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Abstract

Given a document D in the form of an unordered node-labeled tree, we study the
expressiveness on D of various basic fragments of XPath, the core navigational
language on XML documents. Working from the perspective of these languages
as fragments of Tarski’s relation algebra, we give characterizations, in terms
of the structure of D, for when a binary relation on its nodes is definable by
an expression in these algebras. Since each pair of nodes in such a relation
represents a unique path in D, our results therefore capture the sets of paths in
D definable in each of the fragments. We refer to this perspective on language
semantics as the “global view.” In contrast with this global view, there is also
a “local view” where one is interested in the nodes to which one can navigate
starting from a particular node in the document. In this view, we characterize
when a set of nodes in D can be defined as the result of applying an expression
to a given node of D. All these definability results, both in the global and
the local view, are obtained by using a robust two-step methodology, which
consists of first characterizing when two nodes cannot be distinguished by an
expression in the respective fragments of XPath, and then bootstrapping these
characterizations to the desired results.
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1. Introduction

In this paper, we investigate the expressive power of several basic fragments
of Tarski’s relation algebra [2] on finite tree-structured graphs. Tarski’s algebra
is a fundamental tool in the field of algebraic logic which finds various appli-
cations in computer science [3–6]. Our investigation is specifically motivated
by the role the relation algebra plays in the study of database query languages
[7–13]. In particular, the algebras we consider in this paper correspond to nat-
ural fragments of XPath. XPath is a simple language for navigation in XML
documents (i.e., a standard syntax for representing node-labeled trees), which
is at the heart of standard XML transformation languages and other XML tech-
nologies [14]. Keeping in the spirit of XML, we will continue to speak in what
follows of trees as “documents” and the algebras we study as “XPath” algebras.

XPath can be viewed as a query language in which an expression associates
to every document a binary relation on its nodes representing all navigation
paths in the document defined by that expression [9, 15, 16]. From this query-
level perspective, several natural semantic issues have been investigated in re-
cent years for various fragments of XPath. These include expressibility, closure
properties, and complexity of evaluation [8, 9, 15, 17, 18], as well as decision
problems such as satisfiability, containment, and equivalence [19–21].

Alternatively, we can view XPath as a navigational tool on a particular given
document, and study expressiveness issues from this document-level perspective.
(A similar duality exists in the relational database model, where Bancilhon [22]
and Paredaens [23] considered and characterized expressiveness at the instance
level, which, subsequently, Chandra and Harel [24] contrasted with expressive-
ness at the query level.)

In this setting, our goal is to characterize, for various natural fragments of
XPath, when a binary relation on the nodes of a given document (i.e., a set of
navigation paths) is definable by an expression in the fragment.

To achieve this goal, we develop a robust two-step methodology. The first
step consists of characterizing when two nodes in a document cannot be distin-
guished by an expression in the fragment under consideration. It turns out for
those fragments we consider that this notion of expression equivalence of nodes
is equivalent to an appropriate generalization of the classic notion of bisimilar-
ity [25]. The second step of our methodology then consists of bootstrapping
this result to a characterization for when a binary relation on the nodes of a
given document is definable by an expression in the fragment (in the sense of
the previous paragraph).

We refer to this perspective on the semantics of XPath at the document level
as the “global view.” In contrast with this global view, there is also a “local
view” which we consider. In this view, one is only interested in the nodes to
which one can navigate starting from a particular given node in the document
under consideration. From this perspective, a set of nodes of that document can
be seen as the end points of a set of paths starting at the given node. For each
of the XPath fragments considered, we characterize when such a set represents
the set of all paths starting at the given node defined by some expression in the

2



fragment. These characterizations are derived from the corresponding charac-
terizations in the “global view,” and turn out to be particularly elegant in the
important special case where the starting node is the root.

In this paper, we study several natural XPath fragments. The most expres-
sive among them is the XPath algebra which permits the self, parent, and child
operators, predicates, compositions, and the boolean operators union, intersec-
tion, and difference. (Since we work at the document level, i.e., the document
is given, there is no need to include the ancestor and descendant operators
as primitives.) We also consider the core XPath algebra, which is the XPath
algebra without intersection and difference at the expression level. The core
XPath algebra is the adaptation to our setting of Core XPath of Gottlob et
al. [16, 17, 26]. Of both of these algebras, we also consider various “downward”
and “upward” fragments without the parent and child operator, respectively.
We also study “positive” variants of all the fragments considered, without the
difference operator.

Our strategy is to introduce and characterize generalizations of each of these
practical fragments, towards a broader perspective on relation algebras on trees.
These generalizations are based on a simple notion of path counting, a feature
which also appears in XPath.

The robustness of the characterizations provided in this paper is further
strengthened by their feasibility. As discussed in Section 9, the global and local
definability problems for each of the XPath fragments are decidable in poly-
nomial time. This feasibility hints towards efficient partitioning and reduction
techniques on both the set of nodes and the set of paths in a document. Such
techniques may fruitfully applied towards, e.g., document compression [27], ac-
cess control [28], and designing indexes for query processing [12, 29, 30].

We proceed in the paper as follows. In Section 2, we formally define doc-
uments and the algebras, and then in Section 3, we define a notion of “signa-
tures” which will be essential in the sequel. In Section 4, we define the semantic
and syntactic notions of node distinguishability necessary to obtain our desired
structural characterizations. In the balance of the paper, we apply our two-step
methodology to link semantic expression equivalence in the languages to appro-
priate structural syntactic equivalence notions. In particular, we give structural
characterizations, under both the global and local views,

• of “strictly” (Section 5) and “weakly” (Section 6) downward languages,
and their positive variants;

• of upward languages and their positive variants (Section 7); and,

• of languages with both downward and upward navigation, and their posi-
tive variants (Section 8).

Along the way, we also establish the equivalence of some of these fragments,
using the structural characterizations obtained. We conclude in Section 9 with
a discussion of some ramifications of our results and directions for further study.
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Figure 1: Example document.

2. Documents and navigation

In this paper, we are interested in navigating over documents in the form
of unordered labeled trees. Formally, we denote such a document as D =
(V,Ed, r, λ), with D the document name, V the set of nodes of the tree, Ed
the set of edges of the tree, r the root of the tree, and λ : V → L a function
assigning to each node a label from some infinite set of labels L.

Example 2.1. Figure 1 shows an example of a document that will be used
throughout the paper. Here, r = v1 is the root of the tree with label λ(v1) = a.

We next define a set of operations on documents, as tabulated in Table 1.
The left column shows the syntax of the operation, and the right column its
semantics, given a document D = (V,Ed, r, λ). Notice that, in each case, the
result is a binary relation on the nodes of the document.

The basic algebra, denoted X , is the language consisting of all expressions
built from ∅, ε, ˆ̀ with ` ∈ L, composition (“/”), and union (“∪”). The basic
algebra X can be extended by adding some of the other operations in Table 1,
which we call nonbasic. If E is a set of nonbasic operations, then X (E) denotes
the algebra obtained by adding the operations in E to the basic algebra X .
When writing expressions, we assume that unary operations take precedence
over binary operations, and that composition takes precedence over the set
operations.

Notice that we do not consider transitive closure operations such as the
descendant (“↓∗”) or ancestor (“↑∗”) operations of XPath. The reason for this is
that, in this paper, we only consider navigation within a single, given document.

Example 2.2. Consider the document D in Figure 1. Let e be the expres-
sion ↑/π1(↓/b̂/↓/ĉ)− ch≥2(ε)/↑ in the language X (↓, ↑, π1, ch≥2,−) (or, for that
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Table 1: Binary operations on documents. The left column shows the syntax of the operation,
and the right column its semantics, given a document D = (V,Ed, r, λ). Below, ` is a label
in L and k ≥ 1 a natural number. Furthermore, in the recursive definitions, e, e1, and e2
represents expressions built with the operations.

Syntax Semantics

∅ ∅(D) = ∅
ε ε(D) = {(v, v) | v ∈ V }
ˆ̀ ˆ̀(D) = {(v, v) | v ∈ V & λ(v) = `}
↓ ↓(D) = Ed
↑ ↑(D) = Ed−1

π1(e) π1(e)(D) = {(v, v) | (∃w)(v, w) ∈ e(D)}
π2(e) π2(e)(D) = {(w,w) | (∃v)(v, w) ∈ e(D)}
e−1 e−1(D) = e(D)−1

ch≥k(e) ch≥k(e)(D) = {(v, v) | v ∈ V & |{w | (v, w) ∈ Ed & (w,w) ∈ π1(e)(D)| ≥ k}
e1/e2 e1/e2(D) = {(u,w) | (∃v)((u, v) ∈ e1(D) & (v, w) ∈ e2(D))}
e1 ∪ e2 e1 ∪ e2(D) = e1(D) ∪ e2(D)
e1 ∩ e2 e1 ∩ e2(D) = e1(D) ∩ e2(D)
e1 − e2 e1 − e2(D) = e1(D)− e2(D)

matter, in any language X (E) with {↓, ↑, π1, ch≥2,−} ⊆ E). Then, e(D) =
{(v2, v1), (v8, v4), (v10, v4)}.

Not all the above operations are primitive, however. For instance, intersec-
tion (“∩”) is expressible as soon a set difference (“−”) is expressible, since, for
any two sets A and B, A ∩ B = A − (A − B). Even more eliminations are
possible in the following setting.

Proposition 2.3. Let E be a set of nonbasic operations containing set difference
“−”) or intersection (“∩”) for which “↓” and “↑” are both contained in E or
both not contained in E. Then, for each expression e in X (E), there is an
equivalent expression in X (E − {π1, π2,−1}).

Proof. First, we eliminate both projections using the identities

π1(e) = (e/e−1) ∩ ε;
π2(e) = (e−1/e) ∩ ε.

Hence, each expression in X (E) can be replaced by an equivalent expression
in X ((E ∪ {−1})− {π1, π2}). It remains to show that we can eliminate inverse
(“−1”). This follows from the following identities. In these, D = (V,Ed, r, λ) is
a document, ` ∈ L is a label, k ≥ 1 is a natural number, and e, e1 and e2 are
expressions in X (E).

• ∅−1(D) = ∅(D);

• ε−1(D) = ε(D);
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• ˆ̀−1(D) = ˆ̀(D);

• ↓−1(D) = ↑(D);

• ↑−1(D) = ↓(D);

• (e−1)−1(D) = e(D);

• (e1/e2)−1(D) = e−12 /e−11 (D);

• ch≥k(e)−1(D) = ch≥k(e)(D);

• (e1 ∪ e2)−1(D) = e−11 ∪ e
−1
2 (D);

• (e1 ∩ e2)−1(D) = e−11 ∩ e
−1
2 (D);

• (e1 − e2)−1(D) = e−11 − e
−1
2 (D).

Notice that in a language with both upward (“↑”) and downward (“↓”)
navigation, the identities π1(e)(D) = π2(e−1)(D) and π2(e)(D) = π1(e−1)(D)
imply that one projection operation can be eliminated in favor of the other.
Hence, it does not make sense to consider the projection operations separately.

Some counting operations (“ch≥k(e)”) can also be simulated. One can easily
verify the following.

Proposition 2.4. Let D = (V,Ed, r, λ) be a document. Then,

1. ch≥1(e)(D) = π1(↓/e)(D);

2. ch≥2(e)(D) = π1(↓/(π1(e)/↑/↓/π1(e)− ε))(D); and

3. ch≥3(e)(D) = π1(↓/((π1(e)/↑/↓/π1(e)− ε)/(π1(e)/↑/↓/π1(e)− ε)− ε)(D)

Example 2.5. Consider again the expression e := ↑/π1(↓/b̂/↓/ĉ)−ch≥2(ε)/↑ of
Example 2.2. Using Proposition 2.4, and making some straightforward simpli-
fications, we can rewrite e as ↑/π1(↓/b̂/↓/ĉ)− π1(↓/(↑/↓− ε))/ ↑, an expression
of X (↓, ↑, π1,−). Alternatively, one can use Proposition 2.3 and the techniques
exhibited in its proof to rewrite e as

↑/(↓/b̂/↓/ĉ/↑/↓)− ↓/((↑/↓ − ε)/(↑/↓ − ε) ∩ ε)/↑,

an expression in X (↓, ↑,∩,−). Finally, we invite the reader to verify that e can
also be rewritten as

π1(ε− π1(↓/(↑/↓ − ε)))/↑/π1(↓/b̂/↓/ĉ),

also an expression of X (↓, ↑, π1,−).
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We shall call the language X (↓, ↑, π1, π2, .−1,∩,−), which by Proposition 2.3
is equivalent to X (↓, ↑,−), the XPath algebra.1 This is justified by the following
result.

Proposition 2.6. Given a single document D = (V,Ed, r, λ), the XPath algebra
is equivalent to XPath.

Proof. Notice that ` in XPath [14] is simulated by ↓/ˆ̀ in the XPath algebra.

Furthermore, ˆ̀ in the XPath algebra is simulated by ε[label = `] in XPath.
The proof is complete if, for each predicate P in XPath, there exists an XPath
algebra expression e such that e(D) = {(n, n) | n ∈ P (D)}. This is proved by
structural induction:

1. if P is an XPath expression without predicates, then take e := π1(f), with
f the XPath algebra expression obtained from P by replacing everywhere
` by ↓/ˆ̀.

2. if P is label = `, then take e := ˆ̀.
3. if P is ¬Q, with Q an XPath predicate, then take e := ε− f , with f the

XPath algebra expression corresponding to Q.
4. if P is Q1 ∧Q2, with Q1 and Q2 XPath predicates, then take e := f1 ∩ f2,

with f1 and f2 the XPath algebra expressions corresponding to Q1 and
Q2, respectively.

5. if P is Q1 ∨Q2, with Q1 and Q2 XPath predicates, then take e := f1 ∪ f2,
with f1 and f2 the XPath algebra expressions corresponding to Q1 and
Q2, respectively.

Besides the standard languages X (E), with E a set of nonbasic operations,
we also consider the so-called core languages C(E). More concretely, C(E) is
defined recursively in the same way as X (E−{∩,−}), except that in expressions
of the form π1(f), and π2(f), f may be a boolean combination of expressions
of the language using union and the operations in E ∩ {∩,−}, rather than just
an expression of the language.

The above terminology is inspired by the fact that C(↓, ↑, π1, π2,−,∩), the
language which we call the core XPath algebra, is the adaptation to our setting
of Core XPath of Gottlob and Koch [16].

Example 2.7. Continuing with Example 2.5, we consider again the expression
e := ↑/π1(↓/b̂/↓/ĉ) − ch≥2(ε)/↑ of Example 2.2. Obviously, there is no core
language of which e is an expression, as set difference (“−”) occurs at the outer
level, and not in a subexpression f which in turn is embedded in a subexpression
of the form π1(f) or π2(f). However, in Example 2.5, the expression e has been
shown to be equivalent to

π1(ε− π1(↓/(↑/↓ − ε)))/↑/π1(↓/b̂/↓/ĉ),

1 Note that the XPath algebra corresponds to the (full) relation algebra of Tarski [2],
adapted to our setting (cf. [8]).
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Table 2: Languages studied in this paper.
Language Relation algebra fragment

strictly downward (core)
XPath algebra with

counting up to k

X (↓, π1, ch≥1(.), . . . , ch≥k(.),−)

= C(↓, π1, ch≥1(.), . . . , ch≥k(.),−)

strictly downward (core)
positive XPath algebra

X (↓, π1,∩) = C(↓, π1,∩)

weakly downward (core)
XPath algebra with

counting up to k

X (↓, π1, π2, ch≥1(.), . . . , ch≥k(.),−)

= C(↓, π1, π2, ch≥1(.), . . . , ch≥k(.),−)

weakly downward (core)
positive XPath algebra

X (↓, π1, π2) = X (↓, π1, π2,∩) = C(↓, π1, π2,∩)

strictly upward (core)
XPath algebra

X (↑, π1,−) = C(↑, π1,−)

strictly upward (core)
positive XPath algebra

X (↑, π1,∩) = C(↑, π1,∩)

weakly upward languages see Section 7.2

XPath algebra X (↓, ↑, π1, π2, .−1,∩,−) = X (↓, ↑,−)
XPath algebra with

counting up to k
X (↓, ↑, ch≥1(.), . . . , ch≥k(.),−)

core XPath algebra C(↓, ↑, π1, π2,−,∩)

core XPath algebra with
counting up to k

C(↓, ↑, π1, π2, ch≥1(.), . . . , ch≥k(.),−)

(core) positive XPath
algebra ([31])

X (↓, ↑,∩) = X (↓, ↑, π1, π2) = C(↓, ↑, π1, π2,∩)

which is an expression of C(↓, ↑, π1,−,∩), and hence also of the core XPath
algebra.

Given a set of nonbasic operators E, an expression in X (E) can in general
not be converted to an equivalent expression in C(E), however, as will follow
from the results of this paper, even though there are exceptions (Section 5,
Theorem 5.19).

Table 2 gives an overview of the various relation algebra fragments we in-
vestigate below.

To conclude this section, we observe that, given a document and an expres-
sion, we have defined the semantics of that expression as a binary relation over
the nodes of the document, i.e., as a set of pair of nodes. From the perspective
of navigation, however, it is useful to be able to say that an expression allows
one to navigate from one node of the document to another. For this purpose,
we introduce the following notation.

Definition 2.8. Let e be an arbitrary expression, and let D = (V,Ed, r, λ) be
a document. For v ∈ V , e(D)(v) := {w | (v, w) ∈ e(D)}.
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Definition 2.8 reflects the “local” perspective of an expression working on
particular nodes of a document, rather than the “global” perspective of working
on an entire document.

Example 2.9. Consider again the expression e := ↑/π1(↓/b̂/↓/ĉ) − ch≥2(ε)/↑
of Example 2.2. We have established that, for the document D in Figure 1,
e(D) = {(v2, v1), (v8, v4), (v10, v4)}. Hence, e(D)(v8) = {v4} and e(D)(v1) = ∅.

3. Signatures

Given a pair of nodes in a document, there is a unique path in that document
(not taking into account the direction of the edges) to navigate from the first to
the second node, in general by going a few steps upward in the tree, and then
going a few steps downward. We call this the signature of that pair of nodes,
and shall formally represent it by an expression in X (↓, ↑).

Definition 3.1. Let D = (V,Ed, r, λ) be a document, and let v, w ∈ V . The
signature of the pair (v, w), denoted sig(v, w), is the expression in X (↓, ↑) that
is recursively defined, as follows:

• if v = w, then sig(v, w) := ε;

• if v is an ancestor of w, and z is the child of v on the path from v to w,
then sig(v, w) := ↓/sig(z, w);

• otherwise2, if z is the parent of v, then sig(v, w) := ↑/sig(z, w).

Given nodes v and w of a document D = (V,Ed, r, λ), we denote by top(v, w)
the unique node on the undirected path from v to w that is an ancestor of both
v and w. Clearly,

sig(v, w) = sig(v, top(v, w))/sig(top(v, w), w) = ↑m/↓n,

where m, respectively n, is the distance from top(v, w) to v, respectively w; and,
for an expression e and a natural number i ≥ 1, ei denotes the i-fold composition
of e.3 (We put e0 := ε.)

The signature of a pair of nodes of a document can be seen as a description
of the unique path connecting these nodes, but also as an expression that can
be applied to the document under consideration. We shall often exploit this
duality.

2In particular, v 6= r.
3Here, and elsewhere in this paper, equality between expressions must be interpreted at

the semantic and not at the syntactic level, i.e., for two expressions e1 and e2 in one of the
languages considered here, e1 = e2 means that, for each document D, e1(D) = e2(D).
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Example 3.2. For the document D in Figure 1, sig(v1, v1) = ε, sig(v1, v2) = ↓,
sig(v6, v4) = ↑2/↓, and sig(v11, v5) = ↑3/↓2. We have that

sig(v11, v5)(D) = {(v11, v5), (v12, v5), (v13, v5), (v11, v6), (v12, v6), (v13, v6),
(v11, v7), (v12, v7), (v13, v7), (v11, v8), (v12, v8), (v13, v8),
(v11, v9), (v12, v9), (v13, v9), (v11, v10), (v12, v10), (v13, v10)}.

Notice that not each pair in the result has the same signature as (v11, v5). For
instance, sig(v11, v8) = ↑2/↓ and sig(v11, v9) = ↑.

Now, let (v1, w1) and (v2, w2) be two pairs of nodes in a document D =
(V,Ed, r, λ). We say that (v1, w1) subsumes (v2, w2), denoted (v1, w1) & (v2, w2),
if (v2, w2) is in sig(v1, w1)(D). We say that (v1, w1) are (v2, w2) congruent, de-
noted (v1, w1) ∼= (v2, w2), if (v1, w1) & (v2, w2) and (v2, w2) & (v1, w1). It can
be easily seen that, in this case, sig(v1, w1) = sig(v2, w2). Informally speaking,
the path from v1 to w1 has then the same shape as the path from v2 to w2.

Example 3.3. Consider again Example 3.2. Clearly, (v11, v5) subsumes each
pair of nodes in sig(v11, v5)(D), e.g., (v11, v5) & (v12, v6) and (v11, v5) & (v12, v9).
Notice that also (v12, v6) & (v11, v5), and hence (v11, v5) ∼= (v12, v6). However,
(v12, v9) 6& (v11, v5). Hence, these pairs are not congruent.

By definition, subsumption is captured by the “sig” expression. One may
wonder if there also exists an expression that precisely captures congruence.
This is the case in the following situations.

Proposition 3.4. Let D = (V,Ed, r, λ) be a document and let v1, v2, w1, w2 ∈
V . Then,

1. if v1 is an ancestor of w1 or vice versa, (v1, w1) ∼= (v2, w2) if and only if
(v2, w2) ∈ sig(v1, w1)(D);

2. otherwise, let sig(v1, w1) = ↑m/↓n. Then, as m ≥ 1 and n ≥ 1, (v1, w1) ∼=
(v2, w2) if and only if (v2, w2) ∈ ↑m/↓n − ↑m−1/↓n−1(D).

Proof. 1. As the “only if” is trivial, it suffices to consider the “if,” which
follows from a straightforward induction argument.

2. As the “only if” is straightforward, we only consider the “if.” Let t2 :=
↑m(D)(v2). Since w2 ∈ ↓n(D)(t2), t2 is a common ancestor. Let v′2
and w′2 be the children of t2 on the path to v2 and w2, respectively. If
v′2 = w′2, then (v2, w2) ∈ ↑m−1/↓n−1(D), a contradiction, Hence, v′2 6= w′2
and t2 = top(v2, w2), and sig(v2, w2) = ↑m/↓n = sig(v1, w1).

For later use, but also because of their independent interest, we finally note
the following fundamental properties of subsumption and congruence.

Proposition 3.5. Let v, w, v1, w1, z1, v2, w2, and z2 be nodes of a docu-
ment D. Then the following properties hold.
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Figure 2: Document of Example 3.6.

1. (v, v) & (w,w).

2. (v1, w1) & (v2, w2) implies that (w1, v1) & (w2, v2).

3. If top(v1, z1) is also an ancestor of w1, then (v1, w1) & (v2, w2) and
(w1, z1) & (w2, z2) imply that (v1, z1) & (v2, z2).

4. All properties above also hold when subsumption is replaced by congruence,
provided that, in item 3, the condition “top(v2, z2) is also an ancestor of
w2” is added.

Proof. All properties are straightforward, except for Property 3. So, assume
that (v1, w1) & (v2, w2) and (v1, z1) & (v2, z2). Hence, (v2, w2) ∈ sig(v1, w1)(D)
and (v2, z2) ∈ sig(v1, z1)(D), as a consequence of which

(v2, z2) ∈ sig(v1, w1)/sig(w1, z1)(D).

For the sake of abbreviation, let t1 := top(v1, w1) and u1 := top(w1, z1). Using
these nodes, we can write

sig(v1, w1)/sig(w1, z1) = sig(v1, t1)/sig(t1, w1)/sig(w1, u1)/sig(u1, z1),

which is equal to sig(v1, s1)/sig(s1, z1), where s1 is the higher of t1 and u1
in D. Notice that s1 is a common ancestor of v1 and z1, as a consequence
of which it is also an ancestor of top(v1, z1), the least common ancestor of v1
and z1. By assumption, top(v1, z1) is a common ancestor of v1, w1, and z1,
and hence also of top(v1, w1) and top(w1, z1), the highest of which is s1. Thus,
s1 = top(v1, z1), and, therefore, sig(v1, s1)/sig(s1, z1) = sig(v1, z1). In summary,
(v2, z2) ∈ sig(v1, z1)(D), and hence (v1, z1) & (v2, z2).

Observe that the condition in Proposition 3.5, (3), is necessary for that part
of the proposition to hold, as shown by the following counterexample.
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Example 3.6. Consider the document in Figure 2. Labels have been omitted,
because they are not relevant in this discussion. (We assume all nodes have the
same label.) Observe that (v1, w1) ∼= (v2, w2) and (w1, z1) ∼= (w2, z2). However,
top(v1, z1) is not an ancestor of w1, hence, Proposition 3.5, (3), is not applicable.
We see that, indeed, (v1, z1) does not subsume (v2, z2), let alone that (v2, z2)
and (v2, w2) would be congruent.

4. Distinguishability of nodes in a document

We wish to link the distinguishing power of a navigational language on a
document to syntactic conditions which can readily be verified on that docu-
ment. As argued before, the action of an expression on a document can be
interpreted as (1) returning pairs of nodes, or (2) given a node, returning the
set of nodes that can be reached from that node. We shall refer to the first
interpretation as the pairs semantics, and to the second interpretation as the
node semantics. In this section, we propose suitable semantic and syntactic
notions of distinguishability for the node semantics.

4.1. Distinguishability of nodes at the semantic level

We propose the following distinguishability criterion based on the emptiness
or nonemptiness of the set of nodes that can be reached by applying an arbitrary
expression of the language under consideration.

Definition 4.1. Let L be one of the languages considered in Section 2. Let
D = (V,Ed, r, λ) be a document, and let v1, v2 ∈ V . Then,

1. v1 and v2 are expression-related, denoted v1 ≥exp v2, if, for each expression
e in L, e(D)(v1) 6= ∅ implies e(D)(v2) 6= ∅; and

2. v1 and v2 are expression-equivalent, denoted v1 ≡exp v2, if v1 ≥exp v2 and
v2 ≥exp v1.

In principle, we should have reflected the language under consideration in
the notation for expression-equivalence. As the language under consideration
will always be clear from the context, we chose not to do so in order to avoid
overloaded notation.

The following observation is useful.

Proposition 4.2. Let E be a set of nonbasic operations containing first pro-
jection (“π1”) and set difference (“−”). Consider expression-equivalence with
respect to X (E). Let D = (V,Ed, r, λ) be a document, and let v1, v2 ∈ V . Then,
v1 ≡exp v2 if and only if v1 ≥exp v2.

Proof. Assume that v2 6≥exp v1. Then there exists an expression f in X (E)
such that f(D)(v2) 6= ∅ and f(D)(v1) = ∅. Now consider e := π1(ε − π1(f)).
Clearly, e(D)(v2) = ∅ and e(D)(v1) 6= ∅, hence v1 6≥exp v2. By contraposition,
v1 ≥exp v2 implies v2 ≥exp v1, and hence also v1 ≡exp v2.

12



4.2. Distinguishability of nodes at the syntactic level

Our syntactic criterion of distinguishability is based on the similarity of the
documents locally around the nodes under consideration. In order to decide this
similarity, we shall consider a hierarchy for the degree of coarseness by which
we compare the environments of those nodes. We shall also consider variants
for the cases where from the given nodes of the document we (1) only look
downward; (2) only look upward; or (3) look in both directions.

4.2.1. Downward distinguishability

For the downward case, we consider the following syntactic notions of dis-
tinguishability of nodes. They are all defined recursively on the height of the
first node.

Definition 4.3. Let D = (V,Ed, r, λ) be a document, let v1, v2 ∈ V , and let
k ≥ 1. Then, v1 and v2 are downward-k-equivalent, denoted v1 ≡k

↓ v2, if

1. λ(v1) = λ(v2);

2. for each child w1 of v1, there exists a child w2 of v2 such that w1 ≡k
↓ w2,

and vice versa;

3. for each child w1 of v1 and w2 of v2 such that w1 ≡k
↓ w2, min(|w̄1|, k) =

min(|w̄2|, k), where, for i = 1, 2, w̄i is the set of all siblings of wi (including
wi itself) that are downward k-equivalent to wi.

4

For k = 1, the third condition in the above definition is trivially satisfied.
In the literature, downward 1-equivalence is usually referred to as bisimilarity
[25].

Example 4.4. Consider again the example document in Figure 1. Notice that
v2 ≡k

↓ v10 for any value of k ≥ 1. We also have that v2 ≡1
↓ v3, and, for any value

of k ≥ 2, v2 6≡k
↓ v3. Finally, notice that v3 6≡k

↓ v4 for any value of k ≥ 1.

The following is immediate from the second condition in the Definition 4.3.

Proposition 4.5. Let D = (V,Ed, r, λ) be a document, let v1, v2 ∈ V , and let
k ≥ 1. If v1 ≡k

↓ v2, then v1 and v2 have equal height5 in D.

The following property of downward-k-equivalence will turn out to be very
useful in the sequel.

Proposition 4.6. Let D = (V,Ed, r, λ) be a document, and let k ≥ 1. Let “≡”
be an equivalence relation on V such that, for all v1, v2 ∈ V with v1 ≡ v2,

1. λ(v1) = λ(v2);

2. for each child w1 of v1, there exists a child w2 of v2 such that w1 ≡ w2,
and vice versa; and

4For a set A, |A| denotes the cardinality of A.
5By the height of a node, we mean the length of the longest path from that node to a leaf.
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3. for each child w1 of v1 and each child w2 of v2 such that w1 ≡ w2,
min(|w̃1|, k) = min(|w̃2|, k), where, for i = 1, 2, w̃i is the set of all siblings
of vi (including vi itself) that are equivalent to vi under “≡.”

Then, for all v1, v2 ∈ V , v1 ≡ v2 implies v1 ≡k
↓ v2.

Proof. By induction of the height of v1.
If v1 is a leaf, the second condition above implies that v2 must also be a leaf.

By the first condition, λ(v1) = λ(v2). Hence, v1 ≡k
↓ v2.

If v1 is not a leaf, we still have, by the first condition, that λ(v1) = λ(v2).
Hence the first condition in the definition of v1 ≡k

↓ v2 (Definition 4.3) is satisfied.

The second condition in the definition of v1 ≡k
↓ v2 follows from the second

condition above and the induction hypothesis.
It remains to show that also the third condition in the definition of v1 ≡k

↓ v2
holds. Thereto, let w1 be a child of v1 and w2 be a child of v2 such that w1 ≡k

↓ w2.
We show that min(|w̄1|, k) = min(|w̄2|, k), where, for i = 1, 2, w̄i is the set of
all siblings of wi (including wi itself) that are downward k-equivalent to wi.
Let {W11, . . . ,W1`} be the coarsest partition of w̄1 in ≡-equivalent nodes, and
let {W21, . . . ,W2`} be the coarsest partition of w̄2 in ≡-equivalent nodes. By
the induction hypothesis and the second condition above, both partitions have
indeed the same size. It follows furthermore that no node of w̄1 is ≡-equivalent
with a child of v1 outside w̄1, and that no node of w̄2 is ≡-equivalent with a
child of v2 outside w̄2. Without loss of generality, we may assume that, for
i = 1, . . . , `, every node in W1i is ≡-equivalent to every node in W2i. Hence, by
the third condition above, min(|W1i|, k) = min(|W2i|, k). We now distinguish
two cases.

1. For all i = 1, . . . , `, |W1i| < k. Then, for all i = 1, . . . , `, |W1i| = |W2i|. It
follows that |w̄1| = |w̄2|, and, hence, also that min(|w̄1|, k) = min(|w̄2|, k).

2. For some i, 1 ≤ i ≤ `, |W1i| ≥ k. Then, |W2i| = |W1i| ≥ k. Hence,
|w̄1| ≥ k and |w̄2| ≥ k. It follows that min(|w̄1|, k) = min(|w̄2|, k) = k.

We conclude that, in both cases, the third condition in the definition of v1 ≡k
↓ v2

is also satisfied.

So, given a document D = (V,Ed, r, λ), downward-k-equivalence is the coars-
est equivalence relation on V satisfying Proposition 4.6.

A straightforward application of Proposition 4.6 yields

Corollary 4.7. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, and let v1, v2 ∈
V . If v1 ≡k+1

↓ v2, then v1 ≡k
↓ v2.

Proof. It suffices to observe that “≡k+1
↓ ” is an equivalence relation satisfying

Proposition 4.6 for the value of k in the statement of the Corollary, above. For
the first two conditions in Proposition 4.6, this follows immediately from the
corresponding conditions in Definition 4.3. For the third condition in Proposi-
tion 4.6, this also follows from the third condition in Definition 4.3 if one takes
into account that, for arbitrary sets A and B, min(|A|, k+ 1) = min(|B|, k+ 1)
implies that min(|A|, k) = min(|B|, k).
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4.2.2. Upward distinguishability

If we only look upward in the document, there is only one reasonable defini-
tion of node distinguishability, as each node has at most one parent. In contrast
with the downward case, the recursion in the definition is on the depth of the
first node.

Definition 4.8. Let D = (V,Ed, r, λ) be a document, and let v1, v2 ∈ V . Then,
v1 and v2 are upward-equivalent, denoted v1 ≡↑ v2, if

1. λ(v1) = λ(v2);
2. v1 is the root if and only if v2 is the root;
3. if v1 and v2 are not the root, and u1 and u2 are the parents of v1 and v2,

respectively, then u1 ≡↑ u2.

It is easily seen that two nodes are upward-equivalent if the paths from the
root to these two nodes are isomorphic in the sense that they have the same
length and corresponding nodes have the same label.

Example 4.9. In the example document of Figure 1 we have, e.g., that v6 ≡↑
v7, v8 ≡↑ v9, v11 ≡↑ v12, but v8 6≡↑ v13.

4.2.3. Two-way distinguishability

If we look both upward and downward in a document, we can define a
notion of equivalence by combining the definitions of upward- and k-downward-
equivalence: two nodes are k-equivalent if they are upward-equivalent, and if
corresponding nodes on the isomorphic paths from the root to these nodes are k-
downward-equivalent. More formally, we have the following recursive definition,
where the recursion is on the depth of the first node.

Definition 4.10. Let D = (V,Ed, r, λ) be a document, let v1, v2 ∈ V , and let
k ≥ 1. Then, v1 and v2 are k-equivalent, denoted v1 ≡k

l v2, if

1. v1 ≡k
↓ v2;

2. v1 is the root if and only if v2 is the root; and
3. if v1 and v2 are not the root, and u1 and u2 are the parents of v1 and v2,

respectively, then u1 ≡k
l u2.

Stated in a nonrecursive way, two nodes are k-equivalent if the paths from
the root to these two nodes have equal length and corresponding nodes on these
two paths are downward-k-equivalent.

Example 4.11. Consider again the example document in Figure 1. We have
that, e.g, v5 ≡1

l v6 ≡
1
l v7, but no two of these nodes are k-equivalent for any

value of k ≥ 2. Also, v5 6≡k
l v8 and v8 6≡k

l v13, for any value of k ≥ 1.

By a straightforward inductive argument, the following is immediate from
Corollary 4.7.

Proposition 4.12. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, and let
v1, v2 ∈ V . If v1 ≡k+1

l v2, then v1 ≡k
l v2.
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4.3. Distinguishability of pairs of nodes at the syntactic level

We also define notions of distinguishability of pairs of nodes, by requiring
that the pairs have subsumed or congruent signatures and that corresponding
nodes on the (undirected) paths between begin and end points of both pairs are
related under one of the notions defined in Subsection 4.2.

Definition 4.13. Let D = (V,Ed, r, λ) be a document, let ϑ be one of the syn-
tactic relationships between nodes defined in Subsection 4.2, and let v1, w1, v2,
and w2 be nodes in V . Then, (v1, w1) ϑ-subsumes (v2, w2), denoted (v1, w1) &ϑ

(v2, w2) (respectively, (v1, w1) and (v2, w2) are ϑ-congruent , denoted (v1, w1) ∼=ϑ

(v2, w2)) if

1. (v1, w1) & (v2, w2) (respectively, (v1, w1) ∼= (v2, w2)); and
2. for each node y1 on the path form v1 to w1, y1ϑy2, where y2 is the unique

ancestor of v2 or w2 or both for which (v2, y2) ∈ sig(v1, y1)(D) (or, equiv-
alently, (y2, w2) ∈ sig(y1, w1)(D)).6

Example 4.14. Consider again the example document in Figure 1. We have
that, e.g., (v2, v5) ∼=≡k

↓
(v3, v6) for k = 1 but not for any higher value of k;

(v2, v5) ∼=≡k
↓

(v10, v13) for any value of k ≥ 1; (v2, v5) ∼=≡↑ (v4, v9); (v5, v6) ∼=≡k
l

(v5, v7) for any value of k ≥ 1; and (v6, v7) &≡1
l

(v2, v5), but not the other way

around.

The following observation is obvious from the definition.

Proposition 4.15. Let D = (V,Ed, r, λ) be a document, let ϕ ∈ {&,∼=}, let
ϑ be one of the syntactic relationships between nodes defined in Subsection 4.2,
and let v1, w1, v2, and w2 be nodes of D such that (v1, w1) ϕϑ (v2, w2). Let y1
and y2 be nodes on the path from v1 to w1, and let z1 and z2 be ancestors of v2
or w2 or both corresponding to y1 and y2, respectively. Then (y1, z1) ϕϑ (y2, z2).

The mutual position of the nodes in the statement of Proposition 4.15 is
illustrated in Figure 3.

From Proposition 3.4, (1), the following is also obvious.

Proposition 4.16. Let D = (V,Ed, r, λ) be a document, let ϑ be one of the
syntactic relationships between nodes defined in Subsection 4.2, and let v1, v2, w1,
and w2 be nodes in V . If v1 is an ancestor of w1 or vice versa, (v1, w1) ∼=ϑ

(v2, w2) if and only if (v1, w1) &ϑ (v2, w2).

Finally, from Definitions 4.10 and 4.13, the following is immediate.

Proposition 4.17. Let D = (V,Ed, r, λ) be a document, let v1, v2 ∈ V , and let
k ≥ 1. Then, v1 ≡k

l v2 if and only if (r, v1) ∼=≡k
↓

(r, v2).

Table 3 summarizes all of the distinguishability notions presented in this
section. The balance of the paper is devoted to identifying the languages which
correspond in expressive power to each of these notions.

6In the sequel, we call y1 and y2 corresponding nodes.
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Figure 3: Mutual position of the nodes mentioned in the statement of Proposition 4.15.

Table 3: Distinguishability notions of Section 4.

distinguishability notion notation defined in
expression-related ≥exp Definition 4.1

expression-equivalent ≡exp Definition 4.1
downward-k-equivalent ≡k

↓ Definition 4.3

upward-equivalent ≡↑ Definition 4.8
k-equivalent ≡k

l Definition 4.10

ϑ-subsumes &ϑ Definition 4.13
ϑ-congruent ∼=ϑ Definition 4.13

5. Strictly downward languages

We call a language downward if, for any expression e in that language, and
for any node v of the document D under consideration, all nodes in e(D)(v) are
descendants of v.

In this section, we consider languages with the stronger property that, for
any expression e in the language, and for any node v of the document D under
consideration, e(D)(v) = e(D′)(v), where D′ is the subtree of D rooted at v.
We shall call such languages strictly downward .

Downward languages that are not strictly downward will be called weakly
downward and are the subject of Section 6.

Considering the nonbasic operations in Table 1, the language X (E) is strictly
downward if and only if E does not contain upward navigation (“↑”), second
projection (“π2”), and inverse (“.−1”). It is the purpose of this section to
investigate the expressive power of these languages at the document level, both
for query expressiveness and navigational expressiveness, and, in some cases,
derive actual characterizations for these.
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5.1. Sufficient conditions for expression equivalence

If e is an expression in a downward language X (E), then it follows im-
mediately from the definition that, given a node v of the document D under
consideration, each node in e(D)(v) is a descendant of v. Therefore, we only
need to consider ancestor-descendant pairs of nodes, for which corresponding
notions of subsumption and congruence coincide (Proposition 4.16).

The following property of ≡k
↓-congruence, k ≥ 1, for ancestor-descendant

pairs of nodes will turn out to be very useful.

Lemma 5.1. Let D = (V,Ed, r, λ) be a document, let v1, w1, and v2 be nodes
of D such that w1 is a descendant of v1, and let k ≥ 1. If v1 ≡k

↓ v2, then v2 has
a descendant w2 in D such that (v1, w1) ∼=≡k

↓
(v2, w2).

Proof. The proof is by induction of the length of the path from v1 to w1. If
w1 = v1, then, obviously, Lemma 5.1 is satisfied for w2 := v2. If w1 6= v1, then
let y1 be the child of v1 on the path to w1. By Definition 4.3, v2 has a child y2
such that y1 ≡k

↓ y2. By the induction hypothesis, y2 has a descendant w2 in D
such that (y1, w1) ∼=≡k

↓
(y2, w2). From Definition 4.13, it is now straightforward

that (v1, w1) ∼=≡k
↓

(v2, w2).

We now link ≡k
↓-congruence of ancestor-descendant pairs of nodes with ex-

pressibility in strictly downward languages.

Proposition 5.2. Let k ≥ 1, and let E be the set of all nonbasic operations
in Table 1, except for upward navigation (“↑”), second projection (“π2”), in-
verse (“.−1”), and selection on at least m children satisfying some condition
(“ch≥m(.)”) for m > k. Let e be an expression in X (E). Let D = (V,Ed, r, λ) be
a document, let v1, w1, v2, and w2 be nodes of D such that w1 is a descendant of
v1 and w2 is a descendant of v2. Assume furthermore that (v1, w1) ∼=≡k

↓
(v2, w2).

Then, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D).

Proof. By symmetry, it suffices to show that (v1, w1) ∈ e(D) implies (v2, w2) ∈
e(D). We prove this by structural induction. For the atomic operators ∅, ε, ˆ̀

(` ∈ L), and ↓, it is straightforward that Proposition 5.2 holds. We have now
settled the base case and turn to the induction step.

1. e := e1/e2, with e1 and e2 satisfying Proposition 5.2. Assume that
(v1, w1) ∈ e(D). Then there exists y1 ∈ V such that (v1, y1) ∈ e1(D)
and (y1, w1) ∈ e2(D). By the strictly downward nature of X (E), y1 is
on the path from v1 to w1. Let y2 be the node on the path from v2
to w2 corresponding to y1. By Proposition 4.15, (v1, y1) ≡k

↓ (v2, y2) and

(y1, w1) ≡k
↓ (y2, w2). By the induction hypothesis, (v2, y2) ∈ e1(D) and

(y2, w2) ∈ e2(D). Hence, (v2, w2) ∈ e(D).

2. e := π1(f), with f satisfying Proposition 5.2. Assume that (v1, w1) ∈
e(D). Then, necessarily v1 = w1, and, consequently, v2 = w2. From
(v1, v1) ∈ π1(f)(D), it follows that there exists z1 ∈ V such that (v1, z1) ∈
f(D). Since v1 ≡k

↓ v2, it also follows, by Lemma 5.1, that there exists
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a descendant z2 of w2 such that (v1, z1) ∼=≡k
↓

(v2, z2). By the induction

hypothesis, (v2, z2) ∈ f(D). Hence, (v2, v2) ∈ e(D).

3. e := ch≥m(f), with m ≤ k and f satisfying Proposition 5.2. Assume
that (v1, w1) ∈ ch≥m(f)(D). Hence, v1 = w1, which in turn implies
v2 = w2. Let ↓/π1(f)(D)(v1) = Y1 and let ↓/π1(f)(D)(v2) = Y2. By
assumption, |Y1| ≥ m. Now, let y be a child of v1 in Y1 or a child of v2
in Y2, and let z be a child of v1 not in Y1 or a child of v2 not in Y2. By
assumption, there exists a node y′ such that (y, y′) ∈ f(D). Now, suppose
that y ≡k

↓ z. Then, by Proposition 5.1, there exists a node z′ such that
(y, y′) ∼=≡k

↓
(z, z′). But then, by the induction hypothesis, (z, z′) ∈ f(D),

contrary to our assumptions. We may therefore conclude that y 6≡k
↓ z.

Since furthermore v1 ≡k
↓ v2, it follows that, for all y1 ∈ Y1, there exists

y2 ∈ Y2 such that y1 ≡k
↓ y2, and vice versa. Hence, for some n ≥ 1, we

can write Y1 = Y11 ∪ . . . ∪ Y1n and Y2 = Y21 ∪ . . . ∪ Y2n such that

(a) Y11, . . . , Y1n are maximal sets of mutually downward-k-equivalent
children of v1, and are hence pairwise disjoint;

(b) Y21, . . . , Y2n are maximal sets of mutually downward-k-equivalent
children of v2, and are hence pairwise disjoint; and

(c) for all i = 1, . . . , n, each node of Y1i is downward-k-equivalent to each
node of Y2i.

If, for some i, |Y1i| ≥ k, it follows from v1 ≡k
↓ v2 that |Y2i| ≥ k, and,

hence, that |Y2| ≥ k ≥ m. If, on the other hand, for all i = 1, . . . , n,
|Y1i| < k, it follows from v1 ≡k

↓ v2 that |Y1i| = |Y2i|, and, hence, that
|Y1| = |Y2|. Since |Y1| ≥ m, it follows that, also in this case, |Y2| ≥ m.
We may thus conclude that, in all cases, |Y2| ≥ m, and, hence, that
(v2, v2) ∈ ch≥m(f)(D) = e(D).

4. e := e1 ∪ e2, with e1 and e2 satisfying Proposition 5.2. Assume that
(v1, w1) ∈ e(D). Then, (v1, w1) ∈ e1(D) or (v1, w1) ∈ e2(D). Without
loss of generality, assume the former. Then, by the induction hypothesis,
(v2, w2) ∈ e1(D). Hence, (v2, w2) ∈ e(D).

5. e := e1 ∩ e2, with e1 and e2 satisfying Proposition 5.2. Assume that
(v1, w1) ∈ e(D). Then, (v1, w1) ∈ e1(D) and (v1, w1) ∈ e2(D). It follows
by the induction hypothesis that (v2, w2) ∈ e1(D) and (v2, w2) ∈ e2(D).
Hence, (v2, w2) ∈ e(D).

6. e := e1 − e2, with e1 and e2 satisfying Proposition 5.2. Assume that
(v1, w1) ∈ e(D). Then (v1, w1) ∈ e1(D) and (v1, w1) /∈ e2(D). By the
induction hypothesis, (v2, w2) ∈ e1(D) and (v2, w2) /∈ e2(D). (Indeed,
if (v2, w2) ∈ e2(D), then, again by the induction hypothesis, (v1, w1) ∈
e2(D), a contradiction.) Hence, (v2, w2) ∈ e(D).

Corollary 5.3. Let k ≥ 1, and let E be the set of all nonbasic operations in
Table 1, except for upward navigation (“↑”), second projection (“π2”), inverse
(“.−1”), and selection on at least m children (“ch≥m(.)”) for m > k. Let e be an
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expression in X (E). Let D = (V,Ed, r, λ) be a document, let v1 and v2 be nodes
of D such that v1 ≡k

↓ v2 and let w1 be a descendant of v1. If (v1, w1) ∈ e(D),
then there exists a descendant w2 of v2 such that (v2, w2) ∈ e(D).

Proof. By Lemma 5.1, there exists a descendant w2 of v2 such that (v1, w1) ∼=≡k
↓

(v2, w2). By Proposition 5.2, it now follows that (v2, w2) ∈ e(D).

Corollary 5.4. Let k ≥ 1, and let E be a set of nonbasic operations in Ta-
ble 1 not containing upward navigation (“↑”), second projection (“π2”), in-
verse (“.−1”), or selection on at least m children satisfying some condition
(“ch≥m(.)”) for m > k. Consider the language X (E) or C(E). Let D =
(V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. If v1 ≡k

↓ v2,
then v1 ≡exp v2.

Proof. Let e be an expression in the language under consideration such that
e(D)(v1) 6= ∅. Hence, there exists a descendant w1 of v1 such that (v1, w1) ∈
e(D). Notice that e is also an expression in the language considered in Corol-
lary 5.3. Hence, there exists a descendant w2 of v2 such that (v2, w2) ∈ e(D),
so e(D)(v2) 6= ∅. By symmetry, the converse also holds. We may thus conclude
that v1 ≡exp v2.

We may thus conclude that downward-k-equivalence is a sufficient condition
for expression-equivalence under a strictly downward language provided ch≥m
cannot be expressed for m > k.

Even more, Corollary 5.4 does no longer hold if this restriction is removed,
as shown by the following counterexample.

Example 5.5. Consider again the example document in Figure 1. We estab-
lished in Example 4.4 that v2 ≡1

↓ v3, but v2 6≡2
↓ v3. In the language X (ch≥2),

clearly v2 6≡exp v3, as ch≥2(ε)(D)(v2) = ∅, while ch≥2(ε)(D)(v3) 6= ∅.

5.2. Necessary conditions for expression equivalence

We now explore requirements on the set of nonbasic operations expressible
in the language under which downward-k-equivalence (k ≥ 1) is a necessary
condition for expression-equivalence. As we have endeavored to make as few
assumptions as possible, Proposition 5.6 also holds for a class of languages that
are not (strictly) downward.

Proposition 5.6. Let k ≥ 1, and let E be a set of nonbasic operations contain-
ing set difference (“−”). Consider the language X (E) or C(E). Assume that, in
this language, first projection (“π1”) can be expressed, as well as selection on at
least m children satisfying some condition (“ch≥m(.)”), for all m = 1, . . . , k. Let
D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. If v1 ≡exp v2,
then v1 ≡k

↓ v2.

Proof. Since expression-equivalence in the context of X (E) implies expression-
equivalence in the context of C(E), we may assume without loss of generality
that the language under consideration is C(E). To prove Proposition 5.6, it
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suffices to show that expression-equivalence (“≡exp”) satisfies the conditions of
Proposition 4.6.

1. If v1 ≡exp v2, then λ(v1) = λ(v2), for, otherwise, λ̂(v1)(D)(v1) 6= ∅, while

λ̂(v1)(D)(v2) = ∅, a contradiction.

2. If v1 ≡exp v2 and v1 is not a leaf, then v2 is not a leaf either, for, oth-
erwise, ch≥1(ε)(D)(v1) 6= ∅, while ch1(ε)(D)(v2) = ∅, a contradiction.
Let w1 be a child of v1, and let w1

2, . . . , w
n
2 be all children of w2. Sup-

pose for the sake of contradiction that, for all i = 1, . . . , n, w1 6≡exp w
i
2.

Then, by Proposition 4.2, there exists an expression ei in C(E) such
that ei(D)(w1) 6= ∅ and ei(D)(wi

2) = ∅, for all i = 1, . . . , n. Now,
let e := π1(e1) ∩ . . . ∩ π1(en), which can be expressed in C(E).7 Then,
ch≥1(e)(D)(v1) 6= ∅ while ch≥1(e)(D)(v2) = ∅, contradicting v1 ≡exp v2.
Hence, there does exist a child w2 of v2 such that w1 ≡exp w2. Of course,
the same also goes with the roles of v1 and v2 reversed.

3. Finally, let v1 and v2 be non-leaf nodes such that v1 ≡exp v2, and let
w1 and w2 be children of v1 and v2, respectively, such that w1 ≡exp w2.
For i = 1, 2, let w̃i be the set of all siblings of wi (including wi itself)
that are expression-equivalent to wi. As in the previous item, we can
construct an expression e in C(E) such that e(D)(w1) 6= ∅ (and hence
e(D)(w) 6= ∅ for each node w in w̃1 or w̃2) and e(D)(w) = ∅ for each
sibling of w1 not in w̃1 and for each sibling of w2 not in w̃2. For the
sake of contradiction, assume that min(|w̃1|, k) 6= min(|w̃2|, k). With-
out loss of generality, assume that min(|w̃1|, k) < min(|w̃2|, k). Hence,
min(|w̃1|, k) = |w̃1|. Let m := min(|w̃2|, k). Then, ch≥m(e)(D)(v1) = ∅,
while ch≥m(e)(D)(v2) 6= ∅, contradicting v1 ≡exp v2. We may thus con-
clude that min(|w̃1|, k) = min(|w̃2|, k).

Notice that the languages satisfying the statement of Proposition 5.6 need
not contain any navigation operations (“↓” or “↑”). Of course, in the context
of this Section, we are interested in languages in which downward navigation
(“↓”) is possible. Specializing Proposition 5.6 to this case, we may thus conclude
that downward-k-equivalence is a necessary condition for expression-equivalence
under a strictly downward language containing first projection (“π1”) and set
difference (“−”), provided selection on at least m children satisfying some con-
dition (“ch≥m”) for all m = 1, . . . , k can be expressed.

5.3. Characterization of expression equivalence

The languages containing downward navigation (“↓”) and satisfying both
Corollary 5.4 of Subsection 5.1 and Proposition 5.6 of Subsection 5.2 are
X (↓, π1, ch≥1(.), . . . , ch≥k(.),−) and C(↓, π1, ch≥1(.), . . . , ch≥k(.),−). We call

7Let f1 and f2 be expressions in C(E) such that f1(D) ⊆ ε(D) and f2(D) ⊆ ε(D). Then,
f1 ∩ f2 can be expressed in C(E) as π1(ε− π1(ε− f1) ∪ π1(ε− f2)).
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these languages the strictly downward XPath algebra with counting up to k and
the strictly downward core XPath algebra with counting up to k, respectively.
Combining the aforementioned results, we get the following.

Theorem 5.7. Let k ≥ 1, and consider the strictly downward (core) XPath
algebra with counting up to k. Let D = (V,Ed, r, λ) be a document, and let v1
and v2 be nodes of D. Then v1 ≡exp v2, if and only if v1 ≡k

↓ v2.

A special case arises when k = 1, since selection on at least one child satisfy-
ing some condition (“ch≥1(.)”) can be expressed in terms of the other operations
required by Theorem 5.7, by Proposition 2.4. The languages we then obtain,
X (↓, π1,−) and C(↓, π1,−), are called the strictly downward XPath algebra and
the strictly downward core XPath algebra, respectively. We have the following.

Corollary 5.8. Consider the strictly downward (core) XPath algebra. Let D =
(V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. Then v1 ≡exp v2,
if and only if v1 ≡1

↓ v2.

5.4. Characterization of navigational expressiveness

We shall now investigate the expressiveness of strictly downward languages at
the document level. In other words, we shall address the question whether, given
a document, we can characterize when a set of pairs of nodes of that document
is the result of some query in the language under consideration applied to that
document. Such type of results are often referred to as BP-characterizations,
after Bancilhon [22] and Paredaens [23] who first proved such results for Codd’s
relational calculus and algebra, respectively (cf. [24]).

We start by proving a converse to Proposition 5.2.

Proposition 5.9. Let k ≥ 1, and let E be a set of nonbasic operations con-
taining downward navigation (“↓”) and set difference (“−”). Consider the lan-
guage X (E) or C(E). Assume that, in this language, first projection (“π1”)
can be expressed, as well as selection on at least m children satisfying some
condition (“ch≥m(.)”), for all m = 1, . . . , k. Let D = (V,Ed, r, λ) be a docu-
ment, and let v1, w1, v2, and w2 be nodes of D such that w1 is a descendant
of v1 and w2 is a descendant of v2. Assume furthermore that, for each expres-
sion e in the language, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D). Then
(v1, w1) ∼=≡k

↓
(v2, w2).

Proof. First notice that, by assumption, (v2, w2) ∈ sig(v1, w1)(D), and vice
versa. Hence, (v1, w1) ∼= (v2, w2). Let y1 be a node on the path from v1 to w1,
and let y2 be the corresponding node on the path from v2 to w2. By construc-
tion, (v1, y1) ∼= (v1, y2) and (y1, w1) ∼= (y2, w2). Now, let f be any expression
in the language such that f(D)(y1) 6= ∅. Then, (y1, y1) ∈ π1(f)(D). Let
e := sig(v1, y1)/π1(f)/sig(y1, w1). By construction, (v1, w1) ∈ e(D). Hence, by
assumption, (v2, w2) ∈ e(D), which implies (y2, y2) ∈ π2(f)(D) or f(D)(y2) 6= ∅.
The same holds vice versa, and we may thus conclude that y1 ≡exp y2, and,
hence, by Proposition 5.6, y1 ≡k

↓ y2. We may thus conclude that (v1, w1) ≡k
↓

(v2, w2).
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Combining Propositions 5.2 and 5.9, we obtain the following.

Corollary 5.10. Let k ≥ 1, and consider the strictly downward (core) XPath
algebra with counting up to k. Let D = (V,Ed, r, λ) be a document, and let v1,
w1, v2, and w2 be nodes of D such that w1 is a descendant of v1 and w2 is a
descendant of v2. Then, the property that, for each expression e in the language
under consideration, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D) is equivalent
to the property (v1, w1) ∼=≡k

↓
(v2, w2).

In order to state our first BP-result, we need the following two lemmas.

Lemma 5.11. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, and let v1 be a
node of D. There exists an expression ev1 in the strictly downward core XPath
algebra with counting up to k such that, for each node v2 of D, ev1(D)(v2) 6= ∅
if and only if v1 ≡k

↓ v2.

Proof. Let w be any node of D such that v1 6≡k
↓ w. By Theorem 5.7, v1 6≡exp w.

By Proposition 4.2, there exists an expression fv1,w in the strictly downward
core XPath algebra with counting up to k such that fv1,w(D)(v1) 6= ∅ and
fv1,w(D)(w) = ∅. Now consider the expression

ev1 := π1

 ⋂
w∈V & v1 6≡k

↓w

π1(fv1,w)

 ,

which is also in the strictly downward core XPath algebra with counting up to k.
By construction, ev1(D)(v1) 6= ∅. Now consider a node v2 of D. If v1 ≡k

↓ v2,
then, by Theorem 5.7, v1 ≡exp v2. Hence, by definition, ev1(D)(v2) 6= ∅. If, on
the other hand, v1 6≡k

↓ v2, then, by construction, ev1(D)(v2) = ∅.

Lemma 5.12. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, and let v1
and w1 be nodes of D such that w1 is a descendant of v1. There exists an
expression ev1,w1 in the strictly downward core XPath algebra with counting
up to k such that, for all nodes v2 and w2 of D with w2 a descendant of v2,
(v2, w2) ∈ ev1,w1

(D) if and only if (v1, w1) ∼=≡k
↓

(v2, w2).

Proof. From Lemma 5.11, we know that, for node y1 of D, there exists an
expression ey1

in the strictly downward core XPath algebra with counting up
to k such that, for each node y2 of D, ey1(D)(y2) 6= ∅ if and only if y1 ≡k

↓ y2.
Now, let v1 and w1 be nodes of D such that w1 is a descendant of v1, and let
v1 = y11, . . . , y1n = w1 be the path from v1 to w1 in D. Define

ev1,w1 := π1(ey11)/↓/π1(ey12)/ . . . ↓/π1(ey1n),

which is also in the strictly downward core XPath algebra with counting up
to k. By construction, (v1, w1) ∈ ev1,w1(D). Let v2 and w2 be nodes of D such
that w2 is a descendant of v2. If (v1, w1) ∼=≡k

↓
(v2, w2), then, by Corollary 5.10,

(v2, w2) ∈ ev1,w1
(D). Conversely, if (v2, w2) ∈ ev1,w1

(D), then, by construction,

23



(v1, w1) ∼= (v2, w2). Thus, let v2 = y21, . . . , y2n = w2 be the path from v2 to w2

in D. Again by construction, it follows that, for j = 1, . . . , n, ey1j (D)(y2j) 6= ∅,
or, equivalently, that y1j ≡k

↓ y2j . Hence, (v1, w1) ≡k
↓ (v2, w2).

We are now ready to state the actual result.

Theorem 5.13. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, and let
R ⊆ V × V . Then, there exists an expression e in the strictly downward (core)
XPath algebra with counting up to k such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,

2. for all v1, w1, v2, w2 ∈ V with w1 a descendant of v1, w2 a descendant of
v2, and (v1, w1) ∼=≡k

↓
(v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

Proof. To see the “only if,” it suffices to notice that the first condition fol-
lows from the downward character of the language, and the second from Corol-
lary 5.10. The remainder of the proof concerns the “if.” From Lemma 5.12, we
know that, for all nodes v1 and w1 of D such that w1 is a descendant of v1,
there exists an expression ev1,w1 in C(E) such that, for all nodes v2 and w2 of
D, (v2, w2) ∈ ev1,w1

(D) if and only if (v1, w1) ∼=≡k
↓

(v2, w2). Now consider the

expression

e :=
⋃

(v1,w1)∈R

ev1,w1
.

This expression, which is well defined because (v1, w1) ∈ R by assumption
implies that w1 is a descendant of v1, is also in C(E) (and hence also in X (E)).
It remains to show that e(D) = R. Clearly, R ⊆ e(D). We prove the reverse
inclusion. Thereto, let v2 and w2 be nodes such that (v2, w2) ∈ e(D). By
construction, there exist nodes v1 and w1 in D such that w1 is a descendant
of v1 and (v2, w2) ∈ ev1,w1

(D). Hence, (v1, w1) ∼=≡k
↓

(v2, w2). But then, by

assumption, also (v2, w2) ∈ R. So, e(D) ⊆ R.

As before, we can specialize Theorem 5.13 to the strictly downward (core)
XPath algebra.

Corollary 5.14. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V × V .
There exists an expression e in the strictly downward (core) XPath algebra such
that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v;

2. for all v1, w1, v2, w2 ∈ V with w1 a descendant of v1, w2 a descendant of
v2, and (v1, w1) ≡1

↓ (v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

We can also recast Theorem 5.13 in terms of node-level navigation.

Theorem 5.15. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, let v be a
node of D, and let W ⊆ V . Then there exists an expression e in the strictly
downward (core) XPath algebra with counting up to k such that e(D)(v) = W
if and only if all nodes of W are descendants of v, and, for all w1, w2 ∈W with
(v, w1) ∼=≡k

↓
(v, w2), w1 ∈W implies w2 ∈W .
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Proof. Only if. Let e be an expression in the language under consideration such
that e(D)(v) = W . Let w1, w2 ∈ V be descendants of v with (v, w1) ≡k

↓ (v, w2),
and assume that w1 ∈W = e(D)(v). Hence, (v, w1) ∈ e(D). By Corollary 5.10,
(v, w2) ∈ e(D). Hence, w2 ∈ e(D)(v) = W .

If. Let W ⊆ V satisfy the property that all nodes of W are descendants
of v, and, for all w1, w2 ∈ V with w1 ≡k

↓ w2, w1 ∈ W implies w2 ∈ W . Let
R := {(v′, w2) | there exists w1 ∈ W such that (v, w1) ∼=≡k

↓
(v′, w2)}. Clearly,

R satisfies the properties of Theorem 5.13. Hence, there exists an expression e
in the language under consideration such that R = e(D). Clearly, W ⊆ e(D)(v).
We prove the reverse inclusion. Therefore, let w2 ∈ e(D)(v), i.e., (v, w2) ∈ R.
Then there exists w1 ∈ R such that (v, w1) ∼=≡k

↓
(v, w2). By the property that

W satisfies, w2 ∈W . Hence, e(D)(v) ⊆W , and, therefore, e(D)(v) = W .

Again, we can specialize Theorem 5.15 to the strictly downward (core) XPath
algebra.

Corollary 5.16. Let D = (V,Ed, r, λ) be a document, let v be a node of D,
and let W ⊆ V . Then there exists an expression e in the strictly downward
(core) XPath algebra such that e(D)(v) = W if and only if all nodes of W are
descendants of v, and, for all nodes w1 and w2 of D with (v, w1) ∼=≡1

↓
(v, w2),

w1 ∈W implies w2 ∈W .

A special case of Theorem 5.16 is when we are only interested in navigation
from the root.

Theorem 5.17. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, and let
W ⊆ V . Then there exists an expression e in the strictly downward (core)
XPath algebra with counting up to k such that e(D)(r) = W if and only if, for
all nodes w1 and w2 of D with w1 ≡k

l w2, w1 ∈W implies w2 ∈W .

Proof. From Theorem 5.15, it immediately follows that there exists an expres-
sion e in the language under consideration such that e(D)(r) = W if and only
if, for w1, w2 ∈ V with (r, w1) ∼=≡k

↓
(r, w2), w1 ∈ W implies w2 ∈ W . By

Proposition 4.17, (r, w1) ∼=≡k
↓

(r, w2) is equivalent to w1 ≡k
l w2.

The specialization of Theorem 5.17 to the case of the strictly downward
(core) XPath algebra is as follows.

Corollary 5.18. Let D = (V,Ed, r, λ) be a document, and let W ⊆ V . Then
there exists an expression e in the strictly downward (core) XPath algebra such
that e(D)(r) = W if and only if, for all nodes w1 and w2 of D with w1 ≡1

l w2,
w1 ∈W implies w2 ∈W .

To conclude this section, we observe that none of the characterization re-
sults above distinguish between the language X (E) and the corresponding core
language C(E). This is not surprising, as, for all downward languages, they
have the same expressive power, not only at the navigational level for a given
document, but also at the level of queries, i.e., for each expression e in X (E),
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there exists an equivalent expression e′ in the corresponding core language C(E),
meaning that, for each document D, e(D) = e′(D). Thereto, we prove a slightly
stronger result.

Theorem 5.19. Let E be a set of nonbasic operations containing downward
navigation (“↓”) and first projection (“π1”), and not containing upward navi-
gation (“↑”), and inverse (“.−1”). Let e be an expression in the language under
consideration. With the exception of intersection (“∩”) and set difference (“−”)
operations used as operands in boolean combinations of subexpressions of the lan-
guage within a first projection or conditional operation, all intersection and set
difference operations can be eliminated, to the extent that these operations occur
in the language under consideration.

Proof. The proof goes by structural induction. Therefore, consider the expres-
sion e1 ∩ e2, respectively, e1 − e2 (to the extent these operations occur in the
language under consideration), where e1 and e2 are expressions not containing
eliminable intersection and set difference operations. For i = 1, 2, we may write

ei = ci0/↓/ci1/↓/ . . . /↓/cini−1/↓/cini ,

where, for j = 0, . . . , ni, cij is an expression in C(E) with the property that,
for each document D, cij(D) ⊆ ε(D). From here on, we consider both cases
separately.

1. Intersection. Clearly, if n1 6= n2, then, for each document D, e1∩e2(D) =
∅ = ∅(D). In the other case, let n := n1 = n2. For j = 0, . . . , n, let
cj := π1(c1j ∩ c2j), which is an expression of C(E), equivalent to c1j ∩ c2j .
Let

e′ := c0/↓/c1/↓/ . . . /↓/cn−1/↓/cn.
A straightforward set-theoretical argument reveals that, for each docu-
ment D, e′(D) = e1 ∩ e2(D).

2. Difference. Clearly, if n1 6= n2, then, for each document D, e1 − e2(D) =
e1(D). In the other case, let n := n1 = n2. For j = 0, . . . , n, let e′j be e1
in which c1j is replaced by π1(c1j − c2j), which is an expression of C(E),
equivalent to c1j − c2j . Let

e′ = e′0 ∪ e′1 ∪ . . . ∪ e′n−1 ∪ e′n.

which is also in C(E). A straightforward set-theoretical argument reveals
that, for each document D, e′(D) = e1 − e2(D).

Corollary 5.20. Let E be a set of nonbasic operations containing downward
navigation (“↓”) and first projection (“π1”), and not containing upward navi-
gation (“↑”), and inverse (“.−1”). Then, for each expression e in X (E), there
exists an expression e′ in C(E) such that, for each document D, e(D) = e′(D).

By Theorem 5.19, we may even disallow set difference or intersection opera-
tions (to the extent they occur in the language under consideration) except those
used as operands of boolean combinations of subexpressions inside a projection
operation without loosing expressive power.
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5.5. Strictly downward languages not containing set difference

So far, the characterizations of strictly downward languages involved only
languages containing the set difference operator. One could, therefore, wonder
if it is possible to provide similar characterizations for languages not containing
set difference. However, the absence of set difference and the logical negation
that is inherently embedded in it has as a side effect that it is no longer always
possible to exploit equivalences or derive them.

5.5.1. Weaker notions of downward and two-way distinguishability

Therefore, one would like to consider an asymmetric version of downward k-
equivalence, say “downward k-relatedness,” which, for the appropriate language
could correspond to expression relatedness. For k = 1, such an approach could
lead to the following definitions.

Definition 5.21. Let D = (V,Ed, r, λ) be a document, and let v1, v2 ∈ V .
Then,

1. v1 and v2 are downward-related, denoted v1 ≥↓ v2, if

(a) λ(v1) = λ(v2); and
(b) for each child w1 of v1, there exists a child w2 of v2 such that w1 ≥↓

w2.

2. v1 and v2 are weakly downward-equivalent, denoted v1 u↓ v2, if v1 ≥↓ v2
and v2 ≥↓ v1.

Obviously, downward 1-equivalence implies weak downward equivalence. The
converse, however, is not true, as illustrated by the following, simple example.

Example 5.22. Consider the document in Figure 4. Labels have been omitted,
because they are not relevant in this discussion. (We assume all nodes have the
same label.) Obviously, x1 ≡1

↓ x2, hence x1 u↓ x2. In particular, x1 ≥↓ x2
and x2 ≥↓ x1. Also, y1 ≥↓ x2, as the second condition to be verified is voidly

satisfied in this case. We may thus conclude that v1 u↓ v2. However, v1 6≡1
↓ v2,

as there is no child of v2 that is downward 1-equivalent to y1.

Notice that, in Example 5.22, there is even no child of v2 that is weakly
downward equivalent to y1! Therefore, we shall not even attempt to generalize
Definition 5.21 to the case where k > 1, as there is no straightforward way to
adapt the third condition of Definition 4.3.

We conclude this digression on alternatives for downward 1-equivalence by
providing analogue alternatives for 1-equivalence.

Definition 5.23. Let D = (V,Ed, r, λ) be a document, and let v1, v2 ∈ V .
Then,

1. v1 and v2 are related , denoted v1 ≥l v2, if

(a) v1 ≥↓ v2;
(b) v1 is the root if and only if v2 is the root; and
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v2v1

Figure 4: Document of Example 5.22.

Table 4: Distinguishability notions of Section 5.5.1.

distinguishability notion notation defined in
downward-related ≥↓ Definition 5.21

weakly-downward-equivalent u↓ Definition 5.21

related ≥l Definition 5.23

weakly-equivalent ul Definition 5.23

(c) if v1 and v2 are not the root, and u1 and u2 are the parents of v1 and
v2, respectively, then u1 ≥l u2.

2. v1 and v2 are weakly equivalent , denoted v1 ul v2, if v1 ≥l v2 and v2 ≥l v1.

Example 5.24. Consider again the document in Figure 4. Observe that v1 ul
v2. Furthermore, y1 ≥l x2, but not the other way around.

Table 4 summarizes all of the distinguishability notions presented in this
section.

The following analogue of Proposition 4.17 is straightforward.

Proposition 5.25. Let D = (V,Ed, r, λ) be a document, and let v1, v2 ∈ V .
Then,

1. v1 ≥l v2 if and only if (r, v1) ∼=≥↓ (r, v2); and

2. v1 ul v2 if and only if (r, v1) ∼=u↓ (r, v2).

5.5.2. Towards characterizing expression equivalence and navigational expres-
siveness

The approach we shall take here is reviewing the results in Sections 5.1–
5.3 and examine to which extent these results in the case where k = 1 allow
replacing downward 1-equivalence by weak downward equivalence.

We start by observing that the analogue of Lemma 5.1 does not hold. Indeed,
in the example document of Example 5.22, shown in Figure 4, v1 u↓ v2. Also,
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there is no child of v2 that is weakly downward equivalent to x1. Hence, there
is no node node z for which (v1, x1) ∼=u1

↓
(v2, z). On the other hand, we can

restrict Lemma 5.1 to downward relatedness:

Lemma 5.26. Let D = (V,Ed, r, λ) be a document, let v1, w1, and v2 be nodes
of D such that w1 is a descendant of v1. If v1 ≥↓ v2, then v2 has a descendant
w2 in D such that (v1, w1) ∼=≥↓ (v2, w2).

Proposition 5.2 relies on Lemma 5.1 to prove the inductive step for the
first projection (“π1”). It therefore comes as no surprise that we cannot re-
place downward 1-equivalence by weak downward equivalence, there. Indeed,
consider the expression e := π1(↓/(ε − π1(↓))). In the example document of
Example 5.22, shown in Figure 4, v1 u↓ v2, and, hence, (v1, v1) ∼=u↓ (v2, v2).

Moreover, (v1, v1) ∈ e(D). However, (v2, v2) /∈ e(D). However, we can “save”
Proposition 5.2 by replacing downward 1-equivalence by downward relatedness,
provided we omit set difference (“−”) from the set of operations of the language.
Indeed, we can then recover the proof, using Lemma 5.26 instead of Lemma 5.1.
(Notice that, for the induction step for set difference in the original proof, we
must exploit equivalence in both directions to deal with the negation inherent
to the difference operation.) In summary, we have the following.

Lemma 5.27. Let E be the set of all nonbasic operations in Table 1, except for
upward navigation (“↑”), second projection (“π2”), inverse (“.−1”), selection
on at least k children satisfying some condition (“ch≥k(.)”) for k > 1, and set
difference (“−”). Let e be an expression in X (E). Let D = (V,Ed, r, λ) be a
document, let v1, w1, v2, and w2 be nodes of D such that w1 is a descendant of
v1 and w2 is a descendant of v2. Assume furthermore that (v1, w1) ∼=≥↓ (v2, w2).

Then, (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D).

Two applications of Lemma 5.27 immediately yield the following.

Proposition 5.28. Let E be the set of all nonbasic operations in Table 1, except
for upward navigation (“↑”), second projection (“π2”), inverse (“.−1”), selection
on at least k children satisfying some condition (“ch≥k(.)”) for k > 1, and set
difference (“−”). Let e be an expression in X (E). Let D = (V,Ed, r, λ) be a
document, let v1, w1, v2, and w2 be nodes of D such that w1 is a descendant of
v1 and w2 is a descendant of v2. Assume furthermore that (v1, w1) ∼=u↓ (v2, w2).

Then, (v1, w1) ∈ e(D) if and only (v2, w2) ∈ e(D).

So, Proposition 5.28 is weaker than Proposition 5.2 in the sense that we had
to exclude set difference, but stronger in the sense that, in return, we were able
to replace the precondition by a weaker one.

The analogues of Corollaries 5.3 and 5.4 are now as follows.

Corollary 5.29. Let E be the set of all nonbasic operations in Table 1, except
for upward navigation (“↑”), second projection (“π2”), inverse (“.−1”), selection
on at least k children satisfying some condition (“ch≥k(.)”) for k > 1, and set
difference (“−”). Let e be an expression in X (E). Let D = (V,Ed, r, λ) be
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a document, let v1 and v2 be nodes of D such that v1 ≥↓ v2 and let w1 be a
descendant of v1. If (v1, w1) ∈ e(D), then there exists a descendant w2 of v2
such that (v2, w2) ∈ e(D).

In other words, downward relatedness implies expression relatedness.

Corollary 5.30. Let E be a set of nonbasic operations not containing upward
navigation (“↑”), second projection (“π2”), inverse (“.−1”), selection on at least
k children satisfying some condition (“ch≥k(.)”) for k > 1, and set difference
(“−”). Consider the language X (E) or C(E). Let D = (V,Ed, r, λ) be a docu-
ment, and let v1 and v2 be nodes of D. If v1 u↓ v2, then v1 ≡exp v2.

Proof. The condition v1 u↓ v2 implies v1 ≥↓ v2 and v2 ≥↓ v1. By Corollary 5.29,
these conditions in turn imply v1 ≥exp v2 and v2 ≥exp v1, which together are
equivalent to v1 ≡exp v2.

We now look to necessary conditions for expression equivalence for strictly
downward languages not containing set difference. Provided intersection (“∩”)
is available, the expressibility of set difference is used only once in the proof of
Proposition 5.6, namely where Proposition 4.2 is invoked. We do not need this
Proposition, however, in the following variation of Proposition 5.6:

Lemma 5.31. Let E be a set of nonbasic operations containing first projection
(“π1”), and intersection (“∩”). Consider the language X (E) or C(E). Let
D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. If v1 ≥exp v2,
then v1 ≥↓ v2.

Two applications of Lemma 5.31 immediately yield the following.

Proposition 5.32. Let E be a set of nonbasic operations containing first projec-
tion (“π1”), and intersection (“∩”). Consider the language X (E) or C(E). Let
D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. If v1 ≡exp v2,
then v1 u↓ v2.

So, Proposition 5.32 is weaker than Proposition 5.6 in the sense that the
conclusion is replaced by a weaker one, but stronger in the sense that, in return,
we no longer have to rely on the presence of difference.

The languages containing downward navigation (“↓”) and satisfying both
Corollary 5.30 and Proposition 5.32 are X (↓, π1,∩) and C(↓, π1,∩), which, more-
over, are equivalent, by Corollary 5.20. In addition, we can eliminate intersection
operations except those used as operands of boolean combinations of subexpres-
sions inside a projection operation without loosing expressive power. We call
these languages the strictly downward positive XPath algebra and the strictly
downward core positive XPath algebra, respectively. Combining the aforemen-
tioned results, we get the following.

Theorem 5.33. Consider the strictly downward (core) positive XPath algebra.
Let D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. Then
v1 ≡exp v2 if and only if v1 u↓ v2.
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We finally turn to the characterization of navigational expressiveness. Propo-
sition 5.9 and its proof, and hence also Corollary 5.10, carry over to the current
setting.

Theorem 5.34. Consider the strictly downward (core) positive XPath algebra.
Let D = (V,Ed, r, λ) be a document, and let v1, w1, v2, and w2 be nodes of
D such that w1 is a descendant of v1 and w2 is a descendant of v2. Then,
the property that, for each expression e in the language under consideration,
(v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D) is equivalent to the property
(v1, w1) ∼=u↓ (v2, w2).

To derive a BP-result for the strictly downward (core) positive XPath al-
gebra, we observe that Lemmas 5.11 and 5.12 and Theorem 5.13 carry over to
the current context, provided we replace downward 1-equivalence by downward
relatedness.

Lemma 5.35. Let D = (V,Ed, r, λ) be a document.

1. Let v1 be a node of D. There exists an expression ev1 in the strictly
downward (core) positive XPath algebra such that, for each node v2 of D,
ev1(D)(v2) 6= ∅ if and only if v1 ≥↓ v2.

2. Let v1 and w1 be a nodes of D such that w1 is a descendant of v1. There
exists an expression e(v1,w1) in the strictly downward (core) positive XPath
algebra such that, for all nodes v2 and w2 of D with w2 a descendant of
v2, (v2, w2) ∈ e(v1,w1)(D) if and only if (v1, w1) ∼=≥↓ (v2, w2).

In the proof of the first claim, the role of Theorem 5.7 is taken over by
Corollary 5.29.

Theorem 5.36. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V × V .
Then, there exists an expression e in the strictly downward (core) positive XPath
algebra such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,

2. for all v1, w1, v2, w2 ∈ V with w1 a descendant of v1, w2 a descendant of
v2, and (v1, w1) ∼=≥↓ (v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

The major difference between Theorems 5.13 and 5.36 is that, in the former,
R is a partition of maximal sets of ≡k

↓-congruent nodes, while, in the latter, R
is merely closed under ≥↓-congruence.

We can also recast Theorem 5.36 in terms of node-level navigation, in much
the same way as Theorem 5.13.

Theorem 5.37. Let D = (V,Ed, r, λ) be a document, let v be a node of D, and
let W ⊆ V . Then there exists an expression e in the strictly downward (core)
positive XPath algebra such that e(D)(v) = W if and only if all nodes of W are
descendants of v, and, for all nodes w1 and w2 of D with (v, w1) ∼=≥↓ (v, w2),
w1 ∈W implies w2 ∈W .
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Corollary 5.38. Let D = (V,Ed, r, λ) be a document, and let W ⊆ V . Then
there exists an expression e in the strictly downward (core) positive XPath al-
gebra such that e(D)(r) = W if and only if, for all nodes w1 and w2 of D with
w1 ≥l w2, w1 ∈W implies w2 ∈W .

For the last result of this section, we relied on Proposition 5.25, (1).

6. Weakly downward languages

We now turn to weakly downward languages: for any node v of the document
D under consideration, all nodes in e(D)(v) are descendants of v, but there are
possibly nodes v for which e(D)(v) 6= e(D′)(v), with D′ the subtree of D rooted
at v.

6.1. Sufficient conditions for expression-equivalence

The key notion in Sections 6.1–6.3 is ≡k
l-congruence, k ≥ 1, restricted to

ancestor-descendant pairs. We first explore some properties of this notion.

Lemma 6.1. Let D = (V,Ed, r, λ) be a document, let v1, w1, v2, and w2 be
nodes of D such that w1 is a descendant of v1 and w2 is a descendant of v2,
and let k ≥ 1. Then, (v1, w1) ∼=≡k

l
(v2, w2) if and only if (v1, w1) ∼= (v2, w2) and

w1 ≡k
l w2.

Proof. As the “only if” is obvious, we focus on the “if.” By Proposition 4.17,
w1 ≡k

l w2 implies that (r, w1) ∼=≡k
↓

(r, w2). Let y1 be a node on the path from v1
to w1, and let y2 be the corresponding node on the path from v2 to w2. By
Proposition 4.15, we also have that (r, y1) ∼=≡k

↓
(r, y2). By another application

of Proposition 4.17, we finally deduce that y1 ≡k
l y2.

Lemma 6.2. Let D = (V,Ed, r, λ) be a document, let v1 and w1 be nodes of D
such that w1 is a descendant of v1, and let k ≥ 1. Then,

1. each node v2 of D for which v1 ≡k
l v2 has a descendant w2 in D such that

(v1, w1) ∼=≡k
l

(v2, w2); and

2. each node w2 of D for which w1 ≡k
l w2 has an an ancestor v2 in D such

that (v1, w1) ∼=≡k
l

(v2, w2).

Proof. To see (1), we know by Lemma 5.1 that v2 has a descendant w2 such that
(v1, w1) ∼=≡k

↓
(v2, w2). By Proposition 4.17, we also have that (r, v1) ∼=≡k

↓
(r, v2).

It now readily follows that (r, w1) ∼=≡k
↓

(r, w2), or, again by Proposition 4.17,

w1 ≡k
l w2. It now follows from Lemma 6.1 that (v1, w1) ∼=≡k

l
(v2, w2).

Claim (2) can be shown by induction on the length of the path from v1 to
w1. If v1 = w1, then obviously, we must choose v2 := w2. If v1 6= w1, we have
in particular that w1 6= r, and, hence, by w1 ≡k

l w2, that w2 6= r. Let y1 be the

parent of w1 and y2 be the parent of w2. By definition, y1 ≡k
l y2, and, by the
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induction hypothesis there is a node v2 in D such that (v1, y1) ∼=≡k
l

(v2, y2). It

now readily follows that (v1, w1) ∼=≡k
l

(v2, w2).

We now link ≡k
l-congruence of ancestor-descendant pairs of nodes with ex-

pressibility in weakly downward languages.

Proposition 6.3. Let k ≥ 1, and let E be the set of all nonbasic operations in
Table 1, except for upward navigation (“↑”), inverse (“.−1”), and selection on
at least m children satisfying some condition (“ch≥m(.)”) for m > k. Let e be
an expression in X (E). Let D = (V,Ed, r, λ) be a document, and let v1, w1, v2,
and w2 be nodes of D such that w1 is a descendant of v1 and w2 is a descendant
of v2. Assume furthermore that (v1, w1) ∼=≡k

l
(v2, w2). Then, (v1, w1) ∈ e(D) if

and only if (v2, w2) ∈ e(D).

Proof. The proof goes along the same lines of the proof of Proposition 5.2.
Actually, since ≡k

l-congruence implies ≡k
↓-congruence, almost all of the proof

by structural induction can be used here verbatim, except, of course, for the
inductive step for the second projection (“π2”), which we consider next. Thus,
let e := π2(f), with f satisfying Proposition 6.3. If (v1, w1) ∈ π2(f), then, of
course, v1 = w1 as a consequence of which v2 = w2. Also, there exists y1 ∈ V
such that (y1, v1) ∈ f(D). By Lemma 6.2, (2), there exists y2 ∈ V such that
(y1, v1) ∼=≡k

l
(y2, v2). By the induction hypothesis, (y2, v2) ∈ f(D). Hence,

(v2, v2) ∈ π2(f)(D).

By combining Proposition 6.3 with Lemma 6.2, we can establish the follow-
ing.

Corollary 6.4. Let k ≥ 1, and let E be the set of all nonbasic operations in
Table 1, except for upward navigation (“↑”), inverse (“.−1”), and selection on
at least m children (“ch≥m(.)”) for m > k. Let e be an expression in X (E).
Let D = (V,Ed, r, λ) be a document, let v1 and w1 be nodes of D such that w1

is a descendant of v1 and (v1, w1) ∈ e(D). Then,

1. each node v2 of D for which v1 ≡k
l v2 has a descendant w2 in D such that

(v2, w2) ∈ e(D); and

2. each node w2 of D for which w1 ≡k
l w2 has an an ancestor v2 in D such

that (v2, w2) ∈ e(D).

Finally, we infer the following from Corollary 5.4, (1):

Corollary 6.5. Let k ≥ 1, and let E be a set of nonbasic operations not con-
taining upward navigation (“↑”), inverse (“.−1”), and selection on at least m
children satisfying some condition (“ch≥m(.)”) for m > k. Consider the lan-
guage X (E) or C(E). Let D = (V,Ed, r, λ) be a document, and let v1 and v2 be
nodes of D. If v1 ≡k

l v2, then v1 ≡exp v2.
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6.2. Necessary conditions for expression equivalence

We now explore requirements on the set of nonbasic operations expressible
in the language under which downward-k-equivalence (k ≥ 1) is a necessary
condition for expression-equivalence. As we have endeavored to make as few
assumptions as possible, Proposition 6.6 also holds for a class of languages that
are not downward.

Proposition 6.6. Let k ≥ 1, and let E be a set of nonbasic operations con-
taining at least one navigation operation (“↓” or “↑”) and set difference (“−”).
Consider the language X (E) or C(E), and assume that, in this language, first
and second projection (“π1” and “π2”) can be expressed, as well as selection on
at least m children satisfying some condition (“ch≥m(.)”), for all m = 1, . . . , k.
Let D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. If
v1 ≡exp v2, then v1 ≡k

l v2.

Proof. Without loss of generality, we may assume that the language under
consideration is C(E). In Proposition 5.6, we have already established that
v1 ≡exp v2 implies v1 ≡k

↓ v2. By induction on the length of the path from r

to v1, we establish that, furthermore, v1 ≡k
l v2. For the basis of the induction,

consider the case that v1 = r. Let d be the length of a longest path from r to a
leaf of D (i.e., the height of the tree). We distinguish two cases:

1. ↓ ∈ E. Then, ↓d(D)(v1) 6= ∅. Hence, ↓d(D)(v2) 6= ∅, which implies v2 = r.
2. ↑ ∈ E Then, π2(↑d)(D)(v1) 6= ∅. Hence, π2(↑d)(D)(v2) 6= ∅, which implies
v2 = r.

In both cases, it follows that v1 ≡k
l v2. For the induction step, consider the case

that v1 6= r. Again, we distinguish two cases:

1. ↓ ∈ E. Then, π2(↓)(D)(v1) 6= ∅, and, hence, π2(↓)(D)(v2) 6= ∅. So, v2 6= r.
2. ↑ ∈ E. Then, ↑(D)(v1) 6= ∅, and, hence, ↑(D)(v2) 6= ∅. So, v2 6= r.

Now, let u1 be the parent of v1 and u2 be the parent of v2. We show that
u1 ≡exp u2. Thereto, let e be an expression in the language under consideration
for which e(D)(u1) 6= ∅. Again, we distinguish two cases:

1. ↓ ∈ E. Then, π2(e/↓)(v1) 6= ∅. Since v1 ≡exp v2, π2(e/↓)(v2) 6= ∅. It
follows that e(D)(u2) 6= ∅.

2. ↑ ∈ E. Then, ↑/e(v1) 6= ∅. Since v1 ≡exp v2, ↑/e(v2) 6= ∅. It follows that
e(D)(u2) 6= ∅.

By the induction hypothesis, we may now conclude that, in both cases, u1 ≡k
l u2.

Hence, also v1 ≡k
l v2.

We see that Proposition 6.6 is as well applicable to weakly downward lan-
guages as to weakly upward languages (see Section 7.2). We shall see in Sec-
tion 7.2 that this is no coincidence. For now, we suffice with concluding that
k-equivalence is a necessary condition for expression-equivalence under a weakly
downward language containing downward navigation (“↓”), both projections
(“π1” and “π2”), and set difference (“−”), provided selection on at least m chil-
dren satisfying some condition (“ch≥m”) for all m = 1, . . . , k can be expressed.
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6.3. Characterization of expression equivalence

The weakly downward languages containing downward navigation (“↓”) and
satisfying both Corollary 6.5 of Subsection 6.1 and Proposition 5.6 of Subsec-
tion 5.2 are

X (↓, π1, π2, ch≥1(.), . . . , ch≥k(.),−) and C(↓, π1, π2, ch≥1(.), . . . , ch≥k(.),−),

which, moreover, are equivalent, by Corollary 5.20. In addition, we can elimi-
nate set difference or intersection operations except those used as operands of
boolean combinations of subexpressions inside a projection operation without
loosing expressive power. We call these languages the weakly downward XPath
algebra with counting up to k and the weakly downward core XPath algebra with
counting up to k, respectively. Combining the aforementioned results, we get
the following.

Theorem 6.7. Let k ≥ 1, and consider the weakly downward (core) XPath
algebra with counting up to k. Let D = (V,Ed, r, λ) be a document, and let v1
and v2 be nodes of D. Then v1 ≡exp v2, if and only if v1 ≡k

l v2.

A special case arises when k = 1, since selection on at least one child satisfy-
ing some condition (“ch≥1(.)”) can be expressed in terms of the other operations
required by Theorem 6.7, by Proposition 2.4. The languages we then obtain are
called the weakly downward XPath algebra and the weakly downward core XPath
algebra, respectively. We have the following.

Corollary 6.8. Consider the weakly downward (core) XPath algebra. Let D =
(V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. Then v1 ≡exp v2,
if and only if v1 ≡1

l v2.

6.4. Characterization of navigational expressiveness

We start by proving a converse to Proposition 6.3.

Proposition 6.9. Let k ≥ 1, and let E be a set of nonbasic operations contain-
ing downward navigation (“↓”) and set difference (“−”). Consider the language
X (E) or C(E). Assume that, in this language, first and second projection (“π1”
and “π2”) can be expressed, as well as selection on at least m children satisfying
some condition (“ch≥m(.)”), for all m = 1, . . . , k. Let D = (V,Ed, r, λ) be a
document, and let v1, w1, v2, and w2 be nodes of D such that w1 is a descen-
dant of v1 and w2 is a descendant of v2. Assume furthermore that, for each
expression e in the language, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D).
Then (v1, w1) ∼=≡k

l
(v2, w2).

Proof. From Proposition 5.9, we already know that (v1, w1) ∼=≡k
↓

(v2, w2). In

particular, (v1, w1) ∼= (v2, w2). By Lemma 6.1, it suffices to prove that v1 ≡k
l

w2, or, by Proposition 4.17, that (r, w1) ∼=≡k
↓

(r, w2). In view of what we

already know, we only need to show that (r, v1) ∼=≡k
↓

(r, v2). Since (v1, w1) ∈
π2(sig(r, v1))/sig(v1, w1), it follows that also (v2, w2) ∈ π2(sig(r, v1))/sig(v1, w1),
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for which we readily deduce that (r, v1) ∼= (r, v2). Let u1 be a node on the
path from r to v1, and let u2 be the corresponding node on the path from
r to v2. Then, (r, u1) ∼= (r, u2) and (u1, v1) ∼= (u2, u2). Now, let f be any
expression in the language such that f(D)(u1) 6= ∅. Then, (u1, u1) ∈ π1(f)(D).
Let e := π2(π1(f)/sig(u1, v1))/sig(v1, w1). By construction, (v1, w1) ∈ e(D).
Hence, by assumption, (v2, w2) ∈ e(D), which implies (u2, u2) ∈ π1(f)(D) or
f(D)(u2) 6= ∅. The same holds vice versa, and we may thus conclude that
u1 ≡exp u2, and, hence, by Proposition 5.6, u1 ≡k

↓ u2. We may thus conclude

that (r, v1) ≡k
↓ (r, v2).

Combining Propositions 6.3 and 6.9, we obtain the following.

Corollary 6.10. Let k ≥ 1, and consider the weakly downward (core) XPath
algebra with counting up to k. Let D = (V,Ed, r, λ) be a document, and let v1,
w1, v2, and w2 be nodes of D such that w1 is a descendant of v1 and w2 is a
descendant of v2. Then, the property that, for each expression e in the language
under consideration, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D) is equivalent
to the property (v1, w1) ∼=≡k

l
(v2, w2).

From here on, the derivation of a BP-result for the weakly downward (core)
XPath algebra with counting up to k follows the development in Section 5.4
very closely, which is why we only state the final results.

Theorem 6.11. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, and let
R ⊆ V × V . Then, there exists an expression e in the weakly downward (core)
XPath algebra with counting up to k such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,

2. for all v1, w1, v2, w2 ∈ V with w1 a descendant of v1, w2 a descendant of
v2, and (v1, w1) ∼=≡k

l
(v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

The specialization to the weakly downward (core) XPath algebra is as fol-
lows.

Corollary 6.12. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V × V .
There exists an expression e in the weakly downward (core) XPath algebra such
that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,

2. for all v1, w1, v2, w2 ∈ V with w1 a descendant of v1, w2 a descendant of
v2, and (v1, w1) ∼=≡1

l
(v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

We recast Theorem 6.11 and Corollary 6.12 in terms of node-level navigation.

Theorem 6.13. Let k ≥ 1. Let D = (V,Ed, r, λ) be a document, let v be a
node of D, and let W ⊆ V . Then there exists an expression e in the weakly
downward (core) XPath algebra with counting up to k such that e(D)(v) = W
if and only if all nodes of W are descendants of v, and, for all w1, w2 ∈W with
(v, w1) ∼=≡k

l
(v, w2), w1 ∈W implies w2 ∈W .
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Corollary 6.14. Let D = (V,Ed, r, λ) be a document, let v be a node of D,
and let W ⊆ V . Then there exists an expression e in the weakly downward
(core) XPath algebra such that e(D)(v) = W if and only if all nodes of W are
descendants of v, and, for all w1, w2 ∈ W with (v, w1) ∼=≡1

l
(v, w2), w1 ∈ W

implies w2 ∈W .

For v = r, the condition (v, w1) ∼=≡k
l

(v, w2) reduces to w1 ≡k
l w2, by

Proposition 4.17 and Lemma 6.1. Comparing Theorem 6.13 and Corollary 6.14
with, respectively, Theorem 5.17 and Corollary 5.18 then immediately yields the
following.

Theorem 6.15. Let D = (V,Ed, r, λ).

1. for each expression e in the weakly downward (core) XPath algebra with
counting up to k, k ≥ 1, there exists an expression e′ in the strictly down-
ward (core) XPath algebra with counting up to k such that e(D)(r) =
e′(D)(r); in particular,

2. for each expression e in the weakly downward (core) XPath algebra, there
exists an expression e′ in the strictly downward (core) XPath algebra such
that e(D)(r) = e′(D)(r).

Hence, the corresponding weakly downward and strictly downward languages
are navigationally equivalent if navigation always starts from the root.

6.5. Weakly downward languages not containing set difference

To find characterizations for weakly downward languages not containing set
difference, we can proceed in two ways:

1. we proceed as in Section 5.5.2 for strictly downward languages without
set difference, i.e., reviewing the results in Sections 6.1–6.3 and examine
to which extent these results in the case where k = 1 allow replacing
1-equivalence by relatedness (Definition 5.23); or

2. we start from the results in Section 5.5.2 on strictly downward languages
without set difference and “bootstrap” them to results on weakly down-
ward languages without set difference in the same way as the results on
strictly downward languages with set difference in Sections 5.1–5.3 were
bootstrapped to results on weakly down ward languages with set difference
in Sections 6.1–6.3.

Of course, both approaches lead to the same results. As the necessary inter-
mediate lemmas and all the proofs can readily be deduced in one of the two
ways described above, we limit ourselves to giving the main results. Only one
technical subtlety deserves mentioning here: despite the absence of difference,
both the property that a node is the root and the property that a node is not
the root can be expressed, the latter using second projection. For more details,
we refer to the proof of Proposition 6.6.

Concretely, the language for which we provide characterizations in this Sec-
tion, are X (↓, π1, π2,∩) and C(↓, π1, π2,∩), which , moreover, are equivalent, by
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Corollary 5.20. We call these languages the weakly downward positive XPath
algebra and the weakly downward core positive XPath algebra, respectively. In
addition, we can eliminate intersection altogether . This follows from an earlier
result by some of the present authors [31]. Although this result was stated in
the context of languages that allow both downward and upward navigation, a
careful examination of the elimination algorithm reveals that the results still
hold in the absence of upward navigation. Thus, we have the following.

Proposition 6.16. The weakly downward positive XPath algebra and the weakly
downward core positive XPath algebra are both equivalent to X (↓, π1, π2).

We now summarize the characterization results.

Theorem 6.17. Consider the weakly downward (core) positive XPath algebra.
Let D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. Then
v1 ≡exp v2 if and only if v1 ul v2.

Theorem 6.18. Consider the weakly downward (core) positive XPath algebra.
Let D = (V,Ed, r, λ) be a document, and let v1, w1, v2, and w2 be nodes of
D such that w1 is a descendant of v1 and w2 is a descendant of v2. Then,
the property that, for each expression e in the language under consideration,
(v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D) is equivalent to the property
(v1, w1) ∼=ul (v2, w2).

Theorem 6.19. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V ×V . Then,
there exists an expression e in the weakly downward (core) positive XPath algebra
such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a descendant of v; and,

2. for all v1, w1, v2, w2 ∈ V with w1 a descendant of v1, w2 a descendant of
v2, and (v1, w1) ∼=≥l (v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

Corollary 6.20. Let D = (V,Ed, r, λ) be a document, let v be a node of D, and
let W ⊆ V . Then there exists an expression e in the weakly downward (core)
positive XPath algebra such that e(D)(v) = W if and only if all nodes of W are
descendants of v, and, for all nodes w1 and w2 of D with (v, w1) ∼=≥l (v, w2),

w1 ∈W implies w2 ∈W .

Corollary 6.21. Let D = (V,Ed, r, λ) be a document, and let W ⊆ V . Then
there exists an expression e in the weakly downward (core) positive XPath algebra
such that e(D)(r) = W if and only if, for all nodes w1 and w2 of D with
w1 ≥l w2, w1 ∈W implies w2 ∈W .

Hence, the weakly downward positive (core) XPath algebra and the strictly
downward positive (core) XPath algebra are navigationally equivalent if navi-
gation always starts from the root.
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7. Upward languages

In analogy to downward languages, we call a language upward if, for any
expression in that language, and for any node v of the document D under
consideration, all nodes in e(D)(v) are ancestors of v. If in an addition, it is
always the case that e(D)(v) = e(D′), where D′ is the subtree of D obtained
by removing from D all strict descendants of v, we call the language strictly
upward . Upward languages that are not strictly upward will be called weakly
upward.

For E a set of nonbasic operations of Table 1, X (E) or C(E) is upward if it
does not contain downward navigation (“↓”), and inverse (“.−1”). Additionally,
strictly upward languages do not contain second projection (“π2”) and counting
operations (“ch≥k(.)”).

Of course, there is a distinct asymmetry between strictly upward languages
and strictly downward languages: while a node can have an arbitrary number
of children, it has at most one parent, making the analysis of strictly upward
languages much easier than the analysis of downward languages. We shall see,
however, that this asymmetry disappears for weakly upward languages versus
weakly downward languages.

Finally, we observe that the analogues of Theorem 5.19 and Corollary 5.20
still hold for upward languages: set difference (“−”) and intersection (“∩”) can
be eliminated, unless they are used as operations in a Boolean combination of
subexpressions of the language within a projection. Hence, an upward language
and its corresponding core language coincide.

7.1. Strictly upward languages

The languages we consider here, are X (↑, π1,−) and C(↑, π1,−), which are
equivalent, and X (↑, π1,∩) and C(↑, π1,∩), which are also equivalent. We refer
to the former as the strictly upward (core) XPath algebra and the strictly upward
(core) positive XPath algebra, respectively. As the characterization results for
these languages are easy to derive along the lines set out in Section 5, we merely
summarize the results.

Theorem 7.1. Consider the strictly upward (core) (positive) XPath algebra.
Let D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D. Then
v1 ≡exp v2, if and only if v1 ≡↑ v2.

Theorem 7.2. Consider the strictly upward (core) (positive) XPath algebra.
Let D = (V,Ed, r, λ) be a document, and let v1, w1, v2, and w2 be nodes of D
such that w1 is an ancestor of v1 and w2 is an ancestor of v2. Then, the property
that, for each expression e in the language under consideration, (v1, w1) ∈ e(D)
if and only if (v2, w2) ∈ e(D) is equivalent to the property (v1, w1) ∼=≡↑ (v2, w2).

Theorem 7.3. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V ×V . Then,
there exists an expression e in the strictly upward (core) XPath algebra such
that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a ancestor of v; and,
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2. for all v1, w1, v2, w2 ∈ V with w1 a ancestor of v1, w2 a ancestor of v2,
and (v1, w1) ∼=≡↑ (v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

Theorem 7.4. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V ×V . Then,
there exists an expression e in the strictly upward (core) positive XPath algebra
such that e(D) = R if and only if,

1. for all v, w ∈ V , (v, w) ∈ R implies w is a ancestor of v; and,

2. for all v1, w1, v2, w2 ∈ V with w1 a ancestor of v1, w2 a ancestor of v2,
and (v1, w1) ∼=≥↑ (v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

The difference between the strictly downward (core) XPath algebra and the
strictly downward (core) positive XPath algebra becomes only apparent in the
BP-characterization: in Theorem 7.3, R is a union of equivalence classes under
∼=≡↑ , whereas in Theorem 7.4, R is merely closed under the relation ∼=≥↑ .

7.2. Weakly upward languages

Weakly upward languages are closely related to weakly downward languages,
by the following result.

Theorem 7.5. Let E be a set of nonbasic operations not containing downward
navigation (“↓”), and inverse (“.−1”). Let E′ be the set of nonbasic operations
obtained from E by replacing downward navigation by upward navigation (“↑”),
first projection (“π1”) by second projection (“π2”), and second projection by first
projection. Then, for each expression e in X (E) (respectively, C(E)), there is an
expression e′ in X (E′) (respectively, C(E′)) such that e−1 and e′ are equivalent
at the level of queries, and vice versa.

Proof. Starting from e−1, we eliminate inverse (“.−1”) using the identities in the
proof of Proposition 2.3, and the additional identities π1(e)−1(D) = π2(e−1)(D)
and π−12 (D) = π1(e−1)(D), for D an arbitrary document.8 This elimination
process yields the desired expression e′.

Together with the fact that, in a subsumption or congruence, the order
of the nodes in the pairs on the left- and right-hand sides may be swapped
simultaneously (Proposition 3.5, (2) and (4)), Theorem 7.5 has the following
immediate consequences:

1. Each characterization for a weakly downward language in Section 6—
which in each instance contains both projections—yields a characteri-
zation for the corresponding weakly upward language (i.e., obtained by
substituting upward navigation for downward navigation) by replacing
“descendant” by “ancestor”; and

8Observe that π1(e)−1(D) = π1(e)(D) and π2(e)−1(D) = π2(e)(D) are also valid identities
if the sole purpose was to eliminate inverse; however, these identities will not lead to the desired
result.
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2. Each characterization for a strictly downward language in Section 5—
which in each instance contains the first projection—yields a character-
ization for the corresponding weakly upward language (i.e., obtained by
substituting upward navigation for downward navigation and second for
first projection) by replacing “descendant” by “ancestor”.

Moreover, Theorem 7.5 gives us for free characterizations for some additional
weakly downward languages not considered in Section 6:

Each characterization for a strictly upward language in Section 7.1—which
in each instance contains the second projection—yields a characterization
for the corresponding weakly downward language (i.e., obtained by substi-
tuting downward navigation for downward navigation and first for second
projection) by replacing “ancestor” by “descendant”.

In view of space considerations, however, we refrain from explicitly writing down
these new characterization results.

8. Languages for two-way navigation

We finally consider languages which are neither downward nor upward, i.e.,
in which navigation in both directions (“↓” and “↑”) is possible. A notable
difference in this case is that standard languages no longer always coincide
with their associated core languages in expressive power. Below we distinguish
languages with and without difference. In the first case, we discuss the standard
languages and the core languages separately (Sections 8.1 and 8.2). In the second
case, there is no need for this distinction (Section 8.3).

8.1. Standard languages with difference for two-way navigation

First, we state analogues to Lemmas 6.1 and 6.2 for pairs of nodes that are
not necessarily ancestor-descendant pairs.

Lemma 8.1. Let D = (V,Ed, r, λ) be a document, let v1, w1, v2, and w2

be nodes of D, and let k ≥ 1. Then, (v1, w1) ∼=≡k
l

(v2, w2) if and only if

(v1, w1) ∼= (v2, w2), v1 ≡k
l v2, and w1 ≡k

l w2.

Proof. As the “only if” is obvious, we focus on the “if.” Obviously, (v1, w1) ∼=
(v2, w2) implies that (top(v1, w1), v1) ∼= (top(v2, w2), w2). By Lemma 6.1,
(top(v1, w1), v1) ∼=≡k

l
(top(v2, w2), v2). In the same way, we derive

(top(v1, w1), w1) ∼=≡k
l

(top(v2, w2), w2). Applying Proposition 3.5, (2), (3) and

(4), yields the desired result.

Lemma 8.2. Let D = (V,Ed, r, λ) be a document, let v1 and w1 be nodes of D,
and let k ≥ 2. Then,

1. for each node v2 of D for which v1 ≡k
l v2 there is a node w2 in D such

that (v1, w1) ∼=≡k
l

(v2, w2); and
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2. for each node w2 of D for which w1 ≡k
l w2 there is a node v2 in D such

that (v1, w1) ∼=≡k
l

(v2, w2).

Proof. We only prove (1); the proof of (2) is completely analogous. By Lemma
6.2, (2), there exists a node t2 in D such that (top(v1, w1), v1) ∼=≡k

l
(t2, v2), and,

hence, also that (v1, top(v1, w1)) ∼=≡k
l

(v2, t2), by Proposition 3.5, (2) and (4).

Let y1 be the child of top(v1, w1) on the path to w1. Since k ≥ 2, there is a child
y2 of t2 such that (1) y1 ≡k

l y2 and (2) y2 is not on the path from t2 to v2.9 By

Lemma 6.2, (2), there exists a node w2 in D such that (y1, w1) ∼=≡k
l

(y2, w2). In

particular, w1 ≡k
l w2. By construction, t2 = top(v2, w2), and, hence, (v1, w1) ∼=

(v2, w2). The result now follows from Lemma 8.1.

The mutual position of the nodes in the statement and the proof of Lemma 8.2,
(1), is illustrated in Figure 5.

top(v1, w1)

w1

6=

t2

v1 v2

w2

y1 y2

Figure 5: Mutual position of the nodes in the statement and the proof of Lemma 8.2, (1).

Before we can start with establishing the relationship between≡k
l-congruence

and expression equivalence under languages allowing two-way navigation, we
need one more lemma to be able to deal with the composition operator.

Lemma 8.3. Let D = (V,Ed, r, λ) be a document, let v1, w1, v2, and w2 be
nodes of D such that (v1, w1) ∼=≡k

l
(v2, w2), and let k ≥ 3. Then, for every

node y1 of D, there exists a node y2 of D such that (v1, y1) ∼=≡k
l

(v2, y2), and

(y1, w1) ∼=≡k
l

(y2, w2).

Proof. The proof is essentially a case analysis. In each case description, we as-
sume implicitly that the cases that were already dealt with before are excluded.

9To see the latter claim, observe that t2 must have two different k-equivalent children when
top(v1, w1) has.

42



1. y1 is on the path from v1 to w1. In that case, let y2 be the node cor-
responding to y1 on the path from v2 to w2. The result now follows
immediately.

2. y1 is a strict descendant of v1. By Lemma 6.2, (1), there is a (strict)
descendant y2 of v2 such that (v1, y1) ∼=≡k

l
(v2, y2). The result now follows

immediately.

3. y1 is a strict descendant of w1. Analogous to the previous case.

4. y1 is a strict ancestor of top(v1, w1). By Lemma 6.2, (2), there is a (strict)
ancestor y2 of top(v2, w2) such that (top(v1, w1), y1) ∼=≡k

l
(top(v2, w2), y2).

The result now follows immediately.

5. top(v1, y1) is an internal node on the path from v1 to top(v1, w1). By
Lemma 8.2, (1), there exists a node y2 in D such that (v1, y1) ∼=≡k

l
(v2, y2).

Since, in this case, top(y1, w1) = top(v1, w1), and, therefore, an ancestor
of v1, we may apply Proposition 3.5, (2)–(4), to obtain that (y1, w1) ∼=
(y2, w2). Since, moreover, y1 ≡k

l y2 and w1 ≡k
l w2, the desired result now

follows from Lemma 8.1.
Figure 6 illustrates this case and the constructions therein.

v1 v2

y1 y2

w1 w1

top(v1, y1)

top(y1, w1) = top(v1, w1)

Figure 6: Mutual position of the nodes in Case 5 of the proof of Lemma 8.3.

6. top(y1, w1) is an internal node on the path from top(v1, w1) to w1. Anal-
ogous to the previous case.

7. top(v1, y1) = top(y1, w1) is a strict ancestor of top(v1, w1). By Lemma 8.2,
(1), there exists a node y2 in D such that (v1, y1) ∼=≡k

l
(v2, y2). Since, in

this case, top(y1, w1) is a (strict) ancestor of top(v1, w1), and, therefore,
an ancestor of v1, we may apply Proposition 3.5, (2)–(4), to obtain that
(y1, w1) ∼= (y2, w2). Since, moreover, y1 ≡k

l y2 and w1 ≡k
l w2, the desired

result now follows from Lemma 8.1.
Figure 7 illustrates this case and the constructions therein.
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v1 v2

w1 w2

y1 y2

top(v1, w1)

top(v1, y1) = top(y1, w1)

Figure 7: Mutual position of the nodes in Case 7 of the proof of Lemma 8.3.

8. top(v1, y1) = top(y1, w1) = top(v1, w1). Let z1 be the child of the top
node on the path to y1. By assumption, z1 is not on the path from v1 to
w1. Since k ≥ 3, there is a node z2 in D not on the path from v2 to w2

such that z1 ≡k
l z2. (For example, in the subcase where the children of

top(v1, w1) on the paths to v1, w1, and y1, the last of which is z1, are all
three k-equivalent, we know that top(v2, w2) must also have at least three
children that are k-equivalent to z1. Hence, at least one of these is not on
the path from v1 to w1.) By Lemma 8.2, (1), there exists a node y2 in D
such that (z1, y1) ∼=≡k

l
(z2, y2). The result now follows readily.

Figure 8 illustrates this case and the constructions therein.

y2

z2

top(v1, y1) = top(y1, w1) = top(v1, w1)

v1

y1

z1

w1
v2

w2

top(v2, w2)

Figure 8: Mutual position of the nodes in Case 8 of the proof of Lemma 8.3.

We are now ready to state the analogue of Proposition 6.3 for languages
with two-way navigation.
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Proposition 8.4. Let k ≥ 3, and let E be the set of all nonbasic operations
in Table 1, except for selection on at least m children satisfying some condition
(“ch≥m(.)”) for m > k. Let e be an expression in X (E). Let D = (V,Ed, r, λ)
be a document, and let v1, w1, v2, and w2 be nodes of D. Assume furthermore
that (v1, w1) ∼=≡k

l
(v2, w2). Then, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D).

Proof. The proof goes along the same lines as the proofs of Propositions 6.3
and 5.2. The base case, for the atomic operators, remains straightforward. In
the induction step, we must now rely on Lemma 8.3 to make the case for compo-
sition (“./.”). To make the case for first, respectively, second projection (“π1,”
respectively, “π2”), we must rely on Lemma 8.2, (1), respectively, (2). The argu-
ments for the counting operations (“ch≥m(.),” m ≤ k), union (”∪”), intersection
(”∩”), and set difference (“−”) in the proof of Proposition 5.2 carry over to the
present setting. Finally, the case for inverse (“.−1”) is straightforward.

As in Section 6.2, we can in two steps infer the following result from Propo-
sition 8.4.

Corollary 8.5. Let k ≥ 3, and let E be a set of nonbasic operations not con-
taining selection on at least m children satisfying some condition (“ch≥m(.)”)
for m > k. Consider the language X (E). Let D = (V,Ed, r, λ) be a document,
and let v1 and v2 be nodes of D. If v1 ≡k

l v2, then v1 ≡exp v2.

Now, notice that Proposition 6.6 of Section 6.2 is also applicable to an im-
portant class of languages allowing two-way navigation. The standard lan-
guage for two-way navigation satisfying both Corollary 8.5 and Proposition 6.6
is X (↓, ↑, ch≥1(.), . . . , ch≥k(.),−).10 We call this language the XPath algebra
with counting up to k. Combining the aforementioned results, we obtain the
following.

Theorem 8.6. Let k ≥ 3, and consider the XPath algebra with counting up
to k. Let D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D.
Then, v1 ≡exp v2 if and only if v1 ≡k

l v2.

By Proposition 2.4, selection on up to three children satisfying some condi-
tion (“ch≥m(.),” 1 ≤ m ≤ 3) can be expressed in the XPath algebra. Hence, a
special case arises for k = 3:

Corollary 8.7. Consider the XPath algebra. Let D = (V,Ed, r, λ) be a docu-
ment, and let v1 and v2 be nodes of D. Then, v1 ≡exp v2 if and only if v1 ≡3

l v2.

We next prove a converse to Proposition 8.4.

Proposition 8.8. Let k ≥ 3, and consider the XPath algebra with counting
up to k. Let D = (V,Ed, r, λ) be a document, and let v1, w1, v2, and w2 be
nodes of D. Assume furthermore that, for each expression e in the language,
(v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D). Then (v1, w1) ∼=≡k

l
(v2, w2).

10All other operations are redundant, by Proposition 2.3.
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Proof. Since sig(v1, w1) is an expression in the language under consideration,
and since (v1, w1) ∈ sig(v1, w1), (v2, w2) ∈ sig(v1, w1). Similarly, (v1, w1) ∈
sig(v2, w2). We may thus conclude that (v1, w1) ∼= (v2, w2). Now, let f be any
expression in the language such that f(D)(v1) 6= ∅. Then, (v1, v1) ∈ π1(f)(D).
Let e := π1(f)/sig(v1, w1). By construction, (v1, w1) ∈ e(D). Hence, by as-
sumption, (v2, w2) ∈ e(D), which implies (v2, v2) ∈ π1(f)(D) or f(D)(v2) 6= ∅.
The same holds vice versa, and we may thus conclude that v1 ≡exp v2, and,
hence, by Theorem 8.6, v1 ≡k

l v2. In a similar way, we prove that w1 ≡k
l w2.

By Lemma 8.1, we may now conclude that (v1, w1) ∼=≡k
l

(v2, w2).

Combining Propositions 8.4 and 8.8, we obtain the following characteriza-
tion.

Corollary 8.9. Let k ≥ 3, and consider the XPath algebra with counting up
to k. Let D = (V,Ed, r, λ) be a document, and let v1, w1, v2, and w2 be nodes
of D. Then, the property that, for each expression e in the language under
consideration, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D) is equivalent to the
property (v1, w1) ∼=≡k

l
(v2, w2).

Using Theorem 8.6 instead of Theorem 5.7, we can recast the proof of
Lemma 5.11 into a proof of

Lemma 8.10. Let k ≥ 3. Let D = (V,Ed, r, λ) be a document, and let v1 be a
node of D. There exists an expression ev1 in the XPath algebra with counting
up to k such that, for each node v2 of D, ev1(D)(v2) 6= ∅ if and only if v1 ≡k

l v2.

We can now bootstrap Lemma 8.10 to the following result.

Lemma 8.11. Let k ≥ 3. Let D = (V,Ed, r, λ) be a document, and let v1 and
w1 be a nodes of D. There exists an expression ev1,w1 in the XPath algebra with
counting up to k such that, for all nodes v2 and w2 of D, (v2, w2) ∈ ev1,w1(D)
if and only if (v1, w1) ∼=≡k

l
(v2, w2).

Proof. From Lemma 8.10, we know that, for node y1 of D, there exists an
expression ey1 in the XPath algebra with counting up to k such that, for each
node y2 of D, ey1

(D)(y2) 6= ∅ if and only if y1 ≡k
l y2. Now, let v1 and w1 be

nodes of D. Let sig(v1, w1) = ↑u/↓d, with u, d ≥ 0, and define

ev1,w1
:= π1(ev1)/sig(v1, w1)/π1(ew1

)− ↑u−1/↓d−1,

where, for an expression f , we define f−1 := ∅. Clearly, ev1,w1 is also in the
XPath algebra with counting up to k. Let v2 and w2 be nodes of D. Sup-
pose (v2, w2) ∈ ev1,w1

(D). Then, by Proposition 3.4, sig(v1, w1) = sig(v2, w2).
Furthermore, it follows that (v2, v2) ∈ ev1(D) and (w2, w2) ∈ ew1

(D). By
Lemma 8.10, v1 ≡k

l v2 and w1 ≡k
l w2. It now follows from Lemma 8.1 that

(v1, w2) ∼=≡k
l

(v2, w2). As (v1, w1) ∈ ev1,w1
(D), the converse follows from Corol-

lary 8.9.
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The BP characterization results now follow readily.

Theorem 8.12. Let k ≥ 3. Let D = (V,Ed, r, λ) be a document, and let
R ⊆ V × V . Then, there exists an expression e in the XPath algebra with
counting up to k such that e(D) = R if and only if, for all v1, w1, v2, w2 ∈ V
with (v1, w1) ∼=≡k

l
(v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

The specialization to the XPath algebra is as follows.

Corollary 8.13. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V × V .
There exists an expression e in the XPath algebra such that e(D) = R if and
only if, for all v1, w1, v2, w2 ∈ V with (v1, w1) ∼=≡3

l
(v2, w2), (v1, w1) ∈ R implies

(v2, w2) ∈ R.

We recast Theorem 8.12 and Corollary 8.13 in terms of node-level navigation.

Theorem 8.14. Let k ≥ 3. Let D = (V,Ed, r, λ) be a document, let v be a node
of D, and let W ⊆ V . Then there exists an expression e in the XPath algebra
with counting up to k such that e(D)(v) = W if and only if, for all w1, w2 ∈W
with (v, w1) ∼=≡k

l
(v, w2), w1 ∈W implies w2 ∈W .

The specialization to the XPath algebra is as follows.

Corollary 8.15. Let D = (V,Ed, r, λ) be a document, let v be a node of D,
and let W ⊆ V . Then there exists an expression e in the XPath algebra such
that e(D)(v) = W if and only if, for all w1, w2 ∈ W with (v, w1) ∼=≡3

l
(v, w2),

w1 ∈W implies w2 ∈W .

Finally, we consider the special case where navigation starts from the root.
For v = r, the condition (v, w1) ∼=≡k

l
(v, w2) reduces to w1 ≡k

l w2, by Proposi-

tion 4.17 and Lemma 6.1. Comparing Theorem 8.14 and Corollary 8.15 with,
respectively, Theorem 5.17 and Corollary 5.18 then immediately yields the fol-
lowing.

Theorem 8.16. Let D = (V,Ed, r, λ).

1. for each expression e in the XPath algebra with counting up to k, k ≥ 3,
there exists an expression e′ in the strictly downward (core) XPath algebra
with counting up to k such that e(D)(r) = e′(D)(r).

2. for each expression e in the XPath algebra, there exists an expression e′

in the strictly downward (core) XPath algebra with counting up to 3 such
that e(D)(r) = e′(D)(r).

Theorem 8.16 extends Theorem 6.15. When navigating from the root, the
only thing that the full XPath algebra adds compared to using the strictly
downward (core) XPath algebra is its ability to select on at least 2 and on at
least 3 children satisfying some condition.
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Figure 9: Document of Example 8.17.

8.2. Core languages with difference for two-way navigation

We now investigate what changes if we replace a standard language with
difference for two-way navigation by the corresponding core language. The
most important observation is that both languages are not equivalent, unlike in
the cases of downward or upward navigation.

Example 8.17. Let D = (V,Ed, r, λ) be the very simple document in Figure 9.
For every value of k ≥ 2,11 e := ↑/↓−ε is an expression in the XPath algebra with
counting up to k. We have that e(D) = {(v, w), (w, v)}. From Proposition 8.19,
it will follow, however, that, for every expression e′ in the corresponding core
language, (v, w) ∈ e′(D) implies that not only (w, v) ∈ e′(D), but also (v, v) ∈
e′(D) and (w,w) ∈ e′(D).

We now explore which changes occur when we try to make the same reason-
ing as in Section 8.1.

As Example 8.17 suggests, there is no hope that we can express congruence
in the core XPath algebra with counting up to k,12 for any k ≥ 2. Therefore we
shall have to work with subsumption instead of congruence.

Lemma 8.1 still holds if we replace congruence by subsumption. We may of
course still use Lemma 8.2 (as replacing congruence by subsumption here would
yield a weaker statement). Lemma 8.3 also survives replacing congruence by
subsumption, except that we can then strengthen its statement, as follows.

Lemma 8.18. Let D = (V,Ed, r, λ) be a document, let v1, w1, v2, and w2 be
nodes of D such that (v1, w1) &≡k

l
(v2, w2), and let k ≥ 2. Then, for every

node y1 of D, there exists a node y2 of D such that (v1, y1) &≡k
l

(v2, y2), and

(y1, w1) &≡k
l

(y2, w2).

Proof. The only case in the proof of Lemma 8.3 where we used k ≥ 3 is
Case 8 (top(v1, y1) = top(y1, w1) = top(v1, w1)) to guarantee that the path
from top(v2, w2) to y2 has no overlap with both the path from top(v2, w2) to v2
and the path from top(v2, w2) to w2. As this is no concern anymore when we

11We will not consider k = 1, because both ch≥1(.) and ch≥2(.) can be expressed in the
core XPath algebra, by Proposition 2.4.

12This is the name we give to the core language corresponding to the (standard) XPath
algebra with counting up to k
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consider subsumption rather than congruence, the condition k ≥ 2 suffices to
recast the proof of Lemma 8.3 into a proof of Lemma 8.18.

Lemma 8.3 was used to complete the induction step for composition (“/”)
in the proof of Proposition 8.4. If we replace Lemma 8.3 by Lemma 8.18, we
can also avoid making the assumption ≥ 3 here. Thanks to the restricted use
of difference in core languages, we can also get away with subsumption instead
of congruence.

Proposition 8.19. Let k ≥ 2, and let E be the set of all nonbasic operations
in Table 1, except for selection on at least m children satisfying some condition
(“ch≥m(.)”) for m > k. Let e be an expression in C(E). Let D = (V,Ed, r, λ)
be a document, and let v1, w1, v2, and w2 be nodes of D. Assume furthermore
that (v1, w1) &≡k

l
(v2, w2). Then, (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D).

Proof. The proof goes along the same lines as the proof of Proposition 8.4,
except that, in the induction step, we need not consider the case of set difference
(“−”). However, we must consider instead the case where the expression is of
the form e := π1(f) or e := π2(f) with f a Boolean combination of expressions
of C(E) satisfying the induction hypothesis. For reasons of symmetry, we only
consider the case e := π1(f). Without loss of generality, we may assume that
f is union-free. Indeed, we can always rewrite f in disjunctive normal form,
and, for f = f1 ∪ f2, π1(f) = π1(f1) ∪ π1(f2). If, for an expression g in
C(E), we define g by g(D) := V × V − g(D), we can write f = f1 ∩ . . . fp ∩
g1 ∩ . . . gq for some p ≥ 1 and q ≥ 0, with f1, . . . , fp, g1, . . . , gq in C(E) and
satisfying the induction hypothesis. In particular, if (v1, v1) ∈ π1(f)(D),13

there exists a node y1 in D such that (v1, y1) ∈ f1(D), . . . , (v1, y1) ∈ fp(D) and
(v1, y1) /∈ g1(D), . . . , (v1, y1) /∈ gp(D). By Lemma 8.2, there exists a node y2 in
D such that (v1, y1) ∼=≡k

l
(v2, y2). Hence, (v1, y1) &≡k

l
(v2, y2) and (v2, y2) &≡k

l

(v1, y1). By the induction hypothesis, (v2, y2) ∈ f1(D), . . . , (v2, y2) ∈ fp(D).
Now, assume that, for some j, 1 ≤ j ≤ q, (v2, y2) ∈ gj(D). Then, again by
the induction hypothesis, (v1, y1) ∈ gj(D), a contradiction. Hence, (v2, y2) /∈
g1(D), . . . , (v2, y2) /∈ gp(D). We may thus conclude that (v2, v2) ∈ π1(f).

By applying Proposition 8.19 twice, we obtain the following.

Corollary 8.20. Let k ≥ 2, and let E be the set of all nonbasic operations in
Table 1, except for selection on at least m children satisfying some condition
(“ch≥m(.)”) for m > k. Let e be an expression in C(E). Let D = (V,Ed, r, λ)
be a document, and let v1, w1, v2, and w2 be nodes of D. Assume furthermore
that (v1, w1) ∼=≡k

l
(v2, w2). Then, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D).

As in Section 6.2, we can in two steps infer the following result from Corol-
lary 8.20.

13In this case, v1 = w1 and v2 = w2.
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Corollary 8.21. Let k ≥ 2, and let E be a set of nonbasic operations not
containing selection on at least m children satisfying some condition (“ch≥m(.)”)
for m > k. Consider the language C(E). Let D = (V,Ed, r, λ) be a document,
and let v1 and v2 be nodes of D. If v1 ≡k

l v2, then v1 ≡exp v2.

Notice that, for k ≥ 3, Corollary 8.21 is also an immediate consequence
of Corollary 8.5. Because we are dealing with a weaker language, we can also
include the case k = 2, however.

We already observed that Proposition 6.6 of Section 6.2 is also applicable to
an important class of languages allowing two-way navigation. The core language
for two-way navigation satisfying both Corollary 8.21 and Proposition 6.6 is
C(↓, ↑, π1, π2, ch≥1(.), . . . , ch≥k(.),−).14 We call this language the core XPath
algebra with counting up to k. Combining the aforementioned results, we obtain
the following.

Theorem 8.22. Let k ≥ 2, and consider the core XPath algebra with counting
up to k. Let D = (V,Ed, r, λ) be a document, and let v1 and v2 be nodes of D.
Then, v1 ≡exp v2 if and only if v1 ≡k

l v2.

By Proposition 2.4, selection on up to two children satisfying some condition
(“ch≥m(.),” 1 ≤ m ≤ 2) can be expressed in the core XPath algebra. Hence, a
special case arises for k = 2:

Corollary 8.23. Consider the core XPath algebra. Let D = (V,Ed, r, λ) be a
document, and let v1 and v2 be nodes of D. Then, v1 ≡exp v2 if and only if
v1 ≡2

l v2.

The proof of Proposition 8.8 can be recast to a proof of the following converse
to Proposition 8.19.

Proposition 8.24. Let k ≥ 2, and consider the core XPath algebra with count-
ing up to k. Let D = (V,Ed, r, λ) be a document, and let v1, w1, v2, and w2 be
nodes of D. Assume furthermore that, for each expression e in the language,
(v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D). Then (v1, w1) &≡k

l
(v2, w2).

Combining Propositions 8.19 and 8.24, we obtain the following characteri-
zation.

Corollary 8.25. Let k ≥ 2, and consider the core XPath algebra with counting
up to k. Let D = (V,Ed, r, λ) be a document, and let v1, w1, v2, and w2 be
nodes of D. Then,

1. the property that, for each expression e in the language under considera-
tion, (v1, w1) ∈ e(D) implies (v2, w2) ∈ e(D) is equivalent to the property
(v1, w1) &≡k

l
(v2, w2); and,

14Inverse (“−1”) is redundant, by the identities in the proof of Proposition 2.3, comple-
mented by π1(e)−1(D) = π1(e)(D) and π2(e)−1(D) = π2(e)(D).
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2. the property that, for each expression e in the language under consider-
ation, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D) is equivalent to the
property (v1, w1) ∼=≡k

l
(v2, w2).

Lemma 8.10 also holds for the core XPath algebra (with the condition k ≥ 3
replaced by k ≥ 2). Lemma 8.11 is a different story, unfortunately. Example 8.17
already indicates that, given nodes v1, w1, v2, and w2 of a document D, we can
in general not hope for an expression ev1,w1 such that (v2, w2) ∈ ev1,w1(D) if
and only if (v1, w1) ∼=≡k

l
(v2, w2). The version with congruence replaced by

subsumption does hold, however.

Lemma 8.26. Let k ≥ 2. Let D = (V,Ed, r, λ) be a document, and let v1 and w1

be a nodes of D. There exists an expression ev1,w1
in the core XPath algebra with

counting up to k such that, for all nodes v2 and w2 of D, (v2, w2) ∈ ev1,w1
(D)

if and only if (v1, w1) &≡k
l

(v2, w2).

Proof. The proof follows the lines of the proof of Proposition 8.11 very closely,
the main difference being that, from the proposed expression, the minus term
must be omitted.

The BP characterization results now follow readily.

Theorem 8.27. Let k ≥ 2. Let D = (V,Ed, r, λ) be a document, and let
R ⊆ V × V . Then, there exists an expression e in the core XPath algebra with
counting up to k such that e(D) = R if and only if, for all v1, w1, v2, w2 ∈ V
with (v1, w1) &≡k

l
(v2, w2), (v1, w1) ∈ R implies (v2, w2) ∈ R.

The specialization to the core XPath algebra is as follows.

Corollary 8.28. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V × V .
There exists an expression e in the core XPath algebra such that e(D) = R if
and only if, for all v1, w1, v2, w2 ∈ V with (v1, w1) &≡3

l
(v2, w2), (v1, w1) ∈ R

implies (v2, w2) ∈ R.

We recast Theorem 8.27 and Corollary 8.28 in terms of node-level navigation.

Theorem 8.29. Let k ≥ 2. Let D = (V,Ed, r, λ) be a document, let v be a
node of D, and let W ⊆ V . Then there exists an expression e in the core XPath
algebra with counting up to k such that e(D)(v) = W if and only if, for all
w1, w2 ∈W with (v, w1) &≡k

l
(v, w2), w1 ∈W implies w2 ∈W .

The specialization to the core XPath algebra is as follows.

Corollary 8.30. Let D = (V,Ed, r, λ) be a document, let v be a node of D, and
let W ⊆ V . Then there exists an expression e in the core XPath algebra such
that e(D)(v) = W if and only if, for all w1, w2 ∈ W with (v, w1) &≡2

l
(v, w2),

w1 ∈W implies w2 ∈W .
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Finally, for the special case where navigation starts from the root, Theo-
rem 8.29 and Corollary 8.30 reduce to the following.

Theorem 8.31. Let D = (V,Ed, r, λ).

1. for each expression e in the core XPath algebra with counting up to k,
k ≥ 2, there exists an expression e′ in the strictly downward (core) XPath
algebra with counting up to k such that e(D)(r) = e′(D)(r).

2. for each expression e in the core XPath algebra, there exists an expression
e′ in the strictly downward (core) XPath algebra with counting up to 2
such that e(D)(r) = e′(D)(r).

Together with Theorem 8.16, Theorem 8.31 extends Theorem 6.15. When
navigating from the root, the only thing that the core XPath algebra adds
compared to using the strictly downward (core) XPath algebra is its ability to
select on at least 2 children satisfying some condition.

8.3. Languages without difference for two-way navigation

As before with languages not containing difference, we do not consider count-
ing operations, corresponding to considering the various syntactic notions of
relatedness or equivalence between nodes only for the case k = 1. Taking into
account Proposition 2.3, and recognizing that the techniques used in this paper
to establish characterizations heavily use intersection, this means that only the
following two languages must be considered:

• the language X (↓, ↑,∩), which we call the positive XPath algebra; and

• the language C(↓, ↑, π1, π2,∩), which we call the core positive XPath alge-
bra.

Some of the present authors showed in [31] that X (↓, ↑,∩) and X (↓, ↑, π1, π2)
are equivalent in expressive power (even at the level of queries). Since obviously
X (↓, ↑, π1, π2) = C(↓, ↑, π1, π2), it follows readily that the positive XPath algebra
and the core positive XPath algebra are equivalent.

The following results were already proved in [31], and are only repeated for
completeness’ sake.

Theorem 8.32. Consider the (core) positive XPath algebra. Let D = (V,Ed, r, λ)
be a document, and let v1 and v2 be nodes of D. Then,

1. v1 ≥exp v2 if and only if v1 ≥1
l v2; and

2. v1 ≡exp v2 if and only if v1 ul v2.

Theorem 8.33. Consider the (core) positive XPath algebra. Let D = (V,Ed, r, λ)
be a document, and let v1, v2, w1, and w2 be nodes of D. Then,

1. the property that, for each (core) positive XPath expression e, (v1, w1) ∈
e(D) implies (v2, w2) ∈ e(D) is equivalent to (v1, w1) &≥1

l
(v2, w2); and
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2. the property that, for each expression e in the language under consider-
ation, (v1, w1) ∈ e(D) if and only if (v2, w2) ∈ e(D) is equivalent to the
property (v1, w1) ∼=ul (v2, w2).

As in Section 6.5, we can bootstrap these results to BP-type characteriza-
tions.

Theorem 8.34. Let D = (V,Ed, r, λ) be a document, and let R ⊆ V × V .
Then, there exists an expression e in the (core) positive XPath algebra such that
e(D) = R if and only if, for all v1, w1, v2, w2 ∈ V with (v1, w1) &≥l (v2, w2),

(v1, w1) ∈ R implies (v2, w2) ∈ R.

Finally, Theorem 8.34 can be specialized to the node level, as follows.

Corollary 8.35. Let D = (V,Ed, r, λ) be a document, let v be a node of D,
and let W ⊆ V . Then there exists an expression e in the (core) positive XPath
algebra such that e(D)(v) = W if and only if, for all nodes w1 and w2 of D with
(v, w1) &≥l (v, w2), w1 ∈W implies w2 ∈W .

Corollary 8.36. Let D = (V,Ed, r, λ) be a document, and let W ⊆ V . Then
there exists an expression e in the (core) positive XPath algebra such that
e(D)(r) = W if and only if, for all nodes w1 and w2 of D with w1 ≥l w2,
w1 ∈W implies w2 ∈W .

Hence, the (core) positive XPath algebra, the weakly downward positive
(core) XPath algebra, and the strictly downward positive (core) XPath algebra
are all navigationally equivalent if navigation always starts from the root.

9. Discussion

In this paper, we characterized the expressive power of several natural frag-
ments of XPath at the document level, as summarized in Table 5. Of course, it
is possible to consider other fragments or extensions of the XPath algebra and
its data model. Analyzing these using our two-step methodology in order to fur-
ther improve our understanding of the instance expressivity of Tarski’s algebra
is one possible research direction which we have pursued recently [10, 11, 31].

Another future research direction is refining the links between XPath and
finite-variable first-order logics [32]. Indeed, such links have been established
at the level of query semantics. For example, Marx [33] has shown that an ex-
tended version of Core XPath is equivalent to FO2

tree—first-order logic using at
most two variables over ordered node-labeled trees—interpreted in the signature
child, descendant, and following sibling.

Our results establish new links to finite-variable first-order logics at the
document level. For example, we can show that, on a given document, the
XPath algebra and FO3—first-order logic with at most three variables—are
equivalent in expressive power. Indeed, as we discussed above, at the document
level, the XPath-algebra is equivalent with Tarski’s relation algebra [2] over
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trees. Tarski and Givant [4, 6] established the link between Tarski’s algebra
and FO3. Corollary 8.7 can then be used to give a new characterization, other
than via pebble-games [32, 34], of when two nodes in an unordered tree are
indistinguishable in FO3. In this light, connections between other fragments of
the XPath algebra and finite-variable logics must be examined.

The connection between the XPath algebra and FO3 also has ramifications
with regard to complexity issues. Indeed, using a result of Grohe [35] which es-
tablishes that expression equivalence for FO3 is decidable in polynomial time, it
follows readily from Corollaries 8.13 and 8.15 that the global and local definabil-
ity problems for the XPath algebra are decidable in polynomial time. Using the
syntactic characterizations in this paper, one can also establish that the global
and local definability problems for the other fragments of the XPath algebra are
decidable in polynomial time. As mentioned in the Introduction, this feasibility
suggests efficient partitioning and reduction techniques on the set of nodes and
the set of paths in a document. Such techniques might be successfully applied
towards various aspects of XML document processing such as indexing, access
control, and document compression. This is another research direction which
we are currently pursuing [12, 36].
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