
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Comparison of Predictive-Corrective Video Coding Filters for Real-Time

FPGA-based Lossless Compression in Multi-Camera Systems

Peer-reviewed author version

STUKKEN, Bart; WANG, Yimu; Bao, Yu; Chen, Caikou & CLAESEN, Luc (2016)

Comparison of Predictive-Corrective Video Coding Filters for Real-Time

FPGA-based Lossless Compression in Multi-Camera Systems. In: Lindh, Lennart;

Mooney, Vincent J.; Roed, Ketil; Källberg, David; de Pablo, Santiago; Shalan,

Mohamed; Ôberg, Johnny; Ellervee, Peeter (Ed.). 12th FPGAworld Conference:

Academic Proceedings 2015, p. 33-39.

Handle: http://hdl.handle.net/1942/20538

Comparison of Predictive-Corrective Video Coding Filters
for Real-Time FPGA-based Lossless Compression in

Multi-Camera Systems
Bart Stukken

Hasselt University
Diepenbeek

Belgium

Caikou Chen
Communication Eng.
Yangzhou University

China

Yimu Wang
Hasselt University

Diepenbeek
Belgium

Luc Claesen

Hasselt University
Diepenbeek

Belgium

Yu Bao
Communication Eng.
Yangzhou University

China

ABSTRACT
Combining multiple cameras in a bigger multi-camera system
give the opportunity to realize novel concepts (e.g.
omnidirectional video, view interpolation) in real-time. The
better the quality, the more data that is needed to be captured. As
more data has a direct impact on storage space and
communication bandwidth, it is preferable to reduce the load by
compressing the size. This cannot come at the expense of latency,
because the main requirement is real-time data processing for
multi-camera video applications. Also, all the image details need
to be preserved for improving the computational usage in a later
stage. Therefore, this research is focused on predictive-corrective
coding filters with entropy encoding (i.e. Huffman coding) and
apply these on the raw image sensor data to compress the huge
amount of data in a lossless manner. This technique does not
need framebuffers, nor does it introduce any additional latency.
At maximum, there will be some line-based latency, in order to
combine multiple compressed pixels in one communication
package. It has a lower compression factor as lossy image
compression algorithms, but it does not remove human invisible
image features that are crucial in disparity calculations,
matching, video stitching and 3D model synthesis. This paper
compares various existing predictive-corrective coding filters
after they have been optimized to work on raw sensor data with a
color filter array (i.e. Bayer pattern). The intention is to develop
an efficient implementation for System-on-Chip (SoC)
architectures to improve the computational multi-camera
systems.

Categories and Subject Descriptors
B.6.3 [VHDL, Verilog]: Language Constructs and Features –
lossless compression, image processing, system-on-chip.

General Terms
Algorithms, Performance, Design, Experimentation, Theory.

Keywords
multi-camera, lossless compression, Bayer pattern, system-on-
chip, SoC, entropy encoding, VLSI.

1. INTRODUCTION
Nowadays, CMOS image sensors are abundantly available due to
the rapid evolution in VLSI technology. Many multi-media
devices (e.g. smartphones, tablets) contain one or more high-
quality cameras. By combining multiple of these cost-efficient
cameras, it is possible to realize all kinds of novel concepts such
as omnidirectional video and virtual viewpoint interpolation
[5,6,7]. If we would extrapolate this trend, hundreds of cameras
could work closely together to capture scenes of television plays
or sports events in real-time from several fixed positions. The
various viewpoints can collect all the information that is needed
to synthesize any “virtual” viewpoint between the real cameras.

In a multi-camera system, it is possible to improve the end result
by not only improving the recorded quality of each camera, but
also to improve the number of (cheaper) cameras. However, this
has a direct impact on the storage space and communication
bandwidth. For example, if you have five 2MP cameras with 30
fps, the total raw data size that is captured reaches around 900
MB per second. Imagine the impact if the amount of cameras
would increase to a hundred, unless the bandwidth requirement
is not reduced by some compression, a bottleneck will arise.

Traditional compression standards (e.g. MPEG, H.264) reduce
the size by removing redundant information for the human
observer. Unfortunately, high frequency content or other image
features that are invisible to the human eye, are crucial for
computational purposes in multi-camera systems. These systems
need to combine the visual data from several image sensors and
their quality relies a lot on the accuracy of such high spatial
frequency clues for accurate and detailed matching of features
captured by the different cameras. For future improvements to
disparity calculations, matching, video stitching and 3D model
synthesis, all the images features need to be kept intact. This
limits this research to lossless compression techniques, although
the compression factor is lower than the previously mentioned
lossy compression algorithms.

Furthermore, to achieve the lowest possible latency in a future
System-on-Chip (SoC) architecture, this research is focused on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FPGAWorld'15, September 8-10, Stockholm and Copenhagen.
Copyright © 2015 ACM 978-1-4503-3737-3...

predictive-corrective coding filters as it does not need
framebuffers to do the lossless compression of the image sensor
data. The first step of the encoding sequence can be calculated
directly from the active sensor data. The second step using
entropy encoding as the compression technique, needs multiple
pixels to compress it to one communication package and to gain
in the long run. This, however, will introduce line-based latency,
but there is no other known technique that preforms better for
lossless compression with regards to latency. Lossless image
compression algorithms that make use of image tiling will have a
higher latency, because the entire tile needs to be captured before
it can be send. This puts the minimum latency as high as the
height of the tile in scan line numbers, thus latency = tile height
× image width.

There are already several well developed predictive-corrective
coding filters (e.g. DCPM [1], Paeth [2], GAP [3], JPEG-LS [4]),
but they are designed and optimized for full color images. As the
goal is to develop a SoC architecture, the filter can be applied on
raw sensor data with a color filter array and improve the
compression factor for each individual camera in the multi-
camera system. In this work, the predictive-corrective coding
filters will be adjusted to work on a color filter array (i.e. Bayer
pattern) as these kind of cameras are going to be used in future
work.

This paper is structured as follows. In the next section the next
predictive-corrective coding filters for lossless image
compression are explained : DCPM, Paeth, GAP and JPEG-LS.
In section III the method for compression, entropy encoding, is
elaborated. The results from the applied Huffman coding on the
error-corrective values given by the predictive-corrective coding
filters, are also displayed in section III. These can be used to
compare the results in section IV, in which the algorithms have
been updated to work with a color filter array (i.e. Bayer
pattern). It is noticeable that the prediction algorithms on Bayer
patterned mosaic images work better (i.e. a compression factor of
5.3:1) than the normal RGB compression can reach (i.e. a
compression factor of 2:1). Section V concludes with a discussion
on the lossless image compression results.

2. PREDICTIVE-CORRECTIVE CODING
FILTERS
All the predictive-corrective coding filters try to find the best
estimation of a certain pixel, based on previous known pixel
values. As the image sensor will transmit the 2D image in a pixel
serial order (i.e. left to right for each row and from top to
bottom), a prediction can only be done for the next pixel in line.
Therefore, none of the future information (i.e. on the right and
below the current pixel) can be used, unless there is a
framebuffer. But this research will not look into the techniques
that use framebuffers, as that is much more memory intensive.
Predictive-corrective coding filters only need a limited amount of
line buffer, depending on the chosen technique.

Once a estimation of the currently transferred pixel value is
done, the correction with the actual sensor value can be
calculated. By only transferring these error-corrective values, the
original image can still be recalculated lossless in a later stage.
This process is fully illustrated in figure 1.

(a)

(b)
Figure 1. Predictive-corrective coding filter schematic
diagram : (a) encoding image to error-corrective data

stream, (b) decoding an error-corrective data stream back to
the original image.

The better the prediction, the closer the prediction is to the actual
value, and the smaller the error is, and the closer the error-
corrective value is to zero. By gathering a lot of the same values
(i.e. all of the values distributed near zero), it is possible to apply
an entropy encoding technique (e.g. Huffman coding) to reduce
the overall size.

2.1 DPCM
The 2D form of the Differential Pulse Code Modulation (DPCM)
is one of the simplest forms of a predictive-corrective coding
filter used for image compression. This technique has been added
to the JPEG standard as Lossless JPEG in 1993 [1]. It makes a
prediction of the next pixel by applying just one formula that
calculates the interpolation of the three previous and neighboring
pixels. As shown in figure 2, the prediction value is calculated as
follows P = B + C – A. Due to this formula, it is possible to
calculate over- and underflow. To keep the values in range, these
are clipped within the possible range.

Figure 2. Predictive-corrective coding filters, DPCM and

Paeth, use only the three previous and neighbouring pixels as
window to calculate a prediction for P.

2.2 Simple predictive-corrective coding
For the PNG Working Group, Alan W. Paeth has proposed an
algorithm that has a better prediction result than DPCM [2]. It
uses the same window and formula as DPCM (see figure 2) to do
the prediction (i.e. three previous and neighboring pixels), but
the predicting algorithm is different. It will select a previous
pixel value (i.e. A, B or C) that is closest to the calculated
DPCM value. In pseudo code, this algorithm would look like the
following sequence for each pixel :

P = B + C – A;
IF |P – A| ≤ |P – B| AND |P – A| ≤ |P – C|

P = A; //A is closest to P
ELSE IF |P – B| ≤ |P – A| AND |P – B| ≤ |P – C|

P = B; //B is closest to P
ELSE

P = C; //C is closest to P
END

2.3 Context-based, adaptive lossless image
coding
In response to the request for new techniques for lossless image
compression from the JPEG Working Group, a new algorithm
has been invented. Xiaolin Wu has proposed a Context-based,
Adaptive Lossless Image Coding (CALIC) [3] that also uses a
window of previous and neighboring pixels, but it is expanded
up to seven previous known values to do a more substantiated
prediction. As depicted in figure 3, the prediction has a much
bigger window to make a prediction.

Figure 3. The window that is used by GAP algorithm uses

the seven previous and neighbouring pixels to make a
prediction for P.

By using more aligned pixel values, it is possible to use a
Gradient-Adjusted Prediction (GAP). The GAP algorithm that is
used in the CALIC design, also tries to take several different
edge types into account. Therefore, it accumulates all absolute
vertical changes and compares it with the accumulation of all the
absolute horizontal changes. The difference between these two
sums of absolute differences, has been parameterized to use
different formulas on different types of edges. This is visible in
the following pseudo code sequence that will be used for every
pixel prediction :

Dh = |W – WW| + |N – NW| + |N – NE|; //horizontal
Dv = |W – NW| + |N – NN| + |NE – NNE|; //vertical
Edge = Dh – Dv;
IF Edge > 80 //sharp horizontal edge

P = W;
ELSE IF Edge > 32 //horizontal edge

P = W / 2 + (W + N) / 4 + (NE – NW) / 8;
ELSE IF Edge > 8 //weak horizontal edge

P = W / 4 + 3 * (W + N) / 8 + 3 * (NE – NW) / 16;
ELSE IF Edge < –80 //sharp vertical edge

P = N;
ELSE IF Edge < –32 //vertical edge

P = N / 2 + (W + N) / 4 + (NE – NW) / 8;
ELSE IF Edge < –8 //weak vertical edge

P = N / 4 + 3 * (W + N) / 8 + 3 * (NE – NW) / 16;

ELSE
P = (W + N) / 2 + (NE – NW) / 4;

END

2.4 JPEG-LS
After the first proposition of JPEG-LS as a new Lossless JPEG
technique that only detects horizontal and vertical edges and uses
a different formula for the prediction, improvements where
proposed to implement a diagonal edge-based prediction
algorithm [4]. The window that is used for each edge-based
prediction, is defined by the four previous and neighboring pixels
as displayed in figure 4.

Figure 4. JPEG-LS uses four previous and neighbouring

pixel to make an edge-based prediction for P.
Depending on the predefined thresholds, the algorithm will
detect different types of edges. It is therefore important to
determine thresholds that work well on a broad range of pictures.
In this research, the two thresholds (T1 = 60 and T2 = 8) are
founded on the results in [4]. Only when the top left pixel C is
higher or lower than the two closest neighboring pixels A and B,
an edge is detected. In all other cases, old DPCM formula is used
to do a prediction. When de difference between C and its
neighbors A and B is bigger than threshold T1, and the
difference between A and B is not that bigger than threshold T2,
a diagonal DPCM formula is used (i.e. P = B + D – A). For the
vertical edges, one of the neighboring pixel values A or B is
used. The following pseudo code clarifies the logic behind the
algorithm, its edge detection and the different prediction
formulas :

IF C ≥ max(A, B) //light to dark edge
IF C – max(A, B) > T1 AND |A – B| ≤ T2 //diagonal

P = B + D – A;
ELSE

P = min(A, B);
END

ELSE IF C ≤ min(A, B) //dark to light edge
IF min(A, B) – C > T1 AND |A – B| ≤ T2 //diagonal

P = B + D – A;
ELSE

P = max(A, B);
END

ELSE //no clear edge
P = A + B – C

END

3. ENTROPY ENCODING
In previous predictive-corrective coding filters, the prediction
errors are distributed near zero, which is well-suited for the
subsequent coding. To compress these error-corrective values,
the most frequent value must use the least amount of space at the
expense of the values that are very rare. Therefore, in this
research the Huffman coding is used as it is not the focus to
compare entropy encoding techniques. Any optimization can
always be obtained once the best predictive-corrective coding
filters is found. Just using one entropy encoding technique is
enough to demonstrate and compare the compression results.
Figure 5 shows the histogram of pixel values before and after a
predictive-corrective coding filter has been applied.

(a)

(b)
Figure 5. Pixel value histogram : (a) the full color of an

image are distributed over the entire value spectrum, (b) the
error-corrective values are close to zero.

In order to make a good comparison, all the predictive-corrective
coding filters have been applied to the high resolution benchmark
images from The New Image Compression Test Set1. The results
of the compression factors after the Huffman coding are shown in
table 1. To have a correct baseline the results from only applying
Huffman coding is also included (i.e. the “none” filter). The
compression factor = original size / compressed size, making the
highest number the best compression algorithm.

Table 1. Compression factors of the benchmark images after
lossless compression

Image None DPCM Paeth GAP JPEG-LS
artificial 1.271 4.848 5.077 4.775 5.078
big_building 1.059 1.845 1.877 1.901 1.916
big_tree 1.133 1.679 1.729 1.776 1.760
bridge 1.075 1.660 1.684 1.739 1.716
cathedral 1.206 1.877 1.942 1.967 1.974
deer 1.266 1.362 1.440 1.489 1.451
fireworks 2.242 3.461 3.597 3.650 3.641
flower_foveon 1.122 2.987 3.197 3.387 3.277
hdr 1.135 2.617 2.833 2.949 2.885
leaves_iso_1600 1.089 1.574 1.589 1.630 1.618
leaves_iso_200 1.083 1.797 1.781 1.839 1.829
nightshot_iso_100 1.240 2.886 3.035 3.066 3.083
nightshot_iso_1600 1.292 1.692 1.771 1.780 1.782
spider_web 1.040 3.917 3.879 4.017 4.022
TOTAL 1.151 1.971 2.026 2.070 2.062

In the comparison above, this research is only comparing the
technique for the inside of the picture. All the special border
algorithms are being dropped as these small optimizations should
not have any influence on the end result. To conclude, the GAP
and JPEG-LS are very good candidates for compression, with a
small preference to the GAP. The lossless compression factor is
around 2:1 for a various kind of images, but as this research is
focused on the compression of the hardware image sensor data,
the current techniques need to be adjusted.

4. COLOR FILTER ARRAY
In order to capture full color images with an image sensor, many
different techniques arose. One of the most used techniques is
the use of a color filter array on top of the image sensor. By
filtering a specific color for a single light sensor, only that color
is captured. Using a fixed color pattern, like the Bayer pattern,
the raw sensor data will transmit mosaic images. Afterwards, the
full color images can be obtained with the use of demosaicing
algorithms. As portrayed in figure 6, each pixel contains
originally only one color value.

Figure 6. Bayer pattern as color filter array, only one color
value is captured per pixel on the raw image sensor before

the demosaicing blends them into a full color picture.
This would suggest that the images could have a lossless
compression factor of 3:1 when saving the raw mosaic image.
The demosaicing algorithm can always be redone and thus makes
previous compression algorithms look useless. However, in this
research both techniques are being combined. Therefore, the
predictions have to be separated for each color and adjusted to

1 http://www.imagecompression.info/test_images

use the correct neighboring pixels. A primary and easy approach
would be to just use the same technique, but jump two pixels in
each direction. For the red and blue color, this is sufficient.
However, the green color could have used its diagonal
neighboring pixels to do a better prediction. The results shown in
table 2, indicate that the compression can be higher than 2:1 or
3:1 by just using this first approach. Also the “none” filter has
been used to provide a better baseline for comparison.

Table 2. Compression factors of the benchmark images after
lossless compression with Bayer pattern

Image None DPCM Paeth GAP JPEG-LS
artificial 3.805 11.606 12.754 11.433 12.624
big_building 3.177 4.496 4.672 4.740 4.732
big_tree 3.368 4.142 4.340 4.474 4.385
bridge 3.219 4.137 4.302 4.439 4.350
cathedral 3.618 4.552 4.769 4.901 4.816
deer 3.795 3.877 4.125 4.283 4.152
fireworks 6.622 8.457 8.926 9.211 8.994
flower_foveon 3.489 7.681 8.230 8.518 8.365
hdr 3.426 6.602 7.170 7.449 7.256
leaves_iso_1600 3.238 3.958 4.051 4.148 4.097
leaves_iso_200 3.228 4.224 4.327 4.425 4.383
nightshot_iso_100 3.682 6.783 7.228 7.421 7.299
nightshot_iso_1600 3.826 4.507 4.703 4.840 4.738
spider_web 3.121 7.566 8.026 8.406 8.204
TOTAL 3.442 4.868 5.099 5.225 5.155

In a first simple approach, it is noticeable that GAP is the better
algorithm in combination with the Bayer pattern. It has an
average compression factor of 5.2:1 which is much better than
the 3:1 or 2:1 discussed before. To be correct, it must be
mentioned that for this research the GBRG Bayer pattern (as in
figure 6) has been chosen and reverted from the benchmark
images. Therefore, the results only give a good indication, but
are not the most correct values. Future work will be done on the
raw sensor data which has the correct color filter array.

In attempt to study the influences of improving the green
prediction algorithm, a few changes has been made to the
existing predictive-corrective coding filters. For the DPCM and
Paeth, the window has been upgraded to also use the diagonal
neighboring pixel as demonstrated in figure 7. The DPCM
prediction value is also calculated differently as the average
between the 2D and diagonal interpolation. The formula is as
follows P = (B + C - A) + (2 * D - A). As Paeth uses this to
find the closest neighboring pixel value, the only improvement is
that it also can pick the pixel value of D, if that one is closest.

Figure 7. The improved window for the green pixels in
mosaic image with a Bayer pattern, used for the predictive-

corrective coding filters DPCM and Paeth.
For GAP and JPEG-LS a simple shift has been applied to the
rows. While the horizontal neighboring pixels still require a two
pixel jump, the vertical pixels are diagonal and require an
additional jump to the left when going an odd number upwards.
Figure 8 gives a clear view how these two algorithms windows
have changed for the green color in a mosaic image.

(a)

(b)
Figure 8. A simple shift applied to the green color windows of

mosaic images with Bayer pattern in predictive-corrective
coding filters : (a) GAP, (b) JPEG-LS.

These improved predictive-corrective coding filters are being
tested on the Bayer patterned mosaic images of the benchmark
set. The results are shown in table 3 and can be compared with
all previous results.

Table 3. Compression factors of the benchmark images after
improved lossless compression with Bayer pattern

Image None DPCM Paeth GAP JPEG-LS
artificial 3.805 11,586 13,210 11,714 12,867
big_building 3.177 4,559 4,733 4,857 4,721
big_tree 3.368 4,206 4,403 4,556 4,432
bridge 3.219 4,184 4,337 4,472 4,331
cathedral 3.618 4,630 4,849 5,021 4,892
deer 3.795 3,918 4,135 4,290 4,153
fireworks 6.622 8,613 9,097 9,490 9,090
flower_foveon 3.489 7,835 8,346 8,740 8,456
hdr 3.426 6,722 7,326 7,631 7,284
leaves_iso_1600 3.238 4,032 4,124 4,226 4,405
leaves_iso_200 3.228 4,329 4,432 4,533 4,119
nightshot_iso_100 3.682 6,879 7,338 7,555 7,230
nightshot_iso_1600 3.826 4,563 4,748 4,893 4,756
spider_web 3.121 7,791 8,213 8,720 8,166
TOTAL 3.442 4,943 5,170 5,326 5,170

GAP is again the best overall algorithm and has like most other
filters a compression factor gain of 0.1, making the end result
5.3:1. Although, this is a better result than previous reached,
much improvements can be found in working directly with the
color filter arrays. Future work should be done in the direction of
improving the predictor with values from the other colors in the
color filter array.

5. FPGA IMPLEMENTATION
To put the theory into practice, a real-time implementation is
made on an Altera Cyclone-II EP2C70 FPGA equipped with a 5
mega pixel camera module inserted into the GPIO slot. This can
be seen on figure 9. This camera module streams its raw Bayer
pattern image data to the FPGA core with an implementation of
the simple predictive-corrective coding algorithm. Each
consecutive clock cycle during the image transfer, a pixel value
is retrieved from the image sensor, a prediction is made by using
the algorithm of Paeth. The error correction is then obtained by
subtracting these two values.

Figure 9. FPGA implementation on a DE2-70 with a D5M
camera module for real-time simple predictive-corrective

coding.
For demonstration purposes and visible in figure 10, these error
corrective values are enhanced and displayed in real-time via the
VGA signal onto a connected monitor. These values are also
collected and used to calculate and display a histogram.
Therefore, it the prediction algorithm is visible and in particular
the influences of scenery. For instance, the histogram adapts
dynamically and has a wider base on a more complex scene (i.e.
harder to do a correct prediction), or has a peak when there is an
overflow (i.e. too much lightning can give a big spot with all the
same high value). In Table IV an overview of the hardware
utilization for the FPGA implementation is summarized.

Table 4. FPGA demonstrator hardware utilization
Characteristic Used Total

Available
% Utilization

Total logic elements 3,085 68,416 5
Total combinatorial functions 2,355 68,416 3
Dedicated logic regisers 2,021 68,416 3
Total registers 2,065
Total memory bits 587,256 1,152,000 51
Multipliers 0 300 0

(a)

(b)
Figure 10. Real-time results of the FPGA implementation :
(a) the original scene that is captured by the camera, (b) the

error corrective values that are enhanced and the historgram
of these values.

6. CONCLUSION
In this paper, it is proven that a synergy can be reached by
combining a color filter array (e.g. Bayer pattern) with known
predictive-corrective coding filters and an entropy encoding for a
higher overall lossless compression of images. The four altered
techniques (i.e. DPCM, Paeth, GAP and JPEG-LS) have been
examined and compared with the use of a high resolution
benchmarking image set. It is concluded that the update GAP
algorithm has reached the best overall result. With an average
compression factor of 5.3:1 it surpasses the same algorithm on
the full color images, which only got a compression factor of 2:1.
Nevertheless, there is still room for improvement as many
different approaches have not been invented (e.g. Bayer pattern
specific algorithms).

For our bigger research goal of implementing a compression
algorithm in hardware for multi-camera systems, it already shows
to apply these techniques before the demosaicing process.
Therefore, in future work, the GAP algorithm will be
implemented as a SoC architecture to reduce the bandwidth
requirement in multi-camera systems, without compromising the
latency. Although, this will not give enough room to have a
hundred cameras interconnected, it is a big step forwards to
reduce the communication bandwidth a fivefold. Other possible
improvements (e.g. software-defined networking) benefit from
this approach and are researched in our group in parallel.

The research in this paper was partly funded by the bilateral FWO-
MOST (Belgian Research Council research cooperation contract G.0524.13.

7. REFERENCES
[1] Wallace, G.K., "The JPEG still picture compression

standard," Consumer Electronics, IEEE Transactions on ,
vol.38, no.1, pp.xviii,xxxiv, Feb 1992

[2] Alan W. Paeth, "Image File Compression Made Easy", in
Graphics Gems II (edited by James Arvo), Academic Press,
1995, ISBN 0-12-059756-X, pp. 93-101.

[3] X. Wu, N. Memon, "CALIC - A context based adaptive
lossless codec", Proceedings IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP-96, 7-
10 May 1996, Vol. 4, pp. 1890-1893.

[4] Eran A. Edirisinghe, Satish Bedi, Christos Grecos,
“Improvements to JPEG-LS via diagonal edge-based
prediction.”, in Proc. SPIE 4671, Visual Communications
and Image Processing 2002, 604 (January 7, 2002);

[5] A. Motten, L. Claesen, Y. Pan, "Trinocular Stereo Vision
using a Multi Level Hierarchical Classification Structure",
chapter in "VLSI-SoC: From Algorithms to Circuits and
System-on-Chip Design”, editors: A. Coskun, A. Burg, R.
Reis, M. Guthaus, Springer ISBN 978-3-642-45072-3, pp.
45-63.

[6] R. Szeliski, “Computer Vision: Algorithms and
Applications”, Texts in Computer Science 2011, Springer,
ISBN: 978-1-84882-934-3.

[7] Abdulkadir Akin, “Real-Time High-Resolution Multiple-
Camera Depth Map Estimation Hardware and Its
Applications”, Ph.D. Thesis EPFL Lausanne, 2015.

