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The phytohormone ethylene is known to mediate a diverse array of signaling processes

during abiotic stress in plants. Whereas many reports have demonstrated enhanced

ethylene production in metal-exposed plants, the underlying molecular mechanisms

are only recently investigated. Increasing evidence supports a role for ethylene in the

regulation of plant metal stress responses. Moreover, crosstalk appears to exist between

ethylene and the cellular redox balance, nutrients and other phytohormones. This review

highlights our current understanding of the key role ethylene plays during responses to

metal exposure. Moreover, particular attention is paid to the integration of ethylene within

the broad network of plant responses to metal stress.
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SETTING THE SCENE

With the global population exceeding nine billion by 2050, it is of increasing importance to
optimize plant growth and ensure food and feed supply. However, plant yield is severely affected
by environmental stress factors such as drought, nutrient deficiency, salinity and metal pollution
(Mittler, 2006; Dolferus, 2014). Toxic metals and metalloids accumulate in the environment
because of industrial applications. Contamination peaks occurred throughout history (e.g. the
Roman Empire and Industrial Revolution) and current production rates are still high. In addition,
the contribution of metal-contaminated fertilizers, pesticides and sewage sludge to overall metal
pollution should not be ignored (Alloway, 2012). Metals such as cadmium (Cd), mercury (Hg) or
lead (Pb) are not essential for plants. Therefore, even low concentrations interfere with plant growth
and development and cause significant yield losses worldwide. On the other hand, excess levels of
essential micronutrients such as copper (Cu), iron (Fe), nickel (Ni) and zinc (Zn) are phytotoxic as
well (Cuypers et al., 2009; Hänsch and Mendel, 2009).

Plants are primary producers and therefore constitute an important bridge between the soil
elemental composition and the food chain. Non-essential trace elements such as As and Cd
opportunistically enter plant tissues via the same transport systems used to take up essential
nutrients (Verbruggen et al., 2009; Seth et al., 2012). Excessive accumulation of toxic metals in
food and feed crops represents a severe threat to human health (Järup, 2003), indicating the need to
remediate metal-contaminated soils. However, recent efforts regarding the use of plants to clean-
up soils via phytoextraction are often hampered by metal phytotoxicity (Vangronsveld et al., 2009).
Therefore, it is crucial to enhance our current understanding of metal-induced stress responses in
plants and provide scientific clues to ameliorate phytoextraction strategies.

A recurring cellular response in metal-exposed plants, independent of the species and exposure
time, is an increased generation of reactive oxygen species (ROS) such as superoxide (O•−

2 ),
hydrogen peroxide (H2O2) and the hydroxyl radical (•OH; Schützendübel and Polle, 2002;
Sharma and Dietz, 2009). Under optimal physiological conditions, ROS are constantly produced as
by-products of aerobic metabolism in chloroplasts, mitochondria and peroxisomes. However, their
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production is tightly controlled and maintained at a low
level by the antioxidative defense network of plant cells. This
system consists of enzymes neutralizing O•−

2 and H2O2 such
as superoxide dismutase (SOD), catalase (CAT), peroxidases
(POD) and peroxiredoxins (Prx), complemented by metabolites
such as ascorbate (AsA) and glutathione (GSH). All subcellular
compartments are equipped with specific antioxidative enzymes
and metabolites maintaining the cellular redox balance within
certain limits (Mittler et al., 2004). However, under abiotic stress
conditions such as metal exposure, the equilibrium between
ROS production and detoxification is disturbed in favor of the
former. While redox-active metals such as Cu and Fe are able
to directly generate ROS via Fenton and Haber-Weiss reactions,
metals without redox properties (e.g. Cd or Hg) only indirectly
contribute to ROS production (Schützendübel and Polle, 2002;
Verbruggen et al., 2009).

Whereas ROS are closely linked to hormonal signaling
networks in a developmental context (Overmyer et al., 2003;
Diaz-Vivancos et al., 2013), it is now widely accepted that they
also constitute an ambiguous role during stress responses (Dat
et al., 2000). Being toxic molecules, ROS are able to oxidatively
injure cells (Møller et al., 2007), but they also regulate defense
pathways leading to cellular protection and acclimation (Mittler
et al., 2004; Petrov and Van Breusegem, 2012). In addition,
recent research also suggests a major role for plant hormones
interacting with redox signaling to control adaptive responses to
environmental stresses (Mittler et al., 2011; Bartoli et al., 2013;
Baxter et al., 2014). More specifically, ethylene has been put
forward as an important stress hormone under abiotic stress
conditions (Dietz et al., 2010). Therefore, the aim of this review
is to highlight our current understanding of the role ethylene
plays during metal stress in plants. Experimental evidence for the
relationship between ethylene and metal exposure is discussed at
the level of ethylene biosynthesis as well as signaling, in which
different reports support a link between ethylene and metal
tolerance or sensitivity. Finally, special attention is paid to the
growing body of evidence suggesting a clear integration between
ethylene and the broad network of signaling responses activated
in metal-exposed plants.

WEIGHING THE EVIDENCE FOR A
RELATION BETWEEN ETHYLENE AND
METAL STRESS

In the following sections, results of different studies are discussed
and point toward a role for ethylene during metal stress
responses in plants (Table 1). However, when interpreting these
results, it is important to take various aspects related to the
experimental design into account. First of all, metal-specific
properties should be considered. As discussed before, both
essential and non-essential metals cause phytotoxic responses,
albeit at different exposure levels. Furthermore, experiments
can be conducted using massive or environmentally realistic
metal concentrations. Under severe stress conditions, ethylene
production might be simply increased by tissue damage and
necrosis (Lynch and Brown, 1997). Stress severity will affect

the activation of specific signal transduction pathways, for
example those related to ethylene (Kacperska, 2004). Although
Kacperska (2004) proposed that increased ethylene synthesis
is a characteristic feature of the alarm situation during
severe stress, it was also observed during exposure to mild
and environmentally realistic Cd concentrations (Schellingen
et al., 2014). Nonetheless, the extent and consequences of
augmented ethylene production should always be interpreted
with the applied exposure concentrations in mind (Thao et al.,
2015).

It is important to discriminate between primary and
secondary metal stress-induced events in plants. For example,
metal toxicity often leads to nutrient deficiency (Lynch and
Brown, 1997; Cuypers et al., 2009), which in its turn is related
to alterations in ethylene biosynthesis and signaling (Iqbal et al.,
2013a). Furthermore, one of the primary responses of plants
to metal stress is the generation of ROS and induction of an
oxidative challenge. Redox-active and non-redox-active metals
affect the cellular redox state in a different way, which might
also influence plant responses related to ethylene as discussed in
the section “Interaction between Ethylene and ROS Signaling.”
Although some kinetic studies have been conducted (Montero-
Palmero et al., 2014a; Schellingen et al., 2014, 2015a,b), more
in-depth research is required to decipher the exact order of
both primary and secondary events affecting ethylene production
under metal stress.

Chelation followed by vacuolar sequestration is a common
strategy exploited by plants to maintain low concentrations
of free metal(loid)s in the cytosol. Important chelators either
contain thiol groups [e.g. metallothioneins, glutathione and
phytochelatins (PCs)] or not (e.g. histidine, nicotianamine and
organic acids; Seth et al., 2012; Anjum et al., 2015). Especially
for GSH, evidence is pointing toward a relationship with
ethylene biosynthesis and signaling under metal stress (see
section “Crosstalk between Ethylene and GSH”). However, it
should be noted that not every metal(loid) is equally connected
to this chelating compound (Anjum et al., 2015). Therefore, it is
important to consider metal-specific properties when discussing
the link between ethylene and GSH.

Finally, different experimental strategies are used to unravel
the functional role of ethylene during metal stress. On
the one hand, ethylene biosynthesis or signaling can be
pharmacologically inhibited. On the other hand, different results
can be obtained when studying mutants defective in one or
both processes. Furthermore, not all mutations will lead to
complete inhibition of ethylene biosynthesis or signaling due
to functional redundancy (e.g. different ethylene receptors).
Some studies use transformants that overexpress ethylene-related
genes, often derived from other plants or even organisms,
to study the functional role of ethylene in metal tolerance.
Correct data interpretation is therefore only possible when the
setup is taken into account (cfr. infra; Thao et al., 2015). The
studies summarized in this review clearly point toward an
intimate relationship between ethylene and metal stress in plants.
However, much work remains to be done to finally determine
the mechanistic processes underlying this link and apply this
knowledge in field conditions, e.g. during phytoremediation.

Frontiers in Plant Science | www.frontiersin.org 2 February 2016 | Volume 7 | Article 23

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Keunen et al. Ethylene and Metal Stress

TABLE 1 | Metal exposure differentially affects ethylene biosynthesis and signaling in plants.

Metal Concentration Exposure time Tissue type Species Observations References

Al 10 or 50µM AlCl3 24 h Root apices L. japonicus ↑ ACO activity

↑ ethylene (max after 30min)

Al and cobalt/AVG:

↓ ethylene

↓ inhibition of root elongation

Sun et al., 2007

10µM AlCl3 2 and 24 h Root apices M. truncatula ↑ ACS and ACO expression Sun et al., 2007

50µM AlCl3 24 h Root apices A. thaliana ↑ ethylene (max after 30min) Sun et al., 2010

Roots Al and cobalt/AVG/AgNO3:

↓ inhibition of root elongation

50µM AlCl3 0.5, 2, and 12 h Roots A. thaliana ↑ ACS and ACO expression Sun et al., 2010

As 100 and 200µM As(V) 1.5 to 3 h Roots A. thaliana ↑ expression of ethylene-related

genes in tolerant Col-0 ecotype

ERF = As tolerance-associated

Fu et al., 2014

Cd 0.5mM CdCl2 14 h Leaf discs T. aestivum ↑ ethylene Groppa et al., 2003

14, 28 or 42mg kg−1 10 days Chloroplast membranes H. vulgare ↑ ethylene (14 and 28mg kg−1)

↓ ethylene (42mg kg−1)

Vassilev et al., 2004

5 or 50µM CdSO4 2, 6, and 30 h Shoots and roots A. thaliana ↑ ACS and ACO expression

(30 h, 50µM Cd)

↑ ERF expression

(all conditions)

Herbette et al., 2006

50µM CdCl2 15 days Roots P. sativum ↑ ethylene Rodríguez-Serrano et al.,

2006

10 or 50µM Cd 2h Roots A. thaliana ↑ ACS (50µM) and ERF (10

and 50µM) expression

Weber et al., 2006

400µM CdSO4 24 h Different plant parts A. thaliana ↑ ethylene Arteca and Arteca, 2007

0.1mM CdSO4 75 h Suspension cells L. esculentum ↑ ethylene during the first 24 h

Cd and AVG/STS: ↓ cell death

Iakimova et al., 2008

50µM CdCl2 14 days Leaves P. sativum ↑ ethylene Rodríguez-Serrano et al.,

2009

200mg kg−1 CdCl2 30 days Leaves B. juncea ↑ ACS activity

↑ ethylene

Masood et al., 2012

10 or 25mg l−1CdCl2 3, 6, and 24 h Root tips (RNA)

Whole plants (ethylene)

G. max ↑ ACS expression (3 and 6 h)

↑ ethylene

Chmielowska-Bąk et al.,

2013

50µM CdCl2 30 days Leaves B. juncea ↑ ACS activity

↑ ethylene

Asgher et al., 2014

5µM CdCl2 15 days Leaves H. vulgare ↑ ethylene

Cd-tolerant genotype:

↑ ACO expression

Cd-sensitive genotype:

↓ ethylene responsive genes

Cao et al., 2014

5, 10, 25 or 100µM

CdSO4

24 and 72 h Shoots and roots

(RNA/ACC)

Whole plants (ethylene)

A. thaliana ↑ ACS and ACO expression

↑ ACC (free and conjugated)

↑ ethylene

↑ ethylene responsive genes

Schellingen et al., 2014

50µM CdCl2 3 h Roots O. sativa ↑ ACO expression Trinh et al., 2014

5µM CdCl2 16 days Whole plants A. thaliana ↓ ethylene Carrió-Seguí et al., 2015

200mg kg−1 CdCl2 30 days Leaves T. aestivum ↑ ACS activity

↑ ethylene

Khan et al., 2015

Cr 200µM K2CrO4[Cr(VI)] 1 to 3 h Roots O. sativa ↑ ACS, ACO and EIN3;4

expression

Trinh et al., 2014

Cu 10mM CuSO4 48 h Leaves N. glutinosa ↑ ACO expression Kim et al., 1998

25, 100 or 500µM

CuSO4

7 h Whole plants A. thaliana ↑ ethylene

Cu and AVG: ↓ ethylene

Mertens et al., 1999

0.5mM CuCl2 14 h Leaf discs H. annuus

T. aestivum

↑ ethylene Groppa et al., 2003

(Continued)
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TABLE 1 | Continued

Metal Concentration Exposure time Tissue type Species Observations References

Cu 10µM Cu 2h Roots A. thaliana ↑ ACS and ERF expression Weber et al., 2006

400µM CuSO4 24 h Different plant parts A. thaliana ↑ ethylene Arteca and Arteca, 2007

2.5mM CuCl2 0.5 to 6 h Whole plants B. oleracea ↑ ACS and ACO expression Jakubowicz et al., 2010

25 or 50µM CuSO4 9 days Whole plants A. thaliana = ethylene Lequeux et al., 2010

Fe 200mg l−1 FeSO4 24 h Leaves O. sativa ↑ ethylene Yamauchi and Peng,

1995

300mg l−1 FeSO4 10 days Shoots and roots = ethylene

300mg l−1 FeSO4 24 h Leaves of derooted

plants

↑ ethylene

Hg 500 or 1000µM HgCl2 15 days Roots H. vulgare ↑ expression of ethylene

responsive genes

Lopes et al., 2013

10µM HgCl2 6, 12, 24, and

48 h

Whole plants M. truncatula Altered expression of ethylene

responsive genes

Zhou et al., 2013

25µM Hg 1 to 3 h (short) Root apices O. sativa ↑ expression of ACS, ACO and

ethylene responsive gene

Chen et al., 2014

24 h (long) ↑ ACO expression

3µM HgCl2 3, 6, and 24 h Roots M. sativa ↑ expression of ACS, ACO and

ethylene responsive genes

Hg + 1-MCP:

↓ induction of ethylene-

related genes

Montero-Palmero et al.,

2014a

Li 0.1, 1, 10 or 50mM

LiCl

2 h Whole plants A. thaliana ↑ ACS expression Liang et al., 1996

30mM LiCl 6 days Leaves N. tabacum ↑ ethylene

Li and AVG:

↓ ethylene

no necrotic spots

Naranjo et al., 2003

Ni 50, 100, 200, 400 and

800µM NiSO4

24 h Inflorescence stalks and

leaves

A. thaliana = ethylene Arteca and Arteca, 2007

200mg kg−1 NiSO4 30 days Leaves B. juncea ↑ ACS activity

↑ ethylene

Khan and Khan, 2014

Pb 500mg l−1 Pb(NO3)2 12 days Shoots and roots S. drummondii ↑ expression of a putative

ACS/ACO gene (shoots)

Srivastava et al., 2007

0.5mM Pb(NO3)2 14 days Whole plants A. thaliana ↑ EIN2 expression Cao et al., 2009

Zn 25, 100 or 500µM

ZnSO4

7 h Whole plants A. thaliana ↑ ethylene Mertens et al., 1999

50, 100, 200, 400 and

800µM ZnSO4

24 h Inflorescence stalks and

leaves

A. thaliana = ethylene Arteca and Arteca, 2007

200mg kg−1 ZnSO4 30 days Leaves B. juncea ↑ ACS activity

↑ ethylene

Khan and Khan, 2014

For each study, the experimental setup (metal concentration, exposure time, tissue type and plant species) is shown to facilitate the interpretation of metal-induced responses related to

ethylene biosynthesis and the induction of the ethylene signaling cascade. In some studies, the functional role of ethylene during metal stress is studied by inhibiting ethylene biosynthesis

using aminoethoxyvinylglycine (AVG) or cobalt, as well as by inhibiting ethylene signaling using 1-methylcyclopropene (1-MCP), silver nitrate (AgNO3 ) or silver thiosulfate (STS).

METAL STRESS AFFECTS ETHYLENE
BIOSYNTHESIS AND SIGNALING AT
MULTIPLE LEVELS

In 1901, the Russian plant physiologist Neljubov reported that
etiolated pea plants grew horizontally in the laboratory and
upright in outside air (Neljubov, 1901). He attributed this

abnormal growth response to ethylene in illuminating gas and

is therefore credited with its discovery as biologically active

compound (Bleecker and Kende, 2000). It took 33 more years to
provide chemical proof that plants indeed synthesize this volatile

molecule themselves (Gane, 1934), providing an important

indication to investigate the function of ethylene as endogenous
signaling molecule. Currently, this simple two-carbon atom
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molecule (C2H4) is “all around” and known to be involved in
almost all developmental and physiological processes in plants
(De Martinis et al., 2015). It triggers senescence, influences
growth, leads to various morphogenetic effects and—important
within the scope of this review—acts as “stress hormone” in
diverse biotic and abiotic stress conditions (Bleecker and Kende,
2000; Lin et al., 2009; Vandenbussche et al., 2012; Van de Poel
et al., 2015).

Ethylene Biosynthesis is Altered under
Metal Stress
More than 30 years ago, Yang and co-workers elucidated the
ethylene biosynthesis pathway, which involves the consecutive
action of three enzymes (Figure 1; Yang and Hoffman, 1984).
First, the amino acid methionine is converted to S-adenosyl-
methionine (SAM) by SAM synthetase. Using SAM as a
substrate, 1-aminocyclopropane-1-carboxylic acid (ACC) is
produced by ACC synthase (ACS). This is the rate-limiting
step in the ethylene biosynthesis pathway and releases 5′-
methylthioadenosine (MTA), which is recycled back to
methionine via the so-called “Yang cycle.” In the presence
of O2, ACC is degraded by ACC oxidase (ACO) to produce
ethylene, CO2 and cyanide (HCN; Figure 1). The latter is

detoxified by β-cyanoalanine synthase to prevent toxicity of
accumulating HCN at high ethylene biosynthesis rates (Bleecker
and Kende, 2000; De Paepe and Van Der Straeten, 2005; Lin
et al., 2009).

Of the 12members of the ACSmultigene family inArabidopsis
thaliana, eight encode functional ACS enzymes (isoforms 2,
4–9 and 11). While ACS1 is inactive and ACS3 encodes a
pseudogene, isoforms 10 and 12 encode aminotransferases
(Yamagami et al., 2003; Van de Poel and Van Der Straeten, 2014).
The complexity of the ACS family is further enhanced at the
structural and functional level by the formation of heterodimers.
Although individual members of the gene family display specific
developmental and physiological roles, significant combinatorial
interplay exists between different isoforms. Various internal as
well as external stimuli [developmental cues (e.g. senescence and
ripening), light, hormones (e.g. auxin, cytokinin and ethylene),
biotic (e.g. pathogens), and abiotic (e.g. heat) stress factors]
regulate the production of ethylene at the level of ACS gene
expression (Tsuchisaka et al., 2009; Van de Poel and Van
Der Straeten, 2014). For example, ACS8 transcript levels are
controlled by light and shade as well as the circadian clock
(Vandenbussche et al., 2003; Thain et al., 2004). Expression of
ACS2 andACS6 often appears to be regulated by different stresses

FIGURE 1 | Ethylene biosynthesis pathway. The amino acid methionine is converted to S-adenosyl-methionine (SAM) by SAM synthetase (1), which requires ATP.

Using SAM as a substrate, 1-aminocyclopropane-1-carboxylic acid (ACC) is produced by ACC synthase (ACS) (2). This also releases 5′-methylthioadenosine (MTA),

which is recycled back to methionine via the so-called “Yang cycle.” Finally, ACC is oxidized by ACC oxidase (ACO) (3) to produce ethylene, CO2 and cyanide (HCN).

In addition, ACC can be converted to its major conjugate 1-malonyl-ACC (MACC) using malonyl-CoA. It can also react with GSH to form γ-glutamyl-ACC (GACC) or

with JA to produce jasmonyl-ACC (JA-ACC).
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such as ozone, salinity and hypoxia (Vahala et al., 1998; Arteca
and Arteca, 1999; Peng et al., 2005). In addition, ACS enzymes
have a highly variable carboxylic end that serves as a regulatory
domain responsible for post-transcriptional regulation. This
is due to the presence of mitogen-activated protein kinase
(MAPK) and/or calcium-dependent protein kinase (CDPK)
target sites, with phosphorylation playing an important role in
ACS protein stability (Chae and Kieber, 2005; Yoon and Kieber,
2013).

In the final biosynthetic reaction, ACC is converted to
ethylene by ACO. When ethylene production rates are high,
for example during post-climacteric ripening of tomato fruit
(Van de Poel et al., 2012), ACO can also act rate-limiting
in ethylene biosynthesis. It is a ferrous-dependent non-heme
oxygenase and uses a single electron from AsA to open the ACC
ring (Murphy et al., 2014). In A. thaliana, five different ACO
genes appear to be expressed in all tissues. However, differential
accumulation of specific ACO transcripts is observed during
various physiological processes and environmental conditions
(De Paepe and Van Der Straeten, 2005; Argueso et al., 2007; Lin
et al., 2009; Ruduś et al., 2012). Several ACO genes were shown
to be auto-regulated by ethylene (De Paepe et al., 2004) and
recently, evidence is suggesting post-transcriptional/translational
regulation mechanisms for ACO as well (Dilley et al., 2013;
Van de Poel et al., 2014; Van de Poel and Van Der Straeten,
2014).

Instead of being degraded by ACO, ACC can also be converted
to its major conjugate 1-malonyl-ACC (MACC) using malonyl-
coenzyme-A. Secondly, ACC can react with GSH to form
γ-glutamyl-ACC (GACC). Finally, jasmonic acid also forms
a conjugate with ACC, producing jasmonyl-ACC (JA-ACC;
Figure 1). These conjugates could regulate the pool of available
ACC and potentially affect ethylene production. However, the
exact molecular and biochemical function of ACC conjugates
deserves further investigation, as recent studies report ACC to
function as a signal itself (Yoon and Kieber, 2013; Van de Poel
and Van Der Straeten, 2014). Increased levels of conjugated ACC
were observed in both roots and leaves of Cd-exposedA. thaliana
plants (Schellingen et al., 2014; Table 1), supporting a role for
ACC conjugation during metal stress. Future research should be
conducted to reveal the molecular nature of these conjugates. In
particular, GACC might be involved as GSH is known to play a
central role in defense to metal stress via its chelating, antioxidant
and signaling properties (Jozefczak et al., 2012; Hernández et al.,
2015).

Several reports have shown that the effects of metal stress on
ethylene production in plants are both metal- and concentration-
specific (Abeles et al., 1992; Thao et al., 2015; Table 1). It has
been suggested that Cd could be the most phytotoxic inorganic
ion able to stimulate ethylene production by plants (Abeles et al.,
1992; Arteca and Arteca, 2007). Cadmium-induced increases in
ethylene production were observed inHordeum vulgare (Vassilev
et al., 2004), Lycopersicon esculentum (Iakimova et al., 2008),
Pisum sativum (Rodríguez-Serrano et al., 2006, 2009), Brassica
juncea (Masood et al., 2012; Asgher et al., 2014), Glycine max
(Chmielowska-Bąk et al., 2013), A. thaliana (Schellingen et al.,
2014) and Triticum aestivum plants (Khan et al., 2015). On the

other hand, long-term (16 days) Cd exposure decreased ethylene
release in A. thaliana (Carrió-Seguí et al., 2015). Interestingly,
a Cd-tolerant H. vulgare genotype showed a larger increase in
ethylene emission after 15 days of Cd exposure as compared to a
Cd-sensitive genotype (Cao et al., 2014). Up to 6 h after exposure
to excess Cu or Zn (25–500µM), seven-days-old A. thaliana
seedlings grown on hydroponics produced more ethylene than
unexposed seedlings (Mertens et al., 1999). In contrast, no
significant changes in ethylene emission were detected for
A. thaliana seedlings in vitro grown in the presence of 25 or
50µM Cu during 9 days (Lequeux et al., 2010), suggesting an
effect of exposure time and/or plant age. Excess Cu (500µM)
did induce increased ethylene production in Helianthus annuus
and T. aestivum leaf discs. On the other hand, exposure to
500µM Cd only enhanced its emission in T. aestivum leaves
(Groppa et al., 2003), pointing toward species-specific responses
to metal stress. Moreover, different A. thaliana plant parts
showed a various induction of ethylene release after exposure
to excess Cu or Cd, with the highest production rate observed
in inflorescences. This response declined with increasing age of
the different plant parts and did not occur in plants exposed to
Ni or Zn (Arteca and Arteca, 2007). Nonetheless, Ni and Zn
exposure led to higher ethylene release from B. juncea leaves
(Khan and Khan, 2014) and aluminum (Al) induced a rapid
evolution of ethylene from Lotus japonicus (Sun et al., 2007) and
A. thaliana root apices (Sun et al., 2010). Also Fe (Yamauchi
and Peng, 1995) and lithium (Li) toxicity (Naranjo et al., 2003)
were reported to be linked to stress-induced ethylene production
(Table 1).

Although most studies only investigated the effects of metal
exposure on ethylene release by plants, the mechanistic basis
is becoming increasingly clear (Table 1). For example, Cu
induced an increased expression of ACO1 and ACO3 genes in
Nicotiana glutinosa (Kim et al., 1998). It has been suggested that
upregulation of ACO genes serves as a good ethylene production
indicator (Ruduś et al., 2012). Nevertheless, ACC production by
ACS covers the rate-limiting step in the ethylene biosynthesis
pathway. Sun et al. (2007) have attributed the induction of
ethylene evolution from roots of Al-exposed L. japonicus plants
to increased ACO activity, but also observed upregulated ACS
and ACO gene expression in Medicago truncatula after Al
exposure. While Li had a variable effect on ACS expression
(Liang et al., 1996), Cu highly increased ACS transcript levels
in A. thaliana plants (Weber et al., 2006). Activity of ACS
increased in B. juncea plants exposed to Cd (Asgher et al., 2014),
Ni or Zn (Khan and Khan, 2014), as well as in Cd-exposed
T. aestivum plants (Khan et al., 2015). Transcript levels of ACS
and ACO genes were rapidly enhanced in Cu-exposed B. oleracea
(Jakubowicz et al., 2010), Al-exposed A. thaliana (Sun et al.,
2010), chromium (Cr)-exposed Oryza sativa (Trinh et al., 2014),
and Hg-treated O. sativa (Chen et al., 2014) andM. sativa plants
(Montero-Palmero et al., 2014a). In addition, Cd was shown
to enhance ACS gene expression in G. max (Chmielowska-Bąk
et al., 2013) and ACS and/or ACO transcription in H. vulgare
(Cao et al., 2014), O. sativa (Trinh et al., 2014) and A. thaliana
plants (Herbette et al., 2006; Weber et al., 2006; Schellingen
et al., 2014; Table 1). In the latter study, the Cd-induced increase
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in ACC and ethylene biosynthesis was mainly attributed to
upregulated ACS2 and ACS6 expression, as mutants lacking
both isoforms did not show enhanced ethylene release when
exposed to Cd (Schellingen et al., 2014). These enzymes are both
phosphorylated by the MAPKs MPK3 and MPK6, increasing
their half-life (Liu and Zhang, 2004; Joo et al., 2008; Lin et al.,
2009; Han et al., 2010; Skottke et al., 2011). Furthermore, MPK3
and MPK6 are able to induce ACS2 and ACS6 transcription via
the transcription factor WRKY33 (Li et al., 2012). As MAPKs
are clearly implicated in metal-induced signaling responses in
plants (Opdenakker et al., 2012), they might affect ethylene
biosynthesis during metal stress. Finally, whereas most studies
focused on ACS or ACO gene expression levels, Dorling et al.
(2011) have pointed out the importance of also examining the
effects of metal stress on enzyme abundance, activity and post-
translational modifications.

Ethylene Signaling is Affected in
Metal-Exposed Plants
The ethylene signaling cascade starts with its perception by a
family of membrane-bound receptors that are predominantly
localized at the endoplasmic reticulum (ER). Because of its
volatile nature, ethylene can freely diffuse throughout the cell
from the site of production to the ER. In A. thaliana, five
genes encode a high affinity receptor for ethylene: ETHYLENE
RESISTANT 1 and 2 (ETR1/2), ETHYLENE RESPONSE SENSOR
1 and 2 (ERS1/2), and ETHYLENE INSENSITIVE 4 (EIN4).
Although some functional specificity exists among the different
isoforms, they are largely redundant in controlling the ethylene
response in plants (Merchante et al., 2013). In the absence
of ethylene, its receptors actively suppress the downstream
response (Hua and Meyerowitz, 1998). All receptors possess
an N-terminal transmembrane domain to bind ethylene,
a domain involved in protein-protein interactions between
different receptor types and a C-terminal domain to interact with
downstream components of the signaling cascade. A functional
receptor unit consists of a homo- or heterodimer able to bind
ethylene, although associations of higher order can give rise
to receptor clusters in the ER membrane (Merchante et al.,
2013). REVERSION TO ETHYLENE SENSITIVITY 1 (RTE1)
negatively regulates ethylene responses by specifically activating
ETR1 (Resnick et al., 2006, 2008). Furthermore, Cu is required
for ethylene binding as well as receptor functionality and is
delivered to the receptors by the intracellular RESPONSIVE
TO ANTAGONIST 1 (RAN1) Cu transporter (Hirayama et al.,
1999). Although the role of Cu in ethylene perception is
well established, recent results point toward its involvement in
ethylene biosynthesis as well. Indeed, A. thaliana plants grown
under Cu deficient conditions release less ethylene (Carrió-Seguí
et al., 2015).

In the absence of ethylene, the receptors activate a Raf-
like protein kinase called CONSTITUTIVE TRIPLE RESPONSE
1 (CTR1), which is a negative regulator of the downstream
ethylene signaling cascade (Kieber et al., 1993; Ju et al., 2012).
Because of its physical interaction with the ethylene receptors,
CTR1 also resides at the ER membrane (Gao et al., 2003).
Without ethylene binding to its receptors, CTR1 forms a

homodimer and functions as serine/threonine protein kinase
to phosphorylate—and thereby inactivate—the downstream
molecule ETHYLENE INSENSITIVE 2 (EIN2) (Figure 2; Ju
et al., 2012). The EIN2 protein is an essential positive regulator
of ethylene signaling. Furthermore, it is the only gene of the
ethylene pathway where a loss-of-function mutation leads to
complete ethylene insensitivity (Alonso et al., 1999). Similar to
CTR1, EIN2 interacts with the ethylene receptors and is therefore
localized at the ER membrane (Bisson et al., 2009; Bisson and
Groth, 2010).

Upon ethylene binding to its receptors, CTR1 is inactivated
(Ju et al., 2012; Shakeel et al., 2015). As a result, EIN2 is released
from its inhibition by CTR1 and transduces the signal via its
C-terminal end that physically moves from the ER membrane to
the nucleus to activate the downstream components ETHYLENE
INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1). These short-
lived transcription factors act as positive regulators of the
ethylene signaling pathway and activate target genes such as
ETHYLENE RESPONSIVE FACTOR 1 (ERF1) that in turn affect
the expression of secondary response genes in the ethylene-
dependent transcription cascade (Figure 2; Yoo et al., 2009;
Merchante et al., 2013). The above-described linear signaling
pathway is subject to feedback regulation and turnover of
different signaling components at the mRNA and protein level
as described elsewhere (Guo and Ecker, 2003; Qiao et al., 2009;
Zhao and Guo, 2011; Merchante et al., 2013). As it has not been
described yet if and how metal stress affects these regulatory
mechanisms, this paves the way for future research in this
area.

Several studies support a role for ethylene signaling in
response to different metals, mostly related to ERF expression
(Table 1). The ERF proteins belong to the APETALA2/ethylene
response element binding protein (AP2/EREBP) transcription
factor family, which is known to mediate and integrate hormonal
and redox signaling pathways during abiotic stress (Dietz et al.,
2010). Roots of A. thaliana plants exposed to 50µM Cd for 2 h
showed increased expression levels of ERF1, ERF2 and ERF5,
while only ERF1 expression was induced when Cu (10µM) was
applied (Weber et al., 2006). In addition, exposure to 5 or 10µM
Cd induced expression of ERF1, ETR2 and ACO2 in roots and
leaves of A. thaliana plants after 24 and 72 h (Schellingen et al.,
2014). Expression of ERF2 and ERF5was increased in A. thaliana
roots and shoots after 2, 6 and 30 h exposure to 5 or 50µM Cd
(Herbette et al., 2006). Recently, a whole-genome transcriptional
profile fromM. sativa seedlings exposed to 3µMHg for 3, 6 and
24 h demonstrated significant upregulation of several ethylene-
responsive genes such as ERF1, mostly during the earliest
hours of exposure (Montero-Palmero et al., 2014a). Similarly,
Hg exposure affected genes related to ethylene signaling in M.
truncatula (Zhou et al., 2013), O. sativa (Chen et al., 2014), H.
vulgare plants (Lopes et al., 2013). Furthermore, roots ofO. sativa
plants exposed to 200µM Cr for up to 3 h showed an increased
expression of the EIN3;4 gene (Trinh et al., 2014), while the
EIN2 gene was induced in Pb-exposed A. thaliana plants (Cao
et al., 2009; Table 1). It is clear from these studies that ethylene
signaling is involved in the response of plants to toxic metals
(Montero-Palmero et al., 2014b).
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FIGURE 2 | Ethylene signal transduction pathway. In the absence of ethylene (left part), the ER-membrane embedded receptors such as ETHYLENE RESISTANT

1 (ETR1) activate CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1). This Raf-like protein kinase phosphorylates ETHYLENE INSENSITIVE 2 (EIN2) at the C-terminal

domain, which is thereby inactivated. When ethylene is present (right part), its binding to the receptors inactivates CTR1. The C-terminal domain of EIN2 translocates

to the nucleus and activates the downstream signaling cascade via ETHYLENE INSENSITIVE 3 (EIN3)/EIN3-LIKE 1 (EIL1) and ETHYLENE RESPONSIVE FACTOR 1

(ERF1), finally affecting the transcription of ethylene responsive genes.

ETHYLENE IS A KEY REGULATOR OF
PLANT RESPONSES TO METAL STRESS

Various reports discuss the potential implication of ethylene
in plant adaptation or tolerance to toxic metals, and plant
genotypes emitting more ethylene were suggested to be
more metal resistant than those that release less (Lu and
Kirkham, 1991). Moreover, the Pb-hyperaccumulator Sesbania
drummondii showed increasing mRNA levels of a putative
ACS/ACO gene upon exposure to Pb (Srivastava et al.,
2007). Recently, Fu et al. (2014) conducted a transcriptome
profiling of genes and pathways associated with As tolerance
and toxicity in two A. thaliana ecotypes. In the more
tolerant Columbia ecotype, genes encoding components of
the ethylene signaling pathway were significantly enriched
after short-term As exposure as compared to the sensitive
Wassilewskija ecotype (Fu et al., 2014). Similarly, Cao et al.
(2014) suggested that Cd tolerance in H. vulgare is related to the
induction of ethylene signaling. Transgenic N. tabacum plants
overexpressing an ERF gene from Lycium chinense displayed
greater tolerance to Cd stress than non-transformed plants
(Guan et al., 2015). On the other hand, ethylene insensitive
etr1-1 and ein3-3 A. thaliana mutants were shown to be
less sensitive to Li than WT plants (Bueso et al., 2007).
These apparent conflicting results can be attributed to metal-
specific properties, but are definitely related to the chosen

experimental setup as discussed before (metal concentration,
exposure time, plant species; Table 1, see section “Weighing
the Evidence for a Relation between Ethylene and Metal
Stress”). Nevertheless, still little is known about the underlying
mechanisms of ethylene regulating plant responses tometal stress
and potentially affecting sensitivity vs. tolerance (Asgher et al.,
2015).

Mutants defective in ethylene biosynthesis and signaling,
together with pharmacological compounds to induce or inhibit
these processes, have provided an elegant framework to further
unravel the involvement of ethylene in plant metal stress
responses. In this way, it was shown that ethylene signaling
plays an important role during Cd-induced cell death in cultured
tomato cells. Exposure to CdSO4 induced rapid cell death
and a transiently increased ethylene production within 24 h.
Addition of aminoethoxyvinylglycine (AVG) to inhibit ethylene
biosynthesis or silver thiosulfate (STS) to block the ethylene
receptor led to a marked decrease in Cd-induced cell death
(Iakimova et al., 2008). A similar inhibitory effect of AVG was
observed during Al-induced cell death in tomato suspension cells
(Yakimova et al., 2007).

Using the ethylene-insensitiveNever ripe (Nr) tomato mutant,
ethylene was demonstrated to be involved in Cd-induced lipid
peroxidation in roots, leaves and fruits (Gratão et al., 2012).
Mutant A. thaliana plants without functional ACS2 and ACS6
enzymes did not show an increased ethylene release upon
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short-term (24 to 72 h) exposure to 5 or 10µM Cd as compared
to wild-type (WT) plants. Moreover, Cd-induced decreases in
leaf fresh weight were less pronounced in mutants than in WT
plants, pointing to a lower Cd sensitivity in the absence of ACS2/6
(Schellingen et al., 2014, 2015a). After prolonged exposure to the
same Cd concentrations however, WT and acs2-1/6-1 knockout
mutants were equally sensitive, suggesting an early and transient
role for ethylene in Cd-induced stress responses (Schellingen
et al., 2015a).

Ethylene insensitive ein2-1 mutants are more sensitive to
Pb (Cao et al., 2009). This was attributed to an increased
uptake of Pb and a diminished GSH content (Cao et al., 2009),
revealing crosstalk between ethylene and the biosynthesis of this
antioxidant and metal chelating compound. Also other studies
link ethylene to the metal-induced oxidative stress response (Sun
and Guo, 2013; Zhang et al., 2014; Montero-Palmero et al.,
2014a; Schellingen et al., 2015a,b), as is discussed in the next
section. These results clearly point toward the potential benefit
of altering ethylene biosynthesis and/or signaling in future
phytoremediation strategies (Montero-Palmero et al., 2014a).
This is also supported by the fact that bacteria producing ACC
deaminase (ACD) and thereby diminishing ethylene levels in
their host plant, have been successfully used in laboratory and
field conditions to protect plants from growth inhibition by
elements such as As, Cd, Cu, Ni, Pb, and Zn (reviewed by
Glick et al., 2007). This enzyme converts the ethylene precursor
ACC into α-ketobutyrate and ammonia, which is subsequently
used as nitrogen source by the bacteria. This reduces deleterious
ethylene levels in planta and alleviates the associated stress
symptoms (Arshad et al., 2007; DalCorso et al., 2013; Glick,
2014). However, it must be emphasized that the beneficial effects
of plant-associated bacteria are also related to the increased
availability of nutrients such as P and Fe, the production
of phytohormones such as auxins and cytokinins and their
competition with phytopathogens that could negatively affect
plant health and growth (Weyens et al., 2009). Nonetheless,
diminishing ethylene levels seems a promising path to explore, as
transgenic plants expressing a bacterial ACD gene display a more
resistant phenotype than non-transformed plants when exposed
to different metals (Arshad et al., 2007; Glick et al., 2007). It has
even been shown that plants possess ACD activity themselves
(McDonnell et al., 2009), an intriguing asset which could also be
exploited in phytoremediation of metal-polluted soils. However,
ethylene production and signaling might also be a beneficial part
of metal stress responses in plants (Cao et al., 2014; Fu et al., 2014;
Thao et al., 2015). Indeed, ethylene can promote as well as inhibit
plant growth (Pierik et al., 2006). Therefore, much work remains
to be done prior to altering the ethylene response and improving
phytoremediation of metal-contaminated soils.

With regard to plant growth in metal-polluted areas, the
root architecture is of great importance. Interestingly, ethylene
modulates local and systemic responses to low phosphate (Pi),
thereby contributing to the remodeling of the root system
architecture to increase Pi uptake (Nagarajan and Smith, 2011).
As the root system of plants exposed to toxic metals is also
drastically changed (Remans et al., 2012), this opens the window
to study the potential involvement of ethylene in this response

specifically (De Smet et al., 2015). For example, WT A. thaliana
plants exposed to increasing Cd concentrations showed a higher
lateral root density, which was abolished at higher exposure
concentrations. In contrast, the Cd-induced increase in lateral
root density was maintained at these higher exposure levels in
ethylene insensitive ein3-1 mutants. Ethylene might therefore
modulate lateral root outgrowth during high Cd exposure
(Remans et al., 2012). Furthermore, ethylene is implicated
in the development of root hairs in Cd-exposed B. napus
seedlings, as the use of the ethylene biosynthesis inhibitors cobalt
chloride (CoCl2) and aminooxyacetic acid (AOA) attenuated the
Cd-mediated increase in root hair density (Sun and Guo, 2013).
Ethylene may also inhibit primary root growth during the early
response to Hg, as roots of M. sativa seedlings exposed to the
ethylene receptor inhibitor 1-methylcyclopropene (1-MCP) as
well as roots of ethylene insensitive ein2-5 A. thaliana mutants
grew more in the presence of moderate Hg concentrations as
compared to their untreated or WT counterparts (Montero-
Palmero et al., 2014a). In addition, ethylene insensitive etr1-3
and ein2-1 A. thaliana plants were more tolerant to Al stress, as
root elongation of both mutants was less inhibited than in WT
plants (Sun et al., 2010). For ein2-1, root and leaf growth was
also less compromised as compared to the WT after 14 days of
Al exposure (Zhang et al., 2014). Similarly, root elongation of
Al-exposed A. thaliana plants was less affected in the presence
of antagonists of ethylene biosynthesis (AVG and CoCl2) and
perception [silver nitrate (AgNO3); Sun et al., 2010]. Recently, it
was shown that ethylene negatively regulates Al-induced efflux of
malate anions in wheat. As malate forms extracellular complexes
with Al, this explains the increased Al tolerance observed in
ethylene insensitive genotypes (Tian et al., 2014). Again, the
potential benefits of ethylene able to reduce root and plant growth
during metal stress should not be ignored when interpreting the
above-mentioned results.

CROSSTALK BETWEEN ETHYLENE AND
OTHER PLAYERS IN THE METAL STRESS
NETWORK

Research over the past years points toward an intimate
interaction between ethylene and other signaling components
implicated in the response of plants to metal stress (Figure 3). In
the following sections, the experimental evidence is summarized.
Nonetheless, it must be emphasized that our knowledge is
still scarce, revealing the need for future research to obtain
an integrated picture and potentially apply this information in
strategies to cope with phytotoxic metals (Thao et al., 2015).

Interaction between Ethylene and ROS
Signaling
It is widely accepted that ROS act as signalingmolecules in abiotic
stress responses, interacting with other signaling pathways in
a spatiotemporal manner (Bartoli et al., 2013; Baxter et al.,
2014). Oxidative stress characterized by an imbalance between
ROS and antioxidants in favor of the former is a recurrent
response of metal-exposed plants (Sharma and Dietz, 2009),
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FIGURE 3 | Ethylene participates in the network of metal-induced signaling responses in plants. Different signaling pathways are affected by metal exposure

in plants. (1) Phytohormones such as ethylene, jasmonic acid (JA) and salicylic acid (SA) are influenced by metal stress. In particular, ethylene biosynthesis is generally

activated at the level of ACC synthase (ACS) and oxidase (ACO), thereby stimulating the ethylene signaling cascade. (2) Increased generation of reactive oxygen

species (ROS, e.g. H2O2) and reactive nitrogen species (e.g. NO•) sets oxidative signaling pathways in motion, for example those mediated by mitogen-activated

protein kinases (MAPK). (3) Glutathione (GSH) is a central player in the metal-induced stress network, not only because of its antioxidant function, but also as a

precursor for metal-chelating phytochelatins. It is increasingly clear that these individual players integrate and interact within a broad signaling network in

metal-exposed plants. Direct interaction between oxidative stress and ethylene biosynthesis is demonstrated by the MAPK-mediated activation of ACS. In addition,

ethylene is shown to affect other players such as JA, SA, ROS, NO•, MAPK, and the GSH metabolism as well (indicated by orange dashed arrows).

which triggers downstream responses potentially leading to
acclimation. Furthermore, it is increasingly clear that signals
related to an increased ROS generation are linked to hormonal
signaling pathways (Fujita et al., 2006; Baxter et al., 2014).
Different studies demonstrated the involvement of ethylene in
the stress-induced oxidative burst, as reviewed by Steffens (2014)
during salinity, flooding and metal stress responses in O. sativa.
When ethylene production or perception was inhibited by AVG
or STS, respectively, camptothecin-induced H2O2 production
was blocked in L. esculentum suspension cells (de Jong et al.,
2002). As compared to WT plants, ethylene insensitive ein2-1
A. thaliana plants produced less H2O2 and showed a lower
O•−
2 production rate when exposed to paraquat. Consequently,

mutant seedlings had a lower increase in malondialdehyde
(MDA) content, which suggests less oxidative damage compared
to the WT (Cao et al., 2006). Similarly, H2O2 production
and MDA content were lower in ein2-1 as compared to WT
plants after Al exposure (Zhang et al., 2014). Furthermore,
application of the ethylene receptor blocker STS significantly
reduced the H2O2 content in roots of Cd-exposed Phaseolus
coccineus plants after 1 and 2 h (Maksymiec, 2011). Cadmium-
induced production of O•−

2 at the growing root hair tips of
B. napus was blocked by the ethylene biosynthesis inhibitor

AOA, suggesting that ethylene signaling acts upstream of O•−
2

(Sun and Guo, 2013). Finally, A. thaliana cat2-1 mutants that
accumulate more H2O2 under normal growth conditions were
more tolerant to Li, although they took up more Li as compared
to WT plants. Lithium-exposed cat2-1 mutants produced less
ethylene and showed less induction of ethylene responsive genes
than the WT. Therefore, the authors attributed the increased Li
tolerance of cat2-1mutants to a reduced ethylene production and
sensitivity (Bueso et al., 2007).

These results suggest an interaction between ethylene and
the ROS network of plants, with ethylene able to affect ROS
producing as well as scavenging enzymes and metabolites. The
ROS producing NADPH oxidases [also known as respiratory
burst oxidase homologs (RBOH)] are put forward as critical
signaling hubs in the response of plants to environmental stimuli
(Suzuki et al., 2011) such as metal exposure (Remans et al., 2010).
Ethylene is an important upstream regulator of O•−

2 -producing
NADPH oxidases (Chae and Lee, 2001), with a regulatory
interaction between the ethylene biosynthesis gene ACS1 and
RBOHD/F transcription in B. oleracea seedlings (Jakubowicz
et al., 2010). In Ipomoea batatas, the NADPH oxidase inhibitor
diphenyleneiodonium decreased ROS production induced by
ethephon, an ethylene releasing compound (Chen et al., 2013).
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Furthermore, ethylene seems to stimulate the apoplastic release
of H2O2 by activating NADPH oxidase isoform D (RBOHD)
during biotic stress, as flagellin (flg22)-induced ROS generation
diminished in ethylene insensitive etr1-1 and ein2-1 A. thaliana
mutants as compared to the WT (Mersmann et al., 2010).
Recent reports also indicate a relationship between ethylene and
NADPH oxidase during metal stress. For example, inhibition of
the ethylene receptors by 1-MCP reduced or even abolished the
increase in extracellular H2O2 production and NADPH oxidase
activity observed during the first 6 h of Hg exposure in M. sativa
root segments (Montero-Palmero et al., 2014a). In addition,
Hg-exposed ethylene insensitive ein2-5 mutants produced less
H2O2 as compared to their WT counterparts (Montero-Palmero
et al., 2014a). Upon Cd exposure, expression of RBOHC did not
increase to WT levels in leaves of acs2-1/6-1 knockout, ein2-1,
and ein2-5 mutant A. thaliana plants (Keunen et al., 2015),
again supporting a link between ethylene and ROS production
by NADPH oxidases during metal stress. Furthermore, ethylene
signaling was also related to the transcriptional induction of
ALTERNATIVE OXIDASE 1a/d (AOX1a/d), which was lower in
leaves of Cd-exposed ein2-1 and ein2-5 mutants as compared to
WT plants. This enzyme regulates ROS levels and is suggested
to modulate the Cd-induced oxidative challenge in A. thaliana,
requiring ethylene—either directly or indirectly via RBOHC—
to be fully induced at the transcript level (Keunen et al., 2015).
In line with this, AOX was demonstrated to be involved in
ethylene-induced plant cell death as well (Lei et al., 2003).

On the other hand, ethylene might affect the plant’s
antioxidative defense network as shown by Cao et al. (2006). They
demonstrated a constitutively higher transcription of Cu/Zn
SOD 2 (CSD2) and CAT3 genes, leading to enhanced SOD
and CAT enzyme activities in ein2-1 mutants as compared to
WT plants. This was also shown in Al-exposed ein2-1 mutants,
which showed differential responses at the level of SOD and
CAT activities compared to WT plants (Zhang et al., 2014).
The interaction between ethylene and antioxidative defense is
further underlined by the fact that ein2-1, ein3-1 and ein4mutant
A. thaliana plants have a higher AsA content in leaves (Gergoff
et al., 2010), which was also observed in ethylene insensitive Nr
tomato fruits (Alba et al., 2005). Conversely, the ctr1-1 mutant
with a loss-of-function of the negative regulator CTR1 displayed
lower leaf AsA levels (Gergoff et al., 2010). Concurrently,
ethylene signaling was reported to suppress AsA synthesis and
accumulation in tomato leaves (Mazorra Morales et al., 2014). In
this regard, it is noteworthy tomention that ethylene biosynthesis
requires AsA in the final step (cfr. supra), further supporting
crosstalk between both compounds. Finally, mutants defective
in ethylene perception (etr1-1) as well as those overproducing
ethylene (eto1-1) showed up to five-fold higher α-tocopherol
levels during leaf aging. Furthermore, ethylene insensitive ein3-1
mutants showed a delayed increase in α-tocopherol during
water stress (Cela et al., 2009). This antioxidant compound was
shown to be essential for the tolerance of A. thaliana plants to
metal-induced oxidative stress (Collin et al., 2008). Therefore,
the interaction between ethylene and the antioxidative defense
network mounted during metal exposure can ultimately affect
responses leading to sensitivity or tolerance and deserves further

investigation. In particular, a relation between ethylene and GSH
is suggested and is discussed in a separate section.

Besides ROS, plant cells also produce reactive nitrogen
species (RNS) such as nitric oxide (NO•) during abiotic stress
(Corpas et al., 2011) such as Cd exposure (Arasimowicz-Jelonek
et al., 2011; Chmielowska-Bąk et al., 2014). However, the
functional role of NO• in metal-challenged plants is not yet
fully understood. Different results point toward an interaction
between NO• and ethylene, as recently reviewed by Mur et al.
(2013). During salt stress, NO• and ethylene were shown to
cooperate in the modulation of ion homeostasis. Salt stress-
induced NO• production greatly enhanced ethylene emission
in A. thaliana callus. In its turn, ethylene stimulated the
expression of plasma membrane H+-ATPase genes, which has
been suggested to facilitate Na+ efflux into the apoplast and
attenuate Na+ toxicity under saline conditions (Wang et al.,
2009). Such regulatory interactions between NO• and ethylene
might also be involved in the response of plants to metal
stress. Interestingly, both ethylene and NO• are involved in
the upregulation of key genes related to Fe acquisition and
homeostasis in A. thaliana (García et al., 2010). Iron deficiency
is a well-known consequence of metal toxicity [e.g. Cd (Xu et al.,
2015)] and seems to increase ethylene sensitivity (García et al.,
2010), which potentially affects metal-induced responses related
to ethylene as well. It has been shown that nutrient stress—either
a reduced or increased availability—affects ethylene biosynthesis
and perception in plants via the induction of an oxidative burst
(Iqbal et al., 2013a), again highlighting the link between ethylene
and ROS signaling.

Crosstalk between Ethylene and GSH
Tolerance to toxic metals is highly dependent on the metabolism
of GSH, a widely distributed biothiol tripeptide (γ-glutamyl-
cysteinyl-glycine) in plant cells. As metal chelator, antioxidant
and signaling compound, GSH is a key player in metal-induced
oxidative stress defenses (Seth et al., 2012). This multifunctional
role is related to the sulfhydryl group in cysteine, which has a
high affinity toward metals such as Cd and Hg. Furthermore,
GSH is the precursor molecule for the synthesis of phytochelatins
(PCs), which consist of 2 to 11 GSH molecules and limit the
cellular concentration of free metal ions (Jozefczak et al., 2012;
Hernández et al., 2015). Using ethephon, it was shown that
ethylene induces the activity of ATP sulfurylase (ATPS), leading
to an accumulation of sulfur (S) in B. juncea (Iqbal et al., 2012).
Recently, Iqbal et al. (2013b) reviewed the crosstalk between
S assimilation and ethylene signaling in plants. Since GSH
synthesis is affected by S availability to produce the amino acid
cysteine, ethylene might modulate this process in order to meet
the increasing demands for GSH during metal stress. In this
regard, it is important to mention that ethylene synthesis itself
also requires cysteine to ultimately produce SAM (Figure 4).

Crosstalk between ethylene and GSH is suggested by
the observed upregulation of different genes encoding ERF
transcription factors in the severe GSH deficient root meristemless
1-1 (rml1-1) A. thaliana mutants as compared to WT plants
(Schnaubelt et al., 2015). On the other hand, ERF2 expression
was significantly repressed in cadmium sensitive 2-1 (cad2-1)
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FIGURE 4 | Simplified scheme of the interaction between sulfur assimilation, ethylene and glutathione biosynthesis in plants. Sulfur is taken up from the

soil as sulfate, which is converted into adenosine 5-phosphosulfate by the enzyme ATP sulfurylase (ATPS). This is further reduced by adenosine 5-phosphosulfate

reductase (APR) into sulfite, which is subsequently reduced into sulfide by sulfite reductase (SiR). The enzyme O-acetylserine (thiol) lyase (OASTL) produces cysteine,

which is one of the three building blocks that make up glutathione. During glutathione biosynthesis, cysteine is coupled to glutamate by γ-glutamylcysteine synthetase

(GSH1) to form γ-glutamylcysteine. In the next step, glycine is added by glutathione synthetase (GSH2) to finally produce glutathione. In addition, cysteine is also

required for ethylene formation, as methionine is derived from cysteine via different reactions (depicted by the dashed arrow). In the ethylene biosynthetic pathway,

methionine is converted to S-adenosyl-methionine (SAM) by SAM synthetase. In the next steps, 1-aminocyclopropane-1-carboxylic acid (ACC) is produced by ACC

synthase (ACS) and subsequently oxidized by ACC oxidase (ACO) to form ethylene (see Figure 1). As ethylene and glutathione fulfill important functions in

metal-exposed plants, a trade-off between both might lie at the heart of their interaction regulating plant responses to metal stress.

A. thaliana mutants that also have lower GSH levels than
WT plants, but not as low as those of rml1-1 mutants (Han
et al., 2013). Transgenic N. tabacum plants with an enhanced
GSH content showed induced ethylene biosynthesis (ACO) and
signaling (ERF) genes (Ghanta et al., 2014). The potential
interplay between GSH and ethylene is further underlined
by the results of Chen et al. (2013), who demonstrated that
exogenous GSH mitigated the ethephon-induced increase in
ROS production in sweet potato. Furthermore, ethylene was
suggested to increase de novo biosynthesis of GSH in ozone-
exposed A. thaliana plants, thereby protecting against leaf injury
(Yoshida et al., 2009).

Increasing evidence points toward a close relationship
between ethylene and GSH metabolism during metal stress.
For example, ethephon treatment increased GSH levels in Cd-
exposed B. juncea (Masood et al., 2012). Similarly, GSH levels
in Ni- and Zn-exposed B. juncea plants were higher after
ethephon application, which alleviated metal toxicity (Khan
and Khan, 2014). While ACS activity and ethylene production
decreased, GSH levels increased in Cd-exposed T. aestivum
supplied with S (Khan et al., 2015). Transcript levels of genes
encoding GSH biosynthesis enzymes were significantly less
upregulated, concomitantly with lower GSH levels in leaves of
Cd-exposed acs2-1/6-1 knockout vs. WT A. thaliana plants.
Therefore, increased ethylene biosynthesis upon Cd exposure
seems crucial to mount effective defense responses related
to GSH (Schellingen et al., 2015a). In addition, ethylene
signaling is implicated in the accumulation of GSH in Al-
exposed A. thaliana (Zhang et al., 2014), Cd-exposed L. chinense
(Guan et al., 2015), and A. thaliana plants (Schellingen et al.,
2015b). The increased Cd tolerance of transgenic tobacco plants
overexpressing an ERF gene from L. chinense was related to an
enhanced expression level of GSH biosynthesis genes (Guan et al.,
2015). Similar results were obtained in Pb-exposed A. thaliana

plants, where EIN2 is indispensable to confer metal resistance
partially by increasing GSH levels (Cao et al., 2009). These
results confirm the suggested interplay between ethylene and
GSH in determining metal tolerance vs. sensitivity and open
the window to future experiments exploiting this relationship
in phytoremediation strategies (Hernández et al., 2015). As
discussed before, it should be kept in mind that not all
metal(loid)s are equally strong inducers of PC synthesis (Anjum
et al., 2015) and will therefore differentially affect GSH levels in
plants.

Interaction between Ethylene and MAPK
Signaling Pathways
A signaling pathway linked to ethylene and worthwhile to discuss
in the light of metal stress is the ROS-induced MAPK cascade.
These kinases are activated at transcript and activity level in
different plant species exposed to metals. Furthermore, they
interfere with hormone biosynthesis and signaling to activate
downstream responses (Opdenakker et al., 2012). As mentioned
before, the stress-responsive MPK3 and MPK6 isoforms increase
ethylene production by affecting ACS2 and ACS6 transcription
as well as protein stability (Liu and Zhang, 2004; Li et al., 2012).
In addition, MAPK kinase 9 (MKK9) was shown to activate
the MPK3/MPK6 cascade and stimulate ethylene biosynthesis
in A. thaliana (Xu et al., 2008). Other studies have indicated
that MAPKs could be involved in ethylene signaling as well
(Ouaked et al., 2003; Hahn and Harter, 2009). This might
come as no surprise since the negative regulator of ethylene
signaling, CTR1, shows sequence similarities with Raf protein
kinases and has been presumed to function as a MAPK kinase
kinase (MAPKKK). However, no conclusive CTR1-targeted
kinases have been identified yet (Zhao and Guo, 2011; Ju and
Chang, 2012; Merchante et al., 2013). Nonetheless, nuclear EIN3
was shown to be regulated not only by CTR1 but also by
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a novel MAPK cascade mediated by MKK9 and MPK3/6 in
A. thaliana. This cascade functions downstream of CTR1, is
activated when ethylene binds to its receptors and stabilizes
EIN3 by phosphorylation (Yoo et al., 2008). Recently, Schellingen
et al. (2015b) proposed a model where MPK3/6 link ROS
production and ethylene signaling during Cd stress inA. thaliana
leaves. In this model, Cd exposure activates NADPH oxidases,
which produce ROS that are sensed by the oxidative signal-
inducible kinase1 (OXI1). This kinase then activates MPK3/6,
both affecting ACS2/6 enzymes at multiple levels (Schellingen
et al., 2015b). Furthermore, Liu et al. (2010) have shown that
pretreatment with GSH reduced the activation of MPK3 and
MPK6 under Cd stress in A. thaliana. This suggests that ROS
are involved in Cd-induced MAPK signaling, with a relation to
ethylene as both MPK3/6 are able to affect ethylene biosynthesis
enzymes (Thao et al., 2015). Therefore, the potential implication
of MAPK signaling and its relation with ethylene biosynthesis
and/or signaling during metal stress should be explored in more
detail.

Phytohormone Crosstalk During Metal
Stress
Interactions between various phytohormones are required to
integrate environmental signals and stress tolerance responses
(De Paepe and Van Der Straeten, 2005; Kohli et al., 2013).
In addition to ethylene, jasmonic acid (JA) and salicylic acid
(SA) are mostly implicated in plant stress responses (Van
de Poel et al., 2015) such as those mounted during metal
exposure (De Smet et al., 2015). Different genes involved in
ethylene and JA biosynthesis as well as genes responsive to
these hormones were differentially expressed after Hg exposure
in M. sativa, M. truncatula and H. vulgare plants (Montero-
Palmero et al., 2014b). Gene expression profiling in Cr-stressed
O. sativa roots indicated activation of ethylene and JA signaling
pathways (Trinh et al., 2014). Furthermore, JA levels rapidly
increased in A. thaliana and P. coccineus plants exposed
to Cd or Cu (Maksymiec et al., 2005). From a signaling
point of view, JA was shown to trigger ROS production
in short-term Cd- and Cu-exposed A. thaliana plants, as
inhibiting JA biosynthesis by propyl gallate decreased O•−

2
and H2O2 levels after metal exposure (Maksymiec and Krupa,
2006).

A mutual relationship exists between ethylene and JA
signaling (Song et al., 2014), which might ultimately affect
metal stress responses as well. For example, it has been shown
that the JA receptor CORONATINE INSENSITIVE 1 (COI1) is
implicated in the inhibition of Arabidopsis root growth mediated
by ethylene in the light (Adams and Turner, 2010). Furthermore,
ethylene insensitive ein2-1 mutants become ethylene responsive
by reducing JA levels via a genetic or chemical approach (Kim
et al., 2013). Crosstalk between ethylene and SA during metal
stress was supported by the results of Zhang et al. (2014).
They showed that Arabidopsis mutants insensitive to ethylene
(ein2-1) or SA [nonexpressor of pathogenesis-related proteins 1-1
(npr1-1)] were more tolerant to Al exposure as compared to
WT plants. However, ein2-1/npr1-1 double mutants were less

tolerant than WT plants, indicating that the tolerant phenotype
of ein2-1 and npr1-1 single mutants depended on remaining
NPR or EIN function, respectively (Zhang et al., 2014). These
results further support studying the complex interaction between
various hormonal signaling pathways mediating metal stress
responses in plants.

As for ethylene, different studies support a functional link
between GSH and JA as well. Mutant A. thaliana plants without
functional GR1 displayed a constitutive increase in oxidized
glutathione disulfide (GSSG), which affected the expression of
genes involved in JA metabolism dependent on day length
conditions (Mhamdi et al., 2010). Expression levels of two
JA signaling marker genes [plant defensin 1.2 (PDF1.2) and
vegetative storage protein 2 (VSP2)] were significantly lower
in GSH deficient cad2-1 or regulator of APX2 1-1 (rax1-1)
mutants. Similar results were obtained when GSH biosynthesis
was chemically inhibited by buthionine sulfoximine (BSO) in
WT plants. In addition, microarray analysis revealed a multitude
of genes involved in JA synthesis, activation and signaling to
be differentially expressed in cad2-1 mutants, indicating that
the basal expression of JA-associated genes is affected by the
content of GSH (Han et al., 2013). In the conditional oxidative
stress signaling mutant cat2 with H2O2-induced accumulation
of GSSG under ambient air and moderate light conditions,
the JA pathway was upregulated. However, this response was
attenuated in a cat2 cad2 double mutant, showing that GSH also
regulates oxidative stress-induced JA-related gene expression in
A. thaliana (Han et al., 2013). In addition to JA, SA was also
shown to interact with GSH, as transgenic tobacco plants with
an enhanced GSH content showed induction of SA-related genes
such as PATHOGENESIS-RELATED PROTEIN 1a (PR1a; Ghanta
et al., 2014). As ethylene and GSH are clearly intertwined during
metal stress responses, it might be worthwhile to investigate
the involvement of JA and SA in this interaction. In addition,
JA signaling also involves the MAPK cascade MKK3/MPK6
(Takahashi et al., 2007) and NO• does not only affect ethylene but
also JA and SA signaling cascades (Mur et al., 2013). Therefore,
it is recommended to further dissect the hormonal crosstalk
affecting plant responses to metal stress (also reviewed by Thao
et al., 2015) and address their interaction with oxidative stress
and particularly GSH, the MAPK cascade and NO• in future
experiments.

CONCLUDING REMARKS

Ethylene is involved in many processes throughout the entire
life cycle of plants, including responses to environmental stimuli
such as metal exposure. Our current knowledge on the role
of ethylene in metal-induced stress responses, as well as its
integration within a broad network of signaling compounds, is
gradually expanding. Recent evidence points toward an intimate
link between ethylene, the cellular redox balance with GSH as
important antioxidant and other phytohormones such as JA
and SA, finally affecting plant metal sensitivity vs. tolerance.
Nevertheless, much work remains to be done before this
information can be applied in practice.
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