlr in. net 4. Apress, 2010.

	Abstract
	Dedication
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research goals
	Research approach
	Contributions
	Supporting publications
	Thesis outline
	Summary

	Background and Related Work
	Background
	Interaction styles: multimodal, multitouch, cross-device
	Important programming paradigms
	Prototyping and Rapid Prototyping
	User Interface Management System (UIMS)
	Accidental complexity and essential complexity
	Finite State Automaton and Finite State Machine

	Related Work
	Multimodal interaction description languages
	Gesture Description Languages
	Human-machine dialog modeling languages

	Summary

	I Hasselt, a family of languages
	Hasselt UIMS, a composite event-based tool
	Hasselt UIMS overview
	Workflow
	People and roles involved
	Startup configuration

	Lifecycle of Hasselt programs
	Design time
	Compile time
	Runtime

	Algorithms used at compile time
	CEDL compiler. From composite events to FSA
	SRDL compiler. From FSA to FSM

	Summary

	CEDL: Composing user events
	Composite Event Definition Language (CEDL)
	Atomic events
	Composite events

	Put-That-There in Hasselt UIMS
	Implementing back-end applications
	Declaring composite events
	Binding composite event with event handlers
	Testing the multimodal interactions

	CEDL advanced features
	Arbitrary speech input
	Arrays of variables
	Timeout events
	Compositional definitions

	Limitations of the CEDL
	Summary

	SRDL: Responding to composite events
	System Response Definition Language (SRDL)
	Multiple system responses at different times
	Hasselt variables
	Hasselt properties
	Hasselt guard and triggering conditions
	Hasselt user-defined events
	Types of constraints describable by Hasselt

	Enhancing put-that-there with SRDL
	Describing touch and body gestures
	Single-stroke touch gestures
	Multi-stroke touch gestures of arbitrary length
	Multitouch gestures
	Free-form hand gestures
	Body movements

	Technical details
	Management of parallel inputs
	Interruptibility and rolling-back
	Evaluation of expressions
	Speech recognition grammars

	Expressiveness of CEDL/SRDL
	Negation of events
	About the CARE properties
	Types of feedback

	Limitations of SRDL
	Summary

	HMD2L: Separating events from dialog model
	Hasselt's visual language: The Human-Machine Dialog Definition Language (HMD2L)
	HMD2L within Hasselt
	HMD2L models
	Differences between auto-generated FSMs and HMD2L models

	Proof-of-concept application
	Couch Potato. A Multimodal Video Player
	Implementation
	Passive inputs

	Limitations of HMD2L
	Summary

	II Assessment of Hasselt
	Code comparison of two different paradigms
	Cognitive Dimensions
	Interaction models
	Code inspecting a multimodal interaction
	Code inspecting a multitouch interaction

	Dialog models
	Implementation of the baseline system

	Wrapping up the results
	About interaction models
	About dialog models

	Threats to validity
	Summary

	User Study
	Hypotheses
	Method
	Study Design
	Participants
	First Experiment. CEDL/SRDL versus C#
	Second Experiment. HMD2L versus C#

	Measures
	Observations
	Single Ease Question (SEQ) questionnaire
	System Usability Scale (SUS) questionnaire

	Results
	Modifying an interaction model: CEDL/SRDL vs. C#
	Modifying a dialog model: HMD2L vs. C#

	Observations
	Usability and learnability of Hasselt UIMS
	Interview highlights
	Threats to validity
	Construct validity
	Internal validity
	External validity

	Lessons for the future
	Summary

	III Discussion, Conclusions, and Future Work
	Discussion
	Design of a composite-event based language
	Why textual? Why event-driven?
	Why these notations?

	Evaluation of a composite event-based language
	Interaction models
	Dialog models

	Engineering problems tackled by CEDL/SRDL
	The selection ambiguity problem
	The problem of dual-faced gestures

	Contributions of the thesis
	Contributions in the tooling
	Contributed algorithms
	Contributions in engineering
	Contributions in user study design

	Limitations of Hasselt UIMS
	Fixed set of atomic events
	Inability to describe two-handed multitouch gestures
	Negative consequences of separating interaction code from application code

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Evaluation methods
	Applied research
	Exploring alternative directions
	Towards a composite event-based language

	Long term vision
	The need of a guiding star. Stopping the Babel-like confusion of languages
	Extrapolating the past for envisioning the future
	Composite event-based programming. The guiding star

	Summary

	Appendices
	Theoretical background
	Exponential Smoothing Filter
	Augmented Transition Network (ATN)

	Composite events in other domains
	Active databases as composite event processors
	Complex Event Processing (CEP) as a service

	Source code
	Feedback about the error recognition inputs
	Rolling back
	Management of of redundant inputs
	Ambiguity of gestures plus and equal
	Dual-faced gestures problem
	Couch Potato
	Back-end application for the put-that-there

	User study
	Tutorial for user studies
	User study tasks
	Statistical tools
	Boxplot
	Q-Q normality plots
	Wilcoxon signed-rank test

	Raw data
	Other standardized questionnaires
	Standardized post-task tests
	Standardized usability tests

	Bibliography

