
A User Study for Comparing the Programming Efficiency of
Modifying Executable Multimodal Interaction Descriptions

A Domain-Specific Language versus Equivalent Event-Callback Code

Fredy Cuenca Jan Van den Bergh Kris Luyten Karin Coninx
Hasselt University - tUL - iMinds

Expertise Centre for Digital Media, Diepenbeek, Belgium
{fredy.cuencalucero,jan.vandenbergh,kris.luyten,karin.coninx}@uhasselt.be

Abstract
The present paper describes an empirical user study intended
to compare the programming efficiency of our proposed
domain-specific language versus a mainstream event lan-
guage when it comes to modify multimodal interactions.
By concerted use of observations, interviews, and standard-
ized questionnaires, we managed to measure the completion
rates, completion time, code testing effort, and perceived dif-
ficulty of the programming tasks along with the perceived
usability and perceived learnability of the tool supporting
our proposed language. Based on this experience, we pro-
pose some guidelines for designing comparative user stud-
ies of programming languages. The paper also discusses the
considerations we took into account when designing a mul-
timodal interaction description language that intends to be
well regarded by its users.

Categories and Subject Descriptors H.5.2. [User Inter-
faces]: User interface management systems (UIMS); Eval-
uation/methodology

Keywords multimodal systems, domain-specific languages,
declarative languages, composite events

1. Introduction
For more than a decade, the HCI community has witnessed
the proposal of several user interface tools aiming at simpli-
fying and speeding up the prototyping of multimodal sys-
tems. These tools fall within the definition of User Interface
Management Systems (UIMSs) (Beaudouin-Lafon 1994).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

UIMSs provide domain-specific languages with which mul-
timodal interactions can be described at a high level of
abstraction and separated from the application semantics,
which must be written with a general-purpose language,
without support of the UIMS (Figure 1).

Some examples of the aforementioned UIMSs include
Mudra (Hoste et al. 2011), ICO (Navarre et al. 2009),
OIDE (Serrano et al. 2008), HephaisTK (Dumas et al. 2014),
and NiMMiT (De Boeck et al. 2007). They certainly ac-
complish their goal of facilitating the prototyping of mul-
timodal systems, but they all share the same issue: Their
domain-specific languages require the use of concepts that
are unrelated with the event languages with which program-
mers used to implement interactive systems in real-world
projects1. These contrasts may raise the resistance of their
potential users, as it happened in the past.

In an effort to create a usable UIMS, we tried to stick
our domain-specific language as close as possible to the lan-
guages and work practices followed when developing tra-
ditional WIMP systems (WIMP = Windows, Icons, Menus,
Pointers) with commonly-used event languages.

With event languages, WIMP interactive systems are cre-
ated by binding predefined user events to event-handling
callbacks. Similarly, with Hasselt, our proposed language,
multimodal interactions are described by binding composite
events to event-handling callbacks. A composite event, the
core concept of Hasselt, is a user-defined event pattern that
is automatically detected at runtime.

Hasselt was evaluated in a comparative user study. We
asked participants to perform equivalent modifications to a
simple multimodal system with both Hasselt and a main-
stream event language. By combining observations, inter-
views, and standardized questionnaires, we managed to mea-
sure the completion rate, completion time, code testing ef-
fort, and perceived difficulty of each programming task. We

1 Two important rankings of programming language popularity can
be found at http://spectrum.ieee.org/computing/software/

top-10-programming-languages and http://www.tiobe.com/

index.php/content/paperinfo/tpci/index.html

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

PLATEAU’15, October 26, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3907-0/15/10...

http://dx.doi.org/10.1145/2846680.2846686

31

also measured the perceived usability and perceived learn-
ability of Hasselt UIMS, the supporting tool. The results of
our empirical study along with the lessons learned from it
are discussed at the end of this paper.

2. Problems with the Adoption of UIMSs and
Domain-Specific Languages in the Past

2.1 Programmers Resistance to Unusual Concepts
After being involved in the development of four UIMSs,
Olsen Jr. stated that the “success of a UIMS is directly re-
lated to the ease with which interface designs can be ex-
pressed” (Olsen Jr 1987). He illustrates his point by con-
fessing that the difficulty for describing interfaces in terms
of grammars caused the SYNGRAPH system (Olsen Jr and
Dempsey 1983) to not be widely used despite that its users
realized it improved productivity. A few years after, when
discussing the Mickey UIMS, a tool proposed to tackle the
problems engendered by MIKE (Olsen Jr 1986), Olsen Jr.
reminded us once again of the risks of including unfamil-
iar languages within a UIMS: “By using interface specifica-
tions based on familiar terms to programmers we were able
to overcome the programmer resistance that plagued our ear-
lier UIMS” (Olsen Jr 1989).

Some years later, a similar observation was done by My-
ers et al., who mentioned that domain-specific languages
along with their supporting UIMSs did not catch on in the
past because, among other reasons, “programmers are re-
quired to use new programming concepts” to which “pro-
grammers are not adept at thinking in terms of” (Myers et al.
2000). There the authors claim that even in the cases where
the improved power of the studied tools seemed to justify
a steep learning curve, many potential users did not adopt
them simply because they never got past initial difficulties.

2.2 The Warnings Seem to be Overlooked
The aforementioned cases referred to domain-specific lan-
guages developed in the 1980s and targeting unimodal inter-
action. However, the newer languages targeting multimodal
interaction and proposed in the new millennia exhibit the
same problems.

For instance, when using the visual languages provided
by HephaisTK (Dumas et al. 2014) and OIDE (Serrano
et al. 2008), one has to describe multimodal interactions
in terms of the CARE properties (Coutaz et al. 1995). For
the ICO (Navarre et al. 2009) language, depicting inter-
action models requires a solid command of a formalism
called Petri nets. For Mudra (Hoste et al. 2011), one has
to use the logic-based programming language CLIPS2. All
these UIMSs along with their underlying languages have
succeeded in their goal of simplifying the prototyping of
multimodal interactions, but at the expense of requiring pro-
grammers to move away from commonly used programming

2 http://clipsrules.sourceforge.net/

Figure 1: At runtime, the UIMS responds to its end users by
launching the methods of an externally developed application.
At design time, the programmer has already specified, through a
domain-specific language, the methods that have to be launched
for each set of user inputs.

languages. Concepts such as CARE properties, Petri nets,
or logic-based constructs, are not required by mainstream
languages, such as Java or C#, and consequently many pro-
grammers may ignore these concepts and offer resistance to
learn them and use them.

The chances of the aforementioned languages to be
adopted look even smaller when one notices that nearly all
of them are visual languages in contrast to the textual nature
of mainstream event languages.

Recent research reports that experienced developers show
skepticism to use visual languages in practice since they
still feel more comfortable with standard imperative code
(Oney et al. 2014). The researchers believed, and we agree
with them, that this preference may be “largely due to the
relatively long-term exposure to standard code”.

Hasselt does not require programmers to move away from
their mental models and work practices; it maintains the
textual and event-driven nature that are fundamental features
of commonly used event languages to which, after decades
of practice, programmers have become accustomed to, and
naturally, they will not want to lose.

3. Hasselt, a Language for Rapid Prototyping
Multimodal Systems

Hasselt is a declarative language aimed at describing multi-
modal interactions. It comes with a supporting tool, hereafter
referred to as Hasselt UIMS, which includes the editors, run-
time environment, and debugging tools required to code, run,
and test Hasselt specifications.

32

3.1 Running Example
For illustrative purposes, we will use Hasselt to implement
a desktop-version of the well-known put-that-there (Bolt
1980). This multimodal interaction enables end users to
move virtual objects around a windows form through the
concerted use of speech and mouse clicks. End users must
utter the sentence ‘put that there’ so that the pronouns ‘that’
and ‘there’ can be disambiguated with mouse clicks on the
target object and on its new intended position respectively.

3.2 How to Use Hasselt?
The steps required to implement the put-that-there interac-
tion are as follows.

3.2.1 Implementing the Back-End Application
Before using Hasselt, one typically creates an executable
program implementing the front-end of the intended sys-
tem and the methods to be invoked during the multimodal
human-machine interaction. Such externally defined pro-
gram will be referred to as back-end application.

For the put-that-there example, the back-end application
consists of a windows form hosting several virtual objects,
and a method PutThatThere(x1, y1, x2, y2) for moving
the object placed on (x1, y1) to (x2, y2).

3.2.2 Defining Multimodal Interactions
In Hasselt, a multimodal interaction is specified by defining
a composite event and binding it with one or more event-
handling callbacks.

For the purposes of this work, a composite event is a user-
defined combination of several events (e.g. mouse clicks,
speech inputs, touch events, and body movement events)
that can be combined through a series of event operators.
The operator FOLLOWED BY (;) allows defining sequential
events, the operator AND (+) serves to specify simultaneous
events; OR(|) defines alternative events; and the Kleene start
operator ITERATION (*) defines repetitive events (Cuenca
et al. 2014, 2015).

Continuing with the running example, the put-that-there
interaction is described by defining the composite event ptt,
which must then be bound to the method PutThatThere,
implemented in the back-end application. This is described
with the following Hasselt code:

event ptt = speech.put ;
speech.that+mouse.down〈x1, y1〉 ;
speech.there+mouse.down〈x2, y2〉

wrt ce.ptt
@node(8) do

call : PutThatThere(x1, y1, x2, y2);

(1)

3.2.3 Testing the Specified Multimodal Interactions
Upon entering runtime mode, Hasselt UIMS starts tracking
the user-defined composite events. The (partial) detection of

Figure 2: Hasselt UIMS editor. Composite events are declared in
the top frame. The bindings between the composite events and the
callback functions are specified in the bottom frame. The visual
content of the non-editable right bottom frame is auto-generated;
it displays the visual form of the composite event under edition.
Callback functions are bound to the nodes/links of this graph.

these composite events may cause Hasselt UIMS to invoke
the methods of the back-end application.

Since this paper is focused on the evaluation of Hasselt,
it is not possible to cover all technical details behind this
language and its underlying concept of composite events.
Interested readers may refer to (Cuenca et al. 2014, 2015) for
more technical details, or to the publicly available videos3,4

to watch a demonstration of the applicability of Hasselt for
describing multimodal and touch interactions.

3.3 Difference Between Event Languages and Hasselt
Implementing the running example with event languages,
such as Java or C#, is more complicated. Event-driven
frameworks notify the speech inputs and the mouse clicks
separately, as if they were independent of each other, ignor-
ing that there is a relation between them. It is the task of pro-
grammers to write the code for determining whether these
event notifications are related and whether they are arriv-
ing in the expected order of receipt. This code is difficult to
maintain; it involves a multitude of state variables that have
to be updated in a self-consistent manner and across different
event handlers. Interested readers may refer to (Cuenca et al.
2014) for a discussion of the C# code required to implement
the put-that-there.

The capability of Hasselt UIMS to detect patterns of
events saves programmers from the difficult, error-prone

3 https://youtu.be/jC5EuBYWWRc
4 https://youtu.be/ArX0UAHmio0

33

task of implementing event pattern detection. As shown in
Equation 1, with Hasselt, the stream of mouse clicks and
speech inputs characterizing the put-that-there interaction is
defined, in a declarative fashion, as the composite event ptt,
which is bound with an externally defined method named
PutThatThere(x1, y1, x2, y2). This method will be called
right after the occurrence of the composite event ptt, which
will be automatically detected by Hasselt UIMS at runtime.

As an additional example, Figure 2 shows a slight varia-
tion of the interaction shown in Equation 1. Here the object
to be moved is highlighted right after being selected. This
requires binding ptt with two event-handling callbacks (one
for highlighting, and another for moving the selected object),
which are to be launched at two different moments of the in-
teraction.

4. User Study
To the best of our knowledge, none of the aforementioned
UIMSs has been evaluated in user studies. Outside the mul-
timodal domain, we found two user studies that guided us in
the design of our experiment.

4.1 Related Studies. Comparing Domain-Specific
Languages with Equivalent Event-Callback Code

Oney et al. recruited 20 developers to evaluate the under-
standability of the Interstate’s visual notation. Each par-
ticipant had to modify two systems (drag-and-drop and a
thumbnail viewer) implemented in both RaphaelJS5 and In-
terState. It was verified that InterState models are faster-
to-modify than equivalent event-callback code written in
RaphaelJS (Oney et al. 2014).

The creators of Proton++ carried out two experiments
with 12 programmers. Each participant was shown a ges-
ture specification and set of videos of a user performing ges-
tures. Gestures may be specified as a regular expression, tab-
lature, or with event-callback code and the participant had
to match the specification with the video showing the de-
scribed gesture. The results showed that the tablatures of
Proton++ are easier-to-comprehend than equivalent regular
expressions and event-callback code (Kin et al. 2012).

Since real-world scenarios require programmers not only
to comprehend but to write programming code, we followed
the schema of Oney et al. We asked participants to modify
an existing prototype with both Hasselt and equivalent event-
callback code.

4.2 Hypotheses
Based on a pilot test, we hypothesized that the adaptation of
a multimodal prototype requires (1) less time, (2) less code
testing, and (3) is perceived as an easier task when using
Hasselt than with C#.

5 http://raphaeljs.com/

Figure 3: Programming experience of the 12 participants.

4.3 Method
4.3.1 Participants
We recruited 12 participants, all male. Their overall pro-
gramming experience ranged from 4 to 13 years; and their
C# experience, between 1 and 8 years (Figure 3).

4.3.2 Study Design
Participants were evaluated one by one. They were asked
to modify a multimodal interaction that was described with
both Hasselt and C#.

Right before the experiment, participants were given a
10-minutes tutorial about Hasselt. They were asked to de-
scribe a simple multimodal interaction by following step-
by-step instructions. In this way, participants got acquainted
with the code editors, debugging tools, and runtime environ-
ment of Hasselt UIMS. Since all participants had experience
with C# and MS Visual Studio, there was no need for train-
ing in this respect.

The experiment starts by giving the participant a multi-
modal prototype with which he had to interact according to
the indications of the researcher. Once the participant was fa-
miliar with the functionality of the prototype, he was asked
to make slight changes in this prototype. Each participant
had to sequentially perform the changes with both Hasselt
and C#. The order of the language to be used first was bal-
anced over the participants so that the aggregated experience
bias can be neutralized. The changes to be performed were
explained orally, but also written in a sheet that the partici-
pant could check during the experiment. The changes had to
be performed within a time limit of 30 minutes per language.

While the participant modified the code, the researcher
was in front of a second monitor connected to the computer
used by the participant so that both monitors showed the
same information. This way, the researcher could measure
the completion time of the task, count how many times the
partial changes were tested in the runtime environment, and
watch how the participant navigated trough the code.

After the participant performed the requested changes
with a certain language, he was asked to fill a post-task ques-
tionnaire for measuring the perceived difficulty of the task.
Overall, each participant filled two of these questionnaires,
one for Hasselt and one for C#. At the end of the user study,

34

i.e. after both languages were used, the participant was asked
to fill a usability questionnaire and immediately interviewed
by the researcher.

4.3.3 Programming Task
The prototype to be modified allows end users to create and
move virtual objects around a windows form. New objects
can be created, in random positions, through the voice com-
mand ‘create object’. Existing objects can be moved by say-
ing ‘put that there’ while clicking on both the target object
and its new position.

Participants were asked to change the command for cre-
ating objects. The new command had to be multimodal: in-
stead of creating objects in random positions, the end user
had to be able to select, through a mouse click, the position
where the new object had to be placed. In the new prototype,
the adverb of the new voice command ‘create object here’
must be disambiguated with a mouse click on the window
form.

To make the comparison as fair as possible, participants
were restrained to navigate the interaction code only. This is
the only part of the code that can be seen with Hasselt. The
code for configuring input recognizers and the code of the
back-end functions, e.g. PutThatThere(x1, y1, x2, y2),
are not visible. The former is enclosed into Hasselt UIMS,
the latter into a canned, externally developed EXE file. To
confer similar complexity to the C# code, we had to di-
vide the C# source code into regions. Right before using
C#, participants were warned that the regions containing the
code for configuring the input recognizers and the back-end
methods must remain collapsed during the experiment. Note
that this warning is not a training session: participants were
not explained anything about C# or MS Visual Studio, but
warned about the importance of focusing on the interaction
code only.

The tutorial and the instructions sheet used in the user
study are available on the web6.

4.4 Measures
4.4.1 Observations
While the participant performs the required modifications
with a certain language, the researcher monitors his working
time, counts the number of times the code is tested, and
watch how the participant navigates trough the code.

4.4.2 Single Ease Question (SEQ) Questionnaire
Right after completing the changes with each language, par-
ticipants were asked to complete the Single Ease Question
(SEQ) questionnaire (Figure 4), a rating scale ranging from
1 (anchored with “Very difficult”) to 7 (anchored with “Very
easy”). It aimed to assess the perceived difficulty (or per-
ceived ease, depending on one’s perspective) of a task. The

6 https://www.academia.edu/15725787/Supplemental_

materials

Figure 4: Single ease question (SEQ) questionnaire.

Figure 5: System Usability Scale (SUS) questionnaire and average
scores per question obtained for Hasselt UIMS.

SEQ has been proven to be reliable, sensitive, and valid
while also being easy to respond (Sauro and Dumas 2009).

4.4.3 System Usability Scale (SUS) Questionnaire
After completing the experiment, participants filled the Sys-
tem Usability Scale (SUS) questionnaire (Brooke 1996), a
well-known questionnaire for end-of-test subjective assess-
ments of usability (Lewis and Sauro 2009).

The SUS questionnaire (Figure 5) consists of 10 items
with 5-point scales numbered from 1 (anchored with “Strongly
disagree”) to 5 (anchored with “Strongly agree”). SUS tests
are quantified from 0 to 100.

To have a benchmark to which one can compare SUS
scores with, Lewis et al. shared historical information show-
ing that the average and third quartile of 324 usability eval-
uations performed with SUS are 62.1 and 75.0 respectively
(Lewis and Sauro 2009).

Finally, according to a factor analysis performed by
Lewis et al., the SUS questionnaire does not only measure
usability. It also measures learnability, being Q4 and Q10
the questions that allow estimating the perceived learnabil-
ity of the system under evaluation (Lewis and Sauro 2009).

4.5 Results of the Experiment
All 12 participants completed the experiment when using
Hasselt; but only 10 succeeded with C# –the others exceeded
their allotted time. The raw data is shown in Figure 6.

35

(a) Completion time (b) Code testing effort (c) Perceived ease

Figure 6: Raw data collected in the experiment. The two zeroes in the data shown in (a) correspond to those two participants who could not
finish the programming task with C#.

4.5.1 Completion Time
The following results are based on those 10 participants who
completed the required changes with both languages.

On average, changes made with Hasselt took 4.4 minutes
in comparison with the 24.7 minutes when using C#. This
difference in favor of Hasselt was statistically significant.
A Wilcoxon signed-rank test rejected the null hypothesis in
favor of the alternative hypothesis that Hasselt completion
times are shorter (p-value = 0.0009766, W = 0, Z = −2.8).

4.5.2 Code Testing Effort
The following results are based on those 10 participants who
completed the required changes with both languages.

On average, programmers tested their code 1.8 times
when using Hasselt and 3.3 times when using C#. Once
again, this difference in favor of Hasselt was statistically
significant. A Wilcoxon signed-rank test rejected the null
hypothesis in favor of the alternative hypothesis that Hasselt
code requires to be tested a fewer number of times (p-value
= 0.009766, W = 2.5, Z = −2.4).

4.5.3 Perceived Ease of the Task
The results on perceived ease include all the participants.
Even those who could not complete the changes with C#
have a clear idea of the difficulty of the task.

The average SEQ scores obtained for Hasselt and C#
were 6.08 and 3.42 respectively. The perception that the
changes are easier when performed with Hasselt was sta-
tistically significant. A Wilcoxon signed-rank test rejected
the null hypothesis in favor of the alternative hypothesis that
the SEQ scores obtained by Hasselt are higher (p-value =
0.0002441, W = 78, Z = 3.1).

4.5.4 SUS Scores of Hasselt UIMS
Comparing with the data repository provided by Lewis et al.,
the average SUS score of 73.96 obtained by Hasselt UIMS
indicates that its perceived usability is well above average
but not higher than 75% of the 324 systems reported in
(Lewis and Sauro 2009).

4.6 Interview Highlights
There was unanimous consent that the required changes
were easier when using Hasselt than when using C#.

When participants were asked “Why do you think it is
more difficult with C#?”, they refer to the fact that with
event languages the human-machine interaction has to be
implemented by splitting code across multiple event han-
dlers. Concretely, Participant 11 said “It is harder with C#
because it requires modifying the code in multiple places.”
Similarly but with his own words, Participant 3 added: “With
C#, you have to check multiple variables and multiple han-
dlers simultaneously to identify the right state of the system
... and you also have to reset the variables”. Finally, Partici-
pant 2, one of the two participants who could not complete
the changes with C#, confessed: “at the beginning the prob-
lem seemed quite simple but eventually you get lost while
trying to maintain all the variables”.

Participant 1 mentioned he had no previous experience
with finite state automata (FSA), the auto-generated graphs
displayed in the right bottom frame of Figure 2. Other par-
ticipants had at least pen-and-paper experience with FSA.
However, his total lack of knowledge about FSA did not af-
fect his performance; Participant 1 successfully completed
the required changes with Hasselt in 4 minutes. This may be
an indication that the FSA auto-generated by Hasselt UIMS
are so intuitive-to-read that no background may be needed.
The use of the FSA is mandatory when writing Hasselt code:
their nodes have to be referred to indicate the moment when
the event-handling callbacks must be launched (Figure 2).
The FSA generated from Hasselt code are slightly differ-
ent from canonical FSA. The nodes of the former may have
timers to control the temporal proximity between simulta-
neous inputs. The way how Hasselt UIMS handles parallel
inputs was described in (Cuenca et al. 2014).

4.7 Threats to Validity
There are always threats to the validity of any empirical
study, and we have tried to identify the threats to the pre-
sented user study.

36

First, we cannot completely guarantee that the observed
differences were due solely to Hasselt and not to the specific
interaction that participants had to modify. This threat could
have been mitigated by performing not only one, but many
experiments with different interactions. However, this was
unfeasible in our case. Getting programmers who can vol-
unteer to participate in a relatively stressful experiment that
lasts more than an hour was already a difficult task. Asking
them to stay for several consecutive experiments or to come
in different sessions was simply unfeasible.

Second, the scores obtained with the subjective SEQ and
SUS questionnaires may have been affected by the response
bias. The participants were colleagues, former colleagues,
former classmates, or former students of the researcher.

Finally, the SUS questionnaire may have been measured
only certain aspects of the usability of Hasselt UIMS. An
expert in empirical studies made us notice that usability
also includes the long-term experience of using a software
system, which is not considered in our study: all participants
used Hasselt for the first time during the study. However,
the initial learnability, which is another dimension of the
SUS questionnaire, was correctly measured by Q4 and Q10,
according to the same expert.

5. Discussion
5.1 Design Decisions About Hasselt. Considerations

About Programming Language Adoption
We presented Hasselt, a language that provides notations
for modeling multimodal interactions in a declarative man-
ner. In order to give Hasselt real chances to be adopted,
we gave it the textual and event-driven nature typical of
mainstream event languages. With Hasselt, the same as with
mainstream event languages, the interactions are defined by
binding events with event-callback functions. The difference
is that, with Hasselt, the events are defined by the program-
mers as combinations of other more fine-grained events.

5.2 Results. Hasselt versus C#
Hasselt clearly outperformed C# when it comes to modify
multimodal interactions. The use of Hasselt led to higher
completion rates, lower completion times and less code test-
ing. Furthermore, both the SEQ questionnaires and the inter-
views indicate that programmers perceive that, when using
Hasselt, the task can be solved more easily than when us-
ing C#. Hasselt code is simpler because it allows linking the
event handlers with patterns of events.

5.3 Perceived Usability and Perceived Learnability of
Hasselt UIMS

The average scores obtained by Hasselt UIMS for each of the
10 items of the SUS questionnaire are shown in Figure 5.

Considering that odd-numbered questions are positively-
worded, scores higher than 3 in these items reflect that par-
ticipants agree (to a certain degree) that the evaluated sys-

tem presents some good aspect/feature. In our study, all odd-
numbered questions were scored with more than 3 points on
average. From this group, Q3, i.e. “I thought the system was
easy to use” and Q7, i.e. “I would imagine that most people
would learn to use this system very quickly”, received the
highest scores.

Similarly, since even-numbered items are negatively-
worded, scores lower than 3 would indicate that partici-
pants are disagreeing (to a certain degree) with some neg-
ative comment about the system. In our studies, all even-
numbered questions were scored with less than 3 points on
average. From this group, Q10, “I needed to learn a lot of
things before I could get going with this system”, Q4, i.e.
“I think I would need support of technical person to use this
system”, and Q8, i.e. “I found the system very cumbersome
to use” received the lowest scores (which in this case it is
something positive).

The salient scores obtained for Q4 and Q10, the questions
defining learnability (Lewis and Sauro 2009), may indicate
that Hasselt is perceived as easy-to-learn. This matches with
the fact that all participants completed the experiment with
Hasselt even though they received little training.

5.4 Lessons for the Future
Here we provide some lessons learned with respect to de-
signing comparative studies of programming languages.

1. Careful selection of participants for the pilot test. Our pi-
lot test consisted of one participant, who was handpicked
for being one of the most experienced C# developers of
our research lab. He took around 16 minutes to complete
the test with C# and we considered that a time interval
of 30 minutes (almost double) would be enough for all
participants. This was not an optimal decision. We lost
valuable data: we could not include those two partici-
pants who could not finish the experiment with C#; oth-
erwise, the results would have been even more favorable
to Hasselt.
Future researchers may want to consider carrying out pi-
lot tests with several randomly chosen participants. An
alternative option consists of using more complex, for-
mal mathematical models for estimating the maximum
acceptable task completion time (Sauro and Kindlund
2005).

2. The number of lines of code is not a good metric to use
when the programming task consists of modifying exist-
ing code. Initially, we wanted to measure the difference
of lines between the original program and the modified
version produced by the participant. However, we no-
ticed that this number was going to be meaningless. First,
the code added to existing lines (e.g. to the condition of
an if clause) is not counted although the programming
logic has changed. At the opposite side, some program-
mers used to break long statements into two lines and

37

vice versa, add or remove blank lines, comments, and
region directives, etc. These actions alter the number of
lines although the complexity of the programming logic
remains the same.

3. The use of standardized questionnaires provides two ad-
vantages over ad-hoc questionnaires. First, the reliability
and validity of the former are already proved, as in the
case of SEQ and SUS. Second, since standardized tests
are widely used, it may be possible to get historical data
with which to compare our results.

4. We quantified code testing effort as the number of times
when the user executes his program into runtime mode.
In future studies, this can be complemented by measur-
ing the time that the user spent in runtime mode. To do
this, video recording the computer screen during the ex-
periment is essential.

5. It may not be a good idea to search for participants in
your research lab. Some may feel that one colleague is
going to evaluate their programming skills. From a re-
search lab with more than 50 people, we could only re-
cruit 5 participants. The remaining 7 participants were
recruited from external institutions. An alternative option
would have been to ask a person from an external institu-
tion to play the role of researcher so that participants do
not feel observed by an acquaintance or colleague.

6. Conclusion
This paper presented a user study that compared the pro-
gramming efficiency of Hasselt versus a mainstream event
language when it comes to modify multimodal interactions.
The completion rates, completion time, code testing effort,
and perceived difficulty of the programming tasks along with
the perceived usability and perceived learnability of Has-
selt UIMS were measured by means of observations, inter-
views, and standardized questionnaires. The paper provided
some guidelines for designing comparative user studies of
programming languages, and for designing a programming
language that intends to be adopted.

References
M. Beaudouin-Lafon. User interface management systems: Present

and future. In From object modelling to advanced visual com-
munication, pages 197–223. Springer, 1994.

R. Bolt. Put-that-there: Voice and gesture at the graphics interface.
In Proc. of SIGGRAPH’ 80. ACM, 1980.

J. Brooke. Sus-a quick and dirty usability scale. Usability evalua-
tion in industry, 189(194):4–7, 1996.

J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and R. M.
Young. Four easy pieces for assessing the usability of multi-
modal interaction: the care properties. In InterAct, volume 95,
pages 115–120, 1995.

F. Cuenca, J. Van der Bergh, K. Luyten, and K. Coninx. A domain-
specific textual language for rapid prototyping of multimodal

interactive systems. In Proc. of EICS’14. ACM, 2014.

F. Cuenca, J. Van den Bergh, K. Luyten, and K. Coninx. Hasselt
uims: a tool for describing multimodal interactions with com-
posite events. In Proc. of EICS’15. ACM, 2015.

J. De Boeck, D. Vanacken, C. Raymaekers, and K. Coninx. High
level modeling of multimodal interaction techniques using NiM-
MiT. Journal of Virtual Reality and Broadcasting, 4(2), 2007.

B. Dumas, B. Signer, and D. Lalanne. A graphical editor for
the smuiml multimodal user interaction description language.
Science of Computer Programming, 86:30–42, 2014.

L. Hoste, B. Dumas, and B. Signer. Mudra: a unified multimodal
interaction framework. In Proc. of ICMI’11, pages 97–104.
ACM, 2011.

K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. Proton++: a
customizable declarative multitouch framework. In Proceedings
of the 25th annual ACM symposium on User interface software
and technology (UIST’12), pages 477–486, 2012.

J. R. Lewis and J. Sauro. The factor structure of the system usability
scale. In Human Centered Design, pages 94–103. Springer,
2009.

B. Myers, S. E. Hudson, and R. Pausch. Past, present, and future of
user interface software tools. ACM Transactions on Computer-
Human Interaction (TOCHI), 7(1):3–28, 2000.

D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni. ICOs: A
Model-Based User Interface Description Technique dedicated to
Interactive Systems Addressing Usability, Reliability and Scal-
ability. ACM Transactions on Computer-Human Interaction, 16
(4), 2009.

D. R. Olsen Jr. Mike: the menu interaction kontrol environment.
ACM Transactions on Graphics (TOG), 5(4):318–344, 1986.

D. R. Olsen Jr. Larger issues in user interface management. ACM
SIGGRAPH Computer Graphics, 21(2):134–137, 1987.

D. R. Olsen Jr. A programming language basis for user interface. In
ACM SIGCHI Bulletin, volume 20, pages 171–176. ACM, 1989.

D. R. Olsen Jr and E. P. Dempsey. Syngraph: A graphical user
interface generator. In ACM SIGGRAPH Computer Graphics,
volume 17, pages 43–50. ACM, 1983.

S. Oney, B. Myers, and J. Brandt. Interstate: Interaction-oriented
language primitives for expressing gui behavior. In Proc. of
UIST’14. ACM, 2014.

J. Sauro and J. S. Dumas. Comparison of three one-question, post-
task usability questionnaires. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages
1599–1608. ACM, 2009.

J. Sauro and E. Kindlund. How long should a task take? iden-
tifying specification limits for task times in usability tests. In
Proceeding of the Human Computer Interaction International
Conference (HCII 2005), Las Vegas, USA, 2005.

M. Serrano, D. Juras, and L. Nigay. A three-dimensional char-
acterization space of software components for rapidly develop-
ing multimodal interfaces. In Proc. of ICMI’08, pages 149–156.
ACM, 2008.

38

