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Samenvatting

Een zekere mate van ontbrekende gegevens is onvermijdelijk in studies met gecor-

releerde gegevens. Ontbrekende gegevens kunnen tot vertekening leiden en dus kun-

nen conclusies, gebaseerd op dit type van studie, op hun beurt foutieve interpretaties

tot gevolg hebben. Een ander gevolg van dit fenomeen is het verlies aan informatie.

Uiteraard is de mate waarin de informatie afneemt verwant aan de hoeveelheid ont-

brekende gegevens. Er is ook de invloed van de analyse-methode. In toepepast

onderzoek, zoals bijvoorbeeld in klinische studies, worden traditioneel twee paden

bewandeld. Het eerste is de studie zodanig op te zetten dat het risico op ontbrek-

ende gegevens wordt geminimaliseerd. De tweede methode, waarop we in dit werk

inzoomen, richt zich op het formuleren van adequate analysemethodologie. Als dus-

danig is het de bedoeling vertekening te vermijden of minstens te verminderen.

De keuze van het inferentiële paradigma hangt nauw samen met de aard van het

mechanisme dat ontbrekende gegevens veroorzaakt. Het is gebruikelijk het mecha-

nisme te classificeren in overeenstemming met de terminologie van Little and Rubin

(2002). Wanneer het mechanisme afhangt van geobserveerde noch niet-geobserveerde

gegevens, spreken we van missing completely at random (MCAR). Wanneer het

afhangt van geobserveerde doch niet verder van niet-geobserveerde gegevens, wordt

de term missing at random (MAR) gebruikt. In alle andere gevallen spreken we van

missing not at random (MNAR).

Een belangrijk concept in dit verband is ignorability (Rubin, 1976). Het geeft

aan dat, onder bepaalde voorwaarden, het mechanisme dat ontbrekende gegevens

veroorzaakt niet hoeft gemodelleerd te worden. Dit is uiteraard alleen mogelijk wan-

neer we enkel aan aspecten van het respons-model gëınteresseerd zijn. Bij gebruik van

likelihood en Bayesiaanse methoden, kan ignorability toegepast worden onder MCAR

en MAR. Daarentegen, in een frequentistisch kader, is de strenge MCAR veronder-

stelling een voldoende voorwaarde voor ignorability.

Voor niet normaal verdeelde gegevens mete middellange tot lange meetreeksen kan

i



ii Samenvatting

zogenaamde direct lieklihood tot moeilijk te manipuleren likelihood functies leiden.

Om hieraan te verhelpen werden een reeks alternatieven voorgesteld, zoals gener-

alized estimating equations (hierna aangeduid met GEE) en pseudo-likelihood (PL).

Waar GEE de score vergelijkingen vervangen door alternatieve, eenvoudiger functies,

zal PL de likelihood zelf vervangen door een eenvoudigere vorm. Wanneer gegevens

onvolledig zijn moeten we opletten met GEE en PL, ze zijn immers frequentistisch en

dus enkel onder MCAR gegarandeerd geldig. Een oplossing hiervoor is het gebruik

van gewichten of het aanwenden van multiple imputation (bijv., Paik, 1997). We

kunnen ook gebruik maken van een dubbel-robuuste versie onder MAR. Robins, Rot-

nitzky and Zhao (1995) ontwikkelden gewogen GEE (WGEE), samen met een aantal

verfijningen, om GEE toe te laten onder MAR, en zelfs onder MNAR. De methode

is gebaseerd op de concepten van Horvitz en Thompson (Cochran, 1977). Metingen

worden gewogen met het inverse van de kans om geobserveerd te worden. In het

recente verleden werd WGEE uitgebreid met een dubbel robuuste versie (DR-GEE),

waar het concept van gewichten wordt aangevuld met het gebruik van een predictief

model voor de niet-geobserveerde gegevens, gegeven wat werd waargenomen.

Molenberghs and Kenward (2007) en Beunckens, Sotto and Molenberghs (2008)

vergeleken WGEE met een multiple imputation gebaseerde versie (MI-GEE), beide

zinvolle manieren om de methodologie te gebruiken onder MAR. Ook al is er heel

wat werk besteed aan de vergelijking van WGEE en MI-GEE, veel minder aandacht

is uitgegaan naar de dubbel robuuste versies. In Hoofdstuk 4 worden empirische

vergelijkingen gemaakt tussen gewogen, dubbel robuuste en MI-gebaseerde versies.

Gelijkaardige aanpassingen werden totnogtoe niet gedaan in het PL kader. In Hoof-

stukken 5 en 6 worden een reeks aanpassingen aan standaard PL voorgesteld, die

geldigheid omder MAR garanderen. Via simulaties wordt de performantie bestudeerd.

In Hoofdstuk 7 wordt de efficiëntie en robuustheid van verscheidene GEE en PL ver-

sies bestudeerd en vergeleken, met klemtoon op marginale modellen voor niet-normaal

verdeelde longitudinale gegevens met uitval. In Hoofdstuk 8 wordt een nieuwe meth-

ode voor het imputeren van ontbrekende gegegevens in klinische studies voorgesteld,

voor zowel de actieve als de placebo groep, daarbij gebruikmakend van gegevens uit

de placebo groep. We verwijzen hier naar als placebo multiple imputation (pMI). De

methode is ontwikkeld en de performantie ervan bestudeerd.

In wat volgt overlopen we kort de onderscheiden hoofdstukken van deze thesis.

Hoofdstukken 2 en 3 bevatten het inleidend materiaal, nodig voor de rest van

de tekst. De verscheidene datasets gebruikt doorheen het werk worden ingeleid in

Hoofdstuk 2. In Hoofdstuk 3 geven we een overzicht van standaard terminologie, al-

gemene eigenschappen en een overzicht van bestaande methodologie om ontbrekende
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gegevens te analyseren. De veelgebruikte methoden worden in vier delen onderveeld:

eenvoudige ad hoc methoden, imputatie, maximum likelihood en niet-likelihood meth-

oden.

De twee eenvoudige ad hoc methoden zijn: complete case analysis (CC), waar-

bij alle onvolledige reeksen worden weggelaten en last observation carried forward

(LOCF), waarbij de laatst waargenomen meting als substituut wordt gebruikt voor

alle latere metingen die niet meer werden waargenomen. Zogenaamde voordelen van

deze methoden zijn computationele eenvoud, het vermijden van een volledig longitu-

dinaal model (bijv. wanneer de onderzoeksvraag gesteld is in termen van de laatste

meting) en, voor LOCF, compatibiliteit met het Intention-to-Treat (ITT) principe,

omdat gegevens van alle gerandomiseerde patiënten kunnen gebruikt worden. Het ge-

bruik van dergelijke methoden vermindert sterk en meer principiële methoden, geldig

onder MAR, nemen toe in gebruik. Voorbeelden hiervan omvatten multiple imputa-

tion Rubin (1987), maximum likelihood en methoden niet op de likelihood gebaseerd.

Het panel genaamd “Handling of Missing Data in Clinical Trials” werd samenge-

bracht onder auspiciën van de National Academy of Sciences (NAS) van de Verenigde

Staten van Amerika, op verzoek van de U.S. Food and Drug Administration (National

Research Council, 2010). Het panel waarschuwde tegen het gebruik van de ad hoc

methoden en pleitte voor het gebruik van principiële methoden die geldig zijn onder

MAR en tegelijk makkelijk te implementeren in standaard commerciële statistische

software.

GEE is een niet-likelihood methode en vereist dus aanpassingen om geldig te

zijn onder MAR. Gewogen GEE (WGEE), multiple imputation gecombineerd met

GEE (MI-GEE) en dubbel robuuste GEE (DR-GEE) zijn alle attractieve aanpassin-

gen. Om tot consistente schattingen te leiden dient WGEE vergezeld te gaan van

correct gespecifieerde gewichten, terwijl voor MI-GEE een correct gespecifieerd im-

putatiemodel vereist is. Voor DR-GEE dient het model voor de gewichten of het

predictieve model correct te worden geformuleerd, doch niet noodzakelijk beide. In

Hoofdstuk 4 vergelijken we WGEE, MI-GEE en DR-GEE via simulaties, onder een

reeks correct en foutief gespecifieerde modellen. Uit deze studie blijkt dat, vooral voor

kleine steekproeven, WGEE eerder inefficiënt is. De methode is ook gevoelig aan

foutieve specificatie van het dropout model. Daarentegen is MI-GEE eerder robu-

ust aan verkeerd gespecifieerde imputatiemodellen, ondanks het feit dat het impu-

tatiemodel zich in het hart van de methodologie bevindt. We zagen ook dat MI-GEE

tot eerdere preciese schatters leidt, met een lichte verbetering wanneer we overstappen

op augmentatie DR-GEE (DR-GEE(Aug)). Als het dropout model correct is gefor-

muleerd maar het imputatiemodel niet, dan gebeurt het dat MI-GEE lichtjes beter
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is, maar soms is ook DR-GEE(Aug) de winnaar, afhankelijk van de specifieke setting.

Daarentegen, wanneer het dropout model verkeerd werd geformuleerd terwijl de rest

correct is, dan zorgt MI-GEE(Aug) voor een substantiële verbetering vergeleken met

WGEE. Tenslotte, in het geval dat zowel het imputatie als het dropout model foutief

werd opgezet, dan is DR-GEE(Aug) duidelijk beter dan de competitie. De methode

doet het dan met name beter dan WGEE, met licht toegenomen precisie ten over-

staan van MI-GEE. Samengevat, de methoden gestoeld op MI, d.w.z. MI-GEE en

DR-GEE(Aug), zijn aan te bevelen voor de praktijk. Het is daarbij aangewezen de

variabiliteit in de gewichten mee in rekening te brengen.

PL vormt een praktisch alternatief voor maximum likelihood , in het bijzonder

voor toepassingen met complexe likelihood functies. In dit werk onderzoeken we PL

methodologie voor het marginaal modelleren van onvolledige niet-normale (bijv. bi-

naire) longitudinale gegevens. Aan de ene kant wordt de numerieke en computationele

complexiteit van likelihood omzeild door paarsgewijze PL. Aan de andere kant wordt

onvolledigheid aangepast via inverse probability weighting (IPW), wat tot enkelvoudig

en dubbel robuuste schatters leidt.

In tegenstelling tot GEE kan PL makkelijke associatie incorporeren (Yi, Zeng and

Cook, 2011; He and Yi, 2011). Men kan een onderscheid maken tussen marginale en

conditionele PL. De methode is verwant aan maar verschillend van maximum likeli-

hood. Wegens dat verschil is het niet a priori zeker dat de methode ook geldig is

onder MAR, zelfs al is het mogelijk dat het in bepaalde gevallen wel geldt. Rubin

(1976) leidde voorwaarden af voor ignorability die voldoende zijn doch niet altijd

nodig. In Hoofdstuk 5 geven we aan dat een correctie nodig zijn om PL te kunnen

gebruiken onder MAR, en dat zowel enkelvoudig als dubbel robuuste versies mogelijk

zijn. In alle gevallen zijn ze praktisch toepasbaar. We schetsen een algemeen kader en

leggen de klemtoon op PL. De methodologie gebruikt concepten van inverse proba-

bility weighting (IPW) en dubbele robuustheid (DR). Na de algemene ontwikkelingen

leggen we de focus op de PL setting; zowel marginale als conditionele versies worden

beschouwd. In het algemeen vereist DR een model voor de gewichten en een predictief

model. In het geval van PL zijn er belangrijke speciale gevallen waar het ene, het

andere, of zelfs beide overbodig worden. Dit is het geval voor exchangeability (EX).

Kang and Schafer (2007) toonden empirisch aan dat er omstandigheden zijn waar

zware vertekening optreedt indien zowel het gewichtsmodel als het predictieve model

lichtjes verkeerd werden gespecifieerd. Ze toonden eveneens aan dat grote fluctuaties

in de gewichten het risico op vertekening vergroten. Dus moet de analist, zoals het

geval met elke statistische methoden, zich goed bewust zijn van relatieve voor- en

nadelen. Het is in die zin zeer relevant dat in een aantal gevallen, beschouwd in
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Hoofdstuk 5, de gewichten uit de vergelijkingen verdwijnen. Op die manier vergroot

robuustheid.

We vertrekken van de uitdrukkingen in Hoofdstuk 6 en in Molenberghs et al.

(2011); hun tegenhangers voor paarsgewijze marginale PL worden afgeleid, stoelend

op IPW en DR. We bestuderen de performantie van de enkelvoudig en dubbel robuuste

schatters van Molenberghs et al. (2011), besproken in Hoofdstuk 5 van deze thesis,

via simulaties en via de analyse van gegevens. We leggen de klemtoon op binaire

gegevens, maar de methodologie is uiteraard veel algemener bruikbaar. De simulaties

gaven aan dat de enkelvoudige robuuste versie minstens even efficiënt is dan maximum

likelihood, terwijl de efficiëntie nog toeneemt bij DR. De efficiëntie neemt beduidend

toe naarmate er meer ontbrekende gegevens zijn. Onder volledige EX, of wanneer de

eigenschap benaderend geldt, is de näıeve available case methode even efficiënt als de

DR versies. Dit volgt omdat onder EX geobserveerde en niet-geobserveerde compo-

nenten uit de patiënt-geschiedenis met elkaar kunnen omgewisseld worden, waardoor

de näıeve schatter consistent wordt. Uiteraard is dit een erg aantrekkelijke eigenschap,

omdat we ons op DR kunnen beroepen zonder de nood aan IPW en predictieve mod-

ellen. Wanneer de correlatiestructuur verschilt van EX, verdwijnen de gewichten nog

steeds onder AC, maar dienen de verwachtingswaarden berekend te worden.

GEE, PL en hun uitbreidingen zorgen voor consistente en asymptotisch normaal

verdeelde schatters, op voorwaarde dat de correcte variantieschatter en een juist

gespecifieerd model voor ontbrekende gegevens werden geformuleerd. In Hoofdstuk 7

evalueren we de relatieve voor- en nadelen van PL en GEE, via simulaties. Naast

enkelvoudig en dubbel robuuste PL versies, ingeleid in Hoofdstukken 5 en 6, com-

bineren we hier ook MI en PL. In dat geval wordt met MAR rekening gehouden

door de ontbrekende gegevens meervoudig te imputeren via een parametrisch model.

Daarna worden de vervolledigde gegevens geanalyseerd via PL. De methode wordt

aangeduid door MI-PL. IPW, MI-PL, DR-PL en DR-GEE worden vergeleken onder

een juist gespecifieerd model, een lichtjes foutief gespecifieerd model, en een model

waarin zware specificatie fouten werden gemaakt. De fouten slaan op de dropout en

de imputatiemodellen. Vergeleken bij GEE is PL ongeveer even efficiënt als maximum

likelihood, terwijl de bijkomende computationele kost minimaal is. Indien minstens

een deel van de wetenschappelijke interesse gericht is op de associatie, dan wordt PL

nog een attractievere methoden. Het is niet verwonderlijk dat MI-GEE en MI-PL

vergelijkbare resultaten leveren.

Het wordt vaak aangehaald, in de context van longitudinale klinische studies, dat

het volgen van patiënten (ook na dropout uit de behandeling) nuttig is om de re-

denen voor dropout te begrijpen en te modelleren. Dergelijke data zijn nochtans
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niet zo eenvoudig om te verzamelen; het risico op confounding ligt altijd op de loer.

Inderdaad, het is bijvoorbeeld niet ongewoon dat een patiënt naar een andere behan-

deling overstapt na dropout. Daarom is het imputeren vanuit de placebo groep in een

dergelijk geval, zowel voor de behandelde als voor de placebogroep, een aantrekkelijk

alternatief. Op die manier ontstaan gegevens om effectiviteit te schatten; men sluit

daarbij de mogelijkheid dat patiënten geen voordeel doen met het geneesmiddel na

dropout, niet uit. Dit is intüıtief duidelijk, omdat placebo de facto overeenkomt met

het gebrek aan effect. De methode is daarom een nuttig alternatief voor LOCF en

BOCF, die jammer genoeg in deze context als methoden worden gezien om effectiviteit

te bepalen. In Hoofdstuk 8 wordt een nieuwe methode voorgesteld om gegevens te

imputeren in zowel de behandelde als onbehandelde groep, gebruik makend van de

placebo groep. We verwijzen hier naartoe als placebo multiple imputation (pMI). In

de context of effectiviteit veronderstelt pMI geen farmacologisch voordeel van het ge-

neesmiddel na dropout. In de context van efficaciteit is pMI een specifieke vorm van

MNAR, die verwacht wordt van een conservatieve schatting op te leveren.

In een simulatiestudie met 18 scenario’s wordt pMI vergeleken met LOCF, BOCF,

DL en MI. pMI leidt over het algemeen tot vertekende schatters voor effectiviteit en

conservatieve schatters voor efficaciteit. Daarnaast dient opgemerkt dat betrouw-

baarheidsintervallen typisch groter zijn dan nominaal verwacht, door de vertekening

in de schatter van Rubin voor de variantie. We weten dat de variantie van Rubin de

werkelijke variantie in een aantal gevallen overschat (Wang and Robins, 1998; Robins

and Wang, 2000). De performantie hangt af van de context en men moet voorzichtig

zijn bij het gebruik, in het bijzonder als de imputuatie- en analysemodellen discrepant

zijn. De werkelijke variantie overschatten door pMI leidt tot minder efficiënte maar

nog wel steeds geldige betrouwbaarheidsintervallen. Dit is nog altijd aanvaardbaar,

omdat het gebruikelijk is in klinische studies van eerder naar het conservatieve over

te hellen. Merk op dat de imputatie in beide groepen vanuit hetzelfde model leidt tot

een positieve correlatie tussen de geschatte gemiddelden in beide groepen. Daardoor

daalt de variantie van de schatter voor het behandelings-contrast. Dit effect wordt

nochtans niet opgevangen door de schatter van Rubin. Daardoor zien we dalende

verhoudingen van gesimuleerde varianties tegenover model-varianties, onder pMI, bij

het schatten van het behandelingseffect.

Daarentegen zijn LOCF en BOCF conservatief in sommige scenarios en liber-

aal in andere, zowel voor effectiviteit als voor efficaciteit. Zoals verwacht leiden DL

en gewone MI tot onvertekende schatters voor efficaciteit en lichtjes overschatte ef-

fectiviteit in gevallen waarbij een effect van behandeling werkelijk aanwezig is. In

gevallen zonder een effect van behandeling, waar de effecten dus gelijk zijn aan nul,
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leiden DL en MI tot overtekende schatters voor effectiviteit en efficaciteit. In onze

studie werd geen onderscheid gemaakt tussen redenen voor dropout; dropout volgende

uit één enkel model. In de toekomst zou het nuttig zijn van het effect van verscheidene

redenen voor dropout verder te exploreren.
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Chapter 1

Introduction

The applied statistician frequently encounters correlated outcome data. Common

situations include multivariate, clustered, and longitudinal data. In such settings, it

frequently occurs that not all of the planned measurements of subject i’s outcome

vector yi are actually observed, turning the statistical analysis into a missing data

problem. For example, in a longitudinal study, a subject’s response vector may ter-

minate early for a number of reasons outside of the control of the investigator. Not

only do missing data lead to potentially biased results but there can be a severe loss

of power if the proportion of incompleteness is high. In extreme cases this may mean

that there is insufficient data to draw any useful conclusions from the study. Hence,

it is almost always necessary to reflect on the nature of the missingness process and

its impact on inferences.

A common taxonomy for missing data, which is explained further in Chapter 3,

distinguishes between missing data that are missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR). A non-response

process is said to be missing completely at random (MCAR) if missingness is inde-

pendent of both unobserved and observed data and missing at random (MAR) if,

conditional on the observed data, the missingness is independent of the unobserved

measurements. A process that is neither MCAR nor MAR is termed non-random

(MNAR).

Early work on missing values was largely concerned with the practical consequence

of missing data induced imbalance. Partially as a consequence of this, ad hoc methods

such as complete case analysis (CC) and last observation carried forward (LOCF) have

become popular, a status they somewhat unfortunately retain until this day. The rea-

sons behind this are discussed in Section 3.6.1. Over the last three decades, a number

1
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of developments have taken place, allowing the use ofmissing at random (MAR) based

methods. These include the development of the expectation-maximization (EM) al-

gorithm (Dempster, Laird and Rubin, 1977), multiple-imputation strategies (Rubin,

1987), and so-called direct-likelihood or direct Bayesian analysis. These rest on ignor-

ability, the property ensuring that such analyses are valid under MAR, supplemented

with mild regularity conditions, even without explicitly modeling the missing data

mechanism, provided that all incomplete sequences are subjected to analysis (Rubin,

1976; Little and Rubin, 2002; Molenberghs and Kenward, 2007; Fitzmaurice et al.,

2009). The practical implication for likelihood inference is that, as soon as a module

is available to handle measurement sequences of unequal length, valid inferences are

obtained without any additional work. Thanks to the availability of flexible software,

such as the SAS procedures MIXED, GLIMMIX, and NLMIXED, and their counter-

parts in SPlus, R, and SPSS, for example, linear and generalized linear mixed models

can be fitted to incomplete sets of data. There is a variety of other likelihood methods

as well, of course, as reviewed by Fahrmeir and Tutz (2002) and Molenberghs and

Verbeke (2005).

For the analysis of Gaussian data, the linear mixed model (Verbeke and Molen-

berghs, 2000) is widely accepted as the unifying framework for a variety of corre-

lated settings, including longitudinal data. The model contains both subject-specific

and autoregressive effects at the same time. Further, this general hierarchical model

marginalizes in a straightforward way to a multivariate normal model with directly

interpretable mean and covariance parameters, owing to the unique property of the

normal distribution that both the marginal, and in fact also the conditional, distri-

bution of a multivariate normal is again normal. This does not hold for the non-

Gaussian case, since no natural analog to the multivariate normal distribution is

available. Therefore, depending on which of the three model families is chosen, that

is, the marginal, random-effects, or conditional model family, different models are

conceivable.

The generalized linear mixed model (GLMM), an extension of generalized linear

model for univariate data to the context of correlated measurement, is the most

frequently used random-effects model for non-Gaussian outcomes. For non-Gaussian

outcomes, GLMMs often do not admit straight forward marginalization. That is, due

to the non-linear link functions that are usually adopted for non-Gaussian outcomes.

As a result, GLMMs are most useful when the scientific goal is to make inferences

about individuals rather than the study population.

For non-Gaussian outcomes, apart from random-effects models, also non-likelihood

marginal models have become popular. Typical marginal models for binary data in-
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clude the Bahadur model (Bahadur, 1961) and the multivariate Dale or global odds

ratio model (Molenberghs and Lesaffre, 1994, 1999). Because these models spec-

ify, in principle, the full likelihood, they can be used to analyze incomplete data as

well, under MAR assumptions and making use of the ignorability property. However,

marginal models for non-Gaussian data imply complex and hard to manipulate like-

lihoods. In many practical settings involving outcome sequences of moderate to large

length, direct likelihood may be prohibitive. Some authors have voiced concern over

these models’ vulnerability to misspecification.

As a response to these problems, a number of alternatives have been formulated,

the most popular one undoubtedly being generalized estimating equations (GEE;

Liang and Zeger, 1986; Dale, 1986; Molenberghs and Verbeke, 2005). By transforming

the score equations into estimating equations, this method essentially allows confin-

ing attention to the specification of the first moments of the outcome sequence only

(i.e., the mean structure), thereby circumventing the need to address the association

structure while still leading to valid inferences. A number of variations to this theme

exist, such as GEE2 (also specifying the second moments; Liang, Zeger and Qaqish,

1992) and alternating logistic regressions (Carey, Zeger and Diggle, 1993). When data

are incomplete, GEE suffers from its frequentist nature and is in its basic form valid

only under MCAR. Therefore, Robins, Rotnitzky and Zhao (1995) have developed

so-called weighted generalized estimating equations (WGEE), as well as a number of

refinements and extensions in subsequent papers, to allow usage of GEE under not

only MAR, but even under MNAR settings. The method rests on Horvitz-Thompson

ideas (Cochran, 1977), weighing contributions by the inverse probability of being ob-

served. The method is elegant and enjoys good properties, but requires specification

of a model for the weights. More recently, Birhanu et al. (2011) extended the WGEE

towards so-called doubly robust estimating equations, in which the weighting idea is

supplemented with the use of a predictive model for the unobserved responses, given

the observed ones. These are further discussed in Section 3.6.4.2 and the subsequent

chapters.

Another alternative approach which could be combined with either likelihood or

non-likelihood methods is multiple imputation (MI), developed by Rubin (Rubin,

1987). The key idea of the MI procedure is to impute missing values several times, and

the resulting complete data sets are analyzed using a standard method. Afterwards,

the obtained inferences are combined into a single one. Regarding the missingness

process, standard multiple imputation requires MAR to hold, even though extensions

exist. A more detailed review is provided in Section 3.6.2.

In instances where more than the first moment would be of scientific relevance, it
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is natural to model two or even more moments, such as in GEE2 (second-order GEE)

or pseudo-likelihood. Next to GEE, pseudo-likelihood methods (PL; le Cessie and

van Houwelingen, 1994; Geys, Molenberghs, and Lipsitz, 1998; Geys, Molenberghs,

and Ryan, 1999; Aerts et al., 2002) have become popular as an alternative to full

likelihood, and therefore also to GEE and GEE2. In PL, rather than replacing the

score equations with alternative functions, the likelihood itself is replaced by a more

tractable function. In so-called marginal pseudo-likelihood, the likelihood for an ni-

dimensional response vector is replaced by the product of all pairs, or all triples, or

all p-tuples (with p a pre-specified number, corresponding to the highest order of as-

sociation that is still of scientific interest) of outcomes. Pseudo-likelihood approaches

have become a practical alternative to full likelihood methods, particularly for ap-

plications involving complex likelihood forms. As it stays closer to full likelihood

than the score equations, pseudo-likelihood approach is expected to be more efficient

than the method of moments estimates. Computational and statistical performance

(e.g., efficiency) have been shown to range from acceptably good to excellent (Geys,

Molenberghs, and Lipsitz, 1998). Another important advantage of the PL approach

is, in contrast with GEE, that it can easily account for association. Evidently, also

conditional versions of pseudo-likelihood are possible, where the contributions take

the form of conditional densities of a subset of outcomes within a sequence, given

another subset of outcomes.

The main objective of this thesis is to develop efficient methodologies to handle

incomplete data and provide insight on existing ones, with primary interest falling

on the non-Gaussian setting. Categorical (binary) outcomes are very prominent in

statistical practice and techniques for this type of data are less standard, because of

the lack of a simple analogue to the normal distribution. Principled methodologies for

incomplete data, surrounding pseudo-likelihood and generalized estimating equations

have been given special attention. While ignorability would follow under likelihood

inference, this is not generally true for non-likelihood methods such as GEE and

PL. As a direct consequence of this, GEE has been be adapted towards a weighted or

doubly-robust version, as soon as an MAR process operates. Further investigation and

empirical comparisons will be made on the singly and doubly robust versions of GEE.

So far, no such modification has been devised for pseudo-likelihood based strategies.

We proposed a suite of corrections to the standard form of pseudo-likelihood, to ensure

its validity under MAR. Our corrections follow both single and double robustness

ideas. An overview of each of the chapters within the thesis now follows.

In Chapter 2, we present an overview of the different data sets that will be

used throughout this work. Thereafter, terminology, general concepts and overview
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of some of the existing methodologies for handling incomplete data are outlined in

Chapter 3. Maximum likelihood, GEE, and pseudo-likelihood inferential paradigms

are sketched in Section 3.6.

As discussed earlier, in its basic form GEE is not valid unless the missingness

mechanism is MCAR. WGEE and multiple imputation combined with GEE (MI-

GEE) are alternative routes to make it valid under the more general MAR condition.

Although considerable progress has been made to robustness assessment and com-

parison of these approaches (Molenberghs and Kenward, 2007; Beunckens, Sotto and

Molenberghs, 2008), little has been done in comparing these approaches to the re-

cently developed doubly robust methods. In Chapter 4, singly robust (WGEE and

MI-GEE) and doubly robust GEE are compared for non-Gaussian longitudinal data.

The relative merits of the different approaches are highlighted via a simulation study

conducted under various misspecifications.

Since pseudo-likelihood is not a full likelihood method, there is no a priori guaran-

tee that the method would be valid under MAR. (Note that Rubin’s 1976 paper pro-

vided sufficient conditions only, without claiming their necessity.) Pseudo-likelihood’s

behavior under the assumption of MAR was not fully understood from a method-

ological standpoint and further investigation was recommended by different authors

including Faes et al. (2008). In Chapter 5, we will show that a correction is nec-

essary to allow for the use of pseudo-likelihood under MAR, and that both singly

robust as well as doubly robust versions of PL can be considered. General forms

of estimating equations for incomplete data, as well as specific forms for the case of

pseudo-likelihood, will be presented and their validity established.

We take off from the expressions in Chapter 5 and present their counterparts

for the case of pairwise marginal pseudo-likelihood in Chapter 6. The statistical

performance of the methods introduced in Chapter 5 will be investigated by a modest

simulation study and real data analysis focusing on marginal models for binary data.

GEE and PL are commonly encountered approaches to non-Gaussian data. Both

GEE, and its extensions, and PL yield consistent and asymptotically normal esti-

mators, provided an empirically corrected variance estimator and the appropriate

missing data mechanism assumptions are used. In Chapter 7 we will discuss the rel-

ative merits of Pseudo-likelihood (PL) and Generalized estimating equations (GEE)

for incomplete data and illustrate them using simulation studies and a practical case

study. A further numerical study of the effect of misspecification of weights and/or

predictive models will be reported.

In longitudinal clinical trials, often times it is said that follow up data are useful

in helping to understand dropout because patients will not continue to benefit from
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a drug if they don’t continue to take it. But follow up data are both difficult to

obtain and often fraught with confounders as patients may switch to a new drug

after dropping out. Hence, imputing from the placebo group for both the drug and

placebo group may be a useful way to artificially create follow up data to estimate

the effectiveness of a drug after allowing for the fact that patients get no benefit if

they stop taking drug. This has intuitive appeal as placebo is the de facto estimate

of no benefit. This approach is a useful substitute for LOCF and BOCF, which are

often interpreted in this effectiveness context. In Chapter 8, a novel method of

imputing missing data for both the drug and placebo groups from the placebo group,

referred to as placebo multiple imputation (pMI), will be assessed as an estimator of

effectiveness and as a worst reasonable case sensitivity analysis in assessing efficacy.

pMI is compared with the LOCF, BOCF, DL and MI under different scenarios.

Finally, in Chapter 9 general conclusions and recommendations for future re-

search regarding the different methods considered within the thesis are presented.

Simulation studies results excluded from the main text are provided in the Appendix.



Chapter 2

Motivating Examples

This chapter introduces the data sets which will be used as key examples throughout

this thesis. A two-armed clinical trial in patients treated for toenail infection is in-

troduced in section 2.1. A single-arm clinical trial conducted in patients with chronic

pain, the analgesic trial, is introduced in Section 2.2. Section 2.3 is devoted to a

multi-center clinical trial, in which the Hamilton depression rating scale total score

(HAMD17 score) from patients with major depressive disorder treated with an experi-

mental drug and patients treated with placebo are compared. While the previous case

studies are longitudinal in nature, a clustered data example from the development of

toxicology area, conducted under the U.S. National Toxicology Program (NTP) is

presented in Section 2.4. These data sets, which contain missing observations, will be

used in illustrating methodologies in the subsequent chapters.

2.1 Onychomycosis Trial

The data introduced in this section were obtained from a randomized, double-blind,

parallel group, multicenter study for the comparison of two oral treatments (in what

follows coded as A and B) for toenail dermatophyte onychomycosis (TDO), described

in full detail by De Backer et al (1996). TDO is a common toenail infection, difficult to

treat, affecting more than 2 out of 100 persons (Roberts 1992). Antifungal compounds,

classically used for treatment of TDO, need to be taken until the whole nail has grown

out healthy. The development of new compounds, however, has reduced the treatment

duration to 3 months. Interest is on the comparison of the efficacy and safety of 12

weeks of continuous therapy with treatment A or with treatment B.

7
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Table 2.1: Toenail Data. Number and percentage of patients (N) with severe toenail

infection, for each treatment arm separately.

Group A Group B

# Severe N % # Severe N %

Baseline 54 146 37.0% 55 148 37.2%

1 month 49 141 34.7% 48 147 32.6%

2 months 44 138 31.9% 40 145 27.6%

3 months 29 132 22.0% 29 140 20.7%

6 months 14 130 10.8% 8 133 6.0%

9 months 10 117 8.5% 8 127 6.3%

12 months 14 133 10.5% 6 131 4.6%

Table 2.2: Toenail Data. Number of available repeated measurements per subject, for

each treatment arm separately.

Group A Group B

# Obs. N % N %

1 4 2.74% 1 0.68%

2 2 1.37% 1 0.68%

3 4 2.74% 3 2.03%

4 2 1.37% 4 2.70%

5 2 1.37% 8 5.41%

6 25 17.12% 14 9.46%

7 107 73.29% 117 79.05%

Total: 146 100% 148 100%

In total, 2 × 189 patients were randomized, distributed over 36 centers. Subjects

were followed during 12 weeks (3 months) of treatment and followed further, up

to a total of 48 weeks (12 months). Measurements were taken at baseline, every

month during treatment, and every 3 months afterwards, resulting in a maximum of

7 measurements per subject. At the first occasion, the treating physician indicates

one of the affected toenails as the target nail, the nail which will be followed over time.

Subsequent analyses will be restricted to only those patients for which the target nail

was one of the two big toenails. This reduces the sample under consideration to 146

and 148 subjects, in group A and group B, respectively.

One of the responses of interest was the unaffected nail length, measured from

the nail bed to the infected part of the nail, which is always at the free end of the

nail, expressed in mm. This outcome has been studied extensively in Verbeke and
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Molenberghs (2000). Another important outcome in this data set was the severity

of the infection, coded as 0 (not severe) or 1 (severe). The question of interest was

whether the percentage of severe infections decreased over time, and whether that

evolution was different for the two treatment groups. This outcome has been studied

extensively in Molenberghs and Verbeke (2005) and Molenberghs and Kenward (2007).

A summary of the number of patients in the study at each time-point, and the number

of patients with severe infections is given in Table 2.1.

Due to a variety of reasons, the outcome has been measured at all 7 scheduled

time points, for only 224 (76%) out of the 298 participants. Table 2.2 summarizes the

number of available repeated measurements per subject, for both treatment groups

separately. We see that the occurrence of missingness is similar in both treatment

groups.

The data are subjected to analyses in Chapter 4 and Chapter 5.

2.2 Analgesic Trial

These data, studied extensively in Molenberghs and Verbeke (2005) and Molenberghs

and Kenward (2007), come from a single-arm clinical trial in 395 patients who are

given analgesic treatment for pain caused by chronic nonmalignant disease. Treatment

was to be administered for 12 months and assessed by means of a ‘Global Satisfaction

Assessment’ (GSA) scale, rated on a five-point scale:

GSA =





1 : very good,

2 : good,

3 : indifferent,

4 : bad,

5 : very bad.

(2.1)

Some analyses have been done on a dichotomized version:

GSABIN =

{
1 : if GSA ≤ 3 (’Very Good’ to ’Moderate’),

0 : otherwise.
(2.2)

Apart from the outcome of interest, a number of covariates are available, such as age,

sex, weight, duration of pain in years prior to the start of the study, type of pain,

physical functioning, psychiatric condition, respiratory problems, etc.

GSA was rated by each person four times during the trial, at months 3, 6, 9, and

12. An overview of the frequencies per follow up time is given in Table 2.3. Inspecting

Table 2.3 reveals that the total per column is variable. This is due to missingness.
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At three months, 10 subjects lack a measure, with these numbers being 93, 168, and

172 at subsequent times. Not only monotone missingness or dropout occurs, there

are also subjects with intermittent values.

Table 2.3: Analgesic Trial. Absolute and relative frequencies of the five GSA categories

for each of the four follow up times.

GSA Month 3 Month 6 Month 9 Month 12

1 55 14.3% 38 12.6% 40 17.6% 30 13.5%

2 112 29.1% 84 27.8% 67 29.5% 66 29.6%

3 151 39.2% 115 38.1% 76 33.5% 97 43.5%

4 52 13.5% 51 16.9% 33 14.5% 27 12.1%

5 15 3.9% 14 4.6% 11 4.9% 3 1.4%

Tot 385 302 227 223

An overview of the extent of missingness is shown in Table 2.4. Note that only

around 40% of the subjects have complete data. The dropout sequences amount

to roughly another 40%, with close to 20% of the patterns showing intermittent

missingness. This example underscores that a satisfactory longitudinal analysis will

oftentimes have to address the missing data problem.
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Table 2.4: Analgesic Trial. Overview of missingness patterns and frequencies with

which they occur. ‘O’ indicates observed and ‘M’ indicates missing.

Measurement occasion

Month 3 Month 6 Month 9 Month 12 Number %

Completers

O O O O 163 41.2

Dropouts

O O O M 51 12.91

O O M M 51 12.91

O M M M 63 15.95

Non-monotone missingness

O O M O 30 7.59

O M O O 7 1.77

O M O M 2 0.51

O M M O 18 4.56

M O O O 2 0.51

M O O M 1 0.25

M O M O 1 0.25

M O M M 3 0.76

2.3 Depression Trial

These data come from a clinical trial in major depressive disorder originally reported

by Diggle et al. (2002). The primary objective in that trial was to compare the efficacy

of an experimental antidepressant with placebo to support a new drug application.

As such, this was a phase III (confirmatory) trial. Patients were randomly assigned

(1:1 ratio) to placebo (n=139) or the experimental drug (n=128), with the double-

blind treatment period lasting 9 weeks. Study visits were scheduled once a week for

the first 3 weeks after randomization, and every two weeks thereafter. The Hamilton

Depression Rating Scale (HAMD17) was used to measure the depression status of the

patients. The completion rates and dropout rates due to adverse events and lack of

efficacy are presented in Table 2.5. Adverse events and lack of efficacy are the main

reasons for dropout in the experimental and placebo treatment arm respectively.
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Table 2.5: Depression Trials. Completion Rates and Main Reasons for Study Discon-

tinuation

Reason for discontinuation Experimental Drug Placebo

Protocol completion rate 60.9% 64.7%

Adverse Events 12.5% 4.3%

Lack of Efficacy 5.5% 13.7%

The experimental drug was found to be significantly superior to placebo on the a

priori declared primary efficacy analysis (direct likelihood-based repeated measures) of

mean change to endpoint on the HAMD17 total score. Therefore, even though results

were significant based on the primary analysis (Diggle et al., 2002), it is reasonable

to wonder how effective the medication would be in actual practice given the rates of

dropout in the trial, and to what degree missing data might have biased the estimate

of treatment efficacy. The data are used as a motivating example for the study to be

discussed in Chapter 8.

2.4 National Toxicology Program Data

This developmental toxicity study investigates the dose-response relationship in mice

of the potentially hazardous chemical compound di(2-ethylhexyl)phthalate (DEHP),

used in vacuum pumps (Windholz, 1983) and as plasticizers for numerous plastic

devices made of polyvinyl chloride. The developmental toxicity study, conducted in

timed-pregnant mice during the period of major organogenesis and described by Tyl et

al. (1988), has attracted much interest in the toxicity of DEHP. The doses selected for

the study were 0, 0.025, 0.05, 0.1, and 0.15%, corresponding to a DEHP consumption

of 0, 44, 91, 191, and 292 mg/kg/day, respectively. The dams were sacrificed, slightly

prior to normal delivery, and the status of uterine implantation sites recorded. A

total of 1082 live fetuses were dissected from the uterus, anesthetized, and examined

for ‘malformation,’ defined as 0 if none of the three malformations occurs, and 1

otherwise.

Evidently, fetuses are clustered within mothers; hence the implied association

needs to be accommodated in the analysis. Table 2.6 summarizes the data. Detailed

summary of the data and analyses can be found in Aerts et al. (2002) and Molenberghs

and Verbeke (2005). Our focus will be on the binary malformation. The data are

analyzed in Chapter 5.
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Table 2.6: NTP data: Developmental Toxicity Study (DEHP). Summary data by dose

group.

Litter

# Dams, ≥ 1 Size Malformations

Dose Impl. Viab. Live (mean) Ext. Visc. Skel.

0 30 30 330 13.2 0.0 1.5 1.2

44 26 26 288 11.1 1.0 0.4 0.4

91 26 26 277 10.7 5.4 7.2 4.3

191 24 17 137 8.1 17.5 15.3 18.3

292 25 9 50 5.6 54.0 50.0 48.0





Chapter 3

Fundamental Concepts of

Incomplete Data

This chapter reviews basic terminology, fundamental concepts and existing method-

ologies that are used in the area of incomplete (longitudinal) data analysis and that

will be used throughout the thesis.

3.1 Incomplete Data

The following terminology is based on the standard framework of Rubin (1976) and

Little and Rubin (2002). Let the random variable Yij denote the response for the ith

study subject at the jth occasion (i = 1, . . . , N , j = 1, . . . , ni). Independence across

subjects is assumed. In clustered-data setting , such as the NTP data (Section 2.4),

Yij indicates the jth individual in the ith cluster. We group the outcomes into a

vector Y i = (Yi1, . . . , Yini
)′ and define a further vector of missingness indicators

Ri = (Ri1, . . . , Rini
)′ with Rij = 1 if Yij is observed and 0 otherwise. The set

of measurements, along with the missingness indicators, (Y i, Ri), comprise what is

called the full data. Typically, the vector Y i is divided into observed (Y o
i ) andmissing

(Y m
i ) components, respectively. For incomplete data, only (Y o

i , Ri) is available.

The structure of the missingness vector admits two basic types of missingness:

monotone and non-monotone. When the missingness is monotone or of a dropout

nature, the unobserved measurement within the longitudinal series all occur after

a particular measurement occasion, and in that sense, the subject is said to have

“dropped out”of the study. In such cases, the missingness indicator Ri consists

of a very particular form, with all Rij equal to one up to a particular time point

15
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j and zero thereafter. This structure allows the missingness indicators in Ri to

be collapsed into a single variate, Di, defined as Di = 1 +
∑ni

j=1 Rij denoting the

time point at which subject i drops out. Non-monotone missingness on the other

hand, occurs when missing values arise intermittently within the series, leading to no

distinct configuration of the missingness indicators, and thus, simplifications of Ri

into a lower-dimensional form is not straightforward.

3.2 Modeling Frameworks

In principle, one would need to consider the density of the full data f(yi, ri|θ,ψ),
where the parameter vectors θ and ψ describe the measurement and missingness pro-

cesses, respectively. When appropriate, θ = (β′,α′)′ will be used to split into the

mean regression parameters β and the association parameters α. Covariates are as-

sumed to be measured and grouped in a design matrix Xi, although, for notational

simplicity, this is sometimes dropped from the notation in later sections. This full

density function can be factored in different ways, each leading to a different frame-

work. Under a selection model framework (Rubin, 1976; Little and Rubin, 2002), the

joint distribution is factored into a marginal density of the measurement process and

a conditional model for missingness process given the outcomes, that is,

f(yi, ri|xi, θ,ψ) = f(yi|xi, θ)f(ri|xi,yi,ψ). (3.1)

Selection models are an obvious choice for clinicians, for instance, who are often

interested in the marginal effect, θ, of the independent variables (e.g., treatment) on

the response.

Alternatively, one can consider so-called pattern-mixture models (Little, 1993,

1994a; Molenberghs et al., 1997), using the reversed factorization:

f(yi, ri|xi, θ,ψ) = f(yi|ri,xi, θ)f(ri|xi,ψ). (3.2)

This density can be seen as a mixture of different populations, each of which is defined

conditionally on the observed pattern of missingness. The parameters θ then denote

pattern-specific effects of the independent variables on the response.

Instead of using the selection or pattern-mixture model frameworks, the measure-

ment and the dropout process can be jointly modeled using a shared-parameter model

(Wu and Carroll, 1988; Wu and Bailey, 1989). In such a model the measurement

and dropout process are assumed to be independent, conditional upon a certain set

of shared parameters. This shared-parameter model is formulated by way of the
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following factorization:

f(yi, ri|xi, θ,ψ) = f(yi|bi,xi, θ)f(ri|bi,xi,ψ). (3.3)

Here, bi are the shared parameters, often considered to be random effects and fol-

lowing a specific parametric distribution. θ denotes the effects of the independent

variables, conditional on the random effects.

3.3 Missing Data Mechanisms

To obtain valid inferences from incomplete (longitudinal) data, we must consider the

nature of the “missing data mechanism”. Ordinarily, the missing data mechanism is

not under the control of the investigators; consequently, it is often not well understood.

Instead, assumptions are made about the missing data mechanism, and the validity

of the analyses will depend on whether these assumptions hold for the data at hand.

The general missing data taxonomy described in this section is fully presented in

Rubin (1976) and Little and Rubin (2002). Within the selection model framework,

Rubin (1976) developed a taxonomy to classify the missingness process based on

its dependence (or lack thereof) on the measurement process. This classification is

based on the structure of the second term in the right hand side of (3.1), which upon

partitioning of the response vector into its observed and missing components, can be

expressed as f(ri|xi,yi,ψ) = f(ri|xi,y
o
i ,y

m
i ,ψ). When there is independence of the

measurement and missingness process, conditionally of the covariates, the mechanism

is be missing completely at random (MCAR). A less rigid assumption would be one

of missing at random (MAR), for which the missingness may depend on the observed

outcomes and covariates but, given these, no further on the unobserved outcomes.

If the cause of missing data is neither MCAR nor MAR, the data is missing not at

random (MNAR).

To help motivate the different missing data mechanisms, consider a longitudinal

clinical trial to assess the efficacy of a new treatment for a particular disease or

condition. When a patient does not show up for a visit because his car broke down

while driving to the hospital or couldn’t go to the hospital because of a terrible

weather, this is most probably fall within the category of MCAR, since the missingness

process and the outcome are independent. Alternatively, if a patient missed a visit

because in previous visits her/his condition stabilized and s/he is convinced that

continuing the visits to the hospital are of no value, the nature of the missingness

is related to the previously observed (improving) outcomes, and the process most

plausibly is MAR. In general, if dropping out is known to be unrelated to changes in
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health status, an MAR assumption for the missing values seems justified; however, if

dropping out is related to health status (e.g., a move to live with and be cared for

by a parent or offspring), then the MAR assumption is not justified, and the missing

data are likely MNAR.

Throughout this thesis, we basically focus on longitudinal data with monotone

missingness on the one hand and on incomplete clustered data on the other, each

time under MAR.

3.4 Model Families

In this section we discuss methods to model (longitudinal) data both in the Gaussian

and non-Gaussian setting. For Gaussian longitudinal data the linear mixed model,

undoubtedly the most commonly used, is considered. Then, we focus on the situation

of non-Gaussian outcomes, for which we distinguish between three model families:

marginal, random-effects and conditional models.

3.4.1 A Classic Model for Continuous Data

The most widely used methodology for continuous longitudinal data within the like-

lihood framework is the general linear mixed-effects model (Laird and Ware, 1982),

which takes the form

Yi =Xiβ +Zibi + ǫi (3.4)

where Yi is the ni-dimensional (longitudinal) response vector for subject i, X i

and Zi are, respectively, the (ni × p) and (ni × q) known design matrices, β is the

p-dimensional vector containing the fixed effects, bi ∼ N(0, D) is the q-dimensional

vector containing random effects, and ǫi ∼ N(0,Σi) is an ni-dimensional vector of

residual components, combining measurement error and serial correlation. Further,

b1, . . . , bN , ǫ1, . . . , ǫN are assumed to be independent. D and Σi are general covariance

matrices of size (q× q) and (ni×ni), respectively. In the case of no serial correlation,

Σi reduces to σ
2Ini

.

It follows from (3.4) that, conditional on bi, Yi is normally distributed with mean

vectorXiβ+Zibi and with covariance matrix Σi. Upon integration over the random

effects, bi ∼ N(0, D), the resulting marginal (i.e., averaged over the random effects)

model for the response can be expressed as:

Yi ∼ N
(
Xiβ,ZiDZi

′ +Σi

)
. (3.5)
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In line with Diggle et al. (2002), Aerts et al. (2002) and Molenberghs and Verbeke

(2005), we distinguish between three model families. Next, an example of each for the

case of Gaussian outcomes, or more generally for models with a linear mean structure

will be given.

A marginal model, often referred as population-averaged model, is characterized

by a marginal mean function of the form

E(Yij |xij) = x
′
ijβ, (3.6)

where xij is a vector of covariates for subject i at time point j and β is a vector

of regression parameters.

Random-effects models or cluster-specific models, on the other hand, further con-

dition on a vector of random effects bi, over and above conditioning on covariates,

that is,

E(Yij |bi,xij) = x
′
ijβ + z′ijbi. (3.7)

Finally, a third family of models, conditional model, describes the distribution of

the components of the outcome vector, conditional on the predictor variables but also

conditional on (a subset of) the other components of the response vector. A simple

first-order stationary transition model focuses on expectations of the form:

E(Yij |Yi,j−1, . . . , Yi1,xij) = x
′
ijβ + αYi,j−1. (3.8)

Alternatively, one might condition upon all outcomes except the one being modeled.

As shown by Verbeke and Molenberghs (2000), random-effects model imply a

simple marginal model in the linear mixed model case. This is due to the elegant

properties of the multivariate normal distribution. In particular, expectation (3.6)

follows from (3.7) either by (a) marginalizing over the random effects or by (b) con-

ditioning on the random-effects vector bi = 0. For instance, the linear mixed model

(3.4), pointed out in Section 3.4.1, which belongs to the random-effects model fam-

ily, implies marginal model (3.5). Thus, the fixed-effects parameters β have both a

marginal and hierarchical model interpretation. Certain auto-regressive models, in

which later-time residuals are expressed in terms of earlier ones, can also lead to

particular instances for which the general linear mixed-effects model implies some

marginal function of the form (3.6).

3.5 Models for non-Gaussian data

Whereas the linear mixed model is seen as a unifying parametric model for Gaussian

repeated measures (Verbeke and Molenberghs (2000)), there are a variety of methods
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in common use in the non-Gaussian setting.

3.5.1 Generalized linear mixed models

When the response of interest is discrete, linear mixed-effects models are not appro-

priate for at least two main reasons. First, with a discrete response there is intrinsic

dependence of the variability on the mean. Second, the range of the mean response

(e.g., a proportion or rate for a response that is binary or a count, respectively) is

constrained (Fitzmaurice et al., 2009). Instead extension of the linear mixed-effects

model to non-Gaussian (e.g., binary) longitudinal responses classified as generalized

linear mixed models (Molenberghs and Verbeke, 2005) are used.

Generalized linear mixed models (GLMMs) expand the generalized linear model

framework (McCullagh and Nelder, 1989) to the case of correlated responses by (1)

including subject-specific regression parameters bi in the linear predictor to address

correlations among the repeated measures, and (2) assuming that conditional on the

random effects bi, the elements of Yi are independent. A typical GLMM assumes

that all Yij have densities of the form fi(yij) in the exponential family, and the mean

µij is modeled through a linear predictor containing fixed regression parameters β,

as well as subject-specific parameters bi, with some known link function η(·). It is

further assumed that the random effects follow a normal distribution.

As indicated earlier, models for correlated repeated measures present in any longi-

tudinal (or multivariate) can be grouped in to three broad, but quite distinct, families.

These models differ not only in how the correlation among the repeated outcomes is

accounted for, but also have different parameter interpretations.

Marginal models evaluate the overall risk as a function of covariates only. The

correlation among the components of the outcome vector can be captured either by

adopting a full parametric approach or by means of working assumptions, such as

in GEE (Liang and Zeger, 1986). Typical marginal models for binary data, include

the Bahadur (1961) model and the multivariate Dale or global odds ratio model

(Molenberghs and Lesaffre, 1994, 1999). For an overview, see Molenberghs and Ver-

beke (2005). Such models, however, can involve complex and hard-to-manipulate

likelihoods; they can be prohibitive in some settings. Moreover, various authors have

voiced concern over these models’ vulnerability to misspecification. As a consequence,

generalized estimating equation and pseudo-likelihood have been used as alternative

methods. Pseudo-likelihood can be used with both marginal and conditional models.

In random-effects models or cluster-specific models, the response is modeled as

a function of covariates and parameters, specific to the the subject. In such mod-
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els, interpretation of fixed-effects parameters is conditional on a constant level of the

random-effects parameter. Under such models, correlations among the repeated mea-

sures are addressed by the inclusion of parameters that are specific to a subject, so

that given the collection of these subject-specific parameters or random effects, the

responses within the longitudinal series are assumed to be independent.

In a conditional model, the parameter describe a feature (expectation, odds, logits,

. . . ) of a (set of) responses, given values for the other responses. The best known

example is the log-linear model. Correlations within the longitudinal responses can

be dealt with by considering a particular outcome in the series and modeling it con-

ditionally on the other outcomes (or subsets thereof).

Marginal versus Subject-Specific Models

Unlike for the Gaussian case, the parameters of the subject-specific and marginal

models for correlated binary data describe different types of effects of the covariates

on the response probabilities. The consequence of this disparity between random-

effects and marginally specified models in the non-Gaussian setting is an obvious

distinction between the parameters under each.

We illustrate this in line with Molenberghs and Verbeke (2005) by considering

a binary response. Assume a random-intercept logistic model with linear predictor

logit P (Yij = 1|tij , bi) = β0 + β1tij + bi where tij represent the time covariate. The

conditional mean response are given by:

E(Yij |tij , bi) = P (Yij = 1|tij , bi) =
exp(β0 + β1tij + bi)

1 + exp(β0 + β1tij + bi)
, (3.9)

whereas the marginal average evolution, E(Yij |tij) ≡ E(Yij), is obtained from aver-

aging the random effects (3.9):

E(Yij) = E [E(Yij |bi)] = E

[
exp(β0 + β1tij + bi)

1 + exp(β0 + β1tij + bi)

]
6= exp(β0 + β1tij)

1 + exp(β0 + β1tij)
. (3.10)

This demonstrates that the implied marginal model from a random effects speci-

fication does not necessarily reduce to the marginally specified model. The inherent

differences across the model families, particularly for non-Gaussian responses, war-

rants careful consideration regarding the type of model to be employed.

3.5.2 Generalized Estimating Equations

Liang and Zeger (1986) proposed so-calles Generalized Estimating Equations (GEE),

useful to circumvent the computational complexity of the full likelihood, can be con-
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sidered whenever scientific interest is restricted to the mean parameters. GEE requires

only the correct specification of the univariate marginal distributions, provided one

is willing to adopt so-called working assumptions about the association structure of

the vector of repeated measurements. When inferences focus on population averages,

one can directly model all of the marginal expectations E(Yij) = µij in terms of co-

variates of interest. This is typically done via h(µij) = x′

ijβ, with h(·) some known

link function, such as the logit link for binary responses.

The marginal variance depends on the marginal mean according to Var(Yij) =

v(µij)φ, where v(·) is a known variance function and φ is a scale (overdispersion)

parameter. The correlation between Yij and Yik is expressed via a correlation matrix

Ri(α) where α is a vector of nuisance parameters. The covariance matrix Vi of Y i

can then be written as Vi = Vi(β,α) = φA
1/2
i RiA

1/2
i , with Ai the matrix with the

marginal variances on the main diagonal and zeros elsewhere.

Generalized estimating equations take the form

U(β) =

N∑

i=1

∂µi

∂β′ V
−1
i (yi − µi) = 0. (3.11)

The nuisance parameter α needs to be replaced by a consistent estimate. Liang and

Zeger (1986) proposed a moment-based estimator to this effect.

Assuming that the marginal mean µi has been correctly modeled, it can be shown

that, under mild regularity conditions, the estimator β̂ obtained from solving (3.11)

is asymptotically normally distributed with mean β and with covariance matrix

var(β̂) = I−1
0 I1I

−1
0 , (3.12)

where

I0 =

N∑

i=1

∂µi
′

∂β
V −1
i

∂µi

∂β′ , I1 =

N∑

i=1

∂µi
′

∂β
V −1
i Var(yi)V

−1
i

∂µi

∂β′ . (3.13)

In practice, Var(yi) in (3.13) is replaced by (yi −µi)(yi −µi)
′, which is unbiased on

the sole condition, again, that the mean was correctly specified. We will refer to I−1
0

as the model based variance estimator (which should not be used as it overestimates

the precision), to I1 as the empirical correction, and to I−1
0 I1I

−1
0 as the empirically

corrected variance estimator (sandwich estimator).

3.5.3 Pseudo-likelihood Estimation

Maximum likelihood estimation could be unattractive due to extensive computational

requirements especially for non-Gaussian outcomes and when measurement sequences
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are of moderate to large length. As discussed in the previous section, this is one

of the reasons why generalized estimating equations (GEE) have become popular.

One way to view the genesis of GEE is by modifying the score equations to simpler

estimating equations, thereby preserving consistency and asymptotic normality, upon

using an appropriately corrected variance-covariance matrix. Alternatively, the (log-

)likelihood itself can be simplified to a more manageable form. This is, broadly

speaking, the idea behind pseudo-likelihood (PL). Its principal idea is to replace a

numerically challenging joint density (and hence likelihood) by a simpler function

assembled from suitable factors. As a simple illustration, a three-way density

Li = f (yi1, yi2, yi3|θi) (3.14)

would be replaced by the product

L∗
i = f (yi1, yi2|θ∗i ) .f (yi1, yi3|θ∗i ) .f (yi2, yi3|θ∗i ) (3.15)

Such a change is computationally advantageous, asymptotics can be rescued, and

modeling (3.15) is equally simple, if not simpler, than modeling (3.14), as the pa-

rameter vector θ∗i in (3.15) typically is a sub-vector of θi in (3.14) (Molenberghs and

Verbeke, 2005).

While the method achieves important computational economies by changing the

method of estimation, it fortunately does not affect model interpretation. Model

parameters can be chosen in the same way as with full likelihood and retain their

meaning. Because the above product does not lead to a likelihood function, appro-

priate modifications will be needed to guarantee correct inferences. Pseudo-likelihood

(PL) for incomplete data is not a full likelihood method and hence in its basic form

valid only under MCAR. To introduce pseudo-likelihood formally, we will use the

convenient general definition given by Arnold and Strauss (1991).

Definition and Asymptotic Properties: Define S as the set of all 2n−1 vectors

of length n, consisting solely of zeros and ones, with each vector having at least one

non-zero entry. Denote by y
(s)
i the subvector of yi corresponding to the components

of s that are non-zero. The associated joint density is fs(y
(s)
i ; θi). To define a pseudo-

likelihood function, one chooses a set δ = {δs|s ∈ S} of real numbers, with at least

one non-zero component. The log of the pseudo-likelihood is then defined as

pℓ =
N∑

i=1

∑

s∈S

δs ln fs(y
(s)
i ; θi). (3.16)
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Adequate regularity conditions have to be assumed to ensure that (3.16) can be

maximized by solving the pseudo-likelihood (score) equations, the latter obtained

by differentiating the logarithmic pseudo-likelihood and by equating its derivative to

zero. The classical log-likelihood function is found by setting δs = 1 if s is the vector

consisting solely of ones, and 0 otherwise. The required regularity conditions (Arnold

and Strauss, 1991; Geys, Molenberghs, and Ryan, 1999; Aerts et al., 2002) on the

density functions fs(y
(s); θ) are:

A0 The densities fs(y
(s); θ) are distinct for different values of the parameter θ.

A1 The densities fs(y
(s); θ) have common support, which does not depend on θ.

A2 The parameter space Ω contains an open region ω of which the true parameter

value θ0 is an interior point.

A3 ω is such that for all s, and almost all y(s) in the support of Y (s), the densities

admit all third derivatives
∂3fs(y

(s); θ)

∂θj∂θk∂θℓ
.

A4 The first and second logarithmic derivatives of fs satisfy

Eθ

(
∂ ln fs(y

(s); θ)

∂θk

)
= 0, k = 1, . . . , q,

and

0 < Eθ

(−∂2 ln fs(y(s); θ)
∂θk∂θℓ

)
<∞, k, ℓ = 1, . . . , q.

A5 The matrix I0, defined in (3.18), is positive definite.

A6 There exist functions Mklr such that

∑

s∈S

δsEθ

∣∣∣∣
∂3 ln fs(y

(s); θ)

∂θk∂θℓ∂θr

∣∣∣∣ < Mkℓr(y)

for all y in the support of f and for all θ ∈ ω and mkℓr = Eθ0
(Mkℓr(Y )) <∞.

Let θ0 be the true parameter. Under the suitable regularity conditions, it can be

shown that maximizing the function (3.16) produces a consistent and asymptotically

normal estimator θ̃0 so that
√
N(θ̃N − θ0) converges in distribution to

Np[0, I0(θ0)
−1I1(θ0)I0(θ0)

−1]. (3.17)
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Precise statements are as shown in Theorem 1. Theorem 1, proven by Arnold

and Strauss (1991), guarantees the existence of at least one solution to the pseudo-

likelihood equations, which is consistent and asymptotically normal. Without loss of

generality, we can assume θ is constant. Replacing it by θi, and modeling it as a

function of covariates is straightforward.

Theorem 1 (Consistency and Asymptotic Normality) Assume

that (Y 1, . . . ,Y N ) are i.i.d. with common density that depends on θ0. Then under

regularity conditions (A1)–(A6):

1. the pseudo-likelihood estimator θ̃N , defined as the maximizer of (3.16), con-

verges in probability to θ0.

2.
√
N(θ̃N − θ0) converges in distribution to Np(0, I0(θ0)

−1I1(θ0)I0(θ0)
−1) with

I0(θ) defined by

I0,kℓ(θ) = −
∑

s∈S

δsEθ

(
∂2 ln fs(y

(s); θ)

∂θk∂θℓ

)
(3.18)

and I1(θ) by

I1,kℓ(θ) =
∑

s,t∈S

δsδtEθ

(
∂ ln fs(y

(s); θ)

∂θk

∂ ln ft(y
(t); θ)

∂θℓ

)
. (3.19)

Similar to GEE (Section 3.5.2), this result provides an easy way to consistently

estimate the asymptotic covariance. The matrix I0 arises from evaluating the second

derivative of pℓ in (3.16) at the PL estimate. The expectation in I1 can be replaced

by the cross-products of the observed scores.

As discussed by Arnold and Strauss (1991), and exactly the same as with GEE,

the Cramèr-Rao inequality implies that I−1
0 I1I

−1
0 is greater than the inverse of I

(the Fisher information matrix for the maximum likelihood case), in the sense that

I−1
0 I1I

−1
0 − I−1 is positive semi-definite. Strict inequality holds if the PL estimator

fails to be a function of a minimal sufficient statistic. Geys, Molenberghs, and Ryan

(1999) have shown that, in realistic clustered-data settings in toxicology experiments,

efficiency loss is often negligible and is certainly justified in view of computational

convenience and speed.

Marginal Pseudo-likelihood As stated earlier, marginal models for non-Gaussian

data can become prohibitive when subjected to full maximum likelihood inference,

especially with large within-unit replication. In such a situation both GEE and PL

are viable alternatives (Molenberghs and Verbeke, 2005). Marginal PL methodology
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has been proposed, among other, by le Cessie and van Houwelingen (1994) and Geys,

Molenberghs, and Lipsitz (1998). le Cessie and van Houwelingen (1994) replace the

true contribution of a vector of correlated binary data to the full likelihood, written

as f(yi1, . . . , yini
), by the product of all pairwise contributions f(yij , yik), 1 ≤ j <

k ≤ ni, to obtain a pseudo-likelihood function. Also the term composite likelihood

is encountered in this context. Renard, Molenberghs, and Geys (2004) refer to this

particular instance of pseudo-likelihood as pairwise likelihood. The contribution of

the ith subject or cluster to the log pseudo-likelihood then specializes to

pℓi =
∑

j<k

ln f(yij , yik), (3.20)

if it contains more than one observation. Otherwise, pℓi = f(yi1). Extension to

three-way and higher-order pseudo-likelihood is straightforward. All of these are

special cases of (3.16).

Marginal models should be chosen whenever the scientific interest is on population

level, e.g., the time evolution of a response in a study. They are also useful when there

is interest in quantification of strength of association between occasions or clusters.

Conditional Pseudo-likelihood The example given in (3.15) is of a marginal

form. Here conditional forms will be discussed. Some models lend themselves more

easily to conditioning than to marginalization, such as log-linear models (Molenberghs

and Verbeke, 2005, Ch. 12). Upon noting that

f(yij |yik, k 6= j) =
f(yi1, . . . , yini

)

f(yi1, . . . , yi,j−1, yi,j+1, . . . , yini
)
=

f1(y
(1)
i )

fsj (y
(sj)
i )

,

a full conditional likelihood contribution becomes:

pℓi = ni · ln f1(y
(1)
i ) −

ni∑

j=1

ln fsj (y
(sj)
i ).

For example, when a joint density contains a computationally intractable normal-

izing constant, one might calculate a suitable product of conditional densities which

does not involve such a complicated function. A bivariate distribution f(y1, y2), for

instance, can be replaced by the product of both conditionals f(y1|y2)f(y2|y1), even
though this is not the correct factorization.

Evidently, alternative versions of conditional pseudo-likelihood are possible. For

example, one could consider all pairs, conditioning upon the remaining ni − 2 out-

comes. This setting has been considered by Geys, Molenberghs, and Ryan (1999) for
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the analysis of the NTP data (Section 2.4). This particular setting, but then with

attention for the missing data aspect, will be taken up in Section 5.2.3.

Next, we introduce a fully perimetrically specified marginal model, for correlated

or longitudinal binary responses which will be considered in the subsequent chapters.

3.5.4 The Bahadur Model

Bahadur (1961) proposed a marginal model for binary outcomes, accounting for the as-

sociation via marginal correlations. Define the marginal probability as πij = E(Yij) =

P (Yij = 1) and standardized deviations as

εij =
Yij − πij√
πij(1− πij)

and eij =
yij − πij√
πij(1− πij)

, (3.21)

where yij is an actual value of the binary response variable Yij . Further, let ρij1j2 =

E(εij1εij2), ρij1j2j3 = E(εij1εij2εij3),. . ., and ρi12...J = E(εi1εi2 . . . εiJ ). Then, the

general Bahadur model can be represented by the expression

f(yi) = f1(yi) · c(yi), (3.22)

where

f1(yi) =

ni∏

j=1

ν
yij

ij (1− νij)
1−yij , (3.23)

c(yi) = 1 +
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3 +

· · ·+ ρij1j2...jni
eij1eij2 · · · eijni

, (3.24)

Thus, the probability mass function f(yi) in (3.22) is the product of the indepen-

dence model f1(yi) and the correction factor c(yi). One viewpoint is to consider the

factor c(yi) as a model for overdispersion.

Besides the Bahadur model, a broad set of marginal models have been proposed

by, for example, Dale (1986), Plackett (1965), Lang and Agresti (1994), Molenberghs

and Lesaffre (1994), and Molenberghs and Lesaffre (1999). Even though a variety

of flexible full likelihood models exist, maximum likelihood can be unattractive due

to excessive computational requirements, especially when high-dimensional vectors of

correlated data arise, as alluded to in the context of the Bahadur model.

3.6 Methodology for Incomplete Data

In this section, we review methods commonly used for handling incomplete data

in longitudinal data analysis in four parts: simple methods, imputation methods,
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maximum likelihood estimation methods and non-likelihood estimation methods. We

also discuss the assumptions about missingness data mechanism required for each

method to yield valid inferences in the longitudinal data setting.

3.6.1 Simple ad hoc Methods

Two simple, common methods to analyze incomplete data are complete case analysis

(CC), which discards subjects with incomplete sequences, and simple imputation.

Last observation carried forward (LOCF), for which the last observed measurement

is substituted for values at later points in time that are not observed, is among the

commonly used simple imputation methods. Still recently, clinical trial practice has

put a strong emphasis on such methods. Claimed advantages include computational

simplicity, no need for a full longitudinal model (e.g., when the research question is in

terms of the last observed measurement occasion only) and, for LOCF, compatibility

with the Intention-to-Treat (ITT) principle, since data on all patients randomized can

be used.

The recent report, prepared by the panel on “Handling of Missing Data in Clinical

Trials” convened by the National Academy of Sciences (NAS) at the request of the

U.S. Food and Drug Administration (National Research Council, 2010), provide thor-

ough details and recommendations on the prevention and treatment of missing data

in clinical trials. The panel recommended avoiding the use of simple ad hoc meth-

ods, such as CC and LOCF, and advocated the use of more appropriate and more

principled methods which are valid under the weaker MAR assumption and easy to

implement in existing statistical software.

Complete Case Analysis

A complete case analysis (CCA) includes only those cases for analysis, for which all

measurements (covariates and outcomes) were recorded (Verbeke and Molenberghs,

2000; Little and Rubin, 2002; Molenberghs and Verbeke, 2005). This method has an

obvious advantage: simplicity, although the wide availability of more sophisticated

methods of analysis minimizes the significance of this. It is also an inefficient use

of information, with adverse effects on precision and power, even if the frequency of

missing data for single variables low. Further, such an analysis will only be represen-

tative for patients who remain on study and have complete data. In addition, and

very important, severe bias can result when the missingness mechanism is MAR. This

method is valid under MCAR. From an intuitive point of view, if the completers in

a longitudinal study are generally the “better”patients, CCA would lead to overly
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optimistic results for the general population.

Last observation Carried forward

Last observation carried forward (LOCF) is a common single imputation method

where the most recent observation replaces any subsequent missing ones. It can be

applied to both monotone and non−monotone missingness. The idea of LOCF is

based on a very strong and unrealistic assumption that a subject’s measure stays at

the same level until the end of the trial or during the period they are unobserved in

the case of intermittent missingness. In most clinical trial settings, the assumption

that patients’ condition would remain at the response level is questionable as study

effects, placebo effects, and natural time evolution also influence outcomes. Molen-

berghs and Kenward (2007) showed, using hypothetical data, that, even under the

unrealistically strong assumption of MCAR, while CCA produces unbiased estimates,

the bias in the LOCF estimator does not vanish, and can even induce an apparent

treatment effect when there is none. Under MAR, they showed that both can be

biased and bias can go in either direction. The same authors further examined the

nature of the resulting missing data mechanism implied by using LOCF (Kenward and

Molenberghs, 2009). They determined that LOCF effects a missing data mechanism

that is forced to depend on future, unobserved measurements– a sharp contradiction

and incompatibility with MCAR, under which LOCF has been thought, apparently

incorrectly, to be valid.

3.6.2 Multiple Imputation

One approach for handling incomplete data, that is widely used in practice, is some

form of imputation. The basic idea behind imputation is very simple: substitute or fill

in the values that were not recorded with the imputed values. Methods that impute

or fill in the missing values have the advantage that, unlike CCA, the information

from the observed values in the incomplete cases is retained and once a filled-in data

set has been constructed, standard methodology for complete data can be applied.

However, single imputation methods, creating only a single filled-in data set, fail to

acknowledge the uncertainty inherent in the imputation of the unobserved responses.

Multiple imputation (MI) circumvents this difficulty.

MI was formally introduced by Rubin (1978). The key idea of the procedure

is to first replace each missing value with a set of M plausible values drawn from

the conditional distribution of the unobserved values, given the observed ones. This

conditional distribution represents the uncertainty about the right value to impute.
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In this way, M imputed data sets are generated (imputation stage), which are then

analyzed using standard complete data methods (analysis stage). Finally, the results

from the M analyses have to be combined into a single inference by means of the

method laid out in Rubin (1978). In its basic form, multiple imputation requires the

missingness mechanism to be MAR, even though versions under MNAR have been

proposed (Rubin, 1978; Molenberghs et al., 1997).

In line with notation already introduced, suppose the parameter vector of the

distribution of Y i = (Y o
i ,Y

m
i ) is denoted by θ. MI uses the observed data Y o to

estimate the conditional distribution of Y m given Y o. The missing data are sam-

pled several times from this conditional distribution and augmented to the observed

data. The resulting completed data are then used to estimate θ. If the distribution of

Y i = (Y o
i ,Y

m
i ) were known, with parameter vector θ, then Y m

i could be imputed by

drawing a value of Y m
i from the conditional distribution f(ymi |yoi , θ). The objective

of the imputation phase is to sample from this true predictive distribution. However,

θ in the imputation model is unknown, and therefore needs to be estimated from the

data first, say θ̂, after which f(ymi |yoi , θ̂) is used to impute the missing data. Precisely,

this implies that one first generates draws from the distribution of θ̂, thereby taking

sampling uncertainty into account. Generally, the vector θ in the imputation model

differs from the parameter vector β that governs the analysis model. Alternatively, a

Bayesian approach, in which uncertainty about θ is incorporated by means of some

prior distribution for θ, can also be adopted. In the context of multiple imputation,

a random θ∗ is first drawn from this prior distribution, which is then put into the

distribution of Y i, and then a random Y m
i is selected from f(ymi |yo

i , θ
∗). The esti-

mate of β and its estimated variance are calculated using the completed data and a

potentially different, analysis model, (Y o,Y m∗): β̂ = β̂(Y ) = β̂(Y o,Y m∗), and the

within imputation variance is W = V̂ar(β̂). These steps are repeated a number of

times (M), producing β̂
m

and Wm, for m = 1, . . . ,M . In the last phase of multiple

imputation, the results of the analyses for the M imputed data sets are pooled into

a single inference. The combined point estimate for the parameter of interest β from

the multiple imputation is simply the average of theM complete-data point estimates

Schafer (1999). That is, the estimate and its estimated variance are given by:

β̂ =
1

M

M∑

m=1

β̂
m

and V =W +

(
M + 1

M

)
B, (3.25)

where

W =

M∑

m=1

Wm

M
and B =

M∑

m=1

(β̂
m − β̂)(β̂m − β̂)′

M − 1
, (3.26)



3.6. Methodology for Incomplete Data 31

with W denoting the average within imputation variance and B the between impu-

tation variance (Rubin, 1987).

3.6.3 Maximum Likelihood Estimation

When data are incomplete and under a selection model framework, subject i’s

observed-data likelihood contribution takes the form:

Li =

∫
f(yi|θ)f(ri|yo

i ,y
m
i ,ψ) dy

m
i . (3.27)

In general, (3.27) does not simplify, but under MCAR (or MAR), we obtain respec-

tively:

Li = f(yoi |θ)f(ri|ψ). (3.28)

or

Li = f(yoi |θ)f(ri|yoi ,ψ). (3.29)

Hence, likelihood and Bayesian inferences for the measurement model parameters θ

can be made without explicitly formulating the missing data mechanism, provided

the parameters θ and ψ are distinct, meaning that their joint parameter space is

the Cartesian product of the two component parameter spaces (Rubin, 1976). For

Bayesian inferences, additionally the priors need to be independent (Little and Rubin,

2002). It is precisely this result which makes so-called direct likelihood analyses,

valid under MCAR and MAR, appealing in a variety of settings (Molenberghs et al.,

2004), even though sensitivities to model assumption and non-intuitive aspects of

model formulation of verification have been documented (Molenberghs,Verbeke and

Beunckens, 2008).

Although maximum likelihood enjoy desirable properties, such as efficiency under

appropriate regularity and the ability to calculate functions of interest, specification

of the likelihood and estimation of the parameters are computationally intensive and

the parameter space are restricted, especially for correlated non-Gaussian data with

medium to large measurement sequences.

3.6.4 Non-Likelihood Estimation

When the response of interest is non-Gaussian, a first issue that arises is the lack

of a non-Gaussian analogue to the multivariate normal distribution. Specification

of the full likelihood becomes more problematic and fully likelihood-based methods

are generally awkward, especially when high dimensional vector of correlated data

arises. As a consequence, alternative methods have been in demand. Next, the two
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most popular non-likelihood estimation methods, generalized estimating equations

and pseudo-likelihood, will be discussed.

3.6.4.1 GEE and PL

Generalized estimating equations (GEE) and pseudo-likelihood (PL) methods, intro-

duced in Section 3.5.2 and 3.5.3 respectively, are popular missing data analysis ap-

proaches. As stated in the introduction chapter, both GEE and PL suffer from their

frequentist nature and are in their basic form valid only under the MCAR assump-

tion. A direct consequence of this is that GEE and PL need to be adapted towards a

weighted, multiple imputation-based (e.g., Paik, 1997) or doubly-robust (DR) version

when an MAR process operates. This will be discussed further in Chapter 4 and

Chapter 5.

3.6.4.2 Inverse Probability Weighting and Double Robustness

When data are missing, desirable properties of GEE such as consistency and asymp-

totic normality no longer holds. Instead, Inverse probability weighting (IPW) methods

can be used to obtain consistent estimates (Robins, Rotnitzky and Zhao, 1995). In-

verse probability weighting (IPW) methods were first proposed by Horvitz-Thompson

(Cochran, 1977) in sample survey literature, where the weights are known and based

on survey design. In incomplete data analysis, the general idea behind IPW method

is to base estimation on the observed responses but to weight them to account for the

probability of dropping out. Under MAR, the weights can be estimated as a function

of the observed measurements and also as a function of the covariates and any ad-

ditional variables that could help predict the unobserved measurements. In practice,

a logistic model is used. The use of inverse probability weighting methods in incom-

plete data analysis has been increased (Robins, Rotnitzky and Zhao, 1995; Schafer,

1999; Carpenter, Kenward and Vansteelandt, 2006; Molenberghs and Kenward, 2007;

Fitzmaurice et al., 2009, to mention a few).

In contrast to the sample survey, where the weights are known by design and fixed,

the weights in the IPW methods are not ordinarily known but estimated from the

observed data. Therefore, the variance of IPW estimators must account for estimation

of the weights. The sandwich estimators to be discussed in Section 4.1.4 can be used

in practice. In general, weighting methods are elegant and enjoy good properties, but

requires correct specification of a model for the weights.

Recently, doubly robust estimating equations (DR) has been designed to improve

the efficiency of IPW. In doubly robust estimating equations (DR), the weighting
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idea is supplemented with the use of a predictive model for the missing observations

given the observed ones. Excellent reviews of this topic can be found in (Scharfstein,

Rotnitzky and Robins, 1999; Van der Laan and Robins, 2003; Bang and Robins, 2005;

Tsiatis, 2006; Carpenter, Kenward and Vansteelandt, 2006), and Rotnitzky (2009).

Double robustness will be taken up in Chapter 4 and Chapter 5.





Chapter 4

Multiple Imputation Based

Doubly Robust Generalized

Estimating Equations

While full likelihood methods are appealing because of their flexible ignorability prop-

erties, their use for non-Gaussian outcomes can be problematic due to prohibitive

computational requirements. Therefore, GEE is an attractive alternative within the

marginal model family. As we have already mentioned, GEE is only valid under

MCAR. One method to ensure validity of GEE under MAR is Weighted GEE (Sec-

tion 4.1.1). Weighted GEE (WGEE) involves weighting observations by their inverse

probability of being observed, according to an assumed dropout model. In Section

3.6.2, Multiple Imputation (MI) was described as an alternative method to handle

MAR missingness. It consists of multiply imputing the missing outcomes using a para-

metric model, followed by analyzing the resulting complete data sets using a standard

method. When GEE is considered as the standard method, the combination of MI

and GEE is usually referred to as “MI-GEE”. Finally, the obtained inferences are

combined into a single one. Standard multiple imputation requires MAR to hold,

even though extensions exist.

In both methods (WGEE and MI-GEE), missingness needs to be addressed by

means of a dropout model for WGEE or by an imputation model for MI-GEE. WGEE

are consistent when the dropout model is correctly specified, while imputation meth-

ods are consistent when the imputation model is correctly specified. Recently Birhanu

et al. (2011), extended WGEE towards so-called doubly robust estimating equations,

where the weighting idea is supplemented with the use of a predictive model for the

35



36 Chapter 4. Doubly Robust GEE

unobserved responses, given the observed ones (Section 4.1.3). Doubly robust (DR)

methods need correct specification of either the weight or predictive (imputation)

model, but not necessarily both.

The focus of this chapter is to compare the efficiency and robustness of various

GEE versions for incomplete data: WGEE, MI-GEE and doubly robust GEE (DR-

GEE). Comparisons are made by means of a small-sample simulation study, as well

as analysis of a case study, Toenail data (Section 2.1). In the simulation study, the

behavior of the methods is studied under correctly specified and misspecified models.

In this way, efficiency and robustness of the methods under misspecification of either

the dropout model, the imputation model, or both, can be explored.

The outline of this chapter is as follows. In Section 4.1, we discuss methods

used for analyzing incomplete non-Gaussian longitudinal data that are valid under

the MAR assumption, with main attention to WGEE, MI-GEE and doubly robust

(DR) estimation methods. A description and result of the small-sample simulation

is provided in Section 4.2. Results of the Toenail data are presented in Section 4.3.

Finally, a brief discussion and some concluding remarks are provided in Section 4.4.

The contribution of this chapter has been published in Birhanu et al. (2011).

4.1 Extensions of GEE under MAR

As mentioned in the previous chapters, GEE is an attractive approach for non−
Gaussian data within the marginal model family. However, it is based on frequentist

methods and thus requires the missingness to be MCAR. The extensions of GEE to

WGEE to ensure its validity under MAR and to doubly robust (DR) GEE to improve

efficiency of IPW that have been proposed by Robins, Rotnitzky and Zhao (1995)

and Scharfstein, Rotnitzky and Robins (1999) respectively, and MI-GEE will be the

focus of this section.

4.1.1 Weighted Generalized Estimating Equations

Due to the fact that they are based on frequentist considerations, inferences under

GEE are valid only under the strong assumption that the missing data are MCAR.

In response to this, and to allow for MAR missingness, Robins, Rotnitzky and Zhao

(1995) proposed a class of so-called weighted estimating equations (WGEE). The idea

of WGEE is to weigh each subject’s contribution in the GEEs by the inverse proba-

bility, either of being fully observed, or of being observed up to a certain time.Thus,

anyone staying in the study is considered representative of himself as well as of a
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number of similar subjects that did drop out from the study. The method is elegant

and enjoys good properties, but requires specification of a model for the weights. Let

πi be the probability for subject i to be completely observed and π′
i the probability

for subject i to drop out at occasion di. These can be written as

πi =

ni∏

ℓ=2

(1− piℓ), (4.1)

π′
i =

[
di−1∏

ℓ=2

(1 − piℓ)

]
· pidi

, (4.2)

where piℓ = P
(
Di = ℓ|Di ≥ ℓ, Yi ℓ , Xi ℓ

)
are the component probabilities of dropping

out at occasion ℓ, given the subject is still in the study, the covariate history Xi ℓ and

the outcome history Yi ℓ . In such a case, one can opt either for WGEE based on the

completers only.

U(β) =

N∑

i=1

R̃i

πi

∂µi

∂β′ V
−1
i (yi − µi) = 0, (4.3)

with R̃i = 1 if a subject is fully observed and 0 otherwise, or, upon using (4.2), for

WGEE using all subjects:

U(β) =
N∑

i=1

1

π′
i

∂µo
i

∂β′ (V
o
i )

−1(yoi − µo
i ) = 0. (4.4)

Here the subscript ‘o’ indicates the portion corresponding to the observed data in the

corresponding matrix or vector. Of course, with (4.3), the incomplete subjects also

contribute through the model for the dropout probabilities πi. When assuming the

weights are fixed and known, expressions (3.25) and (3.26) can be used for variance

estimation. In practice, (4.3) and (4.4) use weights estimated from the observed data

that will impact the variance estimation and have to be taken into account. This

will be taken up in Section 4.1.4. The above development focuses on dropout but

can be generalized to encompass non-monotone missingness as well (Vansteelandt,

Rotnitzky, and Robins (2007).

WGEE enjoy robustness properties similar to the ones for regular GEE, i.e., the

correlation structure does not need to be correctly specified. Applying WGEE is

technically feasible and can be conducted using the SAS procedure GENMOD. Of

course, some extra programming is needed to construct the weights.
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4.1.2 Multiple Imputation based Generalized Estimating

Equations

Because in WGEE all subjects are given weights, calculated using the hypothesized

dropout model, any misspecification of this dropout model will affect all subjects, and

thus the results. Alternatively, one can consider multiple imputation (MI) together

with GEE, refereed as MI-GEE. In essence, this method comes down to first using the

predictive distribution of the unobserved outcomes given the observed ones and per-

haps covariates. After this step, the missing data mechanism can be further ignored,

provided the missing data mechanism is MAR. Then, misspecification occurring at

the imputation step will only affect the unobserved (i.e., imputed) but not the ob-

served part of the data. Meng’s (1994) results show that, as long as the imputation

model is not grossly misspecified, this approach will perform well. Simulation studies

done by Beunckens, Sotto and Molenberghs (2008) showed that MI-GEE has good

robustness properties against model misspecification, in comparison with WGEE.

4.1.3 Doubly Robust Generalized Estimating Equations

Recently IPW has been extended towards the so-called doubly robust estimating

equations (DR), where the weighting idea is supplemented with the use of a predictive

model for the unobserved responses, given the observed ones. Excellent reviews can

be found in Scharfstein, Rotnitzky and Robins (1999), Van der Laan and Robins

(2003), Bang and Robins (2005), Carpenter, Kenward and Vansteelandt (2006), and

Rotnitzky (2009).

Let us introduce doubly robust estimating equations starting from conventional

generalized estimating equations:

U =

N∑

i=1

U i(β|Y i,xi) (4.5)

Assume that E(U) = 0.

For this setup the weighted estimating equation (IPW) could be written as

U IPWCC =

N∑

i=1

R̃i

πi
U i(Y i), (4.6)

where R̃i = 1 if subject i is fully observed and 0 otherwise, and πi be the proba-

bility for subject i to be completely observed.

The expression in equation (4.6) only includes fully observed subjects, and this is

where the information is lost relative to likelihood methods, which include information
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on partially observed subjects. Any term with expectation zero can be added to

(4.6) without changing its property of unbiasedness and consistency of the resulting

parameter estimators.

Hence, doubly robust versions could be

U IPWCC,dr =

N∑

i=1

[
R̃i

πi
U i(Y i) +

(
1− R̃i

πi

)
EY m|yoU i(Y i)

]
, (4.7)

where the second term in (4.7) refers to predictive terms of the unobserved outcomes

given the observed ones. Remarkably, appropriate choices of these functions, like the

one in (4.7), offers not only efficiency improvements over standard weighted GEE

(IPW), but also bias protection against misspecification of the model for the dropout

probabilities.

The predictive model may show varying degrees of complexity, depending on the

type of estimating equations. Molenberghs et al. (2011) considered situations where a

fully analytic approach is possible (a thorough discussion is given in Chapter 5).

A sufficiently rich predictive model could be used, such as logistic regression for

example. Evidently, such a predictive model would, strictly speaking, be incompatible

with the actual model under consideration but, as Bang and Robins (2005) point

out, virtually all parametric models are misspecified to some extent. In this sense,

a reasonable predictive model, coupled with a sensible missingness model for the

weights, often considerably increases efficiency and reduces bias. Bang and Robins’

simulation results were encouraging in this respect. In a similar vein, with multiple

imputation, Meng (1994) shows that so-called uncongenial imputation models can still

lead to inferences that are practically acceptable. Daniel (2008) usefully combined

doubly robust estimating equations with multiple imputation ideas. Next, we will

consider an approach similar to this.

Data Augmentation for MI based Doubly Robust Estimation

Like with all multiple imputation strategies, the principle is to first augment the

data by re-ordering subset of the observed sequences and then apply the estimation

method of choice on the augmented data as if they were the fully observed data set.

The method uses multiple imputation in a weighted analysis on the augmented data.

In general, assume that the observed data consist of (Yi1, . . . , Yit). We then re-

place the observed data by t patterns (Yi1, . . . , Yij), for j = 1, . . . , t, with weight

contributions
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(
j∏

k=2

πk
i

−1

)
·
(
1− πj+1

i

−1
)

for new patterns j = 1, . . . , t− 1 and

t∏

k=2

πk
i

−1

for the last one, pattern t.

Next, we will illustrate the data augmentation for a hypothetical longitudinal

data set measured at two time points. Assume that the observed data consist of the

following two observed sequences: (Yi1, .) and (Yi1, Yi2) with weight contributions.

For the first two subjects:

Original data(
Y1,i1 .

Y2,i1 Y2,i2

) Weight

π
(2)−1
i

π
(2)−1
i

where π
(2)
i denotes the probability to dropout at time 2.

We then create another data set by partially “wiping out” the second outcome:

Augmentation matrix(
Y1,i1 .

Y2,i1 .

) Weight

1− π
(2)−1
i

1− π
(2)−1
i

Augmenting the newly formed data set to the original data set produces:

Augmented data


Y1,i1 .

Y2,i1 .

Y2,i1 Y2,i2




Weight

1

1− π
(2)−1
i

π
(2)−1
i

Let us consider another longitudinal data set with three outcomes. Assuming no

dropout at the first time point, there are three possible dropout patterns: dropout at

time 2, dropout at time 3 and no dropout.

Original data


Y1,i1 . .

Y2,i1 Y2,i2 .

Y3,i1 Y3,i2 Y3,i3




Weight

time 2 time 3

π
(2)−1
i

π
(2)−1
i π

(3)−1
i

π
(2)−1
i π

(3)−1
i
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where π
(2)
i and π

(3)
i denotes the probability to dropout at time two and three

respectively.

Step 1: Create another data set by partially “wiping out” the second and third

outcomes:
Augmentation matrix


Y1,i1 . .

Y2,i1 . .

Y3,i1 . .




Weight

1− π
(2)−1
i

1− π
(2)−1
i

1− π
(2)−1
i

This leads to:

Augmentation matrix


Y1,i1 . .

Y2,i1 . .

Y3,i1 . .

Y2,i1 Y2,i2 .

Y3,i1 Y3,i2 Y3,i3




Weight

time 2 time 3

1

1− π
(2)−1
i

1− π
(2)−1
i

π
(2)−1
i π

(3)−1
i

π
(2)−1
i π

(3)−1
i

Step 2: Focusing on time 3:

Augmentation matrix(
Y2,i1 Y2,i2 .

Y3,i1 Y3,i2 .

)
Weight

time 2 time 3

π
(2)−1
i 1− π

(3)−1
i

π
(2)−1
i 1− π

(3)−1
i

This finally produces:

Augmented data


Y1,i1 . .

Y2,i1 . .

Y3,i1 . .

Y2,i1 Y2,i2 .

Y3,i1 Y3,i2 .

Y3,i1 Y3,i2 Y3,i3




Weight

1

1− π
(2)−1
i

1− π
(2)−1
i

π
(2)−1
i

π
(2)−1
i × (1 − π

(3)−1
i )

π
(2)−1
i × (π

(2)−1
i )

Based on this, we proceed in two distinct ways:

MI-GEE(Aug): Apply Multiple Imputation (MI) on the so-augmented data. In this

way, due to the ‘wiping out’ of a fraction of the sequence, leading to the need of

using expectations, the derivation of precision is not straightforward. However,

the precision estimation we are proposing as shown in Section 4.1.4, especially
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when the variability in the weights are considered, is a viable way forward.

In contrast to sample surveys, here the weights are not fixed and known but

estimated from the data. This estimation of the weights induce additional vari-

ability that needs to be taken into account.

MI-WGEE: In this way, one simply multiply imputes the missing outcomes multiply,

without ‘wiping out’ the observed data. As such, classical MI results, combined

with sandwich estimators will provide standard errors.

Next, we turn to precision estimation for this case.

4.1.4 Precision Estimation

A general expression for the precision of the estimates obtained using generalized

estimating equations is given in (3.12). When the single or doubly robust versions of

GEE (WGEE or DR-GEE) are used, with a parametric model for dropout, then the

uncertainty induced by estimation of the ψ parameters needs to be accommodated. As

shorthand for any of the forms (4.3), we write U =
∑N

i=1 V i(β), and the parameters

ψ are estimated from score or estimating equations W =
∑N

i=1W i(ψ). The entire

score for subject i is Si = (V ′
i,W

′
i)

′. The asymptotic variance-covariance matrix can

then be consistently estimated by Î0
−1
Î1Î0

−1
, with

I0 =
N∑

i=1




∂V i

∂β
∂V i

∂ψ

0 ∂W i

∂ψ


 , (4.8)

I1 =

N∑

i=1

Si(β̂, ψ̂)S
′
i(β̂, ψ̂). (4.9)

See also Bang and Robins (2005), Molenberghs and Kenward (2007), and Rotnitzky

(2009).

When ignoring variability in the weights, one first uses a conventional sandwich

estimator, by assuming all weights are fixed and known. Then, expressions (3.25)

and (3.26) can be used. Of course, this will underestimate the true variability. To

acknowledge the variability in weights, the sandwich estimators have to be computed

using the full expressions (4.8) and (4.9).

4.2 Simulation Study

In what precedes, various approaches to overcome the bias occurring in GEE under

MAR have been proposed. WGEE is unbiased for a correctly specified dropout and
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mean structure of the measurement model. MI-GEE requires compatibility between

the imputation and estimation model to be correctly specified. On the other hand,

doubly robust GEEs (DR-GEE) need correct specification of either of the models

but not necessarily both. It is of interest to quantify the bias and precision under

various scenarios for misspecification. To this end, a small-sample simulation study

was conducted.

In the simulations, we distinguish between the data-generating and the analysis

stage. In the first stage, a data-generating model is defined. Under the selection model

framework, this generating model consists of a measurement model on the one hand,

and a dropout model, given the measurement model on the other. In the analysis

stage, a distinction should be made among three types of models: a measurement

model, a dropout model and an imputation model. For the WGEE approach, only a

marginal measurement model and a dropout model need to be specified. In contrast,

the analysis stage for MI-GEE would entail the specification of an imputation model,

rather than a dropout model, as well as a marginal measurement model. For the

standard doubly robust versions of GEE, MI-GEE(Aug) and MI-WGEE, both the

dropout and imputation models need to be specified.

To assess the distinctive and relative merits of the methods of interest, we con-

sider their performance, first in the case without any misspecification, then under

various scenarios of misspecification in some or all of the models for the DR-GEEs

versions. Next, we spell out the data-generating models, followed by a description of

the simulation study’s design, after which the results are presented.

4.2.1 Data-generating Models

We generated an outcome at three time points from the Bahadur model, formally

introduced in Section 3.5.4. The measurement model incorporated a binary treatment

indicator. For the dropout model, an MAR mechanism was considered. Assuming

that dropout can occur only after the first time point, there are three possible dropout

patterns: (1) dropout at the second time point, (2) dropout at the third time point,

and (3) no dropout. Note that we restrict the simulation setting to short sequences,

because the higher-order Bahadur models would become prohibitive to generate from.

Denote by tj the time point at which measurement j is taken and by xi the

treatment indicator. Consider a Bahadur model, which follows general formulation

(3.22), with

logit(πij) = logit[P (Yij = 1|xi, tj)] = β0 + βx xi + βt tj + βxt xi tj , (4.10)
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where we choose β0 = −0.25, βx = 0.5, βt = 0.2 and βxt = −0.8, with two- and

three-way correlation coefficients equal to ρij1j2 = 0.2 and ρij1j2j3 = 0, respectively.

The latter define an exchangeable correlation structure. Our choice for linear time

evolutions, at the scale of the linear predictor and within each of the treatment arms,

allows us to distinguish between misspecification effects on cross-sectional parameters

(β0 and βx), longitudinal parameters (βt), and parameters combining aspects of both

(βxt). In practice, for example, in a clinical trial, it might be advisable to allow

for an unstructured, saturated treatment-by-time model, reducing the risk of model

misspecification and in line with recommendations made by Molenberghs et al. (2004)

and several references listed therein.

The missingness process is assumed to be MAR and the probability of dropout at

time point j given xi and the measurement at the previous time point, is modeled by

a logistic regression of the form

logit[P (Di = j|xi, yi,j−1, Di ≥ j)] = ψ0 + ψx xi + ψprev yi,j−1, (4.11)

where j = 2, 3, 4, ψ0 = −0.5, ψx = −0.6, and ψprev = −3.5. The combination of this

MAR logistic dropout model with the Bahadur measurement model (4.10) defines

our data generating model, which will hereinafter be referred to as GM I. GM I

yields the following proportions of subjects within each of the response patterns: 68%

completers (33% for x = 0 and 35% for x = 1), 15% with the last outcome missing

(7% for x = 0 and 8% for x = 1), and 18% with only the first outcome observed (10%

for x = 0 and 8% for x = 1).

We further consider a second data generating model, GM II, in which the outcomes

are generated based on (4.10) and non-randommissingness is induced via the following

MNAR logistic regression model:

logit[P (Di = j|xi, yi,j−1, Di ≥ j)] = ψ0 + ψx xi + ψprev yi,j−1 + ψcurr yij , (4.12)

where j = 2, 3, 4, ψ0 = −0.5, ψx = −0.6, ψprev = −1.0 and ψcurr = −2.0. For GM II,

there are around 71% completers (36% for x = 0 and 35% for x = 1), 13% with only

the last outcome missing (6% for x = 0 and 8% for x = 1), and 16% with only one

non-missing outcome (8% each for x = 0 and x = 1).

It can be recalled that all the methods under investigation in this chapter assume

an MAR missing data mechanism. As such, these methods are inherently “incorrect”

or misspecified when applied to data with non-random missingness. Thus, compar-

isons under the MAR case are no longer meaningful for the MNAR case, unless, of

course, modeling approaches for non-random missingness are entertained. Without

recourse to the latter, we nevertheless proceed to investigate the performance of the
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different approaches under certain misspecification settings to further evaluate their

robustness or lack thereof.

4.2.2 Design of the Simulation Study

We assume a sample of size N = 500 subjects, equally divided between the two treat-

ment groups. Such a choice is practically relevant, given that many biopharmaceutical

trials employ about 250 to 300 patients per treatment arm. Based on the underlying

probabilities from GM I, 250 observations were generated randomly for each treat-

ment group. A total of S = 500 such samples were then generated. For the various

extensions of GEE considered, the same working correlation structure as assumed

during data generation, i.e., an exchangeable type, is employed in the analysis.

Several measures are computed to gauge the relative performance of the various

methods. First, we define bias as the difference between the estimate and the true

value of the parameter, i.e., Bias(β̂) = β̂ − β. Further, the average (β̂) of the

estimators over all S = 500 samples, its variance for a sample of size N (Var(β̂)), and

the Monte Carlo MSE (MSEMC) are computed as:

β̂ =
S∑

i=1

β̂i

S
, Var(β̂) =

S∑

i=1

(β̂i − β̂)2
S − 1

,

MSE ≡ MSEMC(β̂) = Bias2(β̂) + Var(β̂) .

In addition, the empirically-corrected MSE (MSEemp) and model-based MSE

(MSEmod) are computed.

4.2.3 Results

In the simulation study, the behavior of the methods is studied in terms of bias, vari-

ance and mean squared error (MSE) of the estimators, under correctly specified and

misspecified models. In this way, robustness of the methods under misspecification

of either the dropout model, the imputation model, or both, can be explored. We

consider, in turn, various types of misspecification, first for the MAR-based GM I,

then for the MNAR-based GM II.

MAR: Everything Correctly Specified

We first investigate the individual merits of each method when every one of its aspects

is correctly specified. Recall that GM I is based on a Bahadur measurement model and
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a logistic model for dropout that is reflective of an MAR mechanism, i.e., depending on

the previous measurement as well as the treatment indicator. An appropriate analysis

model would consist of a measurement model and either a dropout or imputation

model that match those of this GM I. Because GEE methods are moment-based

versions of the Bahadur model (Section 3.5.4), a GEE-based version, with the same

structure as that of the underlying measurement model would be suitable. To address

the MAR nature of missingness, the GEE-based approach is supplemented with either

a weighting scheme and/or imputations obtained from a model of the same form as

that of the underlying dropout model, that is, a weight model or/and an imputation

model containing the treatment indicator and the previous measurement as predictor.

WGEE, MI-GEE, as well as the doubly robust GEE versions (MI-WGEE and MI-

GEE(Aug)) proposed in Section 4.1.3, were so fitted for GM I and the results are

shown in Table 4.1. From Table 4.1, it can be observed that the doubly robust

MI-WGEE approach consistently yields the least bias, and MI-GEE leads to slightly

larger bias than the former. The MSEs of MI-WGEE are worse than MSEs of MI-

GEE and MI-GEE(Aug) (specially for βx and βxt). Compared to MI-GEE and the

DR-GEEs, WGEE has the worst Monte Carlo MSE (except for β0). Furthermore,

MI-GEE(Aug) gives empirically corrected MSEs that are closer to the asymptotic

MSEs when the variability in the weights is acknowledged.
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Table 4.1: Simulation study for MAR (GM I): Everything correctly specified.

WGEE

No var. in weights Var. in weights

Par. Bias VarEST MSEMC MSEemp MSEmod MSEemp MSEmod

β0 -0.0225 0.3031 0.3036 0.5096 0.1240 0.1968 0.0363

βt 0.0002 0.0662 0.0662 0.2137 0.0670 0.0936 0.0160

βx 0.0407 0.8947 0.8964 0.7639 0.1858 0.2998 0.0625

βxt -0.0557 0.1785 0.1815 0.3371 0.1095 0.1599 0.0317

MI-GEE

β0 0.0124 0.0427 0.0428 0.1988 0.1986

βt -0.0093 0.0106 0.0107 0.0973 0.0981

βx -0.0348 0.0747 0.0759 0.2858 0.2852

βxt 0.0236 0.0191 0.0197 0.1437 0.1439

MI-WGEE (Non-Augmented)

β0 -0.0102 0.2289 0.2290 0.5668 0.2936 0.3352 0.2714

βt -0.0054 0.0407 0.0407 0.2899 0.1999 0.2126 0.1933

βx -0.0033 0.8108 0.8108 0.8927 0.4637 0.5265 0.4344

βxt -0.0183 0.1273 0.1276 0.4816 0.3367 0.3588 0.3273

MI-GEE (Augmented)

β0 -0.8060 0.0532 0.7029 0.8591 0.8056 0.7967 0.7033

βt 0.2230 0.0130 0.0627 0.1494 0.1239 0.1166 0.0860

βx 0.2388 0.0863 0.1433 0.3491 0.2887 0.2673 0.1301

βxt -0.0695 0.0211 0.0259 0.1487 0.1194 0.1056 0.0551

MAR: Dropout and Measurement Models Correct, Imputation Model In-

correct

We compare, under this scenario, MI-GEE with the DR-GEEs, all having a correctly

specified measurement and dropout model, but with an incorrectly specified imputa-

tion model in the sense that the previous outcome is omitted from the imputation

model. Since the underlying missingness model (4.11) does include yi,j−1, omission

of such in the imputation model is a clear misspecification. The results are given in
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Table 4.2.

Table 4.2: Simulation study for MAR (GM I): Misspecified imputation model. (Mis-

specification in the form of omission of the previous outcome, yi,j−1, from the impu-

tation model).

MI-GEE

No var. in weights Var. in weights

Par. Bias VarEST MSEMC MSEemp MSEmod MSEemp MSEmod

β0 -0.0047 0.0424 0.0424 0.1971 0.1999

βt 0.0271 0.0106 0.0114 0.0975 0.0992

βx -0.0211 0.0737 0.0742 0.2823 0.2855

βxt 0.0030 0.0191 0.0191 0.1415 0.1437

MI-WGEE (Non-Augmented)

β0 -0.0401 0.1999 0.2015 0.5539 0.2886 0.3299 0.2653

βt 0.0239 0.0331 0.0337 0.2844 0.1947 0.2075 0.1874

βx 0.0198 0.7399 0.7403 0.8731 0.4523 0.5131 0.4219

βxt -0.0324 0.1071 0.1082 0.4655 0.3201 0.3414 0.3099

MI-GEE (Augmented)

β0 -0.8197 0.0522 0.7240 0.8801 0.8276 0.8159 0.7242

βt 0.2473 0.0128 0.0739 0.1604 0.1354 0.1271 0.0967

βx 0.2496 0.0851 0.1474 0.3527 0.2945 0.2695 0.1357

βxt -0.0813 0.0206 0.0272 0.1497 0.1219 0.1067 0.0576

MI-GEE gives the smallest or at least comparable bias with MI-WGEE, while MI-

GEE(Aug) shows somewhat larger bias. Moreover, in comparison with the weighted

versions, MI-GEE leads to the smallest empirically corrected MSEs, as can be ex-

pected, since no variability in the weights is added to the conventional MI variability.

Between the DR-GEEs, smaller empirically corrected MSEs are obtained under MI-

GEE(Aug) when the weight variability is taken into account.
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MAR: Imputation and Measurement Models Correct, Dropout Model In-

correct

Keeping the measurement and imputation models correctly specified, we now inves-

tigate the effects of misspecification in the dropout model. Here, as in the previous

subsection, the misspecification in the dropout model is again in the form of omission

of the previous outcome from the dropout model, from which weights are obtained.

The results are given in Table 4.3.

In this setting, the doubly robust MI-GEE(Aug) consistently gives the least biased

and least variable estimates, and thus, the smallest empirically corrected MSEs when

the variability in the weights is accounted for. Moreover, these corrected MSEs are

closer to the Monte Carlo MSE for MI-GEE(Aug) than they are under the other two

methods. For the three approaches compared, WGEE, MI-WGEE andMI-GEE(Aug),

improved variability estimates are obtained when one acknowledges the variability in

the weights.

MI-WGEE seems to yield quite imprecise estimates when the weight variability

is considered. This does not come as a surprise because a misspecification in the

dropout model comes into play twice for this method. First, imprecise weights that

arise from a misspecified dropout model can impact the WGEE part of the method,

in which the cases are weighted (incorrectly). In addition, a misspecification in the

dropout model can also affect the precision of the estimates via the adjustment done

to account for the variability in the weights. Hence, it is not totally surprising that

the impact of a misspecified dropout model for MI-WGEE can be quite substantial.
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Table 4.3: Simulation study for MAR (GM I): Misspecified dropout model. (Misspec-

ification in the form of omission of the previous outcome, yi,j−1, from the dropout

model).

WGEE

No var. in weights Var. in weights

Par. Bias VarEST MSEMC MSEemp MSEmod MSEemp MSEmod

β0 -0.7283 0.0534 0.5839 0.7714 0.6408 0.7442 0.5551

βt 0.0680 0.0140 0.0186 0.1212 0.0645 0.0990 0.0152

βx 0.2373 0.1482 0.2045 0.4469 0.2262 0.3929 0.0998

βxt -0.1141 0.0393 0.0523 0.2206 0.1149 0.1947 0.0335

MI-WGEE (Non-Augmented)

β0 -0.8220 0.0579 0.7335 0.9540 0.8615 0.9398 0.8335

βt 0.1864 0.0165 0.0513 0.1869 0.1513 0.1743 0.1425

βx 0.1207 0.1265 0.1411 0.4365 0.2791 0.4023 0.2351

βxt -0.0276 0.0325 0.0333 0.2421 0.1774 0.2192 0.1627

MI-GEE (Augmented)

β0 0.2757 0.0400 0.1160 0.2704 0.2322 0.2049 0.1292

βt -0.0717 0.0100 0.0152 0.0965 0.0809 0.0695 0.0426

βx -0.1518 0.0706 0.0937 0.3025 0.2489 0.2060 0.0927

βxt 0.0505 0.0181 0.0207 0.1382 0.1149 0.0957 0.0518

MAR: Measurement Model Correct, Imputation and Dropout Models In-

correct

A final comparison for the MAR case evaluates the relative performance of the aug-

mented and non-augmented versions of DR-GEE with ordinary WGEE and singly

robust MI-GEE, under misspecification in both the dropout and imputation models.

For both cases, misspecification is again in terms of omission of the previous outcome.

The results are given in Table 4.4; for ease of comparison, the first panels of Tables 4.2

and 4.3 are replicated here.
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Table 4.4: Simulation study for MAR (GM I): Both models misspecified. (Misspecifi-

cation in the form of omission of the previous outcome, yi,j−1, from both the dropout

and imputation models).

WGEE

No var. in weights Var. in weights

Par. Bias VarEST MSEMC MSEemp MSEmod MSEemp MSEmod

β0 -0.7283 0.0534 0.5839 0.7714 0.6408 0.7442 0.5551

βt 0.0680 0.0140 0.0186 0.1212 0.0645 0.0990 0.0152

βx 0.2373 0.1482 0.2045 0.4469 0.2262 0.3929 0.0998

βxt -0.1141 0.0393 0.0523 0.2206 0.1149 0.1947 0.0335

MI-GEE

β0 -0.0047 0.0424 0.0424 0.1971 0.1999

βt 0.0271 0.0106 0.0114 0.0975 0.0992

βx -0.0211 0.0737 0.0742 0.2823 0.2855

βxt 0.0030 0.0191 0.0191 0.1415 0.1437

MI-WGEE (Non-Augmented)

β0 -0.8527 0.0478 0.7749 0.9977 0.9119 0.9877 0.8828

βt 0.2605 0.0135 0.0814 0.2175 0.1839 0.2069 0.1746

βx 0.1352 0.1087 0.1269 0.4240 0.2801 0.3974 0.2364

βxt -0.0529 0.0273 0.0301 0.2331 0.1737 0.2129 0.1588

MI-GEE (Augmented)

β0 0.2598 0.0396 0.1071 0.2615 0.2240 0.1942 0.1192

βt -0.0451 0.0099 0.0120 0.0934 0.0780 0.0657 0.0386

βx -0.1398 0.0690 0.0886 0.2982 0.2467 0.2003 0.0894

βxt 0.0362 0.0176 0.0189 0.1367 0.1148 0.0941 0.0512

The observed bias is smallest under singly-robust MI-GEE and is larger under

the ordinary WGEE and MI-WGEE. The variability obtained from MI-GEE(Aug) is

better than that of WGEE and comparable to MI-GEE. The variability under the

“hybrid” MI-WGEE is better than that of WGEE (especially for βx and βxt). With

respect to empirically corrected MSEs that are computed by taking the variability in

weights into account, the doubly robust approach MI-GEE(Aug) consistently yields
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the smallest values, showing substantial improvement over WGEE and improves even

further the already precise estimates obtained under singly-robust MI-GEE.

MNAR: Results

In Section 4.2.1, we defined a second data generating MNAR mechanism (GM II). We

consider two particular settings. First, the current outcome, yij , in (4.12) is omitted

as a predictor from both the dropout and the imputation model. This implies that

MAR type models are thus fitted for data with an underlying mechanism that is

MNAR. Moreover, whereas WGEE and MI-GEE are singly misspecified, since only

one component is incorrect, the DR-GEEs are actually “doubly” misspecified, in the

sense that two of its components – dropout and imputation model – are incorrect. A

second setting, with more extreme misspecification, is further examined. In addition

to the current outcome, yij , the previous outcome, yi,j−1, in (4.12) is also omitted from

both the dropout and imputation models. This represents a more grossly misspecified

scenario, since, essentially, MCAR models are employed for MNAR type data. The

results are now discussed in turn. The results for the first setting, in which only the

current outcome is omitted as a predictor from both the dropout and the imputation

model, are summarized in Table 4.5.

It can be observed that the bias for WGEE is substantially larger compared to

MI-GEE, with slightly smaller empirically corrected MSEs for the latter. This under-

scores, once again, the inefficiency of WGEE under misspecification in the dropout

model. While MI-WGEE shows the worst results, the doubly robust MI-GEE(Aug)

generally shows improvement over, or is at least comparable with, the singly robust

MI-GEE. Moreover, for the doubly robust MI-GEE(Aug), the empirically corrected

MSEs that adjust for the variability in the weights are closer to the Monte Carlo

MSEs.
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Table 4.5: Simulation study for MNAR (GM II): Singly misspecified dropout and

imputation models. (Misspecification in the form of omission of the current outcome,

yij , from both the dropout and imputation models).

WGEE

No var. in weights Var. in weights

Par. Bias VarEST MSEMC MSEemp MSEmod MSEemp MSEmod

β0 -0.2588 0.0905 0.1574 0.3587 0.1921 0.2610 0.1024

βt 0.2209 0.0212 0.0700 0.1860 0.1185 0.1430 0.0649

βx 0.1029 0.1816 0.1921 0.4255 0.1909 0.2901 0.0686

βxt -0.0816 0.0435 0.0502 0.2073 0.1092 0.1459 0.0336

MI-GEE

β0 -0.0952 0.0417 0.0508 0.2044 0.2063

βt 0.1424 0.0103 0.0306 0.1159 0.1169

βx -0.0069 0.0735 0.0735 0.2803 0.2832

βxt -0.0276 0.0188 0.0195 0.1404 0.1423

MI-WGEE (Non-Augmented)

β0 -0.1777 0.0759 0.1075 0.3502 0.2211 0.2752 0.1879

βt 0.1684 0.0163 0.0447 0.1984 0.1510 0.1699 0.1403

βx 0.0348 0.1581 0.1593 0.4624 0.2756 0.3536 0.2299

βxt -0.0363 0.0335 0.0348 0.2511 0.1818 0.2095 0.1666

MI-GEE (Augmented)

β0 -0.4306 0.0472 0.2326 0.3800 0.3451 0.3127 0.2327

βt 0.2390 0.0111 0.0682 0.1502 0.1340 0.1195 0.0899

βx 0.0214 0.0754 0.0759 0.2781 0.2316 0.1879 0.0692

βxt -0.0454 0.0191 0.0211 0.1373 0.1160 0.0956 0.0499
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Under the second setting for the MNAR case, more severe misspecification in

both the dropout and imputation models (i.e., omission of both the current and the

previous outcome) was considered, the results of which are presented in Table 4.6.

Table 4.6: Simulation study for MNAR (GM II): Doubly misspecified dropout and

imputation models. (Misspecification in the form of omission of the current, yij, and

previous, yi,j−1, outcomes from both the dropout and imputation models.)

WGEE

No var. in weights Var. in weights

Par. Bias VarEST MSEMC MSEemp MSEmod MSEemp MSEmod

β0 -0.6604 0.0691 0.5052 0.6950 0.5491 0.6366 0.4650

βt 0.2743 0.0162 0.0914 0.1947 0.1379 0.1674 0.0881

βx 0.1853 0.1457 0.1801 0.4150 0.2001 0.3333 0.0834

βxt -0.1195 0.0350 0.0493 0.2002 0.1103 0.1626 0.0369

MI-GEE

β0 -0.1042 0.0409 0.0518 0.2057 0.2088

βt 0.1561 0.0101 0.0344 0.1199 0.1214

βx 0.0036 0.0717 0.0717 0.2799 0.2849

βxt -0.0359 0.0186 0.0199 0.1410 0.1441

MI-WGEE (Non-Augmented)

β0 -0.6370 0.0640 0.4698 0.6965 0.5878 0.6531 0.5587

βt 0.3078 0.0154 0.1101 0.2526 0.2118 0.2336 0.2024

βx 0.1151 0.1208 0.1340 0.4331 0.2745 0.3729 0.2341

βxt -0.0769 0.0285 0.0344 0.2387 0.1786 0.2125 0.1651

MI-GEE (Augmented)

β0 -0.0015 0.0408 0.0408 0.1927 0.1614 0.1236 0.0467

βt 0.1283 0.0099 0.0264 0.1082 0.0947 0.0785 0.0491

βx -0.0101 0.0717 0.0718 0.2763 0.2313 0.1782 0.0680

βxt -0.0327 0.0183 0.0194 0.1348 0.1154 0.0918 0.0487

In the first two panels of the table, the results for WGEE and MI-GEE are also
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shown. Note that for these two methods, misspecification occurs in only one compo-

nent – either in the dropout model for WGEE or in the imputation model for MI-GEE,

while for the DR-GEEs, both components are incorrectly specified. MI-GEE yields

much less biased estimates than WGEE, and these improve even further under MI-

GEE(Aug), despite the doubly, grossly misspecified nature of the latter. Though the

doubly robust MI-WGEE shows slight improvement over WGEE in terms of bias,

its empirically corrected MSEs tend to be worse. It can also be observed that the

empirically corrected MSEs for MI-GEE are much better than those for WGEE, and

even further reduction can be seen under MI-GEE(Aug). The latter observation un-

derscores the doubly robust nature of MI-GEE(Aug) in the sense that, despite being

misspecified in its two components, it nevertheless does better than the (singly-robust)

MI-GEE. For all the methods, accounting for the variability in the weights brings the

empirically corrected MSEs closer to the Monte Carlo MSEs.

Two additional settings for the MNAR case are further examined here. In either

case, one model is misspecified (i.e., by omission of the current outcome as predictor)

and the other model is grossly misspecified (i.e., by omission of both the current and

previous outcomes as predictors). The first setting considers a double misspecification

in the imputation model, by omission of both the current and previous outcomes as

predictors, but only a single misspecification in the dropout model, by omission only

of the current outcome as predictor. Thus, though both the imputation and dropout

models are incorrectly specified, a more severe misspecification is actually made in

the imputation model. The results for this comparison are shown in Table 4.7.

MI-GEE yields less biased estimates than the DR-GEE. Despite an additional mis-

specification in the dropout model, the doubly robust GEE (MI-GEE(Aug)), provide

MSEs that better than or comparable to that of MI-GEE (except for β0).
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Table 4.7: Simulation study for MNAR (GM II): Singly misspecified dropout model

and doubly misspecified imputation model. (Misspecification in the dropout model in

the form of omission of the current outcome, yij; misspecification in the imputation

model in the form of omission of the current, yij , and previous, yi,j−1, outcomes).

MI-GEE

No var. in weights Var. in weights

Par. Bias VarEST MSEMC MSEemp MSEmod MSEemp MSEmod

β0 -0.1042 0.0409 0.0518 0.2057 0.2088

βt 0.1561 0.0101 0.0344 0.1199 0.1214

βx 0.0036 0.0717 0.0717 0.2799 0.2849

βxt -0.0359 0.0186 0.0199 0.1410 0.1441

MI-WGEE (Non-Augmented)

β0 -0.1968 0.0754 0.1141 0.3538 0.2277 0.2811 0.1936

βt 0.1845 0.0165 0.0505 0.2027 0.1561 0.1747 0.1450

βx 0.0707 0.1501 0.1551 0.4633 0.2813 0.3574 0.2351

βxt -0.0612 0.0317 0.0355 0.2526 0.1855 0.2126 0.1697

MI-GEE (Augmented)

β0 -0.4401 0.0464 0.2401 0.3879 0.3536 0.3195 0.2401

βt 0.2510 0.0107 0.0737 0.1560 0.1401 0.1248 0.0951

βx 0.0281 0.0755 0.0763 0.2779 0.2325 0.1866 0.0695

βxt -0.0514 0.0189 0.0216 0.1376 0.1170 0.0956 0.0505

The reverse misspecification was also considered. We omit the current outcome

from the imputation model, and misspecify, more grossly, the dropout model by omit-

ting both the current and previous outcomes as predictors. Table 4.8, which presents

the results for this scenario, highlights the extreme inefficiency of WGEE under mis-

specification of the dropout model, as can be seen from the relative large empirically

corrected MSEs. Not surprisingly, the doubly robust MI-GEE(Aug) not only shows

significant reduction in bias as compared to WGEE, but also substantial gains in

precision. Again, the hybrid MI-WGEE approach seems slightly worse than ordinary

WGEE, since the former involves an additional misspecification in comparison with

the latter.



4.3. Analysis of the Toenail Data 57

Table 4.8: Simulation study for MNAR (GM II): Singly misspecified imputation model

and doubly misspecified dropout model. (Misspecification in the imputation model in

the form of omission of the current outcome, yij ; misspecification in the dropout model

in the form of omission of the current, yij, and previous, yi,j−1, outcomes).

WGEE

No var. in weights Var. in weights

Par. Bias VarEST MSEMC MSEemp MSEmod MSEemp MSEmod

β0 -0.6604 0.0691 0.5052 0.6950 0.5491 0.6366 0.4650

βt 0.2743 0.0162 0.0914 0.1947 0.1379 0.1674 0.0881

βx 0.1853 0.1457 0.1801 0.4150 0.2001 0.3333 0.0834

βxt -0.1195 0.0350 0.0493 0.2002 0.1103 0.1626 0.0369

MI-WGEE (Non-Augmented)

β0 -0.6091 0.0655 0.4365 0.6652 0.5537 0.6197 0.5252

βt 0.2698 0.0150 0.0878 0.2304 0.1892 0.2109 0.1800

βx 0.0811 0.1306 0.1371 0.4318 0.2673 0.3684 0.2268

βxt -0.0514 0.0306 0.0332 0.2359 0.1731 0.2084 0.1594

MI-GEE (Augmented)

β0 0.0224 0.0420 0.0425 0.1945 0.1623 0.1300 0.0499

βt 0.1052 0.0104 0.0215 0.1037 0.0898 0.0767 0.0457

βx -0.0209 0.0725 0.0729 0.2778 0.2313 0.1844 0.0688

βxt -0.0234 0.0187 0.0193 0.1350 0.1148 0.0940 0.0486

4.3 Analysis of the Toenail Data

The data set was introduced in Section 2.1. Here the response of interest is the severity

of the infection, coded as 0 (not severe) or 1 (severe). The question of interest was

whether the percentage of severe infections decreased over time, and whether that

evolution was different for the two treatment groups. A graphical representation of

the number of patients in the study at each time-point, and the number of patients

with severe infections is given in Figure 4.1.
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Figure 4.1: Toenail Data. Evolution of the percentage of severe toenail infections in

the two treatment groups separately. (Source: Molenberghs and Verbeke, 2005, p.10).

Our case study, geared towards assessing the difference in improvement rate be-

tween both treatments for onychomycosis, allows us to further empirically assess the

behavior of the various GEE versions that we consider. Results are summarized in

Table 4.9. For the main covariate of interest, i.e., treatment, all the considered models

result in insignificant difference between the treatment groups.

Table 4.9: Toenail Data. Severity of toenail infection. Parameter estimates (empiri-

cally corrected standard errors ignoring variability in the weights; empirically corrected

standard errors acknowledging variability in the weights).

Effect WGEE MI-GEE MI-WGEE MI-WGEE(Aug)

Intercept -0.322(0.309;0.220) -0.059(0.224) -0.679(0.395; 0.249) -0.936(0.448;0.430)

Time 0.820(0.641;0.305) 0.017(0.322) 0.874(0.708; 0.327) 0.028(0.145;0.143)

Trt -0.219(0.073;0.045) -0.313(0.047) -0.070(0.087; 0.059) 0.236(0.323;0.271)

Trt*time -0.124(0.183;0.059) -0.051(0.068) -0.134(0.140; 0.065) -0.105(0.085;0.077)

That said, a few additional observations can be made. First, taking the variability

in the weights into account does not necessarily lead to smaller standard errors, even

though the difference with the standard errors not accommodating this variability

is evident. Second, the point estimates do vary considerably between the different

methods. This, combined with insight from the simulation study, may lead us to

conclude that it is prudent to consider a doubly robust method, perhaps in conjunction

with multiple imputation, for ease of use and good performance.
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4.4 Discussion

In this chapter, we have presented a variety of versions of generalized estimating

equations for use when data are incomplete and of an MAR nature. These are based on

the principles of inverse probability weighting, doubly robust extensions thereof, and

multiple imputation. We have paid particular attention to some of the combinations,

such as multiple imputation combined with inverse probability weighting, and its

doubly robust counterpart. The latter is due to Daniel (2008). We consider both

a principled version, owing to this author, and an approximation that facilitates

computation.

Oftentimes, when a weighting scheme is considered, one fits the prescribed model

using estimated weights, rather than the true weights. Because such a substitution

can inherently affect the estimated precision, we have proposed a modification in the

variance estimation that accounts for the variability in the (estimated) weights. While

acknowledging variability in the weights seems entirely reasonable to do, the user

should be aware that this also renders the method more computationally demanding,

in the sense that these adjusted variance estimates are not readily available in standard

software implementations of WGEE. Nevertheless, taking the variability into account

is definitely an advantage, particularly since the weight model used for analysis is

frequently just an estimate of the true underlying weight model.

An additional point regarding inverse probability weighting methods is that their

validity requires the so-called positivity assumption in the sense that probabilities for

being observed should be bounded away from zero, Rotnitzky (2009). Cases where

this assumption is at stake would be of interest in their own right; however, they are

outside of the scope of the current (simulation) study.

From an extensive small-sample simulation study it emerges that WGEE is rather

inefficient, especially for small sample sizes, and was observed to be sensitive to mis-

specification in the dropout model, which is not surprising. In contrast, though, MI-

GEE is relatively robust to misspecification in the imputation model, even though

such model is at the heart of multiple imputation. Often, it was also observed that

the singly robust MI-GEE yielded fairly precise estimates, with slight improvement

gained under the doubly robust MI-GEE(Aug).

In the MAR case, when the model is fully correctly specified, MI-GEE and MI-

GEE(Aug) show better performance than the approaches that employ WGEE (e.g.,

ordinary WGEE and the “hybrid” MI-WGEE), demonstrating the inefficiency of in-

verse probability weighting despite a correct specification of the weight model. More-

over, the inefficiency tends to be even grosser when small sample sizes are in play.



60 Chapter 4. Doubly Robust GEE

When the dropout and measurement models are correctly specified and the imputa-

tion model is not, either MI-GEE or MI-GEE(Aug) show better results, depending

on the parameter under consideration. In contrast, when the dropout model is incor-

rectly specified but the rest is correct, then the doubly robust MI-GEE(Aug) yields

substantive improvement over WGEE – a clear manifestation of the double robust-

ness of the former. Finally, in the situation wherein both the imputation and dropout

models are incorrect, MI-GEE(Aug) clearly outperforms all the other methods, pro-

viding considerable improvement over WGEE and slightly increased precision over

MI-GEE.

For the MNAR case, inefficiency of WGEE was again observed, especially under

severe misspecification of the dropout model. MI-GEE exhibited a reasonable amount

of robustness with respect to misspecification – severe or otherwise – in the imputation

model. MI-GEE(Aug) was seen to be considerably robust, doing better than all

the other methods, despite severe or not-so-severe misspecification in both of its

components.

Overall, the multiple imputation based methods are recommendable for practice

and it is advisable to take variability in the weights into account.
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Pseudo-likelihood Estimation

for Incomplete Data

Pseudo-likelihood approaches have become a practical alternative to full likelihood

methods, particularly for applications involving complex likelihood forms. In the

case of incomplete data, Pseudo-likelihood (PL) is valid under the assumption of an

MCAR mechanism operating, but this does not generally extend to MAR mechanisms,

except in a limited number of special cases, such as full exchangeability, as will be

shown in Section 5.2. The reason for this is twofold. First, in line with Kenward and

Molenberghs (2009), even likelihood methods commonly have frequetist elements,

such as the expected information matrix. Second, because pseudo-likelihood is not

a genuine likelihood but rather a modification of it, it no longer enjoys the results

derived for the likelihood by Rubin (1976). This second issue is shared with GEE.

Unlike for GEE, little work has been done for PL estimation with incomplete data.

A noteworthy exception is Parzen et al. (2006) who apply PL ideas not just to the

vector of outcomes, but to the entire vector of outcomes, covariates, and missing data

indicators. In what follows, a different route, using inverse probability weighting and

double robustness ideas (Scharfstein, Rotnitzky and Robins, 1999; Van der Laan and

Robins, 2003; Bang and Robins, 2005; Rotnitzky, 2009) is followed.

In Section 5.1, general expressions are presented and their validity established.

These expressions are then applied to pseudo-likelihood (Section 5.2). This implies

that they hold, beyond pseudo-likelihood, to a large class of estimating equations, in

line with the work of Robins, Rotnitzky, and colleagues. Thereafter, we pay particular

attention to two special PL families: (1) marginal and (2) full conditional. In the first

case, marginal pseudo-likelihood for Gaussian (Section 5.2.2) is considered in more

61



62 Chapter 5. PL Estimation for Incomplete Data

detail. In the second case, an exponential family model for binary clustered data is

scrutinized further (Section 5.2.3). The proposed methods are applied to two case

studies in Section 5.3. Marginal models for binary data will be the main focus of

Chapter 6.

5.1 General Forms of Estimating Equations for In-

complete Data

Assume that we have a set of estimating equations, whether resulting from full like-

lihood or pseudo-likelihood, of a conventional generalized estimating equations type,

or beyond:

U =

N∑

i=1

U i(θ|Y i,xi)
notation

=

N∑

i=1

U i(Y i). (5.1)

Assume that E(U) = 0.

Let us first consider two obvious ‘naive’ estimating equations, originating from

(5.1):

Unaive, CC =

N∑

i=1

R̃iU i(Y i), (5.2)

Unaive, AC =
N∑

i=1

U i(Y
o
i ). (5.3)

Here, R̃i = 1 if subject i is fully observed and 0 otherwise, and U i(Y
o
i ) is the score

pertaining the observed outcomes on subject i. Further, ‘naive’ refers to the fact that

these estimating equations would generally be biased under MAR; ‘CC’ denotes com-

plete cases, i.e., subjects with all measurements taken; and ‘AC’ stands for available

cases. For the latter, it is necessary to derive the score contribution of the sub-vector

of observed components of Y i. Because this involves integration over the incomplete

data, it is trivial in the marginal case, but less so, for example, for conditionally

specified PL functions.
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Singly robust versions of (5.2) and (5.3) would take the form:

U IPWCC =

N∑

i=1

R̃i

πi
U i(Y i), (5.4)

U IPWAC =

N∑

i=1

1

π′
i

· EY m|yoU(Yi), (5.5)

U IPWAC,seq =
N∑

i=1

ni∑

j=1

Rij

πij
·U(Yij |Y i j ). (5.6)

Here Rij is the indicator for a subject to be observed at occasion j and πij is the

probability of being observed up until and including occasion j, i.e., πij =
∏j

ℓ=1(1 −
piℓ). Further, Y i j is shorthand for the history (Yi1, . . . , Yi,j−1), and the corresponding

function U(Yij |Y i j ) is the score for the outcome at occasion j given the history.

Recall that πi and π
′
i have been defined in (4.1) and (4.2) respectively.

Doubly robust versions are:

U IPWCC,dr =

N∑

i=1

[
R̃i

πi
Ui(Y i) +

(
1− R̃i

πi

)
EY m

i
|yo

i
U i(Y i)

]
, (5.7)

U IPWAC,dr =

N∑

i=1





ni∑

j=1

[
Rij

πij
·U(Yij |Y i j )

+

(
1− Rij

πij

)
·EY m|yoU(Yij |Y i j )

]}
. (5.8)

Here U(Yij |Y i j ) is the score pertaining to outcome Yij given the history, denoted by

Y i j . We are now in a position to establish the single and double robustness of the

above definitions.

Theorem 2 (Single robustness of UIPWCC, UIPWAC, and UIPWAC,seq.)

Under MAR, and if piℓ in (4.1)–(4.2) is non-parametrically or correctly parametri-

cally specified as piℓ(ψ), then UIPWCC, UIPWAC, and UIPWAC,seq are consistent.
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Proof. This follows from their expectation being 0, as follows:

E(U IPWCC) = EY

{
N∑

i=1

ER|Y

[
R̃i

πi
U(Y i)

]}

= EY

{
N∑

i=1

[
ER|Y (R̃i)

πi
U(Y i)

]}

= EY

[
N∑

i=1

Ui(Y i)

]
= 0. (5.9)

E(U IPWAC) = EY

{
N∑

i=1

ER|Y

[
R′

i

π′
i

EY m|yoU(Y i)

]}

= EY

{
N∑

i=1

[
ER|Y (R

′
i)

π′
i

EY m|yoU(Y i)

]}

=

N∑

i=1

EY EY m|yoU(Y i) = EY

[
N∑

i=1

U i(Y i)

]
= 0. (5.10)

E(U IPWAC,seq) = EY





N∑

i=1

ER|Y




ni∑

j=1

Rij

πij
EY m|yoU(Yij |Y i j )







= EY





N∑

i=1




ni∑

j=1

ERj |R j Y
Rij

πij
EY m|yoU(Yij |Y i j )







= EY




N∑

i=1

ni∑

j=1

U i(Y i)


 = 0. (5.11)

Here, R′
i = 1 if a subject drops at occasion di and 0 otherwise. Note that, in the CC

case, we used ER|Y (Ri) = ER|Y o(Ri) = πi, owing to MAR. A similar statement holds

in the AC case. This completes the proof.

In the above, and also in what follows, the same regularity conditions apply as in

Rotnitzky (2009). In particular, it is important that the probability of being observed

for a measurement be bounded away from zero.

Theorem 3 (Double robustness of UIPWCC,dr and UIPWAC,dr.) Under MAR,

and (a) if piℓ in (4.1)–(4.2) is non-parametrically or correctly parametrically spec-

ified as piℓ(ψ) and/or (b) if the predictive models in (5.7) and (5.8) are correctly

specified, then U IPWCC,dr and UIPWAC,dr are consistent.

Proof. If condition (a) holds, then the result trivially follows from Theorem 2 and

the observation that the expectation of the first factors of the second terms on the
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right hand sides equal zero. Under condition (b), write ER|Y (Ri) = ER|Y o(Ri) = λi.

Then,

E(U IPWCC,dr) = EY

{
N∑

i=1

[
λi
πi
U i(Y i) +

(
1− λi

πi

)
EY m

i
|yo

i
U i(Y i)

]}

=

N∑

i=1

{
λi
πi
EY oEY m|Y o [U i(Y i)]

+

(
1− λi

πi

)
EY oEY m|Y o

[
EY m

i
|yo

i
U i(Y i)

]}

=

N∑

i=1

EY oEY m|Y o [U i(Y i)] =

N∑

i=1

EY [U i(Y i)] = 0. (5.12)

The AC case starts with similar logic for the case condition (a) holds. When (b)

holds, but not necessarily (a):

E(U IPWAC,dr) = EY





N∑

i=1




ni∑

j=1

λij
πij
U i(Yi|Y i j )

+

(
1− λij

πij

)
EY m

i
|yo

i
U i(Yi|Y i j )

]}

=
N∑

i=1

ni∑

j=1

{
λij
πij

EY oEY m|Y o

[
U i(Yi|Y i j )

]

+

(
1− λij

πij

)
EY oEY m|Y o

[
EY m

i |yo
i
Ui(Yi|Y i j )

]}

=

N∑

i=1

ni∑

j=1

EY oEY m|Y o

[
Ui(Yi|Y i j )

]

=

N∑

i=1

EY [U i(Y i)] = 0. (5.13)

This completes the proof.

As mentioned in Section 4.1.4, the predictive model may show varying degrees of

complexity, depending on the type of PL function considered. For example, marginal

models for continuous data, marginal models for binary data, and conditional models

for binary data, may all pose specific challenges. This means that, in some settings,

the predictive model might be of higher dimension than the components of the actual

PL function and/or contain components of the full likelihood that are not needed for

it. While this may seem to defeat the purpose of using PL methodology, there are

several practically useful strategies to handle this. To see this, it helps to distinguish
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between two uses of the likelihood within the framework: (1) estimation; and (2)

prediction. It is predominantly for estimation that PL leads to important economies

by not having to manipulate the full likelihood. For prediction, several alternative

strategies are available.

First, even though using the entire joint distribution is oftentimes prohibitive

for estimation, it may be tractable for prediction purposes, provided all the neces-

sary parameters are obtained from the likelihood. An example is provided by a full

conditional PL, with a counterexample being a purely marginal PL for binary data,

consisting of lower-order margins only. Second, sufficiently rich predictive models and

alternative approaches, as discussed in Section 4.1.4, could be used. We return to this

in Section 5.2.

Precision Estimation

A general expression for the precision of the estimates obtained using pseudo-

likelihood is given in Theorem 1 of Chapter 3. If estimation of the dropout model

parameters is not involved, then I0 and I1 are as in (3.18) and (3.19) respectively.

When the singly robust and doubly robust versions of the pseudo-likelihood esti-

mation are used, the variability induced by estimation of the ψ parameters needs

to be accommodated. The asymptotic variance-covariance matrix is estimated by

Î0
−1
Î1Î0

−1
where I0 and I1 are as in (4.8) and (4.9) respectively. While the U in

U =
∑N

i=1 V i(β) (Section 4.1.4) comes from the score equations, here the U are from

the (pairwise) pseudo-likelihood.

5.2 Pseudo-likelihood Estimating Equations

In the previous section, we focused on estimating equations in the broadest sense.

When we turn to pseudo-likelihood, the generic forms can be made more specific and

expanded further:

Unaive, CC =
N∑

i=1

Ri

∑

s∈S

δsU s(y
(s)
i ), (5.14)

Unaive, CS =
N∑

i=1

∑

s∈S

Ri,sδsU s(y
(s)
i ), (5.15)
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Unaive, AC =
N∑

i=1

∑

s∈S

δsEY m|yoU s(y
(s)
i ), (5.16)

U IPWCC =

N∑

i=1

Ri

πi
·
∑

s∈S

δsU s(y
(s)
i ), (5.17)

U IPWCS =

N∑

i=1

∑

s∈S

Ri,s

πi,s
· δsU s(y

(s)
i ), (5.18)

U IPWAC =

N∑

i=1

∑

s∈S

δs

ni∑

j=1

I(j ∈ s) · Rij

πij
·U s(yij |y(s)i j

), (5.19)

U IPWCC,dr =

N∑

i=1

{
Ri

πi

[∑

s∈S

δsU s(y
(s)
i )

]

+

(
1− Ri

πi

)
· EY m

i |yo
i

[∑

s∈S

δsU s(y
(s)
i )

]}
, (5.20)

U IPWCS,dr =

N∑

i=1

∑

s∈S

{
Ri,s

πi,s
· δsU s(y

(s)o
i )

+

(
1− Ri,s

πi,s

)
· δsEY m

i |yo
i

U s(y
(s)
i )

}
. (5.21)

U IPWAC,dr =

N∑

i=1

∑

s∈S

δs

ni∑

j=1

I(j ∈ s)

[
Rij

πij
·U s(yij |y(s)i j

)

+

(
1− Rij

πij

)
· EY m

i |yo
i

U s(yij |Y (s)

i j
)

]
. (5.22)

where Ri, πi, Rij , and πij retain their former meaning. Similarly, Ri,s and πi,s are

the indicator and probability for the sub-vector y
(s)
i of yi to be observed, respectively.

Further, ‘CS’ stands for ‘complete sets’.

When the outcome sequence is fully exchangeable, in the sense that the distribu-

tion of any sub-vector of Y i equals that of any other sub-vector of equal length or a

permutation thereof, then U IPWCS,dr simplifies considerably. Indeed,

EY m

i |yo
i

U s(y
(s)
i ) = EY m

i |yo
i

[
Us(y

(s)o
i ) +U s(y

(s)m
i |y(s)oi )

]
.

Now, the expectation over the second term on the right hand side can be replaced

by E
Y (s)m

i |y(s)o
i

U s(y
(s)m
i |y(s)oi ), thanks to full exchangeability and the fact that the

score contributions stem form derivatives of sub-vectors of yi. Upon this replacement,

the conditional expectation vanishes. As a consequence, under exchangeability there

is no need to explicitly model the missing data mechanism. Hence, (5.21) reduces to
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U IPW, exch =

N∑

i=1

∑

s∈S

δsU s(y
(s)o
i ), (5.23)

Thus, in this special but important case, neither the weights nor the conditional

expectations are necessary to obtain valid inferences.

We now focus on special cases of pseudo-likelihood. To begin with, we will consider

the case of pairwise pseudo-likelihood, and then apply it to normally distributed data.

Thereafter, a conditional pseudo-likelihood for binary outcomes will be entertained.

5.2.1 Pairwise (Pseudo-)likelihood

While in principle general missingness could be considered, we focus on the important

special case of dropout, to streamline mathematical development. The forms (5.14)–

(5.22) take the following form for the specific case of pairwise likelihood:

Unaive, CC =
N∑

i=1

R̃i

∑

j<k

U i(yij , yik), (5.24)

Unaive, CP =

N∑

i=1

∑

j<k<di

U i(yij , yik), (5.25)

Unaive, AC =

N∑

i=1


 ∑

j<k<di

U i(yij , yik) +

di−1∑

j=1

(ni − di + 1)U i(yij)


 , (5.26)

U IPWCC =

N∑

i=1

R̃i

πi


∑

j<k

U i(yij , yik)


 , (5.27)

U IPWCP =
N∑

i=1

∑

j<k<di

Rijk

πijk
·U i(yij , yik), (5.28)

U IPWAC =

N∑

i=1

∑

j<k

[
Rij

πij
·U i(yij) +

Rik

πik
·U i(yik|yij)

]
, (5.29)
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U IPWCC,dr =

N∑

i=1




R̃i

πi


∑

j<k

U i(yij , yik)




+

(
1− R̃i

πi

)
EY m

i |yo
i


∑

j<k

U i(yij , yik)





 , (5.30)

U IPWCP,dr =

N∑

i=1

∑

j<k<ni

[
Rijk

πijk
·U i(yij , yik)

+

(
1− Rijk

πijk

)
· EY m

i |yo
i

U i(yij , yik)

]
, (5.31)

U IPWAC,dr =

N∑

i=1

∑

j<k

[
Rij

πij
·U i(yij) +

Rik

πik
·U i(yik|yij)

+

(
1− Rij

πij

)
· EY m

i |yo
i

U i(yij)

+

(
1− Rik

πik

)
· EY m

i |yo
i

U i(yik|yij)
]
. (5.32)

where Rijk and πijk are the indicator and probability, respectively, for observ-

ing both yij and yik. We can now write πi =
∏ni

ℓ=2(1 − piℓ), where still piℓ =

P
(
Di = ℓ|Di ≥ ℓ, Yi ℓ , Xi ℓ

)
. The second term in (5.26) results from all pairs with

the first component observed and the second one unobserved.

It is interesting, and easy to show, that all three the doubly robust versions coincide

in this case, which adds to their attraction:

U IPWCC,dr = U IPWCP,dr = U IPWAC,dr

=

N∑

i=1




∑

j<k<di

U i(yij , yik) +

di−1∑

j=1

(ni − di + 1) ·U i(yij)

+
∑

j<di≤k

E[U i(yik|yij)] +
∑

di≤j<k

E[U i(yij , yik)]



 . (5.33)

A key feature in (5.33) is that the need to model the missing data mechanism is

avoided. Note that this expression is related to (5.26) in the sense that both terms

of the latter expression occur here as well, with in addition the predictive terms.

There are two types of predictive terms, corresponding to: (a) a pair with the first

component observed and the second one missing; (b) a pair with both components

missing. All predictive models involve two types of contributions: for E[U i(yik|yij)]
where yij is observed but yik is not, and for E[U i(yij , yik)] with both unobserved.

These will be considered for the special but important cases that follow next.
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It is very easy to derive an exchangeable form, starting from (5.32), because then,

in this expression, the expectations vanish. Hence, clearly, the exchangeable form is

equal to (5.26), making the naive available case version not only valid, but actually

doubly robust. Of course, this is the case only under exchangeability.

A very important observation is that in the doubly robust versions (5.33), the

need to specify the missing data model is avoided, even though the predictive model

for the unobserved outcomes is needed.

5.2.2 Marginal (Pairwise) Pseudo-likelihood for Gaussian

Data

Assume Y i ∼ N(µ,Σ). Then first, suppressing the index i from notation, and writing

down the expressions for observed values, we find:

U(yk|yj) =
∂(µk|j , σkk|j)

∂(µj , µk, σjj , σjk, σkk)
· ∂ lnφ(yk|yj;µk|j , σkk|j)

∂(µk|j , σkk|j)

=




−σjk

σjj
0

1 0

−σjk

σ2
jj

(yj − µj)
σ2
jk

σ2
jj

yj−µj

σjj
− 2σjk

σjj

0 1







yk−µk|j

σkk|j

− 1
2σkk|j

+ 1
2

(yk−µk|j)
2

σ2
kk|j


 , (5.34)

where φ(·) is the normal density with mean and variance given by:

µk|j = µk +
σjk
σjj

(yj − µj) and σkk|j =
σjjσkk − σ2

jk

σjj
.

The only stochastic elements in (5.34) are the conditional residual and its square. We

need to take their expectation conditional upon the observed outcomes, producing for

the second factor in (5.34):




σjjΣk d
Σ−1

d d
(y

d
−µ

d
)−σjk(yj−µj)

σjjσkk−σ2
jk

σjj(σ2
jk−σjjΣk d

Σ−1

d d
Σ

d k)+[σjjΣk dΣ−1

d d
(y

d
−µ

d
)−σjk(yj−µj)]

2

2(σjjσkk−σ2
jk

)2


 . (5.35)

Here, d refers to the set of indices (1, 2, . . . , d − 1), corresponding to the observed

portion of y.
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Turning to the other expectation, we find:

U(yj , yk) =
∂ lnφ(yj , yk;µj , µk, σjj , σjk, σkk)

∂(µj , µk, σjj , σjk, σkk)

=




Σ−1(y − µ)
hjj +Qjj

hjk +Qjk

hkk +Qkk



, (5.36)

where

hjj = −1

2

σkk
ϕ
, hjk =

σjk

ϕ , hkk = −1

2

σjj
ϕ
,

ϕ = σjjσkk − σ2
jk,

Qσ = 1
2 (y − µ)′Σ−1SσΣ

−1(y − µ),

Sjj =

(
1 0

0 0

)
, Sjk =

(
0 1

1 0

)
, Skk =

(
0 0

0 1

)
.

Here, Sσ is generic notation for either one of the three pairs (j, j), (j, k), and (k, k).

To calculate the expectation of (5.36), we need:

E(Y |y d ) = µc
jk = µ+Σjk, dΣ

−1

d , d
(y d − µ d ), (5.37)

var(Y |yi d ) = Σjk,jk − Σjk, dΣ
−1

d , d
Σ d ,jk. (5.38)

It now follows that

E
[
U(yj , yk)|y d

]
=




Σ−1
jk,jkΣjk, dΣ

−1

d , d
(y d − µ d )

hjj + E[Qjj |y d ]

hjk + E[Qjk|y d ]

hkk + E[Qkk|y d ]



, (5.39)

where some straightforward algebra produces:

E[Qσ|y d ] =
1

2
tr
{
Σ−1

jk,jkSσΣ
−1
jk,jk

[
Σjk,jk +Σjk, dΣ

−1

d , d
×

×
(
(y d − µ d )(y d − µ d )

′ − Σ d , d

)
Σ−1

d , d
Σ d ,jk

]}
. (5.40)

In the special case of two measurements, the first of which always observed, d = 1

in (5.35), i.e., it refers to the first measurement. Hence, both expectations in (5.35)

reduce to 0, implying in turn that then Eym|yoU(y2|y1) = Ey2|y1
U(y2|y1) = 0, as it

should because in this simple case pseudo-likelihood coincides with full likelihood.

For each of the estimators, the sandwich estimator can be computed. Next, we

will provide generic expressions of the sandwich estimator for the case of IPWCC and

its doubly robust version.
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Sandwich Estimator for UIPWCC and UIPWCC,dr With Normal Data

Write a subject’s contribution to (5.27) as

V i =
Ri

πi

∑

j<k

U(yij , yik) =
Ri

πi

∑

j<k

∂ℓijk
∂θ

=
Ri

πi
U i. (5.41)

The model for missingness can be written in logistic form as:

πi =

ni∏

j=2

(
1 + ez

′
ijψ
)−1

,

where zij is a vector containing relevant covariates and outcomes from the history

prior to occasion j. Then,

∂V i

∂θ
=

Ri

πi
·K ′ ∂2ℓijk

∂(µ,σ)∂(µ,σ)′
K, (5.42)

∂V i

∂ψ
=

Ri

πi
·U i

ni∑

k=2

zikpik, (5.43)

with

K =

(
∂µ
∂β

0

0 ∂σ
∂α

)
, pik =

ez
′
ikψ

1 + ez
′
ik
ψ
.

Next, the estimating equation Wi for the ψ parameters follows from its logistic

structure, with data of the form (Rij , zij), for i = 1, . . . , N and j = 1, . . . , di, and

Rij = 0 if j < di, and 1 otherwise. Following standard generalized linear models

theory, we have that

W i =

di∑

j=2

z′ij(Rij − pij). (5.44)

Hence,

∂W i

∂ψ
= −

di∑

j=2

(zij · z′ij)pij(1 − pij). (5.45)

The sandwich estimator then follows from plugging the expressions (5.41) and (5.44)

for the scores, and (5.42), (5.43), and (5.45) for the second derivatives, into (4.8) and

(4.9). We still need an expression for

∂2ℓijk
∂(β, α)∂(β, α)′

.

Define

H(2) =
∂h

∂σ
, Q(2) =

∂Q

∂σ
,
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with h = (hjj , hjk, hkk)
′ and Q = (Qjj , Qjk, Qkk)

′. Then,

H(2) =
1

ϕ2




− 1
2σ

2
kk σjjσkk

1
2σ

2
jk

−σkkσjk σjjσkk + σ2
jk −σjjσjk

1
2σ

2
jk σjjσkk − 1

2σ
2
jj


 .

The generic element of Q(2) is

Qσ,τ = −1

2
(yi − µi)

′Σ−1
(
SσΣ

−1Sτ + SτΣ
−1Sσ

)
Σ−1(yi − µi).

Finally,

∂2ℓijk
∂(β, α)∂(β, α)′

=

(
−Σ−1 T (2)

T (2)′ H(2) +Q(2)

)
,

where T (2) is a 2× 3 matrix with columns −Σ−1SσΣ
−1(yi − µi).

Let us turn to the doubly robust version (5.30). Evidently, W i and ∂W i/∂ψ

remain as before, with the same holding true for the form of Si and Ai. However,

the contribution V i of subject i changes and can also be written as

V i = V
(1)
i +

(
1− Ri

πi

)
V

(2)
i ,

V
(1)
i =

∑

j<k<di

U(yij , yik),

V
(2)
i =

di−1∑

j=1

(ni − di + 1)U(yij) +
∑

j<di≤k

E [U(yik|yij)] +
∑

di≤j<k

E [U(yij , yik)] .

We merely need derivatives with respect to θ and ψ. Regarding the latter, we obtain:

∂V i

∂ψ
= −Ri

πi
V

(2)
i

ni∑

k=2

zikpik,

while for the former, the general form is

∂V i

∂θ
=
∂V

(1)
i

∂θ
+

(
1− Ri

πi

)
∂V i(2)

∂θ
.

Now, denote by µ = (µ1, . . . , µni
)′, the entire mean vector and by σ = vech(Σ), the
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vector of unique variance-covariance matrix elements. It then easily follows that

∂V
(1)
i

∂θ
= K ′


 ∑

j<k<di

∂2ℓijk
∂(µ,σ)∂(µ,σ)′


K, (5.46)

∂V
(2)
i

∂θ
= K ′


∑

j<di

(ni − di + 1)
∂2ℓij

∂(µ,σ)∂(µ,σ)′
+

∑

j<di≤k

∂

∂(µ,σ)
E

(
∂ℓik|j

∂(µ,σ)′

)

+
∑

di≤j<k

∂

∂(µ,σ)
E

(
∂ℓijk

∂(µ,σ)′

)
K. (5.47)

The derivatives in (5.46)–(5.47) follow in the same fashion as in the single robust case,

starting from explicit expressions (5.37)–(5.40).

5.2.3 Conditional Pseudo-likelihood for Binary Data

Consider a single clustered outcome, such as in the National Toxicology Program

Data (Section 2.4) and assume the model (Molenberghs and Ryan, 1999; Aerts et al.,

2002; Molenberghs and Verbeke, 2005):

fi(yi;Θi) = (5.48)

exp





ni∑

j=1

θijyij +
∑

j<j′

δ∗ijj′yijyij′ + · · ·+ ωi1...ni
yi1 . . . yini

−A(Θ∗
i )



 .

or its quadratic simplification (Zhao and Prentice , 1990; Molenberghs and Ryan,

1999):

fi(yi;Θi
∗, ni) = exp





ni∑

j=1

θ∗i yij +
∑

j<j′

δ∗i yijyij′ −A(Θ∗
i )



 , (5.49)

with δ∗i describing the association between pairs of measurements within the ith unit.

It is useful to code the outcomes as 1 and −1, rather than 1 and 0, whenever the

number of measurements per unit is variable, to ensure coding invariance. Focusing

on an exchangeable situation, define the number of measurements from unit i with

positive response to be Zi. Model (5.49) then becomes, upon absorbing constant

terms into the normalizing constant and using the re-parameterization θi = 2θ∗i and

δi = 2δ∗i :

fi(yi;Θi, ni) = exp
{
θiz

(1)
i + δiz

(2)
i −A(Θi)

}
, (5.50)

with z
(1)
i = zi and z

(2)
i = −zi(ni − zi). The normalizing constant takes the form:

A(Θi) = ln

[
ni∑

k=0

(
ni

k

)
exp

{
θik

(1) + δik
(2)
}]

,
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where k(1) = k and k(2) = −k(ni − k). For model (5.50), independence corresponds

to δi = 0. A positive δi corresponds to classical clustering or overdispersion, whereas

a negative parameter value occurs in the under-dispersed case. As such, estimation

of the association parameter can be of interest.

Fitting the model is awkward for long sequences, owing to the presence of the

normalizing constant. Therefore, it is convenient to replace the corresponding likeli-

hood function by a pseudo-likelihood alternative, found by replacing the joint density

fi(yi;Θi) by the product of univariate full conditional densities f(yij |{yij′}, j′ 6=
j;Θi) for j = 1, . . . , ni. This idea can be put into the framework (3.16) by choosing

δ1ni
= ni and δsj = −1 for j = 1, . . . , ni where 1ni

is a vector of ones and sj con-

sists of ones everywhere, except for the jth entry. For all other vectors s, δs equals

zero. This pseudo-likelihood has the effect of replacing a joint mass function with a

complicated normalizing constant by ni univariate functions of logistic type.

If we can assume that outcomes within a unit are exchangeable, then there are

merely two types of contribution: (1) the conditional probability of an additional

success, given there are zi − 1 successes and ni − zi failures (this contribution occurs

with multiplicity zi):

pis =
exp [θi − δi(ni − 2zi + 1)]

1 + exp [θi − δi(ni − 2zi + 1)]
,

and (2) the conditional probability of an additional failure, given there are zi successes

and ni − zi − 1 failures (with multiplicity ni − zi):

pif =
exp [−θi + δi(ni − 2zi − 1)]

1 + exp [−θi + δi(ni − 2zi − 1)]
.

The log PL contribution for unit i can then be expressed as

pℓi = zi ln pis + (ni − zi) ln pif . (5.51)

The contribution of unit i to the pseudo-likelihood score vector takes the form
[

zi(1 − pis)− (ni − zi)(1− pif )

−zi(ni − 2zi + 1)(1− pis) + (ni − zi)(ni − 2zi − 1)(1− pif )

]
.

Note that, if δi ≡ 0, then pis ≡ 1− pif and the first component of the score vector is

a sum of terms zi − nipis, i.e., standard logistic regression follows.

Data can be incomplete, for example, because some litter mates die or get resorbed

into the uterus line. Let there be mi litter mates, ni of which are viable and assessed

for success/failure. This then means that (5.51) would pertain to the observed data

only, whereas there are an additional mi − ni missing outcomes.
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The general expressions (5.14)–(5.22) now take the form:

Unaive, CC =

N∑

i=1

RiU i(zi, ni − zi) =

N∑

i=1

RiU i(zi,mi − zi), (5.52)

Unaive, AC =

N∑

i=1

U i(zi, ni − zi), (5.53)

U IPWCC =
N∑

i=1

Ri

πi(mi|mi)
U i(zi, ni − zi), (5.54)

U IPWAC =

N∑

i=1

I(ni|mi)

πi(ni|mi)
Uo

i (zi, ni,mi), (5.55)

U IPWCC,dr =

N∑

i=1

{
Ri

πi(mi|mi)
U i(zi, ni − zi)

+

[
1− Ri

πi(mi|mi)

]
Ek|zi,ni

[U i(zi + k,mi − zi − k)]

}
, (5.56)

U IPWAC,dr =

N∑

i=1

{
I(ni|mi)

πi(ni|mi)
Uo

i (zi, ni,mi)

+

[
1− I(ni|mi)

πi(mi|mi)

]
Ek|zi,ni

[U i(zi + k,mi − zi − k)]

}
. (5.57)

Here, Ri is the usual indicator for a complete cluster, and I(ni|mi) is an indicator

for observing ni out of mi litter mates. Furthermore, πi(ni|mi) is the probability

of observing ni out of mi litter mates. Evidently, π(mi|mi) is the special case of

observing a complete cluster. Result (5.57) follows from observing that the observed

version of the score and the expectation over the incomplete data follow, in this case,

in exactly the same way.

The quantity Uo
i (zi, ni,mi) in (5.55) and (5.57) follows from

pℓoi = ln

{
mi−ni∑

k=0

(
mi − ni

k

)
pis(zi, k)

zi+k[1− pif (zi, k)]
mi−zi−k

}
, (5.58)

and then constructing

Uo
i =

∂pℓoi
∂(θi, δi)

, (5.59)

where

logit[pis(zi, k)] = θi − δi[mi − 2(zi + k) + 1],

logit[pif (zi, k)] = −θi + δi[mi − 2(zi + k)− 1].
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In the NTP data (Section 2.4), especially for the higher dose groups, complete

clusters may be rare, thence the AC versions become not only attractive, but actually

necessary to make progress.

Overall, the AC forms are slightly more cumbersome, owing to somewhat less

tractable expressions, such as (5.58). Consider full exchangeability, whence form

(5.23) can be used, we obtain:

U IPWAC,exch =
N∑

i=1

Uo
i (zi, ni,mi). (5.60)

Even though the missing data mechanism is removed, as follows from (5.23) in gen-

eral, construction (5.58)–(5.59) needs to be used. This is different from the pairwise

likelihood case, thanks to the marginal specification of the latter. Of course, (5.60)

can be used with a numerical optimizer or equation solver, thanks to the explicit

expression (5.58).

Now, using (5.50), the expectations can be written as:

Ek|zi,ni
[U i(zi + k,mi − zi − k)] =

mi−ni∑

k=0

eθik−δik(mi−2zi−k)U i(zi + k,mi − zi − k)

mi−ni∑

k=0

eθik−δik(mi−2zi−k)

.

To formulate a sensible missingness model in this case, write the individual re-

sponses as (yi1, . . . , yini
, yi,ni+1, . . . , yimi

), with the first ni observed and the latermi−
ni missing. Likewise, the missingness indicators are (ri1, . . . , rini

, ri,ni+1, . . . , rimi
),

the first set being 1 and the second part 0. Let xi indicate the dose administered to

litter i. Now, the joint distribution of Y i and Ri factors as

f(yi1, . . . , yini
, yi,ni+1, . . . , yimi

|xi)×
×f(ri1, . . . , rini

, ri,ni+1, . . . , rimi
|yi1, . . . , yini

, yi,ni+1, . . . , yimi
, xi).

Here, the first factor is the one for which pseudo-likelihood is considered, whereas

the second one can be written in summary-statistics form, thanks to exchangeability:

f(ni,mi − ni|zi, ni − zi, xi). To explicitly acknowledge within-cluster correlation,

a beta-binomial model (Skellam, 1948; Kleinman, 1973; Molenberghs and Verbeke,

2005), for example, would be a reasonable choice:

pi =
B[ni + νi(ρ

−1 − 1),mi − ni + (1 − νi)(ρ
−1 − 1)]

B[νi(ρ−1 − 1), (1− νi)(ρ−1 − 1)]
, (5.61)
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in terms of the mean parameter νi and correlation ρ, and then

fi(ni,mi − ni|νi, ρ) =
(
mi

ni

)
pmi−ni

i (1− pi)
ni . (5.62)

Here, B(·, ·) is the beta function. One might write, for example:

logit(νi) = ψ0 + ψ1di + ψ2(zi/ni). (5.63)

Fitting the model and other manipulations is straightforward (Molenberghs and Ver-

beke, 2005), even though it is not commonly implemented in standard statistical

software. Alternatively, one might choose to simplify matters and simply replace

(5.61) by logistic regression, in which case (5.62) and (5.63) would be retained.

Sandwich Estimator for UIPWCC and UIPWCC,dr With Conditional PL for

Binary Data

For the sandwich estimator, take for example IPWCC, which can be written in

shorthand as

U IPWCC =

N∑

i=1

Vi =

N∑

i=1

Ri

πi
U i.

Then,
∂V i

∂(θ, δ)
=
Ri

πi
Qi,

∂V i

∂ψ
= −Ri

π2
i

∂πi
∂ψ

U i.

Here, Qi has elements:

qi,11 = −zipis(1− pis)− (ni − zi)pif (1− pif ),

qi,12 = qi,21 = zi(ni − 2zi + 1)pis(1− pis) + (ni − zi)(ni − 2xi − 1)pif (1− pif ),

qi,22 = −zi(ni − 2zi + 1)2pis(1− pis)

−(ni − zi)(ni − 2zi − 1)2pif (1− pif ).

The derivative w.r.t. ψ evidently depends on whether the beta-binomial model, or

rather simpler logistic regression is chosen. Finally, let W i be the beta-binomial

score equation contribution of litter i. From this, the derivative ∂W i/∂ψ follows

immediately. For the other forms, similar calculations apply.

5.3 Analysis of Case Studies

In this section, similarities and differences between the various types of marginal and

conditional pseudo-likelihood are illustrated with two of the cases studies introduced

in Chapter 2.
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5.3.1 The Onychomycosis Trial

The response that will be investigated is the unaffected nail length, measured from

the nail bed to the infected part of the nail, which is always at the free end of the

nail, expressed in mm. This outcome has been studied extensively in Verbeke and

Molenberghs (2000). Figure 5.1 shows the observed profiles of 30 randomly selected

subjects from treatment group A and treatment group B, respectively.

Figure 5.1: Toenail Data. Individual profiles of 30 randomly selected subjects in each

of the treatment groups in the toenail experiment. (Source: Verbeke and Molenberghs,

2000, p.10).

The design and data type of this study is sufficiently simple to allow for full

likelihood, providing a basis for comparison with which to compare the proposed

pseudo-likelihood methods. Next to this, we will use several forms of pairwise marginal

likelihood, as described in Section 5.2.1, in particular with the multivariate normal

versions as in Section 5.2.2.

For the unaffected nail length Yij , measured at time occasion j for patient i, we

specified a linear mixed-effects model:

Yij |bi ∼ N [bi + β0 · I(Ti = 0) + β1 · I(Ti = 1) + β2tj · I(Ti = 0)

+β3tj · I(Ti = 1), σ2], (5.64)

bi ∼ N(0, τ2),

where Ti = 0 if patient i received standard treatment and 1 for experimental

therapy (i = 1, . . . , 298). Further, tj is the time at which the jth measurement is

taken (j = 1, . . . , 7). Finally, I(·) is an indicator function. Parameter estimates and

standard errors, obtained through maximum likelihood and pairwise likelihood, are

presented in Table 5.1.
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Table 5.1: Toenail Data. (Unaffected nail length outcome). Parameter estimates

(purely model-based standard errors; empirically corrected standard errors) for full

likelihood, and naive, singly robust, and doubly robust pairwise likelihood.

Effect Par. U full.lik. Unaive, CC Unaive, CP Unaive, AC

Int.A β0 2.52(0.247;0.228) 2.77(0.086;0.272) 2.70(0.081;0.248) 2.56(0.075;0.231)

Int.B β1 2.77(0.243;0.249) 2.82(0.083;0.271) 2.81(0.078;0.254) 2.77(0.073;0.250)

Sl.A β2 0.56(0.023;0.045) 0.55(0.011;0.046) 0.56(0.011;0.045) 0.57(0.011;0.045)

Sl.B β3 0.61(0.022;0.043) 0.60(0.011;0.044) 0.61(0.011;0.043) 0.61(0.010;0.043)

R.I.v. τ2 6.49(0.628;0.633) 6.71(0.226;0.731) 6.67(0.213;0.680) 6.41(0.200;0.645)

Res.v. σ2 6.94(0.248;0.466) 7.31(0.150;0.520) 7.13(0.140;0.483) 7.05(0.137;0.472)

Effect Par. Uwt.lik. U IPWCC U IPWCP U IPWAC

Int.A β0 1.85(0.092;0.303) 2.71(0.074;0.266) 2.77(0.079;0.270) 2.59(0.069;0.237)

Int.B β1 2.65(0.089;0.517) 2.78(0.073;0.265) 2.82(0.077;0.269) 2.77(0.069;0.249)

Sl.A β2 0.68(0.014;0.068) 0.54(0.010;0.046) 0.53(0.010;0.044) 0.55(0.010;0.045)

Sl.B β3 0.73(0.013;0.101) 0.60(0.010;0.044) 0.59(0.010;0.044) 0.60(0.010;0.043)

R.I.v. τ2 6.21(0.235;1.032) 6.66(0.195;0.717) 6.72(0.209;0.753) 6.44(0.187;0.669)

Res.v. σ2 5.05(0.088;0.603) 7.29(0.130;0.513) 7.59(0.142;0.562) 7.35(0.130;0.514)

Effect Par. U IPW,exch = U IPWCP,dr = U IPWAC,dr

Int.A β0 2.52(0.074;0.226)

Int.B β1 2.77(0.072;0.247)

Sl.A β2 0.56(0.011;0.046)

Sl.B β3 0.61(0.011;0.044)

R.I.v. τ2 6.23(0.197;0.636)

Res.v. σ2 7.09(0.139;0.483)

For the comparison purpose, weighted likelihood analysis (Uwt.lik.) was also con-

sidered. Observe that all point estimates are relatively close to each other, except for

some deviation in the weighted likelihood analysis. Note that, with likelihood, there

is little rationale to weigh here, and actually happens to result in a poorer fit.

The purely model-based standard errors are meaningful only in the standard like-

lihood case, where they are reasonable close to the empirically corrected ones. They

are not meaningful in the weighted analyses, because they are based on the incorrect

assumption that the weights represent replication at the subject (or pair) level. Fur-
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thermore, naive standard errors in the pseudo-likelihood case are based on the entirely

incorrect assumption that every pair results from independent replication, whereas,

for example in a completely observed sequence, every measurement is used in six

different pairs. This is no problem, as long as one resorts to the proper empirically

corrected standard errors for inferential purposes.

It is clear that using complete cases only results in a small loss of efficiency, in the

naive and IPW cases, whereas the available-case approach makes optimal use of the

data. Turning to the doubly robust versions, not only is it confirmed that all three

coincide, they are also very close to full likelihood, both in terms of point estimates

and precision.

In a relatively large data set with continuous outcomes, like this one, treating the

weights in the weighted analysis as either fixed or random does not have a noticeable

impact on the standard errors. In the next study, though, there is more of a difference.

The weights are based on the following logistic model (standard errors enclosed in

parenthesis below coefficents):

logit[P (Di = j|Di ≥ j, Ti, tj , Yi,j−1)]

= − 3.17
(0.24)

− 0.28
(0.24)

Ti + 0.072
(0.036)

tj − 0.035
(0.036)

Yi,j−1 (5.65)

Note that, while the effect of the previous measure is not significant, only border-

line so, the weighted analyses are different from the unweighted ones. In this sense,

it is a strong asset that the doubly robust versions obviate the need for using the

weights, as long as the expectations are included. This is not always the case, as it is

a consequence of the pairwise marginal nature of the likelihood contributions.

5.3.2 The National Toxicology Program Data

The NTP data, introduced in Section 2.4 will be analyzed in this section. The response

of interest is the collapsed binary malformation outcome coded as one if at least one

of the three malformations (external, visceral, and skeletal) occur and 0 otherwise.

We fit the models described in Section 5.2.3 with further specification: θi = β0 +

β1xi and δi = βd. Here xi is rescaled dose, in the sense that the DEHP consumption

doses of 0, 44, 91, 191, and 292 mg/kg/day are replaced by unit-interval standardized

values 0.0000, 0.1507, 0.3116, 0.6541, and 1.0000, respectively.

We considered, apart from full likelihood, naive CC, naive AC, IPWCC, IPWAC,

and exchangeable IPWAC. Given the equivalence of the latter to double robustness

in the case of exchangeability, there is no need to further consider the other doubly

robust versions.
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While in this case it is obviously possible to specify full likelihood, there may be

reasons to select one of the singly or doubly robust available-case versions. Indeed, in

the case of likelihood, the model parameters are interpreted conditional on the number

of viable fetuses, and this itself is driven by the dose assignment, an experimental

variable. The available-case versions take into account the number of implants, mi.

Of course, an available-case likelihood version is in principle possible as well, which

has been done and labeled U full.lik., AC, and based on the following modification of

(5.50):

fi(yi;Θi, ni) =

mi−ni∑

k=0

(
mi

zi + k

)
×

× exp {θi(zi + k)− δi(zi + k)(mi − zi + k)−A(Θi)} . (5.66)

Again, this expression has the advantage of properly acknowledging the discrepancy

between the number of implants and the number of viable fetuses.

Estimated parameter and standard errors are presented in Table 5.2. For IPWAC

and IPWCC, where explicit models for the weights are needed, we consider (5.63),

with parameter estimates (standard errors), ψ̂0 = 1.960(0.110), ψ̂1 = 0.018(0.419),

and ψ̂2 = −2.558(0.391).

Table 5.2: Developmental Toxicity Study (DEHP). Parameter estimates (standard

errors) for full likelihood, and naive, singly robust, and doubly robust pseudo-likelihood.

Effect Par. U full.lik. U full.lik., AC Unaive, CC Unaive, AC

Int. β0 -1.992(0.340) -2.460(0.535) -1.772(2.005) -1.749(0.344)

Dose βd 2.955(0.510) 3.207(0.674) 2.363(2.644) 2.925(0.552)

Assoc. βa 0.164(0.027) 0.053(0.041) 0.163(0.155) 0.200(0.029)

Effect Par. U IPWCC U IPWAC U IPWAC,exch

Int. β0 -2.888(3.825) -1.335(0.831) -1.470(0.164)

Dose βd 2.145(5.969) 4.588(1.021) 2.225(0.293)

Assoc. βa 0.130(0.275) 0.314(0.055) 0.184(0.022)

There are 23 complete litters, where the number of implants equals the number

of viable fetuses, out of 108 litters with at least one viable fetus. This dramatic

reduction of sample size shows through greatly inflated standard errors for Unaive, CC

andU IPWCC, up to the point where an otherwise highly significant dose effect is wiped



5.4. Discussion 83

out. Also, the weighted version U IPWAC shows a decreased efficiency. In contrast,

U IPWAC, exch is efficient and, while doubly robust, does not need an explicit model

for the missingness probabilities; hence, it may be preferable.

5.4 Discussion

In this chapter, we have laid out a general framework for handling incomplete data

predominantly within the pseudo-likelihood setting. Our methodology, applicable

under MAR, employs ideas from inverse probability weighting and double robust-

ness. After general development, we have focused on the pseudo-likelihood setting,

elucidating in detail specific marginal and conditional instances.

Having shown that, under MAR, naive complete-case and available-case estimating

equations are biased, we have formulated several alternative versions that overcome

this problem, including both singly and doubly robust forms. The second of these

requires evaluation of conditional expectations of the unobserved outcomes given the

observed ones, which in turn may require joint distributions of a higher order than

those used in the singly robust version. While at first sight this seems to undermine the

appeal of pseudo-likelihood, the role of such joint distributions is solely to construct

expectations which invokes considerably less computational burden. Sometimes, this

might still be impractical, but then the model-based expectation can be replaced by

a simpler but sufficiently rich model, in line with Bang and Robins (2005) and Meng

(1994).

While in general doubly robust versions require the specification of both a weight

and a predictive model, considerable simplification applies to the important special

case of marginal pairwise (or, more generally, n-way) likelihood. This case is also

known as composite likelihood. In this case, the doubly robust versions merely require

the formulation of a predictive model. In many models these are relatively easy to

compute or approximate, as was illustrated for the normal case. This is a strong

asset of the combined use of doubly-robust and composite likelihood ideas. In some

cases, though, the formulation of the margins (pairs) may be challenging in its own

right. For example, when the conditionally specified model of Section 5.2.3 is used,

formulating the full conditional pseudo-likelihood is much easier than the pairs. Thus,

there is a tradeoff between simplicity in terms of weights and predictive terms on the

one hand, and the pseudo-likelihood contributions themselves on the other.

For the estimation of precision we have indicated how a conventional sandwich-

type estimator can be used. Should the derivation of explicit forms be deemed cum-

bersome, one could resort to such sampling-based methods as stochastic EM, multiple
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imputation, the bootstrap, and MCMC machinery.

We have provided examples of the method, using continuous data from a clinical

trial in onychomycosis and binary outcomes from a developmental toxicity study. The

advantage of a variety of proposals is that the user has freedom of selection. While

single robustness requires the correct specification of the weights, this requirement

is less critical in the doubly robust version, because it is also possible to attain un-

biasedness through the predictive term. That said, this result is in need of further

qualification.



Chapter 6

Efficient Doubly Robust

Pseudo-likelihood for

Hierarchical Categorical Data

As already discussed in previous chapters, Pseudo-likelihood (PL) is closely related

to but different from full likelihood. Therefore it is not guaranteed to be valid under

MAR, even though in some specific cases it might, because Rubin (1976) provided

conditions for ignorability that are sufficient but not always necessary. Yi, Zeng

and Cook (2011) address this issue via a pairwise (pseudo-)likelihood method for

incomplete longitudinal binary clustered data which does not require modeling the

missing data process, thereby circumventing the need for the assumption of MAR.

Molenberghs et al. (2011), on the other hand, work with the idea of supplementing

PL with weighting to extend its validity under MAR. As discussed in Chapter 5,

they proposed a suite of corrections to pseudo-likelihood in its standard form, also

to ensure its validity under MAR. These corrections hold for pseudo-likelihood in

general and follow both single and double robustness ideas, making use of inverse

probability weighting (IPW), possibly supplemented with a predictive model for the

unobserved outcomes given the observed ones, wherever appropriate. They have

provided examples of the proposed methods using practical data.

In this chapter, we investigate the performance of the corrections proposed in

Molenberghs et al. (2011), relative to full likelihood. As mentioned in the previ-

ous chapters, a number of concerns arise in modeling, marginally, incomplete non-

Gaussian longitudinal data. Thus, here we focus on the specific case of marginal

pairwise pseudo-likelihood for binary outcomes where missingness takes the form of

85
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dropout. We conduct a modest simulation study to assess the performance of the

latter and supplement this with a case study.

The remainder of the chapter is organized as follows. Estimating equations for

pairwise likelihood are reviewed in Section 6.1. Marginal pseudo-likelihood for binary

data are discussed in Section 6.2. Simulation study and analysis of a case study are

presented in Section 6.3 and Section 6.4 respectively.

SAS/IML was used for all analyses. In the models where no predictive terms are

involved, i.e., for the naive and singly robust versions of our models, non-linear opti-

mization methods were used. The naive and singly robust estimators were maximized

using the pseudo-likelihood and weighted-pseudo-likelihood functions, respectively.

6.1 Estimating Equations for Pairwise Likelihood

The ‘naive’, singly robust and doubly robust pairwise (pseudo-)likelihood estimating

equations were discussed in Section 5.2.

The three estimating equation for the ‘naive’ cases are given in (5.24)–(5.26). In

the Unaive, CC case, the pairwise pseudo-likelihood (score) contributions in (5.24) are

from all pairs of outcomes for subjects with fully observed Y i. The contributions

in (5.25), on the other hand, come from all pairs (‘CP’ denoting complete pairs) of

outcomes for subjects having at least 2 outcomes, including of course, the completers.

Note that while the contributions in (5.24) come only from completers, in (5.25),

these are supplemented with contributions from dropouts having incomplete Y i but

with at least 2 outcomes observed. Finally, the contributions in (5.25) are further

supplemented with contributions from each observed outcome, i.e., from the so-called

widows, and form Unaive, AC.

Singly robust versions of (5.24) to (5.26) are based on IPW methods, in which

each subject’s contribution is weighted by the inverse probability, either of being fully

observed (IPWCC), or of being observed up to a certain time (IPWAC). The singly

robust versions take the form (5.27) to (5.29). Single robustness is established in

Section 5.1. Note that for the case of monotone missingness or dropout, whenever

j < k,

Rijk ≡ Rik and πijk ≡ πik =

k∏

ℓ=2

(1− piℓ),

in which case (5.28) can be re-expressed as:

U IPWCP =
N∑

i=1

∑

j<k<di

Rik

πik
U i(yij , yik).
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Finally, doubly robust versions (5.30–5.32) incorporate predictive models, for the

unobserved outcomes given the observed ones, into the singly robust expressions.

Double robustness is shown in Section 5.1. As shown in (5.33), the three doubly

robust versions coincide and give:

N∑

i=1




∑

j<k<di

U i(yij , yik) +

di−1∑

j=1

(ni − di + 1)U i(yij) +
∑

j<di≤k

E [U i(yik|yij)]

+
∑

di≤j<k

E [U i(yij , yik)]





As discussed in Section 5.2.1, a number of observations should be made. The first

important implication of (5.33) is that the need to specify the missing data model

is obviated, as the weights are no longer present in common expression (5.33). A

predictive model, however, is still necessary for the unobserved outcomes. The last

two terms of (5.33) relate to the predictive models, all of which involve two types of

contributions: (a) E [U i(yik|yij)] for pairs with the first component yij observed and

the second one yik missing, and (b) E [U i(yij , yik)] for pairs with both components yij

and yik missing. It is also worthwhile to point out that the equivalence of the three

doubly robust versions holds for pseudo-likelihood in general, not just for pairwise

(pseudo-)likelihood as presented here. As shown in Section 5.2.1, the expectations in

(5.33) vanish under exchangeability, rendering (5.33) essentially equivalent to (5.26),

thereby making the naive available case version not only valid, but actually doubly

robust, of course, only under exchangeability. This result is not unexpected, because

under exchangeability the expectations of an unobserved measurement given the his-

tory and be replaced, consistently, by the expectation given the observed portion of

the history, which then vanishes.

Precision Estimation

For the singly and doubly robust versions (5.27) to (5.29), when one posits a paramet-

ric model for dropout, the uncertainty induced by the estimation of the ψ parameters

of the latter needs to be accommodated. In line with Section 4.1.4 and Section 5.1,

the asymptotic variance-covariance matrix is estimated by Î0
−1
Î1Î0

−1
where I0 and

I1 are as in (4.8) and (4.9) respectively.

Note, however, that for the doubly robust case, by virtue of (5.33), an explicit

model for dropout is not needed, which would in turn imply that these modifications
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to I0 and I1 may actually be unnecessary. Hence,

I0 =
N∑

i=1

∂V i

∂θ
and I1 =

N∑

i=1

Si(θ̂)S
′
i(θ̂).

This is also the case for the naive versions, in which no weighting is used in the

estimating equations.

6.2 Marginal Pseudo-likelihood for Binary Data

Let us assume that we have a model for multivariate and hence also for bivariate

binary data. As discussed in Section 3.4, Bahadur (1961) proposed a marginal model

that accounts for the association via marginal correlations. Using the notation νij =

P (Yij = 1), νijk = P (Yij = 1, Yik = 1), and νik|j = P (Yik = 1|yij = ℓ)(ℓ = 0, 1),

pairwise Bahadur probabilities take the form

νijk = νijνik

[
1 + ρijk

1− νij√
νij(1− νij)

1− νik√
νik(1− νik)

]
. (6.1)

The expressions are implicit and fitting the model is challenging from a computa-

tion time standpoint. The multivariate Bahadur model can be written as f(yi) =

f1(yi)c(yi), where f1(yi) and c(yi) are as in (3.23) and (3.24) respectively. Here,

the ρ parameters are pairwise and higher-order correlations. Even though the model

admits a convenient and concise closed form, its fitting is less than trivial, owing to

strong and intractable constraints on the parameter space, be it in fully general or

second-order form (where the third- and higher-order correlations are set equal to

zero). This makes pseudo-likelihood attractive.

A generic contribution to the pairwise log-likelihood takes the form:

pℓijk = yijyik ln νijk + yij(1− yik) ln(νij − νijk) + (1− yij)yik ln(νik − νijk)

+ (1− yij)(1 − yik) ln(1 − νij − νik + νijk).

As before, let θ = (β′,α′)′, where νij = νij(β) and the association parameters are

functions of α. Hence, νijk = νijk(β,α). Pairwise and conditional contributions to

the score take the form:

U ijk =
yijyik
νijk

∂

∂θ
νijk +

yij(1− yik)

νij − νijk

∂

∂θ
(νij − νijk) +

(1− yij)yik
νik − νijk

∂

∂θ
(νik − νijk)

+
(1− yij)(1− yik)

1− νij − νik + νijk

∂

∂θ
(1− νij − νik + νijk) (6.2)
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and

U ik|j =
yijyikνij
νijk

∂

∂θ

(
νijk
νij

)
+
yij(1− yik)νij
νij − νijk

∂

∂θ

(
νij − νijk

νij

)

+
(1 − yij)yik(1− νij)

νik − νijk

∂

∂θ

(
νik − νijk
1− νij

)

+
(1− yij)(1− yik)(1 − νij)

1− νij − νik + νijk

∂

∂θ

(
1− νij − νik + νijk

1− νij

)
. (6.3)

In addition, we need expectations of these over the conditional distribution of

the unobserved outcomes given the observed ones. Evidently, because (6.2)–(6.3) are

linear in the triplet yij , yik and yijyik, it suffices to calculate the expectations over

these. Their corresponding probabilities are

νij|d =
νidj
νid

and νijk|d =
νidjk
νid

, (6.4)

where d is as defined in Section 5.2.2.

Combining (6.2) and (6.3) with (6.4) leads to:

E(U ijk) =
νidjk
νidνijk

∂

∂θ
νijk +

νidj − νidjk
νid(νij − νijk)

∂

∂θ
(νij − νijk)

+
νidk − νidjk
νid(νik − νijk)

∂

∂θ
(νik − νijk)

+
νid − νidj − νidk + νidjk
νid(1 − νij − νik + νijk)

∂

∂θ
(1− νij − νik + νijk) (6.5)

and

E(U ik|j) =
yijνidkνij
νidνijk

∂

∂θ

(
νijk
νij

)
+

yij(νid − νidk)νij
νid(νij − νijk)

∂

∂θ

(
νij − νijk

νij

)

+
(1− yij)νidk(1− νij)

νid(νik − νijk)

∂

∂θ

(
νik − νijk
1− νij

)

(1 − yij)(νid − νidk)(1 − νij)

νid(1− νij − νik + νijk)

∂

∂θ

(
1− νij − νik + νijk

1− νij

)
. (6.6)

All probabilities involving d are potentially high-dimensional; they would follow

from the multivariate Bahadur model. We have seen, however, that several alternative

routes are open. For example, here, one could simply resort to the singly robust ver-

sion. Alternatively, the expectations could be replaced by simple, e.g., logistic, mod-

els. Precisely, EY m

i |yo
i

(yij) could be written as a standard logistic model, where the
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already present covariates are supplemented with yid, whereas for EY m

i |yo
i

, (yijyik)

the pairwise model under consideration can be used, again supplementing the covari-

ate information with yid.

Apart from the already-mentioned approaches, expressions (6.5) and (6.6) can

also be alternatively evaluated by using the classical definition of an expectation for

discrete distributions. That is,

E(U ijk) ≡ E [U i(yij , yik)] =

1∑

yij=0

1∑

yik=0

U i(yij , yik)P (Yij = yij , Yik = yik), (6.7)

E(U ik|j) ≡ E [U i(yik|yij)] =
1∑

yik=0

U i(yik|yij)P (Yik = yik|Yij = yij), (6.8)

where U i(yij , yik) and U i(yik|yij) are as defined in (6.2) and (6.3), while P (Yij =

yij , Yik = yik) and P (Yik = yik|Yij = yij) are the pairwise and conditional probabili-

ties for the Bahadur model, respectively.

It is also worthwhile to point out that expressions (6.2)–(6.8) require derivatives

with respect to the univariate and pairwise probabilities. For most pairwise models,

such as the Bahadur model, they are reasonably straightforward and have been derived

by various authors. The detail can be seen from Molenberghs and Verbeke (2005).

The derivation of the sandwich estimator follows from logic similar to the one laid in

Section 5.2.2.

6.3 Simulation Study

In this section, we investigate the performance of the estimating equations summarized

in Section 6.1 by means of a simulation study. Simulation study results will be

presented in Section 6.3.1.

For the simulation, we first generated an outcome at four time points from a

Bahadur model, in which the measurement model incorporates a binary treatment

indicator and evolution over time. Denoting xi as the treatment indicator and tj

the time point at which measurement j is taken, we specify the following logistic

formulation:

logit νij = logit P (Yij = 1|xi, tj) = β0 + βxxi + βttj + βxtxitj , (6.9)

with β0 = −2.5, βx = 0.1, βt = 1.0, and βxt = −0.5. The correlation among the
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outcomes is assumed to follow a Toeplitz structure of the form:




1 ρ(1) ρ(2) ρ(3)

ρ(1) 1 ρ(1) ρ(2)

ρ(2) ρ(1) 1 ρ(2)

ρ(3) ρ(2) ρ(1) 1



, (6.10)

where ρ(k), k = 1, 2, 3 denotes the correlation between outcomes that are k time

points apart. Hence, the Bahadur density is f(yi) = f1(yi)c(yi), with f1(yi) as in

(3.23) with ni = 4 and (3.24) taking the specific form:

c(yi) = 1 +
∑

j1<j2
j2−j1=k

ρ
(k)
ij1j2

eij1eij2 ,

= 1 + ρ(1) (ei1ei2 + ei2ei3 + ei3ei4) + ρ(2) (ei1ei3 + ei2ei4) + ρ(3)ei1ei4, (6.11)

where ρ(1) = 0.30, ρ(2) = 0.15 and ρ(3) = 0.05.

For the missingness, we assume an MAR mechanism, with dropout possible only

after the first time point. This results in a total of 4 possible dropout patterns: (1)

dropout at the second time point, (2) dropout at the third time point, (3) dropout at

the fourth time point, and (4) no dropout. The probability of dropout at time point

j, given xi and the measurement at the previous time point, is modeled by a logistic

regression of the form

logit P (Di = j|Di ≥ j, xi, yi,j−1) = ψ0 + ψxxi + ψprevyi,j−1, (6.12)

(j = 2, 3, 4, 5). To explore the effect of the amount of missingness, we consider two

sets of values for the ψ parameters. First, ψ0 = −2.2, ψx = 0.5 and ψprev = 2.0,

for a scenario with a 26% dropout rate (Setting 1), and ψ0 = −1.5, ψx = 0.5, and

ψprev = 2.0, for a scenario with a 43% dropout rate (Setting 2). For both settings, we

assume a sample of size N = 600 subjects, equally divided among the two treatment

groups. A total of S = 500 simulated data sets were generated for each scenario.

6.3.1 Results

For the simulated data sets, under each setting, we fit the Bahadur model as specified

by (6.9)–(6.11) and the dropout model (6.12), using full likelihood, the naive estimat-

ing equations (5.24)–(5.26), the singly robust versions (5.27)–(5.29) and the doubly

robust version (5.33). For the latter, the predictive terms were obtained in two ways:

using the potentially high-dimensional expressions given in (6.5)–(6.6) and using the
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alternative formulations given in (6.7)–(6.8). In our tabulation of results, the former

case will be labeled as ‘A’ and the latter as ‘B’.

The simulation studies are summarized in terms bias, square root of the mean

squared error (RMSE) and square root of relative efficiency (Reff), expressed as the

ratio of the square root of the mean squared errors of the estimates obtained with the

full likelihood and the pseudo-likelihood estimating equation, where

Bias(β̂) = β̂ − β, β̂ =

S∑

i=1

β̂i

S
.

MSE = Bias2(β̂) + Var(β̂) ,

and

Reff =
RMSEfull

RMSEmethod
.

A value of Reff lower than one indicates loss of efficiency.

The results obtained for the proposed estimating equations for Settings 1 and 2,

are presented respectively in Tables 6.1 and 6.2. We discuss these in turn.

For Setting 1 (Table 6.1), we observe generally unbiased estimates for most of the

parameters for all methods, except for a couple of measurement model parameters

(e.g., β0 and βx), particularly for the naive CC and naive CP methods. Bias is

also consistently smaller under the doubly robust IPW version A compared to any

of the other methods. Among the naive approaches, the naive AC case leads to the

lowest MSE for the β parameters, but all three naive cases have comparable MSE for

the association parameters. The doubly robust approach yields the smallest MSEs.

Finally, some loss of efficiency is observed for the naive CC, and naive CP cases, while

almost equivalent efficiency as full likelihood is observed under naive AC, IPWCC,

IPWCP, and IPWAC. Small to moderate gains in efficiency, as much as 330%, has be

seen under the doubly robust IPW approach.
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Table 6.1: Simulation Study (Setting 1). Bias, square root of empirically-corrected

mean square error (RMSE) and relative efficiency (REff) with respect to full likeli-

hood for naive, singly and doubly robust pairwise likelihood and full likelihood.

Par.
Naive IPW IPW, dr Full

CC CP AC CC CP AC A B Lik.

Bias

β0 0.166 0.137 -0.009 -0.013 0.064 0.114 -0.000 -0.004 -0.031

βx 0.142 0.102 -0.018 -0.003 0.044 0.071 0.000 0.000 0.033

βt -0.022 -0.025 0.001 0.002 -0.008 -0.027 0.000 0.006 0.010

βxt -0.031 -0.022 0.006 0.002 -0.008 -0.016 -0.000 0.001 -0.010

ρ(1) 0.003 0.004 -0.000 0.000 0.002 0.005 0.000 0.002 0.002

ρ(2) 0.003 0.003 -0.001 0.001 0.002 0.006 0.000 -0.002 0.000

ρ(3) 0.002 0.001 0.001 0.001 0.001 0.003 0.000 -0.001 0.013

RMSE

β0 0.258 0.237 0.178 0.170 0.200 0.214 0.153 0.174 0.187

βx 0.339 0.318 0.258 0.243 0.287 0.277 0.228 0.241 0.273

βt 0.075 0.073 0.067 0.059 0.069 0.067 0.041 0.056 0.069

βxt 0.108 0.103 0.093 0.080 0.096 0.087 0.064 0.074 0.096

ρ(1) 0.027 0.026 0.025 0.021 0.024 0.022 0.007 0.019 0.022

ρ(2) 0.032 0.031 0.030 0.025 0.030 0.026 0.017 0.027 0.026

ρ(3) 0.045 0.048 0.043 0.035 0.044 0.037 0.018 0.043 0.044

Relative efficiencya

β0 0.718 0.784 1.043 1.088 0.926 0.867 1.212 1.068

βx 0.804 0.883 1.056 1.121 0.948 0.982 1.197 1.129

βt 0.911 0.914 1.018 1.148 0.991 1.013 1.655 1.214

βxt 0.884 0.933 1.025 1.193 0.990 1.101 1.491 1.283

ρ(1) 0.825 0.849 0.880 1.069 0.919 0.997 3.305 1.169

ρ(2) 0.814 0.833 0.862 1.045 0.874 0.980 1.509 0.941

ρ(3) 0.911 0.915 0.953 1.169 0.939 1.123 2.328 0.959

acomputed before rounding off

The corresponding results for the data generated under Setting 2 are provided in

Table 6.2.
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Table 6.2: Simulation Study (Setting 2). Bias, square root of empirically-corrected

mean square error (RMSE) and relative efficiency (REff) with respect to full likeli-

hood for naive, singly and doubly robust pairwise likelihood and full likelihood.

Par.
Naive IPW IPW, dr Full

CC CP AC CC CP AC A B Lik.

Bias

β0 0.319 0.265 -0.021 -0.018 0.131 0.217 -0.000 -0.003 -0.030

βx 0.261 0.180 -0.035 0.003 0.090 0.117 0.000 0.001 0.031

βt -0.040 -0.048 0.001 0.004 -0.016 -0.050 0.000 0.007 0.010

βxt -0.061 -0.043 0.014 -0.002 -0.020 -0.029 -0.000 0.000 -0.012

ρ(1) 0.005 0.008 0.001 -0.000 0.004 0.010 0.000 0.003 0.003

ρ(2) 0.003 0.003 -0.001 0.001 0.001 0.010 0.000 -0.003 0.000

ρ(3) 0.003 0.002 0.001 0.002 0.001 0.006 0.000 -0.002 0.016

RMSE

β0 0.383 0.333 0.174 0.159 0.236 0.281 0.141 0.167 0.192

βx 0.429 0.357 0.249 0.218 0.308 0.286 0.207 0.226 0.282

βt 0.087 0.089 0.069 0.054 0.073 0.077 0.037 0.053 0.072

βxt 0.131 0.117 0.097 0.071 0.103 0.085 0.057 0.069 0.103

ρ(1) 0.031 0.029 0.027 0.019 0.025 0.022 0.005 0.017 0.024

ρ(2) 0.036 0.034 0.032 0.022 0.032 0.026 0.014 0.028 0.029

ρ(3) 0.051 0.051 0.047 0.032 0.049 0.034 0.013 0.047 0.050

Relative efficiencya

β0 0.496 0.571 1.091 1.195 0.805 0.676 1.352 1.138

βx 0.656 0.789 1.130 1.291 0.915 0.983 1.357 1.248

βt 0.822 0.807 1.044 1.321 0.983 0.936 1.960 1.364

βxt 0.781 0.879 1.054 1.440 0.997 1.203 1.785 1.495

ρ(1) 0.792 0.828 0.899 1.297 0.959 1.088 4.723 1.458

ρ(2) 0.795 0.828 0.887 1.273 0.900 1.103 2.040 1.031

ρ(3) 0.913 0.915 1.002 1.459 0.957 1.360 3.491 1.007

acomputed before rounding off

Similar observations can be made in this setting with more missingness. As before,

some amount of bias can be observed for a few parameters, for some versions of the
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naive and singly robust approaches. Also, the singly robust methods seem to lead to

some improvement over the naive cases in terms of MSE. The IPWCC and doubly

robust IPW methods show comparable MSE, with the latter generally yielding the

lowest MSE compared to all the other methods. With respect to efficiency compared

to full likelihood, the naive CC, and naive CP approaches again result in some loss of

efficiency, while the naive AC and the singly robust IPW approaches seems to have

fairly comparable efficiency with full likelihood (except for β0 ). Finally, the efficiency

gains under the doubly robust IPW range from about 1% to 470%.

Comparison of the results in Tables 6.1 and 6.2 indicates that more bias is observed

under the setting with more missingness for the naive and singly robust approaches,

but for the doubly robust case, bias remains quite small under both settings. With

respect to relative efficiency, methods that are less efficient than full likelihood become

even more so with more missingness, but, for the doubly robust IPW, which already

indicated increased efficiency for moderate amounts of missingness (Setting 1), the

gain in efficiency is more pronounced when there is more missingness (Setting 2).

6.4 Analysis of the Analgesic Trial

The Analgesic trial has been introduced in Section 2.2. The dichotomized version

of the ordinally scored ‘Global Satisfaction Assessment’, GSABIN, is the response

of interest. For all ensuing analyses on the analgesic trial data, we consider only

completers and dropouts, i.e., a subset of 328 patients from the original data set.

We first build a logistic regression for the dropout indicator, in terms of the previous

outcome and pain control assessment at baseline, i.e.,

logit P (Di = j|Di ≥ j, xi, yi,j−1) = ψ0 + ψxxi + ψprevyi,j−1. (6.13)

The highly significant p-value (p < .0001) for the parameter ψprev corresponding to

the previous outcome provides evidence against MCAR in favor of MAR. Weights are

then calculated based on predicted probabilities from this logistic model.

Preliminary analyses have indicated that, among a set of potential covariates, the

linear and square effects of time tij , as well as the effect of baseline pain control

assessment (PCA0, denoted xi) are of importance. The marginal regression model for

the dichotomized GSA score, GSABIN, denoted as Y , is thus specified as

logit P (Yij = 1|tij , xi) = β0 + β1tij + β2t
2
ij + β3xi. (6.14)

For the correlation across the within-subject outcomes, we posit a Toeplitz type cor-

relation structure of the form (6.10).
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Table 6.3: Analgesic Trial. Parameter estimates (empirically-corrected standard er-

rors) for naive, singly and doubly robust pairwise likelihood and for full likelihood.

Effect Par. Unaive, CC Unaive, CP Unaive, AC U full.lik.

Inter. β0 3.131 (0.703) 2.962 (0.562) 2.691 (0.370) 2.636 (0.523)

Time β1 -0.913 (0.504) -0.908 (0.407) -0.825 (0.304) -0.763 (0.379)

Time2 β2 0.170 (0.098) 0.177 (0.081) 0.183 (0.066) 0.167 (0.078)

PCA0 β3 -0.130 (0.136) -0.125 (0.119) -0.195 (0.069) -0.187 (0.103)

corr1 ρ(1) 0.217 (0.069) 0.244 (0.056) 0.210 (0.056) 0.192 (0.474)

corr2 ρ(2) 0.199 (0.075) 0.234 (0.068) 0.178 (0.068) 0.160 (0.068)

corr3 ρ(3) 0.224 (0.102) 0.232 (0.103) 0.116 (0.096) 0.123 (0.102)

Considering Weights as Fixed

Effect Par. U IPWCC U IPWCP U IPWAC

Inter. β0 3.090 (0.297) 2.717 (0.519) 2.763 (0.381)

Time β1 -0.997 (0.200) -0.774 (0.368) -0.690 (0.253)

Time2 β2 0.193 (0.039) 0.154 (0.072) 0.131 (0.047)

PCA0 β3 -0.195 (0.061) -0.141 (0108) -0.155 (0.074)

corr1 ρ(1) 0.263 (0.028) 0.275 (0.048) 0.286 (0.031)

corr2 ρ(2) 0.257 (0.031) 0.255 (0.065) 0.264 (0.033)

corr3 ρ(3) 0.295 (0.041) 0.267 (0.106) 0.291 (0.042)

Incorporating Variability from Estimated Weights

Effect Par. U IPWCC U IPWCP U IPWAC

Inter. β0 3.079 (0.299) 2.714 (0.521) 2.767 (0.385)

Time β1 -0.999 (0.200) -0.775 (0.368) -0.701 (0.253)

Time2 β2 0.194 (0.039) 0.154 (0.072) 0.134 (0.047)

PCA0 β3 -0.193 (0.061) -0.141 (0.108) -0.155 (0.074)

corr1 ρ(1) 0.258 (0.028) 0.275 (0.049) 0.284 (0.031)

corr2 ρ(2) 0.252 (0.031) 0.256 (0.065) 0.260 (0.033)

corr3 ρ(3) 0.284 (0.041) 0.266 (0.107) 0.276 (0.042)

Effect Par. U IPW, dr (A) U IPW, dr (B)

Inter. β0 2.637 (0.272) 2.644 (0.301)

Time β1 -0.763 (0.182) -0.761 (0.193)

Time2 β2 0.167 (0.029) 0.169 (0.033)

PCA0 β3 -0.187 (0.017) -0.188 (0.046)

corr1 ρ(1) 0.192 (0.002) 0.194 (0.053)

corr2 ρ(2) 0.160 (0.003) 0.161 (0.061)

corr3 ρ(3) 0.123 (0.006) 0.126 (0.092)

The resulting parameter estimates, along with corresponding standard errors, for
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model specification (6.14), with a Toeplitz correlation structure (6.10), using full like-

lihood and estimating equations (5.24) to (5.26) and (5.33) are presented in Table 6.3.

There are two panels for the IPW cases: the first panel provides the results for IPW

when the weights obtained from the dropout model are considered as fixed, while

the second panel shows the corresponding results considering that the weights are

estimated, in which case, the variability in the estimated weights is incorporated in

the computation of the standard errors. The high degree of similarity in the results

in these two panels indicates that the additional variability induced by estimation of

the weight model does not seem to impact largely on either the estimates or their

standard errors.

Fairly comparable results are also observed for the parameter estimates under full

likelihood, naive AC and the doubly robust cases. Moreover, substantial efficiency

over full likelihood seems to be gained under the naive AC and doubly robust ap-

proaches. Whereas these observations are not surprising for the doubly robust case,

precisely because of their property, the relatively good performance of the naive AC

case seems counterintuitive. However, under exchangeability, as shown in Chapter 5,

the naive AC can be seen as a doubly robust estimator, given that then the expec-

tation in (5.32) can be removed because observed and unobserved components from

a subject’s history are interchangeable. To this effect, we assessed the plausibility of

the Toeplitz correlation structure of the analgesic trial data, using full likelihood, and

determined that the three correlation parameters ρ(k), k = 1, 2, 3, were not signifi-

cantly different (p = 0.8091), which implies that the underlying correlation structure

might very well be exchangeable. This explains the excellent behavior of the naive

AC estimator.

Next, we consider the CC and CP versions, both naive and singly robust (IPW).

For the CC approaches, while the estimates for the parameters β1, β2 and β3 are

reasonably close to those under full likelihood, some disparity has been seen in the

intercept β0 and in the correlation parameters, the latter particularly for the IPW

cases. In addition, the standard errors under the naive CC approach are generally

larger than those for the full likelihood. For IPWCC, in contrast, smaller standard

errors are observed, a result that could be attributed to the single robustness of

IPWCC. For the CP cases, in either the naive or the singly robust situations, the CP

results seem to fall in between the CC and the AC results, implying somewhat of a

compromise between the latter two. This can be inferred from the incremental nature

of the contributions in expressions (5.24), (5.25), (5.26) and (5.27), (5.28), (5.29).

For the singly robust versions, throughout, all IPW versions yield correlation

parameter estimates that are quite different to those obtained under the full likelihood.
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This might be a result of the misspecified correlation structure, as mentioned earlier.

There is seeming protection in the sense that the regression model parameters are

generally reasonable, but the association parameters are not as well-protected.

6.5 Discussion

In this chapter, we assessed the performance of pseudo-likelihood approaches, supple-

mented with IPW-based corrections that take the form of singly and doubly robust

estimators, as proposed in Molenberghs et al. (2011) and discussed in Chapter 5 of

this thesis. In Chapter 5, a general framework for handling incomplete data, predomi-

nantly within the pseudo-likelihood setting, is laid out and IPW ideas are incorporated

into estimating equations to ensure validity under MAR. In view of the various is-

sues arising from marginally modeling incomplete non-Gaussian longitudinal data,

we focused on marginal pseudo-likelihood and consider the specific case of incomplete

longitudinal binary data. Our assessment was based on a simulation study, which

was not meant to be extensive and exhaustive, but rather, was undertaken to demon-

strate the workability and computational feasibility of the proposed methodology in

Molenberghs et al. (2011). In addition, a number of features are also underscored in

the analysis of the case study presented herein.

Simulation results indicated singly robust estimators to be at least as efficient as

full likelihood, while doubly robust estimators were generally observed to be more

efficient than full likelihood, with substantial gains in efficiency when there is more

missingness within the data. Bias for some parameters was also observed to be larger

for the naive and singly robust approaches for the setting with more missingness,

whereas under the doubly robust IPW approach, bias remained fairly small under

both settings considered. Similarly, from the analyses of the analgesic trial data,

singly robust estimators with correctly specified dropout model and our doubly robust

estimators without weights were found to be at least as efficient as direct likelihood

methods. Moreover, under full or near exchangeability, the naive available case version

is as efficient as the doubly robust estimators. This follows from the fact that, under

the exchangeability, observed and missing components from the history can be traded

for one another, implying consistency of the naive estimator. This is a very appealing

property, because double robustness can be invoked without having to use weights or

expectations. When the correlation structure differs from exchangeability, the weights

still vanish in the AC case, but the expectations need to be calculated.

We further highlight a number of issues related to the methodology investigated

in this chapter. Firstly, we underscore the difficulties encountered in fitting marginal
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models for non-Gaussian longitudinal data. Random-effects models for the Gaus-

sian case, i.e., linear mixed models, conveniently lead to marginal regression param-

eters within the same modeling framework, and as such, have naturally become the

methodology of choice. This unified modeling framework, however, does not carry

over to the non-Gaussian case, and hence, GLMMs, though popular, are ill-suited

when marginal parameters are of scientific interest. While marginally specified mod-

els for non-Gaussian data exist, e.g., Bahadur (1961), these remain computationally

challenging and, at times, restrictive. Further complications arise when data are

incomplete. An alternative that has gained widespread acceptance makes use of

so-called generalized estimating equations or GEE (Liang and Zeger, 1986), which

though provides valid inferences only under MCAR, have been modified using inverse

probability weighting to extend validity under MAR (Robins, Rotnitzky and Zhao,

1995). Parallel to the latter, Molenberghs et al. (2011) combine such weighting ap-

proaches with the advantages of pseudo-likelihood, to address numerical issues arising

from complex, high-dimensional likelihood specifications, thereby providing yet an-

other useful alternative to either full likelihood and/or weighted GEE. Here, we have

demonstrated that under the most basic of situations, the methodology provides fairly

efficient marginal parameters.

A second issue relates to the type of missingness. The corrections proposed in

Molenberghs et al. (2011) and examined in this paper, consider the case of monotone

missingness or dropout, which is the more common form of missingness that arises in

clinical studies. Although non-monotone missing data are also encountered, these are

usually in smaller numbers than dropout. In such cases, several routes are available.

One might consider, multiple imputation (Rubin, 1987) to fill in all missing cases,

both monotone and non-monotone, and proceed with the analysis method of choice,

appropriately pooled according to multiple imputation principles. This of course does

not circumvent the above-mentioned difficulties associated with marginally modeling

non-Gaussian longitudinal data. Moreover, specification of imputation models for

binary data, for instance, are perhaps just as problematic. Alternatively, one could

impute non-monotone missing observations only to render the missingness monotone,

and subsequently proceed as in the case of dropout. Yet a third consideration would

be to combine multiple imputation with pseudo-likelihood (topic of Chapter 7), which

would probably be a viable and advantageous approach since both the response model

as well as the missingness model may be of high dimensions. And while multiple impu-

tation approaches generally prescribe Gaussian type data, variations for non-Gaussian

data can be utilized and seem reasonably stable even with model misspecifications,

see, for instance, Beunckens, Sotto and Molenberghs (2008) and Birhanu et al. (2011).
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In principle, our methodology can be used for non-monotone missingness as well; one

then has to pay particular attention to the construction of both weights and predic-

tions, and some non-trivial algebraic challenges will emerge.



Chapter 7

Comparison of

Pseudo-likelihood and

Generalized Estimating

Equations for Incomplete

Data

In correlated non-Gaussian data sets with moderate to large sequences, maximization

of the full likelihood could be prohibitive due to excessive computational require-

ments. The problem gets even worse in the presence of incomplete data. As discussed

in the previous chapters, two popular alternatives, GEE and PL, are only valid under

the strongest missingness mechanism assumption, MCAR. Inverse probably weighting

(IPW) (Robins, Rotnitzky and Zhao, 1995) and multiple imputation-based approaches

(e.g., Paik, 1997) are widely used to take the missingness problem into account. Pre-

vious work by Carpenter, Kenward and Vansteelandt (2006), Beunckens, Sotto and

Molenberghs (2008) and Birhanu et al. (2011) compared the relative performance

of WGEE and MI-GEE under various misspecifications. The latter even compared

WGEE and MI-GEE with Doubly Robust GEE (DR-GEE). In Chapters 5 and 6,

IPW-based corrections that take the form of singly and doubly robust estimators of

PL are discussed and their performance was assessed with simulation studies.

In this chapter, the efficiency and robustness of the various versions of GEE and PL

in the presence of incomplete data are investigated and compared focusing on marginal

101
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models for non-Gaussian longitudinal data with dropout. Comparisons will be made

by means of a simulation study and a practical case study. Geys, Molenberghs, and

Lipsitz (1998) compared GEE and PL for marginally specified odds ratio models

for multivariate, clustered binary data, paying attention to exchangeable association

structures. It has been reported that the efficiency of PL ranges from acceptably good

to excellent (Geys, Molenberghs, and Lipsitz, 1998).

The outline of this chapter is as follows. In Section 7.1 we discuss the singly robust

and doubly robust version of GEE and PL. A description and results of a simulation

design is provided in Section 7.2. In Section 7.3, singly and doubly robust versions of

PL and GEE will be illustrated using the analgesic trial data.

7.1 Inverse Probability Weighting and Multiple

Imputation-based Methods

This section gives a brief review of the three approaches that are used in modeling

non-Gaussian longitudinal data with dropout under an MAR missingness process.

Inverse Probability Weighting Methods (IPW)

As discussed in previous chapters, the general idea behind the IPW method is to base

estimation on the observed responses but to weight them to account for the probability

of dropping out. Under MAR, the weights can be estimated as a function of the

observed measurements and also as a function of the covariates and any additional

variables that could help predict the dropout probability.

WGEE falls within the broad class of schemes that employ inverse probability

weighting of complete cases. As described in Section 4.1.1, based on the completers

only, the estimating equations for WGEE are given by

WGEE =

N∑

i=1

R̃i

πi

∂µi

∂β′ V
−1
i (yi − µi) = 0,

Similarly, as discussed in Section 5.2.1, the pairwise pseudo-likelihood equivalent

form to the above would be:

WPL = U IPWCC =
N∑

i=1

R̃i

πi


∑

j<k

U i(yij , yik)


 ,

with πi is as defined in (4.1) and R̃i = 1 if a subject is fully observed and 0 otherwise.



7.1. Inverse Probability Weighting and Multiple Imputation-based Methods 103

Multiple Imputation

As was described in Section 3.6.2, the multiple imputation (MI) approach consists of

multiply imputing the missing outcomes using a parametric model, followed by ana-

lyzing the resulting complete data sets using a standard method and finally combining

the obtained inferences into a single one.

At the analysis stage of MI, any standard complete data method could be used.

In case GEE is considered as the standard method, we refer to this combination of

MI and GEE as “MI-GEE”. Similarly, one can combine MI with PL by handling the

missingness using multiply imputed outcomes, followed by analyzing the resulting

complete data sets using pseudo-likelihood. We refer to this combination of MI and

PL as “MI-PL”.

Doubly Robust Estimators

Doubly robust estimating equations (DR), where the weighting idea is supplemented

with the use of a predictive model for the missing observations given the observed

ones, is a recently developed approach to take the missingness problem into account.

To yield consistent estimates, doubly robust (DR) methods need correct specification

of either the weight or the predictive model, but not necessarily both.

The doubly robust GEE (DR-GEE) discussed in Section 4.1.3 takes the form:

UDR,GEE = U IPWCC,dr =

N∑

i=1

[
R̃i

πi
U i(Y i) +

(
1− R̃i

πi

)
EY m|yoU i(Y i)

]
,

As described in Section 5.1, a PL equivalence of the above double robust estimating

equations would be:

UDR,PL = U IPWCC,dr =

N∑

i=1




R̃i

πi


∑

j<k

U i(yij , yik)




+

(
1− R̃i

πi

)
EY m

i |yo
i


∑

j<k

U i(yij , yik)





 .

where the second term in both expressions refer to the predictive terms of the unob-

served outcomes given the observed ones.

As has been discussed in the previous chapters, for the predictive model several

alternative routes are open, depending on the type of estimating equations. In Chap-

ter 4, doubly robust estimating equations combined with multiple imputation ideas
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as in Daniel (2008) were applied. In Chapter 5, we considered situations where a fully

analytic approach is possible and an important special case of marginal pairwise un-

der full or near exchangeability, where the formulation of a predictive model is merely

required. In Chapter 6, we discussed two alternative routes: working with high-

dimensional probabilities (equations 6.5 and 6.6) and using the classical definition

of an expectation for discrete distributions (equations 6.7 and 6.8). In this chapter,

we will follow Daniel’s (2008) approach which combines doubly robust estimating

equations with multiple imputation for both, GEE and PL, methods.

To motivate the approach for pseudo-likelihood, we refer to our data augmenta-

tion illustration of Section 4.1.3. For a longitudinal settings with two outcomes, the

augmented data looks like:

Augmented data


Y1,i1 Y
(m)
1,i2

Y2,i1 Y
(m)
2,i2

Y2,i1 Y2,i2




Weight

1

1− π
(2)−1
i

π
(2)−1
i

The pairwise score contribution of the above augmented data is:

∑

i

U
(
y1,i1, y

(m)
1,i2

)
+
∑

i

(
1− 1

π
(2)
i

)
·U

(
y2,i1, y

(m)
2,i2

)
+
∑

i

1

π
(2)
i

·U (y2,i1, y2,i2) (7.1)

If we do impute the ‘wiped out’ outcomes in agreement with the prescription of

the method, expression (7.1) take the form:

∑

i

U (y1,i1) +
∑

i

U
(
y
(m)
1,i2 |y1,i1

)
+
∑

i

U (y2,i1) +

∑

i

[
1

π
(2)
i

·U (y2,i2|y2,i1) +
(
1− 1

π
(2)
i

)
·U
(
y
(m)
2,i1 , y2,i2

)]
(7.2)

which is equivalent to (5.33). In this version the “weights” are necessary and the

precision estimation is done by taking the variability in the “weights” into account as

in Section 4.1.4.

7.2 Simulation Study

We investigate the performance of the PL and GEE in the presence of incomplete

data using the simulation set up described in Section 6.3.
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The data were generated from the marginally based Bahadur model which follows

general formulation (6.9) with

logit νij = logit P (Yij = 1|xi, tj) = β0 + βxxi + βttj + βxtxitj ,

where xi and tj represent a binary treatment indicator and time point at which

measurements j was taken respectively. We choose β0 = −2.5, βx = 0.1, βt = 1.0,

and βxt = −0.5. The correlation among the outcomes is assumed to follow a Toeplitz

structure as in (6.10). The missingness is assumed to be MAR, and the probability

of dropout at time point j, given xi and the measurement at the previous time point

(yi,j−1), is modeled by a logistic regression

logit P (Di = j|Di ≥ j, xi, yi,j−1) = ψ0 + ψxxi + ψprevyi,j−1,

with ψ0 = −2.2, ψx = 0.5 and ψprev = 2.0.

7.2.1 Results

In this section, we present simulation results of four scenarios. The scenarios are: cor-

rectly specified dropout and imputation model, either dropout or imputation models

wrongly specified, and wrongly specified dropout and imputation models.

Everything Correctly Specified

We first investigate the relative performance of various versions of GEE and PL when

both the dropout and the imputation model are correctly specified. The results are

summarized in Table 7.1.

For comparison purposes, GEE and PL analyses on the complete data (i.e. before

missingness is induced) are also considered. For this case, both GEE and PL yield

unbiased and consistent estimators. Both are found to be as efficient as full likelihood.

Since pseudo-likelihood allows for the estimation of both main effect parameters and

association parameters, estimates of the correlation coefficient are reported for PL.

GEE is restricted to main effect parameters.

When the dropout and imputation models are correctly specified, all methods

consistently yield the minimum bias. WGEE produced slightly larger bias that the

other methods. A notable loss of precision is obseved under WGEE. All the other

models except WGEE yield empirically corrected MSE that is comparable to that

of the full likelihood and hence they are as efficient as the full likelihood. Since

multiple imputation is rather a data filling approach, MI-GEE and MI-PL provided

very comparable results for the mean parameters.
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Table 7.1: Simulation Study (correct imputation and dropout models). Bias, square

root of empirically-corrected mean square error (RMSE) and relative efficiency

(REff) with respect to full likelihood for GEE and pairwise PL.

Par.
GEE PL Full

Complete WGEE MI-GEE DR-GEE Complete WPL MI-PL DR-PL Lik.

Bias

β0 -0.014 -0.115 -0.019 -0.120 -0.017 -0.013 -0.019 0.008 -0.031

βx 0.004 0.033 0.012 -0.050 0.006 -0.003 0.014 -0.006 0.033

βt 0.002 0.087 0.005 0.026 0.004 0.002 0.005 -0.004 0.010

βxt -0.001 -0.035 -0.005 0.014 -0.002 0.002 -0.006 0.004 -0.010

ρ(1) -0.001 0.000 -0.003 -0.001 0.002

ρ(2) 0.001 0.001 -0.003 0.000 0.000

ρ(3) 0.002 0.001 -0.002 0.000 0.013

RMSE

β0 0.185 0.406 0.190 0.158 0.184 0.170 0.189 0.119 0.185

βx 0.277 0.641 0.286 0.220 0.273 0.243 0.283 0.188 0.272

βt 0.066 0.055 0.070 0.058 0.065 0.059 0.069 0.035 0.068

βxt 0.092 0.081 0.099 0.081 0.091 0.080 0.098 0.056 0.095

ρ(1) 0.024 0.021 0.026 0.017 0.022

ρ(2) 0.028 0.025 0.030 0.015 0.026

ρ(3) 0.039 0.035 0.043 0.020 0.041

Relative efficiency

β0 1.002 0.457 0.975 1.170 1.007 1.088 0.979 1.555

βx 0.983 0.425 0.951 1.239 0.997 1.121 0.963 1.447

βt 1.031 1.241 0.975 1.176 1.047 1.148 0.984 1.943

βxt 1.037 1.184 0.962 1.180 1.048 1.193 0.978 1.712

ρ(1) 0.930 1.069 0.867 1.302

ρ(2) 0.923 1.045 0.854 1.683

ρ(3) 1.061 1.169 0.965 2.095
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Dropout Model Correct, Imputation Model Incorrect

The focus of this scenario is to investigate how the MI-based and DR-based estimating

equations perform under a misspecified imputation model. Here we compare MI-GEE,

MI-PL, DR-GEE and DR-PL all having a correctly specified dropout model, but with

an incorrectly specified imputation model in the sense that the previous outcome is

omitted from the imputation model. Results are presented in Table 7.2.

All the considered four models perform well with a minor loss of efficiency com-

pared their respective results of Table 7.1. This shows that MI-based methods are

robust against misspecification in the imputation model and expected to perform

well, as long as the imputation model is not grossly misspecified (Meng, 1994). Also

misspecification occurring at the imputation step will only affect the unobserved (i.e.,

imputed) but not the observed part of the data.
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Table 7.2: Simulation Study (incorrect imputation model). Bias, square root of

empirically-corrected mean square error (RMSE) and relative efficiency (REff) with

respect to full likelihood for singly and doubly robust GEE and pairwise PL.

Par.
GEE PL

MI-GEE DR-GEE MI-PL DR-PL

Bias

β0 -0.026 -0.136 -0.032 0.003

βx 0.008 -0.050 0.013 -0.002

βt 0.017 0.039 0.019 -0.002

βxt 0.001 0.016 0.000 0.002

ρ(1) -0.046 0.000

ρ(2) -0.018 0.000

ρ(3) -0.001 0.000

RMSE

β0 0.191 0.165 0.190 0.125

βx 0.287 0.224 0.284 0.189

βt 0.070 0.058 0.070 0.039

βxt 0.099 0.081 0.098 0.057

ρ(1) 0.029 0.020

ρ(2) 0.031 0.019

ρ(3) 0.043 0.022

Relative efficiency

β0 0.970 1.126 0.973 1.488

βx 0.948 1.214 0.960 1.438

βt 0.977 1.177 0.979 1.763

βxt 0.965 1.179 0.977 1.667

ρ(1) 0.781 1.109

ρ(2) 0.845 1.388

ρ(3) 0.973 1.866
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Imputation Model Correct, Dropout Model Incorrect

The third simulation scenario is designed to investigate the effects of misspecification

in the dropout model on inverse-probability weighting (IPW)-based methods: WGEE,

DR-GEE, WPL, and DR-PL. Here, as in the previous subsection, the misspecification

in the dropout model is again in the form of omission of the previous outcome (yi,j−1)

from the dropout model, from which weights are obtained. The results are presented

in Table 7.3.

A substantial amount of bias is observed in all methods, although this improves

under DR-PL. Simulation results shows a general increase in empirically corrected

MSEs and decrease in precision for WGEE and WPL. Up to 70% loss of efficiency

is observed under WGEE, while the maximum loss of efficiency under WPL is 27%.

Similar to the previous scenarios, the DR-GEE and DR-PL methods are the least

biased and gains some efficiency compared to the full likelihood.
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Table 7.3: Simulation Study (incorrect dropout model). Bias, square root of

empirically-corrected mean square error (RMSE) and relative efficiency (REff) with

respect to full likelihood for singly and doubly robust GEE and pairwise PL.

Par.
GEE PL

WGEE DR-GEE WPL DR-PL

Bias

β0 -0.571 0.095 0.165 0.004

βx 0.155 0.096 0.131 -0.004

βt 0.038 -0.018 -0.022 -0.003

βxt 0.001 -0.022 -0.029 0.004

ρ(1) 0.004 0.000

ρ(2) 0.003 0.000

ρ(3) 0.001 0.000

RMSE

β0 0.644 0.152 0.254 0.125

βx 0.440 0.226 0.333 0.189

βt 0.108 0.057 0.073 0.039

βxt 0.137 0.080 0.105 0.057

ρ(1) 0.026 0.020

ρ(2) 0.032 0.019

ρ(3) 0.048 0.022

Relative efficiency

β0 0.288 1.217 0.730 1.488

βx 0.619 1.206 0.818 1.437

βt 0.630 1.197 0.932 1.762

βxt 0.696 1.190 0.908 1.666

ρ(1) 0.858 1.109

ρ(2) 0.808 1.387

ρ(3) 0.862 1.866
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Imputation and Dropout Models Incorrect

In this scenario, we explored the performance of DR-GEE and DR-PL under misspec-

ification in both the dropout and imputation models. For both cases, misspecification

is again in terms of omission of the previous outcome. The results are given in Ta-

ble 7.4; for ease of comparison, the first panels of Tables 7.2 and 7.3 are replicated

here.

Comparing the DR-GEE and DR-PL, both yield unbiased estimated with empir-

ically corrected MSEs close to that of the full likelihood. Comparing the robustness

of the singly and doubly robust methods, inverse-probability weighting (IPW)-based

methods produce the highest bias and MSEs and hence, less efficient.
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Table 7.4: Simulation Study (incorrect imputation and dropout models). Bias, square

root of empirically-corrected mean square error (RMSE) and relative efficiency

(REff) with respect to full likelihood for singly and doubly robust GEE and pairwise

PL.

Par.
GEE PL

WGEE MI-GEE DR-GEE WPL MI-PL DR-PL

Bias

β0 -0.571 -0.026 0.085 0.165 -0.032 0.001

βx 0.155 0.008 0.092 0.131 0.013 0.001

βt 0.038 0.017 -0.009 -0.022 0.019 0.000

βxt 0.001 0.001 -0.019 -0.029 0.000 0.000

ρ(1) 0.004 -0.046 -0.001

ρ(2) 0.003 -0.018 0.000

ρ(3) 0.001 -0.001 0.000

RMSE

β0 0.644 0.191 0.152 0.254 0.190 0.130

βx 0.440 0.287 0.229 0.333 0.284 0.194

βt 0.108 0.070 0.056 0.073 0.070 0.043

βxt 0.137 0.099 0.080 0.105 0.098 0.061

ρ(1) 0.026 0.029 0.020

ρ(2) 0.032 0.031 0.020

ρ(3) 0.048 0.043 0.028

Relative efficiency

β0 0.288 0.970 1.217 0.730 0.973 1.423

βx 0.619 0.948 1.191 0.818 0.960 1.404

βt 0.630 0.977 1.223 0.932 0.979 1.569

βxt 0.696 0.965 1.198 0.908 0.977 1.560

ρ(1) 0.858 0.781 1.100

ρ(2) 0.808 0.845 1.271

ρ(3) 0.862 0.973 1.499
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7.3 Analysis of the Analgesic Trial

As a further illustration of the singly robust and doubly robust versions of PL and

GEE, we analyzed the analgesic trial introduced in Section 2.2 and analyzed in Chap-

ter 6. As discussed in Section 6.4, the dichotomized version of the response, ‘Global

Satisfaction Assessment’, is of interest. Results of fitting singly robust and doubly

robust versions of GEE and PL are given in Table 7.5.

We note that there are similarities and differences between the parameter estimates

and standard errors of GEE and PL analyses. The WGEE has larger standard errors

than the other methods. For ease of comparison, the WPL reported in this chapter

is U IPWCC of equation 5.27. It has slightly larger coefficient estimates. To get a

better estimates and efficiency one could consider the other singly and doubly robust

versions (5.28–5.32), studied in length in Chapters 5 and 6.

Parameter estimates and standard errors of the DR-PL studied in this chapter are

comparable to those obtained in Section 6.4. This implies that, multiple imputation

based approach is another route for the predictive model. Combined with insights

from the simulation study and attractive feature of PL for the estimation of the

association parameters, we recommend for use of the PL methods.
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Table 7.5: Analgesic Trial. Parameter estimates (empirically-corrected standard er-

rors) for singly and doubly robust versions of GEE and pairwise Pseudo-likelihood.

GEE

Effect Par. WGEE MI-GEE DR-GEE

Inter. β0 2.460(0.646) 2.773(0.593) 2.564(0.452)

Time β1 -0.517(0.414) -0.694(0.410) -0.652(0.343)

Time2 β2 0.118(0.085) 0.147(0.083) 0.118(0.073)

PCA0 β3 -0.196(0.126) -0.234(0.109) -0.202(0.095)

Pseudo-likelihood

Effect Par. WPL MI-PL DR-PL

Inter. β0 3.079 (0.299) 2.674(0.578) 2.714(0.331)

Time β1 -0.999 (0.200) -0.695(0.365) -0.694(0.239)

Time2 β2 0.194 (0.039) 0.148(0.074) 0.148(0.044)

PCA0 β3 -0.193 (0.061) -0.209(0.120) -0.215(0.053)

corr1 ρ(1) 0.258 (0.028) 0.298(0.049) 0.247(0.028)

corr2 ρ(2) 0.252 (0.031) 0.280(0.053) 0.202(0.029)

corr3 ρ(3) 0.284 (0.041) 0.305(0.079) 0.186(0.039)

7.4 Discussion

In this chapter, we evaluate the relative merits of pseudo-likelihood (PL) and GEE

for incomplete data and illustrate them using simulation studies and a practical case

study. In addition to the singly robust and doubly robust estimators of PL introduced

in Chapters 5 and 6, here we combine MI with PL. We handle MAR missingness

by multiply imputing the missing outcomes using a parametric model, followed by

analyzing the resulting complete data sets using pseudo-likelihood. Inverse probabil-

ity weighting-based, multiple imputation-based and doubly robust PL and GEE are

compared under correctly specified, partially misspecified and severely misspecified

dropout and imputation models.

Pseudo-likelihood (PL) is shown to have some advantages over GEE. A pseudo-

likelihood (PL) function is constructed by modifying a joint density. On the contrary,

generalized estimating equations (GEE) are resulting from modifying the score equa-

tions from the likelihood function. PL is advisable for the estimation of the association

parameter. Geys, Molenberghs, and Lipsitz (1998) reported that the efficiency of PL
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ranges from acceptable good to excellent. GEE has computational advantage when

scientific interest is restricted in the estimation of marginal mean parameters.

WGEE is found to be inefficient and sensitive to the choice of the dropout model.

In the various simulation scenarios we considered, compared to GEE, PL is as efficient

as full likelihood, while the additional computational burden is minor. Since complete

data methods (GEE and PL in this case) are performed on the multiply imputed data

sets, MI-GEE and MI-PL provided very comparable results for the mean parameters.

Based on the simulation study we conducted, the doubly robust estimators offer not

only efficiency improvement over the singly robust methods, but also yield the least

biased estimates.

Further investigation is recommended to fully understand situations where doubly

robust estimators may go off the cliff and severe biases may occur under misspecfica-

tion of both the dropout and predictive models.





Chapter 8

A Multiple Imputation Based

Approach to Sensitivity

Analysis and Effectiveness

Assessments in Incomplete

Longitudinal Data

It has been debated whether the primary analysis in longitudinal clinical trials should

focus on efficacy or effectiveness. An important aspect of this debate is the impact of

missing data arising from patient discontinuation. From the extensive literature on

missing data, it is clear that the meaning and consequences of missing data depends

on the situation. Permutt and Pinheiro (2009) illustrate five realistic clinical examples

where the meaning and consequences of missing data differ. The situations range from

that in which a patient discontinuation prior to the planned endpoint of the trial does

not result in any loss of information because the dropout is itself an outcome, where in

other situations there is indeed a loss of information, and in some instances the idea of

a value being missing does not even make sense. For example, a patient is enrolled in

a trial for prevention of premature ventricular contractions that is expected to reduce

risk of sudden cardiac death. If the patient died of sudden cardiac arrest would it

make sense to impute or estimate the number of premature ventricular contraction

(PVC) that could have been observed had the patient not died of sudden cardiac

arrest? Our view is that both efficacy and effectiveness are essential in understanding

117
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the usefulness of a drug, and that both should be assessed in some manner whenever

possible. However the relevant questions are when to put the greatest emphasis on

each, and what designs and analysis are most appropriate for so doing. Arguably,

this will depend, first and foremost, on the research question.

The setting addressed in this chapter is that of phase II or phase III clinical trials

for investigational drugs to treat the symptoms of chronic illnesses, such as depression,

pain, or diabetes. In such settings efficacy may be viewed as the effects of the drug

if taken as directed; that is, the benefit of the drug expected at the endpoint of

the trial assuming patients stayed on drug, counter to the fact that some dropped

out. Effectiveness in these same settings may be viewed as the effects of the drug

as actually taken. Specific definitions of effectiveness may vary but in general imply

some type of benefit and risk assessment, some measure of the benefit minus the

liability recognizing that patients who discontinue the drug, particularly because of

safety or tolerability issues, are unlikely to have lasting benefit from it. Carpenter,

Roger and Kenward (2011) refer to hypotheses about efficacy and effectiveness as the

de-jure and de-facto hypotheses, respectively.

It is important to understand both what happens when a drug is evaluated as

actually taken and when taken as directed, especially when including safety assess-

ments in the scope of inference. And while it is important to consider when to put

the greatest emphasis on which research question (Mallinckrodt and Kenward, 2009),

this chapter focuses on what endpoints and analyses are most appropriate for each.

Table 8.1, which borrows heavily from introductory chapters in the recent National

Academy of Science guidance on the prevention and treatment of missing data (Na-

tional Research Council, 2010) summarizes the estimands and estimators that may

be associated with efficacy and effectiveness hypotheses.

Effectiveness of the initial randomized medication at the planned endpoint of the

trial is essentially the maintained benefit at the planned endpoint attributable to the

randomized medication for the period of time in which it was taken. For testing this

hypothesis, it is not adequate to assess patients only until they drop out of the trial,

follow-up data from the time of dropout until the planned endpoint of the trial are

needed. However, ethical considerations often mandate that alternative medication

be allowed after patients discontinue randomized study medication.

In the Intention-to-Treat (ITT) framework where inferences are drawn based on

the originally assigned treatment, including follow-up data when alternative medi-

cations are allowed can mask or exaggerate both the efficacy and safety effects of

the initially assigned treatments, thereby invalidating causal inferences for the ef-

fectiveness of the originally assigned medication (Mallinckrodt and Kenward, 2009).
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Therefore, it has been proposed in the National Academy of Sciences guidance (Na-

tional Research Council, 2010) and elsewhere (Fleming, 2011), that the hypothesis of

interest is that of a treatment regimen, that is, initiating treatment with a particular

intervention. However, the treatment regimen hypothesis is not useful in the situa-

tions of interest here as it is unlikely an investigational medication can be approved

for use as part of a regimen unless it has first been proven safe and effective on its

own.

As discussed in Section 3.6.2, a number of techniques have been used to impute

the missing (follow-up) data to circumvent problems from the confounded follow-up

data. Last and baseline observation carried forward (LOCF and BOCF) are perhaps

the two most commonly used methods. Although the acronyms imply truly carrying

observations forward in time, an LOCF result can be interpreted as either the change

observed while actually taking drug, or as the change to the designed endpoint of

the trial assuming the patients’ condition would not have changed after discontinuing

the drug. With BOCF, it is assumed that patients who discontinue drug received no

lasting benefit, so the change from baseline after stopping study medication should

be zero and thus the values after discontinuation should equal the baseline values.

However, the assumption that patients’ condition would return to the baseline

state after ceasing study medication is questionable in many situations as study effects,

placebo effects, and natural time evolution also influence outcomes. Therefore, if

patients receive no pharmacological benefit from a drug, either because it has no

effect or because they discontinue taking the medication, their outcomes would be

equal to their baseline values only if the study effect and the placebo effect were zero.

Alternatively, the placebo group provides an estimate of no pharmacological ben-

efit of the drug that reflects the study effect and placebo effect. Hence, information

from the placebo group may provide a better estimate of effectiveness for patients

who discontinue drug than using patients’ last or baseline observation.

Carpenter, Roger and Kenward (2011) define and illustrate a family of multiple

imputation based approaches for assessing sensitivity in testing de-jure (efficacy) and

de-facto (effectiveness) hypotheses. Using the placebo group to impute missing values

for both the placebo and drug groups is a specific form of their “jump to reference”

approach. With placebo Multiple Imputation (pMI), placebo is considered as the

reference and drug patients jump to the placebo group after dropout. However, one

may want placebo to jump to a standard of care, or placebo and drug to jump to

standard of care (Little and Yau, 1996), for example, if interested in ITT estimand

from Table 8.1. The advantage of the proposed method is that these and other

choices are perfectly feasible. Although the principles and assumptions underlying the
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jump to reference approach are clear and easy to understand (Carpenter, Roger and

Kenward, 2011), the performance of the method has not been rigorously evaluated.

Also, specific algorithms for such placebo-based imputation schemes and software

for their implementation were not duly presented in the literature, leaving clinical

statisticians without clear guidance and tools for conducting such analyses. The work

presented in this chapter tries to bridge this gap by proposing and evaluating the

performance of a novel placebo-based multiple imputation method (a specific form

of jump to reference) that we refer to as placebo multiple imputation (pMI). The

procedure is implemented using available software (SAS PROC MI).

Therefore, the primary objective of this chapter is to assess the statistical perfor-

mance of pMI as an estimator of effectiveness (as actually taken hypothesis). The

behavior of pMI was also considered in the context of a sensitivity analysis in testing

the efficacy (taken as directed) hypothesis. In this context, pMI assumes the sta-

tistical behavior of drug-treated patients after dropout is the statistical behavior of

all placebo-treated patients including dropouts. Thus, pMI can also be interpreted

as a specific form of an MNAR analysis expected to yield a conservative estimate of

efficacy.

Section 8.1 is devoted for specific details about the pMI approach. Design and

analysis of the simulation study is presented in Section 8.2. Section 8.3 details analysis

of the case study, Depression Trials (Section 2.3). Finally, Section 8.4 discusses these

results.

8.1 Placebo Multiple Imputation

The concept of MI with “copy reference” or “jump to reference” has been proposed

in the literature (Little and Yau, 1996; Carpenter, Roger and Kenward, 2011). In the

placebo multiple imputation approach, placebo is considered as the reference and drug

patients jump to the placebo group after dropout. Placebo multiple imputation (pMI)

estimates visit-wise means or mean changes assuming that the statistical behavior of

drug treated patients who discontinue becomes that of placebo-treated patients after

the time of dropout. Two views may be taken of this estimand: 1) as an assessment

of effectiveness, assuming patients who discontinue before the endpoint receive no

pharmacological benefit after dropout; and 2) as a worst reasonable case assessment

of efficacy– the outcome that would have been observed had the patient stayed on

drug.

To implement this approach, multiple imputation is used to replace missing out-

comes for drug-treated subjects who discontinued using multiple draws from the
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posterior predictive distribution estimated from subjects who were randomized to

the placebo arm in that same trial. To set up the imputation model, define ob-

served subject-specific covariates (Xi) and partially observed outcomes (Y o
i ) whose

joint distribution drives the imputation mechanism for missing outcomes. Let

Y i = (Y o
i ,Y

m
i ), be the 1 × T outcome vector containing, for the ith subject, ki

observed outcomes and T − ki unobserved outcomes; and, Xi be a 1 × P vector of

fully observed covariates.

Most missing values in the clinical trial settings addressed here are caused by

dropouts resulting in a monotone pattern of missingness. Therefore, Bayesian re-

gression employing factorization of the multivariate normal density for the data with

monotone missingness pattern (Rubin, 1987, pp. 166-167), using the procedure that

is available in SAS PROC MI, provides an easy and fast way to impute the missing

values. Bayesian regression is based on the regression model fitted to placebo out-

comes, relating a future outcome Yt to the earlier outcomes Yt−2, ..., Y0. Then a new

regression model is simulated from the posterior predictive distribution of the parame-

ters (using non-informative Jeffrey’s priors for the regression coefficients and the error

variance) and is used to impute the missing values for each variable (Rubin, 1987,

pp. 166-167). This method of sampling from the Bayesian predictive distribution of

Y m
i |Y o

i does not require MCMC iterations, but rather takes advantage of the mono-

tone missingness pattern and the fact that the multivariate normal density can be

factored into a sequence of conditional normal densities (Schafer, 1997, pp. 218-220).

The basic idea is to estimate the parameters for the imputation model using only

data from the placebo arm and then use those parameters to impute missing values

for both the drug-treated and placebo-treated patients. Partially observed outcomes

from treated subjects are used when imputing their missing outcomes only as argu-

ments that are passed to the “placebo-estimated” imputation model when applying

it to generate missing values for treated subjects.

Data are processed sequentially by repeatedly calling SAS PROC MI to impute

missing outcomes at visits t = 1, .., T as described in detail in the following steps.

1. Initialization. Set t = 0 (baseline visit).

2. Iteration. Set t = t + 1. Create a data set combining records from placebo

and treated subjects with columns for covariates Xi and outcomes at visits

1, .., t with outcomes for all treated subjects set to missing at visit t and set to

observed or imputed values at visits 1, .., t− 1.

3. Imputation. Run Bayesian regression in SAS PROC MI on this data to impute
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missing values for visit t using previous outcomes for visits 1 to t−1 and baseline

covariates. Note that only placebo data will be used to estimate the imputation

model since no outcome is available for treated subjects at visit t.

4. Replace imputed data for all treated subjects at visit t with their observed

values, whenever available. If t < T then go to Step 2, otherwise proceed to

Step 5.

5. Repeat steps 1-4, m times with different seed values to create m imputed data

sets. While m = 5 imputations are frequently chosen, different, in particular

higher number of imputations, m = 10 orm = 20 say, are no problem at all with

current-day computational resources, especially not for commonly encountered

clinical-trial sample sizes.

6. Analysis. For each completed data set, evaluate treatment difference at the

last scheduled visit using a likelihood-based normal repeated measures model

as would have been applied had the data been complete (implemented via SAS

PROC MIXED).

7. Combined Inference. Compute pMI-based estimate and associated confidence

interval (CI) for the treatment contrasts at last scheduled visit using Rubin’s

combining rules (Rubin, 1987), as implemented in SAS PROC MIANALYZE.

8.2 Simulation Study

A simulation study was conducted to assess the properties of pMI. Although the

simulations were not intended to mimic any particular clinical setting, many input

parameters for the simulation study were taken from the depression trial described in

Section 2.3. The variance-correlation matrix (variances on the diagonal, correlations

off-diagonally) used in the simulation study are provided in Table 8.2. This variance-

correlation matrix is common for both treatment groups.

For the simulation study, we generated an outcome at five time points. A total of

S = 1, 000 complete data sets were simulated from multivariate normal distribution

with realistic parameters, similar to those estimated from recent clinical trials in

depression. A sample of size N=200 was equally divided between two treatment arms

and five imputations were used in the simulation study.

Scenarios included two trajectories of patient response: 1) Improvement (IMP),

where the mean trends were for patients to improve over time, such as would often

be the case for symptomatic treatments of chronic illnesses; 2) Worsening (WOR),
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Table 8.2: Variance-correlation matrix of the outcome over time (variances on the

diagonal, correlations off-diagonally)

Visit

1 2 3 4 5

21.005 0.6905 0.558 0.4323 0.3761

24.907 0.724 0.564 0.470

30.679 0.715 0.627

31.644 0.781

30.346

where the mean trends were for patient to worsen over time, such as would often be the

case for disease modification treatments in progressive illnesses such as Alzheimer’s

disease. Scenarios also included three dropout patterns, all with an overall dropout

rate of 30%: 1) equal rates (30%) in the drug and placebo groups (=); 2) higher

dropout in the drug group (HD), 40% dropout in the drug group versus 20% in the

placebo group; 3) higher dropout in the placebo group (HP), 20% dropout in the

drug group versus 40% in the placebo group. Lastly, scenarios included three levels

of treatment effects.

Dropout was induced by deleting values according to a logistic model relating

probability of dropout at a particular visit with changes from baseline to the previous

visit in the simulated efficacy outcomes. Specific values for the logistic model were

chosen so as to yield the desired dropout rates in the various scenarios. Of particular

note, however, is that the dropout mechanism was missing at random (MAR), given

that probabilities of dropout were based only on outcome values observed at earlier

time points. In the case of MAR, the estimation and inferential methodology is

valid for the entire class of MAR, regardless of the particular form of the missing

data mechanism. While the methodology could be extended towards MNAR, then

an explicit form for an MNAR mechanism needs to be assumed, both for generating

data and for subsequent estimation, and combined with the pMI assumption.

For efficacy, the difference between drug and placebo in mean change to endpoint

was a standardized effect size (ES) of 0.5, 0.3, or 0.0. For effectiveness, the mean

difference at endpoint resulted from a mixture distribution where the effect size of

completers was 0.5, 0.3, or 0.0, as described for efficacy and the effect size for patients

who dropped out was 0.0. Therefore, the true value for the endpoint contrasts was
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the weighted mean of the two groups. For example, with ES = 0.5 and improvement

direction of change, the estimate of treatment effect is 0.3875, and the estimate for the

interaction of treatment with time is -0.7855. Hence, the true advantage of drug over

placebo for efficacy at the last endpoint is 2.7545. For effectiveness, the true values

would be the product of 2.7545 and probability of stay. With 20%, 30%, and 40%

dropout in the drug group, the corresponding true advantage of drug over placebo for

effectiveness were 2.2405, 2.0502, and 1.6842. The true values for the placebo group

are summarized in Table 8.3. Given these trajectories, the assumptions for BOCF

and LOCF were not valid.

Table 8.3: Visit-wise population means in the placebo group

Visit

Visit Improvement Worsening

1 18.8 18.8

2 16.8 20.8

3 14.8 22.8

4 12.8 24.8

5 10.8 26.8

Results from pMI were compared with results from LOCF, BOCF, direct likelihood

(DL) and standard multiple imputation (MI) in 18 scenarios that were arranged as a

2× 3× 3 factorial. Focus was on comparing pMI versus BOCF and LOCF in regards

to the effectiveness estimand whereas focus was on comparing pMI versus DL and MI

in regards to the efficacy estimand.

Note that pMI is different in nature from, say, LOCF and BOCF. The latter are

explicit, and very strong, MNAR type assumptions about the data generating pro-

cess that are very often violated in practice, as has been reported repeatedly in the

literature (Kenward and Molenberghs, 2009). pMI is a way to make operational the

effectiveness estimand. This implies that it may have regulatory and other relevance,

regardless of whether or not it is the true data generating mechanism. Furthermore,

while pMI in the way used here requires MAR, it does not require the explicit speci-

fication of the missing data mechanism but rather is valid over the entire class.

8.2.1 Results

Simulation results were summarized in terms of Bias (Bias(β̂)), Relative Bias, Vari-

ance (Var(β̂)), Mean Square Error (MSE), Confidence Interval (CI) coverage and
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Rejection rates.

Bias is defined as the difference between mean estimate and true value of the pa-

rameter whereas relative bias is the percentage difference between the mean estimate

and the true value of the parameter. Confidence interval (CI) coverage is estimated

by the percentage of the retained data sets in which the Wald 95 percent confidence

interval for β̂ included the true value of the parameter. Rejection rates is estimated

by the proportion of data sets where the two-sided Wald test of null hypothesis (H0)

of no treatment difference was rejected at 5% level of significance.

Bias(β̂) = β̂ − β, β̂ =
S∑

i=1

β̂i

S
, β represent true parameter.

MSE ≡ MSEMC(β̂) = Bias2(β̂) + Var(β̂) ,

and

Relative bias =
bias

true parameter
.

Positive bias indicates that the average estimate of the treatment contrast is larger

than true value, when ES >0, and that the average contrast favors placebo, when ES

= 0. Negative bias indicates that the average estimate of the treatment contrasts is

smaller than the true value, when ES >0, and it favors drug when ES = 0.

8.2.1.1 Effectiveness

Tables 8.4 through 8.8 summarize results from testing the effectiveness hypothesis.

Regarding bias, pMI had minimal to no bias in all scenarios; BOCF and LOCF had

large biases in almost all scenarios, with the bias in BOCF favoring drug effectiveness

in 5/18 scenarios. DL and MI were biased in favor of drug whenever ES >0 but

unbiased when ES = 0.
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Table 8.4: Bias in estimates of the effectiveness estimand for the analysis of change

from baseline

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI PMI

IMP 0.5 = 0.727 0.625 -0.661 -0.659 0.059

HD 1.243 0.925 -1.031 -1.031 -0.096

HP 0.253 0.363 -0.474 -0.473 -0.037

IMP 0.3 = 0.362 0.300 -0.470 -0.468 0.009

HD 1.025 0.757 -0.627 -0.624 -0.015

HP -0.093 0.0408 -0.284 -0.279 0.002

IMP 0 = 0.012 0.018 0.039 0.044 0.105

HD 0.681 0.512 0.041 0.038 0.132

HP -0.665 -0.469 0.037 0.036 0.067

Worse 0.5 = 0.852 0.599 -0.808 -0.807 -0.136

HD -0.265 0.089 -1.035 -1.036 -0.178

HP 1.622 1.034 -0.527 -0.521 -0.076

Worse 0.3 = 0.500 0.367 -0.471 -0.462 -0.035

HD -0.551 -0.094 -0.633 -0.629 -0.069

HP 1.287 0.739 -0.301 -0.293 -0.137

Worse 0 = 0.008 0.022 0.033 0.034 0.115

HD -0.836 -0.269 0.042 0.037 0.123

HP 0.839 0.302 0.046 0.045 -0.029

Figure 8.1 shows relative bias in estimates of the effectiveness estimand by direc-

tion of change and dropout pattern for the 0.3 effect size of the drug. pMI has the

smallest relative bias in both, improvement and worsening, trajectories.
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Figure 8.1: Relative bias in estimates of the effectiveness estimand by direction of

change and dropout pattern for the 0.3 effect size of the drug.

The variance (results not shown) in estimates from LOCF and BOCF was lower

than from DL or MI. The variance in estimates from pMI was generally intermediate

to those from LOCF / BOCF versus DL and MI. The variance in estimates from pMI

varied according to how much drug group data were replaced by placebo data; as

the proportion of drug treated data being replaced by placebo increases the sample

becomes more homogenous and variance in treatment contrasts decreases. In addition,

the MSE for pMI was fairly consistent across scenarios and often smaller than the

corresponding MSE for other methods. In contrast, MSEs from the other methods

varied across scenarios and were often greater than the MSE from pMI.
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Table 8.5: Mean square error in estimates of the effectiveness estimand for the analysis

of change from baseline.

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI pMI

IMP 0.5 = 0.886 0.856 1.137 1.185 0.479

HD 1.838 1.189 1.754 1.781 0.400

HP 0.334 0.458 0.907 0.960 0.543

IMP 0.3 = 0.477 0.544 0.926 0.982 0.444

HD 1.334 0.901 1.092 1.138 0.372

HP 0.275 0.326 0.761 0.791 0.526

IMP 0 = 0.313 0.424 0.691 0.717 0.433

HD 0.731 0.583 0.702 0.735 0.376

HP 0.706 0.543 0.687 0.724 0.528

Worse 0.5 = 0.933 0.635 1.337 1.382 0.489

HD 0.275 0.282 1.749 1.789 0.430

HP 2.826 1.339 0.957 0.976 70.542

Worse 0.3 = 0.469 0.411 0.903 0.903 0.452

HD 0.506 0.281 1.090 1.118 0.385

HP 1.851 0.815 0.771 0.788 0.542

Worse 0 = 0.228 0.275 0.675 0.692 0.441

HD 0.900 0.341 0.686 0.727 0.380

HP 0.900 0.358 0.682 0.703 0.522

The range in CI coverage (Table 8.6) for the effectiveness estimand ranged from

2% to 85% for BOCF, from 24% to 81% for LOCF, from 76% to 95% for DL, from

77% to 95% for MI, and from 98% to 99% for pMI.



130 Chapter 8. Placebo MI to Assess Sensitivity and Effectiveness

Table 8.6: Confidence interval coverage for the effectiveness estimand for the analysis

of change from baseline

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI pMI

IMP 0.5 = 51.0 59.0 88.3 89.3 99.1

HD 17.4 38.3 76.1 78.7 99.3

HP 79.1 72.5 91.7 91.8 98.1

IMP 0.3 = 72.2 73.2 92.0 91.8 99.4

HD 28.2 50.5 87.9 89.2 99.5

HP 84.1 80.4 93.1 94.3 97.7

IMP 0 = 79.7 76.6 94.4 94.9 99.4

HD 52.5 63.3 95.5 94.9 99.5

HP 50.5 63.6 95.5 94.9 97.5

Worse 0.5 = 32.6 54.9 85.0 85.4 98.8

HD 77.9 80.0 76.0 76.9 99.0

HP 1.9 24.7 90.6 91.3 98.2

Worse 0.3 = 62.1 69.9 91.3 92.5 98.6

HD 59.3 81.1 86.6 88.7 99.5

HP 7.3 45.9 93.4 93.6 97.8

Worse 0 = 84.8 80.9 94.9 94.3 99.0

HD 35.8 75.4 95.3 95.0 99.7

HP 36.5 75.1 95.2 94.9 97.5

Although pMI’s simulation variance was smaller, its corresponding model-based

variance obtained using Rubin’s combination rules in PROC MIANALYZE was over-

estimating the “true” variance of PMI estimator. Table 8.7 depicts the ratio of sim-

ulation variance/Model based Variance. Unlike other models, pMI has larger model

based variance. The ratio ranges between 0.401 and 0.778. Comparing the ratio

among the three dropout levels, HD (Higher dropout in the drug group) exhibits the

worst. The inflation of the model-based variance seems directly proportional to the

proportion of drug treated data to be replaced by placebo data.
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Table 8.7: Ratio of Simulation Variance versus Model-Based Variance of the effec-

tiveness estimand for the analysis of change from baseline

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI pMI

IMP 0.5 = 2.478 2.795 0.966 0.957 0.545

HD 2.021 2.282 1.004 0.963 0.426

HP 1.886 2.236 0.984 0.986 0.758

IMP 0.3 = 2.522 2.841 0.961 0.953 0.509

HD 2.057 2.337 1.007 0.994 0.41

HP 1.946 2.301 0.978 0.962 0.752

IMP 0 = 2.445 2.802 0.986 0.954 0.507

HD 2.093 2.400 1.008 0.972 0.401

HP 2.055 2.417 0.982 0.955 0.778

Worse 0.5 = 1.919 2.417 0.986 0.989 0.597

HD 1.825 2.349 0.999 0.980 0.462

HP 1.761 2.351 0.990 0.967 0.754

Worse 0.3 = 1.937 2.362 0.999 0.949 0.595

HD 1.756 2.299 1.008 0.991 0.443

HP 1.688 2.285 0.992 0.962 0.712

Worse 0 = 1.906 2.260 1.001 0.961 0.583

HD 1.659 2.198 1.003 0.989 0.440

HP 1.610 2.182 0.994 0.951 0.719

Power for pMI was close to the power from DL and MI when dropout rate was

equal in the drug and control groups or when dropout was higher on placebo (HP);

however, when dropout was higher on drug (HD) power from pMI was appreciable

lower than from DL or MI. When ES =0, BOCF and LOCF provided the desired

control of false positive (FP) results in only 2 of 6 scenarios, with at least triple the

desired rate of FP (2.5%) in 4 of 6 scenarios, with maximum rates of 64% for BOCF

and 34% for LOCF. DL and MI always provided the desired control. For pMI, the

FP rate was always lower than the desired rate of 2.5%.
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Table 8.8: Rejection rates in assessing null hypothesis of no treatment difference for

the analysis of change from baseline

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI pMI

IMP 0.5 = 83.5 82.4 88.6 85.5 55.7

HD 28.7 52.6 90.1 86.4 41.1

HP 99.2 97.8 90.6 86.3 79.2

IMP 0.3 = 53.5 53.5 46.4 41.5 14.3

HD 6.6 18.3 49.4 45.8 7.9

HP 91.7 82.5 47.8 44.4 31.3

IMP 0 = 9.5 11.0 2.3 2.1 0.1

HD 0.3 1.5 1.9 2.2 0.2

HP 49.0 34.4 1.8 2.2 0.8

Worse 0.5 = 82.0 88.9 90.3 87.8 64.8

HD 99.6 95.8 90.5 87.4 48.0

HP 42.3 83.2 90.3 87.8 79.9

Worse 0.3 = 50.3 58.8 50.5 45.1 20.3

HD 97.4 76.7 49.7 46.1 11.2

HP 6.9 43.2 48.0 45.5 36.0

Worse 0 = 7.5 7.9 2.3 2.7 0.6

HD 64.1 21.0 2.0 2.4 0.2

HP 0.1 2.4 1.9 2.1 1.0

8.2.1.2 Efficacy

Tables A.1-A.4 summarize simulation results (bias, relative bias, MSE and CI cover-

age) from tests of the efficacy hypothesis. The Monte Carlo variance in the estimates

and rejection rates apply to both efficacy and effectiveness as the same analysis is

interpreted in two contexts that only vary by what is considered the true value for

the treatment difference.

As expected, DL and MI provided unbiased estimates of efficacy with confidence

interval (CI) coverage essentially equal to the nominal rates. In contrast BOCF and

LOCF were biased, with the direction of bias varying by scenario, leading to poor CI
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coverage and large MSE. pMI provided bias and MSE that are generally smaller than

those in BOCF and LOCF. However, the CI coverage is greater than the nominal

coverage rate in scenarios with no or smaller benefit of drug after discontinuation. In

17/18 scenarios the bias from pMI was conservative as the mean estimate of efficacy

was smaller than the corresponding true value; in the 18th scenario pMI was essentially

unbiased.

8.3 Analysis of the Depression Trial

Results from analysis of the depression trial data (Section 2.3) are summarized in

Table 8.9. The mean change to the endpoint visit on placebo was approximately

8 points compared with approximately 10 points on drug. Therefore, as is typically

the case in depression clinical trials, an appreciable placebo response was observed,

thereby invalidating the assumptions for BOCF and LOCF.

The endpoint contrast from pMI was 1.54 compared with 1.08 from BOCF, 2.13

from DL, 2.09 from MI, and 1.75 from LOCF. Therefore, in the effectiveness context,

the pMI result suggested that the effectiveness of the drug was approximately 73%

the magnitude of the efficacy, as estimated by DL and MI.

Table 8.9: Endpoint treatment contrasts by analytic method from the actual clinical

trial dataset

Method Endpoint Contrast Standard error P-value

DL 2.13 0.97 0.030

MI 2.09 0.92 0.023

pMI 1.54 0.94 0.102

LOCF 1.75 0.88 0.047

BOCF 1.08 0.89 0.253

In the efficacy context, the pMI result can form the lower bound, or worst reason-

able estimate of efficacy, to be combined with other sensitivity analyses to define a

“region of ignorance”. That is, a region wherein the true value almost certainly lies,

but exactly where is not certain.

The SE from pMI was slightly less than the SE from MI and DL and greater than

the SE from BOCF and LOCF. Given that the CI coverage in the simulation results
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for effectiveness was greater than the nominal coverage, the marginally significant p

value from pMI is of less interest. However, it is relevant to note that the p value

from pMI was considerably smaller than the p value from BOCF.

8.4 Discussion

To our knowledge, the simulation study in the present chapter is the first rigorous

evaluation of pMI, a specific form of the jump to reference imputation approach de-

tailed by Little and Yau (1996) and Carpenter, Roger and Kenward (2011). The pMI

approach generally provided unbiased estimates of effectiveness in these simulations

where there was no benefit from drug after discontinuation. However, the confidence

interval coverage was consistently greater than the nominal coverage rate due to the

upward bias of Rubin’s variance estimator. In fact, Rubin’s variance estimator is

known for overestimating the true variance in some cases (Wang and Robins, 1998;

Robins and Wang, 2000). Its performance is context-sensitive and one has to be

careful, especially when the imputation and analysis models are discrepant. Overes-

timating the “true” variance of pMI estimator results in less efficient although still

valid conservative confidence intervals, which might still be acceptable, given that in

clinical research towards effectiveness/efficacy, one would rather err on the conserva-

tive side. Note that imputing missing values for both treated and untreated subjects

using the same imputation model induces positive correlation between the estimated

means in the two treatment groups. This result in smaller variance of the treatment

contrast, however, is not captured by Rubin’s model-based estimator. Hence, lower

ratios of simulated variance versus model-based variance are observed for pMI esti-

mates of treatment effect. This explains the relatively lower efficiency of pMI based

inference, as indicated by larger coverage rates, compared to MI and DL methods.

In addition, pMI yielded conservative estimates of efficacy in all scenarios, whereas

LOCF and BOCF were conservative in some scenarios and anti-conservative in others.

As expected, DL and MI yielded unbiased estimates of efficacy and tended to over-

estimate effectiveness in those scenarios where a drug effect existed. However, in

those scenarios where there was no drug effect, and therefore the true values for both

efficacy and effectiveness were zero, DL and MI yielded unbiased estimates of efficacy

and effectiveness.

These results should be viewed in light of the strengths and limitations of the

present investigation. With the 18 scenarios, the simulation study was, on the one

hand, comprehensive, but still narrow in scope relative to the vast array of clinical

situations. Moreover, several implementations of pMI may be worth considering.
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For example, we also considered an imputation approach similar to what Carpenter,

Roger and Kenward (2011) refer to as “copy to reference”. In our implementation

of copy to reference only baseline severity was used in the imputation model and all

post-baseline data were replaced by imputed values for those patients that dropped

out. Detailed results are not reported as this method did not provide unbiased or

nearly unbiased effectiveness estimates in all scenarios. Independent replication of

the simulation results and more experience with pMI in actual settings would be

useful.

In the study, reasons for dropout were not differentiated as all dropouts resulted

from the same model. In practice, it would be useful to separately consider dropouts

and their impact by reasons for dropout. For example, it has been suggested that

dropouts due to adverse events were the main area of concern and that methods

like DL or MI provided reasonable estimates of effectiveness for other reasons of

discontinuation (Kim, 2011). Therefore, rather than applying pMI to all dropouts, it

may be useful to impute missing values from the placebo group only for drug treated

patients that drop out due to adverse events. However, for initial assessments, the

approach in the present work of applying pMI to all drug treated dropouts was useful

in that it tested the method with high and differential rates of dropout, thereby

allowing assessment of performance under extreme conditions.

Note that pMI, along with direct likelihood, multiple imputation, and their

Bayesian and semi-parametric counterparts, is based on the assumption of MAR.

This makes the latter methods very suitable as the preferred analysis for efficacy and

the former for effectiveness. Of course, in all cases, it is possible for an MNAR mech-

anism to be operating. While contrasting pMI and the results of the other methods

would then provide a partial response to the sensitivities engendered by this violation,

extensive simulations under the assumption of MNAR would be needed, a subject of

subsequent research.

Given these results, further investigation of pMI in scenarios not covered in the

present work is warranted and use of pMI as an a priori specified sensitivity analysis

in situations similar to those investigated in this study is justified.





Chapter 9

General Conclusions and

Future Research

In applied research such as clinical trials, two general lines of attack have been em-

ployed to address the problem of incomplete data. The first is simply to design and

carry out the study in a manner that limits the amount of incomplete data. Better

implementation of a more appropiate design could reduce the frequency of missing

values substantially. A variety of techniques for doing this has been proposed for

clinical trials (National Research Council, 2010). The second line of attack for the

treatment of incomplete data, and the focus of this thesis, is to apply analysis meth-

ods that exploit partial information in the observed data about the missing data to

reduce the potential bias created by the missing data.

The area of missing data analysis has grown substantially over the past few

decades. Concern has been raised about simple methods such as complete case

(CC) analysis and last observation carried forward (LOCF) (Little and Rubin, 2002;

Molenberghs and Kenward, 2007; Kenward and Molenberghs, 2009; National Research

Council, 2010). Their use is decreasing and more principled, MAR-based methods

increase in use; these include multiple imputation strategies Rubin (1987) and so-

called direct-likelihood or direct Bayesian analysis. These are based on the property

of ignorability, which ensures that such analyses are valid under MAR, supplemented

with mild regularity conditions, even without explicitly modeling the missing data

mechanism, provided that all incomplete sequences are subjected to analysis (Rubin,

1976; Little and Rubin, 2002; Molenberghs and Kenward, 2007; Fitzmaurice et al.,

2009). While ignorability would follow under likelihood inference, this is not generally

true for non-likelihood approaches such as GEE and PL.

137



138 Chapter 9. General Conclusions and Future Research

Likelihood methods enjoy many desirable properties, such as efficiency under ap-

propriate regularity conditions and the ability to calculate functions of interest based

on the proposed parametric model. However, for non-Gaussian outcomes in contrast,

not only can the specification of the likelihood function be cumbersome, but also

estimation of the parameters can be computationally intensive. In addition, fully

specifying the joint probability model comes with the risk of possible misspecifica-

tions. Therefore, the difficulty in evaluating the likelihood for models with discrete

correlated data has motivated alternative methods of estimation, the popular ones

being GEE and PL.

While GEE methods replace score equations with alternative functions, in pseudo-

likelihood, the likelihood itself is replaced by a more tractable expression. When at-

tention is restricted to specification of the first moments (i.e., the mean structure) of

the outcome sequence only, GEE leads to valid inferences by circumventing the need

to address the association structure. Because of its frequentist nature, GEE in its

basic form, as applied to incomplete data, is valid only under MCAR. To allow valid

use of GEE under MAR, GEE has been extended to weighted generalized estimat-

ing equations (Robins, Rotnitzky and Zhao, 1995) and doubly robust GEE (Scharf-

stein, Rotnitzky and Robins, 1999; Bang and Robins, 2005; Tsiatis, 2006; Carpenter,

Kenward and Vansteelandt, 2006; Molenberghs and Kenward, 2007; Rotnitzky, 2009;

Birhanu et al., 2011).

In contrast with GEE, PL methods can easily accommodate association (Yi, Zeng

and Cook, 2011; He and Yi, 2011). Broadly speaking, one might consider marginal

or conditional pseudo-likelihood. Pseudo-likelihood is closely related to but differ-

ent from full likelihood and therefore not guaranteed to be valid under MAR, even

though in some specific cases it might, because Rubin (1976) provided conditions for

ignorability that are sufficient but not always necessary.

A substantial part of our work (Chapters 4, 5, 6 and 7) was devoted to the afore-

mentioned alternatives to full likelihood, PL and GEE, with incomplete data. In their

basic form, both GEE and PL, are valid only under the strongest MCAR mechanism.

The aim of our work was to study in more depth the extension needed to ensure

the validity of these methods under the less strong missing data mechanism, MAR.

MCAR is a sufficient condition to the validity of GEE and PL. A number of exten-

sions and modifications of GEE and PL, such as WGEE, MI-GEE, DR-GEE, and

the singly robust and doubly robust version of PL are studied in the thesis. A brief

overview of the resulting conclusions for the pertinent chapters is now presented.

In Chapter 4, we investigated and compared robustness of weighted GEE (WGEE),

multiple imputation GEE (MI-GEE) and doubly robust GEE (DR-GEE). Advantages
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and drawbacks of inverse probability weighting (IPW) methods with respect to mul-

tiple imputation have been the subject of some debate (Scharfstein, Rotnitzky and

Robins, 1999; Clayton et al., 1998; Carpenter, Kenward and Vansteelandt, 2006; Be-

unckens, Sotto and Molenberghs, 2008). Limitations of weighted GEE include: (a)

the need to correctly specify the missingness model, and (b) potential instabilities

associated with very large weights, leading to inefficient estimation and high vari-

ance in finite samples. Double robust (DR) estimators have the potential to alleviate

both of these two limitations. In line with the literature, results from our exten-

sive small-sample simulation studies corroborated the weakness of WGEE: WGEE is

inefficient, especially for small sample sizes, and sensitive to misspecification in the

dropout model. For WGEE, we have proposed a variance estimation that accounts

for the variability in the weights (Birhanu et al., 2011). MI-GEE proves to be ro-

bust under misspecification of the imputation model. The DR-GEE offer not only

efficiency improvement over WGEE, but also bias protection against misspecifcation

of the dropout model. Consequently, we advice to use MI-GEE and DR-GEE over

WGEE in practice.

Although several authors have already used PL estimation (le Cessie and van

Houwelingen, 1994; Geys, Molenberghs, and Lipsitz, 1998; Geys, Molenberghs, and

Ryan, 1999; Aerts et al., 2002), little work has been done for PL estimation with

incomplete data. In this thesis, pseudo-likelihood methods were investigated in the

marginal and conditional modeling of incomplete non-Gaussian and Gaussian data.

While the numerical and computational issues accompanying the likelihood expres-

sions of the models are circumvented by means of substituting pairwise pseudo-

likelihood expressions for their full likelihood counterparts, the incompleteness in the

data are addressed using inverse probability weighting ideas, thereby yielding singly

and doubly robust estimators. This broadens the tool base for the obtaining models

for incomplete data.

In Chapter 5, we have laid out a general framework for handling incomplete data,

predominantly within the pseudo-likelihood setting, and formulated several alterna-

tive corrections employing inverse probability weighting ideas to ensure validity under

MAR. These corrections follow both single and double robustness ideas, making use of

inverse probability weighting (IPW), possibly supplemented with a predictive model

for the unobserved outcomes given the observed ones, wherever appropriate. We de-

veloped the methodology, indicated how a conventional sandwich-type estimator can

be used, and illustrated case applications for multivariate normal outcomes and a

conditional pseudo-likelihood model for a binary outcome.

In Chapter 6, we extended the ideas in Molenberghs et al. (2011), using inverse
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probability weighting and double robustness ideas (Scharfstein, Rotnitzky and Robins,

1999; Van der Laan and Robins, 2003; Bang and Robins, 2005; Rotnitzky, 2009).

While Molenberghs et al. (2011) considered specific case studies involving Gaussian

and exchangeable binary outcomes (Chapter 5), we supplemented the latter with a

simulation study and considered more general types of correlation structure. Singly

robust estimators with correctly specified dropout model and our doubly robust esti-

mators without weights are at least as efficient as full likelihood. Furthermore, under

full or near exchangeability, the naive available case version is as efficient as the dou-

bly robust estimators. This is a very appealing property, because double robustness

can be invoked without having to use weights or expectations.

In Chapter 7, the efficiency and robustness of various version of GEE and PL are

investigated and compared focusing on marginal models for non-Gaussian longitudinal

data with dropout. Inverse probability weighting-based, multiple imputation-based

and doubly robust PL and GEE are compared under correctly specified, partially

misspecified and severely misspecified dropout and imputation models. Compared to

GEE, PL is as efficient as full likelihood, while the additional computational burden is

minor. When the scientific interest lies in the estimation of the association parameter

as well we advocate the use of PL.

Kang and Schafer (2007) showed empirically that there exist situations where

severe biases may occur even when both weight and predictive models are only slightly

misspecified. These authors also showed that widely varying weights are a potential

risk for bias as well. This underscores that, like any tool in statistics, the user ought

to be aware of the relative merits and advantages of the doubly robust method. In this

respect, it is highly relevant that, in a number of settings we considered in Chapter 5

and Chapter 6, such as (5.33), the weights cancel from the estimating equations,

thereby increasing robustness. Our doubly robust estimators, discussed in Chapter 5

and Chapter 6, are more efficient than the classical doubly robust estimators, because

the models for the missingness mechanism (weight) cancels out.

In Chapter 8, we assessed the statistical performance of a method referred to as

placebo multiple imputation (pMI) as an estimator of effectiveness and as a worst

reasonable case sensitivity analysis in assessing efficacy. The pMI method assumes

the statistical behavior of placebo- and drug-treated patients after drop out is the

statistical behavior of placebo-treated patients. Thus, in the effectiveness context

pMI assumes no pharmacological benefit of the drug after dropout. In a simulation

study with 18 scenarios the pMI approach generally provided unbiased estimates of

effectiveness and conservative estimates of efficacy. However, the confidence interval

coverage was consistently greater than the nominal coverage rate. In contrast, LOCF
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and BOCF were conservative in some scenarios and anti-conservative in others with

respect to efficacy and effectiveness. As expected, direct likelihood (DL) and stan-

dard multiple imputation (MI) yielded unbiased estimates of efficacy and tended to

over-estimate effectiveness in those scenarios where a drug effect existed. However, in

scenarios with no drug effect, meaning the true values for both efficacy and effective-

ness were zero, DL and MI yielded unbiased estimates of efficacy and effectiveness.

Our work has concentrated on a limited, yet important, aspect of incomplete data

modeling however, and there are a number of issues not covered in this thesis and

need further examination if we wish to use our PL-based doubly robust estimation

equation routinely. These are briefly discussed below.

While our methodologies are general, their implementation for general missing

data patterns is more complicated than when missingness is confined to dropout, or

arises in a clustered-data setting. Robust methodologies, like those discussed in the

thesis could be used and further research on extending the discussed PL-based esti-

mating equations to non-monotone case are recommended. While our work mostly fo-

cuses on the MAR setting, in practice one cannot rule out the possibility of an MNAR

mechanism. Furthermore, even when MAR is deemed plausible, it is of interest to

conduct some form of sensitivity analysis (Molenberghs and Kenward, 2007; Fitzmau-

rice et al., 2009). Obvious routes include: (1) the extension of Pseudo-likelihood (PL)

to MNAR, advocated by Parzen et al. (2006); and (2) the extension of our results

along the lines of Vansteelandt, Rotnitzky, and Robins (2007).

The advantage of a variety of proposals (singly robust and doubly robust) is that

the user has freedom of selection. Of course, more work is needed to provide further

guidance toward such a choice. In Chapter 5, we have indicated, for some specific

cases, how standard errors can be derived. It is important to consider methods that

do not involve tedious analytical considerations, such as, for example, the jackknife-

based method of Heagerty and Lele (1998) need to be undertaken for a variety of

other choices.
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Appendix A

Simulation Results for

Efficacy Estimand

In this appendix, we present tables for the simulation studies discussed in Sec-

tion 8.2.1.2 of Chapter 8. Table A.1 present bias from test of efficacy estimand for

the analysis of change from baseline. Table A.2 depicts relative bias in estimates of

the efficacy estimand for the analysis of change from baseline. Mean Square Error in

estimates of the efficacy estimand for the analysis of change from baseline are shown

in Table A.3 while results for the Confidence Interval (CI) coverage in estimates of

the efficacy estimand for the analysis of change from baseline are given in Table A.4.
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Table A.1: Bias in estimates of the efficacy estimand for the analysis of change from

baseline

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI pMI

IMP 0.5 = 1.431 1.329 0.043 0.045 0.764

HD 2.314 1.995 0.039 0.039 0.974

HP 0.767 0.877 0.039 0.041 0.477

IMP 0.3 = 0.876 0.815 0.044 0.047 0.524

HD 1.690 1.422 0.038 0.041 0.650

HP 0.228 0.362 0.037 0.042 0.323

IMP 0 = 0.012 0.018 0.038 0.044 0.105

HD 0.681 0.512 0.041 0.038 0.132

HP -0.665 -0.470 0.037 0.036 0.067

Worse 0.5 = 1.694 1.442 0.034 0.035 0.706

HD 0.813 1.167 0.043 0.042 0.899

HP 2.193 1.605 0.045 0.051 0.496

Worse 0.3 = 0.998 0.865 0.027 0.037 0.463

HD 0.122 0.579 0.041 0.043 0.604

HP 1.632 1.084 0.044 0.052 0.207

Worse 0 = 0.008 0.022 0.033 0.034 0.115

HD -0.836 -0.269 0.042 0.037 0.123

HP 0.839 0.302 0.046 0.045 -0.028
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Table A.2: Relative bias in estimates of the efficacy estimand for the analysis of

change from baseline

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI pMI

IMP 0.5 = 0.519 0.483 0.016 0.016 0.277

HD 0.840 0.724 0.014 0.014 0.354

HP 0.278 0.318 0.014 0.015 0.173

IMP 0.3 = 0.530 0.493 0.027 0.028 0.317

HD 1.023 0.860 0.023 0.025 0.393

HP 0.138 0.219 0.022 0.025 0.195

Worse 0.5 = 0.615 0.523 0.012 0.013 0.256

HD 0.295 0.424 0.016 0.015 0.326

HP 0.796 0.583 0.016 0.018 0.180

Worse 0.3 = 0.604 0.524 0.017 0.022 0.280

HD 0.074 0.351 0.025 0.026 0.366

HP 0.987 0.656 0.027 0.032 0.126



Table A.3: Mean square error in estimates of the effectiveness estimand for the anal-

ysis of change from baseline

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI pMI

IMP 0.5 = 2.406 2.232 0.701 0.751 1.059

HD 5.646 4.314 0.693 0.720 1.340

HP 0.858 1.095 0.684 0.738 0.769

IMP 0.3 = 1.114 1.117 0.707 0.765 0.719

HD 3.139 2.349 0.701 0.749 0.794

HP 0.318 0.455 0.681 0.715 0.630

IMP 0 = 0.313 0.424 0.691 0.717 0.433

HD 0.731 0.583 0.702 0.735 0.376

HP 0.706 0.543 0.687 0.724 0.528

Worse 0.5 = 3.077 2.354 0.685 0.732 0.968

HD 0.866 1.636 0.680 0.717 1.207

HP 5.007 2.847 0.681 0.707 0.782

Worse 0.3 = 1.216 1.025 0.681 0.691 0.665

HD 0.217 0.607 0.692 0.724 0.745

HP 2.857 1.443 0.682 0.705 0.566

Worse 0 = 0.228 0.275 0.675 0.692 0.441

HD 0.900 0.341 0.686 0.727 0.380

HP 0.900 0.358 0.682 0.703 0.522
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Table A.4: Confidence Interval coverage in estimates of the efficacy estimand for the

analysis of change from baseline

Scenarios Method

Trajectory ES dropout pattern BOCF LOCF DL MI pMI

IMP 0.5 = 12.2 22.7 94.2 94.9 94.5

HD 0.2 1.3 95.2 95.3 93.4

HP 49.3 42.7 95.4 95.2 94.0

IMP 0.3 = 40.1 47.0 94.8 94.4 97.4

HD 3.9 10.7 95.4 94.7 98.5

HP 79.2 71.8 96.0 94.6 96.1

IMP 0 = 79.7 76.6 94.4 94.9 99.4

HD 52.5 63.3 95.5 94.9 99.5

HP 50.5 63.6 95.5 94.9 97.5

Worse 0.5 = 0.6 6.1 94.6 94.3 93.7

HD 36.3 17.1 95.2 95.2 93.3

HP 0.1 2.8 95.3 95.5 93.9

Worse 0.3 = 23.2 36.8 95.0 94.4 96.6

HD 84.7 57.6 95.2 95.2 97.7

HP 1.9 21.5 95.3 95.6 96.6

Worse 0 = 84.8 80.9 94.9 94.3 99.0

HD 35.8 75.4 95.3 95.0 99.7

HP 36.5 75.1 95.2 94.9 97.5
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