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Summary 
 

This dissertation is related to the topic of origin-destination (OD) analysis and to 

relative aspects surrounding this topic within the domain of transportation. In 

essence, an OD matrix summarizes the travel-demand of a given geographical 

area and is the basic input to the last modeling phase of any sequential travel-

demand forecasting model which involves a traffic assignment procedure. The 

core of this dissertation is a new methodological approach to OD modeling. The 

approach is statistical, based on Bayesian Poisson mixture modeling, and can be 

viewed as a modern direct-demand/gravity modeling framework which 

incorporates the first two phases of a four-step model. Bayesian methods 

provide an appropriate working framework for quantifying uncertainties related 

to parameters as well as predictions of short-term traffic.     

The proposed methodology is implemented on OD data derived from the 

2001 Belgian census study. The study focuses on OD movements between the 

308 municipalities of Flanders. A set of 25 explanatory is used to model 

expected OD trips under the assumption of a log-link function. Initially, a 

comparison is carried out between a Poisson model and a negative binomial 

model which indicates that the latter is noticeably a more suitable model due to 

extreme over-dispersion. Emphasis is placed on the hierarchical negative 

binomial structure, which is a Poisson-gamma (PG) model with random effects 

accounting for heterogeneity. The PG model is further compared with a Poisson-

lognormal (PLN) and a Poisson-inverse Gaussian (PIG) model. In this first full 

Bayesian PIG application it is shown that the model has desired distributional 

properties. In addition, the PIG model provides the best marginal fit. Concerning 

parameter significance and interpretation, all explanatory variables have 

statistically significant effects which have consistent interpretations with respect 

to transportation modeling expectations.  

Moreover, the proximity of PG and PIG predictions to the observed data is 

evaluated according to several measures of discrepancy. The overall fit is found 

in general to be satisfactory. One important finding is that both models tend to 

underestimate the number of zero-valued OD pairs. Although replicating the 

number of zero-valued cells is not one of the primary goals of the analysis, it is 

shown that zero-valued cells can have a strong cumulative influence on total 
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travel-demand. In general, one of the advantages of using Bayesian methods is 

that one can predict the short-term distribution of any type and/or combination 

of trips that are of interest. This provides predictive distributions which are 

particularly useful in transport planning and policy evaluation.  

Subsequent research focuses on traffic-assignment and network-congestion 

inference. The methodology is based on utilizing the predictive output of the 

models as input to traffic assignment. Specifically, two methods of inputting OD 

predictions are discussed. In the first method an OD summary is calculated first 

and then assigned to the network, whereas in the second method all OD 

predictions are assigned to the network individually. Method 1 leads to 

approximate-network inference and is computationally less demanding, but not 

as exact as method 2. In general, method 2 is promoted and advocated as it 

provides a suitable tool for full-network inference regarding point and interval 

estimates, link flow distributions and identification of congested links by means 

of probability estimates.  

The methods are compared on the Flemish road network for traffic 

concerning going-to-work/school trips by Flemish residents between the peak 

hour from 7 am to 8 am. Initial results, based on deterministic user equilibrium 

(DUE) assignment, indicate that traffic flows in Flanders are denser around the 

major municipal centers of Antwerp, Ghent, Leuven and Bruges, and on the 

highways which connect these cities with each other and also with Brussels. In 

addition, eleven congested links are identified through method 2 as having a 

non-zero probability of exceeding a volume-over-capacity (V/C) threshold value 

of 0.95, the majority of which belonging to Antwerp and Ghent. Contrary, when 

using the expected V/C ratio as an identification criterion, four of these links are 

not identified. In general, the comparison between the two inputting methods 

provides some initial evidence that method 1 might be suitable when the sole 

goal is to have a point estimate of the expected state of the network. 

Specifically, in relation to the behavior of total system travel time (TSTT) and 

Jensen’s inequality, the estimate from method 1 is found to be indeed smaller 

than the  estimate from method 2 in accordance to theory. Nonetheless, in 

practical terms the two estimates are relatively close. Regarding percentile 

estimates, estimates from method 1 result in interval estimates which are 

evidently narrower and thus fail to capture the complete variability which is 
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induced by travel-demand uncertainty. Additional comparisons between PG and 

PIG predictions reveal that the choice of the statistical model also has a certain 

influence concerning inference for aggregated link flow distributions. 

Nevertheless, main inferences concerning the behavior of TSTT and V/C ratios 

are not affected. 

Further traffic assignment experiments are implemented next by comparing 

results between DUE assignment and stochastic user equilibrium (SUE) 

assignment under both probit and logit route-choice models and for different 

values of perception-error variance. These comparisons are conditional on PG 

predictions. Results concerning TSTT are again in agreement with the theory 

related to Jensen’s inequality. Results for aggregated link volumes are less 

straightforward to interpret, nevertheless, some general conclusions are in 

accordance with theoretical expectations. First, DUE assignment allocates more 

traffic to high-capacity links, while SUE assignment allocates more traffic to 

medium-capacity links. Second, when considering the total amount of traffic, 

SUE assignment produces more traffic than DUE and in addition traffic under 

SUE increases as error-perception variance increases. Regarding congestion 

analysis, results reveal that the selection of assignment model does not 

seriously affect the general allocation of links in relation to expected V/C ratios. 

On the other hand, variability is present when examining individual V/C 

distributions. In addition, under SUE assignment bimodal as well as multimodal 

V/C distributions arise. These results grant additional support to the use of 

probability estimates as opposed to centrality estimates as indicators of 

congestion. 

Finally, the recently developed radiation model is discussed in certain detail 

due to its strong relevance with this current research. Initial attempts of 

assimilating the radiation model within the modeling framework, considered 

here, are illustrated. Initially, the variable of circular area population – 

introduced in the radiation model – is used as an explanatory variable with 

negative binomial likelihood assumptions. In addition, a first possible Bayesian 

extension of the radiation model is discussed. 
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Samenvatting 
 

Dit proefschrift gaat over de schatting van herkomst-bestemmingsmatrices 

(origin-destination (OD) matrices) en de hieraan gerelateerde aspecten in het 

domein van vervoer. In essentie bevat een OD-matrix een overzicht van de 

vervoersvraag van een bepaald geografisch gebied en behoort het tot de 

basisinput voor de laatste modelleringsfase van elke sequentieel 

vervoersvraagprognosemodel dat gebruik maakt van verkeerstoedeling. De kern 

van dit proefschrift is een nieuwe methodologische benadering voor het schatten 

van OD-matrices. Het is een statistische aanpak, gebaseerd op het Bayesiaanse 

Poisson mixed model, dat beschouwd kan worden als een modern directe 

vraagmodel dat de eerste twee fasen van een vier-stapsmodel bevat. 

Bayesiaanse methoden bieden een passend kader voor het kwantificeren van 

onzekerheden met betrekking tot parameters alsook voor korte-termijn 

verkeersvoorspellingen.  

De voorgestelde methodologie werd toegepast op OD-gegevens, afkomstig 

van de Belgische census gehouden in 2001. In dit doctoraat is de analyse gericht 

op OD-relaties tussen de 308 Vlaamse gemeenten. Er wordt een set van 25 

verklarende variabelen gebruikt om verwachte OD-trips te modelleren, onder de 

veronderstelling van een log-linkfunctie. Eerst wordt een Poisson model 

vergeleken met een negatief binomiaal model. Hieruit blijkt duidelijk dat het 

laatste model geschikter is omwille van extreme overdispersie. De nadruk wordt 

gelegd op de hiërarchisch negatieve binomiale structuur. Dit is een Poisson-

gamma (PG) model met random effecten die heterogeniteit vertegenwoordigen. 

Het PG-model wordt verder vergeleken met een Poisson-logaritmisch (PLN) en 

een Poisson-Invers Gaussiaans (PIG) model. In deze eerste volledige toepassing 

van het Bayesiaanse PIG model wordt aangetoond dat dit model gewenste 

distributie-eigenschappen heeft. Bovendien biedt het PIG-model de beste 

marginale fit. Wat het belang en de interpretatie van de parameters betreft, 

hebben alle verklarende variabelen statistisch significante effecten waarvan de 

interpretatie overeenkomt met de verwachte vervoersmodelleringen.  

Bovendien wordt de benadering van PG- en PIG-voorspellingen op de 

waargenomen gegevens geëvalueerd volgens verschillende afwijkingsgradaties. 

De algemene fit is meestal bevredigend. Een belangrijke vaststelling is dat beide 
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modellen de neiging hebben om het aantal OD-paren met nulwaarden te 

onderschatten. Hoewel het niet de belangrijkste doelstelling van de analyse is 

om het aantal cellen met nulwaarde te herhalen, werd aangetoond dat cellen 

met een nulwaarde een sterk cumulatieve invloed kunnen hebben op de totale 

vervoersvraag. Over het algemeen is één van de voordelen van de Bayesiaanse 

methoden dat men het korte-termijn type en/of de combinatie van trips waarin 

men geïnteresseerd is kan voorspellen. Dit levert voorspellingen op met 

betrekking tot distributies die vooral handig zijn bij vervoersplanning en 

beleidsevaluatie.  

Verder onderzoek is gericht op verkeerstoedeling en de deductie van 

netwerkcongestie. In deze methode wordt de voorspellingen van de 

bovenvermelde modellen gebruikt als input voor de verkeerstoedeling. Meer 

specifiek worden er twee methoden besproken, die gebruik maken van de OD-

voorspellingen. In de eerste methode wordt er eerst een samenvattende OD-

matrix berekend en vervolgens wordt dit toegewezen aan het netwerk. In de 

tweede methode daarentegen, worden alle OD-voorspellingen afzonderlijk aan 

het netwerk toegewezen. Methode 1 leidt tot een deductie van het geschatte 

netwerk en is makkelijker te berekenen, maar is niet zo accuraat als methode 2. 

Over het algemeen wordt methode 2 aanbevolen aangezien het geschikt is voor 

de deductie van een volledig netwerk met betrekking tot punt- en 

intervalschattingen, linkflowdistributies en de identificatie van overbelaste links 

door middel van waarschijnlijkheidsschattingen.  

De methoden worden vergeleken op het Vlaamse wegennet voor het woon-

werkverkeer en woon-schoolverkeer, gedaan door Vlamingen tussen het piekuur 

van 7u tot 8u. Uit de eerste resultaten, bekomen door een deterministische 

gebruikersevenwichttoewijzing (DUE), blijkt dat er in Vlaanderen grotere 

verkeersstromen zijn rond de belangrijkste stedelijke centra Antwerpen, Gent, 

Leuven en Brugge, en op de snelwegen die deze steden met elkaar en met 

Brussel verbinden. Bovendien worden er door middel van methode 2 elf 

overbelaste links geïdentificeerd. Deze links hebben een kans groter dan nul om 

de drempelwaarde van 0,95 van volume over capaciteit (V/C) te overschrijden. 

De meerderheid hiervan behoort tot Antwerpen en Gent. Wanneer men 

daarentegen de verwachte V/C-verhouding gebruikt als een identificatiecriterium 

worden vier van deze links niet geïdentificeerd. Over het algemeen wijst een 
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vergelijking tussen de twee inputmethoden een eerste bewijs dat methode 1 

geschikt zou kunnen zijn wanneer de enige doelstelling erin bestaat om een 

puntschatting te verkrijgen van de verwachte staat van het netwerk. In het 

bijzonder met betrekking tot het gedrag van de totale reistijd (TSTT) en Jensens 

ongelijkheid, blijkt de schatting van methode 1 inderdaad kleiner te zijn dan de 

schatting van methode 2, wat in overeenstemming is  met de theorie. In de 

praktijk liggen de twee schattingen echter relatief dicht bij elkaar. Met 

betrekking tot percentuele schattingen, leveren de schattingen van methode 1 

intervalschattingen op die blijkbaar kleiner zijn en daarom niet de volledige 

breedte aan variatie bevatten die eigen is aan de vervoersvraagonzekerheid. 

Bijkomende vergelijkingen tussen PG- en PIG-predicties tonen aan dat de keuze 

van het statistische model ook een zekere invloed heeft op de deductie van 

geaggregeerde linkflowdistributies. Niettemin worden de belangrijkste deducties 

met betrekking tot het gedrag van TSTT en V/C-ratio niet beïnvloed. 

Vervolgens worden bijkomende verkeerstoedelingsexperimenten uitgevoerd 

door de resultaten van de DUE-toedeling en de stochastische 

gebruikersequilibrium (SUE)-toedeling te vergelijken onder zowel probit als logit 

routekeuzemodellen en voor verschillende waarden van variatie in 

perceptiefouten. Deze resultaten zijn gebaseerd op de PG-voorspellingen. De 

TSTT-resultaten komen opnieuw overeen met Jensens theorie van ongelijkheid. 

De resultaten voor geaggregeerde linkvolumes zijn minder gemakkelijk te 

interpreteren. Niettemin stemmen enkele algemene conclusies overeen met de 

theoretische verwachtingen. Ten eerste wordt bij DUE-toewijzing meer verkeer 

toegewezen naar links met een hoge capaciteit, terwijl bij SUE-toewijzing meer 

verkeer toegewezen wordt naar links met een gemiddelde capaciteit. Wanneer 

men ten tweede de totale hoeveelheid verkeer in acht neemt, produceert een 

SUE-toewijzing meer verkeer dan een DUE-toewijzing en bovendien neemt het 

volume van verkeer onder SUE-toewijzing toe naarmate de 

foutperceptievariantie toeneemt. Wat congestieanalyse betreft wijzen resultaten 

uit dat de keuze van het toewijzingsmodel geen grote impact heeft op de 

algemene toewijzing van links met betrekking tot verwachte V/C ratio's. 

Anderzijds is variabiliteit aanwezig bij individuele V/C distributies. Bij SUE-

toewijzing ontstaan bovendien zowel bimodale als multimodale V/C distributies. 

Deze resultaten geven een extra stimulans voor het gebruik van 
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waarschijnlijkheidsschattingen in plaats van gemiddeldeschattingen als 

congestie-indicator.  

Tot slot wordt het onlangs ontwikkelde radiatiemodel omwille van het sterke 

verband met dit doctoraatsonderzoek tot op een bepaald niveau van detail 

bediscussieerd. Eerste pogingen om het radiatiemodel te assimileren binnen het 

modelleringskader van dit proefschrift worden geïllustreerd. In eerste instantie 

wordt de “cirkelvormige zonebevolking”-variabele – geïntroduceerd in het 

radiatiemodel – gebruikt als een verklarende variabele met negatief binomiale 

waarschijnlijkheidsveronderstellingen. Bovendien wordt een eerste mogelijke 

Bayesiaanse uitbreiding van het radiatiemodel besproken. 
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1 Introduction 

 

The ultimate aim of transportation analysis and planning is to monitor traffic and 

to ensure that travel needs of individuals are being satisfied, unimpeded, within 

a given transport network. In terms of economics this translates to a state of 

balanced equilibrium between travel-demand and travel-supply. From this 

perspective, travel-demand is perceived as something that is being derived by 

the existence of certain needs and not as something with an end in itself. 

Movement of goods is clearly subjected to this line of reasoning and one can 

additionally reason that for most cases individuals also travel to a certain 

destination in order to do a certain activity or fulfill a certain need, for instance 

work, school, leisure and so forth1. Travel-supply on the other hand refers to the 

operating capacity of a transport system which is defined by a given 

infrastructure (e.g. road network), a management system (e.g. driving rules, 

traffic signs and signals) and a set of transport modes and their corresponding 

operators (e.g. bus, rail services). 

Although demand and supply are in principle not independent and as in any 

economic environment there exist intricate two-way interactions and dynamics 

in between, one can note that demand is subjected to extreme spatial and 

temporal short-term variations while supply is on short-term relatively constant 

and is characterized by changes that occur during long-term periods. Thus, 

transportation planners focus, primarily, on obtaining a best possible estimate of 

travel demand and address, subsequently, the appropriateness of the supply-

side given the demand estimate2. When the system is in balance, the supply 

satisfies and potentially widens the opportunities for fulfilling the needs of 

individuals and other agents. Contrary, a system which is in imbalance (e.g. a 

congested or poorly connected system) restricts options and delays or limits 

economic and social activities, and thus overall development (Ortúzar and 

Willumsen, 2001).  

                                                             
1 The “derived demand” concept based on economic principles implies that the act of travelling itself 
does not offer any positive utility and that minimizing travel time is the objective aim of any traveler. A 
discussion over the overall validity of this notion would be beyond the scope of this dissertation. 
Interested readers are referred to Ory (2007) and the references therein for recent, alternative 
approaches which partially challenge the “derived demand” point of view.      
2 It should be noted that supply-uncertainty modeling is also gradually gaining attention; see for 
instance the studies of Siu and Lo (2008), Boyles et al. (2010) and Gardner et al. (2011).   



2 
 

This dissertation, in its essence, explores ways of modeling and quantifying 

travel demand uncertainties, and incorporating these uncertainties in the 

assessment of travel supply performance. This introductory chapter starts with a 

brief description of the overall travel demand framework and with an overview of 

existing travel demand modeling approaches. In the following sections, the 

concept of uncertainty in transport modeling is discussed and the issue of 

availability of OD data is commented. The overall scope, aims and setting of this 

dissertation are presented next. The chapter concludes with an outline of the 

dissertation.                      
 

1.1 Problem statement 
 

In transportation analysis the travel demand within any geographical area, 

dividable into a given number of non-overlapping zones, can be summarized by 

an OD matrix which – in a very general context – contains the number of trips or 

flows3 that have occurred from each zone of that area to every other zone. 

Consider an area which can be divided into m zones, and let odT  denote the 

number of flows from zone of origin o to zone of destination d where 

, 1,2,...,o d m . The OD matrix T, is then 
 

 
 
   
 
  




   


11 12 1

21 22 2

1 2

     
     

          
   

m

m

m m mm

T T T
T T T

T T T

T . 

 

The elements odT  for o  d, i.e. when the zones of origin and destination are 

distinct, correspond to inter-zonal flows, whereas the elements across the main 

diagonal ooT  for o  d correspond to intra-zonal flows as in this case there is no 

distinction between zone of origin and zone of destination. In vector notation the 

matrix T can be represented by a n-dimensional vector y with elements iy  for 

1,2,...,i n  and 2n m , namely  1 2 3 11 12 13( , , ,..., ) ( , , ,..., )T T
n mmy y y y T T T Ty . 

                                                             
3 The terms “flows” and “trips” are used interchangeably throughout the dissertation, depending on 
context. 
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The intra-zonal flows under this notation are the elements 

     1 2 2 3 3 4 ( 2) ( 1), , , ,..., ,m m m m m m ny y y y y y . 

The inferential scope in OD estimation is depended on several defining 

aspects. A first aspect is related to the desired level of spatial resolution for a 

given geographical area which in turn depends on the definition of the zonal 

unit-scale. This means that when the geographical area of interest is 

determined, the next step is to define on which zone-level to implement the 

analysis, since it is usually possible to define several nested spatial zone layers 

according to natural or administrative divisions, e.g. a city can be divided in 

districts, municipalities, postal-code areas and so forth. Therefore, the problem 

can associate to micro, meso or macro-scopic levels of spatial resolution4. A 

second defining aspect is related to temporal resolution, which from a 

transportation planning perspective can be classified in short-term and long-

term travel-demand cases. Short-term travel-demand analysis is focused on OD 

flows which occur on relatively small time intervals, for instance hourly or daily 

flows, whereas long-term travel-demand analysis is related to coarse time 

frames, e.g. monthly or even yearly intervals. For the latter case usually static 

estimation approaches are used, while in short-term travel-demand analysis 

static as well as dynamic modeling procedures are employed. A third inferential 

aspect relates to the classification of OD flows by trip-purpose. The OD flows 

may refer to total aggregated trips, trips related to working, educational, leisure, 

freight and other activities or to combinations of different types of activities. 

Model formulation and selection of explanatory variables will depend to a large 

degree on the type of flows which are under consideration. Within the field of 

transportation, modeling applications include all of the aforementioned cases 

depending on context, data availability and inferential scope. Interested readers 

are referred to Ortúzar and Willumsen (2001) for more information.  

It is essential to note that transport modeling is typically sequential and 

within the general demand modeling framework OD estimation is itself part of a 

larger inferential problem. The final phase of the sequential procedure relates to 

                                                             
4 Although this is a common complexity arising in problems related to spatial analysis, OD estimation 
differs from the majority of problems which arise within this field of research. The common case in 
spatial analysis applications is that counts of occurrences are observed within each spatial zone. In 
these cases analysis takes place on the m-dimensional space of zones, whereas in OD estimation 
analysis is required on the n-dimensional space of OD pairs.  
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a problem of major interest which is known as traffic assignment. Traffic 

assignment involves allocating the n  m inter-zonal OD flows on a corresponding 

transport network consisting of all the available links which define the possible 

routes from zone of origin o to zone of destination d for , 1,2,...,o d m  when    

o  d. In vector notation the traffic assignment problem can be broadly described 

as follows; if we denote by l the total number of links, then traffic assignment 

seeks an operator A which will map the inter-zonal OD flows from the (n  m)-

dimensional vector space of OD pairs to the l-dimensional vector space of links 

and result to a vector of link flows or volumes  1 2( , ,..., )T
lv v vv , i.e. Ay v , by 

minimizing an objective function of travel time with respect to link flows. The 

operator A is commonly non-linear. Put into practice this is a complicated 

problem and several traffic assignment models have been developed over the 

years each imposing specific assumptions on the objective function to be 

minimized. In summary, traffic assignment models take as input the structure of 

a transportation network (travel-supply) and a corresponding OD matrix (travel-

demand). The output itself depends on the complexity of the assignment model; 

nevertheless all assignment models produce a minimal output which includes 

traffic volumes and corresponding travel times or costs for each network link 

(Patriksson, 1994). The major aims of assignment models as summarized in 

Mathew and Rao (2007) are the following: 

 
1. To estimate the volume of traffic on the links of the network and obtain 

aggregate network measures. 

2. To estimate inter-zonal travel cost. 

3. To analyze the travel pattern of each OD pair. 

4. To identify congested links and to collect traffic data useful for the design of 

future junctions. 

 

Traffic assignment is in general the final goal of any transportation planning 

procedure as it provides a basis for planning and investment decisions 

concerning infrastructure and transport policy measures, e.g. road expansions or 

closures, construction of new roads, re-routing schemes, toll pricing policies and 

many other issues. 
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1.2 OD modeling approaches 
 

Literature related to OD modeling either exclusively or as part of a general travel 

demand framework is vast and immensely diverse. The bridging of scientific 

disciplines and the rapid evolution of computers facilitated a gradual and quick 

mixing of transportation engineering and economic concepts with elements from 

diverse scientific fields such as behavioral psychology, statistics and computer 

science. It would be difficult – if not impossible – to attempt to define a simple, 

non-overlapping classification of OD modeling approaches based on purely 

methodological terms. The classification which is commonly adopted (e.g. 

Rasouli and Timmermans, 2012) relates more to the historical evolution and 

philosophical perspective of travel demand forecasting and less to specific 

methodological tools which are utilized under each approach.  

From a historical point of view three generations of travel demand models 

are distinguishable. The first generation of models has its origins in the late 

1950’s. Under this approach travel demand is modeled according to a four-step 

modeling sequence. Four-step models are aggregated, trip-based models, i.e. 

they refer to total number of trips and do not take into account the sequencing 

or chaining of trips made by specific individuals. The four-step model is 

discussed in more detail in comparison to the following modeling approaches as 

this model relates more to the line of research pursued here. Nevertheless, an 

analytic description would exceed the scope of this dissertation since each 

modeling step is a separate research category by itself. Therefore, attention is 

restricted to a brief description of the 4-step modeling procedure and to some 

basic references related to OD estimation. Interested readers are referred to the 

books of Ortúzar and Willumsen (2001), and Hensher and Button (2000) for 

more information.  

The four modeling steps are (a) trip-generation, (b) trip-distribution, (c) 

modal-split and (d) traffic-assignment. OD estimation is treated in steps (a) and 

(b), the subsequent step (c) involves disaggregating the OD matrix with respect 

to mode choice and step (d), as described previously, is essentially the final goal 

of the sequential procedure. The first step of trip-generation consists of 

estimating the marginal totals  o odd
O T  and  d odo

D T , for , 1,2,...,o d m , 

which are referred to as trip-productions and trip-attractions, respectively. In 
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this phase regression models or cross-classification models are typically used to 

estimate trip-productions and trip-attractions as functions of socio-economic, 

location and land-use characteristics. The second step, trip-distribution is the 

step in which an OD estimate is obtained by distributing the marginal totals to 

the cells of the matrix. Models used within this step date back decades ago and 

include simple growth-factor models for short-term OD estimation, gravity 

models which were the first models to relate trip-distribution with external socio-

economic factors and also distance, intervening-opportunities models which 

related trip-distribution not so much to distance as to the relative accessibility of 

opportunities for satisfying a trip objective, and finally direct-demand models 

which were developed in order to incorporate steps (a), (b) and (c). The first 

application of a gravity model was in Casey (1955). Furness (1965) provided a 

significant contribution by introducing “balancing” factors in growth-factor and 

gravity modeling. Stouffer (1940) and Schneider (1959) developed the 

intervening-opportunities model, while Kraft (1968), Domencich et al. (1968) 

and Manheim (1979) were among the first to use direct-demand modeling. 

Finally, Wilson (1970, 1974) provided one of the most influential contributions in 

transportation modeling by introducing an entropy-maximizing perspective 

which included growth-factor, gravity and intervening-opportunities models as 

special cases. The approach of Wilson linked OD estimation to information 

theory, error measures and maximum-likelihood. In general, the sequential 

four-step procedure remains widely accepted by transportation planners so that 

many applications up to the present are still very much based on the principles 

of the aforementioned trip-distribution models5.  

The second generation of models appeared around the mid 1970’s and 

marked a transition from aggregated to disaggregated modeling as the focus of 

attention shifted to the needs of individual travelers. This approach is based on 

utility-maximization and individual-choice behavior theories and is known as 

discrete-choice modeling. It is characterized also as a tour-based modeling 

                                                             
5 On the other hand, four-step modeling has also been subjected to significant criticism, mainly due to 
the assumption of independent modeling at each step and also due to the vagueness concerning 
implementation of feedback loops between steps. In a very interesting paper by Boyce (2002), which 
also provides an overview of the historical evolution of four-step modeling, it is argued that an 
integrated approach combining steps (b), (c) and (d) is far more realistic (see also the references 
therein). Another criticism relates to propagation of error due to spatial, demographic and temporal 
aggregations (Walker, 2005; Davidson et al., 2007).  
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approach as individual trips are explicitly connected in tours, i.e. chains of trips 

that start and end at a given location. Multinomial regression models dominate 

this field with the first transport applications of logit, hierarchical logit, probit 

and nested logit regression models being by Domenchich and McFadden (1975), 

Williams (1977), Daganzo (1979) and Ben Akiva (1974), respectively. An 

analytic overview of discrete-choice models including recent and more complex 

modeling approaches can be found in Hess (2005). Information can also be 

found in Ben Akiva and Bierlaire (1999) and Ortúzar and Willumsen (2001).  

The third generation of travel demand forecasting models known as 

activity-based models appeared more or less in parallel with discrete-choice 

models6. However, the development of activity-based models was boosted 

during the 1990’s. The underlying premise of activity-based modeling is that 

traveling is derived from activities and thus it should be understood within the 

context of activity participation. Theoretically, a full activity-based model 

delivers significant additional information in comparison to a trip-based and a 

tour-based model, namely activity participation, destination choice, time, 

duration, mode choice and route choice. The term “framework” might be more 

suitable to describe an activity-based approach, as these models typically 

embrace a series of submodels for activity type, activity duration, destination 

and mode choice modeling. The common characteristic of all activity-based 

models is that they employ agent-based or micro-simulation either in principle 

or in order to link independent or weakly-joined submodels. Examples of 

comprehensive activity-based models include CEMDAP (Bhat et al., 2004) which 

utilizes a series of independent econometric submodels, FAMOS (Pendyala et al., 

2005) with nested logit submodels, ALBATROSS (Arentze and Timmermans, 

2004) a strongly linked rule-based model which is also the core of FEATHERS 

(Bellemans et al., 2010), and TASHA (Roorda et al., 20078) which combines ad 

hoc rules, sampling approaches and simple discrete-choice models for the 

various lower level models. A literature review on activity-based models is 

                                                             
6 Although activity-based modeling is in general regarded as a newer trend in comparison to discrete-
choice modeling,  the first actual study in which activities and travel behavior were integrated is in 
Jones et al. (1983), very close to the time that the first discrete-choice modeling approaches appeared.   
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provided by Henson et al. (2009), a general discussion over microsimulation 

models can be found in Vosha et al. (2002)7. 

Certain remarks and general comments concerning the aforementioned 

classification are noteworthy. First, the classification is still overlapping to some 

extent. Although the distinction between four-step and activity-based modeling 

is quite clear, the positioning of discrete-choice modeling is rather ambiguous. 

That is due to the fact that discrete-choice models are in general difficult to 

classify. In many occasions, discrete-choice models gradually replaced the trip-

generation and trip-distribution phases of four-step models marking a shift from 

trip to tour-based modeling which was in some occasions, perhaps prematurely, 

named “activity-based” modeling (Rasouli and Timmermans, 2012). In addition, 

discrete-choice modeling is the main methodological tool for many modern 

activity-based models. Information on discrete-choice modeling within activity-

based frameworks can be found in Bhat and Koppelman (1999). Second, it 

should be noted that all travel demand forecasting paradigms are sequential and 

therefore concerns related to properly defined feedback loops between steps or 

models should not constrict to the four-step model. Activity-based models often 

utilize numerous submodels in order to predict travel demand and in addition 

still depend on conventional assignment models for traffic allocation. Although, 

the ultimate vision concerns fully integrated approaches which will include traffic 

assignment procedures, up to the present such approaches are still on a 

conceptual or experimental stage (see e.g. Lin et al., 2008). Third, it is 

undoubtedly true that the gradual shift from trip to tour to activity-based 

modeling marked a significance increase of behavioral realism in travel demand 

forecasting. Nevertheless, with increasing behavioral realism the computational 

complexity and data-input requirements are also increasing and while the 

increase in model complexity follows an exponential rate the gain in terms of 

behavioral realism is at a lower rate (Cools, 2009).                           

Finally, there exists another approach which focuses exclusively on OD 

estimation and which is completely independent and outside the framework of 

the three travel demand forecasting paradigms. Interestingly, this approach can 

potentially provide a solution to the feedback problem between traffic 
                                                             
7 Interestingly, the recent emergence of dynamic activity-based models (e.g. Habib and Miller, 2009; 
Arentze and Timmermans, 2011) is foreseen by some authors as a fourth generation of travel demand 
models.  
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assignment and demand modeling. OD estimation from link counts or link traffic, 

as it is commonly described, relies on information from link traffic data8. Under 

this approach, the traffic assignment problem, discussed in section 1.1, is 

actually inverted and the goal is to estimate or update a vector of OD flows from 

an observed vector of link flows. The main problem is that traffic count data are 

typically observed only in a small subset of the link flow vector and therefore the 

number of links which contain information is smaller than the number of OD 

pairs which results in an underspecified system of equations. Thus, external 

information in the form of a “prior” outdated OD matrix is needed in order to 

impose constraints. The goal then is to find the most plausible OD estimate 

given the observed link flows and the “prior” OD matrix.  

According to the categorization of Abrahamsson (1998) there are three 

main groups of methods; traffic-modeling based methods, gradient-based 

solution techniques and statistical-inference methods. Traffic-modeling methods 

seek to minimize the information or maximize the entropy with respect to the 

“prior” OD matrix while retaining the constraints from the link flows. 

Contributions in this area of research can be found in Van Zuylen and Willumsen 

(1980), Jörnsten and Nguyen (1983), Fisk (1989) and Kawakami et al. (1992). 

Gradient techniques consider the “prior” OD matrix as an initial solution and the 

matrix is then adjusted to reproduce traffic counts by iteratively calculating 

directions based on the gradient of a specific objective function. Gradient-based 

studies include those of Spiess (1990), Drissi-Kaïtouni and Lundgren (1992) and 

Chen (1994). Statistical-inference methods assume that the OD and link flows 

are realizations of random processes and thus by adopting an appropriate 

distributional assumption, usually a Poisson or an approximate normal 

distribution, the problem reduces to an estimation problem for the 

corresponding parameters of interest. Statistical-inference methods can be 

further classified into three groups; maximum likelihood methods (Spiess, 1987; 

Cascetta and Nguyen, 1988, Lo et al., 1996; Vardi, 1996 and Hazelton, 2000), 

least squares and generalized least squares methods (Cascetta, 1984; Bell, 

1991; Yang et al., 1994 and Bierlaire and Toint, 1995) and Bayesian methods 

(Maher, 1983; Tebaldi and West, 1996; Li, 2005, 2009; Castillo et al., 2008 and 

                                                             
8 Traffic data on links are in general easier and less expensive to collect than traffic data between OD 
pairs, e.g, through automatic sensor detectors. 
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Hazelton, 2008, 2010). For a more philosophical classification and discussion of 

methods interested readers are referred to Timms (2001). A drawback with OD 

estimation from link traffic is that the majority of applications are on small 

theoretical networks9, except of some gradient-based solution methods (e.g. 

Spiess, 1990; Chen, 1994). Therefore, despite the mathematical elegance of 

many of these methods, the transition from theory to practice in real-world 

problems remains a challenge. The inherent problem of having fewer equations 

than the number of unknowns poses serious limitations for applications on large-

scale networks. Limitations and prospects of OD estimation from link traffic are 

discussed in Marzano et al. (2009).      
 

1.3 Uncertainty in transport modeling 
 

The topic of uncertainty analysis has, in general, received limited attention 

within the domain of transportation. Until recent years few studies dealt with 

this matter, studies which were sporadic and mainly on an ad hoc basis (e.g. 

Bonsall et al., 1977; Ashley, 1980). However, the number of papers inquiring 

uncertainty issues is gradually increasing over the last years. This might be 

partially explained as a side effect from an overall  increase of uncertainty-

related studies across diverse scientific fields, for instance ecology (Li and Wu, 

2006), forensics (Brach and Dunn, 2004), engineering (Ayyub and Gupta, 1998) 

and so forth. Another, perhaps more influential reason, relates to the increasing 

and justifiable interest in the accuracy of long term travel demand forecasts 

which is reflected in many recent comprehensive studies, namely Parthasarathi 

and Levinson (2010), Flyvbjerk (2005),  Flyvbjerk et al. (2005, 2006), Bain and 

Polakovic (2005) and Richmond (2001). From a policy-making perspective these 

studies provide alarming results, to say the least, concerning under or 

overestimation of traffic forecasts and also constitute the need of uncertainty 

analysis more relevant than ever. 

A first detailed literature review of studies on transport uncertainty analysis 

is provided by de Jong et al. (2006). The authors distinguish two main sources 

of uncertainty, input-uncertainty and model-uncertainty, and investigate the 

related literature under the prism of this distinction. In this study input-
                                                             
9 A striking example can be found in Tebaldi and West (1996) and the corresponding comment by 
Vardi.    
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uncertainty is strictly defined in terms of forecasting for future years and 

therefore the authors consider as input-uncertainty the unknown values of 

future exogenous variables used as input in a given model (e.g. future incomes). 

Model-uncertainty on the other hand relates to two types of errors; model 

specification error and estimation error. Model specification error can be due to 

omitted variables, inappropriate functional forms and distributions for random 

components while estimation error is due to the fact that the true parameters 

are unknown and need to be estimated. De Jong et al. (2006) conclude with a 

small number of 21 studies which take into account one of the two forms of 

uncertainty and quantify the impact in terms of variance, standard deviation, 

95% confidence intervals and percentile estimates. Out of these 21 studies only 

six quantify the impact of uncertainty on link flows, the key output concerning 

project evaluation as the authors comment. Furthermore, only seven studies 

take into account both types of uncertainty, nine solely focus on model-

uncertainty and four on input uncertainty, while in one study the distinction 

between input and model uncertainties is not recognized. 

A second, more recent and up-to-date literature review is that of Rasouli 

and Timmermans (2012). This review focuses exclusively on travel demand 

uncertainty studies within the four-step, discrete-choice and activity-based 

frameworks and also provides a very good overview of these frameworks. Input-

uncertainty is more broadly defined by Rasouli and Timmermans, including not 

only the uncertainty due to future unobserved input data but also the 

uncertainty originating from sampling bias, survey design, reporting and/or 

coding mistakes, and missing/incomplete information. The definition of model 

uncertainty is essentially the same as in de Jong et al. (2006). The authors 

present a list of 14 papers which take into account at least one of the two types 

of uncertainty, three studies within four-step modeling, seven studies within 

discrete-choice modeling and four studies within activity-based modeling. In 

general, both literature reviews highlight and criticize the fact that despite the 

thousands of papers related to transport model forecasts found in journals, 

reports and conference proceedings every year, the literature on uncertainty 

analysis has been fairly limited. As commented by Rasouli and Timmermans 

(2012), including uncertainty analysis rather complicates things and often it 

seems more effective to ignore uncertainty considerations during policy 
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development processes. The authors insightfully further comment that 

uncertainty analysis becomes relevant only when the following circumstances 

arise either individually or in conjunction; i) there are divergent political views 

and model results favor one particular position, ii) there are high financial, 

political, societal risks, iii) the policies to be implemented are controversial in 

terms of cost-benefit and iv) there are concerns about the limitations of a 

model.      

Nonetheless, there seems to exist a general upward trend in the number of 

transport studies dealing with uncertainty analysis either because of research 

which points out obvious misjudgments in long-term forecasting or because of 

rising awareness concerning environmental (e.g. CO2 emissions), economical 

(e.g. non-renewable energy sources) and societal (e.g. traffic casualties) issues. 

Additional evidence for this upward trend can be found in studies related to 

modeling of travel times (Ettema and Timmermans, 2006; Li and Rose, 2011), 

infrastructure management (Kuhn and Madanat, 2005; Ng et al., 2011) and 

specific travel-demand approaches (Matas et al., 2012). Furthermore, there 

exists a rapidly growing body of research related to uncertainty in traffic 

assignment models starting from Waller et al. (2001)10. Finally, Poole and 

Raftery (2000) and Ševčíková et al. (2007) provide the first formal probabilistic-

based approaches for assessing uncertainties in sequential deterministic and 

agent-based simulation frameworks within the context of urban-simulation 

models. 
 

1.4 Availability of OD data 
 

Availability of OD data commonly originates from travel surveys and in some 

cases from census studies. Travel survey data are of course less expensive and 

easier to collect, manage and follow-up in relatively small time intervals by 

private agents or by organizations such as transportation centers and institutes, 

whereas census studies are expensive, large-scale projects, managed by 

governmental agencies and implemented over large periods of time. 

Nevertheless, despite the economical and practical advantages of travel survey 

                                                             
10 This topic is discussed in more detail in chapter 4, section 4.1, as it is very relevant with some of the 
material presented in this dissertation. 
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data11, OD estimates from travel surveys are rarely used for direct statistical 

inference. In relation to the previous discussion, sampling estimates propagate 

input-uncertainty, as defined by Rasouli and Timmermans (2012), significantly. 

According to Stopher and Greaves (2007) travel surveys are bounded by 

considerable error-producing characteristics, namely inadequate sample sizes, 

non-representative samples, large non-response rates and under-reporting of 

trips. Awareness regarding these problems is not new, for instance discussions 

concerning sample size and non-representation date back to Wermuth (1981) 

and Brög and Erl (1982), while the notion that sample-expansion is not an 

appropriate solution is first pointed out in Brög and Ampt (1982). The latter is 

nowadays widely accepted within the scientific community, a notable recent 

empirical study by Cools et al. (2010) verifies that sample estimates are 

considerably biased even under large sampling rates. The compounding 

problems of non-response and under-reporting captured attention relatively later 

(e.g. Richardson et al. 1995), nevertheless, are equally prevalent. 

Given the unreliability of travel surveys for OD estimation, the trip-

distribution phase in four-step models can be viewed essentially as a 

“correction” procedure. That is, trip-distribution is actually delivering updated or 

improved OD estimates given initial OD estimates which are either outdated or 

approximate. For instance, the entropy-maximization approach of Wilson is 

based on knowledge of a macro-state (aggregated OD flows) and a base OD 

matrix (initial OD estimate) and provides the most likely to be observed meso-

state (improved OD estimate). Similarly, methods based on link traffic deliver 

the most likely OD matrix given the information from link counts and an initial 

OD estimate. In other words, the methodological framework of these modeling 

approaches associates with the type of information which is available and most 

commonly this information is weak, partial or outdated.  

On the other hand, research with OD matrices derived from census studies 

has been to a large degree overlooked. The main reason of course is that travel 

census data are usually not available due to the increased costs of collecting 

such data. Another possible explanation is that traditional transportation 

                                                             
11 That is not to say that travel surveys are easy per se in development. Travel surveys in general 
require extremely careful and detailed planning concerning questionnaire format and design, definition 
of sampling framework and sample size among other issues. Details on travel survey data-collection 
methods (not restricted to OD surveys) can be found in TRB Travel Survey Manual (2012). 
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planning approaches are related more to traffic engineering and less to 

statistical modeling, and therefore even when travel census data are available 

the required data-analytic tools for implementing analysis on large-scale are not 

available. Regardless of reasons, OD information from census studies provides 

opportunities for implementing direct statistical methodology as in this case the 

main problems of inadequate sample size and non-representation are not of 

concern. 
 

1.5 Scope of research 
 

The purpose of this dissertation is to investigate new ways of OD modeling for 

cases where reliable historical travel-demand information is available. To this 

end, an OD matrix derived from the 2001 Belgian travel census is under 

consideration. The main objectives are the following. First, to demonstrate that 

statistical OD modeling can potentially replace the first phases of traditional 

travel-demand modeling. Second, to investigate traffic assignment inference 

given the predictions of well-validated statistical models.  

Given these objectives, the first problem is to find suitable statistical models 

which will capture the underlying mechanisms of a large and complex dataset as 

is the census OD for the Belgian region of Flanders. The second problem is to 

find a formal way of generating OD predictions which can be subsequently 

utilized as input into traffic assignment models. The first problem is addressed 

within the modeling framework of Poisson-mixture regression models. This 

distributional family is suitable for handling complex count datasets for which 

the basic Poisson assumption is not adequate mainly due to the problem of 

over-dispersion. The second problem is addressed by adopting a Bayesian 

approach. Bayesian methods, in general, provide a natural framework for fitting 

hierarchical models which require estimation of parameters as well as random 

effects and also for generating realizations or predictions of new data.  

As shown in the following chapters of this dissertation, the proposed 

approach provides a range of advantages for transport modeling. These 

advantages can be summarized as follows: 
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 Incorporating the trip-generation and trip-distribution steps of the four-step 

model into statistical models that provide a wider inferential scope for 

parameters of scientific interest as well as for predictions of OD flows. 

 Parameters can still be interpreted in terms of trip-production and trip-

attraction concepts while OD predictions on various hierarchical levels may 

serve as predictive scenarios in transportation planning. 

 The statistical models under consideration and the experimental design 

adopted lead to a new and alternative perspective of direct-demand gravity 

modeling, thus retaining a strong relationship with traditional transportation 

modeling.      

 Delivering robust probabilistic estimates for link traffic and network 

congestion in the form of predictive link volume and volume-over-capacity 

distributions conditional on the assignment model. 

 Providing an appropriate working framework for quantifying model-

uncertainty during OD modeling and input/model-uncertainty during traffic 

assignment modeling. 
  

1.6 Structure of dissertation 
 

Chapter 2 is an introductory chapter dealing with some basic aspects of 

Bayesian theory and methodology. The chapter is by no means exhaustive in its 

content. Its main purpose is to provide information for readers which are 

unfamiliar to Bayesian approaches so that the methods used throughout this 

dissertation, especially in chapter 3, can be easily comprehended. As such, the 

chapter starts with the fundamental concepts of Bayesian theory related to the 

Bayes theorem and the prior and posterior distributions. Following that, 

inferential tools for the main aspects of Bayesian inference are presented, 

particularly concerning posterior inference, predictive inference and model 

comparison issues. The next section deals in brief with Markov Chain Monte 

Carlo simulation with emphasis on the Metropolis-Hastings algorithm and related 

convergence diagnostics which are utilized for the purposes of this dissertation. 

Finally, guidelines and examples are provided concerning the practical issue of 

calculating posterior quantities of interest given the output from Markov Chain 

Monte Carlo. 
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 The third chapter is dealing with the statistical modeling part of this 

dissertation. Initially, the 2001 Belgian census study, the administrative 

structure of the Flemish region, the OD data and the explanatory data are 

described. In the following section the first methodological steps and results are 

presented; namely the assumptions for the Poisson and negative binomial 

models, the correspondence between negative binomial and Poisson-gamma 

modeling, the details of Metropolis-Hastings simulation and the results of 

predictive inference and model comparison. The section concludes with 

predictive goodness-of-fit of the Poisson-gamma model and with a note 

explaining why prediction is based on the Poisson-gamma and not on the 

negative binomial representation. Next, the modeling framework is extended 

and the Poisson-mixture perspective is explained in more detail. In this section 

the Poisson-gamma, Poisson-lognormal and Poisson-inverse Gaussian models 

are described, details of Metropolis-Hastings simulation are provided and results 

related to posterior inference and model comparison are discussed. The section 

ends with predictive inference, this time under both Poisson-gamma and 

Poisson-inverse Gaussian predictions. The chapter concludes with a note on an 

alternative direct-demand, gravity modeling representation of the models and 

with a summary of results. 

 Chapter 4 investigates the benefits and the questions which arise when 

Bayesian OD predictions are used as input into traffic assignment. The first two 

sections are short introductions providing basic literature reviews for two 

important contemporary research directions highly related to the material of the 

chapter, namely traffic assignment under demand-uncertainty and 

congested/critical link identification. The following section is a brief description of 

the road network of Flanders. Next, the methodology of the chapter is discussed 

where two inputting methods are proposed; one suitable for approximate 

network inference and one leading to full network inference given demand 

uncertainty. Results from the two methods based on Poisson-gamma predictions 

and deterministic user equilibrium assignment are compared in the following 

section, covering issues such as the average state of the network, total system 

travel time behavior, performance of point and interval estimates, and 

congested link identification under full network inference. The following section 

deals more or less with similar issues but under the perspective of comparing 
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results based on Poisson-gamma predictions to results based on Poisson-inverse 

Gaussian predictions and with more weight given to full network inference under 

demand-uncertainty. Results are summarized in the final section of the chapter. 

 Chapter 5 contains relevant research material from recent experiments and 

modeling approaches. The chapter is divided in two main sections which deal 

with different topics. The first section is essentially a continuation of 

experiments related to those of chapter four. In this part, results from 

deterministic user equilibrium are compared to results from stochastic user 

equilibrium which is the commonly used alternative traffic assignment model. 

Stochastic user equilibrium experiments are implemented for different choices of 

route-choice models, namely probit and logit, and for 3 different levels of 

perception-error variance. The comparisons are conditional on Poisson-gamma 

predictions and are along the lines of chapter four focusing on potential 

differences in total system travel time, point estimates, interval estimates and 

congestion analysis under full network inference. The second section is related 

to a recent and novel methodological advance on OD modeling which has been 

developed independently of the research presented here. The approach is simply 

known as the radiation model. The potential usefulness of the radiation model 

within our modeling framework is investigated. A first attempt to incorporate an 

important explanatory variable from the radiation model in the negative 

binomial model is presented. The section and chapter conclude with a conceptual 

proposition for a Bayesian extension of the radiation model. 

 The dissertation ends with a general discussion in chapter 6. Initially, a 

summary of the main results and contributions of this research are presented. 

The results are then also interpreted from the perspective of input and model 

uncertainties. In the following two sections, considerations regarding the overall 

applicability of the proposed research and certain econometrical issues are 

discussed. Finally, possible future research directions are summarized in the last 

section.     
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2 The Bayesian approach 
 

The foundation of Bayesian theory was set in a study published in 1763 by 

reverend Thomas Bayes and was formalized quickly later in 1774 by Laplace 

who presented the general form of Bayes theorem. In the early 20th century 

Bayesian theory was evoked by physicist Harold Jeffreys and econometrician 

Arthur Bowley who argued on behalf of Bayesian methods. The term “Bayesian” 

in its contemporary sense was established during a period after the 1950’s as by 

that time many statisticians advocated this practice of statistics as a remedy for 

certain deficiencies of the classical or frequentist approach, mainly the 

interpretation of confidence intervals and the violation of the likelihood principle 

under specific conditions. In conjunction with the advancements in computing 

technology and the advents of simulation methods, Bayesian inference is 

becoming more popular ever since. 

 The difference between frequentist and Bayesian statistics is philosophical 

in nature. Frequentist theory assumes a probability distribution (likelihood) for 

the data with unknown and fixed parameters. Frequentist uncertainty originates 

from repetition of samples and therefore estimation procedures are based on the 

assumption of an infinite replication of the same inferential problem for fixed 

values of unknown parameters. Bayesian theory assumes a probability 

distribution (likelihood) for the data with unknown and random parameters 

which are assigned a prior distribution. Bayesian uncertainty originates from the 

parameters, so the evaluation procedure is based on infinite sampling of 

parameters drawn from a distribution which is conditional on the data, i.e. the 

posterior distribution (Carlin and Louis, 1996). 

 Bayesian inference is described in brief in this chapter. Coverage of the 

topic is limited to some main concepts and to certain modeling and simulation 

aspects which relate to the methods used throughout this dissertation. 

Nevertheless, references are provided for further issues which are not discussed 

in detail. In addition, interested but unfamiliar readers are further referred to 

the books by Gelman et al. (2003) for a good introductory reading which 

combines theory with practice, Ntzoufras (2009) for a comprehensive guide on 

modeling approaches and practical implementation in WinBUGS software and 
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Carlin and Louis (1996) for a slightly deeper perspective on mathematical 

aspects. 
 

2.1 The Bayes theorem 
 

For observed data  1 2( , ,..., )T
nx x xx , the Bayesian approach specifies a 

sampling distribution ( | )p x θ  which is the likelihood of the data given a 

parameter vector 1 2( , ,..., )T
kθ θ θθ 12. The parameter vector is considered 

random and is assigned with a prior distribution ( )p θ . The latter distribution 

expresses prior beliefs, i.e. it is the distribution of θ before any data are  

observed. 

 From the basic properties of conditional probabilities the posterior 

distribution of θ is  

( | ) ( )( | )
( )

p pp
p


x θ θθ x

x
, 

where ( )p x  is the marginal likelihood, also referred to as the prior predictive 

likelihood of the data given by ( ) ( | ) ( )p p p θx x θ θ  or by 

( ) ( | ) ( )p p p d θx x θ θ θ  depending whether θ is discrete or continuous, 

respectively. The formula for obtaining the posterior is known as Bayes theorem. 

In general, the posterior distribution encapsulates all necessary information 

about the parameter vector given prior beliefs and observed data as it is the 

distribution of θ after having observed the data. The marginal likelihood ( )p x  is 

of major importance for model selection procedures, but this issue will not be 

discussed in detail here. More details can be found in Kass and Raftery (1995) 

who interpret the marginal likelihood as the probability of witnessing the data 

that were actually manifested, calculated before any data became available. 

Calculating the marginal likelihood is cumbersome, but – conveniently – this is 

not essential for evaluating the posterior. Since ( )p x  does not depend on θ, the 

un-normalized posterior is    
 

( | ) ( | ) ( )p p pθ x x θ θ . 

                                                             
12  For simple problems θ might contain just one parameter, i.e. θ=θ.    
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Knowledge of the un-normalized posterior is sufficient for calculating the 

normalized density directly (see section 2.1 for conjugate priors), approximately 

(e.g. see chapter 4 in Gelman et al., 2003) or through simulation (see section 

2.6), therefore the above expression is particularly useful as it significantly 

simplifies calculations. 

 In general, the Bayesian framework provides a natural updating structure 

when new data newx  become available. In this case, the posterior distribution 

given x can be regarded as a prior for newx  and by a new application of Bayes 

theorem obtain an updated posterior, i.e. ( | ) ( | ) ( | )new newp p pθ x x θ θ x , 

without necessarily being restricted to the same likelihood and prior 

distributional assumptions. 
 

2.2 Prior distribution 
 

Prior distributions can be classified to informative or non-informative, parametric 

or non-parametric and conjugate or non-conjugate, Cross-classification 

according to these attributes is also possible.  

Informative priors are used when accumulated information about the 

parameter vector exists either from past studies or from knowledge of subject-

area experts. When that is the case, this information can be incorporated in the 

prior distribution, e.g. by specifying an appropriate value for the mean and a 

small variance. On the other hand, when information about the parameter 

vector is not available or when the objective is to adopt a prior with a minimal 

impact so that inference will remain unaffected by external information, non-

informative priors are adopted. Non-informative priors are usually constructed 

by specifying a large value for the variance which makes the prior almost 

uniform over the parameter space and therefore non-informative prior densities 

are also referred to as vague, flat or diffuse. The use of non-informative priors is 

an important topic in Bayesian inference, additional information can be found in 

Kass and Wasserman (1996) and the references therein. 

 Non-parametric priors make no assumptions concerning the probability 

distribution function. Such priors are usually also called elicited as they are 

customarily employed under informative frameworks. For instance, when θ is 

discrete and prior information is available, then one can initially distinguish the 
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values which are most likely to occur and assign point masses which will sum to 

one in a way that reflects prior beliefs. By analogy, if θ is continuous then one 

can construct a prior histogram of θ. Non-parametric priors are used in specific 

circumstances (see e.g. Oakley and O’Hagan, 2007) and are not so common. In 

most cases the common assumption is that the prior belongs to a known 

parametric distributional family ( | )p θ η  where the hyper-parameter vector η 

can be easily specified in order to construct an informative or a non-informative 

prior13. 

The distinction between conjugate and non-conjugate priors arises within 

the context of parametric prior designs. A prior distribution is called conjugate 

when the combination with the likelihood results to a posterior distribution which 

belongs to the same distributional family as the prior. It is worth noting that that 

all of the distributions belonging to the exponential family have conjugate priors 

(Morris, 1983) and that most of the likelihoods used in common statistical 

inference belong to the exponential family of distributions. Extensive information 

on conjugate priors can be found in Bernardo and Smith (1993). Non-conjugate 

priors usually result in intractable posteriors which do not correspond to known 

distributional forms. In the past Bayesian inference was mainly limited on 

conjugate prior/likelihood models. Nevertheless, this is not the case anymore as 

the wide range of available simulation methods in conjunction with computing 

power facilitates model-fitting under non-conjugate prior assumptions. 
 

2.3 Posterior inference 
 

Posterior inference involves summing-up the information contained in the 

posterior distribution. Commonly, this is done by calculating posterior point 

estimates of location and dispersion, and posterior interval estimates which are 

known as credible sets, credible or credibility intervals. 

 

 

                                                             
13 It should be mentioned that when η is fixed then the conditional dependence notation is usually 
dropped, i.e. ( | ) ( )p pθ η θ , which refers to the framework described in section 2.1. Nevertheless, η 

can be further assumed to be random. In that case η is assigned with a hyper-prior distribution ( )pη  

and then the posterior distribution under consideration is ( , | ) ( | ) ( | ) ( )p p p pθ η x x θ θ η η . This is the 

framework of hierarchical or multilevel Bayesian inference.   
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2.3.1 Point estimates of location and dispersion 
 

Location measures give the most likely posterior central states of the parameter 

vector. The most common options are the posterior mean, median and mode. 

The mean corresponds to the expected value of θ, the median to the value of θ 

which divides the parametric space into two equal posterior probabilities and the 

mode to the most likely value of θ. When the posterior is symmetrical then the 

mean and the median will coincide and as long as the posterior is unimodal the 

mode will also coincide. For cases where the posterior distribution exhibits either 

positive or negative skewness, the median is often preferred as a location 

measure as it is in between the mean and the mode (Carlin and Louis, 1996). 

The mode in general is the most difficult measure to calculate especially for 

parameter vectors of large cardinality and usually mode estimates are 

approximated either by maximization algorithms (e.g. Bickel and Frϋwirth, 

2006) or by adopting appropriate priors which facilitate mode finding (e.g. Eaves 

and Chang, 1992). 

 Dispersion measures include the posterior variance, standard deviation, 

precision (the inverse of variance), inter-quartile range and the curvature at the 

mode. Additional options for problems with more than one parameter include the 

posterior covariance matrix, the precision matrix which is the inverse of the 

covariance matrix and also the curvature-at-the-mode matrix which can be 

estimated by the matrix of the second derivates of log ( | )p θ x  evaluated at the 

posterior mode (Gamerman and Lopes, 2006). 
 

2.3.2 Credible intervals 
 

The Bayesian analogues of confidence intervals are known as credible sets or 

credible intervals. As defined by Carlin and Louis (1996), a 100 (1 )%α   

credible set for (0,1)α   and θΘ, where Θ is the posterior parameter space, is 

a subset C  Θ  such that (1 ) Pr( | ) ( | )
C

α C p d   x θ x θ . The inequality 

(instead of equality) is used in order to include discrete cases for which in 

addition the integration is replaced by summation. In contrast to the 

interpretation of confidence intervals, credible intervals enable direct probability 

statements for the likelihood of θ falling into C. That is, the interpretation of the 

above interval is 
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“The probability that θ lies in C given the observed data is at least 1 α ”. 
 

For cases of asymmetric or multimodal posterior distributions it is preferable to 

calculate the highest posterior density (HPD) credible set, which groups together 

the most likely values of θ and hence is narrower than the equal tail credible 

set. Nevertheless, calculating HPD credible sets is as not straightforward. Wright 

(1986) presented an iterative method for univariate cases; Ghosh and Mukerjee 

(1995) and Hyndman (1996) introduced iterative solutions for multivariate 

cases.       
 

2.4 Predictive inference 
 

Inference about short-term predictions or replications of data is an important 

aspect of statistical analysis. The Bayesian approach provides a natural and 

convenient framework for predictive inference since a predictive distribution can 

be formally defined based on simple rules of conditional probabilities. Predictions 

from an assumed model can be subsequently compared to the observed data 

leading to formal probabilistic inference based on Bayesian p-values.  
 

2.4.1 Predictive distribution 
 

Consider predicting an unobserved vector predx  which is independent of x 

conditionally on θ14. The distribution of predx  given x is 
 

( | ) ( , | )

               ( | , ) ( | )

               ( | ) ( | ) .

pred pred

pred

pred

p p d

p p d

p p d











x x x θ x θ

x θ x θ x θ

x θ θ x θ

 

The transition from the second to the third line is due to conditional 

independence. The predictive distribution provides information given the 

likelihood, the prior and the posterior. It is also known as the posterior 

predictive distribution, since it is essentially the expected distribution of future 

observations with respect to the posterior. 

                                                             
14 The predicted vector predx  should not be confused with the observed vector of new data newx  
discussed in section 2.1.  
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 The predictive distribution is the basis for predictive inference within the 

Bayesian paradigm. The rationale is that parameter-based inference for issues 

such as model adequacy is not well defined since parameters are never 

observed. Contrary, the predictive distribution is defined in terms of observable 

values and therefore it is the natural instrument for decisions concerning model 

adequacy. Some authors go even further and argue that the predictive 

distribution is also the most appropriate tool for model selection. Interested 

readers are referred to Geisser and Eddy (1979) and Laud and Irbahim (1995), 

for instance. 
 

2.4.2 Bayesian p-values 
 

Bayesian p-values or posterior predictive p-values, as they are also known, are 

derived by posterior predictive checks. Predictive checks can be used in order to 

assess the adequacy or the fit of a given model. According to Gelman et al. 

(1993) Bayesian p-values are generalization of frequentist p-values from the 

perspective that they average over the posterior distribution rather than fixing 

the unknown parameter at a certain point estimate θ̂ .  

Within the Bayesian framework goodness-of-fit is evaluated by comparing 

observed data x with predicted data predx  drawn from the predictive 

distribution. The discrepancy between observed and predicted data is measured 

through test quantities ( , )T x θ  which can be functions of the parameters and the 

data or functions of the data only. In the latter case test quantities are free of 

parameters, i.e. ( , ) ( )T Tx θ x , and the Bayesian p-values concur with 

asymptotic frequentist p-values (Gelman et al., 1993). 

The Bayesian p-value is first defined in Rubin (1984) as the probability that 

the predicted data are more extreme than the observed data for a certain test 

quantity. That is, 

Bayesian p-value Pr( ( , ) ( , )| )predT T x θ x θ x , 
 

where the probability is defined over the posterior distribution of θ and the 

predictive distribution of predx , therefore 
 

   Bayesian p-value ( , ) ( , ) ( | ) ( | )pred pred predI T T p p d dx θ x θ x θ θ x θ x , 
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where  ( , ) ( , )predI T Tx θ x θ  is the indicator function given by 

  
 


1,  if  is true,
0,  if  is false.

A
I A

A
 

 

Bayesian p-values close to 0.5 are suggestive of an almost exact fit of 

predictive data to observed data with respect to the test quantity. On the other 

hand values close to 0 or 1 imply a failure to capture the observed pattern.  

Three clarifications are of importance concerning interpretation of p-values. 

First, it must be noted that Bayesian p-values can serve only as measures of 

discrepancy between an assumed model and the observed data and are not 

formally comparable across different models (Carlin and Louis, 1996). Second, 

Bayesian p-values should not be interpreted as strict “numerical evidence”. For 

instance, a p-value of 0.35 is not strictly “worse” than a p-value of 0.45; both 

are good, indicating that the predictions of a model are supported by the 

observed data. Similarly, a p-value of 0.001 is not “better” than a p-value of 

0.000001 since both p-values reveal a significant discrepancy between predicted 

and observed data15. The only evidence provided by Bayesian p-values concerns 

the “extremeness” hypothesis. Not rejecting this hypothesis for a meaningful 

test quantity which describes an important aspect of the analysis, implies that a 

model should be altered or appropriately expanded in order to fit the observed 

data more consistently. Third, p-values measure “statistical significance” and not 

“practical significance”. The latter relates to the main objectives of an analysis. 

The Bayesian paradigm provides flexibility in terms of defining ( , )T x θ  in any 

desirable way. Therefore, model-fit can be investigated from many aspects and 

usually one evaluates the fit with respect to several test quantities. From this 

point of view extreme p-values may be ignored if they do not affect main 

inferences. Additionally, a model may still be deemed as “good enough” in the 

sense that it will provide satisfactory predictions for certain aspects of interest 

but not for some others. An interesting discussion concerning the last two 

remarks can be found in Gelman et al. (2003). 

 

 

                                                             
15 By analogy, frequentists define a level of statistical significance α  and investigate only whether a 

test statistic falls within the interval ( / 2,1 / 2)α α  or not. 
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2.5 Model selection information criteria 
 

Model selection and model comparison relates to distinguishing the best model 

among a class of models, either due to uncertainty concerning the most 

parsimonious set of explanatory variables or due to uncertainty regarding 

distributional or other functional assumptions. The simplest and also most 

commonly-used approach is through information criteria. Within the Bayesian 

framework, the most popular criteria are the Bayesian version of Akaike’s 

information criterion (AIC) (Akaike, 1974), the Bayes information criterion (BIC) 

also known as Schwartz criterion (Schwarz, 1978) and the Deviance information 

criterion (DIC) (Spiegelhalter et al., 2002). 

 All of the aforementioned criteria are based on the evaluation of the 

deviance which is defined as minus twice the log-likelihood, i.e. 

( ) 2log ( | )D p θ x θ . In general, the best fitting model within a group of models 

is the one that has the lowest value for a specific criterion. AIC is defined as 
 

ˆ( ) 2AIC D p θ , 
 

where θ̂ is the vector which minimizes the deviance and p is the number of 

parameters. BIC on the other hand is defined as 
 

ˆ( ) log( )BIC D p n θ , 
 

where n denotes sample size. Bayesian variations of AIC and BIC based on 

posterior summaries (Brooks, 2002) are as follows 
 

( ) ( )

( ) ( )

( ) 2  and B ( ) log( ),

( ) 2  and B ( ) log( ),
D D

D D

AIC D p IC D p n

AIC D p IC D p n

   

   

θ θ

θ θ

θ θ

θ θ
 

 

where ( )D θ  is the posterior mean of deviance and ( )D θ  is the deviance based 

on the posterior mean of the parameter vector. DIC is a purely Bayesian 

criterion which according to theory is given by ( ) eDIC D p θ  with ep  being 

the number of “effective” parameters. In practice this criterion is calculated as 
 

2 ( ) ( )DIC D D θ θ . 
 

DIC is useful for determining the best model within a group of models, it 

does not indicate whether a model is “true” or not. Given that DIC is in fact a 
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Bayesian generalization of AIC, the same also applies for the latter. BIC on the 

other hand does provide an indication for the “true” underlying model and 

therefore this criterion is more suitable when interest lies in prediction outside 

the experimental sampling range, i.e. for transferable inference where the “true” 

underlying model is of importance.  

In general, for non-hierarchical models and large sample sizes AIC and DIC 

will coincide, more or less. For hierarchical models matters become more 

complicated and the related research is ongoing as there are various likelihood 

levels for possible inference. AIC and BIC require number of counting 

parameters so these measures are limited to marginal inference, although there 

exist some recent alternative approaches such as the conditional AIC for 

hierarchical inference (Vaida and Blanchard, 2005). Concerning DIC, Celeux et 

al. (2006) present a study – which is followed by an extended discussion – 

where 8 variations of this criterion are proposed depending on whether the 

unobserved components in missing data/random effects/mixture models are 

treated as variables or parameters. 

 Information criteria provide a relatively simple way, in terms of computing 

requirements, for Bayesian model comparison. Another more formal approach is 

through Bayes factors, but this approach requires estimation of the marginal 

likelihood ( )p x . Bayes factors will not be discussed here as they are not 

included in the methodological tools utilized in this dissertation. Interested 

readers are referred to Kass and Raftery (1995). Finally, it is worth noting that 

BIC provides a rough approximation to the logarithm of a Bayes factor. 
 

2.6 Markov Chain Monte Carlo 
 

The use of Markov Chain Monte Carlo (MCMC) methods has become extremely 

popular in Bayesian statistics. The methods owe their popularity due to the 

ability of approximating accurately high dimensional integrals through 

simulation. Thus, in Bayesian statistics MCMC is used extensively for non-

conjugate analyses where the posterior ( | )p θ x  is not of known distributional 

form. In what follows we merely illustrate the basic idea of MCMC and provide a 

practical description of the particular algorithm which is utilized for the purposes 

of this dissertation. References for a more in-depth reading are provided. 
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2.6.1 Markov chains 
 

The basic idea of MCMC is to formulate a Markov chain from a certain starting 

point and iterate the chain until it converges to a stationary distribution. A 

Markov chain is a stochastic process  1 2, ,..., tθ θ θ 16 characterized by two 

properties: 

 

1. The distribution of θ in period 1t   given the θ’s in all preceding periods 

depends only on the θ in the latest time period t , i.e. 

1 1 1 1( | , ,..., ) ( | )t t t t tf f  θ θ θ θ θ θ . 

Alternatively, one can say that given a present state of θ, past and future 

states are independent. 

2. If a Markov chain is irreducible, aperiodic and positive recurrent then for 

t    the distribution of tθ  converges to a stationary distribution. 

 

Under this temporal context a stationary distribution does not change when 

shifted in time. The stationary distribution is often called the equilibrium 

distribution. Irreducible means that there is a positive probability of moving from 

any given state to any other state, aperiodic means that there are no absorbing 

states from which the chain cannot escape and positive recurrent means that 

the probability of returning to the initial state equals one with the expected time 

of return being finite. 

 Within the Bayesian framework the goal is to generate samples 

 1 2, ,..., tθ θ θ  from a Markov chain which will be dependent samples from the 

posterior ( | )p θ x , the target distribution as it is often called within this context. 

In other words, the equilibrium distribution should concur to the posterior 

distribution. When this is accomplished all that is need is to iterate long enough 

and then to discard an initial part of the samples, e.g. from 1θ  to 0tθ  and keep 

the samples  0 01 2, ,...,t t t θ θ θ . The discarded part is referred to as the burn-in 

period of the chain which is the period before reaching the stationary or 

                                                             
16 The process is described in terms of θ in order to keep consistency with the problem at hand of 
section 2.1.  
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equilibrium state. Monitoring the convergence to the equilibrium state is in 

practice implemented through the use of convergence diagnostics which are 

discussed in brief in section 2.6.3. 

The two basic MCMC approaches are the Metropolis-Hastings algorithm and 

the Gibbs sampler. The latter first introduced by Geman and Geman (1984) is 

actually a special case of Metropolis-Hastings. Gibbs sampling has become quite 

popular due to its ease of use17, but on the other hand it is only applicable under 

certain conditions. We proceed with a brief description of the Metropolis-

Hastings algorithm which is the sampling method that is utilized for the 

proposed models of this dissertation. Information for the Gibbs sampler can be 

found in Casella and George (1992) and Gelfand (2000).     
 

2.6.2 The Metropolis-Hastings algorithm 
 

The initial form of the Metropolis-Hastings (MH) algorithm was introduced by 

Metropolis et al. (1953) and was later generalized by Hastings (1970). The 

algorithm is based initially on a proposal distribution 1( , )t t
tq θ θ  (also known as 

jumping or candidate distribution). This distribution gives a proposed probability 

of transition from state 1tθ  to state tθ . When the proposal distribution is such 

that the relation ( | ) ( , ) ( | ) ( , )t tp q p q     θ x θ θ θ x θ θ  is satisfied for all θ  and 

θ , then iterations from tq  for t    will result in a dependent sample from 

the target posterior ( | )p θ x . This sufficient condition is called the reversibility 

condition. 

 Finding a proposal to satisfy this condition is difficult in general and 

therefore the MH algorithm introduces a transition probability MH  which will 

ensure equality for the reversibility condition18. For instance, if 

( | ) ( , ) ( | ) ( , )t tp q p q     θ x θ θ θ x θ θ  this means that transitions from state θ  

to θ  are made often while transitions from θ  and θ  are made seldom, 

therefore ( , )MH θ θ   is set equal to 1 to ensure more transitions from θ  to θ  

                                                             
17  For instance, software WinBUGS is based on Gibbs sampling. 
18 It is in this point that the Gibbs sampler becomes a special case of MH simulation. For details see 
Brooks (1998). 
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and ( , )MH θ θ   is simply set so that the reversibility condition is satisfied, that 

is 
( , ) 1

( | ) ( , ) ( , ) ( | ) ( , ) ( , )

( | ) ( , ) ( , ) ( | ) ( , )
( | ) ( , )( , ) .
( | ) ( , )

MH

t MH t MH

t MH t

t
MH

t

p q p q

p q p q
p q
p q

 
         

       

  
 

  

 







 

 



θ θ

θ x θ θ θ θ θ x θ θ θ θ
θ x θ θ θ θ θ x θ θ

θ x θ θθ θ
θ x θ θ

 

 

Note that ( | ) ( | ) ( ) / ( )p p p pθ x x θ θ x  so knowledge of ( )p x  is not needed as it 

cancels out in the ratio, therefore  
 

( | ) ( ) ( , )( , )
( | ) ( ) ( , )

t
MH

t

p p q
p p q

   
 

    
x θ θ θ θθ θ
x θ θ θ θ

.  

 

That is the basic reasoning of MH simulation, the algorithmic form in order to 

simulate a MH sample of size Μ is: 
 

1. Set initial value 0θ . 

2. For iteration 1,2,...,t M : 

a) Generate *θ  from the proposal distribution 1 *( , )t
tq θ θ . 

b) Calculate 
* * * 1

1 *
1 1 1 *

( | ) ( ) ( , )( , ) min ,1
( | ) ( ) ( , )

t
t t

MH t t t
t

p p q
p p q





  

 
  

 

x θ θ θ θθ θ
x θ θ θ θ

. 

c) Generate a uniform random number u from (0,1)U . 

d) Set 


 

  


* 1 *

1 1 *

,    if ( , ) ,

,  if ( , ) .

t
MHt

t t
MH

u

u

θ θ θ
θ

θ θ θ



 

 

It should be noted that when the proposal distribution is symmetric then 
* 1 1 *( , ) ( , )t t

t tq q θ θ θ θ  and therefore the proposal probabilities do not need to 

be calculated as they cancel out. That is actually the initial Metropolis algorithm 

of Metropolis et al. (1953) which is a special case of the MH algorithm. 

 Concerning the selection of the proposal distribution, the most common 

option is a random-walk chain where the candidate *θ  is drawn from a process 

1 1t t t  θ θ z . Thus, the candidate equals the present value plus some noise. 

Common options (e.g. for regression problems) are the multivariate normal 

distribution and the multivariate t distribution, i.e. * ~ ( , )t
θθ N θ Σ  and  

* ~ ( , )t
ν θθ t θ Σ , respectively. These densities are symmetric and simplify 
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calculations. Random-walk chain algorithms require only specification of the 

covariance matrix θΣ . Another frequently used option is an independence chain 

where candidate values are generated based on a process 1 1t t θ z  which is 

independent of the present value and * *θ z  can be drawn again from 

multivariate normal * ~ ( , )θ θθ N μ Σ  or from multivariate t * ~ ( , )ν θ θθ t μ Σ  

distributions. In this case both location θµ  and scale θΣ  must be specified. In 

addition calculation of the proposal probabilities is required even if the proposals 

are symmetric. 

 An analytic description of the MH algorithm and further issues related to 

proposal distributions can be found in Chib and Greenberg (1995). Further 

information for MCMC in general can be found in the interesting paper of Brooks 

(1998) and also in the books by Gilks et al. (1996) and Gamerman and Lopes 

(2006).  
 

2.6.3 Convergence diagnostics 
 

There exists a variety of MCMC convergence diagnostics which determine 

whether the convergence of the Markov chain has been reached or not. 

Diagnostic tools come in many different forms; there are quantitative tools 

which result in numerical summaries and graphical tools such as time series 

autocorrelation plots. Most of the quantitative diagnostics are based on bias 

considerations, but there are also some diagnostics which address precision 

considerations. Finally, some approaches are suitable for occasions when one 

single MCMC chain is being produced while others are suitable for assessing the 

convergence of multiple MCMC chains starting from different initial states. 

Reviews for convergence diagnostics are provided by Cowles and Carlin (199) 

and Brooks and Roberts (1998). 

 In this dissertation convergence is diagnosed through the methods of 

Geweke (1992), Raftery and Lewis (1992) and Heidelberger and Welch (1983), 

which are suitable for single-chain MCMC simulation. The underlying theoretical 

content of some of these methods is quite complex and therefore the following 

brief descriptions are non-mathematical and focus on the essence of each 

method. 
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 The diagnostic of Geweke (1992) is based on constructing a z-test for 

assessing the convergence of the mean of each element of vector θ individually. 

This is achieved by splitting the MCMC sample into two parts; the first referring 

to some initial part of the chain and the second referring to some last part 

(usually the first 10% and last 50% of the observations). The estimate of the 

asymptotic variance is based on spectral density theory. The test is basically one 

of equality-of-means and the asymptotic distribution of z is standardized normal. 

Thus values | | 1.96z   lead to rejection of the null hypothesis implying that 

convergence has not been reached. Nevertheless, in multiparameter problems 

5% of the z’s are allowed to fall outside the interval ( 1.96,1.96)  due to type I 

error. 

 The diagnostic of Raftery and Lewis (1992) provides the information that is 

needed in order to estimate specific percentiles with a prespecified degree of 

accuracy and a certain probability, e.g. the 2.5% percentile to be estimated with 

an accuracy of 0.0005 and with a probability of 0.95. The diagnostic is rather 

intuitive based on concepts of ergodic theory and mixing properties of stationary 

distributions, but has proven to be a strong and reliable tool in practice. In 

addition, this diagnostic delivers valuable information; namely, the minimum 

number of iterations minN  which are required in order to achieve the 

aforementioned aim under the assumption of independence (i.e. zero 

autocorrelations), the total number of iterations Ν that the chain must run, the 

number of burn-in iterations burninN  and finally a dependence factor min /I N N  

indicating the required increase of the total sample due to autocorrelations. 

Values of Ι close to 1 indicate that the posterior samples are almost independent 

while values greater than 5 indicate serious autocorrelation problems. The 

dependence factor is very useful for transforming a MCMC sample with high 

autocorrelations to an almost independent sample as it can be used to define the 

proper thinning interval, i.e. keep every Ι-th iteration of the sample. 

 The diagnostic of Heidelberger and Welch (1983) is for univariate tests and 

consists of two parts. The first part, based on Brownian bridge theory, initially 

checks stationarity for the first 10% of the observations. If stationarity is 

rejected, then the first 10% is discarded and the test is repeated for the 

following 10%. This procedure is repeated until the test is passed or until more 
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than 50% of sample is discarded. For the latter case convergence is rejected. 

For the former case the diagnostic proceeds to the second test in which the 

precision of the mean of the retained sample is checked based on spectral time 

series analysis. If the half-width of the 95% interval of the mean is less than the 

mean multiplied by a small fraction (e.g. 0.1), then the test is passed. 

 Finally, in combination with a variety of diagnostic tools the Monte Carlo 

(MC) error is also usually reported. The MC error refers to error due to 

simulation and should not be confused with the posterior standard deviation or 

variance. Monitoring this type of error is the most basic diagnostic tool. In 

general, MC errors must be low so that quantities of interest are estimated with 

high precision. In the context of MCMC sampling the simplest way of calculating 

MC error is with the batch mean method where the MCMC sample is split into 

batches and then MC errors can be calculated as deviations of the batched 

means from the overall mean. Usually, a number of batches between 30 and 50 

is sufficient (see e.g. Carlin and Louis, 1996).             
 

2.7 Calculating quantities of interest given an MCMC sample 
 

Having described the basic aspects of Bayesian theory and of MCMC simulation it 

is useful to provide some basic examples of how to calculate posterior and other 

summaries of interest given an MCMC sample after having successfully checked 

for convergence. Let us assume a final MCMC sample of size M, that is 
( ) ( ) ( ) ( )

1 2( , ,..., )m m m m T
kθ θ θθ  for 1,2,...,m M . 

 

2.7.1 Calculating posterior quantities 
 

The most basic point posterior estimate is the mean 1 2( , ,..., )T
kθ θ θθ  which can 

be easily calculated by computing the individual means as follows 

1 ( )

1

M
m

j j
m

θ M θ



  , 

for 1,2,...,j k . Having calculated the individuals means the corresponding 

variances are obtained by  

1 ( ) 2

1
( ) ( 1) ( )

M
m

j j j
m

Var θ M θ θ



   , 



35 
 

for 1,2,...,j k , with the corresponding posterior standard deviations being 

simply 1/2( ) ( )j jsd θ Var θ .  The covariance of any given pair of parameters iθ , 

jθ  for i j  and , 1,2,...,i j k  can be calculated as 

1 ( ) ( )

1
( , ) ( 1) ( )( )

M
m m

i j i i j j
m

Cov θ θ M θ θ θ θ



    . 

The same line of reasoning applies for the calculation of any posterior point 

estimate, for instance different types of mean (e.g. trimmed-mean, geometric 

mean), median and percentile estimates. For most of the commonly used 

estimates, manual computations are rarely needed as the majority of modern 

statistical packages have standard routines for such measures. 

 An important aspect in any kind of statistical analysis is the calculation of 

the log-likelihood given the parameter estimates. As discussed in section 2.5 all 

model information criteria equal the log-likelihood plus some form of penalty 

term related to the inclusion of estimated parameters. Within the Bayesian 

framework and for usual univariate sampling problems where the sample is i.i.d. 

~ ( | )i ix p x θ , Μ log-likelihood estimates can be calculated as 
 

( ) ( ) ( )
1( | ) log ( | ) log ( | )nm m m

iil p p x


  x θ x θ θ , 
 

with the mean log-likelihood being equal to   
 

1 ( )

1
( | ) ( | )

M
m

m
l M l



 x θ x θ . 

 

This quantity is related to the mean deviance discussed in section 2.5 since 

( ) 2 ( | )D l θ x θ . On the other hand the deviance based on the mean parameter 

vector is not equivalent to the above, the corresponding statistic 

( ) 2 ( | )D l θ x θ  is calculated as 
1

( | ) log ( | ) log ( | )n
ii

l p p x


  x θ x θ θ .  

 

2.7.2 Generating predictions and performing goodness-of-fit checks 
 

As discussed in subsection 2.4.1 the predictive distribution is 

( | ) ( | ) ( | )pred predp p p d x x x θ θ x θ . In the majority of occasions the integral is 

difficult to calculate analytically, but given the MCMC sample of size M it is easy 

to generate M predictions as 
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( ) ( )~ ( | )pred m pred mpx x θ , 
 

for 1,2,...,m M . The likelihood function is usually a standard distribution from 

which it is easy to generate random observations, the majority of statistical 

software includes routines for random generators for a variety of distributions. 

 Similarly test quantities and Bayesian p-values are also easy to calculate 

through simulation. One calculates first ( )( , )mT x θ , ( ) ( )( , )pred m mT x θ  and then the 

Bayesian p-value is computed by calculating the number of times that 
( ) ( )( , )pred m mT x θ  is greater than or equal to ( )( , )mT x θ  for 1,2,...,m M  and by 

dividing this number with M. For instance, the Bayesian analogue of the chi-

squared test is calculated through the test quantity  
 




 

2

1

( ( | ))( , )
( | )

n i i
n

i

x E xT
E x

θx θ
θ  

 

and the corresponding p-value is computed as 
 

 


 1 ( ) ( ) ( )
1

Bayesian p-value ( , ) ( , )M pred m m m
m

M I T Tx θ x θ , 
 

where  ( , ) ( , )predI T T xx θ θ  is the indicator function given by  

     


1,  if ( , ) ( , ),
( , ) ( , )

0,  if ( , ) ( , ).

pred
pred

pred

T T
I T T

T T
x θ x θ

x θ x θ
x θ x θ

 

 

The chi-square discrepancy can be used as an overall goodness-of-fit test 

quantity, another common option is the deviance discrepancy, that is 

1
( , ) 2 log( | )n

ii
T x


  x θ θ . 

 

2.8 Summary 
 

In this chapter the key aspects of Bayesian theory were introduced and 

discussed in short. The main inferential tools were presented, namely location 

and dispersion measures, credible sets, the predictive distribution, Bayesian test 

quantities and p-values, and model selection criteria. In addition, the concept of 

MCMC simulation was discussed with emphasis given on the Metropolis-Hastings 

algorithm. Finally some practical guidelines for calculating quantities of interest 

given an MCMC sample were provided. 
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 Bayesian theory, in general, provides a rather autonomous working 

framework which is strictly based on properties of conditional probabilities. As 

such it is relatively easy to understand as it requires only comprehension of the 

interrelationships of the prior, likelihood and posterior distributions. All of the 

subsequent aspects of Bayesian theory arise as simple by-products of these 

interrelationships. 
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3 Bayesian modeling of OD matrices 
 

The topic of this chapter relates to a new, statistical, covariate-based approach 

for OD modeling under reliable information free from sampling and non-

representation errors. The chapter begins with descriptions of the OD matrix 

derived from the 2001 Belgian census and the set of explanatory variables which 

is under consideration. The statistical models and methodology follow, starting 

from a simple comparison between the Poisson and the negative binomial 

models and extending to the framework of Poisson mixture models. Next, a brief 

but interesting note is provided which indicates a relationship between the 

proposed modeling approach and direct-demand, gravity modeling. The chapter 

concludes with a summary and discussion of results. The material presented in 

this chapter is based on Perrakis et al. (2011) and Perrakis et al. (2012a,c,e).      
 

3.1 Data 
 

This section includes descriptions for all the available data which are used for the 

purposes of this dissertation. Initially, an overview is provided for the OD matrix 

derived from the 2001 Belgian census and for the administrative structure of 

Flanders. Following that, the characteristics of two slightly different OD matrices 

for the Flemish region are described. Finally, the experimental design is 

discussed and descriptive statistics for the explanatory variables are provided.        
 

3.1.1 The OD matrix from the 2001 Belgian census 
 

The OD matrix was derived from the 2001 Belgian census which contains 

information about departure/arrival times and locations of commuting trips for 

the 10,296,350 Belgian residents. The recorded trips refer to work and school 

activities and are one-dimensional, that is from municipality of origin to 

municipality of destination. In addition, information is on a weekly basis, i.e. for 

the five weekdays, but without distinction concerning travel mode. Thus, OD 

data are for going-to-work/school trips on weekdays and for all travel modes. 

 Belgium consists of 589 municipalities of which 308 belong to the northern 

Dutch-speaking region of Flanders, 262 to the southern French-speaking region 
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of Walloon and 19 to Brussels metropolitan area19. The study area in this 

dissertation is not the entire country of Belgium but the region of Flanders which 

accounts approximately for 60% of the total population in Belgium and 44% of 

the country’s surface area. Therefore, trips within the region of Walloon and 

trips within Brussels metropolitan area are not under consideration. In addition, 

incoming trips to Flanders from Brussels metropolitan area and Walloon and 

outgoing trips from Flanders to Brussels metropolitan area and Walloon are also 

not considered. Thus, the OD matrix reflects the travel-demand for work and 

school activities strictly within Flanders and for residents of the Flemish region. 

In addition, interest lies on inferring for a “normal” or “average” weekday and 

not for each individual weekday. Therefore, the OD matrix was averaged across 

the five working days of the week. 
 

3.1.2 The administrative structure of Flanders 
 

The Flemish OD matrix on the level of municipalities contains 94,864 OD pairs. 

The level of municipalities is the lowest administrative level. Nevertheless, the 

matrix can also be aggregated to higher administrative levels since each Flemish 

municipality is also part of a canton, a district, an arrondissement and finally 

part of a province. Thus, there exists an inherent hierarchical administrative 

structure from the lowest spatial zoning level of municipalities to the highest 

spatial zoning level of provinces. In summary, Flanders consists of 308 

municipalities, 103 cantons, 52 districts, 22 arrodissements and 5 provinces; the 

Flemish administrative structure is represented in Figure 3.1. 
 

Provinces (5 zones, 25 OD pairs) 
↑ 

Arrondissements (22 zones, 484 OD pairs) 
↑ 

Districts (52 zones, 2704 OD pairs) 
↑ 

Cantons (103 zones, 10609 OD pairs) 
↑ 

Municipalities (308 zones, 94864 OD pairs) 

Figure 3.1 The administrative levels of Flanders with the corresponding numbers of zones 
and OD pairs. 

                                                             
19 Brussels metropolitan area although being inside the Flemish region is a separate administrative 
region.   
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The upward direction of the arrows in Figure 3.1 implies that the OD matrix of 

every higher level is essentially an aggregation of the OD matrix of the 

immediate lower administrative level. Given that the travel-demand in all 

administrative levels is of interest, the inherent hierarchical structure implies 

that modeling on the lower level of municipalities is immediately advantageous 

as predictive inference can then easily expand to all other levels by 

appropriately aggregating the OD flows. 
 

3.1.3 OD descriptive statistics  
 

The OD matrix derived from the Belgian census is free of sampling and non-

representation errors, the most critical sources of error. Nevertheless, it is 

subjected to a certain non-response error since in some entries the origin is 

missing while in some others the destination is missing. On average the non-

response rate is about 10%. The initial results, presented in section 3.2, are 

derived from a first OD matrix in which missing values were imputed based on 

the simple assumption that non-responding individuals are simply coming-

from/travelling-to the largest – in terms of population – municipality within the 

corresponding canton. Later on, a second OD matrix was delivered where 

imputation was based on the assumption that non-responding individuals are 

essentially behaving in the same way as responding individuals, i.e. 

origin/destination totals from responding individuals were used as weights. 

Results of section 3.4 and all results after that section are based on the second 

OD matrix.   

 Regardless of differences, the flows in both OD matrices are in general 

scarcely distributed with the vast majority trips being zero-valued. In addition, 

huge outliers – especially in intra-zonal flows – characterize both matrices as 

extremely over-dispersed and also positively skewed. Such characteristics are in 

general expected on large-scale, real-world problems. In conjunction with the 

large data size the aforementioned attributes constitute both OD matrices 

difficult and complex datasets to analyze. Descriptive statistics are summarized 

in Table 3.1. The differences in means and medians are indicative of the positive 

skewness while the differences in means and variances reveal the extreme over-

dispersion present in both OD matrices. The maximum in both matrices 
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corresponds to the diagonal cell for intra-zonal flows in Antwerp which is the 

largest Flemish municipality in terms of size and population. 
   

Statistic 
First OD 

matrix 

Second OD 

matrix 

Mean 36.24 38.47 

Median 0 0 

Standard deviation 949.48 960.17 

Variance 901,512.30 921,926.40 

Maximum 222,149 211,681 

Sum 3,437,168 3,649,514 

% of 0-valued cells 63.13% 63.13% 

% of contribution of intra-zonal trips to total trips 43.23% 51.20% 

TABLE 3.1. Descriptive statistics for the first OD matrix (imputation based on largest 
municipality assumption) and for the second OD matrix (imputation based on behavior of 
responding-individuals assumption). 

 An important characteristic of large-scale matrices is that the OD flows are 

usually “inflated” across the main diagonal, that is intra-zonal flows are typically 

larger on average than inter-zonal flows. Apparently, that is also the case for the 

Flemish OD matrix; from the total travel-demand 43.23% in the first matrix and 

51.2% in the second matrix corresponds to intra-zonal trips. Descriptive 

statistics for intra-zonal and inter-zonal trips are summarized in Table 3.2. The 

statistics in Table 3.2 reveal that both types of trips remain positively skewed 

with medians smaller than the respective means. In addition both types of trips 

have variances which grossly exceed the respective means and are thus 

extremely over-dispersed, especially the intra-zonal trips. Another finding from 

Table 3.2 is that all zero-valued cells – which account for 63.13% of the total 

number of cells in both matrices – appear in inter-zonal trips as the minimum 

values for intra-zonal trips and non-zero. 

Graphical plots such as histograms and boxplots are not presented. Due to 

the complexity and size of the datasets such plots provide no particular 

meaningful additional information. 
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OD matrix Statistic Intra-zonal trips Inter-zonal trips 

First OD  

matrix 

Mean 4824.04 20.64 

Median 2157.50 0 

Standard deviation 15,422.74 239.25 

Variance 237,860,909.11 57,240.56 

Minimum 9 0 

Maximum 222,149 13,426 

Sum 1,485,805 1,951,363 

Second OD 

matrix 

Mean 6,064.30 18.84 

Median 2,959.50 0 

Standard deviation 15,516.64 156.67 

Variance 240,776,116.89 24,545.49 

Minimum 12 0 

Maximum 211,681 9,542 

Sum 1,867,805 1,781,709 

TABLE 3.2. Descriptive statistics for intra-zonal and inter-zonal trips in the first and second 
OD matrix. 

3.1.4 Explanatory variables 
 

The set of explanatory variables consists of six dummy variables and twelve 

covariates. The first five dummy variables are coded 0/100 so that they 

correspond to a difference of one hundred trips. These dummies capture intra-

zonal effects by taking the value 100 if the trips are in diagonal cells (intra-zonal 

municipality trips) or diagonal blocks (intra-zonal canton, district, 

arrondissement and province trips), and 0 otherwise. In addition, the intra-zonal 

variables are constructed so as to capture individual effects; for instance, for 

intra-zonal trips in the main diagonal the municipality dummy will equal 100, 

whereas the province, arrondissement, district and canton dummies will equal 0. 

The sixth dummy is coded 0/1 and is associated with the effect of higher 

education institutes in destination zones; it takes the value of 1 if the 

destination zone supports a university college and/or a university and 0 

otherwise. 

The set of covariates includes four discrete-valued variables which contain 

the total number of neighboring municipalities on canton, district, 

arrondissement and province levels for each corresponding OD pair. The rest of 
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the covariates are purely continuous, namely employment ratio, population 

density, relative length of road networks, perimeter length, car ownership ratio, 

kilometer’s driven in highways and in provincial/municipal roads, and finally 

distance.         
 

# Name Description of Variable 

1 dummy.province Dummy variable for intra-zonal province trips (0/100) 

2 dummy.arron/ment Dummy variable for intra-zonal arrondissement trips (0/100) 

3 dummy.district Dummy variable for intra-zonal district trips (0/100) 

4 dummy.canton Dummy variable for intra-zonal canton trips (0/100) 

5 dummy.municipality Dummy variable for intra-zonal municipality trips (0/100) 

6 dummy.education Dummy variable for destination zones with a college or 
university (0/1) 

7 munic.in.cantons Number of municipalities between the cantons of origin and 
destination 

8 munic.in.districts Number of municipalities between the districts of origin and 
destination 

9 munic.in.arron/ments Number of municipalities between the arrondissements of 
origin and destination 

10 munic.in.provinces Number of municipalities between the provinces of origin and 
destination 

11 employment.ratio.o Employment ratio of origin-zone 

12 employment.ratio.d Employment ratio of destination-zone 

13 population.density.o Population density of origin-zone (thousand inhabitants per 
square km) 

14 population.density.d Population density of destination-zone (thousand inhabitants 
per square km) 

15 road.length.o Length of road network relative to surface of origin-zone (km 
per square km) 

16 road.length.d Length of road network relative to surface of destination-
zone (km per square km) 

17 perimeter.length.o Perimeter of origin-zone (in km’s) 

18 perimeter.length.d Perimeter of destination-zone (in km’s) 

19 car.ownership.ratio.o Car ownership ratio of origin-zone 

20 car.ownership.ratio.d Car ownership ratio of destination-zone 

21 highway.traffic.o Km’s driven per year in highway roads of origin-zone (traffic 
in millions) 

22 highway.traffic.d Km’s driven per year in highway roads of destination-zone 
(traffic in millions) 

23 prov/munic.traffic.o Km’s driven per year in provincial and municipal roads of 
origin-zone (traffic in millions) 

24 prov/munic.traffic.d Km’s driven per year in provincial and municipal roads of 
destination-zone (traffic in millions) 

25 distance Distance between origin-zone and destination-zone (in km’s) 

TABLE 3.3. Names and descriptions of the 25 explanatory variables. 
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All covariates are used in logarithmic scale. Distance, of course, is zero for intra-

zonal municipality flows and in order to use the logarithm it is set equal to 0.1, a 

value which for most practical purposes refers to negligible distance (100 

meters). In addition, highways do not pass through all municipalities and 

therefore the kilometer’s-driven-in-highways variable is also zero-valued for 

certain OD pairs. In order to use the logarithm this variable was set to equal to
710  when being zero. Highway traffic is in million’s of kilometers, therefore this 

value corresponds to one driven kilometer. Furthermore, due to the particularity 

of the OD problem the purely continuous variables come in pairs, i.e. each is 

used twice, one time for the origin-zone and one time for the destination-zone, 

except of distance which is unique for each corresponding OD pair. Reasons for 

adopting this particular experimental design are discussed next. The full set of 

25 explanatory variables is listed in Table 3.3. 

The arguments in favor of employing the continuous variables in pairs are 

the following: 

 

a. Preliminary research revealed that it is better to use full information for 

origin and destination zones separately rather than average, for instance, 

between origin and destination zones20. 

b. Having separate parameters estimates for origin and destination zones 

allows for elementary comparison with trip-production and trip-attraction 

studies. 

c. Using pairs on logarithmic scale and including distance provides an 

alternative interpretation of the Poisson log-linear models – presented next 

– as stochastic gravity-type, direct-demand models21. 

 

Descriptive statistics for the 12 covariates in natural-scale and log-scale are 

provided in Tables 3.4 and 3.5, respectively. For the continuous variables which 

are used in pairs, distinction between origin and destination is not necessary as 

these variables are essentially the same, i.e. they are simply on different 

ordering.  

 
                                                             
20 In addition, as we will see in sections 3.2.4 and 3.3.5, some of the signs of parameter estimates are 
opposite for origin and for destination, implying an inverse relationship with respect to OD flows.  
21 This point is further explained in section 3.4. 
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Variable Mean St.dev. Median Min Max 

munic.in.cantons 8.052 2.883 8 2 18 

munic.in.districts 16.857 6.836 16 2 40 

munic.in.arron/ments 38.857 14.176 40 10 70 

munic.in.provinces 125.857 11.367 130 88 140 

empoymentl.ratio 0.422 0.031 0.428 0.233 0.571 

population.density 0.518 0.444 0.381 0.052 3.153 

road.length 4.809 1.912 4.378 2.062 17.135 

perimeter.length 36.621 13.580 34.984 6.265 97.023 

car.ownership.ratio 0.470 0.019 0.469 0.415 0.551 

highway.traffic 66.426 128.476 0 0 1427.96 

prov/munic.traffic 110.649 135.707 81.85 2.5 1418.8 

distance 49.507 28.575 44.440 0 155.16 

TABLE 3.4. Mean, standard deviation, median, minimum and maximum for each of the 12 
covariates on natural-scale. 

 

Variable Mean St.dev. Median Min Max 

munic.in.cantons 2.018 0.378 2.079    0.693   2.890 

munic.in.districts 2.739 0.424    2.773    0.693   3.689 

munic.in.arron/ments 3.584 0.406    3.689    2.303   4.248 

munic.in.provinces 4.831 0.097    4.868    4.477   4.942 

empoymentl.ratio -0.866 0.078   -0.849   -1.457 -0.560 

population.density -0.924 0.714   -0.966   -2.952   1.148 

road.length 1.507 0.346    1.477    0.724   2.841 

perimeter.length 3.528 0.397    3.555    1.835   4.575 

car.ownership.ratio -0.755 0.040   -0.756   -0.880 -0.597 

highway.traffic -4.937 9.149 -13.816 -13.816  7.264 

prov/munic.traffic 4.340 0.859    4.405    0.916   7.258 

distance 3.693 0.754    3.794   -2.303   5.044 

TABLE 3.5. Mean, standard deviation, median, minimum and maximum for each of the 12 
covariates on log-scale.   

As shown in Table 3.3, most of the continuous explanatory variables are 

transformed to ratios relative to populations or surface areas. The specific 

transformations are chosen in order to maintain reasonable interpretations, but 
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also in order to solve multi-collinearity problems which are evidently present in 

the raw variables. For instance, variables such as working and total populations 

are highly correlated. Analysis of multi-collinearity based on variance inflation 

factors (VIF) indicates no serious multi-collinearity for the transformed variables. 

The VIF values of the explanatory variables are presented in Table 3.6, as shown 

the highest VIF value equals 3.87722. 
 

Variable Variance inflation factor 
dummy.province 1.442 
dummy.arron/ment 1.251 
dummy.district 1.153 
dummy.canton 1.191 
dummy.municipality 1.566 
dummy.education 1.299 
munic.in.cantons 1.891 
munic.in.districts 3.877 
munic.in.arron/ments 2.430 
munic.in.provinces 1.956 
employment.ratio.o 1.089 
employment.ratio.d 1.094 
population.density.o 3.043 
population.density.d 3.195 
road.length.o 1.828 
road.length.d 1.829 
perimeter.length.o 2.671 
perimeter.length.d 2.771 
car.ownership.ratio.o 1.263 
car.ownership.ratio.d 1.266 
highway.traffic.o 1.248 
highway.traffic.d 1.262 
prov/munic.traffic.o 2.393 
prov/munic.traffic.d 2.404 
distance 2.555 

TABLE 3.6. Variance inflation factors for the 25 explanatory variables. 

In summary, the selection of explanatory variables listed in Table 3.3 is a 

combination of variables that can be derived immediately from the hierarchical 

structure of the OD matrix and of continuous explanatory variables. Variables 1 

to 9 are extracted directly from the hierarchical structure of the OD matrix. 
                                                             
22 A common rule of thumb is that VIF values greater than 5 are suggestive of high multi-collinearity. 
Some authors propose the value of 10 as a threshold value (e.g. Kutner et al., 2004). For an interesting 
discussion see also O’Brien (2007).  



48 
 

Variables related to population, surface area, perimeter, car ownership, yearly 

traffic and distance are typically available in transportation research centers and 

institutes. Finally, variables related to length of road networks were obtained by 

the Belgian governmental website for statistics (FOD Economie, 2010). In 

general, the explanatory set is relatively simple, economical and also easy to 

obtain. 
 

3.2 Modeling over-dispersion: Poisson versus negative binomial 

regression  
 

The models presented in this section were applied on the first OD matrix and the 

set of explanatory variables is the one presented in Table 3.3, but without 

variable 6 (dummy.education) which was included on a later phase of the 

analysis. Therefore, the current models have in total 24 regression parameters. 

In addition, due to a lack of specific prior information about the parameters, 

non-informative priors are adopted. Nevertheless, the descriptions in 

subsections 3.1.1 and 3.1.2 start from general prior-forms which can be utilized 

in an informative framework as well.  

For computational and notational convenience the vector notation 

introduced in section 1.1 is used, i.e.  1 2( , ,..., )T
ny y yy  is the vector of OD flows 

from the census and n is the number of OD pairs. In addition, let p denote the 

number of explanatory variables, 0 1 2( , , ,..., )T
pβ β β ββ  the vector of unknown 

parameters and  X  the design matrix of dimensionality  ( 1)n p , containing a 

column of 1’s for the intercept and also the p explanatory variables, with 

 1 2(1, , ,..., )T
i i i pix x xx  being the i-th row of X related to OD flow iy  and 

 1,2,...,i n . In general, the models presented next, relate the expected value 

of the vector of OD flows y to the explanatory variables in X through the 

parameter vector β and an invertible function g, i.e. ( ( )) Tg E y X β  and 

consequently 1( ) ( )TE gy X β .  

In the context of Generalized Linear Models (GLMs) the function g is known 

as the link function (McCullagh and Nelder, 1989). The common assumption for 

function g in Poisson and negative binomial regression is the logarithmic 

function, this assumption is also adopted here. The log-link function implies the 
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assumption that the effects of the explanatory variables are additive and linear 

to the log-mean of iy , that is 0 1 1log ( ) ...i i p piE y β β x β x    . Consequently, the 

effects are multiplicative and exponential on natural scale since 

0 1 1( ) ( ) ... ( )p pii β xβ β x
iE y e e e    . 

 

3.2.1 The Poisson model 
 

The likelihood assumption is that the OD flows are i.i.d. (identically and 

independently distributed) Poisson realizations, that is ~ ( )i iy Pois µ  for 

1,2,...,i n , where iµ  is the Poisson mean which is related  to the explanatory 

variables through the log-link function log T
i iµ  β x . The data likelihood is given 

by  

1 1

( )( | ) ( | )
!

i
i iyen n

i
i i i

e ep p y
y

 

 

  
β x β x

y β β . (3.1) 

 

Poisson regression is a common option when modeling count data and it is 

frequently used in practice. Nevertheless, the Poisson model usually does not 

perform well for cases of over-dispersed datasets due to the property of the 

Poisson distribution that the mean is equal to the variance, that is 

( | ) var( | )
T

E e  X βy β y β . Properties and estimation procedures for Poisson 

regression can be found in McCullagh and Nelder (1989) and Agresti (2002), 

Bayesian applications are presented in Ntzoufras (2009). 

Proceeding with the specification of the prior distribution for parameter 

vector β, a common choice within the framework of generalized linear models 

(GLMs) is a multivariate normal prior (Gelfand and Ghosh, 2000). This prior has 

the form 










1( ) ( )
2

( 1)/2

1( )
(2 )

T

p
p e

β β ββ-μ Σ β-μ

β

β
Σ

. (3.2) 

 

If prior knowledge for vector β is available, then the location vector βµ  and/or 

the covariance matrix βΣ  can be set accordingly. Alternatively when prior 

information is not available, a diffuse prior may be adopted, by setting for 
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instance βµ 0  and    3( ) 10TnβΣ X X , which is analogue to one of the 

“benchmark” priors suggested in Fernández et al. (2001).  

From Bayes theorem, the posterior distribution of β is 

( | ) ( | ) ( ).p p pβ y y β β  From expressions (3.1) and (3.2) the resulting posterior 

distribution is   
 

1( ) ( )/2

1
( | ) ( )

Ti
i i

n
ye

i
p e e e

  



    
β x

β β ββ-μ Σ β-μβ xβ y . (3.3) 

 

Direct inference from the posterior distribution is not feasible, since expression 

(3.3) does not result to a known distributional form. 
 

3.2.2 The negative binomial model 
 

The likelihood assumption for this model is that the OD flows are negative 

binomially distributed, i.e. ~ ( , )i iy NB μ θ  where again Τlog i iµ  β x  for 

1,2,...,i n . The data likelihood is 
Τ

Τ

1

Γ( ) ( )( | , )
Γ( ) ! ( )

i i

i i

y θn
i

y θ
i i

y θ e θp θ
yθ e θ 









β x

β x
y β . (3.4) 

 

The mean of the data in this case is ( | )
T

E e X βy β , whereas the variance is 

2 1var( | , ) ( )
T T

θ e e θ X β X βy β . Note that the variance in this case is a quadratic 

function of the mean. Thus, negative binomial regression incorporates over-

dispersion since the assumed variance always exceeds the assumed mean. It is 

easy to see that when 1 0θ    the negative binomial distribution converges to 

the Poisson distribution since var( | , ) ( | )θ Ey β y β . Therefore, 1θ   is also 

referred to as the dispersion parameter (Agresti, 2002).  

For parameter vector β, the multivariate normal distribution defined in 

equation (3.2) is used. Regarding parameter θ, a ( , )Gamma α δ distribution with 

shape α  0 and rate δ  0 is chosen. The prior of θ is given by 
 

1( )
Γ( )

α
α δθδp θ θ e

α
  . (3.5) 

 

Under the parameterization in equation (3.5) ( ) /E θ α δ  and 2var( ) /θ α δ . 

Parameters α and δ may be set accordingly if prior knowledge regarding the 
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expectation or the variance of θ is available. Otherwise, a common option is to 

set α=δ=0.001 which results to a diffuse prior with mean equal to 1 and 

variance equal to 1000, as in Ntzoufras (2009). 

 The joint posterior distribution of both β and θ is now 

( , | ) ( | , ) ( ) ( )p θ p θ p p θβ y y β β  which leads to expression 
 

Τ
1

Τ

( ) ( )/2 1

1

Γ( ) ( )( , | )
Γ( ) ! ( )

i i T

i i

y θn
α δθi

y θ
i i

y θ e θp θ e θ e
θ y e θ

  




 
   

  
 β β β

β x
β-μ Σ β-μ

β x
β y . (3.6) 

 

Inference from the posterior distribution is once again not straightforward since 

the normalizing constant of the density in (3.6) is not known. 

 It should be noted that the over-dispersed negative binomial model is 

derived from a Poisson-gamma mixture model or else stated hierarchical model 

which is of the form ~ ( )i i iy Pois µu  where Τlog i iµ  β x  and ~ ( , )iu Gamma θ θ  

for 1,2,...,i n . The negative binomial distribution in expression (3.4) is the 

corresponding marginal sampling likelihood and is obtained by integrating over 

the random vector 1 2( , ,..., )T
nu u uu , i.e. ( | , ) ( | , ) ( | )p θ p p θ d y β y β u u u . A 

more in-depth discussion about the relation between the hierarchical Poisson-

gamma and marginal negative binomial models is provided in section 3.3 under 

the general context of Poisson mixture models.  

For the time being it is worth noting that by means of Bayesian 

methodology one might choose to fit either the hierarchical or the marginal form 

of the model. In both cases the estimates for the parameters of main scientific 

interest β and θ will be the same due to the equivalence of the two models. The 

hierarchical Poisson-gamma model provides additional information over the 

posterior distribution of u but also requires sampling the full set of parameters 

( , , )θβ u . The marginal negative binomial model on the other hand is simpler to 

fit, especially for large datasets, since estimation is restricted to the reduced set 

of parameters ( , )θβ . In addition, due to the convenient conjugate relationship 

between the Poisson and the gamma distribution vector u can be sampled 

subsequently from its respective full conditional distribution which is again a 

gamma distribution, namely | , , ~ ( , )
T

θ Gamma θ e θ X βu β y y . 
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3.2.3 Implementation and performance of Metropolis-Hastings 

simulation 
 

A MH algorithm is utilized in order to generate posterior samples from the 

corresponding normalized densities of expressions (3.3) and (3.6). In particular, 

we employ an independence chain algorithm where the location and scale 

parameters of the proposal distributions remain fixed. Large data sizes result to 

considerable time-consuming calculations and independence chain MH 

simulation performs faster than random-walk chain MH or other types of 

Metropolis-within-Gibbs algorithms due to its simplified algorithmic form. 

For the proposal distribution of parameter β, common in both the Poisson 

and the negative binomial model, a multivariate normal distribution is adopted, 

i.e. 1( ) ~ ( , )ML ML
pq  ββ N β V , where MLβ  is the maximum-likelihood (ML) estimate 

of β and ML
βV  is the estimated covariance matrix of MLβ . Regarding parameter θ 

of the negative binomial model, the proposal distribution is defined as 

( ) ~ ( , )q θ Gamma a b , where parameters a  and b  are set so to satisfy 

 / MLa b θ  and  2/ var( )MLa b θ  with MLθ  being the ML estimate of θ. Regarding 

the specification of starting values, random samples may be generated first from 

the proposal distributions and then the mean, the median or a specific percentile 

point from these random samples may be used as starting point 0β  and 0θ . The 

algorithms for both models are presented in Appendix A. 

Thus, the ML estimates of the 2 models were calculated first and samples of 

5,000 draws were generated subsequently from the proposal distributions. The 

corresponding 90th percentile estimates from these samples were set as starting 

values. One single MH chain was utilized for each model. After certain 

preliminary tests, the final MH simulations ran for 5,000 iterations of the Poisson 

model and for 21,000 iterations of the negative binomial model with resulting 

acceptance ratios of 97% and 68%, respectively. The first 1,000 iterations were 

discarded as the “burn-in” part for both models. Convergence checks were 

based on the methods of Raftery and Lewis (1992), Geweke (1992) and 

Heidelberger and Welch (1983). The posterior sample of the Poisson model 

passed all the diagnostics. Regarding the negative binomial model, the 

diagnostic of Raftery and Lewis (1992) indicated autocorrelation problems. In 
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order to break the strong autocorrelations, every 4th draw of the sample was 

kept. In the final posterior sample of 4,000 draws, all lag 1 autocorrelations 

were in absolute value below 0.05. Results concerning convergence diagnostics 

and also MC errors for the final posterior samples of both models are presented 

in Appendix A. 
 

3.2.4 Posterior inference from the Poisson and negative binomial 

models 
 

The results of this section concern the regression parameters jβ , for 

0,1,2,...,24j  , and dispersion parameter θ. The effects of the regression 

parameters on the mean OD flows is additive on logarithmic scale and therefore 

interpretation is straightforward. Posterior means greater than 0 correspond to 

an increasing additive effect, whereas posterior means less than 0 have a 

decreasing additive effect. Specifically, the effects of the dummy variables, with 

parameters 1β  to 5β , on the logarithm of the mean OD flows are simply the 

posterior mean multiplied by 100. For the rest of the explanatory variables, with 

corresponding parameters 6β  to 24β , a one-unit increase of an explanatory 

variable, given that the rest remain constant, would result to a change in the 

logarithm of the mean OD flows equal to the posterior mean of the 

corresponding parameter. The posterior means, standard deviations and 95% 

credible intervals for parameters jβ  and parameter θ, calculated from the 4,000 

posterior draws of the Poisson and negative binomial models, are summarized in 

Table 3.7.  

Model comparison is based on the DIC introduced by Spiegelhalter et al. 

(2002). As in all information criteria support is given to models with lower values 

of DIC. The DIC values for the two models are also presented in Table 3.7. 

According to these values the negative binomial model provides a significant 

improvement in model fit as it has a DIC value which is extremely lower than 

the corresponding value of the Poisson model. This difference also explains the 

striking differences between regression estimates of the two models. Evidently, 

the Poisson distribution is a completely inappropriate assumption under the 

presence of extreme over-dispersion. On the other hand the negative binomial 

distribution with just one extra parameter – parameter θ accounting for over-
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dispersion – is a far more appropriate starting assumption for the problem at 

hand. The negative binomial model becomes our main focus of interest for the 

remainder of this section, issues of goodness-of fit are pursued further next. 
 

Parameter Poisson Negative binomial 
Mean St.dev 95% C.I. Mean St.dev 95% C.I. 

0
β

 
intercept      7.1351 0.03294 (7.0696,7.2001) 3.6431 0.41321 (2.8415,4.4550) 

1β dummy.province 0.0167 0.00003 (0.0167,0.0168) 0.0070 0.00014 (0.0067,0.0073) 

2β dummy.arron/ment 0.0169 0.00003 (0.0168,0.0169) 0.0079 0.00023 (0.0075,0.0083) 

3β dummy.district 0.0155 0.00004 (0.0154,0.0156) 0.0092 0.00033 (0.0085,0.0098) 

4β dummy.canton 0.0174 0.00004 (0.0173,0.0174) 0.0087 0.00038 (0.0080,0.0095) 

5β dummy.municipality -0.0281 0.00009 (-0.0283,-0.0280) -0.0771 0.00084 (-0.0788,-0.0755) 

6β munic.in.cantons 0.0033 0.00176 (-0.0002,0.0067) 0.5843 0.01854 (0.5482,0.6201) 

7β munic.in.districts 0.2073 0.00189 (0.2037,0.2110) -0.4653 0.02426 (-0.5128,-0.4160) 

8β munic.in.arron/ments -0.3761 0.00135 (-0.3788,-0.3735) -0.2023 0.01772 (-0.2375,-0.1681) 

9β munic.in.provinces -1.5395 0.00576 (-1.5510,-1.5280) -0.9058 0.07296 (-1.0470,-0.7619) 

10β employment.ratio.o -0.4541 0.00750 (-0.4686,-0.4396) -1.0723 0.07474 (-1.2227,-0.9289) 

11β employment.ratio.d 0.2097 0.00669 (0.1968,0.2230) 0.5700 0.06990 (0.4352,0.7080) 

12β population.density.o 0.1497 0.00181 (0.1462,0.1532) 0.4775 0.01417 (0.4492,0.5056) 

13β population.density.d 0.9442 0.00215 (0.9400,0.9484) 0.8243 0.01429 (0.7962,0.8519) 

14β road.length.o -0.3204 0.00272 (-0.3257,-0.3152) -0.2833 0.02274 (-0.3296,-0.2387) 

15β road.length.d -0.1939 0.00328 (-0.2003,-0.1874) 0.2510 0.02203 (0.2093,0.2949) 

16β perimeter.length.o 0.6353 0.00264 (0.6301,0.6404) 1.2918 0.02370 (1.2453,1.3383) 

17β perimeter.length.d 1.2313 0.00329 (1.2249,1.2380) 0.8831 0.02258 (0.8396,0.9269) 

18β car.ownership.ratio.o 0.2061 0.01889 (0.1678,0.2426) 2.9009 0.15321 (2.5961,3.1967) 

19β car. ownership.ratio.d 1.1075 0.02115 (1.0659,1.1485) -1.8642 0.15933 (-2.1750,-1.5525) 

20β highway.traffic.o -0.0011 0.00021 (-0.0015,-0.0007) 0.0080 0.00173 (0.0046,0.0114) 

21β highway.traffic.d 0.0218 0.00025 (0.0214,0.0223) 0.0529 0.00179 (0.0494,0.0564) 

22β prov/munic.traffic.o 0.0197 0.00125 (0.0172,0.0222) 0.2419 0.01043 (0.2216,0.2625) 

23β prov/munic.traffic.d 0.7323 0.00173 (0.7289,0.7356) 0.8884 0.01027 (0.8683,0.9086) 

24β distance -1.6599 0.00151 (-1.6629,-1.6569) -2.8404 0.01097 (-2.8623,-2.8197) 

θ   theta  –  – – 1.0139 0.00951 (0.9952,1.0324) 
      DIC 2526726 263198.4 

TABLE 3.7. Posterior means, standard deviations and 95% credible intervals for the 
parameters of the Poisson and negative binomial models with the corresponding values of 
DIC.  
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In addition to posterior point estimates and intervals, direct examination of 

the posterior distribution often provides extra information and a more 

comprehensive view regarding the random nature of parameters. Kernel 

smoothed estimates of the 26 posterior distributions for the parameters of the 

negative binomial model are presented in Figure 3.2. 

Statistical significance of regression parameters may be checked by 

examining the 95% credible intervals in Table 3.7 or the posterior distribution of 

Figure 3.2. For the negative binomial model none of the intervals includes the 

value of 0 and therefore all regression parameters have statistically significant 

effects. In lack of prior knowledge, it is not possible to compare the parameter 

estimates to older estimates. Nonetheless, the current regression estimates 

provide useful insights into how the explanatory variables affect OD flows on 

overall and also illustrate some relationships with traditional travel demand 

modeling variable selection during the trip-generation and trip-distribution steps. 

This discussion is deferred to subsection 3.3.4 where the sensitivity of the 

negative binomial estimates is additionally tested under slightly different 

distributional assumptions.  

At present it is interesting to assess the impact of the explanatory variables 

on the OD flows and determine which variables are the most influential. To this 

end, one can simply divide the posterior means, presented in Table 3.7, by the 

corresponding standard deviations and examine which values are larger in 

absolute terms. Distance ( 24β ) is the most influential variable of the model with 

a mean over standard deviation value equal to -258.93. This result is not 

surprising and confirms the importance of distance with respect to travel 

demand modeling theory in which distance is perhaps the most crucial factor. 

Following distance, the most influential effects among the continuous variables 

are those of yearly kilometers-driven in provincial/municipal roads ( 23β ) and 

population density ( 13β ) for destination-zones, with respective values 86.50 and 

57.68, while perimeter length of origin-zones ( 16β ) is the fourth most influential 

variable with a value of 54.51. Overall, the general variables of population 

density, perimeter-length and yearly kilometers-driven are more influential in 

comparison to the specific variables of employment ratio, relative length of road 

networks and car-ownership ratio. Among  the  latter  category of variables  the  
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Figure 3.2 Kernel distribution estimates from 4,000 posterior draws of the 26 parameters 
of the negative binomial model. 

most influential variable is car-ownership ratio for origin-zones ( 18β ) with a 

value of 18.93.  Finally, it is interesting to note that the influence of the dummy 

variables is not only substantially strong but also analogous to their hierarchical 

structure; parameters 1β  to 4β , which have a positive effect and correspond to 

the levels of provinces, arrondissements, districts and cantons, are decreasingly 

influential with values equal to 50, 34.35, 27.88 and 22.90, respectively. On the 
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other hand, the negative effect23 of intra-zonal municipality trips ( 5β ) has a 

posterior mean over standard deviation value equal to -91.79, thus exceeding in 

absolute terms the corresponding values of the other dummy variables. 
 

3.2.5 Predictive inference from the Poisson-gamma structure 
 

The overall goodness-of-fit of the negative binomial model is initially assessed 

by the generalized version of the coefficient of determination R2. The generalized 

R2 measure provides the proportion of variability in a dataset which is accounted 

for by a given statistical model (Nagelkerke, 1991). The measure is generally 

defined as 
 

2 2/ˆ1 ( (0) / ( )) nR L L  θ , 
 

where the term L(0) is the likelihood of the null model – containing only the 

intercept – and  ˆ( )L θ   is the likelihood of an estimated model, with  n  denoting  

sample size. In our context, the measure is calculated as 
 

2 2/
01 ( ( | , ) / ( | , ))null null nR p β θ p θ  y y β , 

 

where ( | )p y  is the negative binomial likelihood and 0
nullβ , nullθ  are the intercept 

and over-dispersion parameters of the null model. The measure was calculated 

over 4,000 posterior draws of the null model and the model with the explanatory 

variables24. The average value of R2 is equal to 0.73056 and the corresponding 

95% credible interval is (0.73047, 0.73062). Thus, a significant amount of 

variation, approximately 73%, in the OD matrix is accounted for by the 

explanatory variables25.  

Evaluation of model fit is supplemented by posterior predictive tests based 

on Bayesian p-values. As mentioned in section 3.2.2 prediction is based on the 

hierarchical Poisson-gamma structure which includes random effects. Due to 

                                                             
23 Possible explanations and interpretations for the signs of the parameters are discussed in subsection 
3.3.4.  
24 An additional MH simulation was executed for the null model. Acceptance ratio for this simple model 

was very high, equal to 99%. A final sample of 4000 draws was kept for parameters 
0

nullβ  and nullθ . 
25 According to Nagelkerke (1991), variation is defined in general “as the extent to which a distribution 
is not degenerate”. The generalized R2 is consistent with the classical R2 for normal linear regression 
cases.  
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memory limitations, the complete posterior sample could not be utilized for 

predictive purposes. Therefore, a random sample of 500 posterior draws was 

selected without replacement from the complete sample. Following that, 500 

posterior draws of the random effect vector were sampled first and then 500 

predictive vectors were generated from the hierarchical Poisson likelihood. 

Specifically, 
( )( ) ( ) ( )~ ( , )

T mm m mGamma θ e θ X βu y  and 
( )( ) ( )~ ( )

T mpred m mPois eX βy u  

for 1,2,...,500m  26.  

Two general measures of discrepancy between observed and predicted data 

are under consideration. Namely, the absolute distances and the squared 

distances of observed and predicted data from the corresponding expected 

values of the negative binomial model. The test quantity for absolute distances 

is denoted by 1T  and the test quantity for squared distance by 2T , the two 

measures are defined as   

 
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In general, the absolute distance is a strict measure which assigns greater 

penalty to small deviations from the data, whereas the squared distance 

measure gives more weight to large deviations from the data. The resulting 

Bayesian p-values are 0.522 and 0.462 for absolute distance and squared 

distance, respectively. The p-values are close to the ideal value of 0.5, therefore 

the fit of the model is found to be satisfactory under both test quantities.  

In combination with overall goodness-of-fit tests one can additionally check 

the proximity of predictions from any aspect that is of particular interest. As 

mentioned in section 3.1.2, modeling on the level of municipalities allows for 

predictive inference on various levels of aggregation. For instance, predictions 

for OD flows between districts can be derived directly as aggregations of 

predictive flows between municipalities. Thus, predictive inference is not 

necessarily restricted on the level of municipalities and can be applied on any 

other hierarchical level. In addition, prediction may also focus on specific trip-

types such as strictly in-coming trips, strictly out-coming trips or internal trips. 

                                                             
26 For notational simplicity ( ) ( ) ( ) ( )| , ,m m m mθu u β y . 
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Applications of prediction on different levels of aggregation and for different 

types of trips are demonstrated in Figure 3.3. The applications correspond to 

predictions for (a) total number of in-coming, going-to-work/school trips from all 

other municipalities to the capital of Flanders, Antwerp, (b) total number of 

going-to-work/school trips that occur daily within Flanders and (c-g) daily 

internal going-to-work/school trips that take place in each of the five Flemish 

provinces. It is worth noting that these predictions also serve as further 

goodness-of-fit tests, since in every case there is an observed quantity to 

compare with, resulting in a corresponding Bayesian p-value. As illustrated in 

Figure 3.3, all observed quantities are within acceptable density regions of the 

predictive distributions, an indication that the predictions are not extreme with 

respect to the initial data. The most extreme p-value, which corresponds to 

internal going-to-work/school trips for the province of Flemish Brabant, equals 

0.89 and is still within tolerable limits27. 

 
Figure 3.3 Kernel estimates of going-to-work/school trip predictive distributions for 
incoming trips to Antwerp (a), for total number of trips in Flanders (b) and for internal 
trips within each of the five Flemish provinces; Antwerp (c), Limburg (d), East Flanders 
(e), Flemish Brabant (f) and West Flanders (g). The vertical lines correspond to observed 
quantities, the p-values to the probabilities of exceeding the observed quantities. 

                                                             
27 For a reminder on interpretation of Bayesian p-values, see section 2.4.2.  
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Similar predictive distributions can be derived for any case of specific OD 

flows that might be of particular interest. In general, predictive distributions 

provide all the necessary information concerning short-term future variability. In 

Table 3.8, some of the information provided by the distributions in Figure 3.3 is 

summarized in the form of predictive means and specific percentile points. 
 

Type of trips Observed Predictions 
Mean Min 2.5% Median 97.5% Max 

Incoming-trips 
Antwerp (municipality) 322,644 322,549 319,764 320,968 322,563 323,985 324,866 

Total-trips for            
Flanders  3,437,168 3,437,092 3,429,849 3,431,615 3,436,970 3,442,768 3,447,193 

Internal-trips Antwerp 
(province) 977,891 976,876 972,975 974,225 976,884 979,476 980,798 

Internal-trips Limburg 
(province) 471,559 471,571 468,657 469,737 471,588 473,457 475,013 

Internal-trips East 
Flanders (province) 769,973 770,943 767,470 768,663 770,928 773,259 776,077 

Internal-trips Flemish 
Brabant (province) 324,181 325,132 322,840 323,705 325,135 326,722 328,002 

Internal-trips West 
Flanders (province) 674,388 673,395 669,382 671,122 673,391 675,739 676,835 

TABLE 3.8. Observed quantities, predicted means and predicted percentile points for 
incoming trips to the municipality of Antwerp, total number of trips in Flanders and 
internal trips for each of the five Flemish provinces. 

Predictive effects, as those presented in Table 3.8, may be examined under 

different assumptions; one might choose to infer based on conservative 

summaries such as the predictive mean or median, or might be interested in 

examining the effect of more extreme summaries such as the 97.5th percentile 

or the maximum value. In cases of extreme predictions with p-values close to 

0.01 or 0.99, one might choose where to place more trust on; the predictions of 

the model, the observed values or perhaps test the effects of both, depending 

on the specific case. These alternative options reduce overall uncertainty and 

may serve as predictive scenarios for transportation policy-makers, e.g. in 

decisions concerning infrastructure expansion. 
 

3.2.6 The need for random effects 
 

It is worth clarifying why predictive inference is based on the hierarchical 

Poisson-gamma structure and not on the marginal negative binomial structure. 

In Figure 3.4 the predictive distributions for incoming trips to the municipality of 

Antwerp, total travel-demand in Flanders and internal trips within the five 
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Flemish provinces resulting from the marginal negative binomial model are 

presented.  

The predictions of Figure 3.4 can be contrasted to the predictions of Figure 

3.3 from the corresponding hierarchical structure which includes random effects. 

It is immediately obvious that predictions from the marginal negative binomial 

structure are neither accurate nor realistic. For instance, one simply has to 

notice the range of x-axes in the graphs of Figure 3.4 where the magnitude of 

differences between the minimum and the maximum ranges from hundreds of 

thousands of trips in Figure 3.4(a) to millions of trips in Figures 3.4(b-g). On the 

other hand, the predictions from the hierarchical PG model which take into 

account the random effect of each individual OD pair result in the predictive 

distributions of Figure 3.3 which have reasonable range and when compared to 

the observed quantities yield acceptable p-values. 

 
Figure 3.4 Kernel estimates of going-to-work/school trip predictive distributions from the 
marginal negative binomial model for incoming trips to Antwerp (a), total number of trips 
in Flanders (b) and internal trips within each of the five Flemish provinces; Antwerp (c), 
Limburg (d), East Flanders (e), Flemish Brabant (f) and West Flanders (g). The vertical 
lines correspond to observed quantities, the p-values to the probabilities of exceeding the 
observed quantities. 
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Regardless whether these random components are considered as random 

effects or intercepts or even errors, the point is that they capture “unobserved” 

effects which relate to the extreme heterogeneity of OD flows. One might argue 

that it would be much better to capture these unobserved effects by adding 

appropriate observed explanatory variables. This would indeed be preferable, 

nevertheless in current experience this has been found to be a very difficult 

task. Many other explanatory variables have been considered during the course 

of this research besides the 24 variables presented here. For instance, 

geographical coordinates, income levels, number of elementary/secondary 

schools and student populations among others. Nevertheless, the resulting gains 

in marginal fit were always small and not significant28. 

Needless to say that by continuously adding explanatory variables high 

correlations among them eventually appear, since additional socio-economic and 

infrastructure explanatory variables essentially reflect the same things, e.g. 

economic welfare, growth and so forth. Simply stated, large scale OD matrices 

are very complex datasets to model accurately without some kind of random 

component accounting for heterogeneity29. 
 

3.3 Extending the modeling framework: Poisson mixture models 
 

Previously, the negative binomial model was compared to the simple Poisson 

model and was found to be clearly a better option due to the extreme over-

dispersion. As briefly discussed the negative binomial model is a marginal model 

which is derived by a hierarchical Poisson model. In this section we present the 

general framework of hierarchical Poisson models or Poisson mixture models and 

also extend model comparison. The models presented here are applied on the 

second OD matrix and include all 25 explanatory variables presented in Table 

3.3. 

With Poisson mixture models it is assumed again that the OD flows iy  are 

i.i.d. Poisson realizations only this time the rate of the Poisson distribution is 

i i iλ μu  for 1,2,...,i n . The rate iλ  is split in two parts; iµ  is the part which is 

                                                             
28 As we will see in the relevant discussion of section 5.2.1, even the variable from the radiation model 
(Simini et al., 2012) does not lead to significant improvements.    
29 The results and conclusions in West (1994) seem to be in agreement with this statement. 
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related to the vector of 1p   unknown parameters 0 1( , ,..., )T
pβ β ββ  and the 

set of explanatory variables 1(1, ,..., )T
i i pix xx  through the log-link function 

Τlog i iµ  β x , and iu  is a random component – interpreted as a multiplicative 

random effect – which is attributed with a density 1( )ig u . The Poisson mixture 

modeling formulation is summarized as follows 
 

1

~ ( ),  with  and

,
~ ( ) and ( ) 1.

T
i

i i i i i

i

i i i

y Pois λ λ μ u

µ e
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

β x  

 

The density 1g  is known as the mixing density and can be continuous, discrete 

or even a finite-step distribution. The assumption that the expected value of the 

random component iu  equals 1 ensures scale-identifiability. Poisson mixture 

models are employed as overdispersed alternatives to the simple Poisson model 

since the random component of the Poisson rate accounts for heterogeneity 

within the population. If the mixing density is degenerate, i.e. it assigns positive 

probability in only one point, then the simple Poisson model arises which 

assumes equality of mean and variance. A general framework for overdispersion 

models is provided by Hinde and Demétrio (1998). Alternatively, from a 

generalized linear mixed model (GLMM) perspective the above model can be 

expressed as 
 

2

~ ( ),  with log ,
~ ( ) and ( ) 0.

T
i i i i i
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
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where iε  is an additive random error term, namely an observation random 

effect or random intercept as it is most commonly known. Here, the constraint 

on the expected value ensures location-identifiability. The Poisson likelihood is 

the conditional likelihood given the unobserved random effect vector 

1 2( , ,..., )T
nu u uu . Integration with respect to u leads to the marginal sampling 

likelihood, i.e. 1( | ) ( | , ) ( )p p g d y β y β u u u . The Poisson mixture and GLMM 

formulations are equivalent, however the resulting intercept estimates and the 

interpretations of marginal means ( | )E y β  are different due to the identifiability 

constraints (Lee and Nelder, 2004). Frequentist inference usually focuses on the 
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marginal structure of the model under ML, restricted-maximum-likelihood 

(REML), quasi-likelihood (QL) and pseudo-likelihood (PL) estimation procedures. 

Estimation of random effects, when needed, is usually based on empirical Bayes 

estimates; the posterior expectation of u, for instance30.  

Different assumptions on the mixing density result to different marginal 

sampling distributions. When the mixing density 1g  is a gamma distribution we 

have the Poisson-gamma (PG) model which is the most frequently used Poisson 

mixture model due to the property that the resulting marginal likelihood is a 

negative binomial distribution. Properties and estimation procedures for negative 

binomial regression can be found in Lawless (1987). Negative binomial modeling 

has been investigated in many studies as, for instance, in Thall (1988), Xue and 

Deddens (1992), McNeney and Petkau (1994), Dean (1994) and Van de Ven and 

Weber (1995). The PG model is also included in the family of hierarchical 

generalized linear models (HGLM’s) introduced by Lee and Nelder (1996) who 

provide ML estimates for regression parameters as well as random effects based 

on a hierarchical likelihood (h-likelihood) and also examine various theoretical 

aspects of the model (see also the associated discussion). 

The Poisson-lognormal (PLN) model arises when 1g  is a lognormal 

distribution. The resulting marginal distribution of this model, known simply as 

Poisson-lognormal (Shaban, 1988), does not have a closed form expression and 

thus numerical integration is needed for marginal estimation. Nevertheless, the 

PLN model is regularly used in practice due to its distinct historical development 

as a GLMM for count data based on the assumption that 2g  is a normal 

distribution (Hinde, 1982; Breslow 1984). The density 1g  is lognormal, 

consequently. Estimation of the model through Gaussian quadrature and the 

expectation-maximization (EM) algorithm is handled in Anderson and Hinde 

(1988) and Aitkin (1996). 

An inverse Gaussian density for 1g  results in the Poisson-inverse Gaussian 

(PIG) model which leads to a Poisson-inverse Gaussian marginal density. This 

distribution, unlike the Poisson-lognormal case, does have a closed form 

                                                             
30 A convenient property in Poisson mixtures which has been to a large degree overlooked is that the 
posterior expectation always has a closed-form expression regardless of the choice of mixing density 
(see Sapatinas, 1995). 
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expression, but it involves a modified Bessel function which poses some 

computational difficulties in comparison to the negative binomial distribution. 

The PIG model was first presented by Holla (1967). The first ML estimates for 

simple cases without covariates were provided by Shaban (1981). ML estimates 

under a different parameterization of asymptotically uncorrelated parameters 

were presented by Stein et al. (1987) and Stein and Juritz (1988) for cases 

without and with covariates, respectively. Finally, Dean et al. (1989) provided 

ML and QL estimates for another re-parameterization which is not asymptotically 

orthogonal but has a convenient interpretation in terms of multiplicative random 

effects. Despite the fact that the theoretical properties of this model have been 

thoroughly explored, the PIG model has started only recently to be considered 

as a competing alternative to the PG and PLN models. 

A first consideration of all three models is presented in Chen and Ahn 

(1996) who compare the bias and efficiency of semi-parametric quasi estimates 

in simulation experiments. Later, Karlis (2001) provided a generally applicable 

EM algorithm for Poisson mixtures and compared the three models on a real 

dataset. The algorithm of Karlis significantly relaxes the computational demands 

for obtaining ML estimates, particularly for the case of the PIG model. In 

Boucher and Denuit (2006) the performance of three models is investigated 

from a random-effect versus fixed-effect perspective on motor insurance claims. 

Finally, in Nikoloulopoulos and Karlis (2008) the models are compared with 

respect to distributional properties such as skewness and kurtosis under 

simulation experiments. This study verifies some theoretical expectations (see 

e.g. Willmot, 1990), namely that the PLN and PIG models allow for longer right 

tails and are thus more appropriate than the PG model for modeling highly 

positive-skewed data. 

Within the Bayesian framework, Poisson mixture models have a natural 

interpretation as hierarchical or multilevel models, since the mixing distribution 

may be regarded in fact as a first-level prior distribution of which the 

parameters are subsequently assigned with a second-level or hyper-prior 

distribution. Within this context, the question between hierarchical or marginal 

model fitting depends on experimental design assumptions, inferential scope and 

practical considerations regarding computational costs in terms of simulation 

time. Bayesian applications of negative binomial modeling as well as hierarchical 
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PG and PLN modeling from a Poisson mixture perspective can be found in the 

book of Ntzoufras (2009). Hierarchical treatment of PG and PLN models is also 

available in the books of Lawson et al. (2003) for disease mapping (see also 

Mollié, 1996) and of Gelman and Hill (2006) which deals with 

hierarchical/multilevel modeling in general. Some applications of the two models 

are also presented in Congdon (2001). 

The PIG model is not included, as yet, in the relative Bayesian literature 

which as we will see has no particular justification. Regarding probability 

calculations from the marginal Poisson-inverse Gaussian distribution, computer 

routines are readily available, e.g. in Stasinopoulos and Rigby (2007). 

Furthermore and perhaps more important, the inverse Gaussian distribution is a 

special case of the three-parameter generalized inverse Gaussian distribution 

which is generally conjugate to the family of exponential distributions 

(Jorgensen, 1982).   

In the remainder of this section, Bayesian forms of the three models are 

presented for hierarchical and marginal modeling with non-informative prior 

distributions. Given the size of the OD dataset, the parameters of scientific 

interest – the regression and dispersion parameters – are estimated from the 

marginal models. Nevertheless predictive inference is based on the hierarchical 

models. The Bayesian framework is particularly useful for large datasets and 

designs of observational random effects. If the prior of u depends on a hyper-

parameter  ω, then from properties of conditional probabilities the joint posterior 

is ( , , | ) ( | , , ) ( , | )p ω p ω p ωβ u y u β y β y . Thus, for hierarchical inference one can 

use marginal models for sampling from ( , | )p ωβ y  and generate u subsequently 

from ( | , , )p ωu β y . As illustrated previously, this is straightforward for the PG 

model and as shown next, it is also straightforward for the PIG model due to a 

conjugate prior. Empirical evidence for the equivalence of the estimates can be 

found in the interesting research of Fahrheim and Osuna (2003) where 

estimates from a marginal negative binomial and from the corresponding 

hierarchical PG are presented. The authors conclude that the results from the 

two models are indistinguishable. 
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3.3.1 The PG model 
 

For the PG model the following likelihood and prior assumptions are made; 
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For the multivariate normal prior on the regression vector a g-prior similar 

structure (Zellner, 1986) is adopted which as mentioned in section 3.2.2 is 

analogue to one of the benchmark priors discussed in Fernández et al. (2001) 

for normal linear models, but for 2σβ  fixed. The same weakly informative 

multivariate prior is also adopted for the PLN and PIG models. The gamma prior 

for iu  is defined in terms of shape and rate parameters which both equal θ, so 

that ( ) 1iE u   and 1var( )iu θ . The gamma hyper-prior for dispersion 

parameter θ with both shape and rate equal to 0.001 is a diffuse prior as in 

Ntzoufras (2009). The joint posterior distribution of all parameters is 

( , , | ) ( | , ) ( ) ( | ) ( )p θ p p p θ p θβ u y y β u β u , that is 
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The only conditional distribution with a known form, based on expression 3.7, is 

the one of the random effect vector which is namely a gamma distribution, i.e. 

| , , ~ ( , )
T

i
i i iu θ y Gamma y θ e θ β xβ  (Gelman and Hill, 2006). This implies that 

fitting the hierarchical model through MCMC would require a Metropolis-within-

Gibbs type of algorithm with Metropolis steps for the joint conditional of 

, | ,θβ u y  or for the conditionals of | ,β u y  and | ,θ u y . Alternatively, adaptive- 

rejection sampling can also be used. 

Nevertheless, as discussed in section 3.2.2 integration over u leads to         

a negative binomial marginal likelihood, i.e. | , ~ ( , )
T

i
iy θ NB e θβ xβ  where           

the marginal mean and variance are given by ( | )
T

E e X βy β  and 

2 1var( | ) ( )
T T

e e θ X β X βy β , respectively, with the variance being a quadratic 
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function of the mean. The un-normalized posterior distribution is shown in 

expression 3.6 and does not result in any closed form expressions. 

Nevertheless, generating samples from the joint posterior of , |θβ y  is feasible 

through MH simulation. 
 

3.3.2 The PLN model 
 

The assumptions for the PLN model are the following;  
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The prior distribution of iu  has location parameter equal to 2 / 2σ  and scale 2σ

, so that ( ) 1iE u   and 2
var( ) ( 1)σ

iu e  31. The inverse gamma hyper-prior for 

2σ  is the common option for this model; for 2
310

σ
α   the distribution of 2σ   is 

a diffuse gamma with a mean equal to 1 and a variance equal to 1000 

(Ntzoufras, 2009). The posterior is 2 2 2( , , | ) ( | , ) ( ) ( | ) ( )p σ p p p σ p σβ u y y β u β u  

which leads to
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. (3.8) 

 

In this case none of the full conditional distributions are of known form. MCMC 

sampling for the hierarchical PLN model is in general more convenient in the 

respective GLMM form where the full conditional distribution of 2σ  is known, 

namely 2

2 2

1
| , ~ ( / 2, (log ) / 2)n

iiσ
σ InvGamma α n α u


 u y . Sampling from the 

conditionals of β and u is possible with Metropolis steps (Browne, 2003) or 

rejection-sampling (Zeger and Karim, 1991). 

                                                             
31 Interested readers should refer first to Lee and Nelder (2004) for this parameterization. Most 
Bayesian applications are focusing on the additive random effect structure which has a different 
parameterization with a 0 mean on non-logarithmic scale. Nevertheless, the additive structure is not 
immediately comparable to the multiplicative structure. 
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For the case of the PLN model the marginal likelihood 2( | , )p σy β  is not 

known analytically, nevertheless the mean and variance of the PLN distribution 

are available and given by ( | )
T

E e X βy β  and 
22var( | ) ( ) ( 1)

T T σe e e  X β X βy β . Once 

again the variance is a quadratic function of the mean. The joint posterior 

density is 2 2 2( , | ) ( | , ) ( ) ( )p σ p σ p p σβ y y β β , specifically 
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. (3.9) 

 
 

MH simulation is employed in order to sample from the joint posterior density of 

β and 2σ . The integral in expression 3.9 can be evaluated through numerical 

integration, e.g. with Gauss-Hermite quadrature estimation which is also 

frequently employed in frequentist practice for marginal estimation (see for 

example Hedeker and Gibbons, 1994; Rabe-Hesketh et al., 2001). Another 

alternative which is investigated here is MC integration from the lognormal prior 

of the random effect vector u within the Metropolis kernel. That is, for a given 

MH iteration t and draws ( )tβ , 2( )tσ , the integral above can be evaluated by 

generating first L MC draws  ( , ), 1,2,...,t l
iu l L  from ( , ) 2( ) 2( )~ ( / 2, )t L t t

iu LN σ σ  

and then by calculating the marginal likelihood probability as 

( ) 2( ) 1 ( ) ( , )

1
( | , ) ( | , )Lt t t t l

i i il
p y σ L p y u


 β β .  

The disadvantage of fitting the marginal PLN model is that draws from the 

posterior distribution of u cannot be generated straightforwardly and therefore 

exact inference from the hierarchical structure is not easy. It is possible, for 

instance, to calculate posterior moments r of u from the general formula 

provided by Sapatinas (1995) as 
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Of course, the formula requires once again calculation of probabilities from the 

marginal PLN distribution which leads to additional numerical or MC integration. 
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3.3.3 The PIG model 
 
For the PIG hierarchical formulation the following assumptions are adopted;  
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For the inverse Gaussian prior the initial parameterization of Holla (1967) is 

followed, denoted as ( , )IG μ ζ  with mean µ and shape ζ. Specifically,  
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For 1µ   we have that a-priori ( ) 1iE u   and 1var( )iu ζ  . The inverse 

Gaussian distribution is a special case of the three-parameter generalized 

inverse Gaussian (GIG) distribution which is investigated in detail in Jorgensen 

(1982). The p.d.f. of a ( , , )GIG λ ψ χ  distribution with parameters λ  , 

, 0ψ χ   is given by  
 

111/2 ( )1 2( / )( )
2 ( )

ψx χxλ

λ

ψ χf x x e
K ψχ

  , 

 

where λK  is the modified Bessel function of the third kind with order λ. The 

inverse Gaussian distribution arises for 1 / 2λ   . Interestingly, the gamma 

distribution is also a special case of the GIG distribution for 0χ  . For shape 

parameter ζ a gamma hyper-prior is adopted, similarly to the PG model. The 

posterior distribution is ( , , | ) ( | , ) ( ) ( | ) ( )p ζ p p p ζ p ζβ u y y β u β u , resulting in 
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. (3.10) 

It can be easily shown that the conditional of iu  is ( 1 / 2,2 , )
T

i
iGIG y e ζ ζ β x  

and that the conditional of ζ is 2
1

( / 2, ( 1) / 2 )n
ζ ζ i ii

Gamma α n α u u


   , with the 

parameterization of the GIG distribution as presented above. Athreya (1986) 

was the first to notice the specific conjugate relationship between the inverse 
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Gaussian and Poisson distribution. This relationship is also noted in Karlis (2001) 

under a different parameterization of the inverse Gaussian. Thus, in comparison 

to the PG and PLN models, the hierarchical PIG model is actually the simplest in 

terms of MCMC, since all that is needed is a MH or rejection-sampling algorithm 

for the conditional of β. Regarding simulation from the GIG distribution, random 

generators are readily available (see for instance Atkinson, 1982; Dagpunar, 

1988). 

Marginally, we have that | , ~ ( , )
T

i
iy ζ PIG e ζβ xβ  for 1,2,...,i n  with p.d.f. 

given by 
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In this case, the marginal mean and variance are ( | )
T

E e X βy β  and

3 1var( | ) ( )
T T

e e ζ  X β X βy β , which are very similar to those of the negative 

binomial model only that the variance is now a cubic function of the mean. The 

posterior distribution is ( , | ) ( | , ) ( ) ( )p ζ p ζ p p ζβ y y β β , i.e. 
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In this case, a sample from the posterior of β and ζ can be obtained through MH 

simulation on the joint un-normalized posterior in expression 3.11. As with the 

PG model, when posterior draws of β and ζ are available predictive inference 

from the hierarchical structure is possible by generating from the conditional 

distribution of u. 
 

3.3.4 Implementation and performance of MH simulation 
 

In order to bypass the daunting task of sampling and storing 94864 random 

effects for each MCMC iteration, MH simulation is implemented once again on 

the marginal structures. Although sampling u is relatively straightforward for the 

hierarchical PG and PIG models, memory requirements pose significant 

limitations if terms of storing. MCMC for the marginal PG and PIG structures is 
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far more efficient with β, θ and ζ being easy to sample and with u generated 

subsequently. The PLN model is more problematic since an additional Metropolis 

step or rejection sampling is required within MCMC for the hierarchical structure 

which is an obvious burden for 94864 random effects. On the other hand 

simulation for the marginal PLN structure requires numerical or MC integration 

within MCMC and – in addition – vector u is not easy to sample. 

As before, an independence chain algorithm is employed where the location 

and scale of the proposals are fixed to the corresponding ML estimates. For 

regression vector β a multivariate normal proposal is used, i.e. 

1( ) ( , )ML ML
pq  ββ N β V  with ,  ML ML

ββ V  being the respective ML estimate of β and  

the estimated variance-covariance matrix of MLβ  for each model. For parameters 

θ, 2σ  and ζ the following proposals are adopted; ( ) ~ ( , )PG PGq θ Gamma α b , 

2( ) ~ ( , )PLN PLNq σ Gamma α b  and ( ) ~ ( , )PIG PIGq ζ Gamma α b  with proposal 

parameters set to satisfy the conditions / ML
PG PGα b θ , 2/ var( )ML

PG PGα b θ , 

2/ ML
PLN PLNα b σ , 2 2/ var( )ML

PLN PLNα b σ , / ML
PIG PIGα b ζ  and 2

Ι Ι/ var( )ML
P G P Gα b ζ . 

Regarding probability calculations from the PLN distribution both techniques of 

numerical and MC integration were investigated. It was found that the MC 

sample L should be preferably 2,000 in order to obtain stable results which were 

similar to the results from numerical integration, while numerical integration was 

already two-times faster than MC integration with a sample of 200. Therefore, 

numerical integration was preferred. 

 One single MH chain of 21,000 iterations was executed for each model. 

Random samples of size 5,000 were initially generated from the aforementioned 

proposals and the 90th percentile points were used as starting values. The 

simulations for the PG and PIG models required approximately 1 and 2 hours, 

respectively, whereas the PLN model required significant time due to numerical 

integration, almost 3.6 days32. The resulting acceptance ratios were 72% for the 

PG model, 67% for the PLN model and 33% for the PIG model33. The first 

thousand iterations were discarded as the burn-in part of the chains. 

                                                             
32 All simulations were executed on a 64bit Windows Server 2003 R2 with 32GB of RAM. 
33 For the PIG model we were not able to obtain an estimate for MLV

β
 and therefore the variance-

covariance matrix of the PG model was used instead. 
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Convergence checks were based on the methods of Heidelberger and Welch 

(1983), Raftery and Lewis (1992) and Geweke (1992). The diagnostic of Raftery 

and Lewis indicated autocorrelation problems which were more serious for the 

cases of the PLN and PIG models. In order to weaken the strong autocorrelations 

4,000 draws were selected randomly without replacement in the PLN and PIG 

models, while the sample of the PG model was thinned by an interval of 5. The 

final samples of 4,000 posterior draws passed all diagnostics, with lag 1 

autocorrelations not exceeding in absolute terms the value of 0.05. The MH 

algorithms and results from convergence diagnostics are presented in Appendix 

A. All simulations and related calculations were implemented in the R 

programming environment v. 2.8.2. A variety of R libraries was used for ML 

estimation, random sampling, density calculations and MCMC convergence 

checks. A list of the R routines and corresponding libraries can be found in 

Appendix C. 
 

3.3.5 Posterior inference from Poisson mixture models 
 

Posterior summaries are presented in Table 3.9 for means and standard 

deviations and in Table 3.10 for 95% credible intervals. Based on the 95% 

intervals all regression parameters in the three models are statistically 

significant. A first significant observation is that posterior means are more 

similar for the PLN and PIG models, for instance parameters 0β , 6β , 9β , 10β , 

14β  and 18β  of the PG model are substantially different from the corresponding 

estimates of the other two models, especially the intercept estimate. On the 

other hand parameters 11β , 12β  and 20β  differ in general across models. 

Standard deviations are in overall slightly lower in the PG model. 

Several remarks can be made based on the signs of the posterior estimates 

regarding interpretation of parameters independently and also in conjunction to 

traditional trip-production and trip-attraction modeling employed within the trip-

generation step. The parameters of dummy variables 1β  to 5β  are positive 

except of the last parameter for intra-zonal municipality trips. The small 

posterior means of these parameters are due to the fact that the corresponding 

dummy variables are coded 0/100. The positive effects of 1β  to 4β  are to be 
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expected, since the OD flows are generally larger in diagonal blocks of cells of 

the OD matrix corresponding to intra-zonal flows for the various administrative 

levels. The negative sign of 5β  is not expected but it might be explained as 

simply counterbalancing the absence of the strong negative effect of distance 

which is set almost equal to zero for intra-zonal municipality trips. Parameter 6β  

is positive and leads to the consistent interpretation that destination zones which 

support a college or a university are more likely to attract trips than zones 

without a college/university.  

Parameters 7β  to 10β  quantify the influence of the total number of 

surrounding municipalities on the four levels of cantons, districts, 

arrondissements and provinces, respectively. This effect is in general not 

straightforward to predict. On one hand it can be argued that the more 

municipalities there are the more likely it is to have an increase of trips due to a 

general boost of socio-economic activities, but on the other hand it is also likely 

to observe less trips for a given OD pair since it is probable that a significant 

proportion of trips will spread across the surrounding municipalities. Under this 

consideration, the parameter estimates are interesting and provide some 

insights. On the small-scale level of cantons parameter 7β  has a positive sign, 

whereas on the large-scale levels of districts, arrondissements and provinces – 

where the total number of municipalities increase and a spread-out of trips is 

more likely – the corresponding parameters 8β , 9β  and 10β  are negative. This 

implies that the effect changes from positive to negative when exceeding a 

specific radius threshold of distance. Recent transportation studies discuss 

resembling ideas such as the neighborhood-effect concept investigated in Sohn 

and Kim (2010) where it is suggested that the attractiveness of a specific zone is 

affected by its neighboring municipalities depending on boundaries related to the 

influence of distance. 

Regarding the continuous variables which come in pairs, the more general 

explanatory variables, namely population density ( 13β , 14β ), perimeter length    

( 17β , 18β ) and yearly kilometers-driven in highways ( 21β , 22β ) and 

provincial/municipal roads ( 23β , 24β ) have parameters with positive signs. The 

uniformly positive effects for origin and destination zones do not come as a 
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surprise, since these four variables are expected to have a positive influence on 

trip-production (origin zones) as well as trip-attraction (destination zones). In 

contrast, the parameters of employment ratio ( 11β , 12β ), relative length of road 

network ( 15β , 16β ) and car ownership ratio ( 19β , 20β ) have opposite signs for 

origin and destination effects.  

In transportation studies employment ratio is commonly associated with 

trip-attraction models (see e.g. Yao and Morikawa, 2005). In accordance, the 

posterior estimate of employment ratio is positive for destination zones and 

negative for origin zones which leads to the rational interpretation that zones 

with high employment ratios are more likely to attract trips rather than to 

generate trips. The relative length of road networks is associated with the 

concept of accessibility (see e.g. Odoki et al., 2001), a concept which is present 

primarily in trip-attraction studies and, to a lesser degree, in trip-production 

studies. The posterior mean is positive for destination zones and negative for 

origin zones. Consistently, this implies that zones with high levels of accessibility 

are more likely to attract trips than low-accessible zones. Conversely, high-

accessible zones are less likely to produce trips than low-accessible zones. A 

possible explanation for the negative origin effect is that high levels of 

accessibility within a zone might encourage intra-zonal trips and reduce outgoing 

trips. Finally, car ownership is traditionally used as an explanatory variable with 

positive impact in trip-production models. In agreement, the posterior mean for 

car ownership is positive for origin zones, which means that zones with high car 

ownership ratios also have high trip-production rates. The estimate is negative 

for destination zones implying that high car ownership ratios are negatively 

correlated with trip-attraction. The negative destination effect may be attributed 

to congestion issues. 

Distance with parameter 25β  is the final variable. Distance is the key 

variable in gravity-type and direct-demand models, since it is directly related to 

the costs of the deterrence function used within the trip-distribution step (see 

e.g. Ortúzar and Willumsen, 2001). In the models presented here distance has a 

negative posterior mean which accords with the basic deterrent gravitational 

assumption of trip-distribution models. Furthermore, based on the posterior 
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mean-over-standard deviation ratio distance is also the most significant 

explanatory variable in all three models.  
 

Parameter PG PLN PIG 
Mean St.dev Mean St.dev Mean St.dev 

0
β intercept      4.034 0.4101 6.124 0.4381 6.841 0.4453 

1
β dummy.province      0.005 0.0001 0.005 0.0002 0.006 0.0002 

2
β dummy.arron/ment  0.007 0.0002 0.007 0.0002 0.008 0.0002 

3
β dummy.district      0.008 0.0003 0.008 0.0003 0.009 0.0003 

4
β dummy.canton       0.008 0.0004 0.006 0.0004 0.006 0.0004 

5
β dummy.municipality   -0.082 0.0008 -0.086 0.0009 -0.084 0.0008 

6
β dummy.education

 
0.424 0.0189 0.535 0.0194 0.535 0.0198 

7
β munic.in.cantons    0.472 0.0187 0.461 0.0206 0.451 0.0204 

8
β munic.in.districts     -0.494 0.0236 -0.441 0.0247 -0.442 0.0254 

9
β munic.in.arron/ments    -0.087 0.0174 -0.188 0.0195 -0.211 0.0194 

10
β munic.in.provinces    -0.493 0.0720 -0.740 0.0752 -0.781 0.0759 

11
β employment.ratio.o      -1.062 0.0741 -0.483 0.0739 -0.241 0.0751 

12
β employment.ratio.d      0.328 0.0692 0.491 0.0761 0.611 0.0764 

13
β population.density.o      0.505 0.0139 0.499 0.0150 0.499 0.0145 

14
β popolation.density.d      0.577 0.0147 0.627 0.0158 0.632 0.0159 

15
β road.length.o  -0.315 0.0222 -0.319 0.0230 -0.334 0.0217 

16
β  road.length.d  0.280 0.0219 0.267 0.0234 0.264 0.0235 

17
β  perimeter.length.o       1.254 0.0233 1.289 0.0245 1.282 0.0241 

18
β  perimeter.length.d       0.429 0.0233 0.500 0.0255 0.512 0.0261 

19
β  car.ownership.ratio.o 3.454 0.1524 3.420 0.1629 3.520 0.1634 

20
β  car.ownership.ratio.d -1.464 0.1520 -1.253 0.1653 -1.075 0.1656 

21
β  highway.traffic.o           0.011 0.0017 0.011 0.0018 0.010 0.0018 

22
β  highway.traffic.d           0.052 0.0017 0.050 0.0018 0.050 0.0019 

23
β  prov/munic.traffic.o           0.270 0.0101 0.278 0.0107 0.276 0.0100 

24
β  prov/munic.traffic.d           0.870 0.0100 0.875 0.0114 0.869 0.0111 

25
β  distance -2.906 0.0104 -2.984 0.0118 -2.937 0.0110 

θ   theta 0.965 0.0093 – – 
2σ sigma square  –  1.065 0.0113 – 

ζ   zeta  – – 0.375 0.0095 

TABLE 3.9. Posterior means and standard deviations from 4,000 posterior draws of the 
Poisson-gamma (PG), Poisson-lognormal (PLN) and Poisson-inverse Gaussian (PIG) 
models. 
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Parameter PG PLN PIG 
95% C.I. 95% C.I. 95% C.I. 

0
β intercept      (3.223, 4.842) (5.244, 6.962) (5.937, 7.708) 

1
β dummy.province      (0.005, 0.005) (0.005, 0.006) (0.005, 0.006) 

2
β dummy.arron/ment  (0.007, 0.008) (0.007, 0.008) (0.007, 0.008) 

3
β dummy.district      (0.008, 0.009) (0.008, 0.009) (0.008, 0.009) 

4
β dummy.canton       (0.007, 0.009) (0.006, 0.007) (0.006, 0.007) 

5
β dummy.municipality   (-0.083, -0.080) (-0.088, -0.084) (-0.086, -0.082) 

6
β dummy.education

 
(0.386, 0.460) (0.497, 0.573) (0.497, 0.573) 

7
β munic.in.cantons    (0.436, 0.510) (0.422, 0.501) (0.411, 0.491) 

8
β munic.in.districts     (-0.540, -0.448) (-0.489, -0.393) (-0.493, -0.394) 

9
β munic.in.arron/ments    (-0.122, -0.052) (-0.225, -0.149) (-0.248, -0.174) 

10
β munic.in.provinces    (-0.635, -0.355) (-0.886, -0.588) (-0.923, -0.634) 

11
β employment.ratio.o      (-1.203, -0.915) (-0.632, -0.337) (-0.386, -0.096) 

12
β employment.ratio.d      (0.192, 0.465) (0.343, 0.639) (0.457, 0.753) 

13
β population.density.o      (0.479, 0.532) (0.470, 0.529) (0.472, 0.528) 

14
β popolation.density.d      (0.548, 0.606) (0.597, 0.658) (0.601, 0.664) 

15
β road.length.o  (-0.359, -0.271) (-0.363, -0.273) (-0.378, -0.293) 

16
β  road.length.d  (0.237, 0.324) (0.222, 0.312) (0.218, 0.309) 

17
β  perimeter.length.o       (1.209, 1.300) (1.241, 1.336) (1.236, 1.331) 

18
β  perimeter.length.d       (0.385, 0.476) (0.452, 0.551) (0.461, 0.563) 

19
β  car.ownership.ratio.o (3.155, 3.747) (3.093, 3.735) (3.195, 3.837) 

20
β  car.ownership.ratio.d (-1.761, -1.172) (-1.590, -0.916) (-1.405, -0.764) 

21
β  highway.traffic.o           (0.007, 0.014) (0.008, 0.015) (0.007, 0.014) 

22
β  highway.traffic.d           (0.049, 0.056) (0.047, 0.054) (0.046, 0.053) 

23
β  prov/munic.traffic.o           (0.250, 0.289) (0.257, 0.299) (0.255, 0.295) 

24
β  prov/munic.traffic.d           (0.850, 0.889) (0.853, 0.897) (0.848, 0.891) 

25
β  distance (-2.926 -2.885) (-3.007, -2.961) (-2.960, -2.915) 

θ   theta (0.947, 0.983) – – 
2σ sigma square  –  (1.043, 1.087) – 

ζ   zeta  – – (0.357, 0.393) 

TABLE 3.10. 95% credible intervals from 4,000 posterior draws of the Poisson-gamma 
(PG), Poisson-lognormal (PLN) and Poisson-inverse Gaussian (PIG) models. 

It is also worth noting that despite some differences in parameters 

estimates obtained by the first OD matrix (Table 3.7 – negative binomial) and 

the second OD matrix (Table 3.9) the main inferences concerning the signs and 
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the significance of parameters do not alter. Based on mean-over-standard 

deviation ratios the most significant variable, as mentioned, is distance followed 

by yearly kilometers-driven in provincial/municipal roads, perimeter length of 

origin zones, population density in destination zones and so forth. 

 
Figure 3.5 Kernel posterior distributions from 4,000 draws of the 26 regression parameters 
for the PG model (in blue), PLN model (in green) and PIG model (in red). 

Kernel smoothed estimates of the posterior distributions of the regression 

parameters are plotted in Figure 3.5. Differences in the PG regression 
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parameters are evident, especially for the intercept. It is also shown that the 

marginal posterior distributions are all relatively symmetrical, close to normal 

distributions. Histograms of the dispersion parameters are presented in Figure 

3.6. 

 
Figure 3.6 Histograms from 4,000 posterior draws of parameters theta, sigma square and 
zeta. 

Model comparison based on information criteria is summarized Table 3.11. 

The AIC, BIC and marginal DIC statistics were calculated from the marginal 

negative binomial, PLN and PIG likelihoods based on the 4,000 posterior draws 

of each model. AIC and BIC are based on the posterior mean of the deviance34. 

Marginally, all three criteria give more support to both the PLN and PIG models 

over the PG model which also provides a justification for the similarity of the 

posterior estimates from the two models. The result is partially anticipated since 

the PLN and PIG are in theory more appropriate for cases of highly positive-

skewed count data (Willmot, 1990). Furthermore, all three criteria favor the PIG 

marginal likelihood more than the PLN marginal likelihood, indicating that the 

PIG distribution is the most appropriate marginal sampling distribution. 

The hierarchical DIC’s are calculated from the hierarchical Poisson 

likelihoods based on random-without-replacement samples of 500 parameter 

draws from the PG and PIG models. Reduced samples were used again due to 

memory limitations and the random effect vectors were generated as 

                                                             
34 Deviances based on posterior vector means and on posterior vectors maximizing the marginal 
likelihood were also considered for the calculation of AIC and BIC. The resulting AIC and BIC values are 
different, but do not alter the conclusion discussed here. 
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( )( ) ( ) ( )~ ( , )
T mm m mGamma θ e θ X βu y  from the PG model and as 

( )( ) ( ) ( )~ ( 1 / 2,2 , )
T mm m mGIG e ζ ζ X βu y  from the PIG model, for 1,2,...,500m  . 

The hierarchical DIC for the PLN model could not be calculated, since direct 

sampling of random effects is not possible for this model. Based on the 

hierarchical DIC values distinguishing a “better” hierarchical model is not as 

clear as with the marginal models. The difference is marginal and does not 

provide sufficient evidence in favor of one of the two models. Therefore, a solid 

conclusion cannot be drawn with respect to which of the two is more appropriate 

for predictive purposes. 
 

Model selection criterion PG PLN PIG 
AIC   281519.2  279386.9 278469.1 
BIC 281774.6  279642.3 278724.5 
DIC (marginal)  281492.2  279362.4 278442.2 
DIC (hierarchical) 224141.4 - 224146.1 

TABLE 3.11. The AIC, BIC and marginal/hierarchical DIC values for the three models. AIC 
and BIC are based on the posterior mean of deviance. The marginal DIC is calculated from 
the marginal likelihoods, whereas the hierarchical DIC is calculated from the hierarchical 
Poisson likelihoods. 

 
Figure 3.7 Histograms of random effects on log-scale from the reduced PG and PIG 
samples of 500 posterior draws. 

Finally, it interesting to note that the posterior distributions of the random 

effects from the two models present some dissimilarity. The approximate range 

of the PG random effects is from 1.39×10-8 to 43.95 and from -18.09 to 3.78 on 
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log-scale, while the approximate range of the PIG random effects is from 

8.86×10-3 to 123.75 and from -4.73 to 4.82 on log-scale. Due to the GIG 

posterior distribution, the PIG random effects exhibit a longer right-tail than the 

PG random effects which are gamma distributed. On logarithmic scale the PIG 

random effects are relatively more symmetrical near 0 whereas the PG random 

effects have a longer left-tail. Histograms of the random effects on logarithmic 

scale are presented in Figure 3.7. 
 

3.3.6 Predictive inference from the PG and PIG models 
 

Due to the insufficient evidence regarding the most appropriate predictive 

model, predictions of OD flows were generated from both models. For overall 

goodness-of-fit, the absolute and squared distances are utilized and also the 

deviance. Each test quantity is calculated for observed and predicted data over 

the 500 posterior draws. The expected values and the deviance are those of the 

Poisson distribution conditional on the regression and random effect vectors. 

Results are summarized in Table 3.12. In general, both models provide 

satisfactory Bayesian p-values – close to the ideal value of 0.5 – for squared 

distances. On the other hand, predictions from the PIG seem to replicate better 

the observed data for small deviations from the expected values and also with 

respect to the Poisson distributional assumption. 
 

Test quantity Formula 
Bayesian p-value 

PG PIG 

Absolute distance 
1

( | , )n

i i ii
y E y u


 β  0.276 0.424 

Squared distance 2

1
( ( | , ))n

i i ii
y E y u


 β  0.468 0.512 

Deviance 
1

2 log ( | , )n

i ii
p y u


  β  0.992 0.620 

TABLE 3.12. Bayesian p-values for the absolute distance, squared distance and deviance 
test quantities from 500 posterior draws of the PG and PIG models.  

 Nevertheless, as discussed in section 2.4.2, Bayesian p-values provide 

certain indications but are not to be formally compared across models. 

Therefore, we proceed with a more detailed investigation of the differences 

between the predictions of the two models. To this end, the particular case-
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specific tests presented in section 3.2.5 provide an interesting insight. The 

corresponding predictive distributions from both models are presented in Figure 

3.8. Once again, all p-values are within acceptable limits. Nevertheless, it is 

interesting to note that although the distributions in Figures 3.8(a) and (c-d) 

more or less concur, the predictions for the total number of flows from the two 

models in Figure 3.8(b) are quite different in location with the PIG distribution 

positioned more to the left. 

 
Figure 3.8 Kernel estimates of predictive distributions for going-to-work/school trips from 
the PG model (in blue) and the PIG model (in red) for (a) incoming trips to the 
municipality of Antwerp, (b) total number of trips in Flanders and intra-zonal trips for the 
five Flemish provinces; (c) Antwerp, (d) Limburg, (e) East Flanders, (f) Flemish Brabant 
and (g) West Flanders. The vertical black lines indicate the observed quantities. 

In order to explain the discrepancy in Figure 3.8(b) a cell by cell 

examination of the extremeness of the predictions for the 94,864 OD pairs was 

performed. In overall, the predictions from both models are close to the 

observed flows and provide a satisfactory fit. The cell by cell examination reveals 

that approximately 88% of the p-values lie within 0.025 and 0.975 for both 

models. The 12% of the cells which is not predicted as well are mainly zero and 
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low-valued cells. Following this result, a closer examination regarding how well 

the models replicate the total number of zero-valued cells resulted to Bayesian 

p-values equal to 0 for the two models which means that both underestimate 

the total number of zero-valued OD pairs. The predictive distributions for the 

total number of zero-valued OD pairs are shown in Figure 3.9. 

 
Figure 3.9 Predictive distributions for number of zero-valued OD pairs from the PG model 
(in blue) and PIG model (in red), the vertical black line corresponds to the observed 
number of zero-valued OD pairs.  

As illustrated in Figure 3.9, both models underestimate the number of zero-

valued cells, nevertheless underestimation is more extreme for the PG model. 

Given that the OD matrix is approximately 63% zero-valued, the finding is 

interesting as it implies two things. First, that the PIG model predicts relatively 

better than the PG model in this particular aspect which is also in accordance 

with the lower p-value for absolute distances in Table 3.12, and second that the 

distribution from the PG model in Figure 3.8(b) is more well-centered not due to 

model consistency but due to more extreme underestimation of the total number 

of zero-valued cells which have a strong cumulative influence on the total 

number of OD flows.     
 

3.4 A note on a direct-demand gravity type perspective 
 

All models described previously assume a log-linear relationship between the 

Poisson rate and the 25 explanatory variables and random effects. The 

multiplicative relationship for 1,2,...,i n  is 
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0 6 6 10 10 23 23 25 251 1 7 7 11 11 12 12 24 24... ... ...i i i ii i i i iβ β x β x β x β xβ x β x β x β x β x
i iλ e e e e e e e e e e u       . 

 

As discussed in section 3.1.4, variables 1x  to 6x  are dummy variables while 

variables 7x  to 25x  are discrete/continuous variables in log scale. Let us denote 

with jz  the untransformed variables, i.e. logj jx z , for 7,8,...,25j  . From 

this category of variables, 7z  to 10z  (total number of municipalities between the 

administrative levels) and 25z  (distance) have a one-to-one correspondence 

with the vector of OD flows y. On the other hand, variables 11z  to 24z  come in 

pairs since they distinguish between origin and destination attributes, for 

instance 11z  refers to employment ratio of origin while 12z  refers to 

employment ratio of destination. Thus, 12z  is actually 11z  reordered, or vice 

versa. 

 Then, if we set sβ
sB e  for the intercept and the dummies, i.e. for 

0,1,...,6s  , re-denote the distance variable with d, parameters 

11 12 13 14 23 24 25( , , , ,..., , , )β β β β β β β  as 11 11 12 12 17 17( , , , ,..., , , )O D O D O D Dstβ β β β β β β  – with the 

superscripts O, D, Dst corresponding to origin, destination and distance effects – 

and finally switch back to the matrix representation, i.e. ~ ( )od odT Pois λ  for 

, 1,2,...,o d m , we have that 
 

1 2 6 107 11 11 12 12 17 17
0 1 2 6 7 10 11 11 12 12 17 17... ... ... ( )

D D D D D D Dst
od od odx x x ββ β β β β β β β

od od od o d o d o d od odλ B B B B z z z z z z z z f d u       , 
 

where ( )f d  is a function of distance in our case the identity function, i.e. 

( )f d d . This representation apart from the effects of the dummy variables 1x  

to 6x , the variables 7z  to 10z  and the random effect vector u, bears a strong 

resemblance to traditional gravity-type and direct-demand transportation 

models (see for instance chapters 5 and 6 in Ortúzar and Willumsen, 2001). Of 

course, instead of marginal origin and destination totals which depend on 

balancing factors that need to be estimated (synthetic or gravity models) or only 

population and income effects (direct-demand models) a wider range of 

geographic and socio-economic attributes is utilized together with distance and 

exponential effects, which are estimated within a statistical framework, are 

assumed. In addition, the usual transportation modeling assumptions for the 
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function of distance are either 1( )f d d  or 2( )f d d  and not the identity 

function35. Nevertheless, the resemblance is worthwhile noting as it provides a 

more familiar modeling interpretation within the transportation field.  

It should be noted that the material presented throughout this chapter is 

not the first Bayesian OD modeling approach. In fact, in the discussion paper by 

West (1994) a Bayesian gravity-model for transportation forecasting is 

presented. The main difference is that in West (1994) the functional gravity 

form is used directly and without explanatory variables, whereas our approach 

starts from an additive log-linear form with explanatory variables. Nevertheless, 

the similarities in methodology and also conclusions are striking. The Bayesian 

gravity-model of West (1994) is based on the Poisson distribution and also on 

proposed extensions of the Poisson with random effects which are either 

lognormal or gamma distributed. The concluding discussion mentions the 

possibility of extending the gravity-model by including explanatory variables and 

also emphasizes on the necessity of random effects for applications on large-

scale OD matrices.   

Finally, it should be noted that similar types of gravity models are also 

commonly used in econometrical and trade-flow studies (see for instance the 

studies of Anderson, 1979; Bergstrand, 1985). 
 

3.5 Summary 
 

In this chapter we introduced a statistical modeling approach with covariates for 

the Flemish OD derived from the 2001 Belgian census study. Poisson mixtures 

and Bayesian methods are advocated as a suitable working framework for 

modeling large, over-dispersed and highly-skewed OD datasets. Initially, a 

comparison was performed between the simple Poisson model – a modeling 

assumption which is frequently utilized for OD flows – and the over-dispersed 

negative binomial model. Model comparison indicated that the negative binomial 

distribution is clearly a more suitable distributional assumption. Furthermore, 

the negative binomial model was presented from the hierarchical or Poisson 

mixture perspective as a Poisson-gamma model with random effects accounting 

                                                             
35 Initially, all three functional forms were considered and eventually the identity function was selected 
as it resulted to lower values of model selection information criteria.   
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for heterogeneity across OD pairs. The Poisson-gamma model was then 

compared to the Poisson-lognormal model which up to date is the predominant 

alternative option and also to the Poisson-inverse Gaussian model. The latter – a 

model not as popular as its competing alternatives – was found not only to 

provide the best marginal fit, but that it also has desired distributional properties 

very much alike the Poisson-gamma model and unlike the rather cumbersome 

Poisson-lognormal model.  

A set of 25 explanatory variables was used to model the expected OD trips 

under the assumption of a log-link function. All parameters proved to be 

statistically significant and the related inference led to consistent interpretations 

which demonstrate a correspondence with traditional trip-production and trip-

attraction studies as well as recent transportation studies. In addition, the 

particular experimental design allows for an alternative interpretation of the 

Poisson mixture models as direct-demand, gravity models. An interpretation 

which brings this current research closer to the traditional and still frequently 

used four-step modeling approach.  

One advantage of the Bayesian approach is the provision of a well defined 

predictive framework. The benefit from a transportation perspective is that one 

can predict the short-term distribution of any type and/or combination of trips 

that are of interest. Predictive distributions may serve as predictive scenarios 

useful in transport planning and policy evaluation. The benefit from a statistical 

perspective is that goodness-of-fit can be assessed in many different ways. 

Predictions of OD flows were generated from both Poisson-gamma and Poisson-

inverse Gaussian models and the proximity of these predictions to the observed 

data was evaluated according to several measures of discrepancy. The overall fit 

was found in general to be satisfactory. Nevertheless, one important finding is 

that both models tend to underestimate zero-valued cells. Although replicating 

the number of zero-valued cells was initially not one of the primary goals of the 

analysis, it is shown that zero-valued cells have a strong cumulative influence on 

total travel-demand.  

 It is also worth noting that Bayesian methods provide in general a flexible 

framework for improving and keeping up-to-date the estimates of a given 

model. If further data become available, e.g. from a new census study, then the 

non-informative prior distributions presented here would be replaced by 
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informative prior distributions based on the current posterior estimates, and a 

new application of Bayes’ theorem would then result to updated posterior 

estimates that borrow strength from both the old and the new OD datasets. In 

addition, the new distributional assumptions regarding prior and likelihood 

densities would not be necessarily constrained to the distributional assumptions 

presented in this research. 

Finally, it is arguable that the proposed methodology may serve as an 

effective alternative to the traditional four-step transportation model for cases in 

which historical OD data exist. From this point of view the methodology may be 

seen as a joint trip generation and trip distribution model which integrates the 

first phases of a four-step model in statistical models which provide a wider 

inferential horizon. 
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4 Bayesian inference on traffic assignment and 

network congestion 
 

The methods introduced in this chapter provide a framework which is suitable 

for enhancing information from traffic assignment in terms of delivering 

stochastic estimates for traffic flows on links. Stochastic variability is associated 

to the travel-demand uncertainty related to the origin-destination OD matrix 

used as input into a given assignment model and therefore the methodology is 

not constrained by the choice of the latter. In general, the proposed framework 

relates closely with two important contemporary research directions; the first is 

traffic assignment under demand uncertainty, the second is identification of 

congested links.  

Naturally, the methodology is based on the Bayesian predictive framework 

which, as demonstrated previously, provides a suitable working framework for 

generating multiple OD matrices from the corresponding predictive distribution 

of a given statistical model. As a consequence predictive inference for link flows 

is straightforward to implement either by assigning summarized OD information 

for approximate network inference or by performing multiple assignments for full 

network inference. The proposed methodology is tested on the Flemish road 

under the assumption of a deterministic user equilibrium assignment model.  

The chapter begins with literature reviews concerning the topics of traffic 

assignment under demand uncertainty and congested/critical link identification. 

A description of the Flemish road network follows. Next, the two OD inputting 

methods are presented. Results for the Flemish network are discussed and 

analyzed initially by considering only the predictions from the Poisson-gamma 

model. These results are subsequently compared to results based on Poisson-

inverse Gaussian predictions. The chapter ends with a summary of results and 

conclusions. The material of this chapter is based on Perrakis et al. (2012b,d,e).    
 

4.1 Traffic assignment under demand uncertainty 
 

As discussed in the introduction of this dissertation, traffic assignment is 

perhaps the most crucial part of transportation analysis. Traffic assignment 

models take into account the dependencies among OD demand, link flows and 
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path costs, and simulate the interactions between transportation supply and 

travel demand in order to deliver an output which describes the mean state of a 

transportation system and its corresponding overall variability (Cascetta, 2009). 

Traffic assignment methods flourish in the relative literature; ranging from 

simple deterministic/stochastic uncongested network models and 

deterministic/stochastic user equilibrium and system optimum models, for the 

cases of congested networks, to more advanced methods such as equilibrium 

assignment with variable demand, multiclass assignment and dynamic process 

models. Descriptions of models and algorithms can be found in numerous books 

as in Thomas (1991), Patriksson (1994) and Cascetta (2009), to name a few. 

Extensive information for deterministic and stochastic user equilibrium (UE) 

assignment is also found in the articles of Florian and Hearn (1995) and 

Cantarella and Cascetta (1998), respectively. 

 The output of traffic assignment models is generally vital to decisions 

related to infrastructure expansion and transport policy measures, and simple 

point estimates – even if they refer to the most likely values – are not sufficient 

for a proper and safe assessment of the risks associated with such decisions. For 

instance, commonly used assignment models such as deterministic user 

equilibrium (DUE) and stochastic user equilibrium (SUE) deliver by definition 

deterministic solutions, i.e. point estimates of link flows without corresponding 

measures of statistical dispersion36. Therefore, despite the wide range of 

available assignment models, the need of quantifying precisely the uncertainty, 

which is related to traffic assignment estimates, is strongly present.  

This necessity did not pass unnoticed as in recent years many studies are 

orientated towards this research direction. Initially, Waller et al. (2001) showed 

that in DUE assignment the expected performance of a network is, not only, not 

equivalent to the performance of the system under the expected value of travel-

demand, but that the latter case is also suboptimal. Ukkusuri and Waller (2006) 

extended previous work and investigated the performance of seven point 

estimates of OD demand under the UE assumption. In the studies of Gardner et 

al. (2008, 2010), the impact of demand uncertainty on the pricing of 

transportation networks is explored by evaluating network performance resulting 

                                                             
36 Despite the stochastic formulation, the equilibrium solution for the SUE model is deterministic based 
on a large sample approximation. More details can be found in section 5.1.1. 
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from single point demand-approximations, multiple points of inflated/deflated 

demand and meta-heuristic approaches. Sampling approaches are demonstrated 

in Duthie et al. (2011) where correlated OD demand realizations are sampled 

from multivariate truncated-at-zero normal and multivariate lognormal 

distributions, and iteratively used as input into the user equilibrium model. The 

authors further investigate the performance of different sampling techniques – 

Monte Carlo, quasi-Monte Carlo, antithetic, latin hypercube and control variates 

sampling – in terms of relative bias and error considerations. Other approaches 

aim to incorporate long-term demand stochasticity directly in the assignment 

problem, resulting to modifications of the DUE formulation as a bi-level, non-

linear, non-convex mathematical optimization problem. For instance, Ukkusuri et 

al. (2007) propose a robust network design problem and utilize a genetic 

algorithm for the solution, while Ukkusuri and Patil (2009) formulate a flexible 

network design problem which can be solved under complementarity 

constraints. 
 

4.2 Congested link identification and critical links 
 

Congestion analysis is one of the primary aims of traffic assignment as it often 

serves as a basis for transport planning and investment decisions concerning 

road expansions, re-routing schemes and toll pricing among other issues. 

Congestion on a given link is typically measured by the volume-over-capacity 

(V/C) ratio. According to the Highway Capacity Manual (1994) congestion is in a 

state of “under-capacity”, ”at-capacity”, “near-capacity” or “over-capacity” for 

respective V/C ratios smaller than 0.85, between 0.85 and 0.95, between 0.95 

and 1 or for values greater than 1. Although different ranking criteria are 

frequently adopted depending on the nature and scope of specific projects and 

case studies, a V/C ratio greater than 1 is generally accepted as an indicator of 

severe congestion since in this case the traffic volume on a given link exceeds 

the theoretical capacity of the link. In general, the V/C ratio is the most basic 

and commonly used measure for congestion inference. It is also worth noting 

that the V/C ratio is also commonly used as an explanatory variable for 

prediction of traffic accidents in traffic studies as for instance in Frantzeskakis 

and Iordanis (1987), Zhou and Sisiopiku (1997) and Lord et al. (2005). Within 

the context of traffic assignment, V/C ratios are estimated quantities and are 
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consequently subjected to the deterministic limitations of the assignment models 

which are common in practice. Thus, in many real world applications inference is 

based on point estimates of V/C ratios without relative measures concerning the 

variability of the estimates.       

Uncertainty in congestion estimation becomes particularly influential when 

related to critical link identification which is customarily the subject of 

vulnerability analysis. The concept of vulnerability of a road network is defined 

by Berdica (2002) as the susceptibility to incidents that result in considerable 

reductions of network performance. Thus, analysis of vulnerability focuses on 

traffic incidents and the consequent responses to those incidents, and evaluates 

the impact on a network by means of properly defined vulnerability indices 

which typically rely on traffic assignment procedures. Within this domain, state-

of-the-art approaches are based on the full network scan approach (Jenelius et 

al., 2006; Taylor et al., 2006; Taylor, 2008) which – in short – involves 

iteratively removing every link of a network and assessing the impact of its 

removal through a traffic assignment procedure. Nevertheless, the associated 

computational burden constitutes the implementation of full network scan 

algorithms prohibitive, as yet, for applications on large-scale, congested 

networks. Other studies aim to reduce this computational burden by finding 

appropriate strategies for pre-selecting the potentially critical links based on 

minimum OD cost paths or high-choice probability links through SUE assignment 

(D’Este and Taylor, 2003; Taylor and D’Este, 2004), or on measures based on 

V/C ratio and various variations of V/C (Knoop et al., 2007). Recently, Chen et 

al. (2012) introduced critical link identification for large-scale, congested 

networks under demand uncertainty with a reduced-scan approach on what is 

defined as an impact area, i.e. a local area of influence surrounding a critical 

link. 
 

4.3 The road network of Flanders 
 

The road network of Flanders runs a total length of 65,296.72 kilometers. The 

road network with the corresponding borders of the 5 Flemish provinces, 

Antwerp, Limburg, East Flanders, Flemish Brabant and West Flanders, is 

presented in Figure 4.1. The circled areas indicate the capital-municipality of 

each province, the size of each circle is an approximate representation of the 
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population of each municipality. Antwerp is the most populated capital, followed 

by Ghent, Leuven, Bruges and finally Hasselt. It should be reminded that trips 

originating from or terminating within Brussels metropolitan area, which is also 

marked in Figure 4.1, are not included in the proceeding analysis. Brussels 

metropolitan area, although being situated within the Flemish region, is a 

separate administrative region.  
 

 
Figure 4.1 The road network of Flanders and the 5 Flemish provinces of Antwerp, Limburg, 
East Flanders, Flemish Brabant and West Flanders with corresponding capitals; Antwerp, 
Hasselt, Ghent, Leuven and Bruges. 

In overall the network contains 97,450 links which can be categorized into 

highways (including entrance/exit road segments), main regional roads, small 

regional roads, local municipal roads and walk/bicycle paths. The majority of 

links corresponds to local municipal road segments (52.91%), followed by links 

belonging to small regional roads (21.1%), main regional roads (15.48%), 

highways (8.58%) and finally walk/bicycle paths in municipalities, countryside 
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and near train stations (1.93%). The latter category is by default not taken into 

account during traffic assignment37. 
 

Link category Total number of links Percentage of links 
Highways (including exits & entrance) 8,357 8.58% 
Main regional roads 15,091 15.48% 
Small regional roads 20,562 21.1% 
Local municipal roads 51,557 52.91% 
Walk/bicycle paths 1,883 1.93% 
Sum 97,450 100% 

TABLE 4.1. Categories of links with the corresponding totals and percentages of each 
category for the 97,450 links comprising the Flemish road network.  

The total number of links for each of the aforementioned categories and the 

corresponding percentages with respect to the total number of links are 

summarized in Table 4.1. 
 

4.4 Quantifying input-uncertainty with Bayesian OD predictions 
 

Following the notation which was introduced in section 1.1, let l denote the total 

number of links in a network and let 1 2( , ,..., )T
lv v vv  be the corresponding 

vector of link flows or volumes. In addition, let A represent the assignment 

operator. All of the estimates discussed next will be of course conditional on A 

which implies that alteration of the parameters of the assignment model or – 

more important – of the choice of the assignment model itself will result to 

potentially different estimates. Finally, in order to simplify notation the OD 

predictions are now denoted by ( )my  instead of ( )pred my , for 1,2,...,m M . 

 

4.4.1 Method 1 for approximate network inference – assigning OD 

summary statistics 
 

In the first method the predictive vectors ( )my , for 1,2,...,m M , are utilized in 

calculating a summary statistic of the OD matrix denoted by ( )S y . In general, 

the OD summary vector is a function of the M predictions, that is 

                                                             
37 In addition, for traffic assignment 2,451 connecting centroids are used. These are not actual road 
links, but are needed for implementing traffic assignment. When considering the connectors, the total 
number of links becomes 99,901, 2.5% of which are connectors.  
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(1) (2) ( )( ) ( , ,..., )MS fy y y y . By assigning ( )S y  to a network, a corresponding 

estimate for link flows, denoted by ( )S v , is obtained. 

The most common point estimate is the mean ( )S y y  which can be 

calculated as follows: 
 

(1) (2) ( ) (1) (2) ( )
1 1 1 1 1 11
(1) (2) ( ) (1) (2) ( )

2 2 2 2 2 2 2

(1) (2) ( )

1 1
                      

M M

M M

M
n n n n

y y y y y yy
y y y y y y y

M M
y y y y

          
       

                     
                       

y






      
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n n ny y y

 
 
 
 
 
    

. 

 

The  n   1  mean vector y  can then be used as the OD-input in an assignment 

model which will yield a l × 1 vector v  corresponding to the mean estimate of 

link flow vector v, i.e.  Ay v  or in a more illustrative notation:  
 

1 1

2 2

n l

y v
y v

y v

   
   
       
      
   


A

y v
 

. 

 

Specifically, v  is an estimate of ( | , )E v y A  the expected vector of link flows 

conditional on the predictive expectations of OD flows but also conditional on the 

assignment model. 

For interval estimates the appropriate summary statistics are percentile 

vectors, i.e. ( ) pS y y  for the p-th percentile. Estimation of a percentile vector 

is not as straightforward as the calculation of the mean vector. Calculating 

individually the corresponding percentile of each OD pair would result in a 

percentile vector which will be highly unlikely to occur, especially for percentiles 

near 0 or 100 and for a large number of OD pairs, i.e. for a large n. For 

example, if the 0th and 100th percentile vectors – corresponding to the minimum 

and maximum – are calculated as mentioned, then that implies the assumption 

that each OD pair is occurring exactly at its minimum/maximum, an assumption 

which is not realistic and which would lead initially to an erroneously small/large 

total demand figure and consequently to an erroneously wide interval estimate. 

Therefore, it is preferable to derive percentile vectors based on a function of 

vectors ( )my  which will operate as a criterion and constrain the estimates within 

realistic limits.  
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A natural selection for the criterion is the sum or total demand of each 

vector ( )my , i.e. ( ) ( )
1

nm m
ii

s y


  , for 1,2,...,m M . Under this approach, the 

percentile vector py  is derived by calculating first the corresponding percentile 

( )ms  from the values  (1) (2) ( ), ,..., Ms s s . Then, the vector which has the closest 

sum to ps  is chosen as py . In case there are two or more sums which satisfy 

that condition, then py  is set as the average of the corresponding vectors. In 

general, 

1
( )

1

pK
p k

p
k

K




   
  y y , 

 

where   ( ) ( ) ( ): min ,  1,2,...,k k p m p
p m

K y s s s s m M      and pK  is the 

cardinality of set pK . A common percentile pair is 2.5 97.5( , )y y  which corresponds 

to a 95% interval estimate. Note that 50y , the vector corresponding to the 

median, can also be calculated through this procedure as an additional point 

estimate to the mean. For the special cases of the minimum and maximum 

vectors we simply have to find mins  and maxs , respectively, and then calculate 

vectors miny  and maxy  as follows 
 

min1
min ( )

min
1

K
k

k
K
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   
  y y  and 
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K
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where  

  ( ) ( ) ( )
min : min ,  1,2,...,k k m

m
K s s m M  y , 

  ( ) ( ) ( )
max : max ,  1,2,...,k k m

m
K s s m M  y , 

with minK  and maxK  being the corresponding cardinalities of sets minK  and maxK . 

After calculating a specific percentile vector py  that is of interest, the 

corresponding estimate for link flows pv  is obtained by assigning py  to the 

network. The results will once again depend on the choice of the assignment 

model. 

It should be noted that the recommended percentile derivation approach 

based on the total demand requires OD predictions which are well-validated for 
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the majority of OD pairs, at least for the non-negligible, inter-zonal OD pairs 

which have a significant contribution to the total demand. From a Bayesian 

perspective well-validated implies that predictions include the observed 

quantities within certain credible intervals (e.g. 95%) with a reasonable range. 

Obviously, the same approach is not applicable for random permutations across 

the cells of a given OD matrix or similar sampling approaches which will 

eventually result to the same total demand but will alter completely the traffic 

flow dynamics induced by the demand distribution of each OD pair38. 

 

  

 
Figure 4.2 Using M predictive OD datasets to calculate an OD summary matrix S(OD) 
which is used as input in traffic assignment, resulting to a link flow summary estimate 
S(LF). 

                                                             
38 The point seems trivial, but is worth mentioning in order to avoid misconceptions with relative 
research applied on a different context. For instance, a similar problem is observed in OD estimation 
from link counts (discussed in section 1.2) where the goal is to find the most plausible OD matrix 
among many candidate OD matrices which can potentially replicate an observed, reduced vector of link 
counts.  
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A graphical representation of the method is provided in Figure 4.2. Similar 

approaches exist with respect to calculation of centrality point estimates; for 

instance, besides of the mean and the median the additional point estimates 

discussed in Ukkusuri and Waller (2006) can also be utilized. On the other hand 

derivation of percentile estimates is not pursued to a large degree in the relative 

literature, therefore the approach presented here does contribute to that 

direction to some extent. Nevertheless, the main contributions of this paper rely 

on the method presented next.      
 

4.4.2. Method 2 for full network inference – assigning multiple OD’s 
 

Method 2 involves assigning all Μ OD predictions individually in order to obtain 

Μ corresponding vectors of link flows. This method is computationally more 

intense than method 1, but also delivers full information for link flows in the 

form of distributional estimates. In this case, an individual assignment must be 

implemented for each ( )my , for 1,2,...,m M . In vector notation, we have that 
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Overall summary statistics can be calculated, only this time directly from the 

vectors ( )mv . For instance, the mean is calculated as follows 
 

(1) (2) ( ) (1) (2) ( )
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Note that this an estimate of the expectation of vector v conditional on all OD 

predictions and on the assignment model, that is (1) (2) ( )( | , , , )ME v y y y A . A 

graphical representation of method 2 is provided in Figure 4.3. 
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Figure 4.3 Performing M individual assignments results to link flow summary estimates 
S(LF) as well as distribution estimates. 

With this method, estimates of percentile vectors are straightforward to 

calculate. Any percentile vector 1 2( , , , )p p p p
lv v vv   is calculated directly from the 

M vectors ( )mv , i.e. p
jv , for 1,2,...,j l , is estimated individually as the p-th 

percentile obtained from the corresponding sample values  (1) (2) ( ), ,..., M
j j jv v v . In 

general, the vectors ( )mv  contain all necessary information for the links of the 

network. For inference on a specific link jv , point, interval and dispersion 

estimates, such as the variance and the standard deviation, or even the 

distribution of jv  can be estimated directly from the sample  (1) (2) ( ), ,..., M
j j jv v v . 

Consider for instance the calculation of V/C probabilities; let us denote by jc  the 

theoretical capacity of link j and let us assume that interest lies in calculating 

the probability that /j jv c  equals or exceeds a specific threshold value h. If 

( )jp   is the probability density of jv , then an estimate of the following quantity 

is needed  
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Pr( / ) ( )
j j

j j j j j
v hc

v c h p v dv


   . 

Given the sample  (1) (2) ( ), ,..., M
j j jv v v , this probability is straightforward to 

estimate through direct Monte Carlo (MC) integration, that is 
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4.5 Network inference under DUE assignment and PG predictions  
 

In this section, results from the two inputting methods previously discussed are 

presented for the Flemish road network under the assumptions of DUE 

assignment and PG predictions. The main purpose of this section is to highlight 

the differences between full network inference (method 2) and approximate 

network inference (method 1). Thus, the focus of interest in this section lies on 

the impact of input-uncertainty. Model-uncertainty originating from the choice of 

statistical OD modeling and traffic assignment modeling is further investigated in 

sections 4.6 and 5.1, respectively.  

The DUE model is utilized which is one of the most commonly used traffic 

assignment models. The model is based on Wardrop’s 1st principle (Wardrop, 

1952), also known as the equilibrium principle, which states that: 
 

“The journey times on all the routes actually used are equal, and less than 

those that would be experienced by a single vehicle on any unused route”. 
 
The principle leads to a user-optimal approach where the users of a network aim 

to minimize their individual travel costs or travel times. The approach can also 

be interpreted in terms of game theory. Interesting notes on related theoretical 

and mathematical aspects can be found in Patriksson (1994), extensive 

information for UE assignment is also available in Florian and Hearn (1995). The 

model is deterministic in the sense that it is based on the assumption that users 

have perfect knowledge of the travel costs.   

In short, DUE assignment uses an iterative process for reaching to a 

convergent solution in which travelers cannot reduce their travel times by 

switching routes. At each iteration link capacity restraints and link flow-

dependent travel times are taken into account in order to calculate link flows. As 
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a mathematical program DUE assignment is solved with the Frank-Wolfe 

algorithm (Frank and Wolfe, 1956). As link performance function the common 

BPR formulation (Bureau of Public Roads, 1964) is adopted which relates link 

travel times to volume over capacity (V/C) ratios, specifically 
 

1
β

f
vt t α
c

     
   

, 

 

where t is link travel time, ft  is link free-flow travel time, v is link volume (flow), 

c is link capacity and α, β are calibration parameters which according to the BPR 

formulation are set equal to 0.15 and 4, respectively.  

Concerning implementation of inputting method 2, 500 individual 

assignments were executed each taking as input one predictive OD from the PG 

model39, thus resulting in 500 corresponding link flow or link volume vectors. 

That is, ( ) ( )DUE m mA y v , for 1,2,...,500m  , where ( ) ( ) ( ) ( )
1 2( , ,..., )m m m m

lv v vv  and l 

is the total number of network links which equals to 97,450 for the Flemish 

network40. The assignments concern the morning peak-hour interval between 7 

am and 8 am for a normal weekday. It should be noted that since the initial OD 

matrix concerns work/school trips made by Flemish residents the assignment-

related inference that follows is also restricted to work/school trips of Flemish 

residents without considering potential traffic originating from the metropolitan 

area of Brussels or from the French-speaking region of Walloon to the south of 

Belgium. In addition, as already mentioned, links within the metropolitan area of 

Brussels are not included in the analysis. Nevertheless, the highway ring around 

Brussels metropolitan area is included.  
 

4.5.1 Sample size considerations 
 

Initially, the adequacy of the sample size is checked by examining the behavior 

of the cumulative average of certain OD attributes, namely the total demand 

(sum), the mean and also the standard deviation. Intra-zonal municipal flows 

are not taken into account any more as they do not influence the traffic 

assignment.  

                                                             
39 See section 3.2.5. 
40 Software TransCAD (Caliper Corporation, 2008) was used to execute all assignments either based on 
OD summaries (method 1) or for repeated assignments (method 2).  
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Results are presented in Figure 4.4, as illustrated the the three attributes 

start to stabilize roughly after 100 OD predictions and become almost constant 

after 200 predictions. 

 
Figure 4.4 Cumulative averages (CA) of total demand, mean demand and standard 
deviation for 500 PG predictions of inter-zonal OD flows between 7 am and 8 am. 

 

4.5.2 The average state of the Flemish network 
 

Global visualization is a first illustrative step which provides a general idea for 

the overall state of the network. The mean link flow vector is the most suitable 

summary for describing the average state of the network. In Figure 4.5, the 

results from DUE model and the mean link flow vector obtained from method 1 

are visualized. In order to make Figure 4.5 simpler to comprehend only flows 

and V/C ratios for highway links are highlighted, the main findings are the 

following.  
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Figure 4.5 Mean link traffic flows in highways for work/school trips between 7 am and 8 
am from DUE assignment and PG predictions based on the mean link flow vector from 
method 1. 

V/C ratios are higher in specific segments on or near the highways rings of 

Antwerp (R1) and Ghent (R4) which can be identified by the yellow spots 

indicating V/C ratios between 0.5 and 0.75. Relatively high V/C ratios (light 

green color) also occur on the northern part of highway ring R0 around Brussels, 

on highway E40 near Leuven, highway E313 which connects Antwerp with 

Hasselt and to a lesser degree on highways E17 and E19 which connect Antwerp 

with Ghent and Brussels, respectively. In terms of link volumes, that is judging 

by the thickness of the lines, the busiest highway seems to be E313 as it 

approaches Antwerp from the east.  

The corresponding assignment map for mean link flows from method 2 

seems almost identical to the map of Figure 4.5 and therefore not presented 

here, since differences between the two methods are difficult to mark on a 

global scale41. The differences are examined in more detail next. 
 

                                                             
41 The assignment map from method 2 is presented in section 4.6.1. 
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4.5.3 Jensen’s inequality, centrality and percentile estimates 
 

An interesting topic in the relative literature concerns the behavior of the total 

system travel time (TSTT) under uncertain demand. In Waller et al. (2001) it is 

discussed that in UE assignment the TSTT as a function of OD demand can be 

approximated by a convex function. The implications are first that TSTT is a 

random variable due to the stochastic OD demand and second that it is 

subjected to Jensen’s inequality due to the fact that it is represented by a 

convex function. The OD demand vector is denoted by y, so if g is the objective 

function of UE which is approximately convex, then from Jensen’s inequality we 

have that ( ( )) ( ( ))g E E gy y . The quantity on the left side of the inequality is the 

TSTT based on ( )E y  which is the mean demand, while the quantity on the right 

side is the mean of TSTT. What the inequality implies is that the “true” mean 

TSTT is potentially underestimated when the mean OD demand is used in UE 

assignment and since this is a very frequent strategy this theoretical 

consideration is alarming with respect to planning and investment decisions. An 

analytical description is provided by Waller et al. (2001). 

Our working framework provides the opportunity to address this 

consideration empirically and see what the impact on the Flemish network is. 

The quantity ( ( ))g E y  is easily calculated from assigning the mean OD matrix 

(method 1) and adding up the resulting vehicle-hours travelled for each link, 

while the quantity ( ( ))E g y  is calculated by adding the vehicle-hours vectors for 

each one of the 500 assignments (method 2) and then calculating the average 

of the 500 TSTT values. Results are presented in Figure 4.6 where the two 

quantities of interest are superimposed on a kernel estimate of the distribution 

of TSTT. As illustrated in Figure 4.6, TSTT based on mean OD demand is indeed 

smaller than the expected TSTT given the OD variability, nevertheless the 

difference is relatively small; in numbers we have that TSTT[E(OD)] equals 

1,387,009 vehicle-hours, while E(TSTT) equals 1,387,129 vehicle-hours. The 

95% interval for TSTT is from 1,383,152 to 1,391,169. In practical terms and in 

the application presented here the estimate TSTT[E(OD)] is quite close to the 

target quantity. Nevertheless, a generalization of this conclusion is not 

warranted as the results depend to a large extent on network topology, level of 
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congestion (as illustrated in Figure 4.5 the overall congestion level is low to 

medium) and also on the degree of variability between the OD predictions. 
 

 
Figure 4.6 Kernel estimate of TSTT (vehicle-hours) distribution derived from the 500 
values of TSTT. The solid line represents the expected TSTT estimate (method 2), the 
dotted line represents TSTT derived from the expected demand (method 1). 

We proceed with investigating point and interval estimates derived from the 

two methods. In order to summarize results the link flows are aggregated 

according to road-type. The corresponding estimates are rounded and presented 

in Table 4.2. Centrality measures, i.e. the means and the medians, derived from 

the two methods are relatively close, since relative to the large magnitudes of 

the estimates the differences are in terms of hundreds. This provides some 

evidence that method 1 might be adequate if the purpose is solely to have an 

estimate of the central state of the network. Once again a generalization is not 

warranted. In principle, the expectation function is not exchangeable in UE due 

to non-linearity and factors such as congestion and the variability in the OD 

predictions are influential. From this point of view we emphasize on the 

importance of well-validated OD predictions for the majority of inter-zonal OD 

pairs42. Regarding the 95% interval and range estimates, the ones derived from 

method 1 prove to be clearly narrower than the corresponding intervals of 

                                                             
42 As discussed in section 3.36, 88% of the predictions for the 94864 OD cells result to p-values which 
lie within a 95% credible interval. The remaining 12% of the cells which are not predicted as well are 
zero or low valued cells. As we saw, these are influential on the total demand, but on the other hand 
they do affect traffic flow interrelationships and dynamics. 
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method 2. The result is partially anticipated since the percentile estimates of 

method 1 are approximate and are derived by a further conditioning upon total 

demand. Therefore, compared to the intervals of method 2 the intervals of 

method 1 fail to capture a large part of the variability induced by the assignment 

procedure. Conclusively, method 2 is more reliable for interval estimation. In 

addition, method 2 provides link flow dispersion estimates. The standard 

deviation for each category of link volumes is also presented in Table 4.2. 
 

Links types 
Method 1 

Mean Median 95% interval Range St.dev. 

Highways 1,565,723 1,565,536 (1,564,267 - 1,566,497) (1,561,068 - 1,570,341) - 

Main regional roads  1,292,689 1,293,363 (1,291,685 - 1,294,257) (1,288,723 - 1,295,259) - 

Small regional roads 796,803  797,499  (796,357 -798,115) (793,479 - 800,656) - 

Local roads 450,905  450,263 (449,754 - 450,293) (449,653 - 451,522) - 

 
Method 2 

Mean Median 95% interval Range St.dev. 

Highways 1,565,784 1,565,614 (1,559,724 - 1,572,337) (1,554,757 - 1,576,062) 3,312 

Main regional roads  1,292,461 1,292,363 (1,288,519 - 1,296,716) (1,285,404 - 1,298,399) 2,143 

Small regional roads 797,313 797,061  (794,092 - 802,817) (793,451 - 805,032) 1,991 

Local roads 450,659 450,704  (448,947 - 452,236) (447,668 - 452,842) 835 

TABLE 4.2. Mean, median, 95% interval (2.5%-97.5%), range and standard deviation 
estimates obtained from the two methods for highway, main regional road, small regional 
road and local road traffic flows. 

Finally, link flow distributions can be estimated directly from the 500 link 

flow vectors obtained from method 2. Kernel estimates for flows in highways, 

main regional roads, small regional roads and local roads are presented in Figure 

4.7. Except of the small regional road distribution, the rest are symmetrical and 

close to normal distributions. This is to be expected since these distributions 

refer to aggregated flows which according to the central limit theorem should 

converge to normality, asymptotically. On the other hand, the distribution of 

small regional roads exhibits a long right-tail. A possible explanation is that 

individual small regional road irregularities do not completely “wash-out” 

because such roads often demonstrate all-or-nothing oscillations during UE 
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assignment due to the fact that they are closer to zonal loading points where 

there are few re-routing alternatives. 

Figure 4.7 Kernel distributions from method 2 for traffic flows on highways, main regional 
roads, small regional roads and local roads. The solid, dotted and dashed vertical lines 
correspond to the mean, median and 95% interval of each distribution, respectively. 

 

4.5.4 Congested link identification 
 

As congested links we define those links in which the V/C ratio exceeds a specific 

threshold value h with a certain probability, i.e. Pr(V/C )h . Evaluation of 

congested links in terms of probability estimates is safer in comparison to point 

estimates and also reduces the margin of uncertainty. For instance, the 

expected value of V/C may be smaller than h, nevertheless the probability of 

exceeding h may be significantly greater than zero. This point is illustrated 

further in the proceeding analysis. In general, the value h  1 is the common 
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option since values greater than 1 imply that the traffic flow exceeds the 

capacity limit, thus resulting in congestion. In our case though, inference is 

limited in traffic flows for work and school trips made only by Flemish residents, 

which means that we would expect the V/C ratios to be higher if the proportion 

of traffic related to other trip-purposes and to non-Flemish residents was 

included in the analysis. From this perspective threshold values smaller than 1 

may also be regarded as critical, but since the exact proportion of trips that is 

unaccounted for is not known exactly, h can only be selected on a heuristic 

basis. As a conservative choice and in order not to overestimate the number of 

congested links the value of 0.95 is adopted.  

Eleven links are identified for h  0.95, the V/C distributions of these links 

with the corresponding probabilities of exceeding 0.95 are presented in Figure 

4.8. Two remarks can be made, based on the distributions of Figure 4.8, 

regarding V/C distributions and consequently link flow distributions from DUE 

assignment43. First, in contrast to the distributions presented in Figure 4.7, the 

V/C distributions of Figure 4.8 and consequently the corresponding link flow 

distributions resulting from DUE assignment are not necessarily close to normal 

distributions, for instance bimodality is observed. Second, the bimodalities 

appearing in some of the distributions may be attributed to the iterative user 

equilibrium procedure44. For instance, when the flows on a specific link and at a 

given iteration exceed a certain threshold – consequently leading to a high V/C 

ratio – and there exists an alternative link with has a cost which is close but 

lower, then in the following iteration a switch of flows will occur from the high-

cost link to the low-cost link. This “switching” effect will eventually result to 

bimodal V/C distributions, as the ones presented in Figure 4.8. Results for the 

11 congested links are also summarized in Table 4.3 with the corresponding link 

types, expected values and the probabilities of exceeding a V/C ratio of 0.95. 

Note that if the analysis was based on the expected V/C ratio instead of the 

probability of exceeding a V/C ratio of 0.95, then congestion on four out of the 

eleven links would not have been identified. 
 

                                                             
43 The link flow distributions have exactly the same shape but are on a different scale, since they are 
proportional to the V/C distributions.  
44 Small sample size is excluded as being the cause of bimodalities. Initial results were based on 
execution of 100 assignments which were later increased to 200 assignments and finally to 500 
assignments as presented here. The form of the distributions was the same under all sample sizes. 
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Figure 4.8 V/C kernel distribution estimates from method 2 for the 11 congested links 
which include or exceed the value of 0.95, highlighted by a vertical line in the distributions 
which include this value. 

The results in Figure 4.8 and Table 4.3 show that seven out of the eleven 

congested links have a V/C value greater than 0.95 with probability 1. Visual 

examination of the distributions in Figure 4.8 additionally reveals that these 

seven links also exceed the value h  1 with probability 1, except perhaps of link 

106252 which has its minimum located near 1 and may therefore include 

smaller values than 1 with a low probability. 
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Congested link ID Link type (V/C)E  Pr(V/C )h  
16841     Small regional road 1.384 1 
17493     Local road 1.152 1 
22149     Local road 0.935 0.046 
28980     Highway 2.114 1 
29060     Local road 0.935 0.046 
83662     Local road 0.941 0.236 
83928     Highway 1.260 1 
84514     Main regional road 1.144 1 
92846     Local road 0.941 0.236 
92849     Local road 1.098 1 
106252     Local road 1.024 1 

TABLE 4.3. Congested links identified for h  0.95 with the corresponding V/C expected 
values and the probabilities of exceeding a V/C of 0.95, based on 500 link flow vectors 
(method 2). 

Conclusively, even without taking into consideration the proportion of traffic 

related to non-Flemish residents and to other trip-purposes than work or school 

trips, congestion on these 7 links is almost certain. The highest V/C ratio is 

observed in highway link 28980 with an expectation of 2.114, while regional 

road link 16841 and highway link 83928 follow with expected V/C ratios equal to 

1.384 and 1.26, respectively. For the remaining 4 links, the probability of 

exceeding a V/C ratio of 0.95 is lower, equal to 23.6% for links 83662, 92846 

and equal to 4.6% for links 22149 and 29060. Not surprisingly, the 11 

congested links are situated near the major municipal centers of Antwerp, Ghent 

and Bruges; the exact locations are presented in Figure 4.9.           

As illustrated in Figure 4.9, five of the congested links belong to the wider 

municipal area of Antwerp, including link 28980 which is a segment of R1 

highway ring in the north of Antwerp and has the highest expected V/C ratio. 

Links 22149 and 29060 are local outgoing road segments near highway ring R1, 

whereas link 16841, which has the second highest V/C ratio, is a segment of N1 

regional road directing right to the center of Antwerp. Finally, link 17493 is a 

local road segment outside Antwerp, nevertheless very close to Antwerp airport 

situated south-east of the city. Five congested links also appear in the municipal 

area of Ghent. Link 84514 to the north-east is a segment of N70 regional road 

very near the exit of the R4 highway ring with a direction to the center of Ghent, 

whereas  links 83928, 83662, 92486 and 92849, near the center, are  all  road 
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Figure 4.9 The congested links in the municipalities of Antwerp, Ghent and Bruges. The 
link type abbreviations H, MRR, SRR and LR correspond to Highways, Main Regional Roads, 
Small Regional Roads and Local Roads, respectively. 
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segments clustered around the end of the part of highway E17 that has a 

direction to the center of Ghent. Finally, one congested link appears near the 

municipality of Bruges that is link 106252. This link corresponds to a local road 

segment very near N31 regional road and with a direction towards the center of 

Bruges from the west. 

The analysis of congested links is based on the relatively conservative 

choice h  0.95. Naturally, for smaller values of h the number of congested links 

increases, e.g. for the values 0.9, 0.85, 0.8, 0.75, 0.7 the number of congested 

links rises to 16, 20, 25, 47 and 69, respectively. In general, for situations 

where the exact proportion of traffic is not known, as in the application 

presented in this study, the choice of h is under the control of the researcher or 

policy-planner. In such cases, inference may be based on more than one values 

of h. For cases in which there is certainty that all the potential traffic or – at 

least – most of the potential traffic of a network is included in the analysis, then 

the value h  1  may be safely adopted. 
 

4.6 Comparative network inference between PG and PIG predictions 

under DUE assignment 
 

In this section the main results presented previously are compared to the results 

which are obtained when utilizing the PIG predictions as input for traffic 

assignment. The focus of interest is on potential differences between average 

network-states, TSTT, aggregated link flow distributions and V/C distributions 

from inputting method 2. 
 

4.6.1 Differences in average states of the network 
 

Maps of link volumes and V/C ratios for the average state of Flemish highways 

under method 2 are presented in Figure 4.10 for PG predictions and in Figure 

4.11 for PIG predictions. It is difficult to distinguish any differences in the two 

maps, which implies that inference concerning the average state of highways is 

not influenced a lot, at least when visualizing this state on a global scale. In 

addition, as noted in section 4.5.3 when comparing Figure 4.10 with Figure 4.5 

which is based on inputting method 1 it is also difficult to find any striking 

difference. This is in accordance with the mean estimates presented in Table 4.2  
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Figure 4.10 Mean link traffic flows in highways for work/school trips between 7 am and 8 
am from DUE assignment and PG predictions based on the mean link flow vector from 
method 2. 

 
Figure 4.11 Mean link traffic flows in highways for work/school trips between 7 am and 8 
am from DUE assignment and PIG predictions based on the mean link flow vector from 
method 2. 
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where it is shown that the total mean highway volume estimates are more or 

less the same, namely 1,565,723 from method 1 and 1,565,784 from method 2. 

Thus, according to Figures 4.10 and 4.11 the main findings which are discussed 

in section 4.5.3 regarding expected highway flows are the same under method 

for both the PG and PIG models. 
 

4.6.2 Differences in TSTT and aggregated link flow distributions. 
 

The resulting kernel estimated distributions of TSTT from the predictions of the 

two models are presented in Figure 4.12. The x-axes in Figure 4.12 are kept 

intentionally on the same range in order to highlight that the two TSTT 

distributions are not similar in terms of location, namely the distribution from PG 

predictions is located more to the right. The reason why this is happening is 

explained next.    

 
Figure 4.12 Kernel estimate of TSTT (vehicle-hours) distribution derived from 500 values 
of TSTT under PG and PIG predictions. The solid line represents the expected TSTT 
estimate (method 2), the dotted line represents TSTT derived from the expected demand 
(method 1). 

As with PG predictions, the differences between TSTT under expected 

demand and the expected TSTT – conditional on PIG predictions – are practically 

not significant; TSTT[E(OD)] equals 1,382,246, E(TSTT) equals 1,382,352 and 

the 95% interval ranges from 1,383,048 to 1,390,812. The respective estimates 



115 
 

from the PG models were 1,387,009, 1,387,129 and from 1,383,152 to 

1,391,169. Thus, the location of the TSTT distribution under PG predictions is 

shifted about 5,000 vehicle-hours to the right. 

The corresponding distribution estimates for link flows on highways, main 

regional roads, small regional roads and local roads which result from the 

predictions of the two models are presented in Figure 4.13. Once again the 

distributions based on PG predictions are shifted more to the right side of the x-

axes. The differences observed in Figures 4.12 and 4.13 are explained by the 

findings presented in section 3.3.6. In that section, it is shown that the total 

travel-demand estimates of the two models are different, namely the total-travel 

demand from the PG model is greater than that of the PIG model. It is further 

shown that this is due to a greater degree of overestimation for the PG model 

regarding the total number of zero-valued cells. Evidently, this is also affecting 

the cumulative TSTT and link flow distributions presented in Figures 4.12 and 

4.13. The explanation is simple as traffic assignment essentially distributes or 

allocates the total travel-demand on the available links of the network. 

Therefore, the greater the travel-demand is the greater will the resulting link 

volumes be.                  

 
Figure 4.13 DUE link flow kernel estimated distributions for highways, main regional, small 
regional and local roads from 500 predictions of the PG (in blue) and PIG (in red) models. 
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It would be difficult at present to “choose” which link flow distributions are 

more appropriate. In general, the purpose of this section is to highlight the 

uncertainty originating from the choice of the statistical model and not choosing 

which predictions are “better”. Given the fact that it is infeasible to compare 

these distributions with independent link traffic data, referring to the particular 

inferential problem at hand and for the whole Flemish network, choosing which 

predictions are closer to reality would be prone to extreme speculation. From a 

strictly statistical perspective that bounds inference to the specific OD data 

which are available, i.e. one-directional, going-to-work/school trips made by 

Flemish residents within Flanders, the distributions based on PIG predictions 

may be considered as more reliable due to the smaller degree of 

underestimation for the total number of zero-valued OD pairs. 
 

Links types 

Method 2 

PG model 

Mean Median 95% interval Range St.dev. 

Highways 1,565,784 1,565,614 (1,559,724 - 1,572,337) (1,554,757 - 1,576,062) 3,312 

Main regional roads  1,292,461 1,292,363 (1,288,519 - 1,296,716) (1,285,404 - 1,298,399) 2,143 

Small regional roads 797,313 797,061  (794,092 - 802,817) (793,451 - 805,032) 1,991 

Local roads 450,659 450,704  (448,947 - 452,236) (447,668 - 452,842) 835 

 
PIG model 

Mean Median 95% interval Range St.dev. 

Highways 1,559,602 1,559,782 (1,553,157 – 1,565,363) (1,550,098 – 1,568,150) 3,259 

Main regional roads  1,287,786  1,287,659 (1,283,352 – 1,292,018) (1,281,312 – 1,296,229) 2,177 

Small regional roads 794,718  794,625  (791,589 – 799,974) (789,675 – 802,713) 1,893 

Local roads 449,019 449,042  (447,364 – 450,574) (446,512 – 451,519) 846 

TABLE 4.4. Mean, median, 95% interval (2.5%-97.5%), range and standard deviation 
estimates for highway, main regional road, small regional road and local road traffic flows 
obtained from method 2 under PG and PIG predictions. 

On the other hand, in practical terms the differences may not be as significant. 

Mean, median, interval and standard deviation estimates for the four types of 

link volumes are presented in Table 4.4. Given the large magnitudes of the 



117 
 

estimates the differences are relatively not great. This is also depicted in the 

maps in Figures 4.10 and 4.11 from where the conclusions concerning highway 

volumes and V/C ratios are the same. It is also worth noting that the differences 

in Table 4.4 are larger for highway flows and are gradually decreasing for link 

types of smaller capacity. 
 

4.6.3 Differences in congested link identification 
 

Concerning identification of congested links the choice between PG and PIG 

predictions is not very influential. The same links presented in section 4.5.4 are 

also identified under PIG predictions.  The PIG V/C distributions of these 11 links           
 

 
Figure 4.14 Kernel estimates of the PG (in blue) and PIG (in red) V/C distributions of the 
11 congested links which either include or exceed the threshold value of 0.95 highlighted 
by a vertical black line in the distributions which include this value. The abbreviations HW, 
MRR, SRR and LR stand for highways, main regional roads, small regional roads and local 
roads. 
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are compared with the respective PG V/C distributions in Figure 4.14. As 

illustrated, the distributions under the two different sets of OD predictions 

almost concur. In contrast to aggregated link flow distributions as the ones 

presented in Figure 4.12, the disaggregated V/C distributions present no 

differences in location. This result is expected as the cumulative effect of 

underestimating zero-valued OD pairs is absent in disaggregated OD flows and 

disaggregated link flows, especially for links characterized by high V/C ratios 

which are commonly not related to OD pairs where zero-valued flows occur.  

The expected values of the distributions presented in Figure 4.14 and the 

corresponding probabilities of exceeding a V/C ratio of 0.95 are presented in 

Table 4.5. 
 

Congested link ID Link type 
PG  PIG 

(V/C)E  Pr(V/C )h  (V/C)E  Pr(V/C )h

16841     Small regional road 1.384 1 1.383 1 
17493     Local road 1.152 1 1.151 1 
22149     Local road 0.935 0.046 0.934 0.022 
28980     Highway 2.114 1 2.114 1 
29060     Local road 0.935 0.046 0.934 0.022 
83662     Local road 0.941 0.236 0.941 0.208 
83928     Highway 1.260 1 1.259 1 
84514     Main regional road 1.144 1 1.144 1 
92846     Local road 0.941 0.236 0.941 0.208 
92849     Local road 1.098 1 1.097 1 
106252     Local road 1.024 1 1.024 1 

TABLE 4.5. Congested links identified for h  0.95 with the corresponding V/C expected 
values and the probabilities of exceeding a V/C of 0.95, based on 500 link flow vectors 
(method 2) derived from PG and PIG predictions. 

The expected values under PG and PIG predictions are almost identical which is 

normal given that the V/C distributions are very similar in terms of location as 

well as shape. The probabilities of exceeding the threshold value of 0.95 are 

slightly higher under PG predictions which can be attributed to a small remaining 

effect of the higher total travel-demand figures predicted from the PG model. 
 

4.7 Summary 
 

In this chapter, a general approach for traffic-assignment and network-

congestion inference based on Bayesian OD predictions was presented. In 
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general, the material of this chapter relates closely with two relatively distinct 

research directions which receive increasing attention over the last years. The 

first is traffic assignment inference under travel-demand uncertainty. This 

research gives rise to interesting questions relating to the behavior of total 

travel time performance and to the reliability of link-volume point estimates 

under uncertain demand. The second is identification of congested links which is 

closely linked to identification of critical links, an important subject within the 

framework of vulnerability analysis.  

Two methods of inputting OD predictions are discussed. In the first method 

an OD summary is calculated first and then assigned to the network, whereas in 

the second method all OD predictions are assigned to the network individually. 

Method 1 leads to approximate-network inference and despite the advantage of 

being computationally less demanding it is not as exact as method 2. In general, 

method 2 is promoted and advocated as it provides a suitable tool for full-

network inference regarding point and interval estimates, link flow distributions 

and identification of congested links by means of probability estimates.  

The methods were implemented on the Flemish road network for traffic 

concerning going-to-work/school trips made by Flemish residents between the 

peak hour from 7 am to 8 am. In general, traffic flows in Flanders were found to 

be denser around the major municipal centers of Antwerp, Ghent, Leuven and 

Bruges and on the highways which connect these cities with each other and also 

with Brussels. Eleven congested links were identified for a V/C threshold value of 

0.95, the majority of which belonging to Antwerp and Ghent. 

With respect to traffic assignment inference under demand uncertainty the 

comparison between the two methods provided some evidence that method 1 

might be suitable when the sole goal is to have some point estimate of the 

expected state of a network, such as the expected total system travel time or 

central point estimates of link flows. Nevertheless, it is acknowledged that 

similar research must be conducted for networks of different topology with 

varying levels of congestion in order to properly support this statement. 

Regarding percentile estimates, it is found that estimates from method 1 result 

in interval estimates which are clearly narrower and thus fail to capture the true 

variability of link flows given travel-demand uncertainty. 
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With respect to congested/critical link identification, the use of method 2 

has a potential to provide a robust probabilistic basis for network congestion 

inference and also for critical link identification and vulnerability analysis. Of 

course, implementing method 2 in conjunction with a full-network scan 

approach, as employed for instance in Jenelius et al. (2006), will be most 

probably prohibitive in terms of computational demand, for cases of large-scale, 

congested networks. Nevertheless, such a strategy might prove to be viable in 

combination with reduced-scan approaches as the one presented in Chen et al. 

(2012), for instance. From a simpler perspective, congested link identification by 

means of probability estimates may provide a reliable framework for pre-

selecting candidate links (e.g. D’Este and Taylor, (2003), Taylor and D’Este 

(2004)) based on probability rankings. It should be noted that in the 

applications presented here inference was based on the simple V/C measure, 

nevertheless it is also straightforward to obtain probability estimates for other 

related measures, for example the various V/C variants discussed in Knoop et al. 

(2007). 

Finally, uncertainty originating from the choice of the statistical model was 

also investigated up to a certain degree by utilizing predictions from both the PG 

and PIG models in separate assignment runs. Results revealed that the choice of 

the statistical model does have certain influence especially concerning inference 

for aggregated link flow distributions. That is due to the fact that the two models 

resulted in different total-demand distributions and since total-demand is 

influential to traffic assignment the resulting link flow distributions on 

aggregated levels were also different. Nevertheless, main inferences concerning 

V/C ratios and the behavior of TSTT given Jensen’s inequality were not affected. 

Concerning disaggregated V/C distributions, inference was affected even to a 

lesser degree. The same congested links were identified under the predictions of 

both models and in addition estimates of expected values and probabilities were 

close. 
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5 Further insights 
 

In this chapter, some further issues related to traffic assignment and OD 

modeling are investigated. In the first part of this chapter, the results from 

deterministic UE are now compared to results obtained under stochastic UE. In 

correspondence with the previous chapter, the comparison is implemented 

within the context of demand-uncertainty. The material of this section is 

summarized in Perrakis et al. (2012f). In the second part of this chapter, a 

recent and novel modeling approach known as the radiation model (Simini et al., 

2012) is discussed. The purpose of this section is to find potential links between 

the radiation model and the statistical modeling approaches presented in this 

dissertation.  
 

5.1 Uncertainty from the choice of assignment model 
 

In this section a further source of uncertainty is investigated, namely the 

uncertainty originating from the choice of the assignment model. All of the 

results presented in the previous chapter were conditional on the DUE 

assignment operator. The results presented in this section are comparisons 

between the DUE and the stochastic user equilibrium (SUE) model based 

primarily on inputting method 2 and also on PG predictions. 
 

5.1.1 SUE assignment as an alternative to DUE assignment 
 

The SUE model is an extension of DUE where the fundamental principle of 

Wardorp (1952) which assumes that trip-makers have perfect knowledge of the 

expected travel costs on the network is relaxed. This is expressed by the 

inclusion of a random error term in the utility function of the route-choice model. 

In this way, expected travel costs in DUE become perceived travel costs in SUE 

under which the aim of trip-makers is to minimize the perceived travel costs. 

Thus, SUE flows are such that travelers cannot further reduce their perceived 

travel times by unilaterally changing routes. DUE assignment is in fact the 

limiting case of SUE; when the variance in the error distribution is zero, then 

there is no perception-error and the assignment model becomes the classical 

deterministic model of Wardrop.    
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The choice for the error distribution leads to two different formulations of 

SUE in the related literature. Daganzo and Sheffi (1977) assumed normally 

distributed errors which led to the probit based route-choice model. Dial (1971) 

proposed a Gumbel error distribution which in turn led to the logit based route-

choice model. Each of the approaches has certain advantages and 

disadvantages. The logit route-choice model results in a closed form expression 

with an equivalent mathematical programming formulation (Fisk, 1980). The 

disadvantages are that one cannot introduce correlations among routes and also 

account for dependencies between link flows and travel times (Sheffi, 1985). 

Probit route-choice modeling allows for increased flexibility, since covariances 

between routes can be explicitly specified when using the normal distribution. 

Nevertheless, mathematically it is less consistent as it is not possible to 

formulate a corresponding mathematical program and thus prove convergence 

to a user equilibrium state. Therefore, tests of “convergence” for the various 

solution algorithms of probit route-choice modeling are based on heuristic 

stopping rules and numerical comparisons (e.g. LeBlanc et al., 1975; Sheffi and 

Powell, 1981). Finally, it should be noted that SUE assignment – regardless of 

the route-choice model – is stochastic in formulation, but has a deterministic 

solution which is based on a large-sample approximation (Hazelton, 1998). That 

means that repeated runs of SUE assignment will deliver an expected vector of 

link volumes which will always be the same for the same OD input45. 

The SUE model is routinely used as an alternative to DUE both in scientific 

research as well as in practice. In addition, DUE and SUE assignment are 

available as options in most of the transportation planning software packages. 

Given the broad acceptance and use of both models, it is rather odd that 

comparative studies are scarce in the related literature. A first comparative 

study between the two models is presented in Sheffi and Powell (1981) mainly 

within the context of introducing the method of successive averages under 

probit based route-choice modeling. As the interest in this study was focused 

primarily in comparing the successive average algorithm to other competing 

algorithms, the comparison was made on a small experimental network of 12 

zones and 34 links in order to obtain reliable numerical results. Nevertheless, 
                                                             
45 Interested readers are further referred to Hazelton (1998) who extends the probit-based SUE model 
of Daganzo and Sheffi (1977) to a purely stochastic model called conditional SUE (CSUE). Nevertheless, 
this model is not available in commercial software yet. 
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the comparison resulted in an interesting conclusion which is that SUE and DUE 

assignments yield similar results when congestion is high overall, i.e. for large 

values of total travel-demand with respect to network capacity. Intuitively the 

result is logical; since for high congestion levels one can argue that the 

equilibrium effects are stronger than the effects from inaccurate travel-time 

perception (for a detailed discussion see Sheffi, 1985, section 12.3). 

A second, more recent study is that of Ji and Chen (2003). In this study, 

the comparison is not only between the traditional DUE and SUE models, 

discussed previously, but also with respect to modern variations of the two 

models which also take into account inherent network uncertainty concerning 

variability of link travel times46. SUE assignment in this paper is based on probit 

route-choice modeling. The network under consideration is once again relatively 

small, consisting of 24 zones and 76 links. The authors find significant 

differences between the traditional deterministic/stochastic UE models and the 

variations of these models which account for supply-side travel-time variability. 

With respect to differences between the traditional DUE and SUE models, the 

study simply verifies the finding of Sheffi and Powell (1981) and marginally adds 

the finding that total travel-time is greater in SUE assignment probably due to 

perception error. Although as the authors comment, the latter finding is not 

warranted for generalization. 

Finally, Zhang (2011) adopts a more critical point of view from the 

perspective of behavioral realism and compares the traditional DUE and SUE 

models with emerging and developing variations of UE-based models, namely 

with bounded rational UE (BRUE) and behavioral UE (BUE) models47. This study 

concentrates on a real-world case study for about 600,000 travelers on a 

network of 7,976 zones with 20,194 links. In addition, it is the first study which 

includes a sensitivity analysis concerning the variance of the perception error 

which is assumed to be Gumbel distributed, i.e. for SUE assignment under logit 

route-choice modeling and for values of the Gumbel distribution scale parameter 

equal to 0.1, 0.2 and 1. With respect to this point, the author finds UE 

convergence being slower for larger values of perception-error variance which is 

                                                             
46 Information on these variations of DUE and SUE can be found in Soroush (1984) and Mirchandani 
and Soroush (1987), respectively.  
47 Interested readers are referred to Mahmassani et al. (1986) and Mahmassani and Chang (1987) for 
BRUE, and to Zhang (2007) for BUE.  
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intuitively consistent, since a larger error-perception variance implies a wider 

range of perceived alternative routes. Concerning the comparison between DUE 

and SUE models, the study illustrates potential discrepancies between the 

resulting link volumes of each model. Nevertheless, according to the author 

similar research should be conducted on other networks in order to obtain 

concrete results. Finally, an interesting finding of this study is that SUE 

assignment in comparison to DUE assignment results in a V/C distribution which 

assigns less distributional mass to small and extremely high V/C ratios and more 

distributional mass to moderate-to-high V/C ratios. 

In what follows, we present a comparative analysis between the traditional 

DUE and SUE models which takes into account both logit and probit route-choice 

modeling for three different values of perception-error variance. In addition the 

method of repeated assignments is used (method 2 – section 4.4.2) which 

provides full information – given demand uncertainty – in terms of point, 

interval and distribution estimates. The estimates are based on the 500 OD 

predictions from the PG model.    
 

5.1.2 Formulation and performance of DUE and SUE assignment 
 

As in section 4.5 the BPR formulation (Bureau of Public Roads, 1964) is used as 

link performance function. The assignments are implemented in TransCAD 

software version 4.7 (Caliper Corporation, 2008) which utilizes the adaptation of 

Frank and Wolfe algorithm (Frank and Wolfe, 1956) by LeBlanc et al. (1975) for 

DUE assignment and the method of successive averages by Sheffi and Powell 

(1981) for SUE assignment. The selected values for the variance under 

probit/logit route-choice modeling (normal/Gumbel errors) are 0.01, 0.05 and 

0.148. The values are chosen to be relatively small in purpose. As mentioned 

previously, DUE assignment is the limiting case of SUE assignment as the 

variance tends to zero. Therefore, we would expect results from probit/logit SUE 

assignment to be more similar to DUE assignment for the value of 0.01. In 

addition this value is also utilized by Ji and Chen (2003) for probit SUE 

modeling. Sheffi and Powell (1981) on the other hand uses a slightly larger 

                                                             
48 It is useful to comment that the corresponding field for SUE assignment in TransCAD refers to 
standard deviation. This inquiry was clarified by Caliper Corporation. The corresponding standard 
deviations are 0.1, 0.2236 and 0.3162, respectively.  
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value for the variance of the normal distribution equal to 0.3, while Zhang 

(2011) uses the values of 0.1, 0.2 and 1 for the scale parameter of the Gumbel 

distribution49. Up to our best knowledge given the almost complete lack of 

guidelines in the relative literature concerning “appropriate” variance values, 

there is no particular evidence for objecting to the values which are adopted 

here. 

Despite the size of the network, all seven assignment models – including 

the DUE model – converge relatively fast to an equilibrium state. That might be 

attributed to the fact that the network is in general not seriously congested, as 

shown in section 4.5.2 as well as section 4.6.1. Convergence checking is based 

on the commonly used relative gap criterion – recommended in the review of 

Rose et al. (1988) – for the default TransCAD threshold value of 0.01. According 

to this criterion convergence is achieved at iteration 4 for DUE and 6 for DUE 

assignment models. The relative gap, relative mean square error (RMSE) and 

the required running times for assignments based on the mean OD matrix are 

summarized in Table 5.1. 
 

 Assignment information (at final iteration) 
Assignment model Iteration Relative gap RMSE Runtime (sec’s) 
DUE 4 0.004621 8.37 13.178 
SUE probit 0.01 6 0.004707           12.33      18.533 
SUE probit 0.05 6 0.004722           12.38 18.620 
SUE probit 0.1 6 0.004947           12.86 18.388 
SUE logit 0.01 6 0.004693 12.47 18.530 
SUE logit 0.05 6 0.004692           13.24      18.602 
SUE logit 0.1 6 0.004702           13.43 19.544 

TABLE 5.1. Relative gap, RMSE and runtime for the seven assignment models at the final 
iteration based on the mean OD matrix from the PG model. 

In general, there are no major differences between the assignment models in 

terms of convergence performance. DUE assignment is in general faster which is 

to be expected. One thing that is odd is that runtime for the SUE probit model is 

slightly lower for an error variance equal to 0.1. In general, higher values of 

error variance should lead to slower convergence rates, since the greater the 

                                                             
49 Zhang follows the Gumbel parameterization introduced in Scheffi (1985) where the variance is 
(3.14)2/(6×(scale)2). Therefore, for scale parameters equal to 0.1, 0.2 and 1 the respective variances 
are 164.49, 41.12 and 1.65. Thus, for scale equal to 0.1 and 0.2 the corresponding variance becomes 
very large.    
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perception error is the more alternative routes are under consideration. This is 

properly reflected in the SUE logit.  
 

5.1.3 Comparing TSTT and link volumes from DUE and SUE assignment 
 

In section 4.5.3, it was found that TSTT (total vehicle-hours) under DUE 

assignment is indeed subjected to Jensen’s inequality as argued by Waller et al. 

(2001). Nevertheless, in practical terms the difference between expected TSTT 

(E(TSTT)) and TSTT based on the expected or mean OD matrix (TSTT[E(OD)]) 

was found not to be significant for the Flemish network, at least for the overall 

low-to-medium estimated congestion for work/school flows between 7 am and 8 

am. Now, the corresponding estimates under the various SUE models are 

presented in Table 5.2. According to results, Jensen’s inequality seems to hold, 

since E(TSTT) is greater than TSTT[E(OD)] in all cases. But, given the order of 

magnitude of TSTT, the differences are once again not significant from a 

practical point of view.       
 

Assignment 
model 

Total System Travel Time (TSTT) in vehicle-hours 
E(TSTT)-

TSTT[E(OD)] TSTT[E(OD)] E(TSTT) 95% TSTT interval 

DUE 120 1,387,009 1,387,129 (1,383,152, 1,391,169) 
SUE probit 0.01 242 1,387,571 1,387,813 (1,383,864, 1,391,862) 
SUE probit 0.05 497 1,387,449 1,387,946 (1,383,930, 1,391,977) 
SUE probit 0.1 423 1,387,860 1,388,283 (1,384,414, 1,392,447) 
SUE logit 0.01 187 1,387,766 1,387,953 (1,383,992, 1,392,118) 
SUE logit 0.05 268 1,387,996 1,388,264 (1,384,320, 1,392,350) 
SUE logit 0.1 341 1,388,239 1,388,580 (1,384,558, 1,392,608) 

TABLE 5.2. Total system travel time comparison between inputting method 1 
(TSTT[E(OD)]) and inputting method 2 (E(TSTT)) for seven assignment models. 

Perhaps what is more interesting to observe is that the difference seems to 

increase as the variance of the perception-error increases. That is clearly 

observed for the case of logit route-choice modeling. For the case of probit 

route-choice modeling, there is a small decrease in this difference, for an error-

variance of 0.1 in comparison to 0.05, nevertheless it is clearly higher to the 

difference for an error-variance of 0.01. In addition, TSTT – either from 

expected demand or expected TSTT – under SUE assignment is always greater 

than TSTT under DUE. That comes as an additional verification to the finding of 

Ji and Chen (2003) for which the authors are rather cautious in presenting. 

Furthermore, based on the mean and interval estimates of TSTT in Table 5.2, it 
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is also obvious that an increase in variance leads to an increase of TSTT under 

both probit and logit route-choice models. 

We proceed with a comparison of link flows under the categorization of link 

segments belonging to highways, main regional roads, small regional roads and 

local roads. In general, highway links may be considered as high-capacity links, 

main regional links as medium-to-high-capacity links, small regional links as 

medium-to-low-capacity links and finally local links as low-capacity links with 

respective average vehicle capacities approximately equal to 3785, 2498, 2002 

and 1350. Kernel distributions and mean link flow estimates are presented in 

Figures 5.1 to 5.4. Numerical results in Tables 5.3 to 5.6 
 

 
Figure 5.1 Kernel density estimates and mean point estimates for highway flows under 
DUE assignment (in solid red) and SUE probit/logit assignment (in blue/black) with error 
variances 0.01 (solid), 0.05 (dashed) and 0.1 (dotted). The estimates are based on 
repeated assignments of 500 PG predictions. 

Figure 5.1 reveals that the highway flow distributions are quite different in 

location as well as shape. A first observation is that for increased values of 

variance both probit and logit route-choice models result in an increase of 

highway flows. This is verified by the point and interval estimates of Table 5.3. 
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Assignment model 
Highway Flows 

Mean Median 95% interval 
DUE 1,565,784 1,565,614 (1,559,724, 1,572,337) 
SUE probit 0.01 1,560,977 1,560,791 (1,554,088, 1,568,489) 
SUE probit 0.05 1,563,494 1,563,446 (1,554,691, 1,572,726) 
SUE probit 0.1 1,565,713 1,566,430 (1,555,935, 1,574,225) 
SUE logit 0.01 1,560,865 1,560,807 (1,553,539, 1,567,978) 
SUE logit 0.05 1,561,096 1,561,088 (1,553,822, 1,568,436) 
SUE logit 0.1 1,562,804 1,562,729 (1,555,104, 1,570,438) 

TABLE 5.3. Means, medians and 95% intervals for highway flows for the seven assignment 
models.  

The SUE probit and logit models for a variance of 0.01 are very similar, but as 

the variance increases to 0.05 and 0.1 the highway flows under probit and logit 

models begin to differ more. In general, the distributions from logit route-choice 

are closer than the distributions from probit route-choice for different values of 

variance. The behavior of the distribution under probit modeling is interesting to 

observe; as the variance increases from 0.01 to 0.05 the distribution forms a 

second smaller peak (bimodality) and as the variance increases even more to 

0.1 the probability mass centers around the second peak forming once again a 

unimodal distribution. Interestingly, the distribution from SUE probit with 

variance 0.1 is the closest to the DUE distribution which is contrary to the notion 

that SUE assignment is similar to DUE assignment for small, close-to-zero values 

of error-perception variance.  
Results are more balanced for main regional roads which have a medium-

to-high traffic capacity. As illustrated in Figure 5.2, the distributions from DUE, 

SUE probit with variance 0.01, 0.05 and 0.1, and SUE logit with variance 0.01 

are all relatively similar both in shape as well as in location. This time it is logit 

route-choice modeling which seems to be more sensitive to the value of variance 

as main regional road flows seem to increase for larger variance-values. This is 

also reflected in the estimates of Table 5.4. The most distant distribution from 

DUE assignment is the one under SUE logit with variance 0.1.  

The corresponding estimates for small regional roads are presented in 

Figure 5.3 and Table 5.5. In this case, there are considerable differences 

between SUE probit/logit assignment and DUE assignment as it is obvious that 

SUE models result in more small regional link flows. Intuitively, this may be 

consistent, since  in  SUE  assignment  medium-to-low and low capacity links are  
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Figure 5.2 Kernel density estimates and mean point estimates for main regional flows 
under DUE assignment (in solid red) and SUE probit/logit assignment (in blue/black) with 
error variances 0.01 (solid), 0.05 (dashed) and 0.1 (dotted). The estimates are based on 
repeated assignments of 500 PG predictions. 

 

Assignment model 
Main Regional Road Flows 

Mean Median 95% interval 
DUE 1,292,461  1,292,363  (1,288,519, 1,296,716) 
SUE probit 0.01 1,292,397  1,292,468  (1,285,386, 1,298,633) 
SUE probit 0.05 1,292,403  1,292,330  (1,285,260, 1,299,540) 
SUE probit 0.1 1,292,135 1,292,085  (1,284,726, 1,298,708) 
SUE logit 0.01 1,291,767  1,291,947  (1,284,383, 1,298,239) 
SUE logit 0.05 1,292,142  1,292,652  (1,284,215, 1,299,179) 
SUE logit 0.1 1,293,362  1,294,050  (1,285,586, 1,300,193) 

TABLE 5.4. Means, medians and 95% intervals for main regional road flows for the seven 
assignment models. 

more likely to be used in comparison to DUE assignment. In addition, as with 

the case of highway flows, SUE logit route-choice modeling seems to be less 

sensitive to the value of the variance. Although bimodality seems to start 

formulating for SUE logit with variance 0.05 and 0.1, the logit distributions are 

closer to each other in terms of location. Contrary, the probit distributions differ 
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more in terms of location and strangely this time the increase of variance leads 

to a locational shift to the left of the x-axis.    

 
Figure 5.3 Kernel density estimates and mean point estimates for small regional flows 
under DUE assignment (in solid red) and SUE probit/logit assignment (in blue/black) with 
error variances 0.01 (solid), 0.05 (dashed) and 0.1 (dotted). The estimates are based on 
repeated assignments of 500 PG predictions. 

 

Assignment model 
Small Regional Road Flows 

Mean Median 95% interval 
DUE 797,313  797,061   (794,092, 802,817) 
SUE probit 0.01 805,387  805,032   (800,515, 811,613) 
SUE probit 0.05 803,471  803,380   (797,405, 809,955) 
SUE probit 0.1 802,460  802,164   (796,666, 809,158) 
SUE logit 0.01 806,362  806,044   (800,911, 812,419) 
SUE logit 0.05 807,539  806,855   (801,853, 814,199) 
SUE logit 0.1 807,534  806,849   (801,751, 814,627) 

TABLE 5.5. Means, medians and 95% intervals for small regional road flows for the seven 
assignment models. 

Estimates for local roads are presented in Figure 5.4 and Table 5.6. In 

general, one would expect the same phenomenon which occurs on small 

regional roads to occur also on local roads which are of low capacity. 
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Nevertheless, this is not the case for local roads. In fact, SUE probit assignment 

results in less local road flows than DUE assignment, while SUE logit assignment 

is relatively close to DUE assignment. 

 
Figure 5.4 Kernel density estimates and mean point estimates for local flows under DUE 
assignment (in solid red) and SUE probit/logit assignment (in blue/black) with error 
variances 0.01 (solid), 0.05 (dashed) and 0.1 (dotted). The estimates are based on 
repeated assignments of 500 PG predictions.       

 

 

Assignment model 
Local Road Flows 

Mean Median 95% interval 
DUE 450,659 450,704 (448,947, 452,236) 
SUE probit 0.01 450,048 450,011 (448,452, 451,806) 
SUE probit 0.05 450,197 450,131 (448,672, 451,977) 
SUE probit 0.1 450,121 450,090 (448,585, 451,843) 
SUE logit 0.01 450,474 450,458 (448,871, 452,118) 
SUE logit 0.05 450,686 450,659 (449,108, 452,255) 
SUE logit 0.1 450,894 450,872 (449,275, 452,492) 

TABLE 5.6. Means, medians and 95% intervals for local road flows for the seven 
assignment models. 

A possible explanation is that convergence is achieved relatively fast, without 

the need for re-routing on the level of low-capacity links such as local roads. 
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Possibly, for larger values of perception-error variance SUE assignment will lead 

to an increase of local road flows similar to what is observed for small regional 

road flows. Finally, both types of SUE route-choice models are not affected a lot 

by the different variance values.  

In general, based on the numerical outputs presented in Tables 5.3 to 5.6 

one can argue that the differences between the various models under 

consideration are practically not serious. Furthermore, differences occurring on 

different link types will probably balance out for total aggregated link flows. 

Results for all link flows, irrespective of link type, are presented in Figure 5.5 

and Table 5.7. The distributions in Figure 5.5 under SUE assignment are all to 

the right of the DUE distribution which is to be expected as SUE assignment 

produces more traffic due to the perception-error component. As discussed in 

the beginning of this section, SUE assignment also results in more vehicle-hours 

travelled in comparison to DUE. 
                

 

Figure 5.5 Kernel density estimates and mean point estimates for all types of link flows 
under DUE assignment (in solid red) and SUE probit/logit assignment (in blue/black) with 
error variances 0.01 (solid), 0.05 (dashed) and 0.1 (dotted). The estimates are based on 
repeated assignments of 500 PG predictions. 
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Assignment model 
All Flows 

Mean Median 95% interval 
DUE 4,106,217 4,105,728    (4,095,376, 4,118,223) 
SUE probit 0.01 4,108,809    4,108,302    (4,097,431, 4,121,088) 
SUE probit 0.05 4,109,564    4,109,286    (4,098,137, 4,121,583) 
SUE probit 0.1 4,110,429    4,110,194    (4,098,368, 4,123,068) 
SUE logit 0.01 4,109,468    4,109,069    (4,098,547, 4,121,553) 
SUE logit 0.05 4,111,463    4,111,086    (4,100,248, 4,124,421) 
SUE logit 0.1 4,114,593 4,114,384 (4,103,076, 4,127,616) 

TABLE 5.7. Means, medians and 95% intervals for all types of link flows for the seven 
assignment models. 

According to the numerical results of Table 5.7, main inferences are not 

seriously affected by the choice of the assignment model. The results on total 

aggregated link flows are also in agreement with theory, since SUE probit/logit 

assignment with variance equal to 0.01 is closer to DUE assignment than SUE 

probit/logit assignments with variances equal to 0.05 and 0.1. It is also 

interesting to observe that SUE probit assignment is generally closer to DUE 

assignment in comparison to SUE logit for the case of total link flows. That is 

probably due to the fact that SUE probit flows are more unstable in terms of 

location with respect to DUE flows for different link types (compare for instance 

Figures 5.3 and 5.4) and therefore there is a “balancing” effect when 

aggregating over all link flows.  

Argumentatively, it is worth noting that results from DUE and SUE 

probit/logit assignment can be quite different depending on the link-type under 

consideration. The differences which were found in highway flows and – 

especially – in small regional flows are not to be ignored as easily. Finally, with 

respect to the sensitivity analysis for the perception-error variance, it is worth 

commenting that SUE assignment under logit route-choice modeling seems to 

yield more consistent results in comparison to probit route-choice modeling. 

That is, SUE logit flows tend to increase as the variance increases. That is 

evident – at least for the variances under consideration – in all the results of this 

section. On the other hand, such a correspondence is not evident for SUE probit 

flows. 

A final note would include the effect of congestion-level. Nevertheless, 

given the computational requirements under demand uncertainty (repeated 

assignments) and also given the fact that all relative studies conclude with 
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results in agreement (Sheffi and Powell, 1981; Ji and Chen, 2003; Zhang, 

2011), this particular consideration is not pursued further here. In general, it 

would be strongly expected that experiments with a deflated/inflated OD 

demand for the morning peak hour between 7 am to 8 am would result in 

more/less serious differences between DUE and SUE assignment. That implies 

also that differences between DUE and SUE assignment would be more apparent 

for another less-congested, off-peak time interval. 
 

5.1.4 Comparing network congestion from DUE and SUE assignment 
 

A first interesting application concerning network congestion under the different 

assignment models is to compare the overall distribution of links with respect to 

the corresponding V/C ratios. Results based on averaged V/C ratios from the 

500 V/C predictions are illustrated in Figure 5.6. 

 
Figure 5.6 Mean V/C ratio distribution for the approximately 5% percent of the links which 
exceed an expected V/C ratio of 0.2 under DUE and SUE probit/logit assignment and 500 
repeated assignments based on PG predictions.  

In order to keep the y-axis on a reasonable level, Figure 5.6 shows the expected 

V/C distribution for the links which exceed an expected V/C ratio of 0.2. These 
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links correspond to only 5% of the total number of links. Nevertheless, for the 

rest of 95% of the links all assignment models are more or less in agreement, 

predicting expected V/C ratios between 0 and 0.2. As illustrated in Figure 5.6, 

the overall congestion level is low and the various assignment models are 

generally in agreement regarding the distribution of links with respect to their 

V/C ratio. The exact allocations of links under the different assignment models 

are presented in Table 5.8.  
 

V/C  
ratio 

Number of links 

DUE 
SUE 

probit 
0.01 

SUE 
probit 
 0.05 

SUE 
probit 
 0.1 

SUE 
logit 
 0.01 

SUE 
logit 
 0.05 

SUE 
logit 
 0.1 

0.0-0.1 92945 92940 92940 92928 92933 92941 92938 
0.1-0.2 3026 3033 3030 3058 3045 3040 3039 
0.2-0.3 915 885 894 881 869 867 864 
0.3-0.4 295 319 310 311 327 331 338 
0.4-0.5 117 115 118 113 117 112 121 
0.5-0.6 61 65 65 72 65 65 56 
0.6-0.7 36 51 51 44 52 52 51 
0.7-0.8 33 19 19 24 19 19 20 
0.8-0.9 11 10 10 6 10 10 10 
0.9-1.0 4 7 7 7 7 7 6 
1.0-1.1 2 3 2 2 3 3 4 
1.1-1.2 2 0 2 2 0 0 0 
1.2-1.3 1 1 0 0 1 1 1 
1.3-1.4 1 0 0 1 0 1 1 
1.4-1.5 0 1 1 0 1 0 0 
2.1-2.2 1 0 0 0 0 0 0 
2.2-2.3 0 1 1 1 1 1 1 

TABLE 5.8. Distribution of links with respect to expected V/C ratios for the seven 
assignment models. 

Table 5.8 reveals small alterations in the allocation of links between DUE and 

SUE assignments for V/C ratios greater than 0.2. In SUE assignment less links 

have V/C ratios between 0.2 and 0.3 and more links have V/C ratios between 

0.3 and 0.4, in comparison to DUE assignment. Also, it is worth noting that this 

is more obvious for logit route-choice modeling. For V/C ratios ranging from 0.4 

to 0.6 there are no major differences, but for V/C ratios between 0.6 and 0.8 

differences occur once again; SUE – compared to DUE – results in more links 

with V/C ratios between 0.6 and 0.7 and in less links with V/C ratios between 

0.7 and 0.8. Finally, for V/C ratios greater than 0.8, the allocation of links is 

more or less the same. V/C ratios between 1.5 and 2.1 are not displayed, since 

there is no link with a V/C ratio within that interval.  
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In general, some results are in partial agreement with the results in Zhang 

(2011), e.g. for the V/C intervals 0.3 – 0.4 and 0.7 – 0.8. Nevertheless, the 

differences between DUE and SUE assignment presented here are considerably 

smaller. This might be attributed to the fact that Zhang (2011) experiments with 

much larger values of perception-error variance (logit route-choice) which 

probably affect much more the overall distribution of V/C ratio. Also, it should be 

noted that the distributions in Figure 5.6 and the results in Table 5.8 are derived 

from expected V/C ratios given demand uncertainty, i.e. averaged over 500 V/C 

predictions. Given that, it seems that the expected state of the V/C distribution 

is quite robust with respect to the selection of UE assignment method for 

relatively small SUE variance. At least, for the particular network and time-

interval which are under consideration here. 

We proceed now to the issue of congested link identification in terms of V/C 

probabilities. The resulting V/C distributions from all assignment models for links 

which exceed a V/C ratio of 0.95 are presented in Figure 5.7. In this case the 

choice of assignment model seems to have an increased impact on the results. 

First of all DUE and SUE assignment do not identify congestion on exactly the 

same links. Two links which are identified through DUE assignment (links 83662, 

92846) are not identified through SUE assignment. Vice versa, four links 

identified through SUE assignment (links 16503, 16607, 18086 and 29809) are 

not identified th-rough DUE assignment. A reassuring finding is that the same 

links are identified by SUE models irrespective of the choice of route-choice 

model and also of the variance value. Thus, SUE assignment leads to 13 

congested links while DUE assignment leads to 11. In general, it would be 

expected that SUE assignment would probably lead to a higher number of 

congested links, since more links are taken under consideration when allocating 

traffic through SUE assignment due to perception-error. Given this expectation, 

one can say that results are not tremendously different in comparison to DUE 

assignment.  

Continuing with similarities between DUE and SUE assignment, it is worth 

observing that distribution estimates for 3 links are relatively similar, namely for 

links 22149, 29060 and 106252. In these three cases DUE and SUE assignment 

models seem to be in agreement. In addition, variations of SUE modeling are 

not influential at all, since it is hardly possible to distinguish any difference on 
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the corresponding SUE distributions for different route-choice models and for 

different variances of perception-error. At present, it is difficult to answer with 

certainty the question why these distributions are similar while other V/C 

distributions are dissimilar. A first indication is that the three links belong to the 

same link-type, i.e. they are local road links. As discussed in the previous 

section, local road flows are perhaps the least affected flows by the choice of 

assignment model, which is probably due to the low values of perception-error 

variance used in the SUE models. On the other hand, based on Table 5.9, link 

17493 is also a local road segment which is identified by all 7 assignment 

models, but  in  this case the V/C distributions are very dissimilar. Therefore, the  

 
Figure 5.7 Kernel estimates of V/C distributions of congested links which have a non-zero 
probability of exceeding a V/C ration of 0.95. The distributions are derived based on 
repeated assignment of 500 PG predictions and conditional on DUE (red), probit SUE with 
variance 0.01 (solid blue), 0.05 (dashed blue), 0.1 (dotted blue) and logit SUE with 
variance 0.01 (solid black), 0.05 (dashed black) and 0.1 (dotted black). 
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link type by itself does not provide a full explanation regarding the similarities 

for links 22149, 29060 and 106252. The only intuitive supplementary 

explanation is that these three links are close to significant network centers with 

respect to traffic allocation. According to the brief locational analysis of section 

4.5.4, this seems to be valid. Links 22149 and 29060 are both local outgoing 

road segments to highway ring R1, to the west side of Antwerp, and also very 

near highway E17 which connects Antwerp with Ghent. As for link 106252, it 

seems to be one of the very few local road links which provides a connection 

between N31 regional road, to the west of Bruges, and Bruges city center. 

Despite the similarities, interesting observations relate more to 

dissimilarities between DUE and SUE assignment. In particular, the “switching 

effect” – discussed in section 4.5.4 – is evidently much stronger under SUE 

assignment as this time bimodalities as well as multimodalities are observed, for 

instance in the links with id’s 16503, 16841, 17493, 29809, 83928 and 84514. 

Once again this is intuitively consistent, since the inclusion of the perception 

error is expected to increase re-routing to links which are not considered under 

DUE. To this respect, in section 4.5.4 it was argued that the expected V/C value 

is not an optimum criterion for identifying congested links as it fails to identify 

links on which congestion is quite probable, but on which the V/C expectation 

can be lower than the selected threshold V/C value. Now, under SUE assignment 

it is further argued that the expected V/C ratio is a poor and inadequate criterion 

for identifying congested links. Almost one third of the congested links under 

SUE assignment have multimodal V/C distributions and in these cases the 

expected V/C ratio will not correspond to a likely value at all. The same holds for 

other point estimates as the median. In fact, the only truly informative point 

estimates would be the modes and the corresponding mode-probabilities, but 

such estimates are almost impossible to estimate a-priori, i.e. without knowing 

the form of the V/C distributions given demand uncertainty. From this 

perspective probability estimates seem to provide a safe and robust solution for 

evaluating network congestion given demand uncertainty under different 

assignment models.  

The probability estimates for exceeding a V/C ratio of 0.95 under DUE and 

probit/logit SUE are presented in Table 5.9. For the 9 links which are commonly 

identified under both DUE and SUE the corresponding probabilities are generally 
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in agreement. One exception where the probabilities vary more is link 17493. In 

addition, for the remaining 4 links which are identified only through SUE 

assignment, the differences in the probabilities between probit/logit route-choice 

modeling and for different variances are again not great. 
 

Congested 
Link ID 

Link type 

Probability of exceeding a V/C ratio of 0.95 

DUE 
SUE 

probit 
0.01 

SUE 
probit 
0.05 

SUE 
probit 

0.1 

SUE 
logit 
0.01 

SUE 
logit 
0.05 

SUE 
logit 
0.1 

16503   HW - 0.010 0.008 0.006 0.010 0.006 0.002 
16607   SRR - 0.002 0.002 0.002 0.002 0.002 0.002 
16841   SRR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
17493   LR 1.000 0.268 0.368 0.574 0.426 0.690 0.810 
18086   LR - 0.592 0.588 0.650 0.590 0.586 0.588 
22149   LR 0.046 0.080 0.080 0.080 0.080 0.080 0.080 
28980   HW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
29060   LR 0.046 0.080 0.080 0.080 0.080 0.080 0.080 
29809   HW - 0.010 0.008 0.006 0.010 0.006 0.002 
83662   LR 0.236 - - - - - - 
83928   HW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
84514   MRR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
92846   LR 0.236 - - - - - - 
92849   LR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
106252   LR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

TABLE 5.9. Estimates of probabilities of exceeding a V/C ratio of 0.95 for 11 congested 
links under DUE assignment and 13 congested links under probit/logit SUE assignment 
with differing perception-error variance. The estimates are based on repeated assignments 
of 500 OD predictions from the PG model. The abbreviations HW, MRR, SRR and LR stand 
for highway, main regional roads, small regional roads and local roads, respectively.   

 

5.2 The radiation model 
 

In the recent and very interesting study of Simini et al. (2012) a new approach 

is suggested for modeling of mobility and migration patterns. The proposed 

model is in fact a generalization of the traditional gravity model which provides 

remedies for certain disadvantages of the latter. Namely, i) lack of rigorous 

derivation, ii) uncertainty for the use of proper deterrence functions and 

parameter values, iii) the need for existing traffic data, iv) obvious predictive 

discrepancies, v) asymptotic inconsistency for large destination population and 

vi) deterministic limitations. The proposed model is based on radiation emission 
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and absorption processes used in physical sciences and it is thus referred to as 

the radiation model. 

An analytical description of the mathematical derivation of the radiation 

model would be out of the scope of this section, interested readers are referred 

to the original paper by Simini et al. (2012). In what follows attention is 

restricted to the concluding assumptions of the model. In order to remind the 

matrix notation, the OD flows are denoted by odT  where , 1,2,...o d m  and m is 

the number of zones. The radiation model results in a binomial distribution for 

the OD flows, that is ~ ( , )od o odT Bin T p  for , 1,2,...o d m  and o d . According to 

the radiation model the probabilities odp  of the binomial distribution are given by 

( )( )
o d

od
o od o d od

m np
m s m n s


  

, 

 

where om  is the population of origin o, dn  is the population of destination d and 

variable ods  is the population within the circle defined by the radius of distance 

between origin o and destination d, excluding the populations of o and d. The 

binomial probabilities are defined so that 1odd o
p


 . It should also be noted 

that the radiation model applies to inter-zonal flows, i.e. when o d . The 

variable oT  is essentially the total number of travelers leaving from origin o, i.e. 

o odd o
T T


  , which is also proportional to the population of origin zone and thus 

( / )o o TT m N N , where TN  is the total number of travelers and N is the total 

population of the geographical area under consideration. Given the above, the 

radiation model provides estimates for the expectation and variance of the OD 

flows given by ( )od o odE T T p  and var( ) (1 )od o od odT T p p  , respectively. 

The significant advantages of the radiation model in comparison to the 

gravity model or even the statistical models presented in this dissertation are; 

first it does not require estimation as it is parameter-free and second it does not 

require traffic data of any form. It should also be noted that it has a natural 

interpretation in terms of the binomial distribution which implies that on 

disaggregated levels the probability of traveling from o to d for each individual 

traveler is given by the Bernoulli distribution with success probability odp . The 

following sections explore possibilities of borrowing strength from the radiation 
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model and even adapting it in order to assimilate it into the modeling framework 

which is under consideration in this dissertation.  
 

5.2.1 Circular area population as explanatory variable 
 

The circular area population variable ods  is one of the main differentiating 

elements of the radiation model with respect to the gravity model. Given the 

strong impact of the “radiation law” and within the context of our modeling 

approach, it is interesting to assess the result of including this variable in the 

negative binomial model50. One would expect that this variable would be highly-

significant and that inclusion of it will potentially constitute other explanatory 

variables redundant, thus resulting in a simpler model with fewer variables and 

consequently fewer parameters. 

In order to remove potential influence from other explanatory variables and 

compare distance – the fundamental variable of the gravity model – with circular 

area population, two simple negative models with logarithmic link functions are 

initially fitted; one with intercept and the logarithm of distance and one with 

intercept and the logarithm of circular area population. Results under ML 

estimation are presented in Table 5.1051. According to these results it seems 

that as a stand-alone variable distance is more influential, since the model with 

distance has a lower value of AIC. The same models were also fitted with the 

explanatory variables on natural scale and/or with the identity function instead 

of the logarithmic function as link. In all cases both AIC values were greater 

than those of Table 5.10, but consistently the model with distance always 

yielded a lower value of AIC than the model with circular area population. In 

addition, the log-link model which includes both the logarithms of distance and 

circular area populations as explanatory variables results in a value of AIC equal 

to 346932. The value is lower of course but not promising any practical 

improvement in terms of predictive inference.  

                                                             
50 This experiment is not necessarily constrained to the negative binomial/PG model. Nevertheless, 
since this model has been used more or less as a benchmarking model with respect to the PLN and PIG 
models, we utilize this model for these first results. 
51 ML estimation is adequate for this simple comparison. Based on previous experience from the models 
presented in chapter 3, ML estimates and posterior means from Bayesian implementation are almost 
identical. In addition, AIC under ML estimation is usually very close if not exactly equal to the marginal 
DIC. These results are expected due to large sample size (n  94,864).   
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Further experiments indicate that including the circular area population 

variable in the full model of section 3.3 does not contribute significantly in model 

improvement. The full model with log of circular area population instead of log of 

distance yields an AIC of 294378 which is substantially larger than 281492 

which is the value of AIC for the full model with distance. The extended model 

with distance and circular area population results in a decreased AIC equal to 

281301. Thus, including the log of circular area population in the full negative 

binomial model presented in section 3.3 decreases AIC just slightly, from a value 

of 281492 to a value of 281301.    
 

Parameter 
Model 

intercept + logd intercept + logs 
Estimate Std.Error z-value p-value Estimate Std.Error z-value p-value 

0β  11.478    0.04005   286.6   2×10-16 26.543   0.06986   379.9   2×10-16 

1β  -2.887    0.01099  -262.6   2×10-16 -1.756   0.00481  -364.9   2×10-16 

AIC 347166 353704 

TABLE 5.10. ML estimates and values of AIC for two simple negative binomial models. In 
the first model log of distance (logd) is used as an explanatory variable, in the second 
model the log of circular area population (logs) – the variable of the radiation model – is 
considered. 

These first results do not meet with initial expectations regarding the 

inclusion of the radiation model variable into a regression modeling approach. Of 

course, the current experiments may be deemed as premature and one can 

argue that there are many other possible transformations and combinations of 

the explanatory variables as well as different distributional assumptions inspired 

by the assumption of the radiation model (e.g. a binomial or beta-binomial 

regression model) which would potentially provide more encouraging results. On 

the other hand, as discussed in section 3.2.6, current research is suggestive of 

the fact that the regression models presented in chapter 3 are practically 

saturated from explanatory variables. That is, explanatory power in the current 

models cannot be significantly increased by including additional explanatory 

variables, or to put it another way it is difficult to find explanatory variables 

which will explain the variability in OD flows from an aspect which is not already 

covered by the choice of the existing socio/geo-economical explanatory 

variables. 
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Possibly, variables related to psychological characteristics would contribute 

more in explaining the unaccounted variability. Recent transportation studies 

focus on psychological aspects of traveling and provide interesting findings 

regarding two-way interactions between such aspects and the act of travelling, 

e.g. in Ory (2007). Nevertheless, variables related to psychological aspects are 

difficult to quantify and even when that is possible such variables have no 

meaning for OD modeling on aggregated levels.  
 

5.2.2 Extra stochasticity in the radiation model 
 

As described previously the radiation model is a stochastic model which assumes 

that the OD flows are binomially distributed. Nevertheless, the radiation model is 

not a statistical model in the sense that there is no estimation procedure 

involved as the parameters of the binomial distribution are given by known 

quantities. Of course, as mentioned in section 5.2 that is also the major 

advantage of the radiation model, i.e. it is a parameter-free model.  

On the other hand, it might be worth considering a statistical-extension of 

the radiation model. An initial advantage from such an approach is that one 

could benefit from the well-established statistical tradition of goodness-of-fit 

testing52. Another, perhaps more important aspect, is that of prediction. As 

illustrated throughout this dissertation one of the main advantages of the 

proposed methodology is the well-defined predictive framework. Assimilating the 

radiation model into a similar Bayesian framework would allow for predictive 

testing on disaggregated and aggregated levels. For instance, say that one 

would like to use the radiation model for inferring on the aggregation levels 

which are used as examples in sections 3.2.5 and 3.3.6. With the radiation 

model in its current form it is only possible to calculate the expected values on 

aggregated levels as summations of expected values on disaggregated levels. 

                                                             
52 Arguably, since the radiation model is essentially a stochastic model which provides an expected 
value and a variance value for each OD pair one can still attempt to calculate common goodness-of-fit 
measures, such as the chi-square and the deviance (likelihood-ratio) measures. Nevertheless, a 
problem of the chi-square statistic is that it is increasing in analogy with sample size whenever the 
fitted model is not the “true” model, and thus the null hypothesis tends to be rejected for cases of large 
datasets. The deviance measure, although slightly more reliable, shares the large-sample problems 
encountered by the chi-square statistic, which is in fact an approximating statistic to the deviance, 
while in addition the concepts of a full and of a null model are difficult to determine in the case of the 
parameter-free radiation model. 
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The corresponding observed quantities – without taking into account intra-zonal 

flows – and the expected quantities from the radiation model are presented in 

Figure 5.8.       

 
Figure 5.8 Observed quantities and expected quantities of inter-zonal going-to-
work/school trips from the radiation model for incoming trips to Antwerp (a), total number 
of trips in Flanders (b) and internal trips within each of the five Flemish provinces; 
Antwerp (c), Limburg (d), East Flanders (e), Flemish Brabant (f) and West Flanders (g). 
The vertical lines correspond to observed quantities, the vertical blue lines to the expected 
values from the radiation model. 

The differences between observations and expectations in graphs (b) to (g) of 

Figure 5.8 seem relatively small, but one can say little regarding the 

extremeness of the expectations in terms of statistical significance. Contrary, 

under a statistical, in particular a Bayesian, framework the vertical blue lines 

would be replaced by predictive distributions allowing for calculation of p-values.  

The fact that the radiation model is applicable only to inter-zonal flows – 

and consequently a statistical extension of it would be also limited to inter-zonal 

flows – seems to be a minor disadvantage in comparison to the potential 

benefits. Note that traffic assignment does not take into account intra-zonal 

flows and therefore a Bayesian version of the radiation model could also be 

utilized for all the applications described in chapter 4 and section 5.1 of this 

chapter. Finally, if intra-zonal flows are really the focus of interest, then one can 

still obtain rough estimates of intra-zonal flows calculated as 

( ) ( )oo o odd o
E T m E T


   for 1,2,...,d m .  
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Given these considerations, a statistical extension of the radiation model 

might be worth investigating. In what follows an initial Bayesian representation 

of the radiation model is proposed. It is argued that in order to keep the initial 

form of the radiation model unchanged, an informative Bayesian approach must 

be adopted.         
 

5.2.3 An informative Bayesian representation of the radiation model 
 

Let us start from the concluding assumption of the radiation model which is 

~ ( , )od o odT Bin T p , so that ( )od o odE T T p  and var( ) (1 )od o od odT T p p  , for 

, 1,2,...o d m . From a statistical perspective the binomial distribution is the 

likelihood distribution, i.e. 
 

( | ) (1 )od o odo T T T
od od od od

od

T
L T p p p

T
 

   
 

.  

 

Under the radiation model we have a deterministic relation of the form 
 

( )( )
o d

od
o od o d od

m np
m s m n s


  

. (5.1) 

 

Now let us relax the assumption above and assume a stochastic representation 

of equation (5.1). In particular, a Bayesian representation which will introduce a 

prior distribution ( )π   for odp . A convenient distribution in general is the beta 

distribution, i.e. ~ ( , )od od odp Beta α β . As presented next, the beta distribution is 

convenient since it is conjugate to the binomial distribution. Furthermore, it is 

also an appropriate distribution with support in (0,1) and with p.d.f. – 

momentarily ignoring subscripts – given by 1 1 1( ) Β( , ) (1 )α βπ p α β p p    , 

where ,α β    and Β( )  is the beta function. Note that the expectation and 

variance are given by ( ) / ( )E p α α β   and 2var( ) / [( ) ( 1)]p αβ α β α β    , 

respectively. 

Given the strong impact of the “radiation law” one would like to adopt an 

informative beta prior which will reflect belief in equation (5.1). This can be 

achieved by assuming that  
 

( )
( )( )

o d
od

o od o d od

m nE p
m s m n s


  
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and that var( )odp  is relatively small in comparison to the mean. By expanding 

the denominator on the right side of equation (5.1) we have that  
2( )( ) [( ) ]o od o d od o d od o od dm s m n s m n s m s n       . Thus, by setting  od o dα m n  

and 2[( ) ]od od o od dβ s m s n    we obtain exactly 

( )
( )( )

od o d
od

od od o od o d od

α m nE p
α β m s m n s

 
   

. 

 

Note that in real-world applications where , , 1o d odm n s   the variance 

2var( ) / [( ) ( 1)]od od od od od od odp α β α β α β     will be small since the denominator 

will be greater than the numerator. Thus, for the proposed values of odα  and 

odβ  we have an informative prior which is highly peaked around equation (5.1) 

with small variance. In summary, the “Bayesian-radiation” model is of the form 
 

| ~ ( , )od od o odT p Bin T p  (likelihood), 

     ~ ( , )od od odp Beta α β  (prior), 
 

with od o dα m n  and 2[( ) ]od od o od dβ s m s n   . It is interesting to note that 

integrating over odp  results in a marginal likelihood or prior predictive 

distribution which is a beta-binomial distribution with parameters oT , odα  and 

odβ , that is 

1

0

1 1 11

0

( ) ( | ) ( )

        [Β( , )] (1 )

Β( , )        .
Β( , )

od od o od od

od od od od od

o T α T T β
od od od od od

od

o od od o od od

od odod

L T L T p π p dp

T
α β p p dp

T

T T α T T β
α βT

    



 
   
 
    

   
 



  

 

As discussed in section 2.1 the prior predictive distribution has a rather awkward 

interpretation in Bayesian statistics as it gives the probability of witnessing the 

data that were actually manifested, calculated before any data became 

available. Nevertheless, it is very useful for formal model comparison based on 

Bayes factors. What is more interesting is that due to the conjugate beta prior 

the posterior distribution resulting from ( | ) ( | ) ( ) / ( )od od od od od odp p T L T p π p L T  is 
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also of known form, namely | ~ ( , )od od od od o od odp T Beta α T T T β    with posterior 

expectation and variance given by  

( | ) od od
od od

o od od

α TE p T
T α β




 
 (5.2) and 

2

( )( )var( | )
( ) ( 1)

od od o od od
od od

o od od o od od

α T T T βp T
T α β T α β

  


    
 (5.3), 

 

respectively. At present, issues related to the added value or even to the validity 

of the aforementioned Bayesian “version” of the radiation model should be 

discussed and contemplated.  

Starting from the disadvantages of this approach, it must be mentioned first 

that the radiation model loses its desired generality as it becomes a statistical 

model which depends on observed data for the estimation of parameters odp  for 

, 1,2,...o d m . This argument can be partially bypassed, since under specific 

conditions – as the ones that prevail in transportation modeling – OD modeling 

is not the main inferential purpose per se. Under such conditions where 

inference for disaggregated as well as aggregated levels is of importance, 

accurate predictions on all levels are needed and therefore loss in generality can 

be partially allowed in exchange for predictive power. On the other hand there 

also is an issue with the statistical aspect of this model as the number of 

parameters is equal to the number of data points. Given this, the proposed 

model is meaningful only under a truly informative Bayesian approach. 

Otherwise, the adoption of a vague prior would probably result in posterior 

results that fit the data perfectly, but the related posterior inference would have 

a doubtful scientific value. 

The potential added-value of this approach is that one borrows strength 

from prior beliefs (radiation assumption) as well as observed data. In cases 

where the observed OD flows are close to the radiation expectation (equation 

5.1) results from the radiation model and the Bayesian formulation will not differ 

a lot. On the other hand, in cases where observed flows are far from the 

radiation expectation then the posterior expectation in equation 5.2 will be 

somewhere in-between observed data and prior assumptions, thus closer to the 

former. Another advantage is that when new data become available, then the 

Bayesian model provides a natural updating framework, i.e. the posterior 
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distribution can be utilized as a prior distribution for analyzing data from a new 

census study. Finally, it is very easy to generate properly defined short-term 

predictions of OD flows and compare these predictions with the observed OD 

flows. 
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6 Discussion 
 

In this final chapter conclusions, considerations and future directions of research 

are discussed. Initially, a summary of the main results is provided followed by a 

section in which results are viewed and interpreted from the perspective of input 

and model-uncertainty. Considerations concerning the issue of applicability of 

this current research as well as certain econometrical considerations are 

discussed next. The chapter concludes with a summary of possible future 

research directions.     
 

6.1 Summary of main results and contributions 
 

In chapter 3 statistical OD modeling with covariates is introduced. The 

proposed methodology is applied on matrices derived from the 2001 Belgian 

census study and inference is focused on OD movements between the 308 

Flemish municipalities. In general, the approach may be seen as a framework 

which incorporates the trip-generation and trip-distribution steps of the four-

step model into statistical models that provide richer parametrical and predictive 

inference. At the same time, the particular experimental design allows for an 

alternative interpretation of the models from a direct-demand, gravity modeling 

perspective. 

The starting assumption was a Poisson model where expected OD flows are 

related to a set of 25 explanatory variables through a log-linear link function. A 

first finding was that the simple Poisson model – a modeling assumption which is 

commonly adopted for OD flows – is clearly not appropriate when modeling large 

matrices with a great degree of overdisperion like the ones under consideration 

here. Contrary, model comparison based on information criteria provided much 

support in favor of the negative binomial or PG model indicating that Poisson-

mixture modeling is a more suitable starting assumption. The PG model was 

further compared to the PLN model and also to the PIG model. In this first 

Bayesian application of the latter, it is shown that the model has desired and 

distributional properties which constitute its use particularly convenient, 

especially in comparison to the PLN model. Furthermore, the PIG model provided 

the best marginal fit among all three models.  
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With respect to parameter-significance, all parameters proved to be 

statistically significant within the Poisson-mixture framework. The parameter 

estimates from the PIG and PLN models – which both provided a better marginal 

fit than the PG model - are in general more similar. Concerning parameter-

interpretation, the related inference led to consistent results, which are mainly in 

accordance to traditional trip-production and trip-attraction studies as well as 

recent transportation studies. In addition, predictions generated from the 

hierarchical structure of the PG and PIG models were compared to observed 

data according to several predictive overall goodness-of-fit and case-specific 

tests. The overall fit is found to be satisfactory for both models. Nonetheless, 

one important finding is that both models tend to underestimate the number of 

zero-valued cells and as shown through further analysis zero-valued cells 

eventually have a strong cumulative influence on the figure of total travel-

demand. 

In chapter 4, two methods of inputting OD predictions in traffic assignment 

models are demonstrated. Method 1 is based on individual assignments of OD 

summaries and leads to approximate-network inference, whereas method 2 is 

based on repeated assignment of OD predictions and results in full-network 

inference given demand uncertainty. The methods are tested on the Flemish 

road network for the morning peak hour between 7 and 8 am. Implementation 

under DUE assignment is based initially on PG predictions and subsequently on 

PIG predictions.  

The first comparison between methods indicated that centrality estimates 

derived from the two methods such as means and medians are relatively close. 

Regarding TSTT and Jensen’s inequality, the TSTT based on mean demand 

(method 1) was found indeed to be smaller than the mean TSTT (method 2). 

Nevertheless, in practical terms the two estimates are relatively close. Method 1 

as an approximate method is computationally less demanding and therefore 

these initial findings provide some support in favor of its use when the goal is to 

have an estimate of the expected state of a network. Of course, as already 

stated, it is important to conduct similar research for networks of different 

topology and with varying levels of congestion. Nevertheless, method 2 is in 

general advocated, despite being computationally demanding. Results based on 

method 2 provided more reliable percentile estimates and also dispersion 
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estimates as well as probability estimates which cannot be calculated through 

method 1. 

The second comparison focusing on traffic assignment results from PG and 

PIG predictions revealed that the choice of the statistical model can have a 

significant impact on aggregated link flows. In our case, the underlying reason is 

that the two models resulted in different predictions of total travel-demand 

which are highly influential to traffic assignment results on aggregated levels. 

On the other hand, main inferences concerning disaggregated link volumes and 

V/C ratios as well as TSTT were not affected by the selection between PG and 

PIG Gaussian predictions. 

In general, traffic flows in Flanders were found to be denser around the 

major municipal centers of Antwerp, Ghent, Leuven and Bruges and on the 

highways which connect these cities with each other and also with Brussels 

metropolitan area. Congestion analysis indicated that eleven links have a non-

zero probability of exceeding a V/C threshold ratio of 0.95. As shown, 

identification of congested links under demand-uncertainty is safer through 

probability estimates in comparison to mean estimates. A further interesting 

finding is that V/C distributions are not necessarily normally distributed as 

bimodalities may often appear.  

In the first part of chapter 5 further traffic assignment experiments were 

implemented. In particular, DUE assignment was compared to SUE assignment 

with both probit and logit route-choice modeling and for different values of 

perception-error variance, specifically for variances equal to 0.01, 0.05 and 0.1. 

This time all traffic assignments were based on PG predictions. With respect to 

TSTT, results once again indicated that under SUE assignment mean TSTT is 

greater than TSTT based on mean demand, in accordance with Jensen’s 

inequality. In addition, the differences are increasing as perception-error 

variance is increasing. Nevertheless, in practical terms the differences are not 

particularly alarming. 

Results for aggregated link volumes are less straightforward to interpret. 

Certainly the choice of assignment model induced some variability which is 

apparent when examining link volume distributions as well as point and interval 

estimates. Nevertheless, the degree of this induced variability seems to depend 

on the link-type category under consideration. Based on numerical results 
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differences for local roads (low capacity) are almost negligible, differences for 

main regional roads (medium-to-high capacity) and especially highways (high-

capacity) are more noticeable, while differences for small regional roads 

(medium-to-low capacity) are more than obvious. Despite these diverse results 

some general conclusions are in agreement with theoretical expectations. First, 

DUE assignment assigned more traffic to high-capacity links, while SUE 

assignment tended to assign more traffic to medium-capacity links. Second, 

when considering the total amount of traffic, then SUE assignment always 

produced more traffic than DUE and in addition traffic under SUE increased with 

increases in error-perception variance. 

Concerning congestion analysis, results revealed that the selection of 

assignment model does not seriously affect the overall allocation of links with 

respect to expected V/C ratios. On the other hand, variability is induced once 

again when examining individual V/C distributions of specific links. In particular, 

examination of V/C distribution for links which exceed a V/C ratio of 0.95 led to 

the conclusion that V/C distributions can differ significantly. In addition, under 

SUE assignment bimodalities as well as multimodalities were observed. These 

results provide additional support to the use of probability estimates based on 

V/C distributions as opposed to centrality estimates as measures of identifying 

congestion. In general, congestion was identified on 13 links under SUE 

assignment with corresponding probability estimates which did not vary a lot for 

12 out of the 13 links. The same holds for 8 out of the 9 links which were 

mutually identified under DUE and SUE assignment. 

The second part of chapter 5 dealt with the recently developed radiation 

model of Simini et al. (2012). In particular, some initial attempts of assimilating 

the radiation model within our modeling framework were demonstrated. Initially, 

the variable of circular area population – introduced in the radiation model – was 

used as an explanatory variable in a statistical framework under negative 

binomial likelihood assumptions. These results did not meet initial expectations, 

nevertheless further future experiments based on different assumptions might 

provide more promising results. This section concluded with a possible Bayesian 

extension or variation of the radiation model. Results from such a modeling 

approach remain to be evaluated. 
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6.2 Relations to input and model uncertainty  
 

Although not always explicitly mentioned throughout the text, the material of 

this dissertation is constantly related to modeling and incorporating various 

sources of uncertainty. Therefore, it is useful to interpret results from the 

perspective of uncertainty modeling. As discussed in section 1.3, two important 

review papers for uncertainty modeling in transportation studies are those of de 

Jong et al. (2006) and Rasouli and Timmermans (2012). In both papers two 

major sources of uncertainty are recognized; input-uncertainty which is due to 

future unobserved input, sampling bias, survey design and so forth, and also 

model-uncertainty which is due to model-specification and parameter-estimation 

error. 

Chapter 3 can be essentially viewed as a study of model-uncertainty in OD 

modeling. In particular, the structure of the chapter is actually shaped by model-

specification error due to distributional assumptions. Initially, a comparison is 

performed between the simple Poisson model and the negative binomial model 

accounting for overdisperion. Subsequently, further distributional assumptions 

are taken into account by changing the distribution of random effects from 

gamma to lognormal and also to inverse Gaussian, and results are compared 

under both hierarchical and marginal modeling structures.  

On the other hand, less weight is placed on the deterministic assumption of 

the log-link function which is another component of model-uncertainty. 

Nevertheless, this is justifiable based on the following reasons. Firstly, the log-

link function is commonly the prevailing option in Poisson or Poisson-mixture 

modeling as it is in theory a more consistent option in comparison, for instance, 

to the identity function. Secondly, initial experiments also revealed in practice 

that the Poisson and negative binomial models with a log-link function 

performed better than the models with an identity-link function in terms of AIC. 

Thirdly, as described in section 3.4 the use of the log-link function leads to an 

interesting alternative direct-demand gravity modeling interpretation.  

The issue of omitted explanatory variables – still with respect to model-

uncertainty – is in general more difficult to approach. Nevertheless, as discussed 

in section 3.2.6 and also as shown in section 5.2.1 experiments with additional 

explanatory variables have been conducted and the gains in model improvement 

were not found to be significant. The overall feeling with respect to the use of 
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explanatory variables is that it is difficult to find other variables which will 

explain OD variability from an aspect which is not explained already by the 

choice of the existing variables. 

The methodology of chapter 3 is purely statistical and therefore estimation-

error – the second main source of model-uncertainty – for the parameters of 

scientific interest is constantly considered and quantified in terms of point, 

interval and standard deviation estimates. One might argue that estimation-

error in the frequentist sense can be considered as sampling-error under the 

Bayesian framework. Nevertheless, sampling-error is also accounted for by 

monitoring MCMC convergence and the MC simulation error of each parameter 

(Appendix B). In addition, with Bayesian methodology uncertainty for 

parameters – or indeed for any function of the parameters – can be explicitly 

expressed in terms of posterior distributions. Another important advantage is 

that model uncertainty can be evaluated by means of short-term predictive 

testing.         

The aspect of input-uncertainty is not pursued a lot in chapter 3. The 

reason actually relates to one of the fundamental arguments in favor of this 

research, namely that direct statistical modeling is justified given the fact that 

the main input-uncertainty sources of error (sampling and non representation-

error) are not present in the census OD. Nevertheless, input-uncertainty is still 

considered to a certain degree. As discussed in section 3.1.3, due to a certain 

non-response rate two slightly different OD matrices are used in sections 3.2 

and 3.3. Comparison based on the estimates from the negative binomial model 

indicated that there are no major differences when it comes to parameter 

interpretation and also statistical significance. 

Input-uncertainty is the main theme of chapter 4. As demonstrated 

throughout chapter 4 and given the methodological framework of chapter 3, 

incorporating and quantifying input-uncertainty is relatively easy to implement. 

Once again, one of the advantages of the overall approach is that quantification 

of uncertainty is not restricted to traditional point/interval estimation, but is 

extended to distributional estimates of link volumes and V/C ratios given input-

uncertainty.  

Under this flexible methodological framework, aspects of model-uncertainty 

related to traffic assignment are also considered. In section 4.6, the initial 
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results of section 4.5 based on PG predictions are compared to results based on 

PIG predictions. One can argue that it is rather unclear whether this comparison 

should be considered as an input-uncertainty or as a model-uncertainty 

comparison. From one point of view, the choice of the statistical model is 

directly related only to the OD predictions used as input to traffic assignment 

and therefore this comparison can be validly considered to be an input-

uncertainty experiment. On the other hand, if one views the proposed 

methodology as a two-stage modeling approach, i.e. statistical OD modeling 

followed by traffic assignment modeling, then the comparison can be also validly 

viewed as a model-uncertainty experiment. Irrespective of point of view, the 

results discussed in section 4.6 highlight interesting differences. 

Model-uncertainty concerning traffic assignment modeling per se is further 

explored in the first part of chapter 5, specifically in section 5.1. In this part 

model uncertainty originating from the choice of statistical model is kept fixed, 

i.e. only PG predictions are considered, and model-uncertainty originating from 

the choice of assignment procedure is investigated given input-uncertainty. The 

comparison takes into account several sources or levels of model-uncertainty. 

On a first level deterministic versus stochastic UE is considered, on a second 

level functional assumption of SUE are considered (probit versus logit route-

choice modeling) while on a third level parametrical assumptions of SUE are let 

to vary (perception-error variance) in a sensitivity-analysis manner.      

It should be noted that alternatives to the BPR (Bureau of Public Roads, 

1964) link performance function, which is used for all traffic assignment 

applications of chapters 4 and 5, are not considered. Although that the link 

performance function is another functional assumption which would be possible 

to test, the BPR formulation seems to be widely accepted within the field and it 

is also used in most scientific UE traffic assignment applications, for example the 

BPR formulation is present in the studies of Sheffi and Powell (1981), Ji and 

Chen (2003) and Zhang (2011), among many others. 
 

6.3 Applicability considerations 
 

At this point it would be fair to contemplate on the applicability of the proposed 

methodology. One can argue that a serious limitation is that the overall 

approach is data-dependent, in particular with respect to the OD matrix. Direct 
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statistical modeling requires that the OD matrix must be “reliable” to start with, 

i.e. the various sources of input-uncertainty error should have minimal effects 

on the final OD estimate used for the analysis.  

The OD matrix derived from the 2001 Belgian census can be described as a 

reliable OD estimate, since at least the two main sources of input-uncertainty, 

sampling-error and non representation-error, are not present. Of course, OD 

matrices from census studies are extremely expensive data items and in 

addition not collected in frequent time-intervals. Even more, travel census data 

do not exist for the majority of countries at least not in the real meaning of 

“census” which strictly speaking is a study for the whole population of a country. 

The country of Belgium might be regarded as an exception, since the relatively 

small surface area and also population facilitates census tracking. On the other 

hand, one can easily imagine enormous difficulties for implementation of travel 

census studies in countries like Germany, France or USA, for instance. 

The question then is whether it is safe to apply statistical modeling on OD 

matrices derived from travel-surveys which do not account for the population as 

a whole. Obviously this question is not straightforward to answer and most 

probably an absolute “no” as an answer would be equally wrong with a definite 

“yes”. Basically, it would all depend on the quality of the travel-survey in terms 

of taking into account propagation of error from various sources during the 

design and implementation of the survey.  

Many developed countries support ongoing travel-surveys which are well-

organized and are implemented on a nationwide level. Such surveys are 

frequently referred to as micro-census studies, since the aim is to project travel-

survey information to the level of a nation. Examples can be found in McKenzie 

and Rapino (2011) for USA and in Marconi et al. (2005) who provide a 

comparative study for Switzerland, 8 EU countries and USA.  

For these cases, the answer to the aforementioned question would probably 

be affirmative. In fact, since micro-census studies are updated in regular 

intervals, Bayesian modeling approaches might prove to be particularly suitable 

due to the natural updating prior/posterior framework. In addition, statistical 

models can always be extended so that additional sources of uncertainty are 

included in a given analysis. That is, additional error structures can be 

introduced accounting for sampling or non representation-errors, for instance. 
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6.4 Econometrical considerations 
 

As with any scientific research there are further issues which arise during the 

course of experiments which are not initially under consideration. One of these 

issues relates to the fact that the research presented here started from a purely 

statistical point of view and not from an econometrical perspective. Therefore, 

attention did not capture specific modeling details which are probably important 

within an econometrical framework. Namely, not all explanatory variables 

correspond to the base-year of the 2001 Belgian census.  

Specifically, the explanatory variables of employment ratio, population 

density and car ownership ratio correspond to those of year 2006. From a 

strictly statistical perspective such negligence is probably not significant in 

statistical and practical terms. In general, all three variables are related to 

population figures and one would not expect a sudden steep increase of such 

figures between the years of 2001 and 2006. In addition all three variables are 

actually transformed to ratios and therefore the corresponding differences 

between 2001 and 2006 are expected to be even less significant than those of 

untransformed variables. In practice, one would expect that the corresponding 

parameter estimates might differ up to a certain decimal point if the explanatory 

variables of the base year would have been used. 

Nevertheless, according to the discussion of section 3.4, especially with 

respect to similarities with econometrical trade-flow studies, an econometrical 

implementation would be of potential interest for long-term forecasting 

applications. That is, if the models presented here were fitted with all 

explanatory variables measured in the base year, then it would be feasible to 

forecast long-term predictions by keeping parameters estimates fixed and by 

substituting the 2001 explanatory variables with future estimates of the 

explanatory variables. Of course, that would be possible given that future 

estimates of explanatory variables exist. 
 

6.5 Future research 
 

This dissertation concludes with a brief discussion concerning possible future 

research directions. Some are purely statistical considerations while others 

relate more to transportation modeling issues which remain to be addressed.         
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From a statistical perspective, additional models will be worthwhile the 

consideration. In particular, zero-inflated versions of the models presented here 

are a first clear option. As illustrated in section 3.3.6, both the PG and PIG 

models fail to replicate successfully the total number of zeros in the OD matrix. 

Although replicating the number of zeros was initially not one of the basic goals 

of the analysis, this particular failure of both models affects total demand 

predictions and consequently aggregated link flow predictions. This line of 

research can start similarly from simple Bayesian versions of the zero-inflated 

Poisson (Lambert, 1992) and negative binomial (Heibron, 1994) models and 

build up to new and novel modeling applications based on other distributions.  

Including a wider range of models may also lead to an interesting 

application of Bayesian model averaging. According to Kass and Raftery (1995) 

this technique yields consistently and substantially better prediction than 

methods based on individual models (see also Hoeting et al., 1999). Within our 

working framework this approach might prove to be useful for the traffic 

assignment stage. At present, the link flow predictions are subjected to model-

uncertainty both from statistical modeling as well as traffic assignment 

modeling. Bayesian model averaging for the predictions generated by numerous 

models will at least reduce the uncertainty originating from statistical modeling.  

Another more ambitious statistical research direction involves changing 

completely the inferential framework to dynamic modeling. That is, simultaneous 

modeling of OD matrices on discrete time-intervals, e.g. on daily intervals. At 

present, it would be difficult to express anything more than conceptual 

suggestions starting from the covariate-based Poisson modeling framework 

introduced here only this time from a time-series perspective which can 

potentially build up to Poisson-mixture time-series models and to analogous 

extensions of these according to the future directions discussed previously, i.e. 

zero-inflated versions.  

Future research directions concerning transportation modeling issues are 

many. First of all, with respect to the two inputting methods introduced in 

section 4.4 research focusing on method 1 (approximate network-inference) 

might deserve some further attention. Method 1 is approximate and as such it 

requires less computational time which makes it suitable for fast policy-planning 

decisions. To this end, the comparison between method 1 and method 2 (full 
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network-inference) provided some evidence that method 1 might be suitable 

when point estimates of expected network states are of importance. 

Nevertheless, as discussed in section 4.7 this statement can be properly 

supported only if similar research is conducted for networks with different 

characteristics. A further topic of interest would be to investigate alternative 

methods for deriving percentile estimates from method 1, methods which will 

potentially provide percentile estimates closer to the corresponding estimates of 

method 2. In fact, this research field is free for experimentation. Although 

research focusing on improvement of centrality measures under approximate 

network-inference does exist (e.g. Ukkusuri and Waller, 2006), relevant 

research on percentile estimates seems to be non-existing in the relative 

literature, as yet.    

A lot could be said with respect to congested link identification in terms of 

probability estimates which was introduced in section 4.5.4 and further analyzed 

in sections 4.6.3 and 5.1.4. Nevertheless, the most challenging and perhaps also 

most interesting direction for this type of research is a bridging attempt with 

critical link identification studies within the framework of vulnerability analysis. 

The challenging, but also promising, part for this type of research is that both 

research approaches – method 2 introduced here and also critical link 

identification algorithms – are relatively new and untested. Of course, as 

mentioned in section 4.7 a combination of full network input-uncertainty 

inference with the full-network scan approach of Jenelius et al. (2006) will prove 

to be, most probably, prohibitive in terms of computational expense, at least for 

cases of large-scale congested networks. On the other hand, combining full 

network input-uncertainty inference with the reduced-scan algorithm proposed 

in Chen et al. (2012) might be feasible.  

A further issue which was not included in this current analysis and can be 

incorporated in future research is that of modal-split modeling, the third phase 

of the sequential four-step model. Modal-spit is a well established aspect of 

transportation modeling and therefore several methodologies are available (see 

e.g. chapter 6 in Ortúzar and Willumsen, 2001). Nevertheless, despite the choice 

of modal-split technique, an interesting question arising in this case would be 

whether to implement modal-split first and then use statistical modeling for the 
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disaggregated OD matrices – either separately or simultaneously – or implement 

modal-split directly upon the OD predictions generated by a statistical model.  

Another research category relates to traffic assignment experiments 

concerning theoretical as well as practical aspects of traffic assignment models. 

One of the advantages of the proposed methodology is that it is not restrained 

by the selection of the traffic assignment model. Therefore, future research can 

focus on comparative studies concerning point, interval and distribution 

estimates resulting by different traffic assignment models. A first comparison 

concerning differences between DUE and SUE estimates was presented in 

section 5.1. This line of research can potentially extend to truly stochastic traffic 

assignment approaches such as the models proposed for instance by Cascetta 

(1989) and Hazelton (1998). 

Finally, the radiation model of Simini et al. (2012) is a new and novel 

methodological development which will potentially impact transportation 

modeling in general. A first conceptual Bayesian representation of this model 

has been presented in section 5.2.3. This modeling approach remains to be 

implemented, evaluated and most probably improved and refined.  
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Appendix A 

 

A.1 Generating a MH sample of size M from the Poisson model. 
 

1. Set starting value 0β . 

2. For iterations 1,2,...,t M : 

a. Generate *β  from the proposal distribution ( )q β . 

b. Calculate the transition probability 
* 1

1 *
( | ) ( )min ,1
( | ) ( )

t

MH t
p qα
p q





 
  
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β y β
β y β

. 

c. Generate a uniform random number u from (0,1)U . 

d. Set 
*

1

 ,  if ,

,  if .
MHt

t
MH

u α

u α

  


β
β

β
 

 

The un-normalized posterior density ( | )p β y  is given in expression 3.3. 

 

A.2 Generating a MH sample of size M from the PG/PLN/PIG models. 
 

1. Set starting values 0 0,ωβ . 

2. For iterations 1,2,...,t M : 

a. Generate *β  from the proposal distribution ( )q β  and *ω  from the 

proposal distribution ( )q ω . 

b. Calculate the transition probability 
* * 1 1

1 1 * *
( , | ) ( ) ( )min ,1
( , | ) ( ) ( )

t t

MH t t
p ω q q ωα
p ω q q ω

 

 

 
  
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β y β
β y β

. 

c. Generate a uniform random number u from (0,1)U . 

d. Set 
* *

1 1
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MHt t

t t
MH

u α
ω

ω u α 

  


β
β
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Parameter ω  corresponds to the over-dispersion parameter; for the PG model

ω θ , for the PLN model 2ω σ u  and for the PIG model ω ζ . The 

corresponding un-normalized posterior densities ( , | )p ωβ y  of the marginal 

models are given in expressions 3.6 (PG model), 3.9 (PLN model) and 3.11 (PIG 

model). 
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Appendix B 

 

B.1 Convergence diagnostics for the Poisson model (section 3.2.3). 

Parameter 

Convergence diagnostics 

Heidelberger & Welch Raftery & Lewis Geweke MC error 

Stationarity 

test  

p-value* 

Half-width 

test  

p-value** 

Dependence factor 

(I) 

Equality of means 

test absolute  

z-value*** 

Spectral density 

estimate 

0
β   0.4777 9.94e-04 0.970 0.290 5.070102e-04 

1
β   0.2798 9.77e-07 0.970 1.091 4.986712e-07 

2
β   0.2902 8.58e-07 0.991 0.473 4.377202e-07 

3
β   0.6494 1.40e-06 1.030 0.701 7.119120e-07 

4
β   0.7805 1.05e-06 0.991 0.888 5.356828e-07 

5
β   0.9490 2.60e-06 1.010 0.296 1.324426e-06 

6
β   0.5705 5.73e-05 0.991 0.904 2.923395e-05 

7
β   0.7609 5.95e-05 0.970 0.566 3.035946e-05 

8
β   0.6383 4.44e-05 1.100 1.740 2.265771e-05 

9
β   0.7294 1.78e-04 1.010 0.476 9.068293e-05 

10
β   0.9702 2.69e-04 0.991 0.549 1.374306e-04 

11
β   0.6663 2.10e-04 1.010 0.929 1.072890e-04 

12
β   0.6895 5.27e-05 0.991 0.272 2.686587e-05 

13
β   0.8246 6.37e-05 0.991 0.361 3.250084e-05 

14
β   0.7521 7.80e-05 1.010 0.904 3.978662e-05 

15
β   0.2602 1.04e-04 1.020 0.711 5.281253e-05 

16
β   0.6369 7.01e-05 1.030 0.069 3.574182e-05 

17
β   0.5064 1.07e-04 0.991 0.263 5.450614e-05 

18
β   0.0638 5.93e-04 0.970 1.111 3.024667e-04 

19
β   0.3556 6.06e-04 0.951 0.607 3.089782e-04 

20
β   0.2060 7.45e-06 0.991 0.653 3.798645e-06 

21
β   0.2383 9.72e-06 1.080 1.411 4.957593e-06 

22
β   0.7432 3.78e-05 1.010 0.324 1.927498e-05 

23
β   0.7806 5.40e-05 1.010 0.079 2.755243e-05 

24
β  0.9343 4.67e-05 1.050 0.057 2.383729e-05 

* Stationarity is rejected for p-values smaller than 0.05. 

** The test is passed for p-values greater then 0.05, i.e. when rejecting the null hypothesis. 

*** Equality of means is rejected for z-values greater than 1.96 in absolute terms. 
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B.2 Convergence diagnostics for the negative binomial model (section 3.2.3). 

Parameter 

Convergence diagnostics 

Heidelberger & Welch Raftery & Lewis Geweke MC error 

Stationarity 

test  

p-value* 

Half-width 

test  

p-value** 

Dependence factor 

(I) 

Equality of means 

test absolute  

z-value*** 

Spectral density 

estimate 

0
β   0.1645 1.39e-02 1.050 2.265 6.646236e-03 

1
β   0.8842 4.55e-06 1.010 1.249 2.319640e-06 

2
β   0.5270 6.79e-06 1.120 0.623 3.464543e-06 

3
β   0.2343 1.12e-05 1.010 0.714 5.366391e-06 

4
β   0.1296 1.08e-05 1.020 0.787 5.529487e-06 

5
β   0.7534 2.52e-05 1.070 1.253 1.284598e-03 

6
β   0.2562 5.13e-04 1.140 2.413 2.616511e-04 

7
β   0.8058 7.03e-04 0.970 0.344 3.587888e-04 

8
β   0.0666 5.98e-04 1.010 1.335 3.049852e-04 

9
β   0.6047 2.25e-03 1.120 0.884 1.146667e-03 

10
β   0.0942 2.51e-03 1.170 0.489 1.278680e-03 

11
β   0.4000 2.57e-03 1.050 0.824 1.313721e-03 

12
β   0.2273 4.20e-04 0.991 1.840 2.143684e-04 

13
β   0.2760 4.55e-04 1.010 1.522 2.320403e-04 

14
β   0.9060 7.20e-04 1.010 0.539 3.671063e-04 

15
β   0.8341 7.67e-04 1.080 0.883 3.913551e-04 

16
β   0.7531 7.20e-04 1.120 0.572 3.673767e-04 

17
β   0.9580 6.43e-04 1.030 0.107 3.281314e-04 

18
β   0.6247 5.47e-03 1.010 0.853 2.789266e-03 

19
β   0.3821 5.33e-03 0.991 1.385 2.853554e-03 

20
β   0.4186 6.50e-05 1.170 0.284 3.317650e-05 

21
β   0.3241 6.88e-05 1.050 0.950 3.510134e-05 

22
β   0.1668 3.34e-04 1.270 1.638 1.701795e-04 

23
β   0.3336 3.16e-04 1.030 0.412 1.609898e-04 

24
β  0.8220 3.43e-04 1.110 0.584 1.751428e-04 

θ   0.0620 3.02e-04 1.030 1.157 1.543145e-04 

* Stationarity is rejected for p-values smaller than 0.05. 

** The test is passed for p-values greater then 0.05, i.e. when rejecting the null hypothesis. 

*** Equality of means is rejected for z-values greater than 1.96 in absolute terms. 
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B.3 Convergence diagnostics for the PG model (section 3.3.4). 

Parameter 

Convergence diagnostics 

Heidelberger & Welch Raftery & Lewis Geweke MC error 

Stationarity 

test  

p-value* 

Half-width 

test  

p-value** 

Dependence factor 

(I) 

Equality of means 

test absolute  

z-value*** 

Spectral density 

estimate 

0
β   0.7889 1.36e-02 1.030 1.491 6.915429e-03 

1
β   0.2841 4.70e-06 0.991 0.890 2.398124e-06 

2
β   0.4956 7.52e-06 1.020 0.774 3.838305e-06 

3
β   0.0736 1.25e-05 1.010 1.182 6.364534e-06 

4
β   0.7396 1.11e-05 1.050 0.183 5.662365e-06 

5
β   0.2376 2.78e-05 1.050 2.275 1.410724e-05 

6
β   0.4366 6.61e-04 1.100 0.559 3.374072e-04 

7
β   0.9112 5.83e-04 0.970 0.027 2.976950e-04 

8
β   0.2266 7.58e-04 1.220 0.271 3.868395e-04 

9
β   0.5413 6.23e-04 1.010 1.521 3.179306e-04 

10
β   0.2373 2.29e-03 0.991 1.354 1.168372e-03 

11
β   0.4305 2.36e-03 1.100 0.317 1.205982e-03 

12
β   0.6138 1.88e-03 0.970 0.555 9.591993e-04 

13
β   0.2162 4.54e-04 0.991 0.874 2.316420e-04 

14
β   0.3770 5.10e-04 1.010 1.924 2.600273e-04 

15
β   0.0529 8.35e-04 1.010 0.998 3.821023e-04 

16
β   0.2691 7.49e-04 1.050 1.845 3.823767e-04 

17
β   0.0883 7.64e-04 1.080 1.254 3.899247e-04 

18
β   0.6361 6.72e-04 0.951 0.363 3.426730e-04 

19
β   0.5192 4.56e-03 1.100 0.378 2.326434e-03 

20
β   0.4427 5.02e-03 1.030 0.408 2.560980e-03 

21
β   0.9868 6.10e-05 1.080 0.589 3.114013e-05 

22
β   0.8197 5.09e-05 1.100 0.849 2.598050e-05 

23
β   0.0611 3.43e-04 1.050 1.023 1.751166e-04 

24
β  0.0539 2.96e-04 0.991 0.686 1.511616e-04 

25
β  0.1399 3.53e-04 0.991 0.845 1.801585e-04 

θ   0.1417 2.82e-04 1.010 1.475 1.439187e-04 

* Stationarity is rejected for p-values smaller than 0.05. 

** The test is passed for p-values greater then 0.05, i.e. when rejecting the null hypothesis. 

*** Equality of means is rejected for z-values greater than 1.96 in absolute terms. 
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B.4 Convergence diagnostics for the PLN model (section 3.3.4). 

Parameter 

Convergence diagnostics 

Heidelberger & Welch Raftery & Lewis Geweke MC error 

Stationarity 

test  

p-value* 

Half-width 

test  

p-value** 

Dependence factor 

(I) 

Equality of means 

test absolute  

z-value*** 

Spectral density 

estimate 

0
β   0.6368 1.52e-02 0.991 0.773 7.771081e-03 

1
β   0.2690 5.68e-06 0.991 0.481 2.896595e-06 

2
β   0.9831 6.83e-06 0.951 0.747 3.484824e-06 

3
β   0.2264 1.19e-05 1.010 1.342 6.056341e-06 

4
β   0.4814 1.43e-05 0.991 0.695 7.309160e-06 

5
β   0.4549 2.53e-05 1.030 0.072 1.289004e-05 

6
β   0.2473 6.49e-04 0.999 1.825 3.309656e-04 

7
β   0.9291 6.20e-04 1.030 1.120 3.160934e-04 

8
β   0.0640 7.27e-04 1.050 0.824 3.711024e-04 

9
β   0.0947 6.82e-04 0.970 1.919 3.477838e-04 

10
β   0.2870 2.71e-03 0.970 0.959 1.382304e-03 

11
β   0.6166 2.13e-03 0.970 0.151 1.087384e-03 

12
β   0.9858 2.38e-03 0.991 1.140 1.213049e-03 

13
β   0.0566 5.13e-04 0.942 0.280 2.618366e-04 

14
β   0.0618 4.69e-04 0.970 1.933 2.392921e-04 

15
β   0.3057 8.10e-04 1.010 0.542 4.134017e-04 

16
β   0.3500 7.04e-04 0.991 1.226 3.591040e-04 

17
β   0.4447 7.82e-04 1.030 0.173 3.991502e-04 

18
β   0.1124 6.96e-04 1.010 1.349 3.550184e-04 

19
β   0.6309 5.33e-03 1.050 0.349 2.718799e-03 

20
β   0.8395 4.81e-03 1.030 1.373 2.454120e-03 

21
β   0.9281 5.10e-05 1.050 1.525 2.603442e-05 

22
β   0.9033 4.44e-05 1.010 0.423 2.263907e-05 

23
β   0.1721 2.88e-04 1.030 0.353 1.467539e-04 

24
β  0.2299 3.23e-04 1.080 1.896 1.646602e-04 

25
β  0.3316 3.05e-04 1.010 0.324 1.558590e-04 

2σu   0.4935 3.14e-04 1.040 0.604 1.600820e-04 

* Stationarity is rejected for p-values smaller than 0.05. 

** The test is passed for p-values greater then 0.05, i.e. when rejecting the null hypothesis. 

*** Equality of means is rejected for z-values greater than 1.96 in absolute terms. 
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B.5 Convergence diagnostics for the PIG model (section 3.3.4). 

Parameter 

Convergence diagnostics 

Heidelberger & Welch Raftery & Lewis Geweke MC error 

Stationarity 

test  

p-value* 

Half-width 

test  

p-value** 

Dependence factor 

(I) 

Equality of means 

test absolute  

z-value*** 

Spectral density 

estimate 

0
β   0.5788 1.50e-02 1.190 0.477 7.678064e-03 

1
β   0.5341 4.74e-06 1.050 0.246 2.416379e-06 

2
β   0.6168 7.52e-06 0.979 0.617 3.835573e-06 

3
β   0.2348 1.09e-05 0.970 1.218 5.544257e-06 

4
β   0.2671 1.20e-05 1.010 1.216 6.135603e-06 

5
β   0.3034 2.89e-05 0.970 0.772 1.475210e-05 

6
β   0.0893 8.09e-04 0.991 1.994 3.188259e-04 

7
β   0.9351 5.64e-04 1.530 0.837 2.876201e-04 

8
β   0.2437 7.77e-04 0.970 1.211 3.962487e-04 

9
β   0.9977 6.10e-04 1.080 0.456 3.114344e-04 

10
β   0.1428 2.41e-03 0.962 0.779 1.230607e-03 

11
β   0.2589 2.26e-03 0.979 0.613 1.151560e-03 

12
β   0.1298 2.31e-03 0.991 0.173 1.178499e-03 

13
β   0.0571 4.98e-04 0.991 1.887 2.540307e-04 

14
β   0.6332 5.15e-04 1.100 0.020 2.628275e-04 

15
β   0.3166 6.26e-04 0.991 1.456 3.194033e-04 

16
β   0.8687 8.09e-04 1.070 0.036 4.126415e-04 

17
β   0.1072 7.68e-04 1.080 2.242 3.916494e-04 

18
β   0.5121 8.75e-04 0.991 0.117 4.463998e-04 

19
β   0.9373 5.31e-03 0.970 0.146 2.708647e-03 

20
β   0.0954 5.33e-03 0.991 0.505 2.719050e-03 

21
β   0.3577 5.43e-05 1.130 1.041 2.771298e-05 

22
β   0.2668 6.36e-05 0.979 0.066 3.245703e-05 

23
β   0.1153 2.94e-04 1.020 2.377 1.500488e-04 

24
β  0.6832 3.19e-04 1.010 0.100 1.626946e-04 

25
β  0.7769 3.32e-04 0.979 0.271 1.694052e-04 

ζ   0.1185 3.28e-04 1.020 1.809 1.556842e-04 

* Stationarity is rejected for p-values smaller than 0.05. 

** The test is passed for p-values greater then 0.05, i.e. when rejecting the null hypothesis. 

*** Equality of means is rejected for z-values greater than 1.96 in absolute terms. 



170 
 

 



171 
 

Appendix C 
 

Routines and external libraries in R (when needed) utilized for ML estimation, 

density calculations, sampling and MCMC convergence diagnostics.  
 

Purpose Model/Distribution Routine  R library 

ML estimation 

Poisson glm (default) 

Negative binomial glm.nb MASS 

Poisson-lognormal (GLMM 

form) 

lmer lme4 

glmmML glmmML 

Poisson-inverse Gaussian gamlss gamlss 

Density calculations 

and sampling 

Multivariate normal 
rmvtnorm 

mvtnorrm 
dmvtnorm 

Poisson-lognormal dpoilog poilog 

Poisson-inverse Gaussian dPIG gamlss 

Generalized inverse 

Gaussian 
rgig HyperbolicDist 

MCMC convergence 

diagnostics 

heidel.diag 

coda raftery.diag 

geweke.diag 
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