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Samenvatting

De hoofdzaak van deze thesis is het karakterizeren van Brauer groepen van gevlochten

fusie categorieën, door gebruik te maken van technieken van zwakke Hopf algebras.

Zij (H,R) een quasi-triangulaire zwakke Hopf algebra. Ten eerste tonen we aan dat

het vol centrum van het eenheidsobject (zoals in [26]) isomorf is met een centralizer

deelalgebra van H. We bewijzen dat dit vol centrum is uitgerust met de structuur van

een gevlochten Hopf algebra. Ten tweede gaan we deze gevlochten Hopf algebra RH

gebruiken om aan te tonen dat de categorie van Yetter-Drinfeld modulen equivalent is

met de categorie van linkse RH-comodulen in de categorie (als gevlochten monöidale

categorieën). Ten derde, zij A een gevlochten bi-Galois objecten over RH, de functor

A�− is een gevlochten auto-equivalentie van de categorie van Yetter-Drinfeld mod-

ulen als en slechts als A quantum commutatief is. Ten slotte definiëren we de groep

bestaande uit quantum commutatieve Galois objecten.

Zij H een eindig dimensionale coquasi-triangulaire zwakke Hopf algebra over een

veld k, we beschrijven een verband tussen de Brauer groep en de groep van quantum

commutatieve Galois objecten aan de hand van een rij van groepen. Dit veralgemeent

de exact rij in [88] voor zwakke Hopf algebras. Indien k een algebräisch gesloten veld

is van karakteristiek nul en indien H cosemi-eenvoudige en co-aangesloten is, bekomen

we een isomorfisme tussen de Brauer groep Br(MH) en de groep van quantum com-

mutatieve Galois objecten. Als toepassing verkrijgen we dat, voor een gevlochten

fusie categorie C , de Brauer groep Br(C ) isomorf is met de groep van quantum

commutatieve Galois objecten over een zekere gevlochten Hopf algebra. Als voor-

beeld bestuderen we de Brauer groep van alle modulaire categorieën verkregen uit

SU(N)L-SOS modellen.

Daarenboven gaan we na dat voor een zwakke Hopf algebra H, de verzameling van
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isomorfisme klassen van H-bi-Galois objecten een groep vormt, met als bewerking het

cotensor product. Dit veralgemeent het werk van Schauenburg in [66].
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Introduction

In [83] F. Van Oystaeyen and Y. H. Zhang defined and studied the Brauer group

Br(C ) of a braided monoidal category C , which unifies the Brauer group of a Hopf

algebra in [18, 19], the Brauer-Long group in [45, 46] and other known Brauer groups

of structured algebras.

When C is a braided fusion category, the Brauer group Br(C ) plays a vital role

in the core (an important invariant of C ) studied in [30], and in the conjecture of

V.G Drinfeld, which states that the pair (Br(C ), Autbr(C )) forms a crossed module.

In [28] A. Davydov and D. Nikshych proved this conjecture by applying the Picard

crossed module of a braided fusion category C defined in [31]. They interpret the

group in terms of braided autoequivalences of the Drinfeld center Z (C ) of C . What

they used as a key point in the proof is an isomorphism between the Brauer group

of C defined in [83] and the subgroup Autbr(Z (C ),C ) consisting of isomorphisms

classes of braided autoequivalences of Z (C ) trivializable on C , see Theorem 4.2

in [28]. Thus determining the Picard crossed module and the Brauer group of a

braided fusion category C can be converted to computing or characterizing the group

Autbr(Z (C ),C ). This thesis is to investigate this group via braided bi-Galois objects.

The group of bi-Galois objects plays an important role in the study of Brauer

groups, see [3, 21, 22, 24, 79, 84]. For example, ifH is a finite dimensional Hopf algebra

which is commutative and cocommutative, K. H. Ulbrich gave an exact sequence :

1 −→ Br(k) −→ BD(θ,H∗) −→ D(θ,H∗),

where θ is a Hopf map from H to H∗ and the group D(θ,H∗) consists of isomorphism

classes of certain H∗-Galois objects, see [79]. When θ = ε, this is just the well-

known Beattie’s exact sequence in [3]. However, when H is noncommutative and
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noncocommutative, the group of bi-Galois objects ( see [66, 81] ) does not fit into

the exact sequence as above. In order to deal with the case of a finite dimensional

(co)quasi-triangular Hopf algebra H, Y.H. Zhang constructed in [88] a special group

Galqc(RH
∗) and also proved that there exists an exact sequence of groups

1 −→ Br(k) −→ Br(MH) −→ Galqc(RH
∗),

where the group Galqc(RH
∗) is actually the group of braided Galois objects over some

braided Hopf algebra. It was seen in [88] that the group Galqc(RH
∗) is relatively easier

to be computed. So the Brauer group Br(MH) can be studied by investigating the

group Galqc(RH
∗). Our project is to introduce the group of quantum commutative

Galois objects to characterize the Brauer group of a braided fusion category.

However, not every braided fusion category is the category of modules over some

finite dimensional Hopf algebra. By [31, Thm 8.33], a modular category C ( a braided

fusion category with some additional structures ) with End(1) = C is the category

of modules over some finite dimensional quasi-Hopf algebra with a quasi-triangular

structure if and only if each simple object of C has an integer Frobenius-Perron

dimension. But there exist many interesting examples of modular categories that

contain simple objects of non-integer Frobenius-Perron dimensions. For example,

H. H. Andersen provided a construction of a modular category as a quotient of the

category of tilting modules over a quantum group Uq(g) at a root of unity, see [1].

The resulting modular category is in general no longer the category of modules over

a Hopf algebra. Therefore, the exact sequence in [88] can not apply to the Brauer

groups of these well-known modular categories in [1, 43, 64, 65, 74, 75, 76, 77].

In order to deal with the Brauer groups of these important categories, we need to

generalize the exact sequence in [88] to the case of a braided fusion category. Here,

the first difficulty that we meet is how to construct the group of so-called braided

Galois objects such that it is closely related to the Brauer group Br(C ) of a braided

fusion category C .

It was proved that there exist special relations between (multi-) fusion categories

and representation categories of weak Hopf algebras defined in [8, 9], see [31, 39, 60].

For any fusion category C , V. Ostrik showed in [60] that there exists a weak Hopf

algebra HC such that C is equivalent to the category of finite dimensional left HC -

modules, also see [39]. By [57], if C is additionally braided, then HC can be equipped

with a quasi-triangular structure such that C is equivalent to the category of finite
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dimensional left HC -modules as a braided fusion category. These facts inspire us to

construct the desired group by using the techniques from weak Hopf algebras.

Our project is divided into the following four steps.

The first step is to construct a braided Hopf algebra from a quasi-triangular weak

Hopf algebra. Let (H,R) be such a weak Hopf algebra. Unlike the Hopf algebra case,

the original algebra H can not be deformed into a Hopf algebra in the category of

modules over H by Majid’s transmutation theory. Here, our method is to consider

the full center of the unit object in the sense of [26]. This full center indicates that

our braided Hopf algebra RH should be based on some centralizer subalgebra of H,

instead of the original algebra H. This is explained in Chapter 2, where the main

result reads as follow:

Theorem 1. [Theorem 2.2.7] Let (H,R) be a quasi-triangular weak Hopf algebra.

Then the centralizer subalgebra CH(Hs) is a braided Hopf algebra ( or Hopf algebra

in the category (HM,⊗t, Ht, l, r) ) with the following structures:

The multiplication µ and unit η are defined by:

µ : CH(Hs)⊗t CH(Hs) −→ CH(Hs), a⊗t b 7−→ (11 · a)(12 · b),

η = IdHt
: Ht −→ CH(Hs), x 7−→ x.

The comultiplication ∆ and counit ε are given by:

∆ : CH(Hs) −→ CH(Hs)⊗t CH(Hs), x 7−→ x1S(R2)⊗R1 · x2,

ε = εt : CH(Hs) −→ Ht, x 7−→ εt(x).

The antipode S is given by

S : CH(Hs) −→ CH(Hs), x 7−→ R2R′2S(R1xS(R′1)).

The second step is to use the braided Hopf algebra RH to re-describe the Drinfeld

center of the category of left H-modules by the category of left RH-comodules. Then

we discuss the relation between braided autoequivalences of the Drinfeld center and

braided bi-Galois objects. Finally, we construct the group of quantum commutative

Galois objects. These will appear in Chapter 3. The main result in Chapter 3 is
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written in the language of weak Hopf algebras as follows:

Theorem 2. [Corollary 3.1.7 and Theorem 3.2.8] Let (H,R) be a finite dimen-

sional quasi-triangular weak Hopf algebra over a field k. Then there is a braided

monoidal equivalence between the category of Yetter-Drinfeld modules over H and the

category of comodules over RH. Moreover, if A is a braided bi-Galois object, then

the functor A�− is a braided autoequivalence of the category H
HYD of Yetter-Drinfeld

modules if and only if A is quantum commutative.

Applying Theorem 2 to a braided fusion category, we obtain the following state-

ment:

Theorem 3. [Corollary 3.2.9] Let C be a braided fusion category. Then the

Drinfeld center of C is equivalent to the category of finite dimensional left comoduels

over some braided Hopf algebra HC . Moreover, if A is a braided bi-Galois object over

HC , then the functor A�− is a braided autoequivalence of the Drinfeld center of C if

and only if A is quantum commutative.

The third step is to relate the Brauer group to the group of quantum commutative

Galois objects that we constructed in Chapter 3. This is to generalize the exact

sequence in [88] to the case of a weak Hopf algebra. The main result in Chapter 4

reads as follows:

Theorem 4. [ Theorem 4.3.9 and Corollary 4.4.6] Let H be a finite dimensional

coquasi-triangular weak Hopf algebra over a field k. Let RH
∗ be the associated braided

Hopf algebra ( apply Theorem 1 to the dual H∗). Then there exists a sequence of

groups

Br(MHm) ↪→ Br(MH) −→ Galqc(RH
∗),

where Hm is the minimal weak Hopf algebra of H and Galqc(RH
∗) is the group of

quantum commutative Galois objects over RH
∗.

The last part is to show that the Brauer group Br(C ) of a braided fusion category

C is isomorphic to the group of quantum commutative Galois objects when the base

field is algebraically closed:

Theorem 5. [ Theorem 5.2.6] Let H be a finite dimensional coquasi-triangular

weak Hopf algebra over an algebraically closed field k of characteristic zero such that it

is cosemisimple and co-connected. Then there is an isomorphism between the Brauer

group Br(MH) and the group Galqc(RH
∗) of quantum commutative Galois objects.
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In the language of a braided fusion category, we have the following:

Theorem 6. [Corollary 5.2.7] Let C be a braided fusion category. Then the

Brauer group Br(C ) of C is isomorphic to the group of quantum commutative Galois

objects over some braided Hopf algebra.

Since a ribbon (modular) category is a braided fusion category with some addi-

tional structures (see Section 1.2), Theorem 6 also holds in the ribbon (modular) case,

see Corollary 5.2.8 ( 5.2.9). As an application, we compute the Brauer groups of all

modular categories obtained from SU(N)L-SOS models by showing that they are

isomorphic to the groups of Galois objects over the corresponding Hopf algebras, see

Theorem 5.3.24 and 5.3.27.

As the direct sum of Hopf algebras is a weak Hopf algebra, the Brauer group of a

modular categories obtained from SU(N)L-SOS models can be characterized by the

group of Galois objects over a weak Hopf algebra (the direct sum of Hopf algebras).

This motivates us to consider how to form the group of bi-Galois objects over a weak

Hopf algebra. This generalizes Schauenburg’s work in [66] as follows:

Theorem 7. [Theorem 6.2.14] Let H be a faithfully flat weak Hopf algebra.

Let Gal(H,Ht) be the set of isomorphism classes of H- bi-Galois objects. Then

Gal(H,Ht) forms a group under the cotensor product �H .
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Notations and conventions

In this thesis, k is a fixed field. All vector spaces, algebras and coalgebras are assumed

to be over k. If not stated otherwise, all algebras are associative k- algebras with

unities. The unabored tensor ⊗ means ⊗k. A module over an algebra always means

a unitary module. (−)∗ denotes the functor Homk(−,k).

A category in this thesis means an abelian category. All functors between such

categories are additive. We will use the symbol ∼= for an equivalence between cate-

gories and the symbol ' for an isomorphism between two objects (algebras, modules,

sets and vector spaces). The symbols id and Id will mean the identity map or functor.

A braided fusion category means over an algebraically closed field k of character-

istic 0. In some proofs, we often use morphisms to replace diagrammatic methods for

the sake of simplification.

Without otherwise stated, a weak Hopf algebra always means a weak Hopf algebra

over a filed k with a bijective antipode.

We use the (sumless) Sweedler’s notation for the comultiplication and coaction

(see [71]):

(1) For a weak Hopf algebra H, for h ∈ H, ∆(h) = h1⊗h2. For a left H-comodule

M , ρL stands for the left H-coaction, ρL(m) = m[−1] ⊗m[0] for all m ∈ M . For a

right H-comodule N , ρRstands for the right H-coaction, ρR(n) = n[0] ⊗ n[1] for all

n ∈ N .

(2) For a braided Hopf algebra H, we let ∆′(a) = a(1)⊗a(2). For a left H-comodule

M ′, we use ρl for the left H-coaction, ρl(m′) = m′(−1) ⊗m
′
(0) for all m′ ∈ M ′. For

a right H-comodule N ′, ρr means the right H-coaction, ρr(n′) = n′(0) ⊗ n
′
(1) for all

n′ ∈ N ′.
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Chapter 1

Preliminaries

In this chapter, we will present some basic definitions and properties that are needed

in this thesis. The notions of a braided monoidal ( fusion ) category, a braided Hopf

algebra and the full center of an algebra will be first recalled. Second, we will follow

the process in [83] to give the definition of the Brauer group of a braided monoidal

category. Finally, the theory of weak Hopf algebras, our main tool in this thesis, will

be briefly recalled.

1.1 Braided monoidal categories

We will briefly recall the notion of a braided (rigid) monoidal category. For more

detailed discussion about braided monoidal categories, we refer to [42].

1.1.1 Monoidal categories

Definition 1.1.1. A monoidal category (C ,⊗, I, a, l, r) is a category C equipped

with

• a tensor product ⊗ : C × C → C ;

• an object I, called the unit of the monoidal category;

• a natural isomorphism a : ⊗(⊗ id)→ ⊗(id⊗), called the associativity constraint

1



CHAPTER 1. PRELIMINARIES

• a natural isomorphism l : ⊗(I × id) → id, called the left unit constraint with

respect to I;

• a natural isomorphism r : ⊗(id×I) → id, called the right unit constraint with

respect to I;

such that the Pentagon Axiom and the Triangle Axiom are satisfied. That is, the

following two diagrams are commutative for all objects U, V,W and X in C .

(U ⊗ (V ⊗W ))⊗X

aU,V⊗W,X

��

((U ⊗ V )⊗W )⊗X
aU,V,W⊗idXoo

aU⊗V,W,X

��
(U ⊗ V )⊗ (W ⊗X)

aU,V,W⊗X

��
U ⊗ ((V ⊗W )⊗X)

id⊗aV,W,X // U ⊗ (V ⊗ (W ⊗X))

(V ⊗ I)⊗W
aV,I,W //

rV ⊗idW

  @
@@

@@
@@

@@
@@

@@
@@

@
V ⊗ (I ⊗W )

idV ⊗lW

~~~~
~~

~~
~~

~~
~~

~~
~~

V ⊗W

Definition 1.1.2. Let (C ,⊗, I, a, l, r) and (D ,⊗, I, a, l, r) be monoidal categories. A

lax monoidal functor from C to D is a triple (F,ϕ0, ϕ2), where F : C −→ D is a

functor, and ϕ0 is a morphism from ID to F (ID), and

ϕ2 : F (U)⊗ F (V ) −→ F (U ⊗ V )

is a family of natural transformations indexed by all couples (U, V ) of objects of C

such that the following three diagrams are commutative for all objects (U, V,W ) in

C .

(F (U)⊗ F (V ))⊗ F (W )

ϕ2(U,V )⊗idF (W )

��

aF (U),F (V ),F (W )

// F (U)⊗ ((F (V )⊗ F (W ))

idF (U)⊗ϕ2(V,W )

��
F (U ⊗ V )⊗ F (W )

ϕ2(U⊗V,W )

��

F (U)⊗ F (V ⊗W )

ϕ2(U,V⊗W )

��
F ((U ⊗ V )⊗W )

F (aU,V,W ) // F (U ⊗ (V ⊗W ))

2



1.1. BRAIDED MONOIDAL CATEGORIES

I ⊗ F (U)
lF (U) //

ϕ0⊗idF (U)

��

F (U)

F (l−1
U

)

��
F (I)⊗ F (U)

ϕ2(I,U) // F (I ⊗ U)

F (U)⊗ I
rF (U) //

idF (U)⊗ϕ0

��

F (U)

F (r−1
U

)

��
F (U)⊗ F (I)

ϕ2(U,I) // F (U ⊗ I)

In particular, if ϕ0 and ϕ2 are additionally natural isomorphisms, then we call the

lax monoidal functor (F,ϕ0, ϕ2) a monoidal functor.

A natural monoidal transformation η : (F,ϕ0, ϕ2) −→ (F ′, ϕ′0, ϕ
′
2) between monoidal

functors from C to D is a natural transformation η : F −→ F ′ such that the following

diagrams commute for each couple (U, V ) of objects in C .

F (U)⊗ F (V )
ϕ2(U,V )

//

ηF (U)⊗ηF (V )

��

F (U ⊗ V )

ηF (U⊗V )

��
F ′(U)⊗ F ′(V )

ϕ2(U,V ) // F ′(U ⊗ V )

ID

ϕ0 //

ϕ′0 $$I
IIIIIIII F (IC )

η(I)zzuuuuuuuuu

F ′(IC )

A monoidal equivalence between monoidal categories is a monoidal functor F :

C −→ D such that there exist a monoidal functor F ′ : D −→ C and natural monoidal

isomorphisms η : IdD
∼= FF ′ and η′ : IdC

∼= F ′F . In case there exists a monoidal

equivalence between C and D , we say that C and D are monoidal equivalent.

The monoidal functor (F,ϕ0, ϕ2) is said to be strict if the isomorphisms ϕ0 and

ϕ2 are identities in D .

A monoidal category is said to be strict if the associativity and the unit constraints

a, 1, r are all identities of the category. In particular, a monoidal category is always

equivalent to a strict one, see Proposition XI.5.1 in [42].

Definition 1.1.3. (1) A left dual of an object V in a monoidal category is a triple

3



CHAPTER 1. PRELIMINARIES

(V ∗, bV , dV ), where V ∗ is another object and bV : I → V ⊗ V ∗, dV : V ∗⊗ V → I, are

morphisms such that the compositions

V
l−1
V−−→ I ⊗ V bV ⊗idV−−−−−→ V ⊗ V ∗ ⊗ V idV ⊗dV−−−−−→ V ⊗ I rV−−→ V

and

V ∗
r−1
V ∗−−→ V ∗ ⊗ I idV ∗ ⊗bV−−−−−−→ V ∗ ⊗ V ⊗ V ∗ dV ⊗idV ∗−−−−−−→ I ⊗ V ∗ lV ∗−−→ V ∗

are identities of V and V ∗ respectively.

(2) A monoidal category C is called rigid if any object V in C admits a left dual.

1.1.2 Braided monoidal categories

Let C be a monoidal category with a tensor product ⊗ : C × C → C . Denote by

τ : C × C → C × C the flip functor. That is, τ(V,W ) = (W,V ) for any V,W in C .

A commutativity constraint C is a natural isomorphism C : ⊗ → ⊗τ .

Definition 1.1.4. Let (C ,⊗, I, a, l, r) be a monoidal category.

(1) A braiding is a commutativity constraint C satisfying the Hexagon Axiom. That
is, the following two diagrams commute for any objects U, V and W in C .

U ⊗ (V ⊗W )

CU,V⊗W// (V ⊗W ) ⊗ U

aV,W,U

''OOOOOOOOOOO

(U ⊗ V ) ⊗W

aU,V,W

77ooooooooooo

CU,V ⊗idW ''OOOOOOOOOOO V ⊗ (W ⊗ U)

(V ⊗ U) ⊗W

aV,U,W // V ⊗ (U ⊗W )

idV ⊗CU,W

77ooooooooooo

(U ⊗ V ) ⊗W

CU⊗V,W// W ⊗ (U ⊗ V )

a
−1
W,U,V

''OOOOOOOOOOO

U ⊗ (V ⊗W )

a
−1
U,V,W

77ooooooooooo

idU ⊗VV,W ''OOOOOOOOOOO (W ⊗ U) ⊗ V

U ⊗ (W ⊗ V )

a
−1
U,W,V // (U ⊗W ) ⊗ V

CU,W⊗idV

77ooooooooooo
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1.1. BRAIDED MONOIDAL CATEGORIES

(2) A braided monoidal category (C ,⊗, I, a, l, r, C) is a monoidal category with a

braiding.

Definition 1.1.5. A monoidal functor (F,ϕ0, ϕ2) from a braided monoidal category

(C ,⊗, C) to a braided monoidal category (D ,⊗, D) is called braided if for any pair

(U, V ) of objects in C , the square

F (U)⊗ F (V )
ϕ2(U,V )

//

DF (U),F (V )

��

F (U ⊗ V )

F (CU,V )

��
F (V )⊗ F (U)

ϕ2(V,U) // F (V ⊗ U)

commutes.

A braided monoidal functor (F,ϕ0, ϕ2) is called a braided monoidal equivalence if

the functor F is a monoidal equivalence.

Note that if C is a braiding, so is the inverse C−1. We denote by (C rev,⊗, I, C−1)

the braided monoidal category (C ,⊗, I) with the braiding C−1.

The most fundamental example of a braided monoidal category is the following

Drinfeld center of a monoidal category.

Example 1.1.6. The right Drinfeld center Zr(C ) of a monoidal category C is defined

to be the category whose objects are pairs (M,ν−,M ), where M is an object of C and

ν−,M is a family of natural isomorphisms, called half braidings:

νM,N : M ⊗N −→ N ⊗M, ∀ N ∈ C

satisfying Hexagon Axiom, see [42]. Similarly, the left Drinfeld center Zl(C ) is the

category, whose objects are pairs (U, νU,−), where U is an object of C and νU,− is a

family of natural isomorphisms satisfying Hexagon Axiom. Then the left center Zl(C )

and the right center Zr(C ) are two braided monoidal categories. By Proposition 1.1

in [13], there exist braided equivalences of braided monoidal categories

Zl(C ) ∼= Zr(C )rev, Zr(C ) ∼= Zl(C )rev.

Definition 1.1.7. A braided monoidal category C is called closed if the functor

−⊗X : C −→ C has a right adjoint for all objects X in C . The right adjoint, called

the inner hom functor, will be denoted by [X,−] : C −→ C .
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Definition 1.1.8. An object P in a closed braided monoidal category is a finite

object of C if the canonical morphism

[P, P ]⊗ [P, I] −→ [P, P ]

is an isomorphism. This is equivalent to the existence of a ’dual basis’.

Definition 1.1.9. A braided monoidal category C is called rigid if C is rigid as a

monoidal category.

Remark 1.1.10. (1) A rigid braided monoidal category C is closed because the

functor −⊗X∗ is a right adjoint of −⊗X for any object in C .

(2) The category of finite-dimensional vector spaces over a field is rigid.

(3) Any object in a rigid braided monoidal category is finite.

1.2 Braided fusion categories

In this thesis, a (braided) fusion category will always mean over an algebraically closed

field k of characteristic 0. We refer the reader to [2, 30, 31] for a general theory of

braided fusion categories. Let k be an algebraically closed field of characteristic 0.

Here we give the notion of a (braided, ribbon, modular) fusion category.

Definition 1.2.1. (1) An object U in an abelian category C is called simple if any

injection V ↪→ U is either 0 or an isomorphism.

(2) An abelian category C is called semisimple if any object V is isomorphic to a

direct sum of simple objects:

V '
⊕
Vi∈J

NiVi,

where Vi are simple objects, J is the set of isomorphism classes of non-zero simple

objects in C , Ni ∈ Z+ and only a finite number of Ni is non-zero.

Definition 1.2.2. An abelian category C is k-linear if each hom set is a vector space

and the composition of morphisms is bilinear.

Definition 1.2.3. A k-linear abelian category C is called finite if

(1) the morphism spaces are finite dimensional;

6
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(2) every object is of finite length;

(3) C has enough projectives, i.e., every simple object has a projective cover;

(4) there are only finitely many simple objects (up to isomorphism) in C .

Remark 1.2.4. A finite k-linear abelian category is equivalent to the representation

category of some finite dimensional algebra.

Definition 1.2.5. [34] Let C be a rigid monoidal category.

(1) A finite multi-tensor category C is a finite abelian k-linear rigid monoidal

category, where the tensor product is k-bilinear.

(2) A finite multi-tensor category C is called a finite tensor category if the unit

object I is simple.

Definition 1.2.6. [30, 31] Let C be a finite tensor category.

(1) The category C is called a fusion category if C is semisimple.

(2) A fusion category C is a braided fusion category if C is additionally braided.

For any two simple object Vi and Vj in a fusion category, we have

Hom(Vi, Vj) =

{
k if i = j,

0 if i 6= j.

The theory of Frobenius-Perron dimensions or modules over fusion categories can be

found in [31] and [60]. Now we follow [2] to define a ribbon category and a modular

category.

Definition 1.2.7. A braided fusion category (C ,⊗, I, a, l, r, C, (−)∗, b, d) is called a

ribbon category if there exist natural isomorphisms (ribbon twist) θX : X −→ X such

that

θX⊗Y = CY,X ◦ CX,Y ◦ (θX ⊗ θY )

and

(θX ⊗ idX∗) ◦ bX = (idX ⊗ θX) ◦ bX .

Following [75], the quantum trace of an endomorphism f ∈ End(V ) in a ribbon

category is defined to be

trq(f) = dV CV,V ∗(θf ⊗ idV ∗)bv

7



CHAPTER 1. PRELIMINARIES

with values in End(I). In particular, the quantum trace trq(idV ) is called the quantum

dimension of V .

Definition 1.2.8. A ribbon category (C ,⊗, I, a, l, r, C, (−)∗, b, d, θ) is called a mod-

ular category if the following conditions are satisfied:

(1) The number of isomorphism classes of simple objects is finite;

(2) The square matrix S = {Si,j}i,j∈J = {trq(CVi,Vj
CVj ,Vi

)} is invertible over k.

Remark 1.2.9. Many authors consider a ribbon category by not necessarily requiring

semisimplicity in our definition, see [75]. We refer the reader to [44, 49] for the non-

semisimple case.

1.3 Braided Hopf algebras

A Hopf algebra in a braided monoidal category is also called a braided Hopf algebra

or a braided group, see [50, 51, 52]. The general construction of Hopf algebras in a

braided monoidal category can be found in [51, 52]. Here, we briefly recall from [52]

a braided Hopf algebra.

1.3.1 Braided Hopf algebras

Definition 1.3.1. Let (C ,⊗, I, a, l, r) be a monoidal category.

(1) An algebra in C is a triple A = (A, ηA, µA), where A is an object in C and

ηA : I −→ A (unit) and µA : A ⊗ A −→ A are morphisms in C such that

µA ◦ (idA ⊗ ηA) = idA = µA ◦ (ηA ⊗ idA), µA ◦ (idA ⊗ µA) = µA ◦ (µA ⊗ idA).

(2) A coalgebra in C is a triple D = (D, εD,∆D), where D is an object in C and

εD : D −→ I (counit) and ∆D : D −→ D ⊗ D are morphisms in C such that

(idD⊗εD)◦∆D = idD = (εD⊗idD)◦∆D, (idD⊗∆D)◦∆D = (∆D⊗idD)◦∆D.

Let (A,µA) and (B,µB) be two algebras in C . An object M in C is called an

A-B-bimodule if there are morphisms in C

mA : A⊗M −→M, mB : M ⊗B −→M

8
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satisfying the coherence conditions:

mA(µA ⊗ idM ) = mA(idA ⊗mA) on A⊗A⊗M,

mB(idM ⊗ µB) = mB(mB ⊗ idB) on M ⊗B ⊗B,

mA(idA ⊗mB) = mB(mA ⊗ idB) on A⊗M ⊗B.

The bimodule category ACB consists of objects in C which have A-B-bimodule struc-

tures, and morphisms in C which are A-B-bilinear. It is easy to see that I is an

algebra. Write CB and AC for the categories ICB and ACI respectively.

Dually, for a coalgebra D, we define a left D-comodule, a right D-comodule and

a D-bicomodule. We denote by DC ( CD,DCD) the category of left D-comodules

(right D-comodules, D-bicomodules).

Now assume that a monoidal category (C ,⊗, I, a, l, r, C) has a braiding C.

An algebra (A, ηA, µA) in C is called braided-commutative if

µA = µA ◦ CA,A.

Definition 1.3.2. We call (H,µH , ηH ,∆H , εH , SH) a bialgebra in a braided monoidal

category C if (H,µH , ηH) is an algebra in C and (H,∆H , εH) is a coalgebra in C such

that the map εH is an algebra map and

∆H ◦ µH = (µH ⊗ µH) ◦ (idH ⊗ CH,H ⊗ idH) ◦ (∆H ⊗∆H).

A bialgebra (H,µH , ηH ,∆H , εH) in C is called a braided Hopf algebra or a Hopf

algebra in C if there exists additionally a morphism SH : H −→ H in C , called the

antipode, satisfying

µH ◦ (SH ⊗ idH) ◦∆H = εH ◦ ηH = µH ◦ (idH ⊗ SH) ◦∆H .

Definition 1.3.3. Let (H,µH , ηH ,∆H , εH , SH) be a braided Hopf algebra. An al-

gebra (A,µA, ηA) is called a right H-comodule algebra in C if there exists a right

coaction ρr : A −→ A⊗H such that (A, ρr) is a right H-comodule satifying

ρr ◦ µA = (µA ⊗ µH) ◦ (idA ⊗ CH,A ⊗ idH) ◦ (ρr ⊗ ρr).

9
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Similarly, one can define a left H-comodule algebra in C .

Remark 1.3.4. Let H be a braided Hopf algebra. By [69] the right H-comodule

category is a monoidal category, where for any two right H-comodules (M,ρrM ) and

(N, ρrM ), M ⊗N is a right H-comodule with the following structure:

ρrM⊗N = (idM ⊗ idN ⊗ µH) ◦ (idM ⊗ CH,N ⊗ idN ) ◦ (ρrM ⊗ ρrN ).

Definition 1.3.5. Let H be a baided Hopf algebra and A a right H-comodule algebra

(A,µA, ηA, ρ
r
A). A right A-module is called a Doi-Hopf module if there exists a right

H-coaction ρrM such that (A, ρr) is a right H-comodule and

ρ ◦mA = (mA ⊗ µH) ◦ (idM ⊗ CH,A ⊗ idH) ◦ (ρrM ⊗ ρrA).

Denote by CH
A the category of Doi-Hopf modules in C . A morphism in CH

A is a

morphism in C such that it is right A-linear and H-colinear.

1.3.2 Braided bi-Galois objects

Let (C ,⊗, I, a, l, r, C) be a braided monoidal category. An object P in C is called

flat if the functor P ⊗ − : C −→ C preserves equalizers. If it, in addition, reflects

isomorphisms, then P is called faithfully flat.

Definition 1.3.6. [25, 70] Let H be a Hopf algebra in C . A right H-comodule

algebra (A,µA, ηA, ρ
r) in C is a right H-Galois object if A is faithfully flat and the

morphism

β = (µA ⊗ idH) ◦ (idA ⊗ ρr) : A⊗A −→ A⊗H

is an isomorphism in C .

Similarly, one can define a left H-Galois object and an H-bi-Galois object, see

[25, 70]. The relation between a right Galois object and the category of Doi-Hopf

modules is as follows:

Theorem 1.3.7. [25, 70] Let H be a flat braided Hopf algebra in C and A a right

H-comodule algebra in C . Then A is a right H-Galois object if and only if the functor

−⊗A : C −→ CH
A defines an equivalence.

10
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1.4 The Brauer group of a braided monoidal cate-

gory

For the general theory of the Brauer groups of braided monoidal categories, the reader

is referred to [83]. In this thesis, we only consider the Brauer group of a rigid braided

monoidal category. Let (C ,⊗, I, a, l, r, C) be a rigid braided monoidal category.

Definition 1.4.1. [61] An object P in C is called faithfully projective if the morphism

[P, I]⊗[P,P ] P −→ I

induced by the evaluation, is an isomorphism.

Let (A,µA) be an algebra in C . There is another algebra (A,µA), where A = A

as an object in C and the multiplication is defined by µA = µACA,A. The algebra

(A,µA) is called the opposite algebra of A.

Let (A,µA) and (B,µB) be two algebras in C . We have an algebra (A]B, µA]B),

where A]B = A ⊗ B as an object in C and the multiplication is defined by µA]B =

(µA ⊗ µB)(idA ⊗ CB,A ⊗ idB). In particular, the algebras A]A and A]A are called

C -enveloping algebras of A and denoted by Ae and eA respectively.

An object M in ACB is called B-coflat if for all algebras C,D ∈ C and objects

X ∈ BCC , M⊗BX exists and the natural morphism M⊗B (X⊗Y ) −→ (M⊗BX)⊗Y
in ACD is an isomorphism for any Y ∈ CD. In particular, M is called bicoflat if it is

both A-coflat and B-coflat.

Definition 1.4.2. A Morita context in C is a sextuple (A,B,APB ,BQA, f, g) con-

sisting of algebras A,B ∈ C , an A-B-bimodule P ∈ ACB , a B-A-bimodule Q ∈ BCA,

and bilinear morphisms

f : P ⊗B Q −→ A, g : Q⊗A P −→ B

such that the following diagrams commute:

P ⊗B Q⊗A P
f⊗id

//

id⊗g

��

A⊗A P

��
P ⊗B B // P

11



CHAPTER 1. PRELIMINARIES

Q⊗A P ⊗B Q
id⊗f

//

g⊗id

��

Q⊗A A

��
B ⊗B Q // Q.

Theorem 1.4.3. [83, Thm. 2.1] Let (A,B,APB ,BQA, f, g) be a Morita context in

C . If P and Q are bi-coflat, f and g are bijective, then the following hold:

1. A ' [P, P ]B ' B{Q,Q} and B ' [Q,Q]A 'A {P, P} as algebras in C ;

2. P ' [Q,A]A 'B {Q,B} and Q ' [P,B]B 'A {P,A} as bi-modules in in C ;

3. AP , PB ,B Q and QA are faithfully projective.

In particular, if P is a faithfully projective object in C , then as algebras in C ,

[P, P ] ' {P ∗, P ∗}, {P, P} ' [P ∗, P ∗], [P, P ] ' {P, P}.

More detail about Morita contexts can be found in the subsection 2.4 of [25].

Definition 1.4.4. An algebra (A,µA) in C is called an Azumaya algebra in C if A is

faithfully projective in C and the following canonical morphisms are isomorphisms:

F : A]A −→ [A,A], F (a]b)(c) = aµA(b⊗ c),

G : A]A −→ [A,A], G(a]b)(c) = µA(c⊗ a)b.

Following Corollary 2.2 in [83], the following statements hold:

1. If P is faithfully projective in C , then [P, P ] is an Azumaya algebra in C .

2. If A is an Azumaya algebra in C , so is the opposite algebra A.

3. If A and B are Azumaya algebras in C , so is A]B.

Two Azumaya algebras A and B in C are called Brauer equivalent, denoted by

A ∼ B, if there exist faithfully projective objects M and N in C such that

A][M,M ] ' B][N,N ]

as algebras. This defines an equivalence relation in the set B(C ) of isomorphism

classes of Azumaya algebras. The quotient set B(C )/ ∼ is denoted by Br(C ). For an

Azumaya algebra in C , we will always use [A] to represent the equivalent class of A.

12
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The product ] induces an operation on the quotient set Br(C ), that is, [A][B] =

[A]B] for two Azumaya algebras A and B. Then by [83] the set Br(C ) forms a group

with the product induced by ], where the identity element is [I] or the class of [P, P ]

for a faithfully projective object [P ], and the inverse of [A] is given by [A]. This group

is called the Brauer group of C .

Remark 1.4.5. (1) By Theorem 3.1 in [83], the algebra A is an Azumaya algebra in

C if and only if the following two functors are equivalent:

A⊗− : C −→ A]AC , −⊗A : C −→ CA]A.

(2) For an Azumaya algebra A, the inverse functor of A⊗− is given by

A]A[A,−] : A]AC −→ C ,

which is isomorphic to the functor (−)A, see Proposition 3.4 in [25].

(3) This categorical construction of Brauer groups is quite general. All known

Brauer groups can be derived from this unifying definition, see Example 3.6-3.12 in

[83].

1.5 The full center of an algebra

Let (C ,⊗, I, a, l, r) be a monoidal category. We will recall the full center of an algebra

from Section 4 of [26], which plays an important role in this thesis.

Definition 1.5.1. Let (A,µA) be an algebra in a monoidal category C . The full

center Z(A) of A is an object in the left Drinfeld center Zl(C ) together with a

morphism Z(A) −→ A in C such that the following universal property holds:

For any pair (Z, ξ) with Z ∈ Zl(C ) and ξ : Z −→ A is a morphism in C such that

the diagram

A⊗ Z

id⊗ξ

��

Z ⊗A
νZ,Aoo

ξ⊗id

��
A⊗A

µA

��
A⊗A

µA // A

13
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commutes in C , where νZ,− is the half-braiding of Z as an object of Zl(C ), there

exists a unique morphism Z −→ Z(A) in Zl(C ), such that the following diagram is

commutative:

Z //

ξ
!!D

DD
DD

DD
D Z(A)

||yy
yy

yy
yy

A.

Proposition 1.5.2. [26, Prop. 4.1] Let A be an algebra in a monoidal category C .

The full centre Z(A) has a unique structure of an algebra in Zl(C ) such that the

morphism Z(A) −→ A is a homomorphism of algebras in C . Moreover Z(A) is a

braided-commutative algebra in Zl(C ).

In addition, the full centre is an invariant under Morita equivalence, see Corollary

6.3 in [26]. Now assume that (C ,⊗, I, a, l, r) has a braiding C. We follows [60, 83] to

define the left center Cl(B) of an algebra B in C .

Definition 1.5.3. The left center Cl(B) of an algebra B in C is the terminal object

in the category of morphisms y : Y −→ B such that the following diagram commutes

B ⊗ Y

id⊗y

��

Y ⊗B
CY,Boo

y⊗id

��
B ⊗B

µB

��
B ⊗B

µB // B.

Similarly, we can define a right center Cr(B) of B.

Proposition 1.5.4. [26, Prop.5.1] Let C be a braided monoidal category and B an

algebra in C . Then the left center Cl(B) has a unique structure of algebra in C such

that the morphism Cl(B) −→ B is a homomorphism of algebras in C . Moreover,

Cl(B) is a braided-commutative algebra in C .

Assume that the forgetful functor F : Zl(C ) −→ C has a right adjoint R : C −→
Zl(C ) with the natural transformations of the adjunction:

αU : U −→ R ◦ F (U), βX : F ◦R(X) −→ X

14
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for all U ∈ Zl(C ) and X ∈ C . Note that the functor R is automatically lax monoidal,

where the morphism ϕ0 is given by the composite

I −→ R ◦ F (I) −→ R(I);

and the natural transformation ϕ2 is the following composition:

R ◦ F (R(X)⊗R(Y ))

R(FR(X),R(Y ))

��

R(X)⊗R(Y )
αR(X)⊗R(Y )oo

R(F ◦R(X)⊗ F ◦R(Y ))
R(βX⊗βy) // R(X ⊗ Y ).

The lax monoidal structure of R can transport algebras from C to Zl(C ). If

(A,µA, ηA) is an algebra in C , R(A) is an algebra in Zl(C ) with the unit map

R(ηA) ◦ ϕ0 : I −→ R(I) −→ R(A)

and the multiplication

R(µA) ◦ ϕ2 : R(A)⊗R(A) −→ R(A⊗A) −→ R(A).

The following theorem states the relation between a full center and a left center.

Theorem 1.5.5. [26, Thm. 5.4] Assume that the forgetful functor F : Zl(C ) −→ C

has a right adjoint R : C −→ Zl(C ) with the natural transformations α and β as

above. If the natural transformation β of the adjunction is epic, then

Z(A) ' Cl(R(A)),

for any algebra A in a monoidal category C .

For a general theory of full centers, the reader is referred to [26].

1.6 Weak Hopf algebras

In this thesis, we will mainly use the techniques from weak Hopf algebras to deal with

the problems with braided fusion categories. In this section, we will recall some basic
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definitions and properties of weak Hopf algebras. For more detail about weak Hopf

algebras, we refer to [8, 55, 56].

1.6.1 Weak Hopf algebras

Definition 1.6.1. [8, Defn. 2.1] A weak Hopf algebra H is a k-algebra (H,m, µ) and

k-coalgebra (H,∆, ε) such that the following axioms hold:

• ∆(hk) = ∆(h)∆(k),

• ∆2(1) = 11 ⊗ 121(1′ ) ⊗ 12′ = 11 ⊗ 11′12 ⊗ 12′ ,

• ε(hkl) = ε(hk1)ε(k2l) = ε(hk2)ε(k1l),

• There exists a k-linear map S : H −→ H, called the antipode, satisfying

h1S(h2) = ε(11h)12, S(h1)h2 = 11ε(h12),

S(h) = S(h1)h2S(h3),

for all h, k, l ∈ H.

For a weak Hopf algebra H, we have idempotent maps εt, εs: H −→ H defined by

εt(h) = ε(11h)12, εs(h) = 11ε(h12).

The maps εt and εs are called the target map and the source map respectively, and

their images Ht and Hs are called the target space and source space respectively.

In particular, Ht and Hs are Frobenius-separable subalgebras of H. Moreover, the

following equations hold:

h1 ⊗ h2S(h3) = 11h⊗ 12, (1.1)

S(h1)h2 ⊗ h3 = 11 ⊗ h12, (1.2)

h1 ⊗ S(h2)h3 = h11 ⊗ S(12), (1.3)

h1S(h2)⊗ h3 = S(11)⊗ 12h, (1.4)

ε(gεt(h)) = ε(gh) = ε(εs(g)h), (1.5)

y11 ⊗ S(12) = 11 ⊗ S(12)y, (1.6)

zS(11)⊗ 12 = S(11)⊗ 12z, (1.7)

for g, h ∈ H, y ∈ Hs and z ∈ Ht.
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If H is a finite dimensional weak Hopf algebra with an antipode S, then S is auto-

matically bijective. Moreover, the dual H∗ = Homk(H,k) of H is also a weak Hopf

algebra with the unit ε and the counit ε̂: φ 7→ 〈1, φ〉 respectively. Other structures

on H∗ are given as follows:

〈h, φψ〉 = 〈∆(h), φ⊗ ψ〉, 〈g ⊗ h, ∆̂(φ)〉 = 〈gh, φ〉, 〈h, Ŝ(φ)〉 = 〈S(h), φ〉,

for all φ, ψ ∈ H∗ and g, h ∈ H. The target subalgebra of H∗ is denoted by H∗t .

Any weak Hopf algebra H contains a canonical minimal weak Hopf algebra Hmin,

which is generated, as an algebra, by Ht and Hs. All minimal weak Hopf algebras

were classified in [55]. The following definitions can be found in [38, 56, 57, 62].

Definition 1.6.2. Let H be a weak Hopf algebra and Z(H) the center of H.

(1) H is called connected if Z(H) ∩Ht = k1H .

(2) H is called regular if S2(x) = x for all x ∈ Hmin.

(3) If H is finite dimensional, H is called co-connected if H∗ is connected.

(4) H is called a face algebra if Hs is a commutative algebra.

(5) H is called semisimple if H is semisimple as an algebra.

(6) H is called cosemisimple if H is cosemisimple as a coalgebra.

Remark 1.6.3. (1) A weak Hopf algebra H is an ordinary Hopf algebra if and

only if ∆(1) = 1 ⊗ 1, if and only if ε is an algebra homomorphism if and only if

Ht = Hs = k1H .

(2) Let H be a weak Hopf algebra with an antipode S. Then S is an anti-algebra

isomorphism between Ht and Hs.

(3) Every weak Hopf algebra can be obtained by twisting a regular weak Hopf

algebra with the same algebra structure, see [55].

In what follows, a weak Hopf algebra will always mean a regular weak Hopf algebra.

Definition 1.6.4. [57, Defn. 6.1] Let H be a weak Hopf algebra with a bijective

antipode S. A quasi-triangular weak Hopf algebra is a pair (H,R), where

R = R1 ⊗R2 ∈ ∆cop(1)(H ⊗H)∆(1),
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satisfying the following conditions:

(id⊗∆)R = R13R12, (1.8)

(∆⊗ id)R = R13R23, (1.9)

∆cop(h)R = R∆(h), (1.10)

where h ∈ H, R12 = R⊗1, R23 = 1⊗R, etc., and there exists R ∈ ∆(1)(H⊗H)∆cop(1)

with RR = ∆op(1) and RR = ∆(1). R is often called an R-matrix. In particular,

(H,R) is called a triangular weak Hopf algebra if R = R2 ⊗R1.

For y ∈ Hs, z ∈ Ht, the following equations hold (see [57]):

(1⊗ z)R = R(z ⊗ 1), (y ⊗ 1)R = R(1⊗ y), (1.11)

(z ⊗ 1)R = (1⊗ S(z))R, (1⊗ y)R = (S(y)⊗ 1)R, (1.12)

R(y ⊗ 1) = R(1⊗ S(y)), R(1⊗ z) = R(S(z)⊗ 1), (1.13)

(εs ⊗ id)(R) = ∆(1), (id⊗ εs)(R) = (S ⊗ id)∆cop(1), (1.14)

(εt ⊗ id)(R) = ∆cop(1), (id⊗ εt)(R) = (S ⊗ id)∆(1). (1.15)

Definition 1.6.5. A coquasi-triangular weak Hopf algebra is a pair (H,σ), where H

is a weak Hopf algebra with a bijective antipode, and a k-linear map σ : H ⊗H → k

satisfies:

σ(ab, c) = σ(a, c1)σ(b, c2), σ(a, bc) = σ(a1, c)σ(a2, b),

σ(a1, b1)a2b2 = b1a1σ(a2, b2), σ(b, a) = ε(a1b1)σ(b2, a2)ε(a3b3),

for any a, b, c ∈ H, and there exists σ−1 : H ⊗H → k such that

σ(a1, b1)σ−1(a2, b2) = ε(ba), σ−1(a1, b1)σ(a2, b2) = ε(ba)

ε(a1b1)σ−1(a2, b2)ε(b3a3) = σ−1(a, b)

for all a, b, c ∈ H, where σ−1 is called a weak inverse of σ, see Section 2 in [38].

Similar to a Hopf algebra, if H is a finite dimensional coquasi-triangular (quasi-

triangular) weak Hopf algebra, then the dualH∗ is quasi-triangular (coquasi-triangular).
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1.6.2 Categories of modules and braided fusion categories

Let H be a weak Hopf algebra and HM denote the category of left H-modules. By

[59, 7], we have a monoidal category (HM,⊗t, Ht, a, l, r) as follows:

• For any two objects M and N in HM,

M ⊗t N = {m⊗ n ∈M ⊗N |∆(1)(m⊗ n) = m⊗ n}.

Clearly, M ⊗t N = ∆(1)(M ⊗N) ⊆M ⊗N ;

• For any two objects M and N in HM, the H-module structure on M ⊗t N is

as follows: h · (m⊗t n) = h1m⊗t h2n for all h ∈ H and m ∈M and n ∈ N ;

• Ht is the unit object with H-action h · z = εt(hz), where h ∈ H, z ∈ Ht, and

the k-linear maps lM , rM and their inverses are given by

lM (11 · z ⊗ 12 ·m) = z ·m, l−1M (m) = 11 · 1H ⊗ 12 ·m

rM (11 ·m⊗ 12 · z) = S(z) ·m, r−1M (m) = 11 ·m⊗ 12,

for any z ∈ Ht and m ∈M , where M is an object in HM.

If (H,R) is a quasi-triangular weak Hopf algebra, then the category HM can be

equipped with a braiding C as follows:

CM,N (m⊗t n) = R2 · n⊗t R1 ·m, for all m ∈M and n ∈ N,

where M and N are any objects in HM.

Lemma 1.6.6. [57, Prop.5.2] Let H be a weak Hopf algebra. If H has a quasi-

triangular structure R, then there exists a braiding C on the category HM:

CM,N (m⊗t n) = R2 · n⊗t R1 ·m, (1.16)

where R = R1 ⊗R2, m ∈M and n ∈ N . Conversely, if the category HM is braided,

then H can be equipped with a quasi-triangular structure R such that the category

HM has a braiding as (1.16).

Let H be a finite dimensional weak Hopf algebra. Let HM denote the category of

finite dimensional left H-modules. Then (HM ,⊗t, Ht, a, l, r) forms a rigid monoidal
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category with the following rigid structure:

• For any object M in HM , define an action of H on M∗ by (h ·φ)(m) = φ(S(h) ·
m), for any h ∈ H, φ ∈M∗ and m ∈M. The duality morphisms are defined as

follow:

dM : M∗ ⊗tM −→ Ht, φ⊗m 7−→ φ(11 ·m)12

bM : Ht −→M ⊗tM∗, z 7−→ z · (
∑
i

ei ⊗ f i),

where ei and f i are dual bases of M and M∗ respectively.

In particular, the category (HM ,⊗t, Ht, a, l, r) is a braided monoidal category if

H is finite dimensional and quasi-triangular. In this case, we have the Brauer group

Br(HM ).

Remark 1.6.7. (1) Let H be a finite dimensional weak Hopf algebra over an al-

gebraically closed field k of characteristic 0. By Proposition 3.1.5 in [56], if H is a

biconnected weak Hopf algebra, then H is semisimple if and only if H∗ is semisimple.

(2) The category HM is a fusion category if and only if H is semisimple and

connected, see Corollary 2.22 in [31]. By Lemma 1.6.6, a braided fusion category is

equivalent to the category of finite dimensional modules over some quasi-triangular

weak Hopf algebra, which is semisimple and connected.

Dually, let MH denote the category of finite dimensional right H-comodules.

Then (MH ,⊗s, Hs) is also a rigid monoidal category, see [38, 59, 62]. Here, a right

H-comodule M has an induced Hs-bimodule structure as follows,

y ·m = m[0]ε(ym[1]), m · y = m[0]ε(m[1]y),

where ρR(m) = m[0] ⊗m[1], for all m ∈M and y ∈ Hs.

For finite dimensional right H-comodules M and N , denote by Hom−Hs
(M,N)

the set of right Hs-linear maps from M to N . Then Hom−Hs
(M,N) is a right H-

comodule with ρR defined by

ρR(f)(m) = f(m[0])[0] ⊗s f(m[0])[1]S(m[1]),
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for any f ∈ Hom−Hs
(M,N) and m ∈ M . Moreover, for any object M in MH , the

functor − ⊗sM has a right adjoint functor Hom−Hs
(M,−), which is isomorphic to

the functor (−)∗. Let End−Hs(M) be the set of right Hs-linear maps from M to

itself.

When H is coquasi-triangular, the category MH has a braiding C:

CU,V : U ⊗s V → V ⊗s U, u⊗s v 7→ v[0] ⊗s u[0]σ(u[1], v[1]),

where U and V are any objects in MH . Following Section 1.4, we can form the Brauer

group Br(MH), which will be mainly investigated in this thesis.

1.6.3 Yetter-Drinfeld modules

Definition 1.6.8. Let H be a weak Hopf algebra. A left H-module M is called a left-

left Yetter-Drinfeld module if (M,ρL) is a left H-comodule such that the conditions

• ρL(m) = m[−1] ⊗m[0] ∈ H ⊗t V,

• (h ·m)[−1] ⊗ (h ·m)[0] = h1m[−1]S(h3)⊗ h2 ·m[0],

are satisfied for all h ∈ H and m ∈M .

Let M be a left-left Yetter-Drinfeld module. For all m ∈M,

m[−1] ⊗m[0] = m[−1]S(12)⊗ 11 ·m[0]. (1.17)

We denote by H
HY D the category of finite dimensional left-left Yetter-Drinfeld mod-

ules and the morphisms that are both left H-linear and left H-colinear . Furthermore,

if S is bijective, then H
HY D is a braided monoidal category with a braiding given by

CV,W (v ⊗ w) = v[−1] · w ⊗ v[0],

where v ∈ V ∈ H
HY D and w ∈ W ∈ H

HY D . In particular, if (H,R) is a quasi-

triangular weak Hopf algebra, then every left H-mudule M becomes a left-left Yetter-

Drinfeld module in a natural way:

ρL(m) = R2 ⊗R1 ·m, ∀ m ∈M.
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Clearly, the category HM is a braided monoidal subcategory of the category H
HY D .

A left H-module M is called a left-right Yetter-Drinfeld module if (M,ρR) is a

right H-comodule such that the following conditions

• ρL(m) = m[0] ⊗m[1] ∈ H ⊗t V,

• (h ·m)[0] ⊗ (h ·m)[1] = h2 ·m[0] ⊗ h3m[1]S
−1(h1),

are satisfied for all h ∈ H and m ∈M .

Similarly, one can define a right-right Yetter-Drinfeld module and a right-left

Yetter-Drinfeld module. The category of finite dimensional left-right(right-right, right-

left) Yetter-Drinfeld modules is denoted by HY DH(Y DH
H ,

HY DH). The relations

between the Drinfeld centers and the categories of Yetter-Drindeld modules are given

in the following theorem:

Theorem 1.6.9. [20] Let H be a weak Hopf algebra with a bijective antipode. Then

the following two statements hold:

1. The category Zl(HM ) is equivalent to H
HY D as a braided monoidal category;

2. The category Zr(HM ) is equivalent to HY DH as a braided monoidal category.

Theorem 1.6.10. [20] Let H be a weak Hopf algebra with a bijective antipode. Then

the category H
HY Drev is equivalent to HY DH as a braided monoidal category.

Proof. Note that Zr(HM ) ∼= Zl(HM )rev. Then we get a braided monoial functor

E : HY DH −→ H
HY Drev,

where for any left-right Yetter-Drinfeld module (M,ρR), E(M) = M is a left-left

Yetter-Drinfeld module with the original action and the following coaction:

ρL(m) = S(m[1])⊗m[0],

where ρR(m) = m[0] ⊗m[1] for all m ∈M.

Definition 1.6.11. An algebra A in H
HY D is called quantum commutative if A is

braided-commutative in H
HY D . Similarly, one can define a quantum commutative

algebra in Y DH
H .
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1.6.4 Smash product algebras

Definition 1.6.12. Let H be a weak Hopf algebra. An algebra A with unity is called

a left H-module algebra if A is a left H-module such that

h · (ab) = (h1 · a)(h2 · b), h · 1A = εt(h) · 1A.

for all a, b ∈ A and h ∈ H.

Similarly, one can define a right H-module algebra. Now take a subspace A�H

of A⊗H as

{11 · a⊗ 12h| ∀ a ∈ A,∀ h ∈ H}.

Then A�H is an associative algebra with the unity 11 ·1A⊗12, and the multiplication

given by

(a� h)(a′ � h′) = a(h1 · a′)� h2h′, ∀ a, a′ ∈ A, ∀ h, h′ ∈ H.

We call A�H the smash product algebra of A with H, see [54].

Definition 1.6.13. Let H be a weak Hopf algebra. An algebra with unity is called

a right H-comodule algebra if A is a right H-comodule such that the coaction ρR

satisfies

ρ(1A)(a⊗ 1) = (idA ⊗ εt) ◦ ρ(a), ρ(ab) = ρ(a)ρ(b),

for all a, b ∈ A, see [15].

Define the right coinvariants of a right H-comodule algebra A as

AcoH = {a ∈ A | ρ(a) ∈ A⊗Ht}.

It follows from [16] that A0 = AcoH = {a ∈ A | ρ(a) = a1[0] ⊗ 1[1]}, where ρR(1) =

1[0] ⊗ 1[1]. Moreover, we know form [87] that

{a ∈ A|a[0] ⊗ a[1] = a1[0] ⊗ 1[1]} = {a ∈ A|a[0] ⊗ a[1] = 1[0]a⊗ 1[1]}.

23



CHAPTER 1. PRELIMINARIES

The centralizer of A0 in A is denoted by CA(A0), i.e.,

CA(A0) = {a ∈ A|ab = ba, ∀b ∈ A0}.

Lemma 1.6.14. [87] Let H be a weak Hopf algebra, and A a right H-comodule

algebra. If there is a right H-comodule map φ from H to A such that φ is an algebra

map, then the right H-comodule algebra A is isomorphic to a smash product algebra

A0�H, where the coinvariant subalgebra A0 is a left H-module algebra with the action

defined by h ⇀ a = φ(h1)aφ[S(h2)], for any h ∈ H, a ∈ A0.

Let A be a right H-comodule algebra. Consider a projection

p : A⊗H → A⊗H, p(a⊗ h) = a1[0] ⊗ h1[1].

The canonical map γ : A⊗A0
A→ Im(p) is defined by γ(a⊗A0

b) = ab[0] ⊗ b[1].

Definition 1.6.15. [16] A right H-comodule algebra A is a right weak H-Galois

extension of A0 if γ : A⊗A0
A→ Im(p) is bijective.

Let A be a right weak H-Galois extension. It is easy to see that the centralizer

CA(A0) with the MUV action ( Miyashita-Ulbrich-Van Oystaeyen ([53, 78, 80]))

a ↽ h = h[1]ah[2],

is a right H-module algebra, where γ−1(1[0] ⊗ h1[1]) := h[1] ⊗ h[2]. In particular,

the centralizer CA(A0) with the MUV action ↽ is a quantum commutative algebra

in the category of right-right Yetter-Drinfeld modules. So we have a map π from

the set of weak H-Galois extensions to quantum commutative algebras in the right

Yetter-Drinfeld modules

π(A) = CA(A0).

This map will play a key role in this thesis.

Example 1.6.16. Let A be a leftH-module algebra. Then the smash product algebra

A�H is a right weak H-Galois extension with the coinvariant subalgebra A�1 (' A).

The canonical map is given by

(A�H)⊗A (A�H) −→ (A�H)⊗H, (a� h)⊗ (a′ � h′) 7−→ a(h1 · a′)� h2h′1 ⊗ h′2.
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Its inverse is given by

(A�H)⊗H −→ (A�H)⊗A (A�H), (a� h)⊗ h′ 7−→ (a� hS(h′1))⊗ (1� h′2).

So h[1] ⊗ h[2] = (1� S(h1))⊗ (1� h2). The MUV action is given by

(a� g) ↽ h = h[1](a� g)h[2] = (1� S(h1))(a� g)(1� h2) = (S(h2) · a)� S(h1)gh3,

for all a� g ∈ A�H and h ∈ H.

Let H be a weak Hopf algebra and A a right weak H-Galois extension. Then the

following identities hold:

h[1]h
[2]
[0] ⊗ h

[2]
[1] = 1[0] ⊗ h1[1], (1.18)

h[1]h[2] = 1[0]ε(h1[1]), (1.19)

a[0]a
[1]
[1]⊗Ba

[2]
[1] = 1⊗Ba, (1.20)

bh[1]⊗Bh[2] = h[1]⊗Bh[2]b, (1.21)

h[1]⊗Bh[2][0] ⊗ h
[2]
[1] = h

[1]
1 ⊗Bh

[1]
1 ⊗ h2, (1.22)

h
[1]
[0]⊗Bh

[2] ⊗ h[1][1] = h
[1]
2 ⊗Bh

[2]
2 ⊗ S(h1), (1.23)

(hg)[1]⊗B(hg)[2] = g[1]h[1]⊗Bh[1]g[1], (1.24)

h
[1]
1 ⊗Bh

[2]
1 h

[1]
2 ⊗Bh

[1]
2 = h[1]⊗B1⊗Bh[2], (1.25)

S−1(a[1])
[1] ⊗ S−1(a[1])

[2]a[0] = a⊗ 1, (1.26)

for g, h ∈ H, a ∈ A and b ∈ B, see [41].

Remark 1.6.17. A left H-module (right H-comodule ) algebra is the same as an

algebra in the category of left H-modules (right H-comodules).

1.6.5 Weak Hopf algebras and Hopf algebroids

Let A be an associative k-algebra with unity. An algebra U is called an A-algebra if

there is an algebra map i : A −→ U , see [72, 73]. In particular, the algebra End(A)

is an Ae-algebra with structure a ⊗ b 7−→ (c 7−→ acb). Denote by Aop the opposite

algebra of A, the map op : A −→ Aop ( a 7−→ a) is anti-isomorphic. Write Ae for the

enveloping algebra A⊗Aop and ab for a⊗ b for all a, b ∈ A.
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We use the following Sweedler-Takeuchi’s notations (see [72, 73]):∫
a
aM ⊗a N := M ⊗N/〈am⊗ n−m⊗ an|a ∈ A,m ∈M,n ∈ N〉,∫ a

Ma ⊗Na := {m⊗ n ∈M ⊗N |ma⊗ n = m⊗ na, ∀a ∈ A},

for any two Ae-bimodules M and N . The ×A-product in [73] is defined as

M ×A N :=

∫ b ∫
a
aMb ⊗a Nb.

Let (U, i) and (V, j) be two Ae-algebras. An Ae-algebra map f : U −→ V is an

algebra mapfrom U to V such that f ◦ i = j.

If (U, i) and (V, j) are Ae-algebras, so is U ×A V , with the Ae-algebra structure

given by

(
∑

u⊗ v)(
∑

u′ ⊗ v′) =
∑

uu′ ⊗ vv′,

h : Ae −→ U ×A V, a⊗ b 7−→ i(a)⊗ j(b).

For an Ae-algebra (U, i), we can replace the map i by its restrictions

s := i(−⊗ 1) : A −→ U, t := i(1⊗−) : Aop −→ U,

which are k-algebra maps with commuting ranges in U , see [11]. The maps s and

t are called the source map and the target map respectively. In what follows, an

Ae-algebra (U, i) will be given sometimes by a triple (U, s, t), where s and t are as

above.

Let A be a k-algebra. An A-coring is a triple (C,∆, ε), where C is an A-bimodule,

∆ : C −→ C⊗AC and ε : C −→ A are A-bimodule maps, satisfying the coassociativity

and the counit conditions. A detailed study about the theory of corings can be found

in [12].

Definition 1.6.18. Let A be an associative k-algebra. A left bialgebroid B =

(B,A, s, t,∆, ε) consists of an Ae-algebra (B, s, t) and an A-coring (B,∆, ε) on the

same k-linear space B subject to the following compatibility axioms:

(i) The bimodule structure in the A-coring (B,∆, ε) is related to the Ae-algebra
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(B, s, t) via

r · b · r′ := s(r)t(r′)b, ∀b ∈ B, r, r′ ∈ A.

(ii) Consider B as an A-bimodule as in (i). The coproduct ∆ corestricts to a

k-algebra map from B to B ×A B.

(iii) The counit ε satisfies ε(1B) = 1A and

ε(bs(ε(b′))) = ε(bb′) = ε(bt(ε(b′)))

for all b, b′ ∈ B.

Remark 1.6.19. The notions of Takeuchi’s ×A-bialgebra in [73], Lu’s bialgebroid in

[48], Xu’s bialgebroid with an anchor in [85] have been shown to be equivalent in [11].

Definition 1.6.18 is just the one in [48]. Similarly, we can define a right bialgebroid,

see [4, 40]. In particular, when A is Frobenius-Separable, a left ( right) bialgebroid is

equivalent to a weak bialgebra, see [67].

Definition 1.6.20. [10, Defn.4.1] A Hopf algebroid H = (HL,HR, S) consists of a left

bialgebroidHL = (H,L, sL, tL,∆L, εL), a right bialgebroidHR = (H,R, sR, tR,∆R, εR)

and a k-module map S : H −→ H, called the antipode, such that the following con-

ditions hold:

(1) sL ◦ εL ◦ tR = tR, tL ◦ εL ◦ sR = sR,

sR ◦ εR ◦ tL = tL, tR ◦ εR ◦ sL = sL,

(2) (∆L ⊗ id) ◦∆R, (id⊗∆R) ◦∆L,

(3) S is both L-linear and R-linear,

(4) mH ◦ (id⊗ S) ◦∆L = sR ◦ εR, mH ◦ (S ⊗ id) ◦∆R = sL ◦ εL.

Example 1.6.21. Let H be a weak Hopf algebra with a bijective antipode. By [10]

we get a Hopf algebroid H consisting of a left bialgebroid Hl and a right bialgebroid

Hr:

Hl = (H,Ht, idHt
, S−1|Ht

,∆, εt), Hr = (H,Hs, idHs
, S−1|Hs

,∆, εs).

Remark 1.6.22. The other equivalent notions of a Hopf algebroid with a bijective

antipode have been given by Böhm and Szlachányi, see [10, Prop.4.2]. Moreover,

Galois theory of Hopf algebroids can be found in [4, 5].
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Chapter 2

Constructions of braided

Hopf algebras

Let (H,R) be a quasi-triangular weak Hopf algebra over a field k. In this chapter,

we will discuss how to construct a braided Hopf algebra from (H,R). In Section 2.1,

we will mainly work out the full center of the unit object. This full center will be

equipped with the structure of a braided Hopf algebra in Section 2.2.

2.1 The full centre of the unit object

Let H be a Hopf algebra. There exists an adjoint pair of functors between the

category of H-modules and the category of Yetter-Drinfeld modules, see [17]. Now

we generalize this to the case of a weak Hopf algebra.

Lemma 2.1.1. Let H be a weak Hopf algebra with a bijective antipode S. Then the

forgetful functor F ′ : HHY D −→ HM has a right adjoint functor

I ′(−) : HM −→ H
HY D ,

where I ′(N) = 11HS(1′2)⊗ 121′1 ·N with the following H-action and H-coaction:

h · (g ⊗ n) = h1gS(h3)⊗ h2 · n, ρL(g ⊗ n) = g1 ⊗ g2 ⊗ n.
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The adjunction morphisms

αM : M −→ I ′F ′(M), βL : F ′I ′(L) −→ L

are given by the comodule structure on M and by the counit respectively:

αM (m) = m[−1] ⊗m[0], βL(h⊗ n) = εt(h) · n.

In particular, the adjunction morphism β is epic.

Proof. Although it is similar to the proof of Corollary 2.8 in [17] or Proposition. 5.1

in [27], we write down the detail for the sake of completeness. Denote by H �N the

object I ′(N) for N ∈ HM .

(1) We first show that for a left H-module N , I ′(N) is a left-left Yetter-Drinfeld

module. The right H-action as above is well-defined since

h1gS(h3)⊗ h2 · n = 11h1gS(h3)S(13)⊗ 12h2 · n ∈ H �N.

For all g ⊗ n ∈ H �N , we have g ⊗ n = 11gS(13)⊗ 12 · n = 11gS(1′2)⊗ 121′1 · n.

ρL(g ⊗ n) = ρ(11gS(1′2)⊗ 121′1 · n) = g1 ⊗ 11g2S(1′2)⊗ 121′1 · n ∈ H ⊗ (H �N).

Note that ∆(x) = 11x⊗ 12 for any x ∈ Ht. So

1′′1g1 ⊗ 1′′2 · (g2 ⊗ n) = 1′′1g1 ⊗ 1′′211g2S(1′2)⊗ 121′1 · n = g1 ⊗ (g2 ⊗ n).

Thus ρL(g ⊗ n) ∈ 11H ⊗ 12 · (H �N). The compatible condition holds since

ρ[h · (g ⊗ n)] = ρ(h1gS(h3)⊗ h2 · n)

= h1g2S(h5)⊗ h2g2S(h4)⊗ h3 · n

= h1g2S(h3)⊗ h2 · (g2 ⊗ n),

for any h ∈ H. Hence, the functor I ′(−) : HM −→ H
HY D is well-defined.

(2) Next we verify that α is natural. We have that for all m ∈M ∈ H
HY D ,

m[−1] ⊗m[0] = 11m[−1]S(13)⊗ 12 ·m[0].
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So α is well-defined. For any morphism f from M to N in the category of Yetter-

Drinfeld modules, the following diagram is commutative

M - N

?
I ′F ′(f)

Id(f)

H � F (M) - H � F (N).
?

αM αN

The coassociativity implies the H-colinearity of α. So α : Id −→ I ′F ′ is a natural

transformation.

(3) β is also a natural transformation. Indeed, for any left H-module L,

βL[h · (g ⊗ l)] = βL(h1gS(h3))⊗ h2 · l)

= εt(h1gS(h3)) · (h2 · l)

= [εt(h1gS(h3))h2] · l

= ε(h1gS(h3))h2 · l

= ε(εs(h1)gS(h3))h2 · l

= ε(11gS(h2))h112 · l

= ε(11gS(εs(h2)))h112 · l

= ε(11gS(S(1′2)))h1′112 · l

= ε(11gS(1′2))h · (1′112 · l)

= h · (ε(11gS(1′2))1′112 · l)

= h · (εt(11gS(1′2))1′112 · l)

= h · [βL(11gS(1′2)⊗ 1′112 · l)]

= h · [βL(g ⊗ l)],

for any g⊗ l ∈ H �L and h ∈ H. So βL is left H-linear. Given a morphism g from L

to U in the category of left H-modules. Then g is left Ht- and Hs-linear. Thus,

g(εt(a) · l) = εt(a) · g(l).

for any a⊗ l ∈ H � L. Hence, the diagram defining a natural transformation holds.
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L

F (H � L) -

U
?

F ′I ′(g)

Id(g) -

F ′(H � U)

?

βL βU

(4) We check the adjunction axioms for α and β. The composition

βF ′ ◦ F ′α : F ′ −→ F ′I ′F ′ −→ F ′

is the identity. Let M be a left-left Yetter-Drinfeld module, and m ∈M. We have

βF ′ ◦ F ′α(m) = βF ′(m[−1] ⊗m[0]) = εt(m[−1]) ·m[0] = m.

On the other hand, for any left H-module L and all l ∈ L, we have

I ′β ◦ αI ′(l) = I ′β ◦ α(l1 ⊗ l0) = I ′β(l11 ⊗ l12 ⊗ l0) = (l1 ⊗ l0) = I ′(l),

here I ′(l) = l1 ⊗ l0 ∈ H � L. So the composition I ′β ◦ αI is also the identity.

(5) Finally, we verify that the map β is epic. For all n ∈ N ,

βL(n[−1] ⊗ n[0]) = εt(n[−1]) · n[0] = n. �

Remark 2.1.2. (1) Since the braiding of the category H
HY D is not involved in the

proof of Lemma 2.1.1, this adjoint relation holds also for the category H
HY Drev.

Namely, the forgetful functor F ′ : H
HY Drev −→ HM has a right adjoint functor

I ′(−) : HM −→ H
HY Drev, where F ′ and I ′ are the same as in Lemma 2.1.1.

(2) The functor I ′(−) := H � − is just the ×Ht-product in the sense of [73]. In

particular, the functor I ′(−) is lax monoidal, see Section 1.5.

In what follows, we will mainly consider H �Ht.

Lemma 2.1.3. Let H be a weak Hopf algebra. Then H �Ht = 11H1′1 ⊗ 121′2.

Proof. It is clear that H �Ht ⊇ 11H1′1 ⊗ 121′2. For all x ∈ Ht and h ∈ H, we have

11hS(1′2)⊗ 121′1 · x = 11hS(1′2)⊗ 12xS(1′1) = 11S
−1(x)h1′1 ⊗ 121′2 ∈ 11H1′1 ⊗ 121′2.
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So H �Ht ⊆ 11H1′1 ⊗ 121′2.

Now we work out the module structure on H �Ht. For all g, h ∈ H,

h · (11g1′1 ⊗ 121′2) = h111g1′1S(h3)⊗ h2 · (121′2)

= h111g1′1S(h3)⊗ εt(h2121′2)

= h1g1′1S((h21′2)2)⊗ εt[(h21′2)1]

= h1g1′1S(1′′2h21′2)⊗ S(1′′1)

= h1gS(h2)11 ⊗ 12.

Since Ht is an algebra in the category of left H-modules, Theorem 5.4 in [26] implies

that I ′(Ht) is an algebra in the category of left-left Yetter-Drinfeld modules with the

following structure

(11g1′1 ⊗ 121′2)(1′′1h1′′′1 ⊗ 1′′21′′′2 ) = (11g1′1h1′′1 ⊗ 121′21′′2),

for all g, h ∈ H.

Let H be a weak Hopf algebra. Consider the adjoint action on H, for all g, h ∈ H,

H ⊗H −→ H, g · h = g1hS(g2).

In general, the equation h = 11hS(12) is not necessarily true, see Example 2.1.4 below.

So H with the adjoint action is not necessarily a left H-module.

Now define a k-linear map p : H −→ H, h 7−→ 11hS(12) and so we have a

decomposition H = H0 ⊕ H1, where p(H0) = 0 and p(h) = h, for all h ∈ H1. It is

easy to prove H1 = CH(Hs), where CH(Hs) is the centralizer of Hs in H, see [57].

Example 2.1.4. Böhm and Szlachányi described first the following weak Hopf al-

gebra H of dimension 13, whose structures were given by the matrix unit basis, see

Section 5 in [9]. Now we present H in the form of generators as in [58]: Let k = C
and λ−1 = 4cos2 π5 . As an algebra, H is generated by {1, e1, e2, e3} with the following

relations:

e2i = ei, i = 1, 2, 3, e1e3 = e3e1,

e1e2e1 = λe1, e2e3e2 = λe2,

e3e2e3 = λe3, e2e1e2 = λe2.
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The formulas for the comultiplication are as follows:

∆(1) = e3 ⊗ e1 + (1− e3)⊗ (1− e1),

∆(e1) = e1e3 ⊗ e1 + e1(1− e3)⊗ (1− e1),

∆(e3) = e3 ⊗ e1e3 + (1− e3)⊗ (1− e1)e3,

∆(e2) = (1− (e3−e2)2
1−λ )⊗ (1− (e1−e2)2

1−λ ) + λe3 ⊗ e1
+(1− λ)λe3−e2e3√

λ−λ2
⊗ λe1−e2e1√

λ−λ2
+ λλe3−e3e2√

λ−λ2
⊗ λe1−e1e2√

λ−λ2

+(1− λ)( (e3−e2)2
1−λ − e3)⊗ ( (e1−e2)2

1−λ − e1)

The counit is given by :

ε(1) = ε(e2) = 2,

ε(e1) = ε(e3) = ε(e1e3) = 1,

ε(e1e2) = ε(e3e2) = ε(e1e3e2) = 1,

ε(e1e2e3) = ε(e3e2e1) = λ,

ε(e2e1) = ε(e2e3) = ε(e2e1e3) = ε(e2e1e3e2) = 2λ.

The antipode is determined by

S(1) = 1, S(e1) = e3, S(e3) = e1

S(e2) = (λe3 + (1− λ)(1− e3))e2(λe3 + (1− λ)(1− e3))−1.

It is easy to see that Ht and Hs are generated by {1, e1} and {1, e3} respectively.

Now we work out the centralizer subalgebra CH(Hs). Clearly,

111HS(12) = 1H , 11e1S(12) = e1, 11e3S(12) = e1.

However, 11e2S(12) 6= e2. In fact, 11e2S(12) is of the form:

11e2S(12) = e3e2S(e1) + (1− e3)e2S(1− e1)

= e3e2e3 + (1− e3)e2(1− e3)

= e3e2e3 + (e2 − e3e2)(1− e3)

= e3e2e3 + e2 − e3e2 − e2e3 + e3e2e3
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= 2λe3 + e2 − e3e2 − e2e3
= (2λ− 1)e3 + (e2 − e3)2.

Suppose that 11e2S(12) = e2. Then 2λe3 + e2 − e3e2 − e2e3 = e2, which means

2λe3−e3e2 = e2e3. So we have 2λe3e3−e3e2e3 = e2e3e3. Since e3
2 = e3 and e3e2e3 =

λe3, then λe3 = e2e3 and so λe3e2 = e2e3e2. Using e2
2 = e2 and e2e3e2 = λe2, we can

get λe3e2 = λe2 and so λe2e3e2 = λe2
2, which implies that λ2e2 = λe2 and λ2 = λ.

Thus λ = 1, which is a contradiction since λ−1 = 4cos2 π5 .

Therefore, CH(Hs) = 11HS(12) is generated by {1, e1, e3, (2λ−1)e3 + (e2− e3)2}.

Lemma 2.1.5. Let H be a weak Hopf algebra. Then CH(Hs) is a left H-module with

the left adjoint action h · x = h1xS(h2) for all x ∈ CH(Hs) and h ∈ H.

Proof. Straightforward.

For any x, y ∈ CH(Hs), by ∆(1) ∈ Hs ⊗Ht, 11xyS(12) = xy. Now we have the

following lemma:

Lemma 2.1.6. Let H be a weak Hopf algebra. Then the multiplication of H induces

the following morphism µ on CH(Hs) in the category of left H-modules:

µ : CH(Hs)⊗t CH(Hs) −→ CH(Hs),

a⊗t b 7−→ ab.

Proof. Note that (11 · x)(12 · y) = xS(11)12y = xy for all x, y ∈ CH(Hs). So the map

µ is well-defined. For all h ∈ H, we have

h · (xy) = h1(xy)S(h2)
(1.3)
= h1εs(h2)xyS(h3)

(1.6)
= h1xεs(h2)yS(h3) = h1xS(h2)h3yS(h4)

= (h1 · x)(h2 · y).

Thus the map µ is a morphism in the category of left H-modules.

Lemma 2.1.7. Let H be a weak Hopf algebra. Then (CH(Hs), µ) is an algebra in

the category of left H-modules with the following unit:

η = IdHt
: Ht −→ CH(Hs).
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Proof. It is clear that µ is associative. We only need to check the axioms for the unit.

It follows from the definition of l−1 that

µ(η ⊗ 1)l−1(x) = µ(η ⊗ 1)(S(11)⊗ 12 · x)

= µ(S(11)⊗ 12 · x)

= S(11)(12 · x) = x.

for any x ∈ CH(Hs). So µ(η ⊗ 1) = id. Similarly, we also have

µ(1⊗ η)r−1(x) = µ(1⊗ η)(11 · x⊗ 12) = µ(11 · x⊗ 12) = x.

Similarly, CH(Hs) with the comultiplication ∆ is an algebra in the category of

left-left Yetter-Drinfeld modules.

Lemma 2.1.8. Let H be a weak Hopf algebra. Then I ′(Ht) is isomorphic to CH(Hs)

as an algebra in the category H
HY D of left-left Yetter-Drinfeld modules, where CH(Hs)

has the following action and coaction:

h · g = h1gS(h2), ρL(g) = g1 ⊗ g2,

for all g ∈ CH(Hs) and h ∈ H. In particular, I ′(Ht) is quantum commutative.

Proof. First consider a k-linear map r : H ⊗H −→ H, g ⊗ h 7−→ S−1(h)g. We get

r(11hS(1′2)⊗ 121′1 · x) = S−1((121′1 · x))[11hS(1′2)]

= S−1(12xS(1′1))[11hS(1′2)]

= 1′1S
−1(x)hS(1′2) ∈ CH(Hs).

So we have a well-defined map:

r : H �Ht −→ CH(Hs), 11hS(1′2)⊗ 121′1 · x 7−→ 1′1S
−1(x)hS(1′2).

Define another map:

r′ : CH(Hs) −→ H �Ht, h 7−→ 11h1′1 ⊗ 121′2.
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We then show that the map r′ is the inverse of the map r. In fact, for h ∈ H, we have

r′r(11h1′1 ⊗ 121′2) = r′(11hS(12))

= 111′′1hS(1′′2)1′1 ⊗ 121′2

= 111′′1h1′1 ⊗ 121′′21′2

= 11h1′1 ⊗ 121′2.

So r′r = idH�Ht
. On the other hand, we have

rr′(h) = r(11h1′1 ⊗ 121′2) = 11hS(12) = h.

Thus rr′ = idCH(Hs).

Now we claim that r is an algebra isomorphism between H � Ht and CH(Hs)

as algebras in the category of Yetter-Drinfeld modules. It is easy to see that r is

H-colinear. For all g, h ∈ H, we have

r[h · (11g1′1 ⊗ 121′2)]

= r(h1gS(h2)11 ⊗ 12)

= h1gS(h2) = h · (11gS(12))

= h · [r(11g1′1 ⊗ 121′2)].

So r is H-linear. For all g, g′ ∈ H,

r[(11g1′1 ⊗ 121′2)(11g
′1′1 ⊗ 121′2)]

= r(11g1′1g
′1′′1 ⊗ 121′21′′2)

= r(11g1′1g
′1′′1 ⊗ 121′21′′2)

= 111′1gS(1′2)g′S(12)

= 1′1gS(1′2)11g
′S(12)

= r(11g1′1 ⊗ 121′2)r(11g
′1′1 ⊗ 121′2).

Finally, the quantum commutativity of CH(Hs) follows from

(a1 · b)a2 = a1bS(a2)a3 = a1S(a2)a3b = ab.

for all a, b ∈ CH(Hs).
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Now we give the relation between the full center of the algebra Ht and CH(Hs).

Lemma 2.1.9. Let H be a weak Hopf algebra. Then the full center Z(Ht) of the

algebra Ht in the category of left H-modules is isomorphic to the algebra CH(Hs) in

the category of left-left Yetter-Drinfeld modules.

Proof. By Theorem 5.4 in [26], the full center Z(Ht) of Ht in the category of left

H-modules is isomorphic to the left center Cl(I
′(Ht)) of I ′(Ht) in the category of

left-left Yetter-Drinfeld modules. By Lemma 2.1.8, I ′(Ht) is quantum commutative.

So Cl(I
′(Ht)) = I ′(Ht). Thus Z(Ht) ' CH(Hs) as algebras.

2.2 Constructing a braided Hopf algebra

It is well-known that if H is a quasi-triangular Hopf algebra, then H can be deformed

into a Hopf algebra in the category of left modules, see [50, 52]. In general, a weak

Hopf algebra H with a usual adjoint action is not necessarily a left (unitary) H-

module, see Example 2.1.4. So one should not expect that a quasi-triangular weak

Hopf algebra with the usual adjoint action can be deformed. Based on the full center

CH(Hs) of the unit object Ht, however, we can still construct a Hopf algebra in the

category of left H-modules in a similar way to Majid’s method in [50].

Let (H,R) be a quasi-triangular weak Hopf algebra. Consider a map ∆:

∆ : CH(Hs) −→ H ⊗H, x 7−→ x1S(R2)⊗R1 · x2,

where the R-matrix R = R1 ⊗R2.

Lemma 2.2.1. Let (H,R) be a quasi-triangular weak Hopf algebra. Then the map

∆ is a k-linear map from H to CH(Hs)⊗ CH(Hs).

Proof. It is easy to see that ∆(H) ⊂ H ⊗ CH(Hs). Moreover,

∆(x) = x1S(R2)⊗R1 · x2 = x1S(R2)⊗R1
1x2S(R1

2)

= x1S(R2r2)⊗R1x2S(r1)
(1.16)

= x1r
2S(R2)⊗R1x2r

1

= r2x2S(R2)⊗R1r1x1 = R2 · x2 ⊗R1x1 ∈ CH(Hs)⊗H.

Thus ∆ is well-defined.
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Lemma 2.2.2. Let (H,R) be a quasi-triangular weak Hopf algebra. Then the follow-

ing hold:

1. The map ∆ is a k-linear map from H to CH(Hs)⊗t CH(Hs);

2. In particular, ∆|CH(Hs) is a morphism in the category of left H-modules;

3. The morphism ∆ is coassociative.

Proof. By Lemma 2.2.1, the first statement is true if

11 · (x1S(R2))⊗ 12 · (R1 · x2) = ∆(x),

for all x ∈ H. Indeed,

11 · (x1S(R2))⊗ 12 · (R1 · x2)

= 11x1S(R2)S(12)⊗ 13R
1 · x2

= 11x1S(R2)S(1′1)S(12)⊗ 1′2R
1 · x2

= 11x1S(1′1R
2)S(12)⊗ 1′2R

1 · x2
(1.12)

= 11x1S(1′1S(1′2)R2)S(12)⊗R1 · x2
= 11x1S(R2)S(12)⊗R1 · x2 = x1S(R2)⊗R1 · x2,

where the last equality was given by ∆(x) ∈ CH(Hs)⊗H.

Now we show that ∆ restricts to a morphism in the category of left modules. For

any h ∈ H, we have

h1 · (x1S(R2))⊗ h2 · (R1 · x2) = h1x1S(R2)S(h2)⊗ h3R1 · x2
= h1x1S(h2R

2)⊗ h3R1 · x2
= h1x1S(R2h3)⊗R1h2 · x2
= h1x1S(h4)S(R2)⊗R1 · (h2x2S(h3))

= (h · x)1S(R2)⊗R1 · (h · x)2 = ∆(h · x).

Finally, we verify that the map ∆ is coassociative. Indeed, for all x ∈ RH,

(∆⊗ 1) ◦∆(x) = ∆(x1S(R2))⊗R1 · x2
= (x1S(R2))1S(r2)⊗ r1 · (x1S(R2))2 ⊗R1 · x2
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= x1S(R2)S(r2)⊗ r1 · (x2S(R′2))⊗R1R′1 · x3
= x1S(r2R2)⊗ r1 · (x2S(R′2))⊗R1R′1 · x3
= x1S(R2)⊗R1

1 · (x2S(R′2))⊗R1
2R
′1 · x3

= x1S(R2)⊗R1
1 · (x2S(R′2))⊗R1

2 · (R′1 · x3)

= x1S(R2)⊗∆(R1 · x2).

Thus the proof is completed.

Lemma 2.2.3. Let (H,R) be a quasi-triangular weak Hopf algebra. Then the map

εt is a left H-linear map from CH(Hs) to Ht.

Proof. For all h ∈ H,x ∈ CH(Hs), we have

εt(h · x) = εt(h1xS(h2))
(1.5)
= εt(h1xεtS(h2))

= εt(h1xSεs(h2))
(1.3)
= εt(h11xS

2(12))

= εt(hx11S
2(12)) = εt(hx11S(12))

= εt(hx) = εt(hεt(x)).

Thus εt is left H-linear.

Now the coalgebraic structure on CH(Hs) can be given as follows:

Lemma 2.2.4. Let (H,R) be a quasi-triangular weak Hopf algebra. Then CH(Hs) is

a coalgebra in the category of left H-modules with the following structures:

∆ : CH(Hs) −→ CH(Hs)⊗t CH(Hs),

ε = εt : CH(Hs) −→ Ht.

Proof. Using Lemma 2.2.2 and 2.2.3, we only need to check the axioms of the counit,

(εt ⊗ 1) ◦∆ = Id = (1⊗ εt) ◦∆. For all x ∈ CH(Hs), we compute the following:

r(1⊗ εt) ◦∆(x) = S(εt(R
1 · x2)) · (x1S(R2))

= 11(x1S(R2))S(12)S2(εt(R
1 · x2))

= [1 · (x1S(R2))]S2(εt(R
1 · x2))

= (x1S(R2))εt(R
1 · x2)
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= (x1S(R2))ε(11R
1
1x2S(R1

2))12

= (x1S(R2R′2))ε(S−1(11)R1x2S(R′1))12
(1.12)

= (x1S(11R
2R′2))ε(R1x2S(R′1))12

= x1S(R2)ε(R1
1x2S(R1

2))S(11)12

= x1S(R2)ε(R1
1x2S(R1

2))

= x1S(R2)ε(εs(R
1
1)x2S(R1

2))
(1.2)
= x1S(R2)ε(11x2S(R112))

= x1S(R2)ε(11x2S(12)S(R1))
(1.16)

= x1R
2ε(11x2S(12)R1)

(1.5)
= x1R

2ε(11x2S(12)εt(R
1))

(1.15)
= x11′1ε(11x2S(12)1′2)

= x11′1ε(11x21′2S(12)) = (1 · x)1ε((1 · x)2) = x.

Similarly, by the equations (2.1)-(2.7), we have

l(∆⊗ 1) ◦∆(x) = [εt(x1S(R2))R1] · x2
(1.5)
= [εt(x1εtS(R2))R1] · x2

= [εt(x1Sεs(R
2))R1] · x2

(1.14)
= [εt(x1S(11))S(12)] · x2

= [εt(x112)11] · x2 = 1′1[εt(x112)x2S(11)]S(1′2)

= 1′1[εt(x1S
−1(11))x212]S(1′2) = 1′1[εt(x1S(11))x212]S(1′2)

(1.4)
= 1′1[εt(x1εt(11))x212]S(1′2) = 1′1[εt(x111)x212]S(1′2)

= 1′1[εt(x1)x2]S(1′2)
(1.4)
= 1 · x = x.

Thus (CH(Hs),∆, ε) is a coalgebra in the category of left H-modules.

Now we show that CH(Hs) can be equipped with a bialgebraic structure.

Lemma 2.2.5. Let (H,R) be a quasi-triangular weak Hopf algebra. Then CH(Hs) is

a bialgebra in the category of left H-modules.

Proof. For all x, y ∈ CH(Hs), we have

εt(xy) = ε(11xy)12
(1.5)
= ε(11xεt(y))12

= ε(x11εt(y))12 = ε(xεt(y)11)12
(1.5)
= ε(xεt(y)S(11))12

(1.7)
= ε(xS(11))12εt(y)

(1.5)
= ε(x11)12εt(y) = ε(11x)12εt(y) = εt(x)εt(y),
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which shows that ε is an algebra map. By Lemma 2.2.1 and 2.2.4, it remains only to

verify the equation (3.1). Note that RR = 12 ⊗ 11. The compatible condition on ∆

is shown by the following computation:

(µ⊗ µ)(1⊗ C ⊗ 1)(∆⊗∆)(11 · x⊗ 12 · y)

= (µ⊗ µ)(1⊗ C ⊗ 1)(∆⊗∆)(xS(11)⊗ 12y)

= (µ⊗ µ)(1⊗ C ⊗ 1)(x1S(11)S(R2)⊗R1 · x2 ⊗ 12y1S(R′2)⊗R′1 · y2)

= (µ⊗ µ)(x1S(R211)⊗ r2 · (12y1S(R′2))⊗ r1R1 · x2 ⊗R′1 · y2)

= (µ⊗ µ)(x1S(R211)⊗ r212 · (y1S(R′2))⊗ r1R1 · x2 ⊗R′1 · y2)

(1.11)
= (µ⊗ µ)(x1S(R2)⊗ r212 · (y1S(R′2))⊗ r111R

1 · x2 ⊗R′1 · y2)

= (µ⊗ µ)(x1S(R2)⊗ r2 · (y1S(R′2))⊗ r1R1 · x2 ⊗R′1 · y2)

= (x1S(R2))(r2 · (y1S(R′2)))⊗ (r1R1 · x2)(R′1 · y2)

= (x1S(R2
1))(R2

2 · (y1S(R′2)))⊗ (R1 · x2)(R′1 · y2)

= (x1S(R2
1))(R2

2(y1S(R′2))S(R2
3))⊗ (R1 · x2)(R′1 · y2)

= (x1εs(R
2
1))(y1S(R′2))S(R2

2)⊗ (R1 · x2)(R′1 · y2)

(1.2)
= (x111)(y1S(R′2))S(R212)⊗ (R1 · x2)(R′1 · y2)

(1.13)
= (x111)(y1S(R′2))S(R2)⊗ (R1S(12) · x2)(R′1 · y2)

= (x111)(y1S(R′2))S(R2)⊗ (R1 · (x2S2(12))(R′1 · y2)

= x111y1S(R2)⊗R1 · (x2S2(12)y2)

= x1111′1y1S(R2)⊗R1 · (x2S2(12)1′2y2)

= x11′1y1S(R2)⊗R1 · (x2S2(12)S−1(S(1′2)11)y2)

= x1y1S(R2)⊗R1 · (x2S2(12)S−1(11)y2)

= x1y1S(R2)⊗R1 · (x2S(11)12y2)

= x1y1S(R2)⊗R1 · (x2y2),

for all x, y ∈ CH(Hs). Thus the proof is completed.

Let (H,R) be a quasi-triangular weak Hopf algebra. Let u = S(R2)R1 and v =

R1S(R2), where R = R1 ⊗ R2. Then by [57, Prop.5.7] u and v are two invertible

elements in H, and for all h ∈ H, we have

u−1 = R2S2(R1), v−1 = S2(R1)R2, S2(h) = uhu−1, S−2(h) = vhv−1.

42



2.2. CONSTRUCTING A BRAIDED HOPF ALGEBRA

Similar to [51, Thm. 4.1], define a k-linear map:

S : CH(Hs) −→ H, x 7−→ R2R′2S(R1xS(R′1)).

Since R ∈ ∆op(1)(H ⊗H)∆(1), we have for all x ∈ RH,

11R
2R′2S(R1xS(R′1))S(12) = 11R

2R′2S(12R
1xS(R′1))

= R2R′2S(R1xS(R′1)),

which implies that S is also a well-defined map from CH(Hs) to itself.

Lemma 2.2.6. Let (H,R) be a quasi-triangular weak Hopf algebra. Then the map

S : CH(Hs) −→ CH(Hs) is left H-linear.

Proof. Take x ∈ CH(Hs). We have

S(x) = R2R′2S(R1xS(R′1))

= R2R′2S2(R′1)S(R1x)

= R2u−1S(R1x).

Using the properties of R, we get

S(h · x) = R2u−1S(R1h1xS(h2))

= R2u−1S2(h2)S(R1h1x)

= R2h2u
−1S(R1h1x)

= h1R
2u−1S(h2R

1x) = h · S(x),

for all h ∈ H. Hence, S is left H-linear.

Now we state the main result in this chapter.

Theorem 2.2.7. Let (H,R) be a quasi-triangular weak Hopf algebra. Then CH(Hs)

is a Hopf algebra in the category (HM,⊗t, Ht, l, r) with the following structures:

1. the multiplication µ and the unit η are defined by:

µ : CH(Hs)⊗t CH(Hs) −→ CH(Hs), a⊗t b 7−→ (11 · a)(12 · b),

η = IdHt
: Ht −→ CH(Hs), x 7−→ x.

43



CHAPTER 2. CONSTRUCTIONS OF BRAIDED HOPF ALGEBRAS

2. the comultiplication ∆ and the counit ε are given by:

∆ : CH(Hs) −→ CH(Hs)⊗t CH(Hs), x 7−→ x1S(R2)⊗R1 · x2,

ε = εt : CH(Hs) −→ Ht, x 7−→ εt(x).

3. the antipode S is given by

S : CH(Hs) −→ CH(Hs), x 7−→ R2R′2S(R1xS(R′1)).

Proof. Using Lemma 2.2.5 and 2.2.6, it is sufficient to verify the axiom of the antipode

S. Note that ∆(x) ∈ CH(Hs) ⊗t CH(Hs) and RR = ∆(1). For all x ∈ CH(Hs), we

directly compute the following:

µ ◦ (1⊗ S) ◦∆(x) = x1S(r2)R2R′2S(R1(r1 · x2)S(R′1))

= x1S(r2)R2S(R1
1(r1 · x2)S(R1

2))

= x1S(r2)R2S(R1r1 · x2))

= x1S(R2
1)R2

2S(R1 · x2))

= x1εs(R
2)S(R1 · x2))

(1.14)
= x111S(S(12) · x2)

= x111S(x2S
2(12))

= x111S(x212) = εt(x).

Similarly, we also have

µ ◦ (S ⊗ 1) ◦∆(x) = R2u−1S(R1x1S(r2))(r1 · x2)

= R2u−1S2(r2)S(R1x1)(r1 · x2)

= R2r2u−1S(R1x1)(r1 · x2)

= R2u−1S(R1
1x1)(R1

2 · x2)

= R2u−1S(x1)S(R1
1)R1

2x2S(R1
3)

(1.2)
= R2u−1S(x1)11x2S(R112)

= R2u−1S(x1)11x2S(12)S(R1)

= R2u−1εs(1 · x)S(R1)

= R2u−1S(R1S−1εs(x))
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(1.11)
= S−1εs(x)R2u−1S(R1)

= S−1(11)ε(x12)R2R′2S2(R′1)S(R1)

= 12ε(xS(11))R2R′2S(R1S(R′1))

(1.4)
= 12ε(xεt(11))R2S(R1

1S(R1
2))

(1.5)
= 12ε(x11)R2Sεt(R

1)

(1.15)
= 12ε(x11)1′1S(1′2) = εt(x).

Therefore, S is the antipode of CH(Hs).

Now we apply Theorem 2.2.7 to the quantum double of a weak Hopf algebra.

Example 2.2.8. Let H be a finite dimensional regular weak Hopf algebra. We use

the following Sweedler hit actions:

h ⇀ φ = φ1〈h, φ2〉, φ ↼ h = 〈h, φ1〉φ2,

for all h ∈ H,φ ∈ H∗. Nikshych et. al showed in [57] that the linear span J of the

following elements

φ⊗ yh− (y ⇀ ε)φ⊗ h, y ∈ Hs,

φ⊗ zh− (ε ↼ z)φ⊗ h, z ∈ Ht,

is a two-sided ideal in (Hop)∗⊗H. Denote by D(H) the factor-algebra (Hop)∗⊗H/J .

We write [φ⊗ h] for the class of φ⊗ h in D(H). Then D(H) is a weak Hopf algebra

with the following structures:

[φ⊗ h][ψ ⊗ g] = [ψ2φ⊗ h2g]〈S(h1), ψ1〉〈h3, ψ3〉, 1D(H) = [ε⊗ 1]

∆([φ⊗ h]) = [φ1 ⊗ h1]⊗ [φ2 ⊗ h2], ε([φ⊗ h]) = 〈εt(h), φ〉,

S([φ⊗ h]) = [S−1(φ2)⊗ S(h2)]〈h1, φ1〉〈S(h3), ψ3〉,

D(H)s = [H∗s ⊗ 1], D(H)t = [ε⊗Ht].

for all φ, ψ ∈ (Hop)∗ and h, g ∈ H. In addition, D(H) has the following quasi-

triangular structure:

R =
∑
i

[ei ⊗ 1]⊗ [ε⊗ ei], R =
∑
j

[S−1(ej)⊗ 1]⊗ [ε⊗ ej ],
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where {ei} and {ei} are dual basis of H and H∗.

By Theorem 2.2.7, the centralizer subalgebra CD(H)(D(H)s) is a Hopf algebra in

the category of left D(H)-modules.

Remark 2.2.9. (1) When Ht = Hs = k, it is clear that CH(Hs) = H is a Hopf

algebra in the category of left H-modules, see [50].

(2) Similarly, we can also construct another braided Hopf algebra based on CH(Ht).

(3) It is easy to check that the Hopf algebra CH(Hs) in the category (HM,⊗t, Ht, l, r)

is cocommutative in the sense of [50], see Definition 2.3 in [50].

(4) In Example 2.2.8, by taking H as a special weak Hopf algebra like a groupoid

algebra, a face algebra in [38] or a generalized Kac algebra in [86], we can easily get

many detailed Hopf algebras in corresponding braided monoidal categories.

Let (H,R) be a quasi-triangular weak Hopf algebra. In what follows, a braided

Hopf algebra will always mean the Hopf algebra CH(Hs) in the category of left H-

modules in Theorem 2.2.7 and be denoted by RH.

Now we look at the dual case, the construction of a braided Hopf algebra from a

coquasi-triangular weak Hopf algebra. Let (H,σ) be a coquasi-triangular weak Hopf

algebra with a bijective antipode S. H contains an idempotent element e = 1112. So

there exists a decomposition H = eH ⊕ (1 − e)H. We can prove that eH is a Hopf

algebra in the category of H-comodules, see [23].

Theorem 2.2.10. Let (H,σ) be a coquasi-triangular weak Hopf algebra. Then eH is

a Hopf algebra in the category of right H-comodules with the following structures:

1. the multiplication m and unit η are defined by,

m : eH ⊗ eH → eH, m(eh⊗ eg) = eh2g2σ(S(h1)h3, S(g1))

η : Hs → eH, η(x) = ex

2. the comultiplication ∆ and counit εs are given by,

∆ : eH → eH ⊗ eH, ∆(eh) = eh1 ⊗ eh2,

ε = εs : eH → Hs.
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3. the antipode S is given by,

S : eH → eH, S(eh) = eS(h2)σ(S(h1), h5)σ(S2(h3), (h4).

2.3 The case of the right Drinfeld center

Now we consider the case of the right Drinfeld center that will be used in Chapter 5.

Let C and D be two categories. Assume that the functor F : D −→ C has a right

adjoint I : C −→ D with a counit-unit adjunction (β, α) : F −→ G. Then we can

construct a hom-set adjunction

Φ : homC (F−,−) −→ homD(−, I−)

in the following steps: For each f : FY −→ X and each g : Y −→ IX , define

ΦY,X(f) = I(f) ◦ αY

and its inverse ΨY,X(g) = βX◦F (g). Conversely, if the functor F : D −→ C has a right

adjoint I : C −→ D with a hom-set adjunction Φ : homC (F−,−) −→ homD(−, I−),

then we can construct its counit-unit adjunction (β, α) : F −→ G with

βX = Φ−1GX,X(1GX) ∈ homC (FGX,X), αY = ΦY,FY (1FY ) ∈ homD(Y,GFY ).

Let C be a monoidal category. By Example 1.1.6, there exists a braided monoidal

equivalence

E : Zr(C ) −→ Zl(C )rev

with the inverse functor E−1. Note that Zl(C ) = Zl(C )rev as monoidal categories.

We have the following lemma:

Lemma 2.3.1. Let C be a monoidal category. Assume that there is a functor

R : C −→ Zr(C ). Then R is a right adjoint functor of the forgetful functor F :

Zr(C ) −→ C if and only if the composition functor E ◦ R : C −→ Zl(C ) is a right

adjoint functor of the forgetful functor F ′ : Zl(C ) −→ C .

Let C be a monoidal category. Assume that the forgetful functor F ′ : Zl(C ) −→ C

has a right adjoint functor R′ : C −→ Zl(C ) with the natural transformations of the
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adjunction:

αU : U −→ R′ ◦ F (U), βX : F ◦R′(X) −→ X

for all U ∈ Zl(C ) and X ∈ C . By Section 1.5 the functor R′ is automatically lax

monoidal, where the natural transformation ϕ2 is given by the composite

R′(βX ⊗ βY ) ◦R′(ϕ−12 (R′(X), R′(Y ))) ◦ αR′(X)⊗R′(Y ),

for all X and Y in C . Note that E gives a monoidal equivalence. By Lemma 2.3.1,

we have the following lemma:

Lemma 2.3.2. Let C be a monoidal category. Assume that the forgetful functor

F ′ : Zl(C ) −→ C has a right adjoint functor R′ : C −→ Zl(C ). Then the composition

functor R := E−1 ◦ R′ : C −→ Zr(C ) has a lax monoidal structure induced by E−1

and R′, where E is the same as above.

Remark 2.3.3. By [32, 33, 60], the functor R in Lemma 2.3.2 has another lax

monoidal structure defined as follows:

Let µX : F (RC (X)) −→ X be the image of idR(X) under the canonical isomorphism

hom(R(X), R(X)) ' hom(F (RC (X)), X),

for all X in C . Let µX,Y be the image of µX ⊗µY : RC (X)⊗RC (Y ) −→ RC (X ⊗Y )

under the canonical isomorphism

hom(F (RC (X))⊗ F (RC (Y )), X ⊗ Y ) ' hom(F (RC (X)⊗RC (Y )), X ⊗ Y )

' hom(RC (X)⊗RC (Y ), RC (X ⊗ Y )),

for all X and Y in C . If α′ and β′ are the counit and the unit of (F,R) respectively,

by the relation between its counit-unit adjunction and its hom-set adjunction, the

map µX,Y is given by the composition R(βX ⊗ βY ) ◦R(ϕ−1R(X),R(Y )) ◦ α
′
R(X)⊗R(Y ) :

R(X)⊗R(Y ) −→ R ◦ F (R(X)⊗R(Y )) −→ R[F (R(X))⊗ F (R(Y ))] −→ R(X ⊗ Y ).

By the counit α′ = E−1 ◦ α ◦E, this lax monoidal structure on R coincides with the

lax monoidal structure induced by E−1 and R′.

By Theorem 1.6.10, there exists a braided monoidal equivalence functor from

HY DH to H
HY Drev. Here we still denote this braided monoidal functor and its
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inverse by E and E−1 respectively.

Corollary 2.3.4. Assume that there is a functor R : HM −→ HY DH . Then the

functor R is a right adjoint functor of the forgetful functor F : HY DH −→ HM if

and only if the functor E ◦R is isomorphic to the functor I ′.

Proof. Follows from Theorem 1.6.9, Lemma 2.1.1 and 2.3.1.

Corollary 2.3.5. Assume that the forgetful functor F : HY DH −→ HM has a right

adjoint functor R : HM −→ HY DH . Then

E[R(Ht)] ' I ′(Ht)

as algebras in the category H
HY D , where E and R are as above.

Proof. By Corollary 2.3.4, the functor E ◦ R is also a right adjoint functor of the

forgetful functor F ′. By the uniqueness of a full center, E[R(Ht)] ' I ′(Ht) as algebras

in the category H
HY D .

Remark 2.3.6. (1) Since E is an equivalent functor, we have

R(Ht) ' E−1(I ′(Ht))

as algebras in the category HY DH . By Remark 2.3.2, the algebra R(Ht) was the

one constructed in [28, 32], which is of importance in the study of braided fusion

categories, see [28, 32]. Thus, this motives us to relate the theory in [28, 32] to the

full center of the unit object, see Chapter 5.

(2) Similar to [27], we can describe the full center of an algebra in the Drinfeld

center of H-modules by using the centralizer subalgebras of the smash product alge-

bra.
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Chapter 3

Braided autoequivalences and

bi-Galois objects

Let H be a quasi-triangular weak Hopf algebra over a field k. In the previous chap-

ter, we equipped the full center of the unit object with the structure of a braided

Hopf algebra. In this chapter, this braided Hopf algebra is used to re-describe the

Drinfeld center by showing that there exists a braided monoidal equivalence between

the category of Yetter-Drinfeld modules over H and the category of comodules over

this braided Hopf algebra. This equivalence motivates us to discuss the relation be-

tween braided autoequivalences and bi-Galois objects. Finally, we form the group of

quantum commutative Galois objects.

3.1 The Drinfeld center

Let (H,R) be a quasi-triangular weak Hopf algebra. By Theorem 2.2.7, we have the

braided Hopf algebra RH. In this section, we will investigate the relation between

the category of left comodules over RH and the category of left-left Yetter-Drinfeld

modules over H. Now we need a special case of Definition 1.3.5.

Definition 3.1.1. Let H be a quasi-triangular weak Hopf algebra with a bijective

antipode S. Let M be a left H-module. We call (M,ρl) a left RH-comodule in

the category of left H-modules if (M,ρl) is a left RH-comodule such that ρl is left
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H-linear, i.e.,

ρl(h ·m) = h1 ·m(−1) ⊗ h2 ·m(0), ∀h ∈ H, m ∈M.

In the sequel, a left RH-comodule will always mean a left RH-comodule in the

category of left H-modules. Similarly, we have a right RH-comodule and an RH-

bicomodule.

For any two left RH-comdules (M,ρl) and (N, ρl), M ⊗t N is a left RH-comdule

with the following structure:

h · (m⊗ n) = h1 ·m⊗ h2 · n,

ρl(m⊗ n) = (µ⊗ 1⊗ 1)(1⊗ C ⊗ 1)(ρl ⊗ ρl)(m⊗ n),

where m ∈M , n ∈ N , h ∈ H and C is the braiding of the category HM .

Remark 3.1.2. We denote by RH(HM ) the category of left RH-comodules and the

morphisms that are both left H-linear and left RH-colinear. By [70], the category
RH(HM ) is a monoidal category with the unit object Ht.

Now we discuss the relation between the category RH(HM ) and the category of

left-left Yetter-Drinfeld modules.

Lemma 3.1.3. Let H be a quasi-triangular weak Hopf algebra with a bijective antipode

S. Let (M,ρl) be a left RH-comodule. Then M is a left-left Yetter-Drinfeld module

with the following H-comodule structure:

ρL(m) = m(−1)R
2 ⊗R1 ·m(0),

where ρl(m) = m(−1) ⊗m(0) for all m ∈M.

Proof. For any m ∈M, we have

11m(−1)R
2 ⊗ 12R

1 ·m(0) = m(−1)11R
2 ⊗ 12R

1 ·m(0)

= m(−1)R
2 ⊗R1 ·m(0).

So ρL(M) ∈ H ⊗tM .
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Next let us check that (M,ρL) is a left H-comodule. For the coassociativity,

(1⊗ ρL)ρL = (1⊗ ρL)(m(−1)R
2 ⊗R1 ·m(0))

= m(−1)R
2 ⊗ (R1 ·m(0))(−1)q

2 ⊗ q1 · (R1 ·m(0))(0)

= m(−1)R
2 ⊗ (R1

1 ·m(0)(−1)
)q2 ⊗ q1 · (R1

2 ·m(0))

= m(−1)1S(r2)R2 ⊗ (R1
1r

1 ·m(−1)2)q2 ⊗ q1R1
2 ·m(0)

(1.9)
= m(−1)1S(r2)p2R2 ⊗ (p1r1 ·m(−1)2)q2 ⊗ q1R1 ·m(0)

(1.8)
= m(−1)1εs(r

2)R2 ⊗ (r1 ·m(−1)2)q2 ⊗ q1R1 ·m(0)

(1.14)
= m(−1)111R

2 ⊗ (S(12) ·m(−1)2)q2 ⊗ q1R1 ·m(0)

= m(−1)111R
2 ⊗ (m(−1)2S

2(12))q2 ⊗ q1R1 ·m(0)

= m(−1)111R
2 ⊗ (m(−1)212)q2 ⊗ q1R1 ·m(0)

= m(−1)1R
2 ⊗m(−1)2q

2 ⊗ q1R1 ·m(0)

= (m(−1)1R
2
1 ⊗ (m(−1)2R

2
2 ⊗R1 ·m(0))

= (∆⊗ 1)(m(−1)R
2 ⊗R1 ·m(0))

= (∆⊗ 1)ρL(m).

The counit axiom holds as we have

(ε⊗ 1)ρL(m) = ε(m(−1)R
2)(R1 ·m(0))

(1.5)
= ε(m(−1)εt(R

2))(R1 ·m(0))

(1.15)
= ε(m(−1)12)(S(11) ·m(0))

= ε(m(−1)S(11))(12 ·m(0))

= ε(m(−1)11)(12 ·m(0))

= ε(11m(−1))(12 ·m(0))

= εt(m(−1)) ·m(0)) = m,

where the last equality followed from the counit of a left RH-comodule.

Finally, the compatible condition holds since

h1(m(−1)R
2)⊗ h2 · [R1 ·m(0)]

= h111m(−1)S(12)R2 ⊗ h2R1 ·m(0)
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(1.3)
= h1m(−1)S(h2)h3R

2 ⊗ h4R1 ·m(0)

(1.10)
= h1m(−1)S(h2)R2h4 ⊗R1h3 ·m(0)

= (h1 ·m)(−1)R
2h2 ⊗R1 · (h1 ·m)(0).

for all m ∈M and h ∈ H.

The following lemma tells us that the converse of Lemma 3.1.3 also holds.

Lemma 3.1.4. Let H be a quasi-triangular weak Hopf algebra with a bijective antipode

S. Let (N, ρL) be a left-left Yetter-Drinfeld module. Then N is a left RH-comodule

with the following structure:

ρl(n) = n[−1]S(R2)⊗R1 · n[0],

where ρL(n) = n[−1] ⊗ n[0] for all n ∈ N .

Proof. First of all, we need to check that ρl is well-defined. For all n ∈ N ,

11 · [n[−1]S(R2)]⊗ 12R
1 · n[0] = [n[−1]S(R2)]S(11)⊗ 12R

1 · n[0]
= [n[−1]S(11R

2)]⊗ 12R
1 · n[0]

= [n[−1]S(R2)]⊗R1 · n[0]
11[n[−1]S(R2)S(12)⊗R1 · n[0] = 11n[−1]S(12R

2)⊗R1 · n[0]
(1.11)

= 11n[−1]S(R2)⊗R112 · n[0]
= 11n[−1]S(R2)⊗R1 · (12 · n[0])

= n[−1]S(R2)⊗R1 · n[0].

So ρl(N) ⊂ RH ⊗t N . The H-linearity of the map ρl follows from

h1 · [n[−1]S(R2)]⊗ h2R1 · n[0]
= h1n[−1]S(R2)S(h2)⊗ h3R1 · n[0]
= h1n[−1]S(h2R

2)⊗ h3R1 · n[0]
(1.10)

= h1n[−1]S(R2h3)⊗R1h2 · n[0]
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= (h1n[−1]S(h3))S(R2)⊗R1 · (h2 · n[0])

= (h · n)[−1]S(R2)⊗R1 · (h · n)[0]

= ρl(h · n),

for all h ∈ H.

Now let us show that (N, ρl) is a left RH-comodule. For any n ∈ N,

(1⊗ ρl)ρl(n) = n[−1]S(R2)⊗ (R1 · n[0])[−1]S(r2)⊗ r1 · (R1 · n[0])[0]
= n[−1]S(R2)⊗R1

1n[0][−1]
S(R1

3)S(r2)⊗ r1 · (R1
2 · n[0][0])

= n[−1]1S(R2)⊗R1
1n[−1]2S(r2R1

3)⊗ r1R1
2 · n[0]

(1.10)
= n[−1]1S(R2)⊗R1

1n[−1]2S(R1
2r

2)⊗R1
3r

1 · n[0]
(1.9)
= n[−1]1S(R2q2)⊗R1 · [n[−1]2S(r2)]⊗ q1r1 · n[0]

(1.8)
= [n[−1]1S(r22)]S(R2)⊗R1 · [n[−1]2S(r21)]⊗ r1 · n[0]
= [n[−1]S(r2)]1S(R2)⊗R1 · [n[−1]S(r2)]2 ⊗ r1 · n[0]
= ∆[n[−1]S(r2)]⊗ r1 · n[0] = (∆⊗ 1)ρl(n).

So the coassociativity holds. The counit axiom is given by the following

εt(n[−1]S(R2)) · (R1 · n[0])

= (εt(n[−1]S(R2))R1) · n[0]
(1.9)
= (12R

1) · n[0]ε(11n[−1]εt[S(R2)])

= (12R
1) · n[0]ε(11n[−1]S[εs(R

2)])

(1.14)
= (12S(1′2)) · n[0]ε(11n[−1]S(1′1))

= (121′1) · n[0]ε(11n[−1]1′2)

= (121′1) · n[0]ε(11n[−1]S(1′2))

= 12 · n[0]ε(11n[−1]S(13)) = n.

Therefore, (N, ρl) is a left RH-comodule.

By Lemma 3.1.3 and 3.1.4, we obtain the following:

Theorem 3.1.5. Let (H,R) be a quasi-triangular weak Hopf algebra with a bijective

antipode S. Then there exists a monoidal equivalence F from the category RH(HM )
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of left RH-comodules to the category H
HY D of left-left Yetter-Drinfeld modules:

F : RH(HM ) −→ H
HY D , (M,ρl) 7−→ (M,ρL),

where ρL is defined in Lemma 3.1.3 and the inverse of F is given by

G : H
HY D −→ RH(HM ), (N, ρL) 7−→ (N, ρl),

where ρl is also defined in Lemma 3.1.4.

Proof. We first claim that GF(M) = M for any object M of RH(HM ). It is enough

to check that ρl(m) ≡ m(−1) ⊗m(0) for all m ∈M. In fact,

ρl(m) = m[−1]S(R2)⊗R1 ·m[0]

= m(−1)r
2S(R2)⊗R1 · [r1 ·m(0)]

= m(−1)r
2S(R2)⊗ (R1r1) ·m(0)

(1.8)
= m(−1)εt(R

2)⊗R1 ·m(0)

(1.15)
= m(−1)12 ⊗ S(11) ·m(0)

= S−1(12) ·m(−1) ⊗ S(11) ·m(0)

= S(12) ·m(−1) ⊗ S(11) ·m(0)

= 11 ·m(−1) ⊗ 12 ·m(0)

= m(−1) ⊗m(0).

Next we show that FG(N) = N for any object N of HHY D . For all n ∈ N ,

ρL(n) = n(−1)R
2 ⊗R1 · n(0)

= n[−1]S(r2)R2 ⊗R1 · (r1 · n[0])

= n[−1]S(r2)R2 ⊗ (R1r1) · n[0]
(1.8)
= n[−1]εs(R

2)⊗R1 · n[0]
(1.14)

= n[−1]11 ⊗ S(12) · n[0]
= n[−1]S(12)⊗ 11 · n[0]
= 1′1n[−1]S(12)⊗ 11 · (1′2 · n[0])

= 11n[−1]S(13)⊗ 12 · n[0]
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= n[−1] ⊗ n[0].

Finally, we verify that the triple (G, id, Id) is monoidal. It is clear that G(Ht) = Ht.

For any two left-left Yetter-Drinfeld modules U and V , the left RH-comodule structure

on G(U)⊗ G(V ) is as follows:

(µ⊗ 1⊗ 1)(1⊗ C ⊗ 1)(ρL ⊗ ρL)(u⊗ v)

= (µ⊗ 1⊗ 1)(1⊗ C ⊗ 1)(u(−1) ⊗ u(0) ⊗ n(−1) ⊗ v(0))

= (µ⊗ 1⊗ 1)(u(−1) ⊗R2 · v(−1) ⊗R1 · u(0) ⊗ v(0))

= u(−1)(R
2 · v(−1))⊗R1 · u(0) ⊗ v(0),

where u ∈ U and v ∈ V. Now we have

u(−1)(R
2 · v(−1))⊗R1 · u(0) ⊗ v(0)

= (u[−1]S(p2))R2
1(v[−1]S(q2))S(R2

2)⊗R1 · (p1 · u[0])⊗ q1 · v[0]
(1.8)
= (u[−1]S(p2))r2(v[−1]S(q2))S(R2)⊗ (R1r1p1) · u[0])⊗ q1 · v[0]

(1.8)
= u[−1]εs(r

2)(v[−1]S(q2))S(R2)⊗ (R1r1) · u[0])⊗ q1 · v[0]
(1.14)

= u[−1]S(12)(v[−1]S(q2))S(R2)⊗ (R111) · u[0])⊗ q1 · v[0]
= u[−1]S(12)(v[−1]S(q2))S(R2)⊗R1 · (11 · u[0])⊗ q1 · v[0]
= u[−1](v[−1]S(q2))S(R2)⊗R1 · u[0] ⊗ q1 · v[0]
= (u[−1]v[−1])S(R2q2)⊗R1 · u[0] ⊗ q1 · v[0]

(1.9)
= (u[−1]v[−1])S(R2)⊗R1 · (u[0] ⊗ v[0])

= (u⊗t v)[−1]S(R2)⊗R1 · (u⊗t v)[0]

= ρl(u⊗t v).

Hence, G(U ⊗ V ) = G(U) ⊗ G(V ). The other axioms of a monoidal functor are

obviously true.

Since the category of left-left Yetter-Dinfeld modules is braided, the equivalence

in Theorem 3.1.5 can induce a braiding in the category of left RH-comodules such

that the equivalence becomes braided.

Corollary 3.1.6. Let (H,R) be a quasi-triangular weak Hopf algebra a bijective an-

tipode S. Then the category of left RH-comodules is a braided monoidal category with
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the following braiding, for all u ∈ U and v ∈ V,

C̃(u⊗ v) = u(−1)R
2 · v ⊗R1 · u(0),

∀u ∈ U and v ∈ V , where U and V are any two left RH-comodules. The inverse of

C̃ is given by

C̃−1(v ⊗ u) = R1 · u(0) ⊗ S−1(u(−1)R
2) · v,

Moreover, the functor G in Theorem 3.1.5 is a braided monoidal equivalence.

Proof. Using Theorem 3.1.5 and [42] we work out the stated braiding using the fol-

lowing diagram

G(U)⊗t G(V ) - G(U ⊗t V ))

?

CG(U),G(V ) G(CU,V )

G(V )⊗t G(U) � G(V ⊗t U).
?

By Id : G(U)⊗ G(V ) = G(U ⊗ V ), the braiding C̃ is the composition Id ◦ CU,V ◦ Id.

For any u ∈ U and v ∈ V, we have

C̃U,V (u⊗ v) = Id ◦ CU,V ◦ Id(u⊗ v)

= Id ◦ CU,V (u⊗ v)

= Id(u[−1] · v ⊗ u[0])

= u(−1)R
2 · v ⊗R1 · u(0).

Similarly, one can obtain the inverse of C̃.

Remark 3.1.7. (1) When H is a finite dimensional quasi-triangular Hopf algebra,

the functor G was first proved in [88] to have a right adjoint functor.

(2) In Theorem 3.1.5 and Corollary 3.1.6, we do not need H to be finite dimen-

sional. In fact, our result holds for any infinite dimensional quasi-triangular weak

Hopf algebra over any field (or over a commutative ring).

Remark 3.1.8. Let (H,R) be a finite dimensional quasi-triangular Hopf algebra. By

Radford’s biproduct theorem in [63], there exists naturally a Hopf algebra RH]H. In
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particular, the category
RH(HM ) of left RH-modules (in the category HM of left H-

modules) is equivalent to the category
RH]HM of left RH]H-modules as a monoidal

category.

By [25, 52], an induced structure R (:= (ι⊗ ι)(R) ) on the Hopf algebra RH]H is

quasi-triangular if and only if the braiding of HM is RH-linear in HM . In fact, as

we know, the Hopf algebra RH]H is in general not quasi-triangular. So it does not

seem for the above equivalence naturally to become a braided equivalence between

the left Drinfeld center of HM and the category
RH(HM ).

Following Corollary 3.1.6, however, we can naturally view the left Drinfeld center

of the category HM as the category of left RH-comodules. This motivates us to

consider the relation between braided bi-Galois objects and braided autoequivalences

of the Drinfeld center of the category HM in the next section.

3.2 Braided autoequivalences and braided bi-Galois

objects

In this section, let H be a finite dimensional quasi-triangular weak Hopf algebra. We

will construct braided autoequivalences from braided bi-Galois objects.

Remark 3.2.1. Note that H is finite dimensional. So is RH. By [57], RH has a dual

object. Thus RH is a finite object in the the category HM . It follows from [25] that

RH is flat in the category HM .

Now we need some detailed definitions from Section 1.3.

Definition 3.2.2. An algebra A in the braided monoidal category HM is called a

left RH-comodule algebra if A with a left RH-coaction ρl is a left RH-comodule such

that

ρl(ab) = a(−1)(R
2 · b(−1))⊗ (R1 · a(0))b(0),

for all a, b ∈ A, where ρr(a) = a(0) ⊗ a(1). Namely, ρl is an algebra map in HM .

Similarly, an algebra A in the category HM is called a right RH-comodule algebra

if A with a right RH-coaction ρr is a right RH-comodule such that

ρr(ab) = a(0)(R
2 · b(0))⊗ (R1 · a(1))b(1),
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where a, b ∈ A and ρr(a) = a(0) ⊗ a(1). An RH-bicomodule algebra can be defined

similarly, see [69].

Let A be a right RH-comodule algebra. Define the coinvariant subalgebra of A as

A◦ = {a ∈ A|ρr(a) = a⊗t 1}.

Similarly, the coinvariant subalgebra of a left RH-comodule algebra can be defined.

Definition 3.2.3. [70, Defn 2.1] Let A be a right RH-comodule algebra. We call A

a right braided RH-Galois object if A is faithfully flat and the morphism

β : A⊗t A −→ A⊗t RH, a⊗ b 7−→ ab(0) ⊗ b(1)

is an isomorphism in HM .

Similarly, one can define a left braided RH-Galois object and a braided bi-Galois

object, see [70].

Remark 3.2.4. For a right RH-Galois object A, the coinvariant subalgebra A◦ is

trivial. Similarly, the coinvariant subalgebra of a left RH-Galois object A is trivial.

It is easy to see that (RH, τRH,−) is an object in the left Drinfeld center of the

category of left H-modules, where τ
RH,− is a half-braiding defined by

τ
RH,M : RH ⊗M −→M ⊗ RH, h⊗m 7−→ r2R1 ·m⊗ r1hR2.

Since RH is cocommutative cocentral, for any left RH-comodule (M,ρl), by [70],

there is a natural right comodule structure induced by the half-braiding τ
RH,M :

ρr = τ
RH,M ◦ ρl : M −→ RH ⊗M −→M ⊗ RH.

Let (M,ρl, ρr) be an RH-bicomodule. By [70], we call M cocommutative if the

right coaction ρr is induced by the left coaction ρl.

Definition 3.2.5. A cocommutative braided bi-Galois object A is called a quantum

commutative Gaols object if A is quantum commutative as an algebra in the category

of left-left Yetter-Drinfeld modules.
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For any two left-left Yetter-Drinfeld modules M and N , by Theorem 3.1.5 and

Corollary 3.1.6, the cotensor product M�N over RH is defined as

{m⊗ n ∈M ⊗t N |ρr(m)⊗ n = m⊗ ρl(n)},

which is equal to

{m⊗ n ∈M ⊗t N |r2 ·m[0] ⊗ r1m[−1] ⊗ n = m⊗ n[−1]S(R2)⊗R1 · n[0]}. (3.1)

If A is a braided RH-bi-Galois object, by [69] we have an isomorphism

ξ : (A�M)⊗t (A�N) ' A�(M ⊗t N)

given by

ξ((a⊗m)⊗ (b⊗ n)) = a(R2 · b)⊗R1 ·m⊗ n,

for all a, b ∈ A, m ∈ M and b ∈ N . Following [70], the cotensor functor A�− is a

monoidal autoequivalence of the category RH(HM ).

Lemma 3.2.6. Let (H,R) be a finite dimensional quasi-triangular weak Hopf algebra.

If A is a quantum commutative Galois object, then the functor A�− is a braided

autoequivalence of the category RH(HM ).

Proof. Let A be a quantum commutative Galois object. By Theorem 3.1.5 and [42],

we only need to check that the diagram:

(A�M)⊗t (A�N) - A�(M ⊗t N))

?̃

CA�M,A�N A�C̃M,N (∗)

(A�N)⊗t (A�M) - A�(N ⊗tM)
?

is commutative. On one hand, for any a⊗m ∈ A�M and b⊗ n ∈ A�N , we have

[ξ ◦ (C̃A�M,A�N )][(a⊗m)⊗ (b⊗ n)]

= ξ[(a⊗m)(−1)r
2 · (b⊗ n)⊗ r1 · (a⊗m)(0)]

= ξ[a(−1)r
2 · (b⊗ n)⊗ r1 · (a(0) ⊗m)]
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= ξ[a(−1)1r
2
1 · b⊗ a(−1)2r

2
2 · n⊗ r11 · a(0) ⊗ r12 ·m)]

= [a(−1)1r
2
1 · b][R2r11 · a(0)]⊗R1a(−1)2r

2
2 · n⊗ r12 ·m

= [a[−1]1S(q22)]r21 · b][R2r11 · [q1 · a[0]]]⊗R1[a[−1]2S(q21)]r22 · n⊗ r12 ·m

= [a[−1]1 [S(q2)r2]1 · b][R2r11q
1 · a[0]]]⊗R1[a[−1]2 [S(q2)r2]2] · n⊗ r12 ·m

(1.9)
= [a[−1]1 [S(q2)r2p2]1 · b][R2r1q1 · a[0]]]⊗R1[a[−1]2 [S(q2)r2p2]2] · n⊗ p1 ·m

(1.8)
= [a[−1]1 [εs(r

2)p2]1 · b][R2r1 · a[0]]]⊗R1[a[−1]2 [εs(r
2)p2]2] · n⊗ p1 ·m

(1.14)
= [a[−1]1 [11p

2]1 · b][R2S(12) · a[0]]]⊗R1[a[−1]2 [11p
2]2] · n⊗ p1 ·m

= [a[−1]1p
2
1 · b][R2S(12) · a[0]]]⊗R1[a[−1]211p

2
2] · n⊗ p1 ·m

(1.16)
= [a[−1]1p

2
1 · b][R2 · a[0]]⊗R1[a[−1]2p

2
2] · n⊗ p1 ·m,

where Corollary 3.1.6 and Lemma 3.1.4 were used in the first and the fifth equality

respectively. On the other hand, we have

(1⊗ C̃) ◦ ξ[(a⊗m)⊗ (b⊗ n)]

= a(r2 · b)⊗ C̃(r1 ·m⊗ n)

= a(r2 · b)⊗ (r1 ·m)(−1)W
2 · n⊗W 1 · (r1 ·m)(0)

= a(r2 · b)⊗ (r11 ·m(−1))W
2 · n⊗W 1r12 ·m(0)

= a(r2 · b)⊗ r11m(−1)S(r12)W 2 · n⊗W 1r13 ·m(0)

= a(r2 · b)⊗ r11m[−1]S(R2)S(r12)W 2 · n⊗W 1r13R
1 ·m[0]

= a(r2 · b)⊗ r11m[−1]S(r12R
2)W 2 · n⊗W 1r13R

1 ·m[0]

= a(r2 · b)⊗ r11m[−1]S(r13)S(R2)W 2 · n⊗W 1R1r12 ·m[0]

= a(r2 · b)⊗ r11m[−1]S(r13) · n⊗ r12 ·m[0]

= a(r2 · b)⊗ r11m[−1]S(12)S(r13) · n⊗ r1211 ·m[0]

(1.14)
= a(r2 · b)⊗ r11m[−1]S(R2)p2S(r13) · n⊗ r12p1R1 ·m[0]

(3.1)
= (R2 · a[0])(r2 · b)⊗ r11R1a[−1]p

2S(r13) · n⊗ r12p1 ·m

= [(R2 · a[0])[−1] · (r2 · b)](R2 · a[0])[0] ⊗ r11R1a[−1]p
2S(r13) · n⊗ r12p1 ·m

= [(R2
1a[−1]2S(R2

3)r2 · b)](R2
2 · a[0])⊗ r11R1a[−1]1p

2S(r13) · n⊗ r12p1 ·m
(1.8)
= [(R2a[−1]2S(Q2

2)r2 · b)](Q2
1 · a[0])⊗ r11Q1R1a[−1]1p

2S(r13) · n⊗ r12p1 ·m
(1.10)

= [(a[−1]1R
2S(Q2

2)r2 · b)](Q2
1 · a[0])⊗ r11Q1a[−1]2R

1p2S(r13) · n⊗ r12p1 ·m
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(1.9)
= [(a[−1]1R

2S(U2)V 2r2 · b)](Q2 · a[0])⊗ V 1U1Q1a[−1]2R
1p2S(r12) · n⊗ r11p1 ·m

(1.14)
= [(a[−1]1R

211r
2 · b)](Q2 · a[0])⊗ S(12)Q1a[−1]2R

1p2S(r12) · n⊗ r11p1 ·m
(1.11)

= [(a[−1]1R
2r2 · b)](Q2S(12) · a[0])⊗Q1a[−1]211R

1p2S(r12) · n⊗ r11p1 ·m
(1.16)

= [(a[−1]1R
2r2 · b)](Q2 · a[0])⊗Q1a[−1]1R

1p2S(r12) · n⊗ r11p1 ·m
(1.9)
= [(a[−1]1R

2 · b)](Q2 · a[0])⊗Q1a[−1]1R
1
1p

2S(R1
3) · n⊗R1

2p
1 ·m

(1.10)
= [(a[−1]1R

2 · b)](Q2 · a[0])⊗Q1a[−1]1p
2R1

2S(R1
3) · n⊗ p1R1

1 ·m

= [(a[−1]1R
2 · b)](Q2 · a[0])⊗Q1a[−1]1p

212 · n⊗ p111R
1 ·m

= [(a[−1]1R
2 · b)](Q2 · a[0])⊗Q1a[−1]1p

2 · n⊗ p1R1 ·m,

where Corollary 3.1.6 and Lemma 3.1.4 were used in the second and the fifth equality

respectively; the twelfth and the thirteenth equations stemmed from the compatible

condition and the quantum-commutativity respectively. Thus

ξ ◦ (C̃A�M,A�N ) = (1⊗ C̃) ◦ ξ.

Therefore, the proof is completed.

Lemma 3.2.7. Let (H,R) be a finite dimensional quasi-triangular weak Hopf alge-

bra. Assume that A is a braided bi-Galois object. If the functor A�− is a braided

autoequivalence of the category RH(HM ), then A is quantum commutative.

Proof. Assume that the functor A�− is a braided autoequivalence. We first have

the commutative diagram (∗). Let M and N be any two left RH-comodules. By the

proof of Lemma 3.2.6, we get the following equation:

a(0)(r
2 · b)⊗ r11a(1)p2S(r13) · n⊗ r12p1 ·m

= [a(−1)1r
2
1 · b][R2r11 · a(0)]⊗R1a(−1)2r

2
2 · n⊗ r12 ·m, (3.2)

for all a ⊗ m ∈ A�M and b ⊗ n ∈ A�N . In particular, for any a, b ∈ A, we have

a(0) ⊗ a(1), b(0) ⊗ b(1) ∈ A�RH and so

a(0)(r
2 · b(0))⊗ (r1 · a(1))[−1] · b(1) ⊗ (r1 · a(1))[0]

= [a(−1)1r
2
1 · b(0)][R2r11 · a(0)]⊗R1a(−1)2r

2
2 · b(1) ⊗ r12 · a(1).
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Applying the map 1⊗ εt ⊗ εt to the above equality, we get

[a(−1)1r
2
1 · b(0)][R2r11 · a(0)]⊗ εt(R1a(−1)2r

2
2 · b(1))εt(r12 · a(1))

= a(0)(r
2 · b(0))⊗ εt[(r1 · a(1))[−1] · b(1)]εt[(r1 · a(1))[0]].

Since εt is an algebra map in the category HM and A is a right RH-comodule algebra,

we obtain

[a(−1)r
2 · b][r1 · a(0)] = ab,

which is equivalent to ab = (a[−1] ·b)a[0]. Thus, A is a quantum commutative algebra.

Now we show that A is cocommutative. Namely, we need to verify that the right

coaction ρr on A is induced by its left coaction ρr and the half-braiding. Note that

the regular left H-module H has an induced Yetter-Drinfeld module structure, where

the comodule structure is given by

ρL(h) = R2 ⊗R1h := h[−1] ⊗ h[0], ∀h ∈ H,

Then by Lemma 3.1.4 we have a left RH-comodule on H, where ρl(h) = 1 ⊗t h for

any h ∈ H. Namely, (H, ρl) is a trivial left RH-comodule. Now we consider A�RH

and A�H. Note that 1A ⊗t 1H ∈ A�H and a(0) ⊗ a(1) ∈ A�RH. By the equality

(3.2), we easily get

a(0)(r
2 · 1)⊗ r11a(1)p2S(r13)⊗ r12p1 · a(2)

= [a(−1)1r
2
1 · 1][R2r11 · a(0)]⊗R1a(−1)2r

2
2 ⊗ r12 · a(1).

One one hand, we have

a(0)(r
2 · 1A)⊗ r11a(1)p2S(r13)⊗ r12p1 · a(2)

= a(0)(εt(r
2) · 1A)⊗ r11a(1)p2S(r13)⊗ r12p1 · a(2)

(1.15)
= a(0)(1

′
2 · 1A)⊗ S(1′1)11a(1)p

2S(13)⊗ 12p
1 · a(2)

= 1′1 · a(0) ⊗ 1′211a(1)p
2S(13)⊗ 12p

1 · a(2)
= a(0) ⊗ 11a(1)p

2S(13)⊗ 12p
1 · a(2)

= a(0) ⊗ a(1)p2S(12)⊗ 11p
1 · a(2)

(1.11)
= a(0) ⊗ a(1)p2 ⊗ p1 · a(2).
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On the other hand, we have

[a(−1)1r
2
1 · 1A][R2r11 · a(0)]⊗R1a(−1)2r

2
2 ⊗ r12 · a(1)

= [εt(a(−1)1r
2
1) · 1A][R2r11 · a(0)]⊗R1a(−1)2r

2
2 ⊗ r12 · a(1)

= [εt(a(−1)1εt(r
2
1)) · 1A][R2r11 · a(0)]⊗R1a(−1)2r

2
2 ⊗ r12 · a(1)

(1.4)
= [εt(a(−1)1S(11)) · 1A][R2r11 · a(0)]⊗R1a(−1)212r

2 ⊗ r12 · a(1)
= [εt(a(−1)1) · 1A][R2r11 · a(0)]⊗R1a(−1)2r

2 ⊗ r12 · a(1)
= [11 · 1A][R2r11 · a(0)]⊗R112a(−1)r

2 ⊗ r12 · a(1)
= S(11)R2r11 · a(0)]⊗R112a(−1)r

2 ⊗ r12 · a(1)
(1.11)

= R2r11 · a(0) ⊗R1a(−1)r
2 ⊗ r12 · a(1).

Then the following equation holds:

a(0) ⊗ a(1)p2 ⊗ p1 · a(2) = R2r11 · a(0) ⊗R1a(−1)r
2 ⊗ r12 · a(1) ∈ A⊗H ⊗H.

Applying (1⊗ 1⊗ ε) to right side of the above equation, we get

(1⊗ 1⊗ ε)(R2r11 · a(0) ⊗R1a(−1)r
2 ⊗ r12 · a(1))

(1.5)
= R2r11 · a(0) ⊗ [R1a(−1)r

2]ε(εs(r
1
2)a(1)S(r13))

(1.2)
= R2r11 · a(0) ⊗ [R1a(−1)r

2]ε(a(1)S(r12))

= R2r11 · a(0) ⊗ [R1a(−1)r
2]ε(a(1)εt(S(r12)))

= R2r11 · a(0) ⊗ [R1a(−1)r
2]ε(a(1)S(εs(r

1
2)))

(1.3)
= R2r111 · a(0) ⊗ [R1a(−1)r

2]ε(a(1)S
2(12)))

= R2r111 · a(0) ⊗ [R1a(−1)r
2]ε(a(1)S(12)))

= R2r111 · a(0) ⊗ [R1a(−1)r
2]ε(S(12)a(1)))

= R2r111 · a(0) ⊗ [R1a(−1)r
2]ε(12a(1))

= R2r1S(εt(a(1))) · a(0) ⊗ [R1a(−1)r
2]

= R2r1 · a(0) ⊗ [R1a(−1)r
2],

where the counit of a right RH-comodule A was used in the last equality. Now we

obtain

R2r1 · a(0) ⊗ [R1a(−1)r
2] = (1⊗ 1⊗ ε)(a(0) ⊗ a(1)p2 ⊗ p1 · a(2))
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= a(0) ⊗ a(1)p2ε(p1 · a(2))

= a(0) ⊗ a(1)p2ε(εs(p11)a(2)S(p12)]

= a(0) ⊗ a(1)p2ε(a(2)S(p1)]

= a(0) ⊗ a(1)p2ε(a(2)S(εs(p
1))]

(1.14)
= a(0) ⊗ a(1)12ε(a(2)S(11)]

= a(0) ⊗ a(1)12ε(11a(2))

= a(0) ⊗ a(1)εt(a(2))

= a(0) ⊗ a(1),

where the counit of RH was applied to the last equality. This means that a right

RH-comodule structure on A is induced by its left RH-coaction. Therefore, A is a

quantum commutative Galois object.

Theorem 3.2.8. Let (H,R) be a finite dimensional quasi-triangular weak Hopf alge-

bra. Assume that A is a braided bi-Galois object. Then the functor A�− is a braided

autoequivalence of the category H
HY D of left-left Yetter-Drinfeld modules if and only

if A is quantum commutative.

Proof. Assume that A is a braided bi-Galois object. By Lemma 3.2.6 and 3.2.7,

the functor A�− is a braided autoequivalence of the category RH(HM ) if and only

if A is quantum commutative. Following Corollary 3.1.6, the category RH(HM ) is

equivalent to the category H
HY D of Yetter-Drinfeld modules as a braided monoidal

category. Thus the functor A�− is a braided autoequivalence of the category H
HY D

of Yetter-Drinfeld modules if and only if A is quantum commutative.

When H is a finite dimensional quasi-triangular weak Hopf algebra over an alge-

braically closed field of characteristic 0 such that it is semisimple and connected, we

have the following statement:

Corollary 3.2.9. Let C be a braided fusion category. Then the Drinfeld center of

C is equivalent to the category of finite dimensional left HC -comoduels over some

braided Hopf algebra HC . Moreover, if A is a braided bi-Galois object over HC , then

the cotensor functor A�− is a braided autoequivalence of the Drinfeld center of C if

and only if A is quantum commutative.

Proof. Let C be a braided fusion category. By [60], there is a semisimple con-
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nected weak Hopf algebra such that C is equivalent to the category of finite dimen-

sional left HC -modules. By [57], HC can be equipped with a quasi-triangular struc-

ture such that C is equivalent to the category of finite dimensional left HC -modules

as a braided fusion category. Thus the proof is completed by applying Corollary

3.1.6,Theorem 3.2.8 and [33, Thm. 3.1].

Similarly, we have the following corollary:

Corollary 3.2.10. Let C be a braided fusion category. Then the Drinfeld center of

C is equivalent to the category of finite dimensional left HC -comoduels over some

braided Hopf algebra HC . Moreover, if A is a braided bi-Galois object over HC , then

the cotensor functor −�A is a braided autoequivalence of the Drinfeld center of C if

and only if A is quantum commutative.

3.3 The group of quantum commutative Galois ob-

jects

Corollary 3.3.1. Let (H,R) be a finite dimensional quasi-triangular weak Hopf al-

gebra. If A and B are quantum commutative Galois objects, so is A�B.

Proof. Let A and B be quantum commutative Galois objects. Then we have that

A�− and B�− are braided autoequivalences on the category H
HY D . So is the com-

position (A�B)�−. By Proposition 3.2.3, A�B is quantum commutative.

For a bi-Galois object A, by [69] there exists a unique braided bi-Galois object

A−1 (up to isomorphism) such that A�A−1 ' RH and A−1�A ' RH. By Theorem

6.6 in [69], A−1 is isomorphic to A as RH-bicomodule algebras.

Corollary 3.3.2. Let (H,R) be a finite dimensional quasi-triangular weak Hopf al-

gebra. If A is a quantum commutative Galois object, so is A−1.

Proof. Suppose that A is a quantum commutative Galois object. We know that the

functor A�− is a braided autoequivalence. So is the inverse functor A−1�−. Thus

the Galois object A−1 is quantum commutative.

Theorem 3.3.3. Let (H,R) be a finite dimensional quasi-triangular weak Hopf al-

gebra. Denote by Galqc(RH) the set of isomorphism classes of quantum commutative
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Galois objects over RH. Then Galqc(RH) forms a group under the cotensor product

�. This group is called the group of quantum commutative Galois objects over RH.

Proof. Follows from Theorem 3.2.8, Corollary 3.3.1 and 3.3.2.

Remark 3.3.4. For any left H-module M , define a left H-comodule as follows:

ρL(m) = R2 ⊗R1 ·m := m[−1] ⊗m[0], ∀m ∈M.

It is easy to see that (M,ρL) is a left Yetter-Drinfeld module. So we have an embed-

ding HM ↪→ H
HY D . By Lemma 3.1.4, there is a left RH-comodule structure on M

ρl(m) = 1⊗t m, for any m ∈M. Namely, (M,ρl) is a trivial left RH-comodule. If A

is a braided bi-Galois object, then (A�M) 'M , which means that the functor A�−
is isomorphic to the identity functor on the category of left H-modules.

Definition 3.3.5. [28, Defn 2.1] A braided autoequivalence F of H
HY D is called

trivializable on HM if the restriction F|
HM is isomorphic to the identity functor as a

braided monoidal functor. We denote byAutbr(HHY D ,HM ) the group of isomorphism

classes of braided autoequivalences of HHY D trivializable on HM .

Corollary 3.3.6. Let (H,R) be a finite dimensional quasi-triangular weak Hopf al-

gebra. Then the group Galqc(RH) is a subgroup of the group Autbr(HHY D ,HM ).

Proof. Follows from Theorem 3.2.8 and 3.3.3 and Remark 3.3.4.

Remark 3.3.7. In Chapter 5, we will see that the group Galqc(RH) will play a

fundamental role in the characterization of the Brauer group of a braided fusion

category.

Now we write down the left center and the right center for an algebra in the

category of left H-modules, see Section 1.5 for the definiton.

Let A be an algebra in the category of left H-modules. The left center of A is

defined as

Zl(A) = {a ∈ A|ab = (R2 · b)(R1 · a), ∀b ∈ A}.

Similarly, the right center of A is

Zr(A) = {c ∈ A|bc = (R2 · c)(R1 · b), ∀c ∈ A}.
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By Section 1.5, we have the following lemma:

Lemma 3.3.8. Let (H,R) be a quasi-triangular weak Hopf algebra. Then Zl(A) and

Zr(A) are objects in the category of right H-comodules.

Proof. For the sake of completeness, we also give here a detailed proof. For all a ∈
Zl(A), b ∈ A and h ∈ H, we have

(R2 · b)(R1h · a) = (R212 · b)(R111h · a)

= (R2εt(h2) · b)(R1h1 · a)

= (R2h2S(h3) · b)(R1h1 · a)

= (h1R
2S(h3) · b)(h2R1 · a)

= h1 · [(R2S(h3) · b)(R1 · a)]

= h1 · [(R2 · (S(h3) · b))(R1 · a)]

= h1 · [a(S(h3) · b)]

= (h1 · a)(h2S(h3) · b)

= (11h · a)(12 · b) = (h · a)b.

So (h · a) ∈ Zl(A). Similarly, for all h ∈ H and b ∈ Zl(A),

(R2h · b)(R1 · a) = (R2h3 · b)(R1h2S
−1(h1) · a)

= (h2R
2 · b)(h3R1S−1(h1) · a)

= h2 · [(R2 · b)(R1S−1(h1) · a)]

= h2 · [(S−1(h1) · a)b]

= (h2S
−1(h1) · a)(h3 · b)

= (11a)(12h · b) = a(h · b).

Thus Zl(A) and Zr(A) are objects in the category of left H-modules.

Now let A be a left RH-comodule algebra in the category of left H-modules. Then

the coinvariant subalgebra is:

◦A = {a ∈ A|a(−1) ⊗ a(0) = S(11)⊗ 12 · a}.

Similarly, if A is a right RH-comodule algebra in the category of left H-modules, its
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coinvariant subalgebra is:

A◦ = {a ∈ A|a(0) ⊗ a(1) = 11 · a⊗ 12}.

3.4 The coquasi-triangular case

Let (H,σ) be a finite dimensional coquasi-triangular weak Hopf algebra. Naturally,

the dual H∗ is quasi-triangular. Since the category Y DH
H of right-right Yetter-

Drinfeld modules is equivalent to the category H∗

H∗Y D of left-left Yetter-Drinfeld

modules, by Corollary 3.1.6 there exists an equivalence between the category Y DH
H

of right-right Yetter-Drinfeld modules and the category RH
∗
(H∗M ) of left RH

∗-

comodules. For two right-right Yetter-Drinfeld modules X and Y , we can define

a cotensor product X�Y over RH
∗. Now we collect some facts needed in the next

chapter.

Let M be a right H-comodule. There are two right H-module structures on M :

mC h = m[0]σ(m[1], h), ∀ h ∈ H,m ∈M.

m J h = m[0]σ(h, S−1(m[1])), ∀h ∈ H,m ∈M.

We have the following characterization of the cotensor product �
RH∗ :

Lemma 3.4.1. Let (H,σ) be a finite dimensional coquasi-triangular weak Hopf alge-

bra. Let X and Y be right-right Yetter-Drinfeld modules. Then

X�Y = {x⊗ y ∈ X ⊗ Y |(x J h1)⊗ y · h2 = x · h1 ⊗ y C h2), ∀ h ∈ H}.

Proof. Similar to the proof of [88, Lemma 2.9].

Lemma 3.4.2. Let (H,σ) be a finite dimensional coquasi-triangular weak Hopf algeba

and A an algebra in the category of right-right Yetter-Drinfeld modules. Then

◦A = {a ∈ A|a · h = aC h, ∀ h ∈ H},

A◦ = {a ∈ A|a · h = a J h, ∀ h ∈ H}.

Proof. Similar to the proof of [88, Lemma 2.5].
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Chapter 4

The Brauer group Br(MH)

and the group Galqc(RH
∗)

For a finite dimensional quasi-triangular weak Hopf algebra (H,R), the category HM

of finite dimensional left H-modules is equivalent to the category MH∗ of finite di-

mensional right H∗-comodules. So there exists an isomorphism between the Brauer

groups Br(HM ) and Br(MH∗). For the sake of convenience, we investigate directly

the case of a finite dimensional coquasi-triangular weak Hopf algebra (H,σ).

In this chapter, H and H∗ will always mean a finite dimensional coquasi-triangular

weak Hopf algebra (H,σ) with an antipode S and the dual (H∗, R) respectively.

Moreover, the antipode of the dual (H∗, R) will be still denoted by S. Since the dual

(H∗, R) is quasi-triangular, by Theorem 2.2.7, we have the braided Hopf algebra RH
∗.

By Theorem 3.3.3, we get the group Galqc(RH
∗) of quantum commutative Galois

objects over RH
∗. In this chapter, we will study the relation between the Brauer

group Br(MH) and the group Galqc(RH
∗) by generalizing the exact sequence in [88]

to the case of a weak Hopf algebra.

4.1 Galois-Azumaya algebras

An Azumaya algebra in the category MH is called H-Azumaya.
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Definition 4.1.1. [88] An H-Azumaya algebra A is called Galois-Azumaya if A is a

right weak H-Galois extension of its coinvariant subalgebra.

Let M be a finite dimensional right H-comodule. Then the dual space M∗ of M

is a right H-comodule with the coaction ρR given by

ρR(m∗) = m∗[0] ⊗m
∗
[1], m∗[0](m)m∗[1] = m∗(m[0])S(m[1]),∀ m ∈M.

Now we work out the induced right H-action C on M∗. In fact,

(αC h)(m) = α[0](m)σ(α[1], h) = α(m[0])σ(S(m[1]), h)

= α(m[0])σ(m[1], S
−1(h)) = α(mC S−1(h)),

for all α ∈M∗, h ∈ H and m ∈M .

Note that H is a regular right H-comodule with the comultiplication ∆. So (H,C)

becomes a right H-module. For all h ∈ H, x ∈ Ht and y ∈ Hs, we have

hC x = h1σ(h2, x) = h1ε(S(x)h2) = S(x)h

hC y = h1σ(h2, y) = h1ε(h2S(y)) = hy.

Moreover, we have two right H-comodules H∗ and End−Hs
(H∗), see Remark 1.6.7.

Lemma 4.1.2. We have a right H-comodule algebra map θ from H to End−Hs(H∗)

defined by

θ : H −→ End−Hs
(H∗), 〈θ(h)(α), a〉 = 〈α, aS−2(h)〉.

Proof. We first verify that the map θ is right Hs-linear. Indeed,

〈θ(h)(α · y), a〉 = 〈α · y, aS−2(h)〉 = 〈α, (aS−2(h)) · S−1(y)〉

= 〈α, S(S−1(y))(aS−2(h))〉 = 〈α, (ya)S−2(h))〉

= 〈θ(h)(α), ya〉 = 〈θ(α), a · S−1(y))〉 = 〈θ(h)(α) · y, a〉.

Next we show that θ is an algebra map. For any a, g, h ∈ H, α ∈ H∗,

〈θ(gh)(α), a〉 = 〈α, aS−2(gh)〉 = 〈α, aS−2(g)S−2(h)〉
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= 〈θ(g)[θ(h)(α)], a〉 = 〈[θ(g)θ(h)](α), a〉.

Finally, we claim that the map θ is right H-colinear. Since the right H-comodule

structures on H∗ and End−,Hs(H∗) are induced by a regular right H-comodule

(H,∆), we have 〈α[0], a〉α[1] = 〈α, a1〉S(a2) and θ(h)[0](α) ⊗ θ(h)[1] = θ(h)(α[0])[0] ⊗
θ(h)(α[0])[1]S(α[1]) for all α ∈ H∗ and a, h ∈ H. So

〈θ(h)[0](α), a〉θ(h)[1] = 〈θ(h)(α[0])[0], a〉θ(h)(α[0])[1]S(α[1])

= 〈θ(h)(α[0]), a1〉S(a2)S(α[1])

= 〈α[0], a1S
−2(h)〉S(a2)S(α[1])

= 〈α, a1S−2(h1)〉S(a3)S(S(a2S
−2(h2)))

= 〈α, a1S−2(h1)〉S(a3)S2(a2)h2

= 〈α, a1S−2(h1)〉S(εs(a2))h2
(1.3)
= 〈α, a11S

−2(h1)〉S(S(12))h2

= 〈α, aS−2(h1)〉h2 = 〈θ(h1)(α), a〉h2.

Therefore, θ is right H-colinear.

Corollary 4.1.3. End−Hs
(H∗) is a smash product algebra.

Proof. Follows from Lemma 1.6.14 and 4.1.2.

Note that 1[0]f ⊗ 1[1] = f[0] ⊗ f[1] = f1[0] ⊗ 1[1] for any f ∈ End−Hs(M) coH . We

have

(1[0]f)(m)⊗ 1[1] = f[0](m)⊗ f[1] = [f1[0]](m)⊗ 1[1],∀m ∈M,

which is equivalent to

f(m)[0] ⊗ εt(f(m)[1]) = f(m[0])[0] ⊗ f(m[0])[1]S(m[1]) = f(m[0])⊗ εt(m[1])

since 1[0](m) ⊗ 1[1] = m[0] ⊗m[1]S(m[2]) = m[0] ⊗ εt(m[1]). Let EndH−Hs
(M) denote

the set of all elements in EndH−Hs
(M) which are right H-colinear.

Lemma 4.1.4. Let M be a finite dimensional right H-comodule. Then

End−Hs
(M) coH = EndH−Hs

(M).
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Proof. Note that the following equation holds:

f(m)[0] ⊗ εt(f(m)[1]) = f(m[0])[0] ⊗ f(m[0])[1]S(m[1]),

for any f ∈ End−Hs
(M) coH and m ∈M . On one hand, we have

[(1⊗ µτ(1⊗ S−1))(ρR ⊗ 1)][f(m[0])[0] ⊗ f(m[0])[1]S(m[1])].

= (1⊗ µτ(1⊗ S−1))[f(m[0])[0] ⊗ f(m[0])[1] ⊗ f(m[0])[2]S(m[1])]]

= f(m[0])[0] ⊗m[1]S
−1[f(m[0])[2]]f(m[0])[1]

= f(m[0])[0] ⊗m[1]S
−1[εs(f(m[0])[1])]

= f(m[0])[0] ⊗m[1]S
−1[11]ε(f(m[0])[1]12)

= f(m[0])[0]1
′
1 ⊗m[1]S

−1[11]ε(f(m[0])[1]1
′
212)

= f(m[0])[0]1
′
1S
−1[12]⊗m[1]S

−1[11]ε(f(m[0])[1]1
′
212)

= f(m[0])[0]11 ⊗m[1]12ε(f(m[0])[1])

= f(m[0])11 ⊗m[1]12

= f(m[0]11)⊗m[1]12 = f(m[0])⊗m[1],

where τ is a flip map. On the other hand, we have

[(1⊗ µτ(1⊗ S−1))(ρR ⊗ 1)][f(m)[0] ⊗ εt(f(m)[1])]

= f(m)[0] ⊗ S−1[εt(f(m)[2])]f(m)[1] = f(m)[0] ⊗ f(m)[1].

So f ∈ EndH−,Hs
(M).

Conversely, we get

g(m[0])[0] ⊗ g(m[0])[1]S(m[1]) = g(m[0][0])⊗m[0][1]S(m[1])

= g(m[0])⊗ εt(m[1]),

for all g ∈ EndH−Hs
(M) and m ∈M . Thus g ∈ End−Hs

(M) coH .

Lemma 4.1.5. H∗ is a left H-module algebra with the following H-action:

h · h∗ = h∗1〈h∗2, S−2(h)〉, ∀ h ∈ H, h∗ ∈ H∗.

Proof. It is easy to check that H∗ with the given H-action is a left H-module. The
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equation h · 1∗ = εt(h) · 1∗ holds since

〈h · 1∗, a〉 = 〈1∗1, a〉〈1∗2, S−2(h)〉 = 〈1∗1, a〉〈1∗2, S−2(h)〉

= 〈ε, aS−2(h)〉 = 〈ε, aS−2(εt(h))〉

= 〈εt(h) · 1∗, a〉,

for any a, h ∈ H. Moreover, we have

(h1 · g∗)(h2 · h∗) = g∗1〈g∗2, S−2(h1)〉h∗1〈h∗2, S−2(h2)〉

= g∗1h
∗
1〈g∗2h∗2, S−2(h)〉

= h · (g∗h∗),

for all g∗, h∗ ∈ H∗ and h ∈ H. Thus H∗ is a left H-module algebra.

Lemma 4.1.6. End−Hs(H∗) ' H∗ �H, where H∗ is a left H-module algebra with

the H-action given in Lemma 4.1.5.

Proof. Consider an algebra map:

ς : H∗ −→ End(H∗), h∗ 7−→ [ς(h∗)](g∗) = h∗g∗.

It is easy to see that ς(h∗) is right Hs-linear for all h∗ ∈ H∗. If the map ς(h∗) is also

right H-colinear, then the map ς is well-defined from H∗ to EndH−Hs
(H∗). In fact,

the colinearity of ς(h∗) follows from

(ς(h∗)⊗ 1)ρR(g∗)(h) = ς(h∗)(g∗[0])(h)⊗ g∗[1] = h∗g∗[0](h)⊗ g∗[1]
= 〈h∗g∗[0], h〉g∗[1] = 〈h∗, h1〉〈g∗[0], h2〉g∗[1]
= 〈h∗, h1〉〈g∗, h2〉S(h3) = 〈h∗g∗, h1〉S(h2)

= ρR(h∗g∗)(h) = ρR(ς(h∗)(g∗))(h),

for all g∗, h∗ ∈ H∗ and h ∈ H.

Note that EndH(H∗) = EndH∗−(H∗), where the left H∗-module structure on H∗

is naturally induced by the right H-comodule structure. Namely,

h∗ · g∗ = g∗[0]〈h∗, g∗[1]〉 ∀g∗, h∗ ∈ H∗.
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Now for all h ∈ H, we have

〈g∗[0], h〉〈h∗, g∗[1]〉 = 〈g∗, h1〉〈h∗, S(h2)〉 = 〈g∗, h1〉〈S(h∗), h2〉 = 〈g∗S(h∗), h〉.

So h∗ · g∗ = g∗S(h∗). Moreover, any α ∈ EndH(H∗) is left H∗-linear, i.e.,

α(g∗S(h∗)) = α(g∗)S(h∗), ∀ g∗, h∗ ∈ H∗.

Now we prove that ς has an inverse ς ′ defined by ς ′(α) = α(1H∗). Indeed,

ςς ′(α)(g∗) = α(1H∗)g
∗ = α(1H∗)S(S−1(g∗))

= α(1H∗S(S−1(g∗))) = α(g∗)

ς ′ς(h∗) = ς(h∗)(1H∗) = h∗.

Finally, we show that ς is H-linear. By Lemma 4.1.4, End−Hs
(H∗) ' EndH−Hs

(H∗)�

H, where the leftH-module structure on EndH−Hs
(H∗) is given by h·α = θ(h1)αθ(S(h2))

for all α ∈ EndH−Hs
(H∗) and h ∈ H. Now we have

〈[θ(h1)ς(h∗)θ(S(h2))](g∗), a〉 = 〈[ς(h∗)θ(S(h2))](g∗), aS−2(h1)〉

= 〈[h∗θ(S(h2))(g∗), aS−2(h1)〉

= 〈h∗, a1S−2(h1)〉〈θ(S(h3))(g∗), a2S
−2(h2)〉

= 〈h∗, a1S−2(h1)〉〈g∗, a2S−2(h2)S−2(S(h3))〉

= 〈h∗, a1S−2(h1)〉〈g∗, a2S−2(εt(h2))〉
(1.1)
= 〈h∗, a1S−2(h)〉〈g∗, a2〉

= 〈h∗1, a1)〉〈h∗2, S−2(h)〉〈g∗, a2〉

= 〈h∗1g∗, a)〉〈h∗2, S−2(h)〉

= 〈ς(h∗1)(g∗), a)〉〈h∗2, S−2(h)〉

= 〈ς(h · h∗)(g∗), a)〉,

for all a, h ∈ H and g∗ ∈ H∗. So ς(h ·h∗) = h · ς(h∗). Thus the proof is completed.

For a finite dimensional coquasi-triangular Hopf algebra H, any H-Azumaya al-

gebra is equivalent to a Galois-Azumaya algebra. In fact, any H-Azumaya algebra is

equivalent to a smash product Azumaya algebra. Now we extend this result to the

case of a weak Hopf algebra.
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Proposition 4.1.7. Let (H,σ) be a finite dimensional coquasi-triangular weak Hopf

algebra. Then any element of the Brauer group Br(MH) can be represented by a

smash product Azumaya algebra.

Proof. For any H-Azumaya algebra A, we have [A] = [A]End(H∗)] in the Brauer

group Br(MH). Note that the composition:

H −→ End−Hs(H∗) ↪→ A]End(H∗)

is right H-colinear. By Lemma 4.1.6, the H-Azumaya algebra A]End−,Hs
(H∗) is

isomorphic to a smash product algebra.

4.2 Centralizer subalgebras

In this section, we show that the algebra CH(Hs), the centralizer subalgebra discussed

in Section 2.1 is isomorphic to some centralizer subalgebra of End−Hs
(H∗).

By Lemma 4.1.6, EndH−Hs
(H∗) is isomorphic to H∗ as an algebra. We have that

ς(h∗) ∈ EndH−Hs
(H∗) for any h∗ ∈ H∗. Let α ∈ End−Hs

(H∗) and l∗ ∈ H∗. Then

ς(h∗)α = ας(h∗) ⇐⇒ [ς(h∗)α](l∗) = [ας(h∗)](l∗)

⇐⇒ h∗α(l∗) = α(h∗l∗).

Hence, the centralizer subalgebra π(End−Hs(H∗)) (see Section 1.6.4 ) can be charac-

terized as

{α ∈ End−Hs
(H∗)|h∗α(l∗) = α(h∗l∗), ∀ h∗, l∗ ∈ H∗}.

Clearly, we have an anti-algebra map

ω : H∗ −→ EndH∗−(H∗), h∗ 7−→ [ω(h∗)](g∗) = g∗h∗,

where EndH∗(H
∗,−) is

{α ∈ End(H∗)|h∗α(l∗) = α(h∗l∗), ∀ h∗, l∗ ∈ H∗}.

Moreover, ω has the inverse ω′ given by ω′(α) = α(1H∗).
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Lemma 4.2.1. The map ω(h∗) is right Hs-linear if and only if

S(1∗1)h∗1∗2 = h∗

for all h∗ ∈ H∗, where ∆(1∗) = 1∗1 ⊗ 1∗2.

Proof. We need to show that for any g∗, h∗ ∈ H∗ and y ∈ Hs,

[ω(h∗)](g∗ C y) = [ω(h∗)](g∗)C y ⇐⇒ S(1∗1)h∗1∗2 = h∗.

First of all, we have

〈[ω(h∗)](g∗)C y, h〉 = 〈g∗h∗, yh〉 = 〈g∗, h1〉〈h∗, yh2〉;

〈[ω(h∗)](g∗ C y), h〉 = 〈(g∗ C y)h∗, h〉

= 〈(g∗ C y), h1〉〈h∗, h2〉

= 〈g∗, h1 C S−1(y)〉〈h∗, h2〉

= 〈g∗, yh1〉〈h∗, h2〉,

for all h ∈ H.

If [ω(h∗)](g∗ C y) = [ω(h∗)](g∗)C y for any y ∈ Hs, by taking g∗ = 1∗, we obtain

〈h∗, S(y)h〉 = 〈h∗, yh〉.

Then S(1∗1)h∗1∗2 = h∗ follows from

〈h∗, 1112h〉 = 〈h∗, S(11)12h〉 = 〈h∗, h〉.

Conversely, if S(1∗1)h∗1∗2 = h∗, then for all h ∈ H, we have

〈h∗, h〉 = 〈S(1∗1)h∗1∗2, h〉 = 〈h∗, 1112h〉.

The equation [ω(h∗)](g∗)C y = [ω(h∗)](g∗ C y) holds since

〈[ω(h∗)](g∗)C y, h〉

= 〈g∗, h1〉〈h∗, yh2〉 = 〈g∗, h1〉〈h∗, 1112yh2〉

= 〈g∗, h1〉〈h∗, 1112S
−1(y)h2〉 = 〈g∗, yh1〉〈h∗, 1112h2〉
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= 〈g∗, yh1〉〈h∗, h2〉 = 〈[ω(h∗)](g∗ C y), h〉,

for all h ∈ H.

Corollary 4.2.2. The centralizer subalgebra π(End−Hs(H∗)) is isomorphic to RH
∗

as a right H-comodule algebra.

Proof. By Lemma 4.2.1, we have an algebra anti-isomorphism:

ω : S(1∗1)H∗1∗2 −→ π(End−Hs
(H∗)).

Since there is an anti-algebra isomorphism S : RH
∗ −→ S(1∗1)H∗1∗2, we get an algebra

isomorphism:

RH
∗ −→ π(End−Hs(H∗)), h∗ 7−→ ω[S(h∗)].

By the proof of Lemma 4.1.6, the left H∗-module structure on H∗ is given by

h∗ · g∗ = g∗[0]〈h∗, g∗[1]〉 or h∗ · g∗ = g∗S(h∗), ∀g∗ ∈ H∗.

For any α ∈ EndH(H∗), α is left H∗-linear, i.e., α(g∗S(h∗)) = α(g∗)S(h∗).

Now we prove that for any h∗ ∈ H∗ and g∗ ∈ RH
∗,

ω[S(h∗ · g∗)] = h∗ · ω[S(g∗)] = ω[S(g∗)][0]〈h∗, ω[S(g∗)][1]〉,

where the left H∗-action on RH
∗ is the left adjoint action. Indeed,

〈ω[S(g∗)][0](β), h〉〈h∗, ω[S(g∗)][1]〉

= 〈[ω[S(g∗)](β[0])][0], h〉〈h∗, [ω[S(g∗)](β[0])][1]S(β[1]〉

= 〈[β[0]S(g∗)][0], h〉〈h∗, [β[0]S(g∗)][1]S(β[1])〉

= 〈β[0]S(g∗), h1〉〈h∗, S(h2)S(β[1])〉

= 〈β, h1〉〈S(g∗), h3〉〈h∗, S(h4)S2(h2)〉

= 〈β, h1〉〈h∗1g∗S(h∗2), S(h2)〉

= 〈β, h1〉〈S(h∗1g
∗S(h∗2)), h2〉

= 〈βS(h∗1g
∗S(h∗2), h〉
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= 〈ω[S(h∗1g
∗S(h∗2))](β), h〉

= 〈ω[S(h∗ · g∗)](β), h〉,

for all β ∈ H∗ and h ∈ H. Thus π(End−Hs
(H∗)) ' RH

∗ as right H-comodule

algebras.

If there is an H-comodule algebra morphism θ from H to A, then by Lemma

1.6.14, A ' A0 �H as right H-comodule algebras. By Example 1.6.16, CA(A0) is a

right H-module algebra with the MUA action, where the MUA action is given by

a ↽ h = θ(S(h1))aθ(h2), ∀ a ∈ A, h ∈ H.

Note that RH
∗ is a left H∗-comodule algebra with the comultiplication of H∗. Thus

RH
∗ is a right H-module algebra with the following action:

h∗ · h = h∗2〈h∗1, h〉, h∗ ∈ RH
∗, h ∈ H.

Proposition 4.2.3. The centralizer subalgebra π(End−Hs(H∗)) is isomorphic to

RH
∗ as an algebra in the category of right-right Yetter-Drinfeld modules.

Proof. By Lemma 4.2.1 and 4.2.2, it is sufficient to show that the map ω is right

H-linear. In fact, we have

〈[ω[S(h∗)] ↽ h](g∗), g〉

= 〈[θ(S(h1))ω[S(h∗)]θ(h2)](g∗), g〉

= 〈[ω[S(h∗)]θ(h2)](g∗), gS−1(h1)〉

= 〈θ(h2)(g∗)S(h∗), gS−1(h1)〉

= 〈θ(h3)(g∗), g1S
−1(h2)〉〈S(h∗), g2S

−1(h1)〉

= 〈g∗, g1S−1(h2)S−2(h3)〉〈S(h∗), g2S
−1(h1)〉

= 〈g∗, g1S−2(S(h2)h3)〉〈S(h∗), g2S
−1(h1)〉

(1.3)
= 〈g∗, g1〉〈S(h∗), g2S

−1(h)〉

= 〈g∗, g1〉〈h∗, hS(g2)〉

= 〈g∗, g1〉〈h∗1, h〉〈S(h∗2), g2〉

= 〈g∗S(h∗2), g〉〈h∗1, h〉

= 〈ω[S(h∗2)](g∗), g〉〈h∗1, h〉

80



4.2. CENTRALIZER SUBALGEBRAS

= 〈ω[S(h∗ · h)](g∗), g〉,

for all h∗ ∈ RH
∗, h ∈ H and g∗ ∈ H∗. Thus ω is right H-linear.

Lemma 4.2.4. Let M be a finite dimensional right H-comodule. Then there exists

an algebra map

λ : RH
∗ −→ CEnd−Hs (M)((End−Hs

(M))0),

where λ is defined by

[λ(h∗)](m) = m[0]〈h∗,m[1]〉,

for all h∗ ∈ RH
∗ and m ∈M .

Proof. Note that there is an algebra map

λ : RH
∗ ↪→ H∗ −→ End−Hs

(M), [λ(h∗)](m) = m[0]〈h∗,m[1]〉.

Now we verify that the map λ(h∗) is right Hs-linear for all h∗ ∈ RH
∗. Note that

〈h∗h〉 = 〈1∗1h∗S(1∗2), h〉 = 〈h∗, h1112〉,

for all h∗ ∈ RH
∗ and h ∈ H. So we have

[λ(h∗)](mC y) = h∗m[0]σ(m[1], y) = m[0]〈h∗,m[1]〉σ(m[2], y)

= m[0]〈h∗,m[1]〉σ(m[2], y) = m[0]〈h∗,m[1]y〉

= m[0]〈h∗,m[1]y1112〉 = m[0]〈h∗,m[1]S
−1(y)1112〉

= m[0]〈h∗,m[1]S
−1(y)〉 = m[0]〈h∗,m[2]〉σ(m[1], y)

= [λ(h∗)(m)]C y.

Hence, the map λ(h∗) is right Hs-linear. Moreover, we have

[λ(h∗)f ](m) = λ(h∗)[f(m)] = f(m)[0]〈h∗, f(m)[1]〉

= f(m[0])〈h∗,m[1]〉 = f [λ(h∗)(m)],

for all f ∈ (End−Hs
(M))0. So λ(h∗) ∈ CEnd−Hs (M)((End−Hs

(M))0).
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Although the proof of the following lemma looks a bit similar to Lemma 4.8 in

[88], we will write down its detail for the sake of completeness.

Lemma 4.2.5. Let M be a finite dimensional right H-comodule such that A =

End−Hs(M) is a smash product Azumaya algebra. Then λ in Lemma 4.2.4 is a

morphism in the category of right-right Yetter-Drinfeld modules.

Proof. By lemma 4.2.4, it is enough to prove that the map λ is a morphism in the

category of Yetter-Drinfeld modules. Note that RH
∗ is a left-left Yetter-Drinfeld

module over H∗. So RH
∗ is a right-right Yetter-Drinfeld module over H∗ with the

action and the coation given by:

h∗ · h = h∗2〈h∗1, h〉, ρR(m) := m[0] ⊗m[1] =
∑
i

ei ·m⊗ ei,

where ei and ei are dual bases of H and H∗ respectively.

We first show that the map λ is right H-colinear. Indeed,

(λ⊗ 1)ρ(h∗)(m) =
∑

λ(ei · h∗)(m)⊗ ei

=
∑

m[0] ⊗ ei〈ei · h∗,m[1]〉

=
∑

m[0] ⊗ ei〈h∗,m[2]〉〈ei,m[1]S(m[3])〉

= m[0] ⊗m[1]S(m[3])〈h∗,m[2]〉

= λ(h∗)(m[0])[0] ⊗ λ(h∗)(m[0])[1]S(m[1]) = ρλ(h∗)(m).

Next we verify that f[0]λ(h∗ · f[1]) = λ(h∗)f for all f ∈ End−Hs
(M). Note that

λ(h∗ · h)(m) = λ(h∗2)(m)〈h∗1, h〉 = m[0]〈h∗, hm[1]〉,

for any h ∈ H and m ∈M . We have

f[0]λ(h∗ · f[1])(m) = f[0](m[0])〈h∗ · f[1],m[1]〉 = f[0](m[0])〈h∗, f[1]m[1]〉

= [f(m[0])][0]〈h∗, [f(m[0])][1]S(m[1])m[2]〉

= [f(m[0])][0]〈h∗, [f(m[0])][1]εs(m[1])〉

= [f(m[0])C εs(m[1]][0]〈h∗, [f(m[0])C εs(m[1]][1])〉

= [f(m)][0]〈h∗, [f(m)][1])〉 = λ(h∗)f(m),
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for all f ∈ End−Hs(M) and m ∈M.

Finally, we verify that

λ(h∗) ↽ h = λ(h∗ · h)⇐⇒ λ(h∗)f = f[0]λ(h∗ · f[1]), ∀f ∈ A.

If λ(h∗) ↽ h = λ(h∗ · h), then λ(h∗)f = f[0]λ(h∗ · f[1]) follows from the equation

(1.18). The converse also holds since

λ(h∗) ↽ h = h[1]λ(h∗)h[2] = h[1]h[1][0]λ(h∗·h[2][1]) = 1[0]λ(h∗·h2)ε(h11[1])(m) = λ(h∗·h)(m),

where the last equality is obtained by the following equations:

1[0]λ(h∗ · h2)ε(h11[1])(m) = 1[0]λ(h∗ · h1[1])(m)

= 1[0](m[0])〈h∗ · h1[1],m[1]〉

= 1[0](m[0])〈h∗, h1[1]m[1]〉

= m[0]〈h∗, hm[1]εs(m[2])〉

= m[0]〈h∗, hm[1]〉 = λ(h∗ · h)(m).

Thus λ is right H-linear.

4.3 From Br(MH) to Galqc(RH
∗)

In this section, we will construct a group homomorphism from the Brauer group to

the group of quantum commutative Galois objects.

Let (H,R) be a finite dimensional quasi-triangular weak Hopf algebra. We have

the braided Hopf algebra RH. If A is a right RH-comodule algebra with A◦ ' Ht,

then M coRH ⊗t A is a Doi-Hopf module with the following structures:

h · (m⊗t a) = h1 ·m⊗t h2 · a,

(m⊗t a) · b = m⊗t ab,

ρr(m⊗t a) = m⊗t a(0) ⊗ a(1),

where a, b ∈ A, h ∈ H, m ∈M and M coRH = {m ∈M |ρr(m) = m⊗t 1}.

Lemma 4.3.1. Let (H,R) be a quasi-triangular weak Hopf algebra and (A,µ) a right
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RH-comodule algebra with A◦ ' Ht. If there exists a right RH-comodule algebra

morphism ψ from RH to A, then the map

α′ : M coRH ⊗t A −→M, m⊗ a 7−→ m · a

is a right Doi-Hopf module isomorphism with the inverse

β′ : M −→M coRH ⊗t A, n 7−→ n(0) · ψS(n(1))⊗ ψ(n(2)).

for all m ∈M coRH and n ∈M.

Proof. It is easy to see that the map α′ is left H-linear and right A-linear. It is also

right RH-colinear since

ρr[α′(m⊗ a)] = ρ(ma) = m(0)(R
2 · a(0))⊗ (R1 ·m(1))a(1)

= m(R2 · a(0))⊗ (R1 · 1)a(1)

= 11 ·m(R2 · a(0))⊗ εt(R112)a(1)

= 11 ·m(12R
2 · a(0))⊗ εt(R1)a(1)

= 11 ·m(121′1 · a(0))⊗ 1′2a(1)

= m · a(0) ⊗ a(1) = α′(m⊗ a(0))⊗ a(1),

for all a ∈ A and m ∈M coRH .

Now we show that β′ is a well-defined morphism. Since S and ψ are morphisms,

we have

ρr ◦ µ ◦ (1⊗ ψS) ◦ ρr

= (µ⊗ µ)(1⊗ C ⊗ 1)(ρr ⊗ ρr)(1⊗ ψS) ◦ ρr

= (µ⊗ µ)(1⊗ C ⊗ 1)(ρr ⊗ 1⊗ 1)(1⊗ ρr ◦ ψ)(1⊗ S) ◦ ρ

= (µ⊗ µ)(1⊗ C ⊗ 1)(1⊗ 1⊗ ρ ◦ ψ)(ρ⊗ S) ◦ ρ

= (µ⊗ µ)(1⊗ C ⊗ 1)(1⊗ 1⊗ ψ ⊗ 1)(1⊗ 1⊗∆)(ρ⊗ S) ◦ ρ

= (µ⊗ µ)(1⊗ ψ ⊗ 1⊗ 1)(1⊗ C ⊗ 1)(1⊗ 1⊗∆)(ρ⊗ S) ◦ ρ

= (µ⊗ µ)(1⊗ ψ ⊗ 1⊗ 1)(1⊗ C ⊗ 1)(1⊗ 1⊗∆S)(ρ⊗ 1) ◦ ρ

= (µ ◦ ψ ⊗ µ)(1⊗ C ⊗ 1)(1⊗ 1⊗ (S ⊗ S) ◦ C ◦∆)(ρ⊗ 1) ◦ ρ

= (µ ◦ ψ ⊗ µ)(1⊗ C ⊗ 1)(1⊗ 1⊗ S ⊗ S)(1⊗ 1⊗ C ◦∆)(ρ⊗ 1) ◦ ρ
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= (µ ◦ ψ ⊗ µ)(1⊗ S ⊗ 1⊗ S)(1⊗ C ⊗ 1)(1⊗ 1⊗ C ◦∆)(ρ⊗ 1) ◦ ρ

= (µ(1⊗ ψS)⊗ µ)(1⊗ 1⊗ 1⊗ S)(1⊗ C ⊗ 1)(1⊗ 1⊗ C ◦∆)(ρ⊗ 1) ◦ ρ

= (µ(1⊗ ψS)⊗ 1)[1⊗ (1⊗ µ)(1⊗ 1⊗ S)(C ⊗ 1)(1⊗ C ◦∆)](ρ⊗ 1) ◦ ρ

= (µ(1⊗ ψS)⊗ 1)[1⊗ C(1⊗ µ)(1⊗ S ⊗ 1)(1⊗∆)](1⊗∆) ◦ ρ

= (µ(1⊗ ψS)⊗ 1)(1⊗ C)[1⊗ 1⊗ µ(S ⊗ 1)∆](1⊗∆) ◦ ρ

= µ(1⊗ ψS)ρ⊗ 1,

where 1 denotes the identity morphism and the twelfth equality is given by

(1⊗ µ)(1⊗ 1⊗ S)(C ⊗ 1)(1⊗ C ◦∆)

= (1⊗ µ)(C ⊗ 1)(1⊗ 1⊗ S)(1⊗ C)(1⊗∆)

= (1⊗ µ)(C ⊗ 1)(1⊗ C)(1⊗ S ⊗ 1)(1⊗∆)

= C(1⊗ µ)(1⊗ S ⊗ 1)(1⊗∆).

So β′ is well-defined.

Finally, we verify that β is the inverse of α′. Indeed,

β′α′(m⊗ a) = (m · a)(0) · ψS((m · a)(1))⊗ ψ((m · a)(2))

= m · a(0)ψS(a(1))⊗ ψ(a(2))

= m⊗ a(0)ψS(a(1))ψ(a(2)) = m⊗ a,

for any m⊗ a ∈ M coRH ⊗t A. Similarly, α′β′(n) = n(0) · ψS(n(1))ψ(n(2)) = n for all

n ∈M .

Now we come back to the coquasi-triangular case.

Lemma 4.3.2. Let A be a smash product Azumaya algebra. Then ◦π(A) is the left

center of (A,C). Similarly, π(A)◦ is the right center.

Proof. (1) If a is an element in ◦π(A), we have

ab
(1.20)

= b[0]b[1]
[1]ab[1]

[2] = b[0](a ↽ b[1]) = b[0](aC b[1]),∀b ∈ A.

Conversely, if a′ is an element in the left center, a′b = b[0](a
′ C b[1]) for any b ∈ A.
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Since 1[0](a
′ C 1[1]) = 1[0]a

′
[0]σ(a′[1], 1[1]) = 1[0]a

′
[0]ε(S(1[1])a

′
[1]) = a′, we have

a′ ↽ h = h[1]a′h[2] = h[1]h[2][0](a
′ C h[2][1])

(1.18)
= 1[0](a

′ C (h1[1])) = a′ C h.

(2) If c is an element in π(A)◦, we have

c[0](bC c[1]) = c[0]b[0]σ(b[1], c[1]) = c[0]b[0]σ(S−1(b[1]), S
−1(c[1]))

= [c J S−1(b[1])]b[0] = S−1(b[1])
[1]cS−1(b[1])

[2]b[0]
(1.26)

= bc.

Conversely, if c′ is an element in the right center, bc′ = c′[0](bC c
′
[1]) for any b ∈ A.

c′ ↽ h = c′[0](h
[1] C c′[1])h

[2]

= c′[0]h
[1]

[0]h
[2]σ(h[1][1], c

′
[1])

(1.23)
= c′[0]h

[1]
2h

[2]
2 σ(S(h1), c′[1])

(1.19)
= c′[0]1[0]bε(h21[1])σ(S(h1), c′[1])

= c′[0]1[0]σ(S(h1[1]), c
′
[1])

= c′[0]1[0]σ(S(1[1]), c
′
[1])σ(S(h), c′[2])

= c′[0]1[0]ε(S(1[1])c
′
[1])σ(S(h), c′[2])

= c′[0]σ(S(h), c′[1]) = c′ J h.

Thus the proof is completed.

Let A and B be two right H-comodule algebras. We have the algebra A]B with

the braided product, see Section 1.4. For simplifying the notation, we write x]y,

instead of
∑
i xi]yi, for an element in A]B.

Lemma 4.3.3. Let M be a faithfully projective object such that A = End−Hs(M) is

a smash product Azumaya algebra. Then π(A)◦ is isomorphic to Hs.

Proof. Let EndAe−Hs
(A,A) be a subspace consisting of all elements in End−Hs

(A,A)

which are left Ae-linear, where A is a left Ae-module with the following structure:

(a]b) · c = ac[0](b · c[1]), ∀c ∈ A.
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By Proposition 3.4 in [25], the right center of A is isomorphic to EndAe−Hs(A,A).

Using Theorem 2.1 in [83] (or Subsection 2.4 in [25]), EndAe−Hs(A,A) is isomorphic

to Hs. Thus Lemma 4.3.2 implies that π(A)◦ is isomorphic to Hs.

Proposition 4.3.4. Let M be a faithfully projective object such that A = End−Hs(M)

is a smash product Azumaya algebra. Then RH
∗ ' π(A).

Proof. Let C :=H∗ M . By [70], we only need to show that there is an equivalence

C −→ C RH
∗

π(A) , V 7−→ V ⊗s π(A)

with the inverse functor:

C RH
∗

π(A) −→ C , W 7−→W coRH .

It is easy to see that the functor (−)coRH is a right adjoint functor of −⊗s π(A). So

it is sufficient o check that (V ⊗s π(A))coRH ' V and W coRH ⊗s π(A) ' W , for any

object V in C and any object W in C RH
∗

π(A) . By Lemma 4.3.3, π(A)◦ ' Hs. So

(V ⊗s π(A))coRH ' V ⊗s Hs ' V.

Following lemma 4.2.5, the map λ is an algebra map from RH
∗ to π(A) in the

category of right-right Yetter-Drinfeld modules. By Theorem 3.3.7, the map λ is an

RH
∗-comodule algebra morphism from RH

∗ to π(A). It follows from Lemma 4.3.1

and 4.3.3 that W coRH ⊗s π(A) 'W for any object W in C RH
∗

π(A) .

From Proposition 3.2 in [70], we know that π(A) is a faithfully flat RH
∗-Galois

object. By Lemma 4.2.5, there is a morphism between braided bi-Galois objects RH
∗

and π(A). Thus π(A) ' RH
∗ from [25, Prop. 4.6].

Lemma 4.3.5. Let A and B be two smash product Azumaya algebras. Then

π(A]B) = π(A)�π(B).

Proof. Observe that A0]B0 ⊆ (A]B)0 implies that π(A]B) ⊆ π(A)]π(B). In fact, we

have

(a⊗ b)(a′ ⊗ b′) = (a⊗ 1)[(1⊗ b)(a′ ⊗ b′)] = (a⊗ 1)[(a′ ⊗ b′)(1⊗ b)] = aa′ ⊗ b′b,

(a′ ⊗ b′)(a⊗ b) = a′a[0] ⊗ (b′ · a[1])b = a′a1[0] ⊗ (b′ · 1[1])b = a′a⊗ bb′,
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for any a ⊗ b ∈ A0]B0 and a′ ⊗ b′ ∈ π(A]B). Note that A]B is a smash product

algebra. Let

β−1(1[0] ⊗ h1[1]) = h[1]A ⊗ h[2]A , β−1(1[0] ⊗ h1[1]) = h[1]B ⊗ h[2]B .

Then the canonical map

β : (a]b)⊗ (c]d) 7−→ (a]b)(c[0]]d[0])⊗ c[1]d[1]

has an inverse given by

β′ : (a]b)⊗ h 7−→ (a]b)(1]h[1]B )⊗ (1]h[2]B ).

Indeed, we have

ββ′((a]b)⊗ h) = (a]b)(1]h[1]B )(1]h[2]B [0])⊗ h[2]B [1]

= (a]b)(1]h[1]Bh[2]B [0])⊗ h[2]B [1]

= (a]b1[0])⊗ h1[1] = (a]b)⊗ h.

Then the canonical map is surjective. It follows from the Galois theory of Hopf

algebroids in [4, 41] that the canonical map is bijective.

Now we write: β−1(1]1)1[0] ⊗ h1[1]) = h[1]A]B ⊗ h[2]A]B . By the map β,

(h[1]A]1)⊗ (h[2]A]1) = h[1]A]B ⊗ h[2]A]B = (1]h[1]B )⊗ (1]h[2]B ).

This implies that the MUV action on π(A]B) can be given by

(a⊗ b) ↽ h = (h[1]A]1)(a⊗ b)(h[2]A]1) = (1]h[1]B )(a⊗ b)(1]h[2]B ).

On one hand, we have

(a⊗ b) ↽ h = (h[1]A]1)(a⊗ b)(h[2]A]1)

= (h[1]A]1)(a(h[2]A)[0] ⊗ (bC (h[2]A)[1]))

= h[1]Aa(h[2]A)[0] ⊗ (bC (h[2]A)[1]))

= h1
[1]Aah1

[2]A ⊗ (bC h2)

= a ↽ h1 ⊗ (bC h2).
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On the other hand, we have

(a⊗ b) ↽ h = (1]h[1]B )(a⊗ b)(1]h[2]B )

= (a[0]](h
[1]B C a[1])b)(1]h

[2]B )

= a[0]](h
[1]B C a[1])b)h

[2]B

= a[0]](h
[1]B )[0]bh

[2]Bσ((h[1]B )[1], a[1])

= a[0]]h2
[1]Bbh2

[2]Bσ((S(h1), a[1])

= a[0]]h2
[1]Bbh2

[2]Bσ((h1, S
−1(a[1]))

= a J h1]b ↽ h2.

So a]b ∈ π(A)�π(B). Namely, π(A]B) ⊆ π(A)�π(B).

Conversely, for all x]y ∈ (A]B)0, we have

x[0]]y[0] ⊗ x[1]y[1] = (x]y)1[0] ⊗ 1[1]. (4.1)

Applying [(1 ⊗ 1 ⊗m(1 ⊗ S)) ◦ (1 ⊗ ρR ⊗ 1)] to the two sides of the equation (4.1),

the left side is computed as follow:

[(1⊗ 1⊗m(1⊗ S)) ◦ (1⊗ ρR ⊗ 1)](x[0]]y[0] ⊗ x[1]y[1])

= (1⊗ 1⊗m(1⊗ S))(x[0]]y[0] ⊗ y[1] ⊗ x[1]y[2])

= x[0]]y[0] ⊗ y[1]S(y[2])S(x[1]) = x[0]]1[0]y ⊗ 1[1]S(x[1]).

Similarly, we have the right side:

[(1⊗ 1⊗m(1⊗ S)) ◦ (1⊗ ρR ⊗ 1)][(x]y)1[0] ⊗ 1[1]]

= [(1⊗ 1⊗m(1⊗ S)) ◦ (1⊗ ρR ⊗ 1)][(x]y) · 11 ⊗ 12]

= [(1⊗ 1⊗m(1⊗ S)) ◦ (1⊗ ρR ⊗ 1)][(x]y · 11)⊗ 12]

= (1⊗ 1⊗m(1⊗ S))[(x]y[0])⊗ y[1]11 ⊗ 12] = (x]y[0])⊗ y[1].

Therefore, we obtain the following equation:

x[0]]1[0]y ⊗ x[1]S−1(1[1]) = (x]y[0])⊗ S−1(y[1]). (4.2)
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Using the quantum commutativity of π(A), we have

(a]b)(x]y) = ax[0]](bC x[1])y

= x[0](a ↽ x[1]11)](bC x[2]12)y

= x[0](a J x[1]11)]1′[0]ε(121′[1])(b ↽ x[2])y

= x[0](a J x[1]11)]1′[0]ε(121′[1])y[0](b ↽ x[2]y[1])

= x[0](a J x[1]11)]1′[0]ε(121′[1])y1[0](b ↽ 1[1])

= x[0](a J x[1]11)]1′[0]ε(121′[1])yb

= x[0](a J x[1]S
−1(12))]1′[0]ε(S

−1(11)1′[1])yb

= x[0](a J x[1]S
−1(1′[1]))]1

′
[0]yb

(4.2)
= x(a J S−1(y[1]))]y[0]b

= xa[0]σ(S−1(y[1]), S
−1(a[1]))]y[0]b

= xa[0]]y[0]bσ(y[1], a[1])

= xa[0]](y C a[1])b,

for all a]b ∈ π(A)�π(B), where Lemma 3.4.1 was applied to the third equality. So

π(A)�π(B) ⊆ π(A]B). Thus π(A)�π(B) = π(A]B).

Lemma 4.3.6. If A and B are two smash product Azumaya algebras such that A is

Brauer equivalent to B, then π(A) ' π(B).

Proof. Suppose that [A] = [B]. Then there are two faithfully projective objects M

and N such that

A]End−Hs(M) ' B]End−Hs(N).

So (A]End−Hs
(M))]End−Hs

(H∗) ' (B]End−Hs
(N))]End−Hs

(H∗). By Proposition

3.2 in [83], we have

End−Hs(M))]End−Hs(N) ' End−Hs(M ⊗s N).

Since End−Hs
(N))]End−Hs

(H∗) is a smash product algebra, so is End−Hs
(M⊗sH∗).

It follows from the associativity that

A]End−Hs
(M ⊗s H∗) ' B]End−Hs

(N ⊗s H∗).
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Now applying Lemma 4.3.4, we obtain

π(A) ' π(A)�RH
∗ ' π(A)�π(End−Hs

(M ⊗s H∗))

' π(A]End−Hs
(M ⊗s H∗)) ' π(B]End−Hs

(N ⊗s H∗))

' π(B)�π(End−Hs
(N ⊗s H∗)) ' π(B)�RH

∗ ' π(B).

Thus π(A) ' π(B).

Lemma 4.3.7. Let A and B be two H-Azumaya algebras. Then

[(A]End−Hs(H∗))](B]End−Hs(H∗))] = [(A]B)]End−Hs(H∗))].

Proof. Since A is an H-Azumaya algebra, [A] = [A]End−Hs(H∗)]. So we have

[(A]End−Hs(H∗))](B]End−Hs(H∗))]

= [A]End−Hs(H∗)][B]End−Hs(H∗)]

= [A][B] = [A]B] = [(A]B)]End−Hs(H∗))].

Lemma 4.3.8. Let A be an H-Azumaya algebra. Then π(A]End−Hs
(H∗)) is a

quantum commutative Galois object.

Proof. For any faithfully projective objectM , we have [End−Hs
(M)] = [End−Hs

(M)].

Following Proposition 4.3.3, Lemma 4.3.5 and 4.3.6, we obtain

π[End−Hs(M)]End−Hs(H∗)] ' π[End−Hs(M)]End−Hs(H∗)] ' RH
∗.

Assume that A is an H-Azumaya algebra. Then A]End−Hs
(H∗) is equivalent to A

as an H-Azumaya algebra. By Lemma 4.3.5 and 4.3.6,

π[A]End−Hs
(H∗)]�π[A]End−Hs

(H∗)]

= π[(A]End−Hs
(H∗))](A]End−Hs

(H∗))]

' π[(A]A)]End−Hs
(H∗))]

' π[End−Hs
(A)]End−Hs

(H∗)] ' RH
∗.
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Similarly, we have

π[A]End−Hs
(H∗)]�π[A]End−Hs

(H∗)]

= π[(A]End−Hs
(H∗))](A]End−Hs

(H∗))]

' π[(A]A)]End−Hs
(H∗))]

' π[End−Hs(A)]End−Hs(H∗)] ' RH
∗.

It follows from Proposition 3.4 in [70] that π(A]End−Hs
(H∗)) is a braided bi-Galois

object. It is clear that π(A]End−Hs
(H∗)) is quantum commutative.

Now we state our main result in this section.

Theorem 4.3.9. Let (H,σ) be a finite dimensional coquasi-triangular weak Hopf

algebra. Then π induces a group homomorphism

Π : Br(MH) −→ Galqc(RH
∗),

[A] 7−→ π(A]End−Hs
(H∗)),

where A is an H-Azumaya algebra.

Proof. Suppose that A and B are equivalent as H-Azumaya algebras. It is obvious

that A]End−,Hs
(H∗) and B]End−Hs

(H∗) are also equivalent. By Lemma 4.3.5,

π(A]End−Hs(H∗)) ' π(B]End−Hs(H∗)).

So the map Π is well-defined. Now Proposition 4.3.3 implies that

π(End−Hs
(M)]End−Hs

(H∗)) ' π(End−Hs
(M ⊗s H∗)) ' RH

∗,

where M is any faithfully projective object. For any two H-Azumaya algebras C and

D, by Lemma 4.3.4 and 4.3.6, we have

π((C]D)]End−Hs
(H∗))) ' π((C]End−Hs

(H∗))](D]End−Hs
(H∗)))

= π(C]End−Hs
(H∗))�π(D]End−Hs

(H∗)).

Thus

Π[C]D] = π(C]End−Hs(H∗))�π(D]End−Hs(H∗)) = Π[C]�Π[D]. �
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4.4 A subgroup of the kernel of Π

In Theorem 4.3.9, if H is a Hopf algebra, then we know form [88] that the kernel

KerΠ of Π is equal to the Brauer group Br(k). This is not the case when H is a

(real) weak Hopf algebra. In fact, in the case of a weak Hopf algebra, an Azumaya

algebra with a trivial coaction is not necessarily an H-Azumaya algebra. Thus, Br(k)

is not necessarily contained in the kernel of Π. In this section, we will work out a

subgroup of KerΠ. Although we expect it to be the full kernel, we are not able to

prove it at this moment.

Let (H,σ) be a finite dimensional coquasi-triangular weak Hopf algebra. It is

clear that the minimal weak Hopf algebra Hm is also coquasi-triangular. There exists

natural embedding:

ι : MHm ↪→MH , M 7−→M,

which induces a group homomorphism ι : Br(MHm) −→ Br(MH), [A] 7−→ [A]. So

we have the composition Π ◦ ι:

Br(MHm) −→ Br(MH) −→ Galqc(RH
∗).

In this section, we will show that Imι ⊆ KerΠ.

Lemma 4.4.1. Let A be a left Hm-module algebra. If A�Hm is an Azumaya algebra

in the category MHm . Then (A�Hm)](H∗�H) is a smash product Azumaya algebra.

Proof. Assume that A � Hm is an Azumaya algebra in the category MHm . Then

A�Hm is an H-Azumaya algebra. Note that H∗ �H is a smash product Azumaya

algebra. Thus, (A�Hm)](H∗ �H) is a smash product Azumaya algebra

Let A be a left H-module algebra. Clearly, A is also a left Hm-module algebra.

Define the following sets:

A�Hs := {11 · a⊗ 12y|∀ a ∈ A, y ∈ Hs},

(A� 1)](H∗ � 1) := {(11 · a⊗ 12)C 1′′1 ⊗ (1′1 · α⊗ 1′2)C 1′′2 | ∀a ∈ A, α ∈ H∗},

(A�1)](H∗�H) := {(11 ·a⊗12)C1′′1 ⊗ (1′1 ·α⊗1′2h)C1′′2 | ∀a ∈ A, α ∈ H∗, h ∈ H},

where the left action · and the right action C on A �H are induced by the left H-

module structure on A and the right H-comodule structure on A � H respectively.
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Namely, we have

(a� h)C y = (a� h1)σ(h2, y) = (a� hy),

(a� h)C x = (a� h1)σ(h2, x) = a� S(x)h,

for all x ∈ Ht and y ∈ Hs.

In the sequel, we will write a� h for 11 · a⊗ 12h, sometimes for the simplicity.

Lemma 4.4.2. Let A be a left Hm-module algebra. Then

A�Hm = A�Hs.

Proof. It is clear that A � Hm ⊃ A � Hs. For any a ∈ A and xy ∈ Hm such that

x ∈ Ht and y ∈ Hs, we have

11 · a⊗ 12xy = 11S
−1(x) · a⊗ 12y = 11 · (S−1(x) · a)⊗ 12y ∈ A�Hs.

So A�Hm ⊂ A�Hs.

Lemma 4.4.3. Let A be a left Hm-module algebra. Then

[(A�Hm)](H∗ �H)]coH = (A� 1)](H∗ � 1).

Proof. We first show that

(A�Hm)](H∗ �H) = (A� 1)](H∗ �H).

By Lemma 4.4.2, A]Hm = A�Hs. Clearly, (A�Hm)](H∗�H) ⊃ (A�1)](H∗�H).

For any a ∈ A, y ∈ Hs and α� h ∈ H∗ �H, we have

(11 · a⊗ 12y)C 1′1 ⊗ (α� h)C 1′2

= (11 · a⊗ 121′′1)σ(1′′2y, 1
′
1)⊗ (α� h1)σ(h2, 1

′
2)

= (11 · a⊗ 12y1′1)⊗ (α� h1)ε(S(1′2)h2)

= (11 · a⊗ 121′1)⊗ (α� h1)ε(S(1′2)yh2)

= (11 · a⊗ 12)C 1′1 ⊗ (α� yh)C 1′2.

So (A�Hm)](H∗ �H) ⊂ (A� 1)](H∗ �H).
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Now we claim that [(A�Hm)](H∗ �H)]coH = (A� 1)](H∗ � 1). Applying (A�

Hm)](H∗ �H) = (A� 1)](H∗ �H), we only need to show that

[(A� 1)](H∗ �H)]coH = (A� 1)](H∗ � 1).

It is clear that [(A � Hm)](H∗ � H)]coH ⊃ (A � 1)](H∗ � 1). So it is sufficient to

verify that

(11 · a⊗ 12)C 1′1 ⊗ (α� h)C 1′2 ∈ (A� 1)](H∗ �H),

for any (11 · a⊗ 12)C 1′1 ⊗ (α� h)C 1′2 ∈ [(A�Hm)](H∗ �H)]coH . By the definition

of [(A�Hm)](H∗ �H)]coH , we have

(11 · a⊗ 12)C 1′1 ⊗ (α� h1)C 1′2 ⊗ h2
= [(11 · a⊗ 12)C 1′1 ⊗ (α� h)C 1′2]C 1′′1 ⊗ 1′′2

= [(11 · a⊗ 12)C 1′1 ⊗ (α� h)C 1′21′′1 ]⊗ 1′′2 .

Following the definition of ], we get

(11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α⊗ 1′′′2 h1)C 1′2 ⊗ S(h2)

= (11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α⊗ 1′′′2 S(1′2)h1)⊗ S(h2)

= (11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α)⊗ [1′′′2 S(1′2)h1)⊗ S(h2)].

Similarly, we have

[(11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α⊗ 1′′′2 h)C 1′21′′1 ]⊗ S(1′′2)

= (11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α)⊗ [1′′′2 S(1′2)h1′′1)⊗ S(1′′2)].

So we obtain that

(11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α)⊗ [1′′′2 S(1′2)h1 ⊗ S(h2)]

= (11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α)⊗ [1′′′2 S(1′2)h1′′1 ⊗ S(1′′2)].

Applying id⊗ id⊗µ to both sides of the above equation, where µ is the multiplication

of H, we get the following equation:

(11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α)⊗ [1′′′2 S(1′2)h1S(h2)]

= (11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α)⊗ [1′′′2 S(1′2)h1′′1S(1′′2)].
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We compute the left side of the equation:

(11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α)⊗ [1′′′2 S(1′2)h1S(h2)]

= 11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α)⊗ 1′′′2 S(1′2)εt(h)

= 11 · a⊗ 12)C 1′1 ⊗ (1′′′1 S
−1(εt(h)) · α)⊗ 1′′′2 S(1′2)

= 11 · a⊗ 12)C 1′1 ⊗ [(1′′′1 S
−1(εt(h)) · α)⊗ 1′′′2 ]C 1′2.

That (11 · a⊗ 12)C 1′1 ⊗ (α]h)C 1′2 ∈ (A� 1)]R(H∗ � 1) follows from

(11 · a⊗ 12)C 1′1 ⊗ (α]h)C 1′2

= (11 · a⊗ 12)C 1′1 ⊗ (1′′′1 · α⊗ 1′′′2 S(1′2)h)

= 11 · a⊗ 12)C 1′1 ⊗ [(1′′′1 S
−1(εt(h)) · α)⊗ 1′′′2 ]C 1′2.

Thus [(A�Hm)](H∗ �H)]coH = (A� 1)](H∗ � 1).

Lemma 4.4.4. Let A be a left Hm-module algebra such that A�Hm is an Azumaya

algebra in the category MHm . Then there exists an H-comodule algebra homomor-

phism from π(H∗ �H) to π[(A�Hm)](H∗ �H)].

Proof. We first prove that (1� 1)](β � h) ∈ π[(A�Hm)]R(H∗�H)] for any β ⊗ h ∈
π(H∗ �H). We have the following computation:

[(1� 1)](β ⊗ h)][(a� 1)](α⊗ 1)]

= (a� 1)[0]][(β ⊗ h)C [(a� 1)[1]](α⊗ 1)]

= (a� 11)][((β ⊗ h)C 12)(α⊗ 1)]

= (a� 11)][(β ⊗ h)[0](α⊗ 1)]σ((β ⊗ h)[1], 12)

= (a� 11)][(β ⊗ h1)(α⊗ 1)]ε(12h2)

= (a� 11)][(β ⊗ S(12)h)(α⊗ 1)]

= (a� 11)][(1⊗ S(12))(β ⊗ h)(α⊗ 1)]

= (a� 11)][(1⊗ S(12))(α⊗ 1)(β ⊗ h)]

= (a� 11)][(1⊗ S(12))(αβ ⊗ h)]

= (a� 11)][αβ ⊗ S(12)h]

= (a� 1)C 11][αβ ⊗ h]C 12
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= (a� 1)][αβ ⊗ h]

= [(a� 1)](α⊗ 1)][(1� 1)](β ⊗ h)],

where the seventh equality follows from the definition of π(H∗ � H) and the sixth

equality stems from

(1⊗ y)(β ⊗ h) = (11 · β)⊗ 12yh = b⊗ yh, ,∀y ∈ Hs.

Now we have a well-defined map:

ι′ : π(H∗]H) −→ π[(A]Hm)]R(H∗]H)], β � h 7−→ (1� 1)](β � h).

It is easy to see that ι′ is a homomorphism between right H-comodule algebras.

Theorem 4.4.5. Let A be a left Hm-module algebra such that A�Hm is an Azumaya

algebra in the category MHm . Then

π[(A�Hm)](H∗ �H)] ' RH
∗.

Proof. By [25], we only need to show that ι′ is a morphism from Galois object π(H∗�

H) to Galois object π[(A � Hm)](H∗ � H)], or equivalent to say, ι′ is a morphism

between the two Yetter- Drinfeld modules under the MUV action. Using Lemma

4.4.4, it is sufficient to prove that the map ι′ in Lemma 4.4.4 is right H-linear under

the MUV action ↽.

We first work out the canonical map γ and its inverse. In fact,

γ[(a� 1)](α� h)]⊗ [(b� 1)](β � g)]

= [(a� 1)](α� h)][(b� 1)](β � g)][0] ⊗ [(b� 1)](β � g)][1]

= [(a� 1)](α� h)][(b� 1)](β � g1)]⊗ g2.

Since (A �Hm)](H∗ �H) is a right weak H-Galois extension, the canonical map is

bijective. Moreover, the canonical map has the inverse:

γ−1[((a� 1)](α� l))1[0] ⊗ h1[1]]

= [(a� 1)](α� l)][(1� 1)](1� S(h1))]⊗ [(1� 1)](1� h2)]

= [(a� 1)](α� l)(1� S(h1))]⊗ [(1� 1)](1� h2)].
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We verify it as follows. On one hand,

γ−1γ[[(a� 1)](α� h)][(b� 1)](β � g)]]

= [(a� 1)](α� h)][(b� 1)](β � g1)][(1� 1)](1� S(g2))]⊗ [(1� 1)](1� g3)]

= [(a� 1)](α� h)][(b� 1)](β � g1)(1� S(g2))]⊗ [(1� 1)](1� g3)]

= [(a� 1)](α� h)][(b� 1)](β � εt(g1))]⊗ [(1� 1)](1� g2)]

= [(a� 1)](α� h)][(b� 1)](S−1(εt(g1))) · β � 1]⊗ [(1� 1)](1� g2)]

= [(a� 1)](α� h)]⊗ [(b� 1)](S−1(εt(g1))) · β � 1][(1� 1)](1� g2)]

= [(a� 1)](α� h)]⊗ [(b� 1)](S−1(εt(g1)) · β � 1)(1� g2)]

= [(a� 1)](α� h)]⊗ [(b� 1)](β � g)].

On the other hand,

γγ−1[((a� 1)](α� l))1[0] ⊗ h1[1]]

= [(a� 1)](α� l)(1� S(h1))][(1� 1)](1� h2)]⊗ h3
= [(a� 1)](α� l)(1� S(h1))(1� h2)]⊗ h3
= [(a� 1)](α� l)(1� εs(h1))]⊗ h2
= [(a� 1)](α� l11)]⊗ h12 = ((a� 1)](α� l))1[0] ⊗ h1[1].

So we have obtained

γ−1(1[0] ⊗ h1[1]) = [(1� 1)](1� S(h1))]⊗ [(1� 1)](1� h2)], ∀h ∈ H.

Next we show that the map ι′ in Lemma 4.4.4 is right H-linear under the MUV

action ↽. For any h ∈ H and β � g ∈ H∗ �H, we have

[(1� 1)](β � g)] ↽ h

= [(1� 1)](1� S(h1))][(1� 1)](β � g)][(1� 1)](1� h2)]

= [(1� 1)](1� S(h1))(β � g)(1� h2)]

= ι[(1� S(h1))(β � g)(1� h2)] = ι[(β � g) ↽ h].

Thus ι′ is a Yetter-Drinfeld module morphism.

Finally, note that Lemma 4.3.3 implies that π(End−,Hs
(H∗)) ' π(H∗ � H) '

RH
∗. Therefore, π[(A�Hm)](H∗ �H)] ' RH

∗.
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Corollary 4.4.6. Let (H,σ) be a finite dimensional coquasi-triangular weak Hopf

algebra. Then the Brauer group Br(MHm) is a subgroup of the kernel KerΠ of the

map Π.

Proof. By Proposition 4.1.7, any element in the Brauer group Br(MHm) can be

represented by an Azumaya algebra A in the category MHm such that A is isomorphic

to a smash product algebra A′�Hm. It follows from Theorem 4.4.5 that Imι ⊆ KerΠ.
Therefore, the group Imι is a subgroup of KerΠ.

Combining Theorem 4.3.9 and Corollary 4.4.6, we obtain the main result in this

chapter:

Theorem 4.4.7. Let H be a finite dimensional coquasi-triangular weak Hopf algebra

over a field k. Let RH
∗ be the associated braided Hopf algebra. Then there exists a

sequence of group homomorphisms:

Br(MHm) ↪→ Br(MH) −→ Galqc(RH
∗),

where Hm is the minimal weak Hopf algebra of H and Galqc(RH
∗) is the group of

quantum commutative Galois objects over RH
∗.

Remark 4.4.8. Note that a weak Hopf algebra is a Hopf algebra if and only if its

minimal weak Hopf algebra Hm is trivial, i.e., Hm = k1H . When Hm = k1H , the

category MHm is just the category of finite dimensional vector spaces. Therefore, the

group Br(MHm) also becomes the group Br(k) if H is a finite dimensional coquasi-

triangular Hopf algebra. In this case, the sequence is the exact sequence in [88].

In general, the minimal weak Hopf algebra of a weak Hopf algebra H is not

necessarily trivial, for example, see [57, Example. 8.3]. So an Azumaya algebra with

the trivial coaction is not necessarily an Azumaya algebra in the category MHm .
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Chapter 5

Brauer groups of braided

fusion categories

In the previous chapter, we constructed a group homomorphism Π from the Brauer

group of a finite dimensional coquasi-triangular weak Hopf algebra (H,σ) to the group

of quantum commutative Galois objects over RH
∗. The map Π will be studied further

in this chapter. To be precise, we will show that the map Π is an isomorphism in case

H is a finite dimensional, cosemisimple, co-connected and coquasi-triangular weak

Hopf algebra over an algebraically closed field k of characteristic 0. That is, MH is a

braided fusion category. So the computation of the Brauer group of a braided fusion

category will be transferred to the computation of the group of quantum commutative

Galois objects, which are easier to deal with. This method will help us to characterize

effectively the Brauer groups of some modular categories.

In this chapter, if not stated otherwise, (H,σ) will always mean a finite dimen-

sional coquasi-triangular weak Hopf algebra over an algebraically closed field k of

characteristic 0 such that it is cosemisimple and co-connected.

5.1 The surjectivity of Π

In this section, we will use the result of [28] to show that the map Π is surjective.

Since the dual H∗ is quasi-triangular, by Theorem 2.2.7, the full center of H∗t or RH
∗
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is a braided Hopf algebra.

Lemma 5.1.1. Let A be a quantum commutative algebra in the category of right-right

Yetter-Drinfeld modules over H. Then CA(A0) = A.

Proof. For any a ∈ A0 and b ∈ A, we have ba = a[0](b · a[1]) = ab.

Lemma 5.1.2. Let A be a right H-comodule algebra and B a smash product algebra.

Then A]B is isomorphic to a smash product algebra (A]B)0 �H.

Proof. Note that there exists a right H-comodule algebra morphism

H ↪→ B ↪→ A]B.

The proof follows from Lemma 1.6.14.

Lemma 5.1.3. Let A be a quantum commutative algebra in the category of right-

right Yetter-Drinfeld modules. If B is a smash product algebra, then A�π(B) is a

subalgebra of π(A]B) in the category of right-right Yetter-Drinfeld modules.

Proof. By the definition of the cotensor product, we have that A�π(B) is a comodule

subalgebra of A]π(B). Since A]π(B) is a comodule subalgebra of A]B, so is A�π(B).

Since Lemma 5.1.2 implies that A]B is a smash product algebra, π(A]B) makes sense.

Now we show that A�π(B) ⊆ π(A]B) as a right H-comodule algebra. Denote by

• the right H-action on A. For any x]y ∈ (A]B)0 and a]b ∈ A�π(B), we have

(a]b)(x]y) = ax[0]](bC x[1])y

= x[0](a • x[1])](bC x[2])y

= x[0](a • x[1]11)](bC x[2]12)y

= x[0](a J x[1]11)]1′[0]ε(121′[1])(b ↽ x[2])y

= x[0](a J x[1]11)]1′[0]ε(121′[1])y[0](b ↽ x[2]y[1])

(4.1)
= x[0](a J x[1]11)]1′[0]ε(121′[1])y1[0](b ↽ 1[1])

= x[0](a J x[1]11)]1′[0]ε(121′[1])yb

= x[0](a J x[1]S
−1(12))]1′[0]ε(S

−1(11)1′[1])yb

= x[0](a J x[1]S
−1(1′[1]))]1

′
[0]yb

(4.2)
= x(a J S−1(y[1]))]y[0]b
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= xa[0]σ(S−1(y[1]), S
−1(a[1]))]y[0]b

= xa[0]]y[0]bσ(y[1], a[1])

= xa[0]](y C a[1])b,

where the quantum commutativity of A and the definition of the cotensor product

were used in the second and the fourth equalities respectively.

Finally, we verify that the right H-module structure on A�π(B) is just the MUV

action from a smash product algebra. Let B = B0 � H and D = A](B0 � H). By

Example 1.6.16, we get

(x⊗ y ⊗ z) ↽ h = (1⊗ 1⊗ S(h1))[x⊗ (y ⊗ z)](1⊗ 1⊗ h2)

= [1⊗ (1⊗ S(h1)][x⊗ (y ⊗ z)(1⊗ h2)]

= x[0] ⊗ [(1⊗ S(h1))C x[1]](y ⊗ z)(1⊗ h2)],

for all h ∈ H and x⊗ y ⊗ z ∈ CD(D0). In particular, if x⊗ y ⊗ z ∈ A�π(B), then

(x⊗ y ⊗ z) ↽ h = x[0] ⊗ [(1⊗ S(h1))C x[1]](y ⊗ z)(1⊗ h2)]

= x[0] ⊗ (1⊗ S(h2))(y ⊗ z)(1⊗ h3)]σ(S(h1), x[1])

= x[0] ⊗ [(y ⊗ z) ↽ h2]σ(S(h1), x[1])

= (x J h1)⊗ [(y ⊗ z) ↽ h2].

Therefore, A�π(B) is a subalgebra of π(A]B) in the category of right-right Yetter-

Drinfeld modules.

Corollary 5.1.4. Let A be a quantum commutative algebra in the category of right-

right Yetter-Drinfeld modules. Then A is a subalgebra of π(A]End−,Hs
(H∗)).

Proof. The proof follows from Lemma 5.1.2 and 5.1.3, since π(End−,Hs
(H∗)) ' RH

∗

and A ' A�RH∗ as algebras in the category of right-right Yetter-Drinfeld modules.

Now let A1 and A2 be two right H-comodule algebras. It is clear that the direct

sum A1
⊕
A2 is also a right H-comodule algebra.

Lemma 5.1.5. Let A =
⊕

i∈J A
i be a right H-comodule algebra such that every Ai
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is a right H-comodule subalgebra of A, where J is a finite index set. Then

A0 =
⊕
i∈J

Ai0 and CA(A0) =
⊕
i∈J

CAi(Ai0).

Proof. Note that ρR(A) ⊂ (
⊕

i∈J A
i) ⊗ H. For a ∈ Ai such that ρR(a) ∈ Aj ⊗ H,

where i 6= j, we have a ∈ Aj and so a = 0.

Lemma 5.1.6. Let A =
⊕

i∈J Ai be a right H-comodule algebra such that Ai is

a right H-comodule subalgebra of A, where J is a finite index set. If B is a right

H-comodule algebra, then

A]B =
⊕
i∈J

(Ai]B).

Proof. Since every Ai is a right H-comodule algebra, so is Ai]B. It is easy to see that

A]B =
∑
iAi]B. For any i, j ∈ J such that i 6= j, AiAj = 0. We can get

(a⊗ b)(a′ ⊗ b′) = aa′[0] ⊗ (bC a′[1])b
′ = 0,

for all a ⊗ b ∈ Ai]B and a′ ⊗ b′ ∈ Aj]B, where a′[0] ⊗ a
′
[1] ∈ Aj ⊗ H. Thus A]B =⊕

i∈J(Ai]B).

Corollary 5.1.7. Let A =
⊕

iAi be a right H-comodule algebra such that Ai is

a right H-comodule subalgebra of A, where J is a finite index set. If B is a right

H-comodule algebra, then

CA]B((A]B)0) =
⊕
i∈J

CAi]B((Ai]B)0).

Proof. Follows from Lemma 5.1.5 and 5.1.6.

Remark 5.1.8. It is easy to see that the above lemmas and corollaries hold for any

coquasitriangular weak Hopf algebra.

Now let (C ,⊗, I, C) be a braided monoidal category. Denote by Autbr(C ) the

group of isomorphism classes of braided autoequivalences of C .

Lemma 5.1.9. Let (C ,⊗, I, C) be a braided monoidal category. Then

Autbr(C ) = Autbr(C rev).
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Proof. If α is a braided autoequivalence of C , then we have the following commutative

diagram:

α(M)⊗ α(N) - α(M ⊗N))

?

Cα(M),α(N) α(CM,N )

α(N)⊗ α(M) - α(N ⊗M).
?

Since all the morphisms in the above diagram are isomorphisms, the following diagram

commutes:

α(N)⊗ α(M) - α(N ⊗M))

?

C−1α(M),α(N) α(C−1M,N )

α(M)⊗ α(N) - α(M ⊗N).
?

So α is a braided autoequivalence of C rev. The proof of the converse is similar.

Lemma 5.1.10. Let S be a braided monoidal equivalence between C and D . Then

Autbr(C ) ' Autbr(D).

Proof. For any braided autoequivalence α ∈ Autbr(C ), define a braided autoequiva-

lence of D as follows:

S(α) = SαS−1 : D −→ C −→ C −→ D .

It is easy to see that the map S is a well-defined group homomorphism from Autbr(C )

to Autbr(C ) and has the inverse S−1(β) = S−1βS for all β ∈ Autbr(C ).

We have seen that Autbr(C ) is a group invariant of C .

Lemma 5.1.11. Let C be a braided monoidal category. Then the following hold:

1. An algebra in C is indecomposable if and only it is indecomposable in C rev;

2. An algebra A in C is a direct sum
⊕

i∈J A
i in C if and only it is a direct sum⊕

i∈J A
i in C rev;

3. An algebra (A,µ) in C is braided-commutative in C if and only it is braided-

commutative in C rev.

105



CHAPTER 5. BRAUER GROUPS OF BRAIDED FUSION CATEGORIES

Proof. The statement (1) and (2) are evident since they are not involved with the

braiding and its inverse. The last one follows from the fact that µ = µCA,A if and

only if µC−1A,A = µ, where C is the braiding of C .

By [56], the category MH of finite dimensional right H-comodules is a braided

fusion category. Note that H∗M ∼= MH and H∗Y DH∗ ∼= Zr(H∗M ). We have

Autbr(Zr(H∗M ),H∗M ) ' Autbr(H∗Y DH∗ ,H∗M ) = Autbr(H∗Y DH∗ ,MH).

By Lemma 2.1.1 and Corollary 2.3.4, the forgetful functor F : H∗Y DH∗ −→
H∗M ∼= MH has a right adjoint functor R : H∗M ∼= MH −→ H∗Y DH∗ . Following

the proof of theorem 4.1 of [28] or Section 5 in [32], we have the following lemma:

Lemma 5.1.12. [32] Let α be a braided autoequivalence in Autbr(H∗Y DH∗ ,MH).

Then F [α−1(R(H∗t ))] =
⊕

i∈J L
i
α such that Liα is equivalent to Ljα as H-Azumaya

algebras for all i, j ∈ J , where J is a finite index set.

Proof. For any braided autoequivalence α ∈ Autbr(H∗Y DH∗ ,MH), we know from

[32] that α−1(R(H∗t )) is an indecomposable algebra in H∗Y DH∗ . However, the alge-

bra Lα := F (α−1R(H∗t )) may be decomposable in MH .

Now assume that Lα =
⊕

i∈J L
i
α, where every Liα is an exact invertible and

indecomposable algebra in the category of finite dimensional right comodules. By

[28, Sec. 3.2], every Liα is an H-Azumaya algebra. It follows from [32, Sec.5] that Li

and Lj are equivalent as H-Azumaya algebras.

For any braided autoequivalence α ∈ Autbr(H∗Y DH∗ ,MH), we will always use

the same notation as in [32]:

Lα := F [α−1(R(H∗t ))] =
⊕
i∈J

Liα.

Corollary 5.1.13. Let α be an element in Autbr(H∗Y DH∗ ,MH). Then

π(Lα]End−,Hs
(H∗)) =

⊕
i∈J

Gi

such that for all i, j ∈ J , Gi ' Gj as braided Galois objects, where J is a finite index

set.
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Proof. By Lemma 5.1.12, any Liα in the above is an H-Azumaya algebra. We know

from Lemma 4.3.8 that the centralizer subalgebra π(Liα]End−,Hs(H∗)) is a braided

Galois object over RH
∗, which we denote by Gi. Using Corollary 5.1.7 we obtain

π((L]End−,Hs
(H∗)) =

⊕
i∈J

π(Liα]End−,Hs
(H∗)) =

⊕
i∈J

Gi.

By Lemma 5.1.12, Li is equivalent to Lj as H-Azumaya algebras. It follows from

Lemma 4.3.6 that Gi ' Gj as braided Galois objects for any i, j ∈ J .

Let A be a quantum commutative Galois object over RH
∗. By Corollary 3.2.10 and

Lemma 5.1.9, the functor −�A ∈ Autbr(H∗H∗Y Dre,MH). Following Lemma 5.1.10 ,

the composition functor E ◦ (−�A) ◦ E−1 ∈ Autbr(H∗Y DH∗ ,MH). Let αA denote

the composition functor E ◦ (−�A) ◦ E−1.

Lemma 5.1.14. Let A be a quantum commutative Galois object. Then the following

statements hold:

1. αA(R(H∗t )) ' E(A);

2. As left H∗-module algebras, E(A) = A;

3. The algebra αA(R(H∗t )) is indecomposable in the category H∗Y DH∗ if and only

if A is indecomposable in the category H∗

H∗Y D .

Proof. Note that E−1(R(H∗t )) ' I ′(H∗t ) ' RH
∗. We have

[E ◦ (−�A) ◦ E−1](R(H∗t )) = [E ◦ (−�A)[E−1(R(H∗t ))]

= E[[E−1(R(H∗t ))]�A]

' E[RH
∗�A] ' E(A).

Since E is an equivalent functor, the algebra αA(R(H∗t )) is indecomposable in the

category H∗Y DH∗ if and only if A is indecomposable in the category H∗

H∗Y Drev.

Thus, the statement (3) follows from Lemma 5.1.11.

Lemma 5.1.15. Let A be a quantum commutative Galois object. Then there exists an

H-Azumaya algebra L′ such that π(L′]End−,Hs
(H∗)) ' A as braided Galois objects.

Proof. Assume that A is a quantum commutative Galois object, whose inverse we

denote by A−1. Clearly, the functor −�A−1 is the inverse of −�A in the group
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Autbr(H
∗

H∗Y Drev,H∗M ). Lemma 5.1.14 implies that αA−1(R(H∗t )) ' E(A−1). In par-

ticular, E(A−1) = A−1 as left H∗-module algebras.

We know from Lemma 5.1.12 that A−1 =
⊕

i∈J L
i
αA−1

such that LiαA−1
is equiv-

alent to LjαA−1
as H-Azumaya algebras for any i, j ∈ J . It follows from Lemma 5.1.3

and Corollary 5.1.13 that

A−1 ' A−1�RH∗ ⊂ π(A−1]End−,Hs
(H∗)) '

⊕
i∈J

Gi.

Since E(A−1) is indecomposable in the category of left-right Yetter-Drinfeld mod-

ules, A−1 is indecomposable in the category of left-left Yetter-Drinfeld modules by

Lemma 5.1.14. So A−1 is a subalgebra of some Galois object Gi. By [25, Prop. 4.6],

A−1 ' Gi. From Corollary 5.1.13, we derive that A−1 ' Gi for all i ∈ J .

Now choose an i ∈ J , and let L′ be the opposite algebra LiαA−1
of LiαA−1

. We get

π(Li−�A−1]End−,Hs
(H∗)) ' (A−1)−1 ' A

as braided Galois objects over RH
∗.

Corollary 5.1.16. Let (H,σ) be a finite dimensional coquasi-triangular weak Hopf

algebra over an algebraically closed field k of characteristic 0 such that it is cosemisim-

ple and co-connected. Then the map Π in Theorem 4.3.9 is surjective.

Proof. Follows from Lemma 5.1.15.

5.2 The trivial kernel

In this section we will show that the kernel of the map Π is trivial.

Let autbr(H∗Y DH∗ ,H∗M ) be the following set:

{α ∈ Autbr(H∗Y DH∗ ,H∗M )|(E ◦ α ◦ E−1(RH
∗) ' RH

∗ }.

Proposition 5.2.1. autbr(H∗Y DH∗ ,H∗M ) is a subgroup of Autbr(H∗Y DH∗ ,H∗M ).
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Proof. It is clear that id ∈ autbr(H∗Y DH∗ ,H∗M ). For all α, β ∈ autbr(H∗Y DH∗ ,H∗M ),

(E ◦ αβ ◦ E−1(RH
∗) ' [(E ◦ α ◦ E−1◦)(E ◦ β ◦ E−1)](RH

∗)

' (E ◦ α ◦ E−1◦)(RH∗) ' RH
∗.

So αβ ∈ autbr(H∗Y DH∗ ,H∗M ). Similarly, α−1 ∈ autbr(H∗Y DH∗ ,H∗M ). Thus

autbr(H∗Y DH∗ ,H∗M ) is a subgroup.

Lemma 5.2.2. π(Liid]End−Hs(H∗)) ' RH
∗.

Proof. By Lemma 5.1.14, we have α
RH∗ = E ◦ id ◦ E−1 = id. Similar to the proof of

Lemma 5.1.15, we obtain π(Liid]End−Hs(H∗)) ' RH
∗.

Lemma 5.2.3. Let α be an element in Autbr(H∗Y DH∗ ,H∗M ) with inverse α−1.

Then

π(Liα]End−Hs
(H∗)) ' RH

∗ ⇐⇒ π(Liα−1]End−Hs
(H∗)) ' RH

∗.

Proof. By Theorem 4.3.8, if A and B are two H-Azumaya algebras, we have

π[(A]B)]End−Hs
(H∗)] ' π(A]End−Hs

(H∗)�π(B]End−Hs
(H∗).

Moreover, for α, β ∈ Autbr(H∗Y DH∗ ,H∗M ), by [28, 32] the algebra Liα]L
i
β is

equivalent to Liαβ as an H-Azumaya algebra. So

π(Liαβ]End−Hs(H∗)) ' π[(Liα]L
i
β)]End−Hs(H∗)]

' π(Liα]End−Hs(H∗))�π(Liβ]End−Hs(H∗)).

Now assume that α ∈ Autbr(H∗Y DH∗ ,H∗M ) such that there exists some H-

Azumaya algebra Liα satisfying π(Liα]End−Hs
(H∗)) ' RH

∗. Then

π(Liα−1]End−Hs
(H∗)) ' π(Liα−1]End−Hs

(H∗))�RH
∗

' π(Liα−1]End−Hs
(H∗))�π(Liα]End−Hs

(H∗))

' π[(Liα−1]Liα)]End−Hs
(H∗)]

' π(Liαα−1]End−Hs
(H∗)) ' RH

∗,

where Lemma 5.2.2 was applied to the last equality.
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Lemma 5.2.4. Let α be an element in Autbr(H∗Y DH∗ ,H∗M ). Then there exists

some H-Azumaya algebra Liα satisfying π(Liα]End−Hs
(H∗)) ' RH

∗ if and only if

α ∈ autbr(H∗Y DH∗ ,H∗M ).

Proof. If π(Liα]End−Hs
(H∗)) ' RH

∗, then we have

(E ◦ α−1 ◦ E−1)(RH) ⊂ π(Lα]End−Hs
(H∗)) =

⊕
i∈J

RH
∗.

The indecomposability of Lα in the category of Yetter-Dinfeld modules implies that

(E ◦ α−1 ◦ E−1)(RH
∗) ⊂ RH

∗.

It follows from Lemma 5.2.3 that π(Liα−1]End−Hs
(H∗)) ' RH

∗. Similarly, we have

(E ◦ α ◦ E−1)(RH
∗) ⊂ RH

∗.

The foregoing inclusion means that α−1(RH
∗) is a subobject of RH

∗. So the embed-

ding i : (E ◦ α−1 ◦E−1)(RH
∗) ↪→ RH

∗ is a monomorphism. Since (E ◦ α ◦E−1) is a

braided autoequivalence, (E ◦ α ◦ E−1)(i) is a monomorphism. Then we have

RH
∗ = (E ◦ α ◦ E−1)[(E ◦ α−1 ◦ E−1)(RH

∗)] ⊂ (E ◦ α ◦ E−1)(RH
∗) ⊂ RH

∗.

Thus, (E ◦ α ◦ E−1)(RH
∗) = RH

∗. The proof of the converse is easy.

Proposition 5.2.5. The subgroup autbr(H∗Y DH∗ ,H∗M ) is trivial.

Proof. From E(R(H∗t )) ' I ′(H∗t ) ' RH
∗, we derive that

α(R(H∗t )) ' I(H∗t ) ⇐⇒ (E ◦ α ◦ E−1(I ′(H∗t )) ' (E ◦ E−1(I ′(H∗t )

⇐⇒ (E ◦ α ◦ E−1(RH
∗) ' RH

∗.

If there is another β ∈ autbr(H∗Y DH∗ ,H∗M ), then

α−1(R(H∗t )) ' E−1(RH
∗) ' β−1(R(H∗t )).

It follows from [28, 32] that α is uniquely determined by α−1(R(H∗t )) for any α ∈
autbr(H∗Y DH∗ ,H∗M ). So α ∼= β. Thus the subgroup autbr(H∗Y DH∗ ,H∗M ) is
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trivial.

Theorem 5.2.6. The map Π is an isomorphism from the Brauer group Br(MH) to

the group Galqc(RH
∗).

Proof. Using Theorem 4.3.9 we have a group homomorphism

Π : Br(MH) −→ Galqc(RH
∗), [A] 7−→ π(A]End−,Hs

(H∗)).

Moreover, the surjectivity of Π follows from Corollary 5.1.16. By Theorem 4.3 in [28],

we get another group isomorphism:

ψ : Br(MH) ' Br(H∗M ) ' Autbr(H∗Y DH∗ ,H∗M ).

Let A′ be any H-Azumaya algebra satisfying π(A′]End−,Hs
(H∗)) ' RH

∗. So the

braided autoequivalence ψ(A′) lies in Autbr(H∗Y DH∗ ,H∗M ) and the H-Azumaya

algebra Liψ(A′) is equivalent to A′. Hence, we have

π(Liψ(A′)]End−,Hs
(H∗)) ' π(A′]End−,Hs

(H∗)) ' RH
∗,

which means that ψ(A′) ∈ autbr(H∗Y DH∗ ,H∗M ). But ψ(kerΠ) = 1 by Proposition

5.2.5. Therefore, kerΠ is trivial. Thus Π is an isomorphism.

Now we state our result in the language of a braided fusion category.

Corollary 5.2.7. Let C be a braided fusion category. Then the Brauer group Br(C )

of C is isomorphic to the group of quantum commutative Galois objects over some

braided Hopf algebra.

In [62], Pfeiffer gave a detailed construction of a finite dimensional cosemisimple

coquasi-triangular weak Hopf algebra HC for any ribbon category C over a alge-

braically closed field k and showed that C is equivalent to the category of finite

dimensional right HC -comodules as a ribbon category. As a consequence, we obtain:

Corollary 5.2.8. Let C be a ribbon category C over an algebraically closed field k of

characteristic zero. Assume that HC is the reconstructed weak Hopf algebra in [62].

Then the Brauer group Br(C ) is isomorphic to the group Galqc(RH
∗
C ).

As a modular category is also equivalent to the category of finite dimensional

comodules over some coquasi-triangular weak Hopf algebra, we have the following
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corollary:

Corollary 5.2.9. Let C be a modular category C over an algebraically closed field

k. Assume that HC is the reconstructed weak Hopf algebra in [62]. Then the Brauer

group Br(C ) is isomorphic to the group Galqc(RH
∗
C ).

5.3 The Brauer groups of a class of modular cate-

gories

By investigating the algebraic structure of the lattice models of face type, Hayashi

found a class of quantum groups, called Hopf face algebras, see [36]. A Hopf face

algebra is a finite dimensional cosemisimple coquasi-triangular weak Hopf algebra. In

[38], Hayashi used face algebras to construct modular tensor categories with positive

definite inner product. The fusion rules and S-matrices of those fusion categories are

the same as (or slightly different from) those obtained from Uq(slN ) at roots of unity.

In this section, we use Theorem 5.2.6 to characterize the Brauer groups of this class

of modular categories.

5.3.1 Face algebras and their comodules

For the detailed study of face algebras, the reader is referred to [36, 37, 38, 39]. Here

we avoid the complicated construction of a face algebra and reduce some parameters

by taking the case of ε = −1. Now we write down Hayashi’s face algebra AN,t.

Let N ≥ 2 be an integer and V the cyclic group Z/NZ. Let t ∈ C be a primitive

N th root of unity. The V-face algebra AN,t is defined to be the C-linear span of

symbols eij(m) (i, j,m ∈ V) equipped with the structure given by

eij(p)e
k
l (q) = δi+p,kδj+p,l e

i
j(p+ q),

∆(eij(m)) =
∑
k

eik(m)⊗ ekj (m),

ε(eij(m)) = δi,j ,

S(eij(p)) = ej+pi+p (−p).

Then the algebra AN,t is a coquasi-triangular weak algebra with the coquasi-triangular
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structure:

σ(eij(p), e
k
l (q)) = δi,k+qδj,kδi+p,l+qδj+p,lt

−pq,

where i, j, k, l, p, q ∈ V. Denote by eλ the sum
∑
i∈V e

i
λ(0), for any λ ∈ V. The source

subalgebra is the C-linear span of {eλ|λ ∈ V}.

It is not hard to check that the dual A∗N,t of AN,t is spanned by {Xi
j(s)|i, j, s ∈ V}

and a quasi-triangular weak Hopf algebra equipped with the following structures:

∆(Xi
j(s)) =

∑
p+q=s

Xi
j(p)⊗X

i+p
j+p(q), ε(X

i
j(s)) = δs,0,

Xi
j(p)X

k
l (q) = δj,kδp,qX

i
l (p), 1 =

∑
i,p

Xi
i (p),

S(Xi
j(p)) = Xj+p

i+p (−p),

R1 ⊗R2 =
∑
i,j,p

Xi
j(p)⊗X

j
j+p(i− j)t

−p(i−j),

R′1 ⊗R′2 =
∑
i,j,p

Xj+p
i+p (−p)⊗Xj

j+p(i− j)t
−p(i−j),

where {Xi
j(p)} is the dual basis of {eij(p)}. Moreover, the target subalgebra of A∗N,t

is the C-linear span of {
∑
pX

i
i (p)|i ∈ V}. We denote by 1i the sum

∑
pX

i
i (p) for all

i ∈ V. Then the target subalgebra of A∗N,t is the direct sum
⊕

i∈V C1i.

Now we recall the comodule theory of face algebras. Let H be a V-face algebra

and U a right H-comodule. By [38], there exists a face space decomposition

U =
⊕
λ,ν∈V

U(λ, ν),

where U(λ, ν) = {u[0]ε(eλu[1]eν)|u ∈ U}. If U and V are two right H-comodules,

then

U ⊗s V =
⊕

λ,,k,l∈V
U(λ, k)⊗ V (k, l).

Lemma 5.3.1. If f : U −→ V is a right H-comodule isomorphism, then

f(U(λ, ν)) = V (λ, ν), ∀ λ, ν ∈ V.

Proof. Since f is right H-colinear, the map f is Hs-linear. We need to show that

113



CHAPTER 5. BRAUER GROUPS OF BRAIDED FUSION CATEGORIES

ρ(eλf(u)eν) = ρ(f(u)) for any u ∈ U(λ, ν) and λ, ν ∈ V. Indeed,

ρ(eλf(u)eν) = f(u)[0] ⊗ eλf(u)[1]eν

= f(u[0])⊗ eλu[1]eν
= f(u[0])⊗ u[1]
= f(u)[0] ⊗ f(u)[1].

Thus, f(U(λ, ν)) = V (λ, ν) for any λ, ν ∈ V.

Lemma 5.3.2. Let U, V and W be finite dimensional right H-comodules such that

U ⊗s V ' U ⊗sW as right H-comodules. Then dim(V ) = dim(W ).

Proof. By Lemma 5.3.1, we have U(λ, k)⊗V (k, l) ' U(λ, k)⊗W (k, l) for any λ, k, l ∈
V. Since their dimensions are finite, dim(V (k, l)) = dim(W (k, l)). Thus dim(V ) =

dim(W ).

5.3.2 Hopf algebras and braided Hopf algebras

In the sequel, H will always denote the dual of AN,t. Let RH be the braided Hopf

algebra constructed in Theorem 2.2.7. It is easy to see that the target subalgebra

Ht =
⊕

i∈V C1i is commutative. In this section, we will show that RH can be viewed

as the direct sum of some ordinary Hopf algebras. First, we need to work out RH.

Lemma 5.3.3. The braided Hopf algebra RH is the C-linear span of {Xi
i (p)|i, p ∈ V}

equipped with the following structures:

∆′(Xk
k (s)) =

∑
w+q=s

Xk
k (w)⊗Xk

k (q)

εt(X
i
i (s)) = δs,0

∑
p

Xi
i (p),

Xi
i (p)X

k
k (q) = δi,kδp,qX

i
i (p), 1 =

∑
i,p

Xi
i (p),

S(Xk
k (s)) = Xk

k (−s).
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Proof. Note that ∆(1H) = ∆(
∑
i,sX

i
i (s)) =

∑
i,s

∑
p+q=sX

i
i (p)⊗X

i+p
i+p (q). We have

11X
m
n (r)S(12) =

∑
i,s

∑
p+q=s

Xi
i (p)X

m
n (r)S(Xi+p

i+p (q))

=
∑
i,s

∑
p+q=s

Xi
i (p)X

m
n (r)Xi+p+q

i+p+q (−q)

=
∑
i,s

∑
p+q=s

δi,mδn,i+p+qδp,rδ−q,rX
i
i+p+q(p)

=
∑
i

δi,mδn,iX
i
i (r) = δm,nX

m
n (r),

for all m,n, r ∈ V. So RH is the C-linear span of {Xi
i (p)|i, p ∈ V }.

Using ∆(R1) ⊗ R2 =
∑
i,j,p

∑
u+v=pX

i
j(u) ⊗ Xi+u

j+u(v) ⊗ Xj
j+p(i − j)t−p(i−j), we

compute the deformed comultiplication as follows:

∆′(Xk
k (s))

=
∑

w+q=s

Xk
k (w)S(R2)⊗R1 ·Xk+w

k+w (q)

=
∑

w+q=s

Xk
k (w)S(R2)⊗R1

1X
k+w
k+w (q)S(R1

2)

=
∑

w+q=s

∑
i,j,p

∑
u+v=p

Xk
k (w)S(Xj

j+p(i− j))⊗X
i
j(u)Xk+w

k+w (q)S(Xi+u
j+u(v))t−p(i−j)

=
∑

w+q=s

∑
i,j,p

∑
u+v=p

Xk
k (w)Xi+p

i (j − i))⊗Xi
j(u)Xk+w

k+w (q)Xj+u+v
i+u+v (−v))t−p(i−j)

=
∑

w+q=s

∑
i,j,p

∑
u+v=p

δw,j−iδk,i+pX
k
i (w)⊗ δu,qδq,−vδj,k+wδk+w,j+u+vXi

i+u+v(u)t−p(i−j)

=
∑

w+q=s

∑
i,j

δw,j−iδk,iδj,k+wX
k
i (w)⊗Xi

i (q)

=
∑

w+q=s

∑
j

δw,j−kδj,k+wX
k
k (w)⊗Xk

k

=
∑

w+q=s

Xk
k (w)⊗Xk

k (q).

By Theorem 2.2.7, the antipode is given by S(x) = R2R′2S2(R′1)S(R1x). For
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convenience, we first compute R′2S2(R′1). Indeed,

R′2S2(R′1) =
∑
i,j,p

Xj
j+p(i− j)S

2(Xi
j(p))t

−p(i−j)

=
∑
i,j,p

Xj
j+p(i− j)X

i
j(p)t

−p(i−j)

=
∑
i,j,p

δj+p,iX
j
j (i− j)t−p(i−j).

Now we have

S(Xk
k (−s)) = R2R′2S(R1Xk

k (s)S(R′1))

=
∑
i,j,p

∑
i′,j′,p′

δj′+p′,i′X
j
j+p(i− j)X

j′

j′ (i
′ − j′)S(Xi

j(p)X
k
k (s))t−[p(i−j)+p

′(i′−j′)]

=
∑
i,j,p

∑
i′,j′,p′

δj′+p′,i′δj,kδp,sX
j
j+p(i− j)X

j′

j′ (i
′ − j′)S(Xi

k(s))t−[p(i−j)+p
′(i′−j′)]

=
∑
i

∑
i′,j′,p′

δj′+p′,i′X
k
k+s(i− k)Xj′

j′ (i
′ − j′)S(Xi

k(s))t−[s(i−k)+p
′(i′−j′)]

=
∑
i

∑
i′,j′,p′

δj′+p′,i′X
k
k+s(i− k)Xj′

j′ (i
′ − j′)Xk+s

i+s (−s)t−[s(i−k)+p
′(i′−j′)]

=
∑
i

∑
i′,j′,p′

δj′+p′,i′δi−k,i′−j′δi′−j′,−sδk+s,j′X
k
i+s(−s)t−[s(i−k)+p

′(i′−j′)]

=
∑
i

∑
j′,p′

δi−k,p′δp′,−sδk+s,j′X
k
i+s(−s)t−[s(i−k)+p

′p′]

=
∑
i

∑
j′

δi−k,−sδk+s,j′X
k
i+s(−s)t−[s(i−k)+(−s)(−s)]

=
∑
i

δi−k,−sX
k
i+s(−s)t−[s(i−k)+(−s)(−s)]

= Xk
k (−s)t−[s(−s)+(−s)(−s)] = Xk

k (−s).

Thus the proof is completed.

Take i ∈ V. Define Hi to be the C-linear span of {Xi
i (p)|p ∈ V}. It is obvious

that Hi is a subalgebra of RH with unity 1i. Moreover, RH is the direct sum of all

these Hi, i.e.,

RH =
⊕
i∈V

Hi.

We will show that every Hi is also an ordinary Hopf algebra and so RH is actually
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the direct sum of all these Hopf algebras. In order to verify that every Hi can be

equipped with a coalgebraic structure, we need to give the vector space RH ⊗t RH.

Lemma 5.3.4. RH ⊗t RH =
⊕

i∈V(Hi ⊗Hi).

Proof. It is equivalent to show that

11 ·Xa
a (b)⊗ 12 ·Xu

u (w) = δu,aX
a
a (b)⊗Xu

u (w),

for all a, b, u, w ∈ V. Indeed, we have

11 ·Xa
a (b)⊗ 12 ·Xu

u (w)

=
∑
i,s

∑
p+q=s

Xi
i (p) ·Xa

a (b)⊗Xi+p
i+p (q) ·Xu

u (w)

=
∑
i,s

∑
p+q=s

δi,aδp,0X
i
i (b)⊗ δi+p,uδq,0X

i+p
i+p (w)

=
∑
i

δi,aX
i
i (b)⊗ δi,uXi

i (w)

= δu,aX
a
a (b)⊗Xu

u (w),

for all a, b, u, w ∈ V.

Lemma 5.3.5. For all i ∈ V, Hi is a coalgebra over C1i with the following structures:

∆′(Xi
i (s)) =

∑
w+q=s

Xi
i (w)⊗Xi

i (q),

εt(X
i
i (s)) = δs,0

∑
p

Xi
i (p).

Proof. Follows from Lemma 5.3.3 and 5.3.4.

Proposition 5.3.6. For all i ∈ V, Hi is a Hopf algebra over C1i equipped with the

following structures:

Xi
i (p)X

i
i (q) = δp,qX

i
i (p), 1Hi = 1i,

∆′(Xi
i (s)) =

∑
w+q=s

Xi
i (w)⊗Xi

i (q),

εt(X
i
i (s)) = δs,0

∑
p

Xi
i (p),

S(Xi
i (s)) = Xi

i (−s).
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Proof. We know already that Hi is both an algebra and a coalgebra, it remains to

be proved that ∆′ and εt are multiplicative, and that the axioms of the antipode S

hold. We first check that ∆′′ is multiplicative. Indeed,

∆′(Xi
i (s))∆

′′(Xi
i (t)) = [

∑
p+q=s

Xi
i (p)⊗Xi

i (q)][
∑

p′+q′=t

Xi
i (p
′)⊗Xi

i (q
′)]

=
∑
p+q=s

∑
p′+q′=t

[Xi
i (p)X

i
i (p
′)⊗Xi

i (q)X
i
i (q
′)]

=
∑
p+q=s

∑
p′+q′=t

δp,p′δq,q′ [X
i
i (p)⊗Xi

i (q)]

= δs,t
∑
p+q=s

Xi
i (p)⊗Xi

i (q)

= ∆′(Xi
i (s)X

i
i (t)),

for all i, s, u, t ∈ V.

Note that ∆′(1) = 1⊗t 1. It follows from Lemma 5.3.4 that ∆′(1i) = 1i ⊗ 1i.

Next we verify that εt is an algebra map. For all s, t ∈ V, we have

εt(X
i
i (s))εt(X

i
i (t)) = δs,0δt,0(

∑
p

Xi
i (p))(

∑
q

Xi
i (q))

= δs,0δt,0(
∑
p

Xi
i (p)) = δs,tδs,0εt(X

i
i (s))

= εt(X
i
i (s)X

i
i (t)).

Finally, we prove that the antipode axioms hold. Indeed,

m(1⊗ S)∆′′(Xi
i (s)) =

∑
p+q=s

Xi
i (p)S(Xi

i (q)) =
∑
p+q=s

Xi
i (p)X

i
i (−q)

= δp,−q
∑
p+q=s

Xi
i (p) = δs,0

∑
p∈V

Xi
i (p) = εt(X

i
i (s)).

for any s ∈ V. Similarly, we also have∑
w+q=s

S(Xi
i (w)Xi

i (q) =
∑

w+q=s

Xi
i (−w)Xi

i (q)) =
∑

w+q=s

δ−w,qX
i
i (q)

=
∑
q

δs,0X
i
i (q) = εt(X

i
i (s)).
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Hence, Hi is an ordinary Hopf algebra over C1i.

Corollary 5.3.7. The braided Hopf algebra RH has a decomposition:

RH =
⊕
i∈V

Hi,

where Hi is a Hopf algebra over C1i with unity 1i. Moreover, there exists a Hopf

algebra isomorphism from Hi to Hj defined by

ιji : Xi
i (p) 7−→ Xj

j (p),

for all i, j, p ∈ V.

Proof. Follows from Proposition 5.3.6.

5.3.3 Galois objects and Brauer groups

In this section, we compute the braided Galois objects over RH and the Brauer group

of the weak Hopf algebra AN,t. Before we study the braided Galois RH-Galois objects,

let us look at the H-module structure on RH (see Lemma 2.1.5), which we need later

on.

Lemma 5.3.8. The left adjoint action of H on RH is given by the following formula:

Xi
j(p) ·Xk

k (s) = δj,kδp,0X
i
i (s),

for all i, j, p, k, s ∈ V.

Proof. We compute the left adjoint action as follows:

Xi
j(p) ·Xk

k (s) =
∑

u+v=p

Xi
j(u)Xk

k (s)S(Xi+u
j+u(v))

=
∑

u+v=p

Xi
j(u)Xk

k (s)Xj+u+v
i+u+v (−v)

= δj,k
∑

u+v=p

δu,sX
i
k(s)Xj+p

i+p (−v)
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= δj,k
∑

u+v=p

δu,sδs,−vδj+p,kX
i
k(s)Xj+p

i+p (−v)

= δj,kδp,0X
i
i (s),

for all i, j, p, k, s ∈ V.

Let A be a right braided RH-Galois object. Then A◦ ' Ht. By Corollary 5.3.7,

RH =
⊕

i∈VH
i. Then we have a vector space decomposition: A =

⊕
i∈VA

i, where

ρr(Ai) ∈ Ai ⊗ Hi. Since Ht =
⊕

i∈V C1i, A◦ =
⊕

i∈VA
i
◦. In what follows, we will

prove that every Ai is a Galois object over Hi, where Hi is the same as in Corollary

5.3.7. Note that H is spanned by {Xi
j(p)|i, j, p ∈ V}. We first find an idempotent

element of Ai by the left H-module structure on A.

Lemma 5.3.9. If A is a right braided RH-Galois object, then for any k ∈ V, there

exists an idempotent element ek in Ak such that the action of H on ek is given by

Xi
j(p) · ek = δp,0δj,ke

i,

for all i, j, p ∈ V. In particular, A◦ is the C-linear span of {ek}k∈V.

Proof. Note that A◦ ' Ht. Let f be an isomorphism from Ht to A◦ in the category

of finite dimensional left H-modules. For all u ∈ V, we have 1u 6= 0 and so f(1u) 6= 0.

Moreover, the Ht-linearity implies that f(1u) = 1u · 1A. Since f is an algebra map,

f(1u) = f(1u)f(1u). Given a ∈ Au, we have

f(1u)a = (1u · 1A)a = 1 · ((1u · 1A)a) = (111u · 1A)(12 · a) = 1u · a.

Note that h · 1A = εt(h) · 1A for any h ∈ H. So for all p 6= 0 and i, j ∈ V,

Xi
j(p) · 1A = 0.

For any i, j, k ∈ V, we have

Xi
j(0) · (1k · 1A) =

∑
p

(Xi
j(0)Xk

k (p)) · 1Aδj,kXi
k(0) · 1A

= δj,kεt(X
i
k(0)) · 1A = δj,k1i · 1A.
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Now let ek := 1k · 1A. Then

Xi
j(p) · ek = δp,0δj,ke

i.

Thus A◦ is also the C-linear span of {ei}i∈V.

Now we study the algebraic structure of a braided RH-Galois object.

Lemma 5.3.10. If A is a right braided RH-Galois object, then for each l ∈ V, Al is

a left ideal of A.

Proof. It is sufficient to show that AkAl ⊆ Al, ∀ k ∈ V. For any uk ∈ Ak, we have

ρr(uk) = uk(0) ⊗ u
k
(1) ∈ A

k ⊗Hk. By Lemma 5.3.8,

ρr(ukul) =
∑
i,j,p

uk(0)(X
j
j+p(i− j) · u

l
(0))⊗ (Xi

j(p) · uk(1))u
l
(1)t
−p(i−j)

=
∑
i,j

uk(0)(X
j
j (i− j) · ul(0))⊗ (Xi

j(0) · uk(1))u
l
(1)

=
∑
i

uk(0)(X
k
k (i− k) · ul(0))⊗ (Xi

k(0) · uk(1))u
l
(1)

= uk(0)(X
k
k (l − k) · ul(0))⊗ (X l

k(0) · uk(1))u
l
(1),

for all ul ∈ Al. So AkAl ⊆ Al.

Lemma 5.3.11. Let A be a right braided RH-Galois object. Then the following two

statements hold for all i, j, p, k ∈ V and uk ∈ Ak:

1. Xi
j(p) · uk ∈ Ai+p. Moreover, if j + p 6= k, then Xi

j(p) · uk = 0.

2. Xi
j(p) · uk = 0 if and only if X l

j(p) · uk = 0 for any l ∈ V.

Proof. Following the left H-linearity, we obtain

ρ(Xi
j(p) · uk) =

∑
w+v=p

Xi
j(w) · uk(0) ⊗X

i+u
j+u(v) · uk(1)

= Xi
j(p) · uk(0) ⊗X

i+p
j+p(0) · uk(1),

for all i, j, p, k ∈ V and uk ∈ Ak. Moreover, Lemma 5.3.9 implies that

ρ(Xi
j(p) · uk) = Xi

j(p) · uk(0) ⊗X
i+p
j+p(0) · uk(1) ∈ A⊗H

i+p.
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Then Xi
j(p) · uk ∈ Ai+p. In particular, when j + p 6= k , we have ρ(Xi

j(p) · uk) = 0.

Thus Xi
j(p) · uk = 0.

The second statement follows from

X l
j(p) · uk = X l

i(p) · (Xi
j(p) · uk) = 0,

for any i, l ∈ V.

Lemma 5.3.12. Let A be a quantum commutative Galois object. Then

AkAl = 0,

for all k, l ∈ V such that k 6= l.

Proof. First of all, we recall from [70] how to construct a left RH-comodule from a

right RH-comodule. Let M be a right RH-comodule in HM . It is not hard to check

that the map

τ
RH,M : RH ⊗M −→M ⊗ RH, h⊗m 7−→ r2R1 ·m⊗ r1hR2

is a haif-braiding, whose inverse is given by

τ ′M,RH : M ⊗ RH −→ RH ⊗M, m⊗ h 7−→ r1hR2 ⊗ S−1(r2R1) ·m.

Then the induced left RH-comodule is given by

ρl(a) = τ ′(a(0) ⊗ a(1))

= r1a(1)R
2 ⊗ S−1(r2R1) · a(0),

where for all a ∈ A and ρr(a) = a(0) ⊗ a(1).

Next note that Lemma 3.1.3 implies that a left RH-comodule induces a left-left

Yetter-Drinfeld module with the coaction ρL, where

ρL(m) = m(−1)R
2 ⊗R1 ·m(0) ∈ H ⊗M.
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Let us work out this left H-comodule. For all a ∈ A,

ρL(a) = r1a(1)R
2p2 ⊗ p1S−1(r2R1) · a(0)

= r1a(1)R
2p2 ⊗ S−1[R1S(p1)]S−1(r2) · a(0)

= r1a(1)R
2 ⊗ S−1[εt(R

1)]S−1(r2) · a(0)
= r1a(1)11 ⊗ S−1(12)S−1(r2) · a(0)
= r111a(1) ⊗ S−1(r212) · a(0)
= r1a(1) ⊗ S−1(r2) · a(0).

Now we claim that for all ak ∈ Ak and bl ∈ Al,

Xu
v (q) · (ab) = δv,l[(X

u
k (l − k)ak(1)) · b

l][Xu+l−k
l (q + k − l)) · ak(0)], (5.1)

for any u, v, q ∈ V. Using the quantum commutativity of A, we first have

akbl = [(r1ak(1)) · b
l][S−1(r2) · ak(0)]

=
∑
i,j,p

[(Xi
j(p)a

k
(1)) · b

l][S−1(Xj
j+p(i− j)) · a

k
(0)]t

−p(i−j)

=
∑
i,j,p

[(Xi
j(p)a

k
(1)) · b

l][Xi+p
i (j − i)) · ak(0)]t

−p(i−j)

=
∑
i,p

[(Xi
k(p)ak(1)) · b

l][Xi+p
i (k − i)) · ak(0)]t

−p(i−k)

=
∑
i

[(Xi
k(l − k)ak(1)) · b

l][Xi+l−k
i (k − i)) · ak(0)]t

−(l−k)(i−k),

for all ak ∈ Ak and bl ∈ Al. Then

Xu
v (q) · (akbl) = Xu

v (q) · [
∑
i

(Xi
k(l − k)ak(1)) · b

l][Xi+l−k
i (k − i)) · ak(0)]

=
∑
c+d=q

∑
i

[(Xu
v (c)Xi

k(l − k)ak(1)) · b
l][(Xu+c

v+c (d)Xi+l−k
i (k − i)) · ak(0)]

=
∑
i

[(Xu
v (l − k)X l

k(l − k)ak(1)) · b
l][(Xu+l−k

v+l−k (q + k − l)X l+l−k
l (k − i))) · ak(0)]

=
∑
i

δq+k−l,k−iδv,l[(X
u
k (l − k)ak(1)) · b

l][Xu+l−k
l (q + k − l)) · ak(0)]

= δv,l[(X
u
k (l − k)ak(1)) · b

l][Xu+l−k
l (q + k − l)) · ak(0)],
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for any u, v, q ∈ V.

Finally, we verify that AkAl = 0 for all k, l ∈ V such that k 6= l. If q 6= 0, then

l + q + k − l 6= k. It follows from (1) in Lemma 5.3.10 and the equation (5.1) that

Xu
v (q) · (akbl) = 0. So

Xu
v (q) · (akbl) = δq,0δv,l[(X

u
k (l − k)ak(1)) · b

l][Xu+l−k
l (k − l)) · ak(0)].

Now we show that Xu
v (q) · bl = 0 when q 6= 0. Note that 1A =

∑
k e

k. We get

Xu
v (q) · bl = Xu

v (q) · (1bl) =
∑
k

Xu
v (q) · (ekbl)

= δq,0
∑
k

δv,l[(X
u
k (l − k)ek(1)) · b

l][Xu+l−k
l (k − l)) · ek(0)] = 0.

Similar to the proof in Lemma 5.3.9, we have

ρ(ukul) = uk(0)(X
k
k (l − k) · ul(0))⊗ (X l

k(0) · uk(1))u
l
(1) = 0,

for all ak ∈ Ak and ul ∈ Al. So ukul = 0 when l 6= k. Thus AkAl = 0.

Corollary 5.3.13. If A is a quantum commutative Galois object, then 1A =
⊕

k∈V e
k

such that every ek is an identity element of Ak, where ek = 1k · 1A.

Proof. For all uk ∈ Ak, we have uk = 1Au
k =

∑
i e
iuk. By Lemma 5.3.12, uk = ekuk.

Similarly, uk = uk1A =
∑
i u

kei = ukek.

Lemma 5.3.14. Let A be a quantum commutative Galois object. Then there exists

a basis of A given by a union: ⋃
l∈V
{ul0, ul1, ..., ulN−1},

where {ul0, ul1, ..., ulN−1} is a basis of Al such that el = ul0 and

Xi
j(p) · ulm = δp,0δj,lu

i
m,

for all i, j, p, l,m ∈ V.

Proof. First of all, we show that Xi
k(0) · uk 6= 0 for any 0 6= uk ∈ Ak and i ∈ V. For
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all uk ∈ Ak, we have

uk = ekuk = f(1k)uk = (1k · f(1))uk

= (1k · 1A)uk = (111k · 1A)(12 · uk)

= 1k · uk =
∑
p

Xk
k (p) · uk

= Xk
k (0) · uk.

Using the associativity of H-action we get

uk = Xk
k (0) · uk = (Xk

i (0)Xi
k(0)) · uk = Xk

i (0) · ((Xi
k(0) · uk),

for any i ∈ V. If uk 6= 0, then Xi
k(0) · uk 6= 0 for any i ∈ V.

Next we claim that if any two elements uk and vk in Ak are linearly independent,

then Xi
k(0) · uk and Xi

k(0) · vk in Ai are linearly independent. Indeed, if there exist

lu and lv in C such that luX
i
k(0) · uk + lvX

i
k(0) · vk = 0, we have

0 = Xk
i (0)(luX

i
k(0) · uk + lvX

i
k(0) · vk)

= lu(Xk
i (0)Xi

k(0)) · uk + lv(X
k
i (0)Xi

k(0)) · vk)

= luX
k
k (0) · uk + lvX

k
k (0) · vk

= luu
k + lvv

k.

So lu = 0 and lv = 0. Thus Xi
k(0) · uk and Xi

k(0) · vk are linearly independent.

By the above, if {uk0 , uk1 , ...} is a basis of Ak such that uk0 = ek, then {ei, Xk
i (0) ·

uk1 , X
k
i (0) · uk2 , ...} ⊆ Ai is linearly independent. Conversely, if {ui0, ui1, ...} is a basis

of Ai such that ui0 = ei, then {ek, Xi
k(0) · ui1, Xi

k(0) · ui2, ...} ⊆ Ak are also linearly

independent. Since Ai and Ak are finite dimensional, dim(Ai) = dim(Ak). So

dim(A) =
∑
i

dim(Ai) = N dim(Ai).

Note that dim(A) = dim(RH) = N2. Then dim(Ai) = N for any i ∈ V.

Now fix a k ∈ V. We construct a basis of A from some basis of Ak. First choose a

basis of Ak: {uk0 , uk1 , ..., ukN−1} such that uk0 = ek. Then {Xk
i (0) ·uk0 , Xk

i (0) ·uk1 , Xk
i (0) ·

uk2 , ..., X
k
i (0) ·ukn−1} as above is a basis of Ai such that Xk

i (0) ·uk0 = ei, for any i ∈ V .
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Denote Xk
i (0) · ukp by uip. Now the induced basis of Ai can be expressed by

{ui0, ui1, ..., uiN−1}.

Thus, we obtain a basis of A by taking the union:⋃
l∈V
{ul0, ul1, ..., ulN−1}.

Finally, we verify that Xi
j(p) · ulm = δp,0δj,lu

i
m. Indeed,

Xi
j(p) · ulm = Xi

j(p) · (X l
k(0) · ukm) = (Xi

j(p)X
l
k(0)) · ukm)

= δp,0δj,lX
i
k(0) · ukm = δp,0δj,lu

i
m,

for any i, j, p, l,m ∈ V .

Corollary 5.3.15. If A is a quantum commutative Galois object, then

dim(Ai) = N, ∀ i ∈ V.

In particular, dim(Hi) = N, ∀ i ∈ V.

Proof. The proof follows from Lemma 5.3.4.

We have seen that dim(Ai) is equal to N for each i ∈ V. In fact, Ai ' Ak,∀i, k ∈ V.

Corollary 5.3.16. If A is a quantum commutative Galois object, then Ai ' Ak as

algebras, for all i, k ∈ V.

Proof. Take i, k ∈ V. It is easy to see that the map

µik : Ak −→ Ai, uk 7−→ Xi
k(0) · uk

is bijective. Since Xi
k(0) is a group-like element of H, we have

Xi
k(0) · (ukvk) = (Xi

k(0) · uk)(Xi
k(0) · vk) = uivi.

for any uk, vk ∈ Ak. Hence, µik is an algebra isomorphism.
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Remark 5.3.17. (1) The isomorphism µik in Corollary 5.3.16 is neither left H-linear

nor right RH-colinear. Indeed, if i 6= k,

Xi
k(0) · (Xk

k (0) · uk) = (Xi
k(0)Xk

k (0)) · uk = ui.

But we have

Xk
k (0) · (Xi

k(0) · uk) = (Xk
k (0)Xi

k(0)) · uk) = 0.

Moreover,

ρ(Xi
k(0)(uk)) = ui(0) ⊗ u

i
(1) ∈ A

i ⊗Hi.

However,

(f ⊗ 1)ρ(uk) = Xi
k(0) · ui(0) ⊗ u

i
(1) ∈ A

k ⊗Hi.

(2) Let ρ(uk) =
∑
j,p αj,pu

k
j ⊗Xk

k (p) for all uk ∈ Ak. By the left H-linearity,

ρ(uil) = ρ(Xi
k(0) · ukl ) = Xi

k(0) · uk(0) ⊗X
i
k(0) · uk(1)

=
∑
j,p

αj,pX
i
k(0) · ukj ⊗Xi

k(0) ·Xk
k (p) =

∑
j,p

αj,pu
i
j ⊗Xi

i (p).

That is to say, the RH-comodule structure on Ai is uniquely determined by the

comodule structure on Ak. This motivates us to introduce the following definition.

Definition 5.3.18. Let f be a Hopf algebra isomorphism from H to H ′. Let A and

A′ be a right H-comodule algebra and a right H ′-comodule algebra respectively. If

there is an algebra map g from A to B such that

(g ⊗ f)ρA = ρA′ ◦ g,

we say that (g, f) is an (H,H ′)-comodule algebra map from A to A′. In particular, g

is called an (H,H ′)-comodule algebra isomorphism if g is additionally bijective.

Example 5.3.19. If A is a quantum commutative Galois object, then every µik in

Corollary 5.3.16 is an (Hk, Hi)-comodule algebra isomorphism from Ak to Ai, where

ιik is a Hopf algebra isomorphism from Hk to Hi, see Corollary 5.3.7.

Lemma 5.3.20. Let f be a Hopf algebra isomorphism from H to H ′. Let A be an

H-Gaolis object and A′ an H ′-Galois object. If there is an (H,H ′)-comodule algebra

map g from A to A′, then g is an (H,H ′)-comodule algebra isomorphism.
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Proof. Similar to the Hopf case, see [14].

Following Corollary 5.3.16, we know that a quantum commutative Galois object

A is actually the direct sum of subalgebras. Next we will show that A is the direct

sum of Galois objects over Hi.

Corollary 5.3.21. If A is a quantum commutative Galois object, then for any i ∈ V,

the canonical map restricted on Ai ⊗Ai:

γ : Ai ⊗Ai −→ Ai ⊗ Hi, a⊗ b 7−→ ab(0) ⊗ b(1)

is bijective. Namely, Ai is a Galois object over Hi.

Proof. First let us show that A ⊗t A =
⊕

i(A
i ⊗ Ai). Similar to Lemma 5.3.4, we

only need to show that

11 · uk ⊗ 12 · ul = δk,lu
k ⊗ ul

for all uk ∈ Ak and ul ∈ Al. Note that 1k · uk = uk. We have

11 · uk ⊗ 12 · ul

=
∑
i,s

∑
p+q=s

Xi
i (p) · uk ⊗X

i+p
i+p (q) · ul

=
∑
i,s

∑
p+q=s

(Xi
i (p)1

k) · uk ⊗ (Xi+p
i+p (q)1l) · ul

=
∑
s

∑
p+q=s

Xk
k (p) · uk ⊗ (X l

l (q) · ul = δk,lu
k ⊗ ul,

where Lemma 5.3.11 was applied to the last equality. Similarly, A⊗t RH =
⊕

i(A
i⊗

Hi).

Now the map γ|Ai⊗Ai is well-defined. For all a⊗ b ∈ Ai ⊗Ai, we have

ab(0) ⊗ b(1) ∈ Ai ⊗Hi.

Thus γ(Ai ⊗Ai) ⊆ Ai ⊗Hi. Since A is a braided Galois object, the canonical map is

bijective. Therefore, the map γ|Ai⊗Ai is bijective.

Lemma 5.3.22. If A is a quantum commutative Galois object, then Ai is an Hi-

Galois object over Hi for any i ∈ V. Moreover, Ai ' Aj as (Hi, Hj)-comodule alge-

bras, for all i, j ∈ V.
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Proof. The proof follows from Corollary 5.3.16, Example 5.3.19, Lemma 3.3.20 and

Corollary 5.3.21.

Corollary 5.3.23. If A is a quantum commutative Galois object, then A is the direct

sum
⊕

i∈VA
i, where every Ai is an Hi-Galois object and Ai ' Aj as (Hi, Hj)-

comodule algebras for any i, j ∈ V.

Proof. The proof follows from Lemma 5.3.7 and 5.3.22.

Now we state one of main results in the section.

Theorem 5.3.24. Let A be a C-algebra with unity. Then A is a quantum commu-

tative Galois object if and only if A is the direct sum
⊕

i∈VA
i, where every Ai is an

Hi-Galois object and Ai ' Aj as (Hi, Hj)-comodule algebras for any i, j ∈ V.

Proof. It remains to be shown that the converse of Corollary 5.3.23 is true. Now

assume that A is the direct sum
⊕

iA
i, where every Ai is an Hi-Galois object and

Ai ' Aj for any i, j ∈ V. We need to construct a left H-module structure on A such

that A becomes a braided Galois object.

First of all, fix some i ∈ V. By assuption, there is a family of isomorphisms:

λ1 : Ai −→ Ai+1

λ2 : Ai+1 −→ Ai+2

... ... ... ...

λN : Ai+N−1 −→ Ai+N .

We may choose λi such that λn...λ2λ1 = 1 because of Ai+N = Ai. For example, take

λN = λ−11 λ−12 ...λ−1N−1.

Given k, l ∈ V, we define an isomorphism from Ak to Al as compositions of some

of λ1, ..., λn, which we denote by f lk, and the inverse by fkl . For example, from Ai+4

to Ai+6 :

f i+4
i+6 = λ6λ5 : Ai+4 −→ Ai+5 −→ Ai+6;

from Ai+6 to Ai+4:

f i+6
i+4 = λ4...λ1λn...λ7 : Ai+6 −→ Ai+7... −→ Ai+n = Ai −→ Ai+1 −→ ... −→ Ai+4.
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It is clear that the following equations hold:

fkk = 1, f lk = f luf
u
k , f lk = f lw...f

v
uf

u
k .

Next we come to construct a left H-action on A. For a fixed i, we first choose

a basis {ui0, ui1, ..., uin−1} of Ai such that ui0 is the identity element of Ai . So

{f ji (ui0), f ji (ui1), ..., f ji (uin−1)} is also a basis of Aj for any j ∈ V. It is obvious that

f ji (ui0) is also the identity element of Aj . Moreover, since every f ji is an (Hi, Hj)-

comodule algebra isomorphism, we have

f ji (uip)(0) ⊗ f
j
i (uip)(1) = f ji (uip(0))⊗ ι

j
i (u

i
p(1)

). (5.2)

Now write ujp for f ji (uip). We obtain

fkj (ujp) = fkj f
j
i (uip) = fki (uip) = ukp,

for any k ∈ V. In particular, f jj (ujp) = ujp. Define a C-linear map ϕ : H⊗A −→ A by:

ϕ(Xm
n (p)⊗ ukq ) = δp,0δn,kf

m
k (ukq ),

for any m,n, p, k, q ∈ V. It is easy to see that ϕ is well-defined. In fact,

ϕ(Xm
n (p)⊗ ukq ) = δp,0δn,ku

m
q .

Now we claim that (A,ϕ) is a left H-module algebra. On one hand,

1H · ukq =
∑
i,p

Xi
i (p) · ukq =

∑
p

Xk
k (p) · ukq

= Xk
k (0) · ukq = ukq .

On the other hand, we have

Xu
v (w) · (Xm

n (p) · ukq ) = δp,0δn,kX
u
v (w) · ump = δp,0δn,kδw,0δv,mu

u
p

= δw,pδv,mδw,0δn,ku
u
p = δw,pδv,mX

u
n(w) · ukq

= (Xu
v (w)Xm

n (p)) · ukq .
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So (A,ϕ) is a left H-module. Moreover, we also have

Xu
v (w) · 1A = Xu

v (w) · (
∑
i

ui0) =
∑
i

δv,iδw,0u
u
0

= δw,0u
u
0 = δw,0

∑
p

∑
i

Xu
u (p) · ui0

= δw,0(
∑
p

Xu
u (p)) · (

∑
i

ui0)

= δw,0(
∑
p

Xu
u (p)) · 1A

= εt(X
u
v (w)) · 1A.

Since AiAj = 0 = AjAi, we have for w 6= 0,∑
s+t=w

(Xu
v (s) · ukp)(Xu+s

v+s (t) · ukq )

=
∑

s+t=w

[δs,0δv,kf
u
k (ukp)][δt,0δv+s,kf

u+s
k (ukp)]

= δw,0δv,k[fuk (ukp)][fuk (ukp)]

= δw,0δv,kf
u
k (ukpu

k
q ) = Xu

v (w) · (ukpukq ).

Thus (A,ϕ) is also a left H-module algebra.

We also need to show that the right coaction ρ is left H-linear. On one hand,

ρ(Xm
n (p) · ukq ) = δp,0δn,kρ(umq ) = δp,0δn,ku

m
q(0)
⊗ umq(1)

(5.2)
= δp,0δn,kf

m
i (uip(0))⊗ ι

m
i (uip(1)).

On the other hand, we have ∑
s+t=p

Xm
n (s) · ukq(0) ⊗X

m+s
n+s (t) · ukq(1)

= δp,0X
m
n (0) · ukq(0) ⊗X

m
n (0) · ukq(1)

= δp,0δn,kf
m
k (ukq(0))⊗ ι

m
k (ukq(1))

(5.2)
= δp,0δn,kf

m
k (fki (uip(0)))⊗ ι

m
k (ιki (uip(0)))

= δp,0δn,kf
m
i (uip(0))⊗ ι

m
i (uip(0)).
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So ρ(Xm
n (p) · ukq ) =

∑
s+t=pX

m
n (s) · ukq(0) ⊗X

m+s
n+s (t) · ukq(1) . Thus ρ is left H-linear.

Finally, we verify that (A,ϕ, ρ) is a right RH-comodule algebra. Note that AiAj =

0 = AjAi for any i 6= j. We have ρ(δk,lu
kul) = ρ(ukul) and so∑

i,j,p

uk(0)(X
j
j+p(i− j) · u

l
(0))⊗ (Xi

j(p) · uk(1))u
l
(1)

=
∑
i,j

uk(0)(X
j
j (i− j) · ul(0))⊗ (Xi

j(0) · uk(1))u
l
(1)

=
∑
i

uk(0)(X
k
k (i− k) · ul(0))⊗ (Xi

k(0) · uk(1))u
l
(1)

= uk(0)(X
k
k (l − k) · ul(0))⊗ (X l

k(0) · uk(1))u
l
(1)

= δk,lu
k
(0)u

l
(0) ⊗ u

k
(1)u

l
(1) = ρ(δk,lu

kul),

for any uk ∈ Ak and ul ∈ Al. It is not hard to see that A is a quantum commutative

Galois object.

Corollary 5.3.25. If A′ is a Galois object over Hopf algebra Hi for some i ∈ V,

then there exists a quantum commutative RH-Galois object such that its i-th direct

summand is A′.

Proof. Consider the direct sum
⊕

i∈VA
′i, where every algebra A′i is a copy of A′.

Since ιji is an isomorphism from Hi to Hj for any j ∈ V, we can equip A′j with a

right Hj-comodule structure defined by

(1⊗ ιji )ρ : A′ −→ A′ ⊗Hi −→ A′ ⊗Hj , a′ 7−→ a′(0) ⊗ ι
j
i (a
′
(1)).

It is clear that A′j is a right Hj-Galois object. Moreover, we have an isomorphism

(id, ιji ) from A′i to A′j , i.e., A′i ' A′j . By Theorem 5.3.23,
⊕

i∈VA
′i is a quantum

commutative Galois object, and the i-th direct summand of
⊕

i∈VA
′i is A′.

Lemma 5.3.26. Let A and B be two quantum commutative RH-Galois objects. Then

A ' B as braided Galois objects if and only if there exists some i ∈ V such that

Ai ' Bi as Hi-Galois objects.

Proof. Assume that there exists an isomorphism h from Ai to Bi for some i ∈ V.

For any j ∈ V, we have an (Hj , Hi)-comodule isomorphism f : Aj −→ Ai and an

(Hi, Hj)-comodule isomorphism g : Bi −→ Bj .
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Now we check that the composition g◦(h◦f) is an isomorphism from Galois object

Aj to Galois object Bj . It is enough to show that g ◦ (h ◦ f) is right-colinear.For any

a ∈ Aj , we have

ρ[g((h ◦ f)(a))] = g((h ◦ f)(a))(0) ⊗ g((h ◦ f)(a))(1)

= g((h ◦ f)(a)(0))⊗ ιji ((h ◦ f)(a)(1))

= (g ◦ h)(f(a)(0))⊗ ιji (f(a)(1))

= (g ◦ h)(f(a(0)))⊗ ιji (ι
i
j(a(1)))

= (g ◦ h)(f(a(0)))⊗ a(1),

where the third equality stems from the fact that h is a comodule map. So A ' B.

The proof of the converse is clear.

Following Theorem 5.3.24 and Lemma 5.3.26, we can see that a quantum commu-

tative Galois object over RH is uniquely determined by a Galois object over a Hopf

algebra Hi for some i ∈ V. Therefore, we can derive an isomorphism between the

group Galqc(RH) of quantum commutative Galois objets and the group Gal(Hi) of

isomorphism classes of Galois objets over Hi.

Theorem 5.3.27. Let H be the dual of AN,t. Then there exists a group isomorphism

Ω : Galqc(RH) −→ Gal(Hi), A 7−→ Ai,

for any fixed i ∈ V.

Proof. By Theorem 5.3.22, Ω is well-defined. Following Theorem 5.3.21, we have

A�
RHB =

⊕
i∈V

(Ai�HiBi).

Then

Ω(A�
RHB) = Ai�HiBi = Ω(A)�HiΩ(B).

Clearly, Ω(RH)) = Hi. Using Corollary 5.3.24, we define Ω′ by

Ω′ : Gal(Hi) −→ Galqc(RH), A′ 7−→
⊕
i∈V

A′i,

where
⊕

i∈VA
′i is equipped with the same structures as in Corollary 5.3.24. It is easy
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to see that ΩΩ′ = 1. It follows from Corollary 5.3.25 that Ω′Ω = 1.

Remark 5.3.28. (1) Following Theorem 5.3.27, the computation of the Brauer group

of a modular category obtained from SU(N)L-SOS models can be transferred to char-

acterizing the group of Galois objects over some corresponding Hopf algebra Hi given

in Proposition 5.3.6. The Hopf algebra Hi is finite dimensional and commutative. So

the Galois group is given by the second Sweedler’s cohomology group.

(2) From Corollary 5.3.23, a quantum commutative Galois object is the direct sum

of Galois objects over some Hopf algebras. Note that the direct sum of Hopf algebras

can be viewed as a weak Hopf algebra. So a quantum commutative Galois object can

be also regarded as a Galois object over a weak Hopf algebra. This motivates us to

consider the group of bi-Galois objects over a weak Hopf algebra in the next chapter.
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Chapter 6

The group of bi-Galois objects

over a weak Hopf algebra

The study of bi-Galois extensions was initiated by Van Oystaeyen and Zhang in [82].

They introduced bi-Galois extensions over a commutative Hopf algebra in order to

establish a Galois-type correspondence. The theory was generalized by Schauenburg

to any non-commutative Hopf algebra, see [66], and was further developed. In the

same paper, Schauenburg constructed the groupoid of all bi-Galois objects under

cotensor product since a bi-Galois object A induces an equivalence A�− between

the categories of comodules. If one fixes a Hopf algebra H, then the two-sided H-bi-

Galois objects form a subgroup Gal(H), which was independently discovered by Van

Oystaeyen and Zhang in an unpublished paper [81]. Moreover, it was shown in [68]

that a Hopf-(bi)Galois object is the same as a faithfully flat quantum torsor in [35].

The theory of bi-Galois objects has been generalized to the case of a bialgebroid

(or a coring), see [6]. For example, it was shown that there exists a bijective corre-

spondence between faithfully flat A-B torsors and bi-Galois objects over bialgebroids,

and that a bi-Galois object also induces an equivalence between the categories of co-

modules over bialgebroids, see [6]. So one can ask whether we can form the group

of bi-Galois objects in the case of a Hopf algebroid. In this chapter, we will explic-

itly work out this group in the case of a weak Hopf algebra, for the reason that we

explained in Remark 5.3.28 (2).
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6.1 Cotensor products

Let H be a weak Hopf algebra. Let A and B be a right H-comodule algebra and a

left H-comodule algebra. We first have the cotensor product A �H B. By Example

1.6.21, there exists a Hopf algebroid H consisting of a left bialgebroid Hl and a right

bialgebroid Hr:

Hl = (H,Ht, idHt , S
−1|Ht ,∆, εt), Hr = (H,Hs, idHs , S

−1|Hs ,∆, εs).

So we can work with the cotensor products: A�Hl
B (over left bialgebroid Hl ) and

A�Hr
B (over right bialgebroid Hr). In this section, we will mainly discuss the relation

between the three cotensor products so that we can use them freely in the next section.

Let M be an Ht
e-bimodule. Then M is an (Ht, Hs)-bimodule with the following

bimodule structure:

xm = (x⊗ 1)m, ux = u(x⊗ 1); (6.1)

ym = (1⊗ S(y))m, my = u(1⊗ S(y)), (6.2)

for all m ∈M,x ∈ Ht and y ∈ Hs.

Let M and N be two Ht
e-bimodules. Since S : Ht −→ Hs is anti-isomorphic, the

product ×Ht in the sense of Takeuchi can be written as

M ⊗Ht
N =

∫
x
S−1(x)M ⊗ xN, ∀ x ∈ Ht;

M ×Ht
N =

∫ t ∫
x
S−1(x)MS−1(t) ⊗ xNt, ∀x, t ∈ Ht.

Now define a subspace M �N of M ⊗N as

{m⊗ n ∈M ⊗N |m⊗ n = 11 ·m · 11 ⊗ 12 ·m · 12}.

Let us first work out the relation between M ×Ht
N and M � N . Note that Ht is

Frobenius-separable. By [7, 20] we get a map

P : M ⊗Ht
N −→ ∆(1) · (M ⊗N), m⊗Ht

n 7−→ 11 ·m⊗ 12 · n,
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with the inverse given by

P ′′ : ∆(1) · (M ⊗N) −→M ⊗Ht
N, 11 ·m⊗ 12 · n 7−→ m⊗Ht

n.

Moreover, M ×Ht
N is an Ht

e-bimodule with the following structure:

(x⊗ x′) · (m⊗Ht
n) = xm⊗Ht

S−1(x′)n,

(m⊗Ht
n) · (x⊗ x′) = mx⊗Ht

nS−1(x′), (6.3)

for all x, x′ ∈ Ht, m ⊗Ht
n ∈ M ×Ht

N . Similarly, M � N is also an Ht
e-bimodule

with the following structure:

(x⊗ x′) · [(11m′1′1)⊗ (12n
′1′2)] = x11m

′1′1 ⊗ S−1(x′)12n
′1′2,

[(11m
′1′1)⊗ (12n

′1′2)] · (x⊗ x′) = 11m
′1′1x⊗ 12n

′1′2S
−1(x′), (6.4)

for all x, x′ ∈ Ht and m′ ∈M,n′ ∈ N .

Lemma 6.1.1. Let M and N be two Ht
e-bimodules. Then M×HtN = M11⊗HtN12.

Proof. Take m ∈M,n ∈ N and x ∈ Ht. We have

m11S
−1(x)⊗Ht n12 = S(11)⊗Ht n12x.

Thus M11 ⊗Ht
N12 ⊆M ×Ht

N.

Conversely, we need to show that m′1′1 ⊗Ht n
′1′2 = m′ ⊗Ht n

′ for all m′ ⊗Ht n
′ ∈

M ×Ht
N. Note that m′ ⊗Ht

n′ = 11m
′ ⊗Ht

12n
′ and

11m
′S−1(x)⊗Ht

12n
′ = m′S−1(x)⊗Ht

n′ = m′ ⊗Ht
n′x,

for all x, x′ ∈ Ht. Using the map P we get

11m
′S−1(x)⊗ 12n

′ = 11m
′ ⊗ 12n

′x,

which implies 11m
′S−1(x)⊗ (12n

′)x′ = 11m
′ ⊗ (12n

′x)x′. In particular,

11m
′1′1 ⊗ 12n

′1′2 = 11m
′S−1[S(1′1)]⊗ (12n

′)1′2

= 11m
′ ⊗ (12n

′S(1′1))1′2 = 11m
′ ⊗ 12n

′.
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Applying the map P ′′ to both sides of the above, we obtain

11m
′1′1 ⊗Ht

12n
′1′2 = 11m

′ ⊗Ht
12n
′.

Since 11m
′⊗Ht

12n
′ = m′⊗Ht

n′, we have m′1′1⊗Ht
n′1′2 = m′⊗Ht

n′. Then m′⊗Ht
n′ ∈

M11 ⊗Ht N12. Therefore, M ×Ht N = M11 ⊗Ht N12.

Lemma 6.1.2. Let M and N be two Ht
e-bimodules. Then, with the structures (6.3)

and (6.4), M ×Ht
N 'M �N as Ht

e-bimodules.

Proof. Note that M ×Ht
N = M11 ⊗Ht

N12. It is easy to verify that P : M11 ⊗Ht

N12 −→M �N is isomorphic. Now it remains to be checked that P is Ht
e-bilinear.

Indeed, the left linearity of P follows from

P [(x⊗ x′) · (m1′1 ⊗Ht
n1′2)]

= P (xm1′1 ⊗Ht
S−1(x′)n1′2) = x11m1′1 ⊗ S−1(x′)12n1′2

= (x⊗ x′) · (11m1′1 ⊗Ht
12n1′2) = (x⊗ x′) · P (m11 ⊗Ht

n12),

for all m ∈M,n ∈ N and x, x′ ∈ Ht. Similarly, P is right Ht
e-linear.

Example 6.1.3. Let M be an H-bicomodule. By [59] M is an Ht
e-bimodule with

the following induced structure:

(x⊗ x′) ·m = ε(xm[0][−1]
)m[0][0]ε(S

−1(x′)m[1]),

m · (x⊗ x′) = ε(m[0][−1]
x)m[0][0]ε(m[1]S

−1(x′)),

for any x, x′ ∈ Ht and m ∈M, where ρL(m) = m[−1]⊗m[0] and ρR(m) = m[0]⊗m[1].

So M is an (Ht, Hs)-bimodule with the structures (6.1) and (6.2). If M and N are

two H-bicomodules, then M ×Ht
N 'M �N as Ht

e-bimodules.

Now let (U, i) be an Ht
e-algebra. U is a natural Ht

e-bimodue, which restricts to

an (Ht, Hs)-bimodule structure:

xu = i(x⊗ 1)u, ux = ui(x⊗ 1); yu = i(1⊗ S(y))u, uy = ui(1⊗ S(y)),

for all u ∈ U, x ∈ Ht and y ∈ Hs.
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Lemma 6.1.4. Let (U, i) and (V, j) be two Ht
e-algebras. Then U � V is an Ht

e-

algebra with unity 111U ⊗ 121V :

[∆(1)(u⊗ v)∆(1)][∆(1)(u′ ⊗ v′)∆(1)] = ∆(1)(u11u
′ ⊗ v12v

′)∆(1),

g : Ae −→ ∆(1)(U ⊗ V )∆(1), x⊗ y 7−→ ∆(1)(i(x)⊗ j(x′))∆(1),

for all u ∈ U , v ∈ V and x, x′ ∈ Ht.

Proof. Straightforward.

Let (U, i) and (V, j) be two Ht
e-algebras. Then U ×Ht

V is an Ht
e-algebra with

unity 1⊗Ht
1 and the following structure:

(u⊗Ht v)(u′ ⊗Ht v
′) = uu′ ⊗Ht vv

′, ∀u⊗Ht v, u
′ ⊗Ht v

′ ∈ U ×Ht V,

h : Ht
e −→ U ×Ht V, x⊗ y 7−→ i(x)⊗Ht

j(x′), ∀x, x′ ∈ Ht.

Proposition 6.1.5. Let (U, i) and (V, j) be two Ht
e-algebras. Then U ×Ht V and

U � V are isomorphic as Ht
e-algebras.

Proof. Note that u⊗Ht
v = uS(11)⊗Ht

v12 for all u⊗Ht
v ∈ U ×Ht

V . We have

P [(u⊗Ht
v)(u′ ⊗Ht

v′)] = P [(uS(11)⊗Ht
v12)(u′ ⊗Ht

v′)]

= P [(uS(11)u′ ⊗Ht
v12v

′)]

= ∆(1)(uS(11)u′ ⊗ v12v
′)∆(1)

= [∆(1)(u⊗ v)∆(1)][∆(1)(u′ ⊗ v′)∆(1)]

= P [(u⊗Ht
v)]π[(u′ ⊗Ht

v′)].

The rest of the proof is easy.

Let A be a left H-comodule algebra. By [11], the left comodule structure on A

induces an algebra map

i : Ht −→ A, x 7−→ ε(1[−1]x)1[0],

for any x ∈ Ht, which makes A into an Ht-algebra. Similarly, a right H-comodule

algebra B is an Hs-algebra with the structure map given by,

j : Hs −→ H, y 7−→ ε(1[1]y)1[0], ∀y ∈ Hs.
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Lemma 6.1.6. Let A be an H-bicomodule algebra. Then (A, k) is an Ht
e-algebra,

where the map k is given by

k : Ht ⊗Ht
op −→ A, x⊗ x′ 7−→ ε(x1[−1])1[0]1

′
[0]ε(S

−1(x′)1′[1]).

Proof. Note that

ε(1[−1]x)1[0]1
′
[0]ε(1

′
[1]y) = ε(1[−1]x)1[0][0]ε(yεt(1[0][1])) = ε(1[0][−1]

x)1[0][0]ε(y1[1])

= ε(εs(1[0][−1]
)x)1[0][0]ε(y1[1]) = ε(1[−1]x)1′[0]1[0]ε(y1′[1]),

for all x ∈ Ht and y ∈ Hs. We have a well-defined algebra map

k′ : Ht ⊗Hs −→ A, x⊗ y 7−→ ε(x1[−1])1[0]1
′
[0]ε(y1′[1]).

The map k follows from k′ since Hs is isomorphic to Hop
t .

Since an H-bicomodule algebra A is an He
t -algebra, A has a natural He

t -bimodule

structure:

(x⊗ x′) · a = ε(x1[−1])1[0]1
′
[0]aε(S

−1(x′)1′[1]),

(x⊗ x′) · a = ε(x1[−1])a1[0]1
′
[0]ε(S

−1(x′)1′[1]),

for any x, x′ ∈ Ht and a ∈ A.

Following Proposition 6.1.5 and Lemma 6.1.6, we obtain the following consequence:

Corollary 6.1.7. Let A and B be two bicomodule algebras. Then A×Ht
B and A�B

are isomorphic as Ht
e-algebras.

Observe that both A�B and A×Ht
B are H-bicomodule algebras with the same

H-bicomodule structure ρL and ρR,

ρL(a⊗ b) = a[−1] ⊗ (a[0] ⊗ b), ρR(a⊗ b) = (a⊗ b[0])⊗ b[1],

for all a⊗ b ∈ A�B or a⊗ b ∈ A×Ht
B.

Following Corollary 6.1.7, we get the following:

Proposition 6.1.8. Let A and B be two bicomodule algebras. Then A ×Ht
B and

A�B are isomorphic as H-bicomodule algebras.
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Remark 6.1.9. Let A and B be two H-bicomodule algebras. One can define A×HsB

( see [40]) similarly. Moreover, A×Hs B and A�B are isomorphic as H-bicomodule

algebras.

Let M and N be a right H-comodule and a left H-comodule respectively. The

cotensor product over H is as follow:

M �H N = {m⊗ n ∈M ⊗N |ρR(m)⊗ n = m⊗ ρL(n)}.

Lemma 6.1.10. Let A and B be a right H-comodule algebra and a left H-comodule

algebra respectively. Then

A�H B ⊂ A�B.

Proof. Note that a[0] ⊗ a[1] ⊗ b = a ⊗ b[−1] ⊗ b[0] for all a ⊗ b ∈ A �H B. Applying

id⊗ εt ⊗ id to both sides, we get a[0] ⊗ εt(a[1])⊗ b = a⊗ εt(b[−1])⊗ b[0]. So

11 · a⊗ 12 · b = 1[0] · a⊗ 1[1] · b = a[0] ⊗ εt(a[1]) · b

= a⊗ εt(b[−1]) · b[0] = a⊗ εt(b[−1]) · b[0]
= a⊗ ε(εt(b[−1])b[0][−1]

)b[0][0]

= a⊗ b.

Similarly, a · 11 ⊗ b · 12 = a⊗ b. Thus a⊗ b ∈ A�B.

Now let us recall the relation between H-comodule algebras and Hl(Hr)-comodule

algebras. Let A be a left H-comodule algebra. By [4, 11] A is a left Hl-comodule

algebra as well as a left Hr-comodule algebra. Here, A is a left Hl-comodule algebra

with the following Ht-bimodule structure:

x · a = a[0]ε(xa[−1]) a · x = a[0]ε(a[−1]x), (6.5)

for all x ∈ Ht and a ∈ A. The above actions induce the following actions:

y B a = a · S−1(y), aC y = S−1(y) · a,

for any y ∈ Hs and a ∈ A. Then (A,B,C) is an HR-comodule algebra over an Hs-

coring Hr (or a right bialgebroid Hr).

Similarly, if B is a right H-comodule algebra, then B is a right Hr-comodule
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algebra with the following Hs-bimodule structure:

y · b = b[0]ε(xb[1]) b · y = b[0]ε(b[1]y), (6.6)

for all y ∈ Hs and b ∈ B, and right Hl-comodule algebra with Ht-bimodule structure:

x I b = b · S−1(x), b J x = S−1(x) · b.

In fact, the action B,C,I and J are induced by Example 6.1.3.

Now let A be an H-bicomodule algebra. We have

y · a = a[0]ε(ya[1]) = a[0]ε(yεt(a[1])) = 1[0]aε(y1[1]) = (y · 1)a,

for all y ∈ Hs and a ∈ A. Take x ∈ Ht. Then x · 1 ∈ AcoH follows from

1[0][0]ε(x1[−1])⊗ 1[0][1] = 1[0][0]ε(x1[0][−1]
)⊗ 1[1]

= x · 1[0] ⊗⊗1[1] = (x · 1)1[0] ⊗⊗1[1].

Now we can define an algebra map

µ : Ht −→ AcoH , x 7−→ x · 1.

Similarly, there is also an algebra map

ν : Hs −→ coHA, y 7−→ y · 1.

Let (A, ρR) and (B, ρL) be a right H-comodule algebra and a left H-comodule

algebra respectively. We view (A, ρR) and (B, ρL) as a right Hl-comodule algebra

and a left Hl-comodule algebra respectively. So we have the cotensor product:

A�Hl
B = {a⊗ b ∈ A⊗Ht

B|ρR(a)⊗ b = a⊗ ρL(b)}.

Now define A�
t
HB as a subspace of A×Ht B:

A�
t
HB = {a⊗ b ∈ A×Ht

B|ρR(a)⊗ b = a⊗ ρL(b)}.

Lemma 6.1.11. Let H be a weak Hopf algebra. If (A, ρR) is a right H-comodule
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algebra and (B, ρL) is a left H-comodule algebra, then as vector spaces

A�Hl
B = A�

t
HB and A�Hl

B ' A�H B.

Proof. In order to prove A�Hl
B = A�

t

HB, it is sufficient to show that A�Hl
B ⊆

A×Ht
B since the definition of ×Ht

implies that A�Hl
B ⊃ A�tHB.

Take a ⊗ b ∈ A�Hl
B. We have that a[0] ⊗ a[1] ⊗ b = a ⊗ b[−1] ⊗ b[0]. Since a[0] ⊗

a[1] ⊗ b ∈ (A ×Ht
H) ⊗t B and a ⊗ b[−1] ⊗ b[0] ∈ A ⊗t (H ×Ht

B), we get that

a[0] ⊗ a[1]x⊗ b = a⊗ b[−1]x⊗ b[0] for all x ∈ Ht. Observe that

(ax)[0] ⊗ (ax)[1] ⊗ b = a[0] ⊗ a[1]x⊗ b = a⊗ b[−1]x⊗ b[0] = a⊗ b[−1] ⊗ b[0]x.

It follows from the counit axioms that ax⊗ b = a⊗ bx. Thus a⊗ b ∈ A×Ht
B.

The proof of the second statement is similar to the proof of Lemma 6.1.2.

Similarly, we can also think (A, ρR) and (B, ρL) as a right Hr-comodule algebra

and a left Hr-comodule algebra respectively, and define the cotensor product A�HrB.

Lemma 6.1.12. Let H be a weak hopf algebra. If A is a right H-comodule algebra

and B is a left H-comodule algebra, then as vector spaces A�HrB ' A�H B.

Proof. Similar to the proof of Lemma 6.1.11.

Now we can state the relation between these three cotensor products.

Proposition 6.1.13. Let H be a weak Hopf algebra. If A and B are two H-

bicomodule algebras, then as H-bicomodule algebras

A�Hr
B ' A�H B ' A�Hl

B.

Proof. We only show that A�Hl
B ' A �H B as H-bicomodule algebras. Following

Proposition 6.1.8, A�B ' A×HtB as H-comodule algebras. Given a′⊗b′ ∈ A�Hl
B,

we have a′[0] ⊗ a
′
[1] ⊗ b

′ = a′ ⊗ b′[−1] ⊗ b
′
[0] and

a′[0] ⊗ a
′
[1] ⊗ b

′
[0] ⊗ b

′
[1] = a′ ⊗ b′[−1] ⊗ b

′
[0][0]
⊗ b′[0][1] = a′ ⊗ b′[0][−1]

⊗ b′[0][0] ⊗ b
′
[1].

So a⊗ b[0] ⊗ b[1] ∈ A�Hl
B ⊗H. Thus A�Hl

B is a right H-subcomodule. Moreover,

143



CHAPTER 6. THE GROUP OF BI-GALOIS OBJECTS OVER A WEAK HOPF
ALGEBRA

we also have

a[0]a
′
[0] ⊗ a[1]a

′
[1] ⊗ bb

′ = (a[0] ⊗ a[1] ⊗ b)(a′[0] ⊗ a
′
[1] ⊗ b

′) = aa′ ⊗ b[−1]b′[−1] ⊗ b[0]b
′
[0],

for any a⊗ b, a′ ⊗ b′ ∈ A�tHB. Hence, A�Hl
B is a subalgebra of A×Ht

B.

Using Lemma 6.1.7 and 6.1.11 we get an isomorphism P : A � B ' A ×Ht
B as

Ht
e-algebras, and so A�H B ' A�Hl

B as Ht
e-subalgebras. It remains to be checked

that P is right colinear. Indeed,

ρR[∆(1)(a⊗ b)∆(1)] = 11 · a · 11 ⊗ (12 · b · 12)[0] ⊗ (12 · b · 12)[1]

= 11 · a · 11 ⊗ 12 · b[0] · 12 ⊗ b[1] = P (a⊗ b[0])⊗ b[1].

So A �H B ' A�Hl
B as right comodule algebras. Similarly, A �H B ' A�Hl

B as

left comodule algebras. Therefore, A�H B ' A�Hl
B as bicomodule algebras.

From Proposition 6.1.13, we can choose freely these cotensor products for H-

bicomodule algebras if we need.

6.2 The group of bi-Galois objects

Here we discuss how to form the group of Galois objects over a weak Hopf algebra.

Definition 6.2.1. A weak Hopf algebra H is called faithfully flat if H is faithfully

flat as (Ht, Hs)-bimodule.

Definition 6.2.2. LetH be a faithfully flat weak Hopf algebra. A weakH-bicomodule

algebra A is called an H-bi-Galois object if the following conditions are satisfied:

• A/AcoH is a right weak H-Galois extension with AcoH ' Ht,

• A/coHA is a left weak H-Galois extension with coHA ' Hs,

• A is faithfully flat as an (Ht, Hs)-bimodule under the actions (6.5) and (6.6) .

Remark 6.2.3. By [4] the definition of a left Hl (or a right Hr)-Galois extension is

equivalent to the one of a left (right) weak H-Galois extension. So Definition 6.2.5 is

a special case of [6]. Moreover, one-sided H-Galois object was also defined in [6]. In

particular, H is a trivial bi-Galois object.

Lemma 6.2.4. Let A and B be two H-bi-Galois objects. Then the following hold:
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1. A�HrB/Ht is a right weak H-Galois extension;

2. A�Hl
B/Hs is a left weak H-Galois extension;

3. A�H B is a faithfully flat bi-Galois object.

Proof. Since A and B are H-bi-Galois objects, it is not hard to see that

(A�Hr
B)coH ' BcoH ' Ht.

By the proof of Theorem 5.6 in [6], we have an isomorphism

(A�HrB)⊗Ht (A�HrB) ' A�Hr (B ⊗Hs
op B) ' A�Hr (B ⊗Ht B).

The canonical map

γ : (A�tHB)⊗Ht
(A�tHB) −→ (A�tHB)⊗Hs

H

(a⊗ b)⊗ (a′ ⊗ b′) 7−→ (aa′ ⊗ bb′[0])⊗ b
′
[1]

is bijective since

(A�Hr
B)⊗Ht

(A�Hr
B) ' A�Hr

(B⊗Ht
B) ' A�Hr

(B⊗Hs
Hr) ' (A�Hr

B)⊗Hs
Hr.

So A�Hr
B/Ht is a right Hr-Galois extension. By Remark 6.2.3, A�Hr

B/Ht is a

right weak H-Galois extension. Similarly, the second statement is true. The last one

follows from Lemma 6.1.13 and the former two statements.

Lemma 6.2.5. Let A be an H-bi-Galois object. So is Aop.

Proof. It is not hard to check that the opposite algebra Aop is a left H-comodule

algebra with the coaction: Aop −→ H ⊗ Aop, a 7−→ S−1(a[1]) ⊗ a[0]. Moreover, the

coinvaiant subalgebra coHAop is just the opposite of AcoH . So coHAop ' Hop
t ' Hs.

That Aop is a left H-Galois extension follows from

Aop⊗Hs
Aop ' A⊗Ht

A ' A1[0]⊗H1[1] ' 1[−1]H⊗1[0]A
op. �

Now assume that A is a right H-comodule algebra. Then A ⊗Hs
A is a Hopf
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module with the following structure:

(a⊗ b)c = a⊗ bc, ρ(a⊗ b) = a[0] ⊗ b[0] ⊗ a[1]b[1].

Lemma 6.2.6. Let H be a weak Hopf algebra and A a right H-Galois object. Then

HomH(A, V ⊗Ht A) ' Hom−Ht((A⊗Hs A)coH , V ).

Proof. By the structure theorem of Hopf modules from [16], we have

B : HomH
−A(A⊗Hs

A, V ⊗Ht
A) ' Hom−Ht

((A⊗Hs
A)coH , V ).

So we only need to show that HomH(A, V ⊗Ht
A) ' HomH

−A(A ⊗Hs
A, V ⊗Ht

A).

Take α ∈ HomH(A, V ⊗Ht
A). It follows from the H-colinerity that the map α is

Hs-linear. We have a well-defined map

T : HomH(A, V ⊗Ht
A) −→ HomH

−A(A⊗Hs
A, V ⊗Ht

A), T (α)(a⊗ b) = α(a)b.

Consider another map

T−1 : HomH
−A(A⊗Hs A, V ⊗Ht A) −→ HomH(A, V ⊗Ht A), T−1(β)(a) = β(a⊗Hs 1).

Then the map T−1 is the inverse of T since

TT ′(β)(a⊗ b) = T−1(β)(a)b = β(a⊗Hs
1)b = β(a⊗ b);

T−1T (α)(a) = T (α)(a⊗Hs
1) = α(a).

Thus the map T is bijective.

It was proved that there exists a bijective correspondence between faithfully flat

A-B torsors and bi-Galois objects over ×A-Hopf algebras, see [6, Thm.5.2] or [40,

Thm.5.2.10]. Let A be a right H-Galois object. Then A is a faithfully flat Hs-Ht

torsor with the following structure:

δ(a) = a[0] ⊗ a
[1]
[1] ⊗ a

[2]
[1] ∈ A⊗Hs A⊗Ht A, ∀ ∈ A.

The following construction of a ×A-Hopf algebra from a Galois object is a special case

of Theorem 5.2.10 in [40]:
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Let H be a faithfully flat weak Hopf algebra and A a right H-Galois object. Then

L := (A⊗Hs A)coH is a ×Ht-Hopf algebra with the following Hopf structure:

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ b′b,

∆(a⊗ b) = a[0] ⊗ a
[1]
[1] ⊗ a

[2]
[1] ⊗ b,

εt(a⊗ b) = ab ∈ AcoH = Ht,

Moreover, A is also a left L-Galois object.

The following proposition is a generalization of Lemma 3.2 in [66]:

Proposition 6.2.7. Let H be a faithfully flat weak Hopf algebra and A a right H-

Galois objec. Set L := (A⊗Hs
A)coH . Then the following statements hold:

1. There is a right H-colinear map δ : A −→ L⊗Ht A given by δ(a) = a[0] ⊗ a
[1]
[1] ⊗

a
[2]
[1], which has the following universal property:

Given a right Ht-module V and an H-colinear map φ : A −→ V ⊗Ht A, there is

a unique right Ht-linear map f : L −→ V with φ = (f ⊗Ht
1)δ.

2. The map δ : A −→ L×Ht A is an algebra map;

3. If V is an Ht-algebra and φ : A −→ V ×Ht A is an Ht-algebra map, so is the

induced map f : L −→ V ;

4. If A is an H-bi-Galois object, then L is isomorphic to HL.

Proof. Although the proof is a bit similar to the one of Lemma 3.2 in [66], we write it

down for the completeness. Since A is a right Galois object, (A⊗Hs A)coH ⊗Ht A '
A⊗Hs

A as Doi-Hopf modules. This isomorphism υ is given by

υ(a′ ⊗ b′ ⊗ c′) = (a′ ⊗ b′)c′,∀a′ ⊗ b′ ⊗ c′ ∈ (A⊗Hs
A)coH ⊗Ht

A.

with the inverse υ′ given by

υ′(a⊗ b) = a[0] ⊗ a
[1]
[1] ⊗ a

[2]
[1]b, ∀ a⊗ b ∈ A⊗Hs

A.

Using Lemma 6.2.6 we get an isomorphism

B ◦ T : HomH(A, V ⊗Ht
A) ' Hom−Ht

((A⊗Hs
A)coH , V ),
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where B and T are the same as in Lemma 6.2.6. Let δ := T−1 ◦ B−1(idL). In fact,

the map B−1(idL) is the isomorphism υ′. We have

δ(a) = a[0] ⊗ a
[1]
[1] ⊗ a

[2]
[1], ∀a ∈ A.

Given a right Ht-module V and an H-colinear map φ : A −→ V ⊗Ht
A, there is a

unique right Ht-linear map f : L −→ V such that f = B ◦T (φ). That φ = (f ⊗Ht 1)δ

follows from f(a ⊗Hs b) ⊗Ht 1 = B−1(f)(a ⊗Hs b) = Tφ(a ⊗Hs b) = φ(a)b. Thus the

first statement holds.

The second statement follows from the definition of an Hs-Ht torsor, see Definition

5.2.1 in [40].

Now let us look at the third statement. Note that V ×Ht A ⊆ V ⊗Ht A. For any

φ : A −→ V ×Ht A, by the first statement, there is a unique right Ht-linear map

f : L −→ V with φ = (f ⊗Ht
1)δ. We have

f(aa′ ⊗ b′b)⊗ 1 = φ(aa′)b′b = φ(a)φ(a′)b′b = f(a⊗ b)f(a′ ⊗ b′)⊗ 1,

for all a⊗ b, a′ ⊗ b′ ∈ (A⊗Hs A)coH . So f is an Ht-algebra map.

Now assume that A is an H-bi-Galois object. Then A is also a left HL-Galois

object. Note that L is a ×Ht-Hopf algebra and A is a left L-Galois object. By the

thrid statement there is a unique algebra map f : L −→ H such that Aρ = (f ⊗ 1)Lρ,

where Aρ and Lρ denote the left H-coaction and L-coaction respectively. By the

universal property of L, the map f is an Ht-coring map and so f is a morphism from

L to HL. Denote by γ and γ′ the canonical maps of left L-Galois and left HL-Galois

A respectively. Then γ = (f ⊗ 1)γ′. Note that γ and γ′ are bijective, and that A is

faithfully flat. Thus the map f is bijective.

Using Proposition 6.2.7 and [67], we obtain

Corollary 6.2.8. Let H be a faithfully flat weak Hopf algebra. If A is an H- bi-Galois

object, then (A⊗Hs A)coH is isomorphic to H as a weak Hopf algebra.

Proposition 6.2.9. Let H be a faithfully flat weak Hopf algebra. If A is an H-bi-

Galois object, then A �H Aop ' (A ⊗Hs
A)coH and so Aop �H A ' H as bi-Galois

objects.

Proof. Let A⊗A = {a⊗ b ∈ A⊗A|a⊗ b = a[1] ⊗ b[1]ε(a[1]b[1])}. Then A⊗A is a Hopf
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module with the following structure:

(a⊗ b)c = a⊗ bc, ρ(a⊗ b) = a[0] ⊗ b[0] ⊗ a[1]b[1].

Similar to the proof of Lemma 6.1.2, we can get that A⊗Hs
A is isomorphic to A⊗A as

Hopf modules. By the structure theorem of Hopf modules, (A⊗A)coH ' (A⊗Hs
A)coH

as right Ht-modules.

Now we verify that (A⊗Hs
A)coH ' A�HAop. Note that the H-comodule structure

on A induces the following Ht-bimodule on Aop and Hs-bimodule on A:

b · x = 1[0]bε(S
−1(1[1])x), a · y = a1[0]ε(y1[1])

x · b = b1[0]ε(S
−1(1[1])x), y · a = 1[0]aε(y1[1]),

for any a, b ∈ A, x ∈ Ht and y ∈ Hs. We have

a · 11 ⊗ b · 12 = a1[0]ε(111[1])⊗ 1′[0]bε(S
−1(1′[1])12) = a1[0]ε(111[1])⊗ 1′[0]bε(S(12)1′[1])

= a1[0]ε(1[1]11)ε(121′[1])⊗ 1′[0]b = a1[0]ε(1[1]1
′
[1])⊗ 1′[0]b.

Similarly, 11 · a⊗ 12 · b = 1[0]aε(1[1]1
′
[1])⊗ b1′[0]. On one hand,

a · 11 ⊗ [b · 12][−1] ⊗ [b · 12][0] = a · 11 ⊗ S−1(b[1])12 ⊗ b[0]
= a1[0]ε(111[1])⊗ S−1(b[1])12 ⊗ b[0]
= a1[0] ⊗ S−1(b[1])1[1] ⊗ b[0].

On the other hand, we have

[11 · a][0] ⊗ [11 · a][1] ⊗ 12 · b = a[0] ⊗ 11a[1] ⊗ 12 · b

= a[0] ⊗ 11a[1] ⊗ b1[0]ε(S−1(1[1])12)

= a[0] ⊗ S−1(1[1])a[1] ⊗ b1[0].

Take a⊗ b ∈ (A⊗Hs
A)coH . We have a[0] ⊗ b[0] ⊗ a[1]b[1] = a⊗ b1[0] ⊗ 1[1] and

a1[0] ⊗ S−1(b[1])1[1] ⊗ b[0] = a[0] ⊗ S−1(b[1])S
−1(a[2])a[1] ⊗ b[0]

= a[0] ⊗ S−1(a[2]b[1])a[1] ⊗ b[0]
= a[0] ⊗ S−1(1[1])a[1] ⊗ b1[0].
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So the following equation holds:

a1[0] ⊗ S−1(b[1])1[1] ⊗ b[0] = a[0] ⊗ S−1(1[1])a[1] ⊗ b1[0],

which means that a · 11 ⊗ [b · 12][−1] ⊗ [b · 12][0] = [11 · a][0] ⊗ [11 · a][1] ⊗ 12 · b. Then

11 · a ⊗ 12 · b = a ⊗ b = a · 11 ⊗ b · 12. Thus (A⊗A)coH ⊂ A �H Aop. Now define a

k-linear map

θ : (A⊗A)coH −→ A�H Aop, a⊗ b 7−→ a⊗ b.

We find the inverse of θ. Let a⊗b ∈ A�HAop. Then a[0]⊗a[1]⊗b = a⊗S−1(b[1])⊗b[0].
We have

a[0] ⊗ b[0] ⊗ a[1]b[1] = a⊗ b[0][0] ⊗ S
−1(b[1])b[0][1]

= a⊗ b[0] ⊗ S−1(b[2])b[1]

= a⊗ b[0] ⊗ S−1[S(b[1])b[2]]

= a⊗ b[0] ⊗ S−1[εs(b[1])]

= a⊗ b1[0] ⊗ S−1[S(1[1])] = a⊗ b1[0] ⊗ 1[1].

So a⊗ b ∈ (A⊗A)coH . Now we can define another k-linear map

θ′ : A�H Aop −→ (A⊗A)coH , a⊗ b 7−→ a⊗ b.

It is easy to see that θ′ is the inverse of θ. Thus, A �H Aop ' (A⊗A)coH as vector

spaces.

Finally, by Lemma 6.1.13, A � Aop ' A�Hr
Aop. So A�Hr

Aop ' (A ⊗Hs
A)coH .

Similar to [66], A�Hr
Aop ' (A ⊗Hs

A)coH as left L-comodule algebras. Hence,

A�H Aop ' H. Similarly, Aop �H A ' H.

Now we can form the main result of this chapter.

Theorem 6.2.10. Let H be a faithfully flat weak Hopf algebra. Let Gal(H,Ht) be the

set of isomorphism classes of H- bi-Galois objects. Then Gal(H,Ht) forms a group

under the cotensor product �H .

Proof. Follows from Proposition 6.2.13.

By [5] we can easily define a bi-cleft object and form the group of isomorphism

classes of H-bi-cleft objects, a subgroup of the group G(H,Ht).
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