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ABSTRACT 
Combining multiple cameras in a bigger multi-camera system 
give the opportunity to realize novel concepts (e.g. 
omnidirectional video, view interpolation) in real-time. The 
better the quality, the more data that is needed to be captured. As 
more data has a direct impact on storage space and 
communication bandwidth, it is preferable to reduce the load by 
compressing the size. This cannot come at the expense of latency, 
because the main requirement is real-time data processing for 
multi-camera video applications. Also, all the image details need 
to be preserved for improving the computational usage in a later 
stage. Therefore, this research is focused on predictive-corrective 
coding filters with entropy encoding (i.e. Huffman coding) and 
apply these on the raw image sensor data to compress the huge 
amount of data in a lossless manner. This technique does not 
need framebuffers, nor does it introduce any additional latency. 
At maximum, there will be some line-based latency, in order to 
combine multiple compressed pixels in one communication 
package. It has a lower compression factor as lossy image 
compression algorithms, but it does not remove human invisible 
image features that are crucial in disparity calculations, 
matching, video stitching and 3D model synthesis. This paper 
compares various existing predictive-corrective coding filters 
after they have been optimized to work on raw sensor data with a 
color filter array (i.e. Bayer pattern). The intention is to develop 
an efficient implementation for System-on-Chip (SoC) 
architectures to improve the computational multi-camera 
systems. 

Categories and Subject Descriptors 
B.6.3 [VHDL, Verilog]: Language Constructs and Features – 
lossless compression, image processing, system-on-chip. 

General Terms 
Algorithms, Performance, Design, Experimentation, Theory. 

Keywords 
multi-camera, lossless compression, Bayer pattern, system-on-
chip, SoC, entropy encoding, VLSI. 

1. INTRODUCTION 
Nowadays, CMOS image sensors are abundantly available due to 
the rapid evolution in VLSI technology. Many multi-media 
devices (e.g. smartphones, tablets) contain one or more high-
quality cameras. By combining multiple of these cost-efficient 
cameras, it is possible to realize all kinds of novel concepts such 
as omnidirectional video and virtual viewpoint interpolation 
[5,6,7]. If we would extrapolate this trend, hundreds of cameras 
could work closely together to capture scenes of television plays 
or sports events in real-time from several fixed positions. The 
various viewpoints can collect all the information that is needed 
to synthesize any “virtual” viewpoint between the real cameras. 

In a multi-camera system, it is possible to improve the end result 
by not only improving the recorded quality of each camera, but 
also to improve the number of (cheaper) cameras. However, this 
has a direct impact on the storage space and communication 
bandwidth. For example, if you have five 2MP cameras with 30 
fps, the total raw data size that is captured reaches around 900 
MB per second. Imagine the impact if the amount of cameras 
would increase to a hundred, unless the bandwidth requirement 
is not reduced by some compression, a bottleneck will arise. 

Traditional compression standards (e.g. MPEG, H.264) reduce 
the size by removing redundant information for the human 
observer. Unfortunately, high frequency content or other image 
features that are invisible to the human eye, are crucial for 
computational purposes in multi-camera systems. These systems 
need to combine the visual data from several image sensors and 
their quality relies a lot on the accuracy of such high spatial 
frequency clues for accurate and detailed matching of features 
captured by the different cameras. For future improvements to 
disparity calculations, matching, video stitching and 3D model 
synthesis, all the images features need to be kept intact. This 
limits this research to lossless compression techniques, although 
the compression factor is lower than the previously mentioned 
lossy compression algorithms. 

Furthermore, to achieve the lowest possible latency in a future 
System-on-Chip (SoC) architecture, this research is focused on 
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predictive-corrective coding filters as it does not need 
framebuffers to do the lossless compression of the image sensor 
data. The first step of the encoding sequence can be calculated 
directly from the active sensor data. The second step using 
entropy encoding as the compression technique, needs multiple 
pixels to compress it to one communication package and to gain 
in the long run. This, however, will introduce line-based latency, 
but there is no other known technique that preforms better for 
lossless compression with regards to latency. Lossless image 
compression algorithms that make use of image tiling will have a 
higher latency, because the entire tile needs to be captured before 
it can be send. This puts the minimum latency as high as the 
height of the tile in scan line numbers, thus latency = tile height 
× image width. 

There are already several well developed predictive-corrective 
coding filters (e.g. DCPM [1], Paeth [2], GAP [3], JPEG-LS [4]), 
but they are designed and optimized for full color images. As the 
goal is to develop a SoC architecture, the filter can be applied on 
raw sensor data with a color filter array and improve the 
compression factor for each individual camera in the multi-
camera system. In this work, the predictive-corrective coding 
filters will be adjusted to work on a color filter array (i.e. Bayer 
pattern) as these kind of cameras are going to be used in future 
work. 

This paper is structured as follows. In the next section the next 
predictive-corrective coding filters for lossless image 
compression are explained : DCPM, Paeth, GAP and JPEG-LS. 
In section III the method for compression, entropy encoding, is 
elaborated. The results from the applied Huffman coding on the 
error-corrective values given by the predictive-corrective coding 
filters, are also displayed in section III. These can be used to 
compare the results in section IV, in which the algorithms have 
been updated to work with a color filter array (i.e. Bayer 
pattern). It is noticeable that the prediction algorithms on Bayer 
patterned mosaic images work better (i.e. a compression factor of 
5.3:1) than the normal RGB compression can reach (i.e. a 
compression factor of 2:1). Section V concludes with a discussion 
on the lossless image compression results. 

2. PREDICTIVE-CORRECTIVE CODING 
FILTERS 
All the predictive-corrective coding filters try to find the best 
estimation of a certain pixel, based on previous known pixel 
values. As the image sensor will transmit the 2D image in a pixel 
serial order (i.e. left to right for each row and from top to 
bottom), a prediction can only be done for the next pixel in line. 
Therefore, none of the future information (i.e. on the right and 
below the current pixel) can be used, unless there is a 
framebuffer. But this research will not look into the techniques 
that use framebuffers, as that is much more memory intensive. 
Predictive-corrective coding filters only need a limited amount of 
line buffer, depending on the chosen technique. 

Once a estimation of the currently transferred pixel value is 
done, the correction with the actual sensor value can be 
calculated. By only transferring these error-corrective values, the 
original image can still be recalculated lossless in a later stage. 
This process is fully illustrated in figure 1. 

(a)  

(b)  
Figure 1. Predictive-corrective coding filter schematic 
diagram : (a) encoding image to error-corrective data 

stream, (b) decoding an error-corrective data stream back to 
the original image. 

The better the prediction, the closer the prediction is to the actual 
value, and the smaller the error is, and the closer the error-
corrective value is to zero. By gathering a lot of the same values 
(i.e. all of the values distributed near zero), it is possible to apply 
an entropy encoding technique (e.g. Huffman coding) to reduce 
the overall size. 

2.1 DPCM 
The 2D form of the Differential Pulse Code Modulation (DPCM) 
is one of the simplest forms of a predictive-corrective coding 
filter used for image compression. This technique has been added 
to the JPEG standard as Lossless JPEG in 1993 [1]. It makes a 
prediction of the next pixel by applying just one formula that 
calculates the interpolation of the three previous and neighboring 
pixels. As shown in figure 2, the prediction value is calculated as 
follows P = B + C – A. Due to this formula, it is possible to 
calculate over- and underflow. To keep the values in range, these 
are clipped within the possible range. 

 
Figure 2. Predictive-corrective coding filters, DPCM and 

Paeth, use only the three previous and neighbouring pixels as 
window to calculate a prediction for P. 

2.2 Simple predictive-corrective coding 
For the PNG Working Group, Alan W. Paeth has proposed an 
algorithm that has a better prediction result than DPCM [2]. It 
uses the same window and formula as DPCM (see figure 2) to do 
the prediction (i.e. three previous and neighboring pixels), but 
the predicting algorithm is different. It will select a previous 
pixel value (i.e. A, B or C) that is closest to the calculated 
DPCM value. In pseudo code, this algorithm would look like the 
following sequence for each pixel : 



P = B + C – A; 
IF |P – A| ≤ |P – B| AND |P – A| ≤ |P – C| 

P = A; //A is closest to P 
ELSE IF |P – B| ≤ |P – A| AND |P – B| ≤ |P – C| 

P = B; //B is closest to P 
ELSE 

P = C; //C is closest to P 
END 

2.3 Context-based, adaptive lossless image 
coding 
In response to the request for new techniques for lossless image 
compression from the JPEG Working Group, a new algorithm 
has been invented. Xiaolin Wu has proposed a Context-based, 
Adaptive Lossless Image Coding (CALIC) [3] that also uses a 
window of previous and neighboring pixels, but it is expanded 
up to seven previous known values to do a more substantiated 
prediction. As depicted in figure 3, the prediction has a much 
bigger window to make a prediction. 

 
Figure 3. The window that is used by GAP algorithm uses 

the seven previous and neighbouring pixels to make a 
prediction for P. 

By using more aligned pixel values, it is possible to use a 
Gradient-Adjusted Prediction (GAP). The GAP algorithm that is 
used in the CALIC design, also tries to take several different 
edge types into account. Therefore, it accumulates all absolute 
vertical changes and compares it with the accumulation of all the 
absolute horizontal changes. The difference between these two 
sums of absolute differences, has been parameterized to use 
different formulas on different types of edges. This is visible in 
the following pseudo code sequence that will be used for every 
pixel prediction : 

Dh = |W – WW| + |N – NW| + |N – NE|; //horizontal 
Dv = |W – NW| + |N – NN| + |NE – NNE|; //vertical 
Edge = Dh – Dv; 
IF Edge > 80 //sharp horizontal edge 

P = W; 
ELSE IF Edge > 32 //horizontal edge 

P = W / 2 + (W + N) / 4 + (NE – NW) / 8; 
ELSE IF Edge > 8 //weak horizontal edge 

P = W / 4 + 3 * (W + N) / 8 + 3 * (NE – NW) / 16; 
ELSE IF Edge < –80 //sharp vertical edge 

P = N; 
ELSE IF Edge < –32 //vertical edge 

P = N / 2 + (W + N) / 4 + (NE – NW) / 8; 
ELSE IF Edge < –8 //weak vertical edge 

P = N / 4 + 3 * (W + N) / 8 + 3 * (NE – NW) / 16; 

ELSE 
P = (W + N) / 2 + (NE – NW) / 4; 

END 

2.4 JPEG-LS 
After the first proposition of JPEG-LS as a new Lossless JPEG 
technique that only detects horizontal and vertical edges and uses 
a different formula for the prediction, improvements where 
proposed to implement a diagonal edge-based prediction 
algorithm [4]. The window that is used for each edge-based 
prediction, is defined by the four previous and neighboring pixels 
as displayed in figure 4. 

 
Figure 4. JPEG-LS uses four previous and neighbouring 

pixel to make an edge-based prediction for P. 
Depending on the predefined thresholds, the algorithm will 
detect different types of edges. It is therefore important to 
determine thresholds that work well on a broad range of pictures. 
In this research, the two thresholds (T1 = 60 and T2 = 8) are 
founded on the results in [4]. Only when the top left pixel C is 
higher or lower than the two closest neighboring pixels A and B, 
an edge is detected. In all other cases, old DPCM formula is used 
to do a prediction. When de difference between C and its 
neighbors A and B is bigger than threshold T1, and the 
difference between A and B is not that bigger than threshold T2, 
a diagonal DPCM formula is used (i.e. P = B + D – A). For the 
vertical edges, one of the neighboring pixel values A or B is 
used. The following pseudo code clarifies the logic behind the 
algorithm, its edge detection and the different prediction 
formulas : 

IF C ≥ max( A, B ) //light to dark edge 
IF C – max( A, B ) > T1 AND |A – B| ≤ T2 //diagonal 

P = B + D – A; 
ELSE 

P = min( A, B ); 
END 

ELSE IF C ≤ min( A, B ) //dark to light edge 
IF min( A, B ) – C > T1 AND |A – B| ≤ T2 //diagonal 

P = B + D – A; 
ELSE 

P = max( A, B ); 
END 

ELSE //no clear edge 
P = A + B – C 

END 



3. ENTROPY ENCODING 
In previous predictive-corrective coding filters, the prediction 
errors are distributed near zero, which is well-suited for the 
subsequent coding. To compress these error-corrective values, 
the most frequent value must use the least amount of space at the 
expense of the values that are very rare. Therefore, in this 
research the Huffman coding is used as it is not the focus to 
compare entropy encoding techniques. Any optimization can 
always be obtained once the best predictive-corrective coding 
filters is found. Just using one entropy encoding technique is 
enough to demonstrate and compare the compression results. 
Figure 5 shows the histogram of pixel values before and after a 
predictive-corrective coding filter has been applied. 

(a)   

(b)  
Figure 5. Pixel value histogram : (a) the full color of an 

image are distributed over the entire value spectrum, (b) the 
error-corrective values are close to zero. 

In order to make a good comparison, all the predictive-corrective 
coding filters have been applied to the high resolution benchmark 
images from The New Image Compression Test Set1. The results 
of the compression factors after the Huffman coding are shown in 
table 1. To have a correct baseline the results from only applying 
Huffman coding is also included (i.e. the “none” filter). The 
compression factor = original size / compressed size, making the 
highest number the best compression algorithm. 

 

Table 1. Compression factors of the benchmark images after 
lossless compression 

Image None DPCM Paeth GAP JPEG-LS 
artificial 1.271 4.848 5.077 4.775 5.078 
big_building 1.059 1.845 1.877 1.901 1.916 
big_tree 1.133 1.679 1.729 1.776 1.760 
bridge 1.075 1.660 1.684 1.739 1.716 
cathedral 1.206 1.877 1.942 1.967 1.974 
deer 1.266 1.362 1.440 1.489 1.451 
fireworks 2.242 3.461 3.597 3.650 3.641 
flower_foveon 1.122 2.987 3.197 3.387 3.277 
hdr 1.135 2.617 2.833 2.949 2.885 
leaves_iso_1600 1.089 1.574 1.589 1.630 1.618 
leaves_iso_200 1.083 1.797 1.781 1.839 1.829 
nightshot_iso_100 1.240 2.886 3.035 3.066 3.083 
nightshot_iso_1600 1.292 1.692 1.771 1.780 1.782 
spider_web 1.040 3.917 3.879 4.017 4.022 
TOTAL 1.151 1.971 2.026 2.070 2.062 
 

In the comparison above, this research is only comparing the 
technique for the inside of the picture. All the special border 
algorithms are being dropped as these small optimizations should 
not have any influence on the end result. To conclude, the GAP 
and JPEG-LS are very good candidates for compression, with a 
small preference to the GAP. The lossless compression factor is 
around 2:1 for a various kind of images, but as this research is 
focused on the compression of the hardware image sensor data, 
the current techniques need to be adjusted. 

4. COLOR FILTER ARRAY 
In order to capture full color images with an image sensor, many 
different techniques arose. One of the most used techniques is 
the use of a color filter array on top of the image sensor. By 
filtering a specific color for a single light sensor, only that color 
is captured. Using a fixed color pattern, like the Bayer pattern, 
the raw sensor data will transmit mosaic images. Afterwards, the 
full color images can be obtained with the use of demosaicing 
algorithms. As portrayed in figure 6, each pixel contains 
originally only one color value. 

 
Figure 6. Bayer pattern as color filter array, only one color 
value is captured per pixel on the raw image sensor before 

the demosaicing blends them into a full color picture. 
This would suggest that the images could have a lossless 
compression factor of 3:1 when saving the raw mosaic image. 
The demosaicing algorithm can always be redone and thus makes 
previous compression algorithms look useless. However, in this 
research both techniques are being combined. Therefore, the 
predictions have to be separated for each color and adjusted to 

1  http://www.imagecompression.info/test_images 



use the correct neighboring pixels. A primary and easy approach 
would be to just use the same technique, but jump two pixels in 
each direction. For the red and blue color, this is sufficient. 
However, the green color could have used its diagonal 
neighboring pixels to do a better prediction. The results shown in 
table 2, indicate that the compression can be higher than 2:1 or 
3:1 by just using this first approach. Also the “none” filter has 
been used to provide a better baseline for comparison. 

Table 2. Compression factors of the benchmark images after 
lossless compression with Bayer pattern 

Image None DPCM Paeth GAP JPEG-LS 
artificial 3.805 11.606 12.754 11.433 12.624 
big_building 3.177 4.496 4.672 4.740 4.732 
big_tree 3.368 4.142 4.340 4.474 4.385 
bridge 3.219 4.137 4.302 4.439 4.350 
cathedral 3.618 4.552 4.769 4.901 4.816 
deer 3.795 3.877 4.125 4.283 4.152 
fireworks 6.622 8.457 8.926 9.211 8.994 
flower_foveon 3.489 7.681 8.230 8.518 8.365 
hdr 3.426 6.602 7.170 7.449 7.256 
leaves_iso_1600 3.238 3.958 4.051 4.148 4.097 
leaves_iso_200 3.228 4.224 4.327 4.425 4.383 
nightshot_iso_100 3.682 6.783 7.228 7.421 7.299 
nightshot_iso_1600 3.826 4.507 4.703 4.840 4.738 
spider_web 3.121 7.566 8.026 8.406 8.204 
TOTAL 3.442 4.868 5.099 5.225 5.155 
 

In a first simple approach, it is noticeable that GAP is the better 
algorithm in combination with the Bayer pattern. It has an 
average compression factor of 5.2:1 which is much better than 
the 3:1 or 2:1 discussed before. To be correct, it must be 
mentioned that for this research the GBRG Bayer pattern (as in 
figure 6) has been chosen and reverted from the benchmark 
images. Therefore, the results only give a good indication, but 
are not the most correct values. Future work will be done on the 
raw sensor data which has the correct color filter array. 

In attempt to study the influences of improving the green 
prediction algorithm, a few changes has been made to the 
existing predictive-corrective coding filters. For the DPCM and 
Paeth, the window has been upgraded to also use the diagonal 
neighboring pixel as demonstrated in figure 7. The DPCM 
prediction value is also calculated differently as the average 
between the 2D and diagonal interpolation. The formula is as 
follows P = ( B + C - A ) + ( 2 * D - A ). As Paeth uses this to 
find the closest neighboring pixel value, the only improvement is 
that it also can pick the pixel value of D, if that one is closest. 

 

Figure 7. The improved window for the green pixels in 
mosaic image with a Bayer pattern, used for the predictive-

corrective coding filters DPCM and Paeth. 
For GAP and JPEG-LS a simple shift has been applied to the 
rows. While the horizontal neighboring pixels still require a two 
pixel jump, the vertical pixels are diagonal and require an 
additional jump to the left when going an odd number upwards. 
Figure 8 gives a clear view how these two algorithms windows 
have changed for the green color in a mosaic image. 

(a)  

(b)  
Figure 8. A simple shift applied to the green color windows of 

mosaic images with Bayer pattern in predictive-corrective 
coding filters : (a) GAP, (b) JPEG-LS. 

These improved predictive-corrective coding filters are being 
tested on the Bayer patterned mosaic images of the benchmark 
set. The results are shown in table 3 and can be compared with 
all previous results. 

Table 3. Compression factors of the benchmark images after 
improved lossless compression with Bayer pattern 

Image None DPCM Paeth GAP JPEG-LS 
artificial 3.805 11,586 13,210 11,714 12,867 
big_building 3.177 4,559 4,733 4,857 4,721 
big_tree 3.368 4,206 4,403 4,556 4,432 
bridge 3.219 4,184 4,337 4,472 4,331 
cathedral 3.618 4,630 4,849 5,021 4,892 
deer 3.795 3,918 4,135 4,290 4,153 
fireworks 6.622 8,613 9,097 9,490 9,090 
flower_foveon 3.489 7,835 8,346 8,740 8,456 
hdr 3.426 6,722 7,326 7,631 7,284 
leaves_iso_1600 3.238 4,032 4,124 4,226 4,405 
leaves_iso_200 3.228 4,329 4,432 4,533 4,119 
nightshot_iso_100 3.682 6,879 7,338 7,555 7,230 
nightshot_iso_1600 3.826 4,563 4,748 4,893 4,756 
spider_web 3.121 7,791 8,213 8,720 8,166 
TOTAL 3.442 4,943 5,170 5,326 5,170 
 



GAP is again the best overall algorithm and has like most other 
filters a compression factor gain of 0.1, making the end result 
5.3:1. Although, this is a better result than previous reached, 
much improvements can be found in working directly with the 
color filter arrays. Future work should be done in the direction of 
improving the predictor with values from the other colors in the 
color filter array. 

5. FPGA IMPLEMENTATION 
To put the theory into practice, a real-time implementation is 
made on an Altera Cyclone-II EP2C70 FPGA equipped with a 5 
mega pixel camera module inserted into the GPIO slot. This can 
be seen on figure 9. This camera module streams its raw Bayer 
pattern image data to the FPGA core with an implementation of 
the simple predictive-corrective coding algorithm. Each 
consecutive clock cycle during the image transfer, a pixel value 
is retrieved from the image sensor, a prediction is made by using 
the algorithm of Paeth. The error correction is then obtained by 
subtracting these two values. 

 
Figure 9. FPGA implementation on a DE2-70 with a D5M 
camera module for real-time simple predictive-corrective 

coding. 
For demonstration purposes and visible in figure 10, these error 
corrective values are enhanced and displayed in real-time via the 
VGA signal onto a connected monitor. These values are also 
collected and used to calculate and display a histogram. 
Therefore, it the prediction algorithm is visible and in particular 
the influences of scenery. For instance, the histogram adapts 
dynamically and has a wider base on a more complex scene (i.e. 
harder to do a correct prediction), or has a peak when there is an 
overflow (i.e. too much lightning can give a big spot with all the 
same high value). In Table IV an overview of the hardware 
utilization for the FPGA implementation is summarized. 

Table 4. FPGA demonstrator hardware utilization 
Characteristic Used Total 

Available 
% Utilization 

Total logic elements 3,085 68,416 5 
Total combinatorial functions 2,355 68,416 3 
Dedicated logic regisers 2,021 68,416 3 
Total registers 2,065   
Total memory bits 587,256 1,152,000 51 
Multipliers 0 300 0 
 

(a)  

(b)  
Figure 10. Real-time results of the FPGA implementation : 
(a) the original scene that is captured by the camera, (b) the 

error corrective values that are enhanced and the historgram 
of these values. 

6. CONCLUSION 
In this paper, it is proven that a synergy can be reached by 
combining a color filter array (e.g. Bayer pattern) with known 
predictive-corrective coding filters and an entropy encoding for a 
higher overall lossless compression of images. The four altered 
techniques (i.e. DPCM, Paeth, GAP and JPEG-LS) have been 
examined and compared with the use of a high resolution 
benchmarking image set. It is concluded that the update GAP 
algorithm has reached the best overall result. With an average 
compression factor of 5.3:1 it surpasses the same algorithm on 
the full color images, which only got a compression factor of 2:1. 
Nevertheless, there is still room for improvement as many 
different approaches have not been invented (e.g. Bayer pattern 
specific algorithms). 

For our bigger research goal of implementing a compression 
algorithm in hardware for multi-camera systems, it already shows 
to apply these techniques before the demosaicing process. 
Therefore, in future work, the GAP algorithm will be 
implemented as a SoC architecture to reduce the bandwidth 
requirement in multi-camera systems, without compromising the 
latency. Although, this will not give enough room to have a 
hundred cameras interconnected, it is a big step forwards to 
reduce the communication bandwidth a fivefold. Other possible 
improvements (e.g. software-defined networking) benefit from 
this approach and are researched in our group in parallel. 
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