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Chapter 1

Introduction

1.1 Clustered Data

Often in applied statistics, after some empirical data have been collected, the purpose

of the analysis is to construct a statistical model. Otherwise said, we are interested

in situations where the aim is to explain how an outcome, or response, variable of

particular interest is related to a set of explanatory variables, or covariates.

Classically, a single observation on the response variable is obtained for each obser-

vational unit and one of the fundamental hypotheses of standard statistical modeling

in this case is independence between observations. Many types of studies, however,

have designs which imply gathering data in dependent groups or clusters. Familiar

examples of clusters are animal litters, families or schools. In each of these examples,

a cluster is a collection of subunits on which observations are made. Another usual

form of clustering arises when data are measured repeatedly on the same unit.

In all cases the elements of a cluster, whether they are meaningful subunits or

repeated measures on the same unit, share some common characteristics. Therefore,

the distinguishing feature of clustered data is that observations within a cluster tend

to be more alike than observations from different clusters or, stated otherwise, they

are correlated. Thus, unlike in the classical setting where there exists a single source of

variation between observational units, the heterogeneity between clusters introduces

an additional source of variation and complicates the analysis.

When this variation cannot be explained by measured covariates, we require sta-

tistical analysis methods which acknowledge explicitly for the clustering in the data.

1



2 Chapter 1. Introduction

Failure to account for the effect of clustering can result in erroneous estimation of the

variability of parameter estimates, and hence in misleading inference. Although this

fact has long been recognized, it was not until quite recently that the wide availabil-

ity and advances in computer power have permitted the development of appropriate

statistical techniques for the analysis of correlated measurements.

Correlated data arise naturally in many different ways in scientific disciplines

such as the biological, health or social sciences, and this generic term actually covers

a multitude of data structures. We now briefly describe those which are mostly

encountered in the statistical literature, that is, multivariate data, clustered data,

longitudinal data, spatial data and multilevel data.

1.2 Types of Correlated Data

Researchers frequently collect measurements on several variables in practice. Multi-

variate statistical analysis (Johnson and Wichern, 1992) is concerned with statistical

methods for describing and analyzing a group of variables simultaneously. As an ex-

ample, suppose that a clinical trial was designed to compare the effect of a new drug

to placebo for the treatment of chronic schizophrenia and that several measuring in-

struments (or scales) are considered to assess a patient’s condition. A multivariate

model could be assumed for studying the (joint) relationship of the scores on each

instrument with treatment and possibly other predictor variables of interest. One

should of course acknowledge that the response variables are correlated, each being

measured on the same sample of patients.

Suppose now that one of the scales comprises a subjective clinical evaluation by the

treating physician. Patients rated by the same physician will tend to have scores on

that instrument that are more alike, maybe because the physician rates, on average,

higher or lower than other physicians. Thus, we have yet another illustration of

clustered data.

If the outcome variable were to be measured under different experimental condi-

tions, we would face a so-called repeated-measures study design. When the outcome is

measured repeatedly over time, we are dealing with longitudinal data (Diggle, Liang

and Zeger, 1994). For example, the test could be administered a number of times

(at baseline and then monthly for a year, say) in order to investigate the individual

patterns of change over time.

We can usually distinguish between three sources of variation with longitudinally
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measured data: inter-individual variability, serial correlation and measurement error.

The second component arises owing to the fact that pairs of measurements taken closer

in time often show a stronger similarity than pairs of measurements taken further

apart. Thus, time — a one-dimensional scale — plays a critical role in defining a

component of serial correlation. If instead measures were obtained at different spatial

locations (that is, using two or even three dimensions), we would talk about spatial

data (Cressie, 1991) and an autocorrelation structure could be assumed provided some

distance measure is introduced.

So far, we have focused on data structures involving a single level of clustering.

It is frequent, however, to face problems that have a hierarchical or multilevel struc-

ture (Goldstein, 1995), that is, when data have been collected in different layers, or

levels, of a hierarchy. To expand on our initial example, suppose that physicians

were affiliated to some hospital and that a number of hospitals were contacted for

recruiting patients. This defines a three-level structure wherein hospitals are level 3

units, physicians are level 2 units and, assuming we focus on a single scale of mea-

surement, patients would correspond to level 1 units. Should we consider all available

measurements (from different measuring instruments) on each patient, an additional

level could then be introduced, resulting in a four-level data structure.

1.3 Statistical Models for Correlated Data

An important consideration in the statistical modeling of correlated data concerns

the type of outcome. Methods for continuous (read ‘normally distributed’) data are

undeniably the best developed and the linear mixed model (Laird and Ware, 1982;

Verbeke and Molenberghs, 1997, 2000) has played a prominent role in extending the

general linear model to handle correlated continuous data. Owing to the elegant

properties of the multivariate normal distribution, its theory and implementation are

greatly simplified. Software programs, such as the SAS procedure MIXED (Littell et

al., 1996), are therefore widely available to fit this kind of models and have facilitated

dissemination of the methodology among the statistical community.

When the outcome variable is discrete (e.g. counts) or categorical (nominal or

ordinal data), a first issue arises which is the lack of a discrete analogue to the

multivariate normal distribution. Complete specification of the joint distribution

of the response vector becomes more problematic and fully likelihood-based methods

are generally awkward.
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Another issue raised by this type of outcomes is that the researcher must distin-

guish between three broad model families. For simplicity, let us concentrate on the

special case of correlated binary outcomes. A marginal model is one in which marginal

probalities of response are directly modeled. There is an extensive statistical liter-

ature on marginal modeling of correlated binary responses. For example, Bahadur

(1961) and Zhao and Prentice (1990), describe maximum likelihood estimation where

marginal correlations are used to account for the association among responses. Al-

ternatively, the within-cluster association can be parameterized in terms of marginal

odds ratios, as shown by Dale (1986), Liang, Zeger and Qaqish (1992), Lang and

Agresti (1994), Molenberghs and Lesaffre (1994), and Glonek and McCullagh (1995)

for instance.

Since few joint probability models for multivariate categorical data permit tract-

able modeling of marginal probabilities, alternative methods have been in demand.

Thus, Liang and Zeger (1986) and Zeger and Liang (1986) proposed so-called gen-

eralized estimating equations (GEE) which do not require assumptions about the

complete joint distribution of the response vector. Their approach relies on estimat-

ing functions and provides a natural extension of quasilikelihood (Wedderburn, 1974)

to the multivariate response setting. Standard GEE require only correct specification

of the univariate marginal probabilities while adopting some working assumptions

about the association structure. Extensions of GEE that allow modeling of pairwise

associations were given, for example, by Prentice (1988), Lipsitz, Laird and Harring-

ton (1991), Liang, Zeger and Qaqish (1992) and Carey, Zeger and Diggle (1993), using

the correlation or the odds ratio as a measure of association.

Drawing on direct analogies with linear models for continuous responses, another

way to model the joint distribution of the response vector is to postulate the existence

of unobserved latent variables, often called random effects. These can be thought of as

reprensenting various features shared by the subunits of a cluster and hence introduce

correlation among observations. Such cluster-specific effects are usually assumed to be

independent and identically distributed according to a certain mixing distribution. An

additional assumption that is frequently used is that the observations within a cluster

are conditionally independent given the random effects. When the mixing distribution

is assumed Gaussian, the families of linear mixed models and generalized linear models

(Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989) can be combined to

form the class of generalized linear mixed models (GLMM). These models have been

studied, among others, by Stiratelli, Laird and Ware (1984), Anderson and Aitkin
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(1985), Gilmour, Anderson and Rae (1985), Zeger, Liang and Albert (1988), Breslow

and Clayton (1993), Wolfinger and O’Connell (1993) and Goldstein and Rasbach

(1996). Some authors have advocated different distributional assumptions for the

mixing distribution (e.g. Lee and Nelder, 1996). Also, cluster-specific approaches are

not limited to mixed models, as demonstrated by the popular beta-binomial model

(Williams, 1975).

There are some important distinctions between the two model families described so

far. In marginal models parameters may be interpreted with respect to the marginal

or population-averaged distribution; therefore, such models are often referred to as

population-averaged models. In random-effects models, on the other hand, parameters

have cluster-specific effects and these models are consequently also called cluster-

specific. This distinction is, in effect, irrelevant for normal outcomes since parameters

have both population-averaged and cluster-specific interpretations in this case, but it

becomes critical with categorical data. Zeger, Liang and Albert (1988), for example,

discuss these two approaches to modeling of longitudinal data using GEE to estimate

model parameters.

The third class of models that is commonly used to model correlated data is that

of (response) conditional models. In a conditional model the parameters describe a

feature (e.g. response probability) of a set of outcomes conditionally on the other

outcomes. Due to the popularity of marginal and random-effects models, these have

received relatively little attention, especially in the case of clustered data. An example

in the specific context of clustered binary outcomes was given by Molenberghs and

Ryan (1999). Conditional models have been much more popular in the context of

longitudinal data, where they have been termed transition models (Diggle, Liang

and Zeger, 1994). The (response) conditional approach, however, is usually criticized

because of the conditional interpretation of the parameters on other outcomes and on

cluster sizes.

The debate continues about the relative merits of the different approaches. For

several years, it seemed that marginal models, particularly GEE, were the most pop-

ular, perhaps due to their relative computational ease and the availibility of good

software (e.g. SAS procedure GENMOD). More recently, there has been a renewed

interest in random-effects models partly provoked by the availability of the SAS pro-

cedure NLMIXED. There are merits and disadvantages to all three model families,

however. Arguably, model choice will depend not only on the application of interest

but also on the specific analysis goals.
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Finally, in an attempt to overcome the limitations of a single class of models, some

researchers have also proposed to combine two approaches, thus getting the best of two

worlds. A first possibility is to modify the natural parameterization of the response

conditional models to allow likelihood-based estimation of marginal mean parameters.

Fitzmaurice and Laird (1993), for instance, discuss marginalized log-linear models,

while Azzalini (1994) presents a marginalized transition model. More recently, Hea-

gerty (1999) and Heagerty and Zeger (2000) have proposed a class of marginalized

multilevel models, wherein the mean structure is modeled marginally and the asso-

ciation among responses is accounted for by random effects. This approach has the

advantage of allowing a marginal interpretation of the regression parameters, while

enabling parsimonious parameterization of the covariance structure using random ef-

fects.

1.4 Organization of Subsequent Chapters

Throughout the present work, we will mainly be concerned with applications of the

random-effects modeling approach. Emphasis will be on multilevel modeling (Chap-

ters 2-4) on the one hand, and modeling of longitudinal data (Chapters 5-7) on the

other hand.

In Chapter 2, we introduce multilevel models for continuous (Gaussian) and bi-

nary outcomes and briefly review estimation methods to fit this type of models. We

then employ multilevel modeling techniques to examine clustering in the 1997 Belgian

Health Interview Survey (HIS1997). The sampling scheme in this survey was a com-

bination of several sampling techniques and, in particular, of multistage sampling. It

is therefore natural to use multilevel models as an attempt to account for the sam-

pling design when analyzing such data. The basic hierarchy defined by multistage

sampling in the HIS1997 is constituted of three levels: individuals, households and

municipalities. Using this hierarchical structure, we present an illustration of both a

multilevel linear model and a multilevel logistic model.

In Chapter 3, we will focus on multilevel models for binary responses. More specif-

ically, the aim of this chapter is to describe and investigate in more details an alter-

native estimation method to standard maximum likelihood (ML) and penelized quasi

likelihood (PQL) procedures. This estimation method, termed maximum pairwise

likelihood (MPL), is based on a particular form of pseudo-likelihood (Besag, 1975).

After examining asymptotic properties of pseudo-likelihood estimators, we look more
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specifically into the pairwise likelihood method within the multilevel probit model.

We present some asymptotic relative efficiency calculations and a series of simulations

to compare MPL to ML and PQL estimators.

The goal of the next chapter is to provide an illustration of the MPL estimation

method in the context of surrogate endpoint validation. The framework is that de-

veloped by Buyse et al. (2000), in which the surrogate endpoint validation issue is

approached from a meta-analytic standpoint and examined at each of two levels: the

individual and the trial levels. We propose an extension of their methodology, ap-

plicable to normally distributed endpoints, to the case of two binary outcomes. This is

done using a latent variable approach yielding a three-level probit model with a four-

dimensional random-effects structure, which makes of pairwise likelihood a perfectly

suitable estimation method in this situation.

In the second part of the thesis, we will mostly deal with longitudinal data mod-

eling. In Chapter 5 we use linear mixed model methodology to analyze data from

a hepatitis B vaccination program. This enables us to discuss some problems com-

monly faced in the modeling of continuous (normally distributed) longitudinal mea-

surements. In particular, we examine the use of fractional polynomials as a flexible

tool for parametric modeling in this context.

In Chapter 6 we focus on the issue of estimating reliability in clinical trial data with

longitudinal binary outcomes. We first discuss how this can be accomplished in the

framework of generalized linear mixed models. One limitation with such models is that

they address the issue of clustering solely by introducing random effects in the model

but do not allow for residual sources of autocorrelation. To overcome this problem, we

propose a latent variable probit model in which the (latent) residual error terms are

assumed to be realizations of a Gaussian process. This affords us an alternative way

to parameterize association among the longitudinal outcomes. Although likelihood

estimation of this model is awkward, pairwise likelihood estimation is relatively easy

to implement, the procedure being a straightforward extension of that described in

Chapter 3.

In Chapter 7 we return to the surrogate endpoint validation issue, when it is of

interest to use a longitudinally measured biomarker as a surrogate for a time-to-event

endpoint. To extend the approach of Buyse et al. (2000), we need to formulate a joint

model for longitudinal measurements and event time data. To this end, the model

of Henderson, Diggle and Dobson (2000) is adopted. We examine how trial- and

individual-level surrogacy measures can be adapted in this context and use a set of
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two randomized clinical trials in advanced prostate cancer to evaluate the usefulness

of prostate-specific antigen (PSA) level as a surrogate for survival.

Finally, in Chapter 8 we formulate concluding remarks and also indicate some

topics for further research.
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Part I :

Multilevel Modeling
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Chapter 2

Introduction to Multilevel

Models

2.1 Introduction

Many sets of data collected in human and biological sciences have a multilevel or

hierarchical structure. By hierarchy we mean that units at a certain level (also called

micro units) are grouped into, or nested within, higher level (or macro) units. School-

ing systems, for instance, present an obvious hierarchical structure, with pupils nested

within classrooms, which are themselves nested within schools, and so forth.

Multilevel structures are common in practice and in fact, it could be argued that

they are the norm rather than the exception. Over the last twenty years, there has

been increasing interest in developing suitable techniques for the statistical modeling

and analysis of hierarchically structured data, and this has resulted in a broad class

of models known under the generic name of multilevel models (Goldstein, 1995).

An area where multilevel structures frequently occur is in survey sampling, where

for cost-related reasons or administrative considerations, multistage sampling schemes

are often adopted. In multistage sampling, the sample is selected in different stages,

with the sampling units at each stage being sub-sampled from the larger units drawn

at the previous stage.

Clustering in sampling surveys has been traditionally handled using design-based

procedures, which are ad hoc corrections to account for the sampling design (Skinner

11
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et al., 1989). In this approach the population structure, insofar as it is mirrored in

the sampling design, is seen as a nuisance factor. On the contrary, in the multilevel

modeling approach the population structure is considered of potential interest in its

own right and is an integral part of the model. In addition, a model-based approach

enables one to incorporate design-related information directly into the model, thus

obviating the need to carry out special procedures to adjust for the effects of the

sampling design.

As an illustrative example throughout the chapter, we will consider data from a

Heath Interview Survey which took place for the first time in 1997 in Belgium. The

sampling scheme of the HIS1997 was a combination of several sampling techniques

and, in particular, of multistage sampling. The different levels of the hierarchy defined

by this multistage sampling scheme are individuals, households and municipalities.

After a general description of the survey and its objectives in Section 2.2, we

review linear and nonlinear multilevel models in Sections 2.3 and 2.4 respectively.

Some attention will be given to the issue of unequal selection probability weighting

in Section 2.5 as this is not, in principle, a simple extension of conventional weighing

methods. In Section 2.6, multilevel models are used to examine the extent of clustering

in the HIS1997 data based on specific (continuous and binary) outcomes. Note that

the content of this chapter is mainly based on the papers of Renard et al. (1998) and

Renard and Molenberghs (2002).

2.2 The 1997 Belgian Health Interview Survey

Health interview surveys aim to provide a global description of the health status of the

population. Individuals are questioned about a wide variety of health related domains

such as general health perception, morbidity, use of health services, lifestyle or socio-

economic characteristics. This information, in turn, is useful to provide rational

bases for the health policy makers and aids in the identification of health priorities,

the description of health needs of the population, the estimation of the prevalence

and distribution of health determinants, the analysis of social (in)equities in health

and health services, and the study of health care consumption and its determinants.

The first Belgian Health Interview Survey was undertaken by the Scientific Insti-

tute for Public Health in 1997. A detailed account of the HIS1997 (simply referred

to as HIS in the sequel) sampling design is given by Quataert et al. (1997). See Van

Oyen et al. (1997) for a more concise description of the survey. Here, we briefly out-
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line the main aspects of the final sampling scheme for the selection of the households

and respondents in the HIS.

The target number of interviews in the HIS was 10,000. The sampling of the

households and respondents was a combination of different sampling techniques such

as stratification and multistage sampling. Stratification was performed at the regional

level (Flemish, Walloon and Brussels regions) and at the provincial level. At the

regional level, unequal sampling rates were taken to guarantee sufficient precision of

the results. Within a region, sampling was taken proportional to population size in

each province. An extra refinement was needed for the German community which was

considered a proper entity on its own and was oversampled. Regional and provincial

stratification aim at achieving a geographical spread of the interviews. The quota

of interviews were also evenly distributed over quarters of the study year to obtain

reasonable spread over time.

Within each stratum, a sample of individuals was obtained in three stages. At

the first stage, municipalities (primary sampling units) were drawn by a systematic

sampling procedure with probability proportional to their size. Each time a mu-

nicipality was selected, a group of 50 individuals had to be successfully contacted.

The next stage of random selection operated at household level (secondary sampling

units) according to a clustered systematic sampling procedure upon ordering of the

households by statistical sector, size and age of the reference person. Additional re-

placement households with matching characteristics were also identified in case some

household would refuse to participate or could not be contacted. Finally, individuals

(tertiary sampling units) were selected within households in such a way that at most

four persons were interviewed in each household and the reference person and his or

her partner were automatically selected.

2.3 Linear Multilevel Models

In this section, multilevel models for normally distributed response variables are

briefly discussed. Keeping an eye towards the HIS, we consider a three-level popula-

tion for notational convenience. Thus, we assimilate level 3 units to municipalities,

level 2 units to households, and level 1 units to individuals.

For comprehensive accounts on multilevel modeling, we refer to the books by

Bryk and Raudenbush (1992), Longford (1993), Goldstein (1995) and Snijders and

Bosker (1999). Kreft and de Leeuw (1998) provide a more informal and introductory



14 Chapter 2. Introduction to Multilevel Models

approach to the subject.

Suppose that we have a sample consisting of K municipalities, with Jk households

within the kth municipality (k = 1, . . . , K) and Njk individuals within the jth house-

hold from the kth municipality (j = 1, . . . , Jk; k = 1, . . . , K). In conformity with the

standard index notation in multilevel models, we shall let yijk denote the value of the

response variable recorded on the ith individual within the jth household from the

kth municipality. The standard linear three-level model has the following structure:

yijk = x
T

ijkβ + z
T

3,ijku
(3)
k + z

T

2,ijku
(2)
jk + εijk , (2.1)

where xijk is a vector of covariates having fixed effects β, z3,ijk is a vector of covariates

having random effects u
(3)
k at the municipality level, z2,ijk is a vector of covariates

having random effects u
(2)
jk at the household level and εijk is an error term. All

random terms in the model are assumed to be mutually independent and normally

distributed:

u
(3)
k ∼ N(0, Ω(3)

u ),

u
(2)
jk ∼ N(0, Ω(2)

u ),

εijk ∼ N(0, σ2
e).

With a slight abuse of language, we will sometimes call β the fixed parameters, while

random parameters will denote variance and covariance parameters characterizing the

random terms in the model.

The vectors of covariates z3,ijk and z2,ijk will usually be subsets of the fixed-

effects covariates xijk , although they do not need to. The associated random effects

are used to account for variation in the data that is attributable to clustering at the

corresponding levels of the hierarchy. Specifically, u
(2)
jk represents the effect of the

jth household in the kth municipality on the covariates z2,ijk and is characteristic

of between-household variability. A similar interpretation holds for u
(3)
k at the mu-

nicipality level. Thus, we can see that multilevel models provide a natural way to

decompose complex patterns of variability associated with hierarchical structures.

In (2.1) the standard assumption of homoscedasticity was made, i.e. the resid-

ual variance is assumed constant. This assumption can nevertheless be relaxed and

dependence on specific covariates can be introduced by replacing εijk by a term of

the form z1,ijkεijk . This permits to represent more complex variation at level one,

including subgroup variability and heteroscedasticity.
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Model (2.1) can be rewritten as a special case of the general linear mixed model:

y = Xβ + Zu + ε, (2.2)

where y is the vector of responses and X the matrix for the fixed effects obtained

by stacking the responses yijk and the covariates xijk respectively; u is the vector

of random effects obtained by stacking the household effects u
(2)
jk on top of the mu-

nicipality effects u
(3)
k ; Z is the matrix for the random effects obtained by padding

with 0s and stacking the covariates z2,ijk and z3,ijk to conform to the structure of

u; and ε is the vector of error terms obtained by stacking the εijk ’s. In other words,

the theory of linear multilevel models is embodied in that of linear mixed models.

The latter, however, does not explicitly recognize, nor does it take full advantage of,

specific features of hierarchically structured data, a reason why multilevel modeling

has been an area of research on its own.

Parameter estimation in the linear multilevel model can be carried out by maxi-

mizing the likelihood function. To this end, direct maximization using the Newton-

Raphson or Expectation-Maximization (EM) algorithm can be performed. An equiv-

alent procedure, called Iterative Generalized Least Squares (IGLS), was proposed by

Goldstein (1986). This algorithm iterates between the estimation of the fixed and

the random parameters using standard generalized least squares principles, hence the

name. IGLS is an attractive procedure as it is computationally efficient compared to

direct maximization of the likelihood, especially with large sets of data such as those

typically found in multilevel modeling applications. The IGLS algorithm can also

be modified to obtain residual or restricted maximum likelihood (REML) estimates,

which are unbiased for random parameters. It is then refereed to as RIGLS.

Nowadays, most general purpose software packages, such as SAS, S-Plus, Stata or

SPSS, have built-in capabilities to fit linear mixed (hence multilevel) models. Spe-

cialized package for multilevel modeling are also available. MLwiN (Goldstein et

al., 1998), a program that was developed by researchers working on the Multilevel

Models Project at the Institute of Education in London, is certainly the most exten-

sive multilevel package. It allows fitting of linear multilevel models (using the IGLS

or RIGLS algorithm) and can handle discrete (binomial and count) response data

as well. Furthermore, it offers parametric and nonparameteric bootstrap estimation

and Markov Chain Monte Carlo (MCMC) methods to fit Bayesian models, as well

as various macros to deal with more complicated types of outcomes (survival data,

multi-categorical responses, time series, etc.).
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2.4 Nonlinear Multilevel Models

We restrict attention to the case of a binary response, but the discussion below ap-

plies more generally, to models for binomial or count data for example. In fact, the

theory can be developed for any nonlinear multilevel model (Goldstein, 1995). Be-

sides general references to multilevel modeling, we refer to Agresti et al. (2000) and

McCulloch and Searle (2000) for an overview of the closely related generalized linear

mixed model.

Keeping the same notation as in the previous section, we consider the multilevel

model

g(πijk) = x
T

ijkβ + z
T

3,ijku
(3)
k + z

T

2,ijku
(2)
jk , (2.3)

where πijk = P [yijk = 1|u(3)
k , u

(2)
jk ] and g(.) is a link function such as the logit, probit

or log-log functions. Analogously to (2.2), the model can be rewritten as

g(π) = Xβ + Zu, (2.4)

where π is the vector of response probabilities πijk . As in the linear multilevel model,

all components of the vector u are assumed to be mutually independent and normally

distributed. It is further assumed that conditionally on u, the binary responses yijk

are independent. This assumption, known as the local independence assumption,

greatly simplifies likelihood inference, as shown below.

A particularity of the above model, in contrast to the linear multilevel model, is

that level one variability is not directly comparable to variability at higher levels.

Indeed, since g is in general different from the identity link function, random distur-

bances at level 2 and above appear on a transformed scale (e.g. logit), whereas the

level one variance characterizes binomial variation.

We now discuss in more details how inference can proceed in nonlinear multilevel

models. We first describe maximum likelihood (ML) inference and then turn to

approximate methods.

2.4.1 Maximum Marginal Likelihood

For notational simplicity, we consider a two-level model in the remainder of this

section:

g(πij) = x
T

ijβ + z
T

ijuj (2.5)
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with πij = P [yij = 1|uj ] (j = 1, . . . , n; i = 1, . . . , nj) and uj ∼ N(0, Ωu).

Because of the local independence assumption, the conditional likelihood of (level

2) unit j takes the binomial form; that is, its contribution to the log marginal likeli-

hood, obtained by integrating over the random effects, can be written as

`j(β, Ωu) = log

∫ nj∏

i=1

π
yij

ij (1 − πij)
1−yij φ(uj ; Ωu)duj , (2.6)

where φ(u; Ωu) is the normal density function N(0, Ωu). The log marginal (or inte-

grated) likelihood

`(β, Ωu) =

n∑

j=1

`j(β, Ωu) (2.7)

can then be maximized, using any standard optimization routine, to obtain estimates

of the parameters β and Ωu.

Unfortunately, expression (2.6) is intractable and necessitates the use of numerical

integration techniques. When the dimension of integration is small, Gauss-Hermite

quadrature can be used (Anderson and Aitkin, 1985; Crouch and Spiegelman, 1990).

This method, however, suffers from the curse of dimensionality. In addition, no simple

and effective error bounds are available for multidimensional integrals approximated

by quadrature rules (Monaham, 2001). For these reasons ML estimation in GLMMs

has been somewhat hampered in the past, being limited to simplistic models with low-

dimensional random effects, and there has been a need for alternative, performant

integration methods to overcome computational limitations. Among those, Monte

Carlo-based methods have received a great deal of attention due to parallel develop-

ments in Bayesian statistics. For example, Monte Carlo Expectation Maximization

(EM) and Monte Carlo Newton Raphson algorithms (McCulloch, 1994, 1997) were

proposed to obtain ML estimates. Alternatively, the generalized linear random effects

model can be cast in a fully Bayesian framework (see e.g. Zeger and Karim, 1991). A

drawback of these methods is that they are computationally intensive in general.

As indicated in Chapter 1, there has been renewed interest in fitting GLMMs

with quadrature-based methods over recent years owing to the wider availability of

good software. The computer program MIXOR (Hedeker and Gibbons, 1996), for

example, can be used for random-effects modeling of binary and ordinal responses

(Hedeker and Gibbons, 1994). The software package STATA (StataCorp., 2001) offers

several functions to fit GLMMs using Gaussian quadrature as well. Recently, the
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procedure NLMIXED has been implemented in SAS (SAS Institute Inc., Carey, USA)

to allow fitting of nonlinear random-effects models. A noticeable feature of PROC

NLMIXED is that an adaptive version of Gaussian quadrature is available. With

adaptive Gaussian quadrature, the quadrature nodes are centered around the mode

of the function to be integrated and rescaled using the curvature of the function at its

mode. The nodes therefore lie in the region of bigger “mass” and the resulting integral

approximation is generally more accurate than that obtained with standard Gaussian

quadrature based on the same number of nodes (Pinheiro and Bates, 1995; Lesaffre

and Spiessens, 2001). Finally, Bayesian estimation using Markov chain Monte Carlo

methods is possible with the BUGS software package (Spiegelhalter et al., 1995).

2.4.2 Approximate Methods

Much of the early literature on random-effects models for discrete data has been

concerned with ways of circumventing the computational burden caused by the need

for numerical integration, and several authors have suggested to use approximations of

the likelihood. Breslow and Clayton (1993), for instance, exploit the penalized quasi-

likelihood (PQL) method by applying Laplace’s integral approximation. They also

consider marginal quasi-likelihood (MQL), a name they give to a procedure previously

proposed by Goldstein (1991). PQL and MQL can be viewed as iterative procedures

that entail fitting of linear multilevel models based on a first-order Taylor expansion

of the mean function about the current estimated fixed part predictor (MQL) or the

current predicted value (PQL). There are also a number of closely related approaches.

This includes the work of Shall (1991), Wolfinger and O’Connell (1993), Longford

(1994) and McGilchrist (1994).

Since these approximate procedures do not involve integrated likelihoods, they are

simpler to program and computationally more efficient than ML methods. They are

not without defect, however. On the basis of a large number of simulations, Rodŕıguez

and Goldman (1995) demonstrate that these approximate procedures may be seriously

biased. Their simulations reveal that both fixed effects and variance components may

suffer from substantial, if not severe, attenuation bias under certain circumstances.

Of note is that the PQL approximation seems to deteriorate as the data depart from

normal (especially binary data) and the random effects become large.

To reduce the extent of these biases, some authors have advised the introduction

of bias-correction terms (Breslow and Lin, 1995; Lin and Breslow, 1996) or the use of
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iterative boostrap (Kuk, 1995). Goldstein and Rasbash (1996) show that the inclusion

of a second-order term in the PQL expansion considerably reduces the biases described

by Rodriguez and Goldman (1995). This method will be referred to as PQL2 in the

sequel.

As to software availability, the PQL algorithm has been implemented in the

%GLIMMIX macro in SAS and can be used, as well as PQL2, in MLwiN. A boot-

strap method can also be used in MLwiN to correct for bias associated with PQL and

Bayesian inference can be made through MCMC methods.

2.5 Weighting in Multilevel Models

Typically, analyses of data arising from complex sample surveys are adjusted by

methods that incorporate sampling weights defined as the reciprocals of the sam-

ple inclusion probabilities. These sampling weights effectively represent the number

of individuals in the population that each sampled individual represents (Graubard

and Korn, 1996).

The issue of weighting in multilevel models has not been extensively investigated

until quite recently (Pfeffermann et al., 1998). A reason might be that sampling

schemes are commonly ignored in multilevel analyses of survey data since multilevel

models enable the data analyst to incorporate certain characteristics of the sampling

design as covariates (e.g. stratification variables), even though this argument breaks

down when the relevant information is not made available to the analyst or when

sampling-related variables are not scientifically meaningful to include in the model.

When the sample selection probabilities are related to the response variable even

after conditioning on covariates of interest, the conventional estimators of the model

parameters may be biased, hence the need to study weighting procedures that attempt

to correct for this problem.

It should be emphasized that weighting in multilevel models is not a trivial ex-

tension of conventional methods of weighting. A key feature is that sample inclusion

probabilities can be defined at any stage of the hierarchy, conditionally on cluster

membership at above levels. Thus, municipality k is selected with inclusion prob-

ability πk, household j is selected with probability πj|k within municipality k, and

individual i is sampled with probability πi|jk within household j from municipality k.

Unconditional selection probabilities can be derived from suitable products of condi-

tional probabilities (e.g., πjk = πkπj|k denotes the probability that municipality k is
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sampled and that, within this municipality, household j is selected).

The approach proposed by Pfeffermann et al. (1998) is to substitute, in the IGLS

sample estimators, each sum over units at a given level by a correspondingly weighted

sum, using (inverse) conditional selection probabilities as defined above. When the

sample inclusion probabilities (and hence the weights) are independent of the random

effects, they show that a simple transformation of the variables specified in the random

part of the model is sufficient. The appropriate transformation is to:

• replace z
(1)
ijk by w

−1/2
k w

−1/2
j|k w

−1/2
i|jk z

(1)
ijk = w

−1/2
ijk z

(1)
ijk ,

• replace z
(2)
ijk by w

−1/2
k w

−1/2
j|k z

(2)
ijk = w

−1/2
ij z

(2)
ijk ,

• replace z
(3)
ijk by w

−1/2
k z

(3)
ijk,

where the weights are defined by

wk = π−1
k , wj|k = π−1

j|k , wi|jk = π−1
i|jk .

Note that the weights should be rescaled in such a way to have unit mean. The main

advantage of this procedure is that it can easily be implemented within any standard

software package which allows fitting of multilevel models.

When the weights are not independent of the random effects at a certain level (the

sampling mechanism is then said to be informative), this results in a more complicated

procedure. The authors point out, however, that the weighted scaling method should

produce acceptable results in many cases, although it can clearly give biased estimates

in certain circumstances.

It should be noted that standard errors of parameter estimates cannot be obtained

straightforwardly with standard software but as suggested in MLwiN, an alternative

solution is to use the sandwich estimator (Liang and Zeger, 1986), which allows more

robust inference.

2.6 Application to the HIS

For the sake of illustration, we consider two response variables: body mass index

(BMI), which will be log-transformed and analyzed as a normally-distributed out-

come, and a binary indicator for subjective or perceived health, which was originally

rated by the interviewees on a 5-point scale and was dichotomized as good/very good
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versus other. In an attempt to find a satisfactory model for these data, the follow-

ing covariates were examined: sex, age (eight categories), education (five categories),

household income (5 categories) and smoking behavior. Note that the question about

smoking behavior was addressed only to persons aged 15 or more, thus reducing the

effective sample size from 10,221 to 8560.

In addition to the aforementioned covariates, information about the sample design

can be taken into consideration:

• stratification variables: quarter and provinces;

• size variables: province, municipality, household;

• other variables: number of groups to be interviewed within a municipality, in-

terviewee status (indicating whether he/she is the reference person or his/her

partner).

2.6.1 Linear Multilevel Model

Due to unit and item non-response, 7422 out of 8560 (87%) observations were available

with complete information† on the selected covariates and BMI. The model we will

fit is

yijk = xT
ijkβ + vk + ujk + eijk , (2.8)

with vk ∼ N(0, σ2
v), ujk ∼ N(0, σ2

u) and eijk ∼ N(0, σ2
e), and where xijk contains

covariates listed above. This is an example of random-intercept (or variance compo-

nents) model. The total variation in log BMI can be decomposed into that between

individuals within households (σ2
e ), that between households within municipalities

(σ2
u) and that between municipalities (σ2

v). Among covariates in xijk , only sex, age,

education and smoking behavior were found to have a significant effect and were in-

cluded in the model. Second-order interaction terms of sex with age and education

were also included. Among sampling-related variables, only province, household size

and interviewee status were retained.

The variance partitioning in (2.8) allows interpretions in terms of ‘intra-unit cor-

relation’. Thus, the intra-municipality correlation coefficient can be defined as

ρMUN =
σ2

v

σ2
v + σ2

u + σ2
e

, (2.9)

†See Burzykowski et al. (1999) for a study of missing data in the HIS.
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while the intra-household correlation coefficient is equal to

ρHH =
σ2

v + σ2
u

σ2
v + σ2

u + σ2
e

. (2.10)

These coefficients reflect the proportion of the total variability in the outcome vari-

able that is attributable to the clustering effect at a certain level and, therefore, are

measures of within-group homogeneity.

Table 2.1 shows the result of fitting model (2.8) to the data, using weighted

and unweighted estimators. Robust standard errors are reported for parameter esti-

mates. We see that there is generally good agreement (within standard error) between

weighted and unweighted estimators, but that standard errors of the weighted esti-

mators are subject to a sometimes severe loss of efficiency. Whether this is due to the

use of the sandwich estimator or to weighting itself is not entirely clear. As Korn and

Graubard (1995) show, weighted estimates tend to be more variable than unweighted

ones, and variability in the weighted estimates increases as sampling weights become

more heterogenous. In the HIS, the unscaled weights wk and wi|jk were characterized

by a mean of 4.17 and 1.04 and standard deviation of 4.43 and 0.21 respectively, thus

revealing substantial variability at the municipality level. Note that it is assumed

there is no differential sampling effect at the household level.

The estimated variance components show that there is little clustering effect at

the municipality level and a moderate effect at the household level, with an estimated

value of 0.19 for ρHH. The standard error for this parameter was obtained using the

delta method for a ratio of two parameters (Herson, 1975).

To check the model, some diagnostic plots were examined. Thus, a plot of the

level 1 residuals versus fixed part predictor did not reveal any special pattern, while

normal probability plots of standardized residuals (at levels 1, 2 and 3) did not show

any severe departures from the normality assumption, only pointing to a few extreme

values.

2.6.2 Multilevel Logistic Model

Due to unit and item non-response, 7254 out of 8560 (85%) observations were avail-

able for analysis. We fit model (2.3) with a logit link function and include random

intercepts at the household and municipality levels. The same covariates as before

were considered for inclusion in the model.
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Table 2.1. Linear multilevel regression model on log(BMI). Weighted and unweighted

estimators are reported with robust standard errors given in parentheses.

Unweighted Weighted Unweighted Weighted

�
Intercept 3.140 (0.021) 3.120 (0.034)

Smoking status: -0.038 (0.004) -0.035 (0.007)
(1=smoker)

Age (categorical): Males Females

15-24 - - -0.073 (0.022) 0.076 (0.033)

25-34 0.053 (0.011) 0.041 (0.018) -0.038 (0.022) -0.014 (0.034)

35-44 0.088 (0.009) 0.087 (0.023) -0.035 (0.023) -0.017 (0.038)

45-54 0.125 (0.011) 0.115 (0.019) -0.041 (0.022) -0.027 (0.033)

55-64 0.158 (0.012) 0.152 (0.018) -0.067 (0.027) -0.040 (0.037)

65-74 0.149 (0.012) 0.124 (0.016) -0.068 (0.029) -0.033 (0.037)

75+ 0.079 (0.014) 0.068 (0.020) -0.047 (0.025) -0.035 (0.036)

Education: Males Females

No diploma - - - -

Primary -0.065 (0.021) -0.044 (0.033) 0.073 (0.027) 0.055 (0.035)

Lower secondary -0.089 (0.019) -0.082 (0.033) 0.095 (0.021) 0.098 (0.034)

Higher secondary -0.106 (0.019) -0.091 (0.033) 0.097 (0.022) 0.088 (0.035)

Higher -0.151 (0.020) -0.135 (0.034) 0.122 (0.023) 0.108 (0.034)

Province:

Brussels - -

Antwerpen -0.001 (0.007) 0.005 (0.008)

Vlaamse Brabant -0.005 (0.008) -0.003 (0.009)

Limburg 0.013 (0.012) 0.012 (0.021)

Oost Vlaanderen 0.007 (0.008) 0.009 (0.008)

West Vlaanderen -0.017 (0.007) 0.028 (0.013)

Brabant Wallon 0.022 (0.014) 0.028 (0.014)

Hainaut 0.029 (0.007) 0.036 (0.010)

Liege 0.022 (0.009) 0.010 (0.017)

Luxembourg 0.025 (0.010) 0.023 (0.009)

Namur 0.022 (0.009) 0.025 (0.013)

German community 0.009 (0.008) 0.008 (0.010)

Household size: 0.005 (0.002) 0.006 (0.002)

Interviewee status: 0.034 (0.007) 0.035 (0.010)

σ2
v 0.0001 (0.0001) 0.0002 (0.0001)

σ2
u 0.004 (0.001) 0.004 (0.001)

σ2
e 0.019 (0.001) 0.019 (0.003)

ρ
†
HH

0.190 (0.016) 0.199 (0.025)

† Standard errors were calculated using the delta method.



24 Chapter 2. Introduction to Multilevel Models

Interpretation of variance components in terms of intra-unit correlation coefficients

is no longer simple in generalized linear multilevel models. We already touched upon

the issue that variance components at level one and higher levels are not directly

comparable, which precludes using formulas such as (2.9) and (2.10). In addition,

unlike in the Gaussian case where the mean and variance are independent, here the

level one variance, var(yijk) = πijk(1 − πijk), depends on the expected value and

hence on the fixed predictors included in the model. Goldstein, Browne and Rasbash

(2002) discuss four extensions of the intra-unit correlation coefficient to GLMMs.

Another issue is related to weighting. The paper of Pfeffermann et al. (1998) was

framed in the context of linear multilevel models. It can be argued that a similar pro-

cedure applies to generalized linear multilevel models, though. Weighted explanatory

variables at level 2 and above are defined as before. Level 1 being characterized by

the binomial variation, a method of incorporating the weights is now to use wijknijk

instead of nijk as the denominator of the binomial response variable. We found this

procedure to be numerically unstable in our application, however. We ran the proce-

dure on three different binary outcomes. With two of them (including the perceived

health indicator), it did not converge, and in the last instance the final results were

quite dramatically different from the unweighted analysis. It is not clear if the prob-

lem stems from the weighting scheme of this particular survey or from the procedure

itself, but we cannot recommend its use until it is more thoroughly explored.

Table 2.2 shows the results of the unweighted analysis for the perceived health

indicator. Among the original covariates, all were found important and included in

the model. An interaction term between smoking behavior and age was also included.

Among design-related covariates, only province indicators and size (household, mu-

nicipality) variables were retained.

We allowed for an extra-dispersion parameter in the model, that is, we assume

that

yijk = πijk + z
(1)
ijkeijk ,

where eijk has mean zero and variance σ2
e , and z

(1)
ijk =

√
πijk(1 − πijk). As can be

seen in Table 2.2, the estimated value of σ2
e is strongly indicative of under-dispersion.

Estimated variance components again reveal that there is considerably less variabil-

ity at the municipality level compared to the household level. Note that a normal

probability plot of standardized residuals at the household level showed a marked de-

parture from normality, therefore making the appropriateness of the model to these

data questionable.
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Table 2.2. Multilevel logistic regression model on perceived health indicator. Un-

weighted estimators are reported with robust standard errors given in parentheses.

Parameters Estimates (S.E.) Parameters Estimates (S.E.)

�
Intercept 1.427 (0.290)

Sex (1=male): 0.508 (0.080)

Age (categorical): Non smokers Smokers

15-24 - -0.540 (0.303)

25-34 -0.531 (0.221) -0.081 (0.245)

35-44 -1.298 (0.204) -0.368 (0.166)

45-54 -1.701 (0.204) -0.226 (0.180)

55-64 -2.250 (0.203) 0.037 (0.251)

65-74 -2.445 (0.209) -0.324 (0.233)

75+ -2.814 (0.217) -0.112 (0.424)

Education: Household income:

No diploma - < 20,000 -

Primary 0.240 (0.206) 20,000-30,000 -0.180 (0.177)

Lower secondary 0.560 (0.191) 30,000-40,000 0.179 (0.164)

Higher secondary 0.998 (0.197) 40,000-60,000 0.510 (0.170)

Higher 1.301 (0.208) > 60,000 0.982 (0.213)

Province: Household size: 0.110 (0.035)

Brussels - Municipality size: -0.163 (0.058)

Antwerpen 0.727 (0.185)

Vlaamse Brabant -0.080 (0.186) σ2
v 0.054 (0.036)

Limburg 0.118 (0.224) σ2
u 3.050 (0.157)

Oost Vlaanderen 0.454 (0.216) σ2
e 0.476 (0.023)

West Vlaanderen 0.664 (0.228)

Brabant Wallon -0.118 (0.141)

Hainaut -0.431 (0.155)

Liege -0.417 (0.204)

Luxembourg 0.274 (0.225)

Namur -0.155 (0.151)

German community 0.350 (0.234)
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Chapter 3

Pairwise Likelihood

Estimation in Multilevel

Probit Models

3.1 Introduction

In the previous chapter, we discussed two approaches to fitting multilevel models

with binary responses: maximum (marginal) likelihood (ML) and penalized quasi-

likelihood (PQL) estimation. Advantages and disadvantages of both methods can be

roughly summarized as follows:

• ML: can be easily employed in low-dimensional problems but becomes compu-

tationally demanding as the dimension of integration grows. Whenever feasible,

this ought to be the preferred method.

• PQL/PQL2: is computationally efficient but parameter estimates are biased,

albeit to a lesser extent with PQL2.

Consequently, a method enjoying attractive asymptotic properties (such as con-

sistency), while being computationally efficient in complex problems, is not without

interest. This will be our principal motivation for investigating maximum pairwise

likelihood (MPL) as an estimation tool in multilevel models with binary responses.

27
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Pairwise likelihood is a special example of what is called pseudo-likelihood, first

proposed by Besag (1975) and also termed composite likelihood by Lindsay (1988).

The motivation behind pseudo-likelihood estimation is to replace the likelihood by a

function that is easier to evaluate, and hence to maximize. The function in question

is a product of conditional or marginal densities. Thus, the main feature of a pseudo-

likelihood function is that it is composed of (pieces of) likelihoods and this can be

exploited to prove general results about the consistency and asymptotic normality of

pseudo-likelihood estimators, as shown in Section 3.2.

The aim of this chapter is to study a particular type of pseudo-likelihood function,

namely, pairwise likelihood. Using a multilevel probit model, we present the method

in Section 3.3 and discuss some of its computational properties. In Section 3.4 some

calculations are reported to compare the asymptotic efficiency of the maximum pair-

wise likelihood estimator (MPLE) relative to the MLE. The issue of weighting each

contribution in the log PL by the inverse cluster size (minus one) is examined in Sec-

tion 3.5. Different authors have argued that in marginal models weighting should be

applied for the estimation of marginal regression parameters but not for the estima-

tion of association parameters. In particular, we shall look closely at the argument

given by Kuk and Nott (2000) based on the theory of optimal estimating functions

and also report some asymptotic efficiency calculations. Next, an illustration of the

estimation method is given in Section 3.6 using data from a set of five clinical trials

comparing antipsychotic agents for the treatment of chronic schizophrenia. In Sec-

tion 3.7, we investigate finite-sample performances of the MPLE and report results of

a simulation study that was conducted to compare ML, PQL2 and MPL estimators

in relatively simple models. We conclude this chapter by a more extensive discussion

of the relative merits of the three estimation methods. Note that a shortened version

of this chapter is given in Renard, Molenberghs and Geys (2002).

3.2 Pseudo-Likelihood Estimation

In this section, the concept of pseudo-likelihood is introduced and general results on

the consistency and asymptotic normality of pseudo-likelihood estimators are proved.
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3.2.1 Pseudo-Likelihood Definition

For notational convenience, we define pseudo-likelihoods for a two-level data structure

but this can be extended to a higher number of levels. For simplicity, we also assume

that all clusters are of equal size, L say. The pseudo-likelihood definition presented

hereafter is in accordance with that given by Arnold and Strauss (1991) and Geys

(1999).

Let yj = (yij : i = 1, . . . , L)T denote the vector of measurements on unit j

(j = 1, . . . N). Later on, we shall assume that the yij ’s are binary variables but for

the time being, we put no restriction on the type of outcomes. We make the following

standard assumptions about the vectors of observations yj :

1. They are independently distributed with probability density function f(yj ; θ),

where the parameter vector θ is an element of the p-dimensional domain Ω.

2. The distributions of the yj ’s are distinct and have common support.

To construct a pseudo-likelihood, one starts with a set of conditional or marginal

likelihoods involving the yij ’s. Since the vectors yj are assumed to be independent,

we restrict attention to joint densities, or ratios thereof, which involve observations

yij sharing the same index j.

More formally, let us define the set S of all 2L − 1 vectors of length L consisting

solely of zeros and ones, with at least one non zero entry. Denote by y
(s)
j (s ∈ S)

the subvector of yj corresponding to the components of s that are non zero, and

by fs(y
(s)
j ; θ) the associated joint density function. To complete the notation, let

δ = {δs | s ∈ S} be a set of real numbers (not all zero).

The log of the pseudo-likelihood function is defined as

log PL(δ; θ) =

N∑

j=1

∑

s∈S

δs log fs(y
(s)
j ; θ) (3.1)

=
N∑

j=1

p`j(θ).

In this expression, the numbers δs are not allowed to take on any value. In particular,

some of them may be negative but they must have arisen from a product of likelihoods

and conditional likelihoods.

The classical log-likelihood function is found by setting δs = 1 if s is the vector

consisting solely of ones, and δs = 0 otherwise. Another example of pseudo-likelihood
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function consists of the product of full conditional densities f(yij |{yi′j : i′ 6= i}; θ)
obtained by conditioning a component on all the others. In this case, the log pseudo-

likelihood is defined by taking δ1L
= L and δsi

= −1 (i = 1, . . . , L), where 1L is

the vector of ones (of dimension L) and si consists of ones everywhere except for the

ith entry. The full conditional pseudo-likelihood is particularly useful in exponential

family models where it has the effect of replacing a joint density with a possibly

complicated normalizing constant by a product of simple univariate functions (Geys,

1999).

By analogy with ML estimation, a pseudo-likelihood estimator can be constructed

as the value of the parameter θ which maximizes the log pseudo-likelihood (3.1). This

value can be found by solving the pseudo-score equations obtained after differentiating

(3.2) and setting the derivatives to zero, i.e.,

∂

∂θk
log PL(θ; δ) =

N∑

j=1

∑

s∈Sj

δs

∂fs(y
(s)
j ; θ)/∂θk

fs(y
(s)
j ; θ)

= 0, k = 1, . . . , p.

(3.2)

As shown in the next section, the pseudo-likelihood estimator enjoys attractive

asymptotic properties, making it valuable for estimation purposes.

3.2.2 Asymptotic Properties of Pseudo-Likelihood Estimators

We first state some assumptions:

(A1) There exists an open set ω of Ω containing the true parameter value θ0 such

that for all s ∈ S and for almost all y(s), the density f(y(s); θ) admits all third

derivatives
∂3

∂θk∂θl∂θm
f(y(s); θ),

for all θ ∈ ω.

(A2) For all s ∈ S, the first and second logarithmic derivatives of fs satisfy the

equations

Eθ

[
∂

∂θk
log fs(y

(s); θ)

]
= 0, k = 1, . . . , p, (3.3)

and

Eθ

[
∂

∂θk
log fs(y

(s); θ) · ∂

∂θl
log fs(y

(s); θ)

]
(3.4)

= Eθ

[ −∂2

∂θk∂θl
log fs(y

(s); θ)

]
, k, l = 1, . . . , p,
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where Eθ[.] denotes expectation taken with respect to the density fs(y
(s); θ).

(A3) The matrix J(θ) defined by

Jkl(θ) = −
∑

s∈S

δsEθ

[
∂2

∂θk∂θ`
log fs(y

(s); θ)

]
(3.5)

has finite elements and is positive definite for all θ in ω.

(A4) There exist functions Mklm such that
∣∣∣∣∣
∑

s∈S

δsEθ

∂3

∂θk∂θl∂θm
log fs(y

(s); θ)

∣∣∣∣∣ ≤ Mklm(y) for all θ ∈ ω,

with µklm = Eθ0 [Mklm(y)] < ∞.

Theorem (Consistency and Asymptotic Normality). Under assumptions

(A1) – (A4), the pseudo-likelihood estimator θ̃N , defined as the maximizer of (3.1),

has the following properties:

1. θ̃N is consistent for estimating θ0.

2.
√

N(θ̃N − θ0) is asymptotically normal with mean 0 and covariance matrix

Λ = J(θ0)
−1K(θ0)J(θ0)

−1 (3.6)

where J(θ) is defined by (3.5) and K(θ) by

Kkl(θ) =
∑

s,t∈S

δsδtEθ

[
∂

∂θk
log fs(y

(s); θ)
∂

∂θl
log ft(y

(t); θ)

]
. (3.7)

The proofs are closely related to the classical proofs for maximum likelihood esti-

mators (see Lehmann (1983, p. 429–434) for example).

Proof of Consistency

To prove the existence, with probability tending to 1, of a sequence of solutions of the

pseudo-score equations which is consistent, we shall consider the behavior of the log

pseudo-likelihood on a sphere Qa with center at the true point θ0 and radius a. If it

can be shown that for any sufficiently small a > 0 the probability tends to 1 that

log PL(θ) < log PL(θ0)
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for all points θ on the surface of Qa, then the function log PL(θ) has a local maximum

in the interior of Qa. Since at this local maximum the pseudo-likelihood equations are

satisfied, it will follow that for any sufficiently small a > 0, with probability tending

to 1 as N → ∞, the pseudo-likelihood equations have a solution θ̃N (a) within Qa.

To ensure the existence of a consistent root that does not depend on a, we can take

θ̃
∗

N defined as the root closest to θ0. Such a point exists since the limit of a sequence

of roots is again a root by continuity.

Let a > 0 such that Qa is included in ω. We first expand the log pseudo-likelihood

around the true point θ0. After division by N , we have

1

N
log PL(θ) − 1

N
log PL(θ0) =

1

N

p∑

k=1

Pk(y)(θk − θ0k)

+
1

2N

p∑

k=1

p∑

l=1

Qkl(y)(θk − θ0k)(θl − θ0l) (3.8)

+
1

6N

p∑

k=1

p∑

l=1

p∑

m=1

(θk − θ0k)(θl − θ0l)(θm − θ0m)
N∑

j=1

γklm(yj)Mklm(yj),

where

Pk(y) =
∂

∂θk
log PL(θ0),

Qkl(y) =
∂2

∂θk∂θl
log PL(θ0),

and

0 ≤ |γklm(y)| ≤ 1.

Next it can be noted, by (A2) and the law of large numbers, that

1

N
Pk(y) =

1

N

N∑

j=1

∑

s∈S

δs
∂

∂θk
log fs(y

(s)
j ; θ0)

P−→ 0, (3.9)

where
P−→ denotes convergence in probability. Likewise, we have

1

N
Qkl(y) =

1

N

N∑

j=1

∑

s∈S

δs
∂2

∂θkθl
log fs(y

(s)
j ; θ0)

P−→ −Jkl(θ0). (3.10)

Let us write the three terms on the right-hand side of (3.8) S1, S2 and S3 respec-

tively. Then on Qa we have

|S1| ≤
a

N

p∑

k=1

|Pk(y)|.
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It follows from (3.9) that 1
N |Pk(y)| < a2 and hence |S1| < pa3 with probability

tending to 1.

Next, we consider

2S2 =

p∑

k=1

p∑

l=1

[− Jkl(θ0)(θk − θ0k)(θl − θ0l)]

+

p∑

k=1

p∑

l=1

{ 1

N
Qkl(y) − [ − Jkl(θ0)]}(θk − θ0k)(θl − θ0l).

From an argument analogous to that for S1, but based on (3.10), it follows that the

absolute value of the second term is less than p2a3 with probability tending to 1. The

first term is a quadratic form in (θ − θ0). For θ on Qa, this can be reduced, by an

appropriate orthogonal transformation, to a diagonal form
∑

λkζ2
k with

∑
ζ2
k = a2,

where the λk’s are the (negative) eigenvalues of the matrix −J(θ0). Suppose that

the λk ’s are numbered so that λp ≤ λp−1 ≤ . . . ≤ λ1 < 0. Then
∑

λkζ2
k ≤ λ1a

2.

Combining the above two arguments, we see that there exists c > 0 such that for any

a sufficiently small,

S2 < −ca2

with probability tending to 1.

Finally, by (A4) we have

1

N

N∑

j=1

Mklm(yj)
P−→ µklm,

which implies, with probability tending to 1,

1

N

N∑

j=1

Mklm(yj) < 2µklm

and hence S3 < ba3 where

b =
1

3

p∑

k=1

p∑

l=1

p∑

m=1

µklm.

Combining the three inequalities, we conclude that

max
Qa

(S1 + S2 + S3) < −ca2 + (b + p)a3

with probability tending to 1. This completes the proof since the right-hand expres-

sion is smaller than zero if a < c/(b + p).
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Proof of Asymptotic Normality

We start by expanding ∂ log PL(θ)/∂θk about θ0:

∂

∂θk
log PL(θ) =

∂

∂θk
log PL(θ0) +

p∑

l=1

(θl − θ0l)
∂2

∂θk∂θl
log PL(θ0)

+
1

2

p∑

l=1

p∑

m=1

(θl − θ0l)(θm − θ0m)
∂3

∂θk∂θl∂θm
log PL(θ∗), (3.11)

where θ∗ is a point on the line segment connecting θ0 to θ. We know, by the first

part of the proof, that there exists, with probability tending to 1, a solution θ̃N of

the pseudo-likelihood equations which is consistent. At θ = θ̃N , the left side of (3.11)

is zero and the resulting equations can be rewritten

√
N

p∑

l=1

(θ̃Nl− θ0l)

[
−1

N

∂2

∂θk∂θl
log PL(θ0)−

1

2N

p∑

m=1

(θ̃Nm− θ0m)
∂3

∂θk∂θl∂θm
log PL(θ∗)

]

=
1√
N

∂

∂θk
log PL(θ0).

This set of equations has the form (3.12) of the lemma stated below, if we define:

TNk =
1√
N

∂

∂θk
log PL(θ0) =

1√
N

N∑

j=1

∂

∂θk
p`j(yj ; θ0),

YNl =
√

N(θ̃Nl − θ0l),

ANkl =
−1

N

∂2

∂θk∂θl
log PL(θ0) −

1

2N

p∑

m=1

(θ̃Nm − θ0m)
∂3

∂θk∂θl∂θm
log PL(θ∗).

Since Eθ0
[∂p`j(yj ; θ0)/∂θk] = 0 by (A2), the multivariate central limit theorem im-

plies that T N = (TN1, . . . , TNp) has a multivariate normal limit distribution T with

mean vector 0 and variance-covariance matrix K(θ0).

We also know, by (3.10), that

−1

N

∂2

∂θk∂θl
log PL(θ0)

P−→ Jkl(θ0).

Since by (A4)
∂3

∂θk∂θl∂θm
log PL(θ∗)

is bounded, we have that

ANkl
P−→ akl = Jkl(θ0).
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By the lemma, we therefore conclude that the limit distribution of (YN1, . . . , YNp)

is that of

J(θ0)
−1T ,

which is multivariate normal with mean zero and covariance matrix

Λ = J(θ0)
−1K(θ0)J(θ0)

−1.

Lemma. Consider the following set of random linear equations in p unknowns

TNk =

p∑

l=1

ANklYNl, (k = 1, . . . , p). (3.12)

Suppose that (TN1, . . . , TNp) is a sequence of random vectors converging weakly to

(T1, . . . , Tp) and that for each fixed k and l, ANkl is a sequence of random variables

converging in probability to constants akl for which the matrix A = (akl) is nonsin-

gular. Let B = A−1. Then (YN1, . . . , YNp) converges in probability to the solutions

(Y1, . . . , Yp) of
p∑

l=1

aklYl = Tk (k = 1, . . . , p)

given by

Yk =

p∑

l=1

bklTl.

A proof of this lemma can be found in Lehmann (1983, p. 432–433).

It is interesting to highlight the connection between pseudo-likelihood and esti-

mating equations. To model correlated data, many researchers have proposed the

use of estimation techniques which do not require knowledge of the whole distribu-

tion of the response vector, thereby avoiding the need of prohibitive computations

for the likelihood. The classical score equations are then replaced by so-called esti-

mating equations which are easier to solve. If g(y; θ) is an estimating function, an

estimator can be defined as the solution of the estimating equation g(y; θ) = 0. A

well-known example of this approach to modeling of correlated discrete data are the

generalized estimating equations of Liang and Zeger (1986), a multivariate extension

of quasilikelihood (Wedderburn, 1974)
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The theory of estimating equations is in fact quite general and has been in develop-

ment for a long time now (Godambe, 1991). A special feature of estimating functions

is unbiasedness. An estimating function g(y; θ), and the associated estimating equa-

tion g(y; θ) = 0, are said to be unbiased if Eθ[g(y; θ)] = 0 for any θ. Thus, the

classical score equations are a trivial example of unbiased estimating equations. The

pseudo-score equations (3.2) are another one since a pseudo-likelihood is nothing else

but a sum of likelihoods. The reason why unbiased estimating equations are special

is that general results can be derived about the consistency and asymptotic normality

of estimators obtained from such equations, and the above theorem can be framed in

this general theory.

A major advantage of pseudo-likelihood over other estimating equation approa-

ches is that we face an optimization problem, i.e. maximizing the pseudo-likelihood

function. As a result, the value of the pseudo-likelihood can be used to distinguish

between multiple roots of the pseudo-score equations, or to discriminate between

different non-nested models with the same number of parameters. Also, in addition

to pseudo-score test statistics such as those available for GEE (Rotnitzky and Jewell,

1990), pseudo-likelihood ratio statistics can be defined, as discussed by Geys (1999).

In the maximum likelihood case, each of the matrices J(θ0) and K(θ0) re-

duces to Fisher’s information I(θ0) and the covariance matrix (3.6) simplifies to

I(θ0)
−1. As pointed out by Arnold and Strauss (1991), the Cramèr-Rao inequal-

ity implies that J(θ0)
−1K(θ0)J(θ0)

−1 is greater than I(θ0)
−1, in the sense that

J(θ0)
−1K(θ0)J(θ0)

−1 − I(θ0)
−1 is positive semi-definite, with strict inequality if θ̃N

is not a function of a minimal sufficient statistic. In other words, maximum likeli-

hood estimators will be, in general, more efficient than maximum pseudo-likelihood

estimators. Sacrificing some efficiency is therefore the price we pay for computational

simplicity.

In practice, the covariance matrix of the pseudo-likelihood estimator θ̃N can be

(consistently) estimated by

Λ̃N = J−1
N KNJ−1

N (3.13)

with

JN = −
N∑

j=1

∑

s∈Sj

δs
∂2

∂θ∂θ
T

log fs(y
(s)
j ; θ̃N) (3.14)
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and

KN =

N∑

j=1

∑

s,t∈Sj

δsδt
∂

∂θ
log fs(y

(s)
j ; θ̃N )

∂

∂θ
T

log ft(y
(t)
j ; θ̃N ). (3.15)

The above expression can be recognized as a ‘sandwich’ estimator, similar in spirit to

the robust variance estimate of Liang and Zeger (1986). Royall (1986) discussed gen-

eral properties of this type of estimator and gave some applications. Based on (3.4)

a simpler estimate of J(θ0), which does not require evaluation of second-order deriv-

atives, is given by

JN =

N∑

j=1

∑

s∈Sj

δs
∂

∂θ
log fs(y

(s)
j ; θ̃N )

∂

∂θ
T

log fs(y
(s)
j ; θ̃N ). (3.16)

3.3 Pairwise Likelihood in the Multilevel Probit

Model

In the previous section, a general pseudo (or composite) likelihood method of estima-

tion was introduced. We now restrict attention to a specific form of pseudo-likelihood,

namely, pairwise likelihood (PL). The technique does not seem to have been used very

much in applications until quite recently. It has been most advantageously used in

the spatial data context, where the full likelihood distribution is typically cumber-

some. Hjort (1993), for example, applies the method to covariance estimation in

geostatistics, while Heagerty and Lele (1998) use it to model binary spatial data.

Another broad class of applications is related to marginal modeling of correlated bi-

nary data. Thus, Le Cessie and Van Houwelingen (1994) developped a model with

logistic marginal response probabilities, using the odds ratio or the tetrachoric corre-

lation as a measure of association. Geys, Molenberghs and Ryan (1997) investigate

the performance of the maximum pairwise likelihood estimator in a model proposed

by Molenberghs and Ryan (1999), based on a multivariate exponential family model.

Geys, Molenberghs and Lipsitz (1998) compare pairwise likelihood with other esti-

mating equations approaches (GEE1 and GEE2) in marginally specified odds ratio

models with exchangeable association structure, whereas Kuk and Nott (2000) exam-

ine pairwise likelihood in a model with a more general specification for the association

structure, similar to the alternating logistic regression approach of Carey, Zeger and

Diggle (1993). We emphasize that the above references were centered on population-

averaged models, as opposed to the cluster-specific modeling approach endorsed here.
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3.3.1 The Multilevel Probit Model

Methodological developments in the remainder of this chapter assume a two-level

structure for simplicity. The procedure described hereafter can, in principle, be ap-

plied to general multilevel structures, although practical limitations at the computa-

tional level arise (see Section 3.8 for further discussion).

As it will become apparent, a probit link must be postulated for full computational

gains. The logit link, on the other hand, has been quite popular in marginal models

because parameters are interpretable in terms of (log) odds ratios. By extension, it

has been mostly studied in generalized linear multilevel models as well. In addition to

the fact that both links tend to provide similar model fits in practice whatever mod-

eling approach is followed, we do believe that the logit link function is less appealing

with random-effects modeling because of the cluster-specific interpretation of the pa-

rameters. Moreover, the probit link is more convenient to make population-averaged

inference since unconditional (i.e. marginal) probabilities are simple probit functions.

We now introduce the multilevel probit model from a latent variable perspective.

Let yj = (yij : i = 1, . . . , nj)
T denote the vector of binary measurements on unit j

(j = 1, . . . N). We assume that each yij can take on a value of 0 or 1. The model for

the probability that, conditionally on a set of random effects uj , a positive response

be observed on the ith unit in the jth cluster is specified as

Φ−1(P [yij = 1|uj ]) = x
T

ijβ + z
T

ijuj , (3.17)

where xij is a vector of covariates having fixed effects β and zij denotes a vector

of covariates, possibly overlapping with xij , having random effects uj ∼ N(0, Ωu) of

dimension q.

We posit the existence of a latent variable ỹij that is continuously distributed and

related to the actual response through a certain threshold. In the context of iid binary

data, this approach motivates a wide class of models, of which the standard logistic

and probit regression models are special cases (Cox and Snell, 1989). We assume that

the observed binary response is actually obtained by dichotamizing an unobserved

continuous variable, hence the need for a certain threshold or ‘cut-off’ value. This

threshold can be chosen to be 0 without loss of generality, provided an intercept term

is included in the model. In other words, it is assumed that a positive response is

recorded (yij = 1) if ỹij > 0 and a negative response (yij = 0) otherwise. If we further

assume that ỹij is normally distributed, then the random-effects regression model for
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the latent response variable can be written as follows:

ỹij = x
T

ijβ + z
T

ijuj + ε̃ij , (3.18)

where the residual error terms ε̃ij are assumed to be normally distributed with mean

zero and variance σ2
e .

We note that the parameter σ2
e is not identifiable in the model. For identifiability,

its value is fixed, without loss of generality, to 1. With this choice, the derived model

for the binary response variable yij is exactly (3.17).

3.3.2 Pairwise Likelihood

As the name suggests, with pairwise likelihood we aim to replace the likelihood con-

tribution P (y1j , . . . , ynjj) by the product of all possible pairwise probabilities. The

log pairwise likelihood for the response vector yj can be written

p`j(β, Ωu) =

nj∑

i=1

∑

i′>i

1∑

k,l=0

δii′jkl log P [yij = k, yi′j = l], (3.19)

with

δii′jkl =

{
1 if yij = k and yi′j = l,

0 otherwise.

A few remarks are in place here. Clearly, the pairwise likelihood and the classical like-

lihood functions coincide when clusters are of size 2, which makes the two approaches

equivalent in this case. Next, we emphasize that pairwise probabilities in (3.19) are

marginal , not conditional, probabilities. Using the latent variable formulation of the

model, these marginal pairwise probabilities are straightforward to calculate in terms

of univariate and bivariate probits. Thus, if we write

ξij =
−x

T

ijβ√
var[ỹij ]

, j = 1, . . . , N ; i = 1 . . . , nj ,

and

ρii′j = corr[ỹij , ỹi′j ], j = 1, . . . , N ; i, i′ = 1 . . . , nj ,
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then we have:

P [yij = 0, yi′j = 0] = P [ỹij < 0, ỹi′j < 0]

=

∫ ξij

−∞

∫ ξi′j

−∞

φ2(u, v; ρii′j)dvdu

= Φ2 (ξij , ξi′j ; ρii′j) ,

P [yij = 0, yi′j = 1] =

∫ ξij

−∞

∫ +∞

ξi′j

φ2(u, v; ρii′j)dvdu

=

∫ ξij

−∞

[
∫ +∞

−∞

φ2(u, v; ρii′j)dv −
∫ ξi′j

−∞

φ2(u, v; ρii′j)dv]du

= Φ (ξij) −Φ2 (ξij , ξi′j ; ρii′j) ,

P [yij = 1, yi′j = 0] = Φ (ξi′j) −Φ2 (ξij , ξi′j ; ρii′j) ,

P [yij = 1, yi′j = 1] = 1 −Φ (ξij) −Φ (ξi′j) + Φ2 (ξij , ξi′j ; ρii′j) ,

where the function φ2(u, v; ρ) denotes the standardized bivariate Gaussian density

function with correlation coefficient ρ, and the functions Φ and Φ2 denote the stan-

dardized univariate and bivariate Gaussian distribution functions, respectively. In the

above expressions, var[ỹij ], var[ỹi′j ] and ρii′j are obtained by selecting the appropriate

2 × 2 submatrix of the (marginal) covariance matrix of ỹj ,

Vj = ZjΩuZ
T

j + Inj
,

where Zj = (z1j , . . . , znjj)
T

and Inj
denotes the identity matrix of dimension nj .

Closer inspection of expression (3.19) reveals that cluster size is the determining

factor of the computational cost to evaluate a cluster’s contribution to the log PL.

Indeed, (3.19) entails calculating C
nj

2 = nj(nj − 1)/2 pairwise probabilities, a num-

ber which rises rapidly with nj . The computational cost can be greatly reduced, for

example when all covariates are discrete/categorical, since one actually needs to cal-

culate as many pairwise probabilities as there are of possible pairs of covariate values.

The main advantage of (3.19), of course, is that it implies evaluation of simple probit

functions which can be calculated using highly effective methods and with high ac-
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curacy, and which are generally available in most statistical software packages†. It is

clear that in some circumstances, the benefit of simple calculations will be outweighed

by the sheer number of terms that contribute; hence, MPL will not always be more

advantageous than ML in computational terms.

In (3.19), we have implicitly assumed that all clusters have at least two obser-

vations to make pairing possible, but often in practice, some clusters may have a

single observation. Although such clusters provide no information about association

parameters, they do contribute information about fixed-effects parameters. When a

cluster is of size one, its contribution is simply the log likelihood based on the single

observation.

To conclude, we briefly comment on the implementation of the algorithm. To re-

move constraints on the matrix Ωu which should be positive-definite, and thereby im-

prove the convergence properties of the algorithm, a Cholesky decomposition Σ
T

Σ =

Ωu is used and the PL function maximized with respect to the elements of the

Cholesky factor Σ. The algorithm was implemented in SAS IML (SAS Institute Inc.,

1995) and maximization of the log PL was performed using the NLPDD (Double-

Dogleg) optimization routine. This optimization procedure requires only function

and gradient calls which are less expensive to evaluate and much easier to obtain

than the hessian matrix. Upon convergence of the algorithm, estimates of the stan-

dard errors of (β̃, Ω̃u) can be obtained via (3.13), with JN estimated using (3.15) or,

more conveniently, (3.16). In the former case, the final hessian matrix can be com-

puted using numerical second-order derivatives by forward difference approximations.

Of course, the more expensive but accurate central difference approximation can be

used instead.

3.4 Asymptotic Relative Efficiency

In this section we compare the asymptotic efficiency of the MPLE relative to the

MLE in specific models. For simplicity, we suppose that clusters are of equal size (i.e.

nj = n for all j). To evaluate asymptotic variances of the MLE and the MPLE, we

must calculate the probability of each of the 2n possible configurations of the outcome

vector. For this reason, asymptotic calculations rapidly become prohibitive and we

restrict attention to the case n = 5 here.

†The SAS functions PROBNORM and PROBBNRM were used to calculate univariate and bi-

variate probits, respectively.
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Let θ be the vector of parameters in the model (thus, θ contains the fixed and

the random parameters), and let θ̂ML and θ̂MPL denote the MLE and MPLE of

θ, respectively. Let θ0 be the true parameter value and `(y; θ) and p`(y; θ) denote

the (marginal) likelihood and pairwise likelihood of a cluster with outcome vector y.

Omitting all functional dependencies on θ0 below, the asymptotic variance-covariance

matrix of θ̂ML can be calculated as follows:

V −1
ML = Eθ0

[− ∂2

∂θ∂θ
T

log `(y)]

= Eθ0
[

∂

∂θ
log `(y)

∂

∂θ
T

log `(y)]

=

1∑

y1=0

. . .

1∑

yn=0

`(y)
∂

∂θ
log `(y)

∂

∂θ
T

log `(y). (3.20)

The marginal probabilities `(y) = P (y1, . . . , yn) and derivatives ∂
∂θ

`(y) are obtained

after integration of random effects (assuming that derivation can be passed under the

integral sign in the latter case).

The asymptotic variance-covariance matrix of θ̂MPL is given by

VMPL = J(θ0)
−1K(θ0)J(θ0)

−1, (3.21)

with

J(θ0) = Eθ0
[− ∂2

∂θ∂θ
T

log p`(y)]

=
n∑

i=1

∑

i′>i

Eθ0
[− ∂2

∂θ∂θ
T

log P (yi, yi′)]

=
n∑

i=1

∑

i′>i

Eθ0
[

∂

∂θ
log P (yi, yi′)

∂

∂θ
T

log P (yi, yi′)]

=

n∑

i=1

∑

i′>i

1∑

k,l=0

P (yi = k, yi′ = l)
∂

∂θ
log P (yi = k, yi′ = l)

× ∂

∂θ
T

log P (yi = k, yi′ = l),
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and

K(θ0) = Eθ0
[

∂

∂θ
log p`(y)

∂

∂θ
T

log p`(y)]

=

1∑

y1=0

. . .

1∑

yn=0

P (y1, . . . , yn)

n∑

i,k=1

∑

i′ > i
k′ > k

∂

∂θ
log P (yi, yi′)

∂

∂θ
T

log P (yk, yk′).

The asymptotic relative efficiency of the MPLE relative to the MLE is then defined

as the ratio VML/VMPL.

We consider two models for the efficiency calculations. The first one assumes a

random intercept and is specified as

Φ−1(P [yi = 1|u]) = β0 + β1ti + u,

where β0 = −1, β1 = 0.5 and u ∼ N(0, σ2
u) with σ2

u = 0.5, 1, 4. Two regression designs

are considered:

• Two-sample design: the vector t = (t1, . . . , t5) is made up entirely of zeroes

or ones, representing membership to two groups. Each group is given equal

probability.

• Trend design: the vector t is taken to be (0, 1, 2, 3, 4).

The second model examined here is a random-intercept-and-slope model specified as

Φ−1(P [yi = 1|u, v]) = (β0 + u) + (β1 + v)ti,

with the same values of β0 and β1 as above, and

(
u

v

)
∼ N

((
0

0

)
,

(
σ2

u σuv

σuv σ2
v

))
.

Values for the parameters σ2
u, σ2

v and σuv were chosen such that σ2
u = σ2

v = 0.5, 1, 4

and the correlation between u and v is equal to 0, 0.5 or 0.9. Note that only the trend

design can be considered in this case.

Table 3.1 presents asymptotic relative efficiencies of (β0, β1, σ
2
u) in the random-

intercept model. Numerical integration required to calculate (3.20) was performed

using the QUAD subroutine in SAS/IML (SAS Institute Inc., 1995) which is a nu-

merical integrator based on adaptive Romberg-type integration techniques and can

achieve any prescribed accuracy (10−7 by default). Table 3.1 indicates that for both
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Table 3.1. Asymptotic efficiency of MPL versus ML in the random-intercept model.

Two-sample design Trend design

σ2
u σ2

u

Parameter 0.5 1 4 0.5 1 4

β0 99.0 98.3 97.4 99.9 99.8 98.7

β1 99.3 98.8 97.8 100.0 99.9 99.5

σ2
u 98.3 97.8 96.7 99.8 99.2 97.0

Cell entries are asymptotic relative efficiencies given as percentages.

designs, asymptotic efficiency is close to optimal for all three parameter estimates.

Obviously, this could be expected since a random-intercept model assumes that the

correlation between any two observations (with fixed values of the covariates) is con-

stant. Therefore, most of the information about the correlation structure is likely

to be recovered by pairwise likelihood. Finally, we note that the MPLE is slightly

less efficient with increasing values of σ2
u, that is, with stronger correlation between

responses.

Table 3.2 reports asymptotic relative efficiencies of (β0, β1, σ
2
u, σuv , σ2

v) in the

random-intercept-and-slope model. To ensure that numerical integration be suffi-

ciently precise, a basic Monte Carlo estimator was used. The technique of antithetic

variates (Lange, 1998) was utilized to gain in accuracy. A number of 500000 random

values were generated to estimate the integrals. Asymptotic relative efficiencies are

presented for each combination of values of σ2
u = σ2

v and

ρ =
σuv√
σ2

uσ2
v

.

As can be seen in Table 3.2, asymptotic relative efficiencies for the fixed parameters

are relatively high, with an efficiency loss inferior to 20% for β0 and inferior to 10% for

β1. For random parameters, the loss of efficiency is most severe for the σ2
u parameter

and attains a level of about 35%. The other two random parameters have higher

relative efficiency (generally larger than 80%).
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Table 3.2. Asymptotic efficiency of MPL versus ML in the random-intercept-and-

slope model.

σ2
u = σ2

v = 0.5 σ2
u = σ2

v = 1 σ2
u = σ2

v = 4

ρ ρ ρ

Parameter 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9

β0 86.0 84.9 83.2 84.6 83.0 81.4 81.0 81.2 81.6

β1 92.4 92.0 91.9 92.1 91.7 91.2 90.4 91.6 93.0

σ2
u 66.1 64.2 63.6 66.7 64.9 64.2 64.8 65.8 65.1

σuv 74.7 77.0 84.1 80.6 89.8 96.6 87.8 94.5 90.6

σ2
v 92.4 94.2 95.3 92.0 95.2 96.4 82.3 91.9 97.3

Cell entries are asymptotic relative efficiencies given as percentages.

3.5 Weighted Pairwise Likelihood

Expression (3.19) showed how the log pairwise likelihood function can be constructed.

Interestingly, each response yij occurs (nj − 1) times in this expression. In conse-

quence, when cluster sizes are unequal, an observation coming from a large cluster

will contribute more information to the log pairwise likelihood than one taken from

a small cluster and the issue arises as to whether one should weight or not each term

in the log pairwise likelihood.

Le Cessie and Van Houwelingen (1994) argued that p`j should be inversely weigh-

ted by a factor (nj−1), which led them to define the weighted (log) pairwise likelihood

(WPL):

log PL∗(β, Ωu) =

N∑

j=1

p`j(β, Ωu)

nj − 1
.

Their argument is that if the observations are in fact independent, the contribution

of each observation is counted (nj − 1) times in p`j and so observations in the large

clusters are given more weight than observations in the small clusters whereas they

should be treated equally under independence. Therefore, the log WPL reduces to the

log likelihood under independence and can be expected to be nearly efficient under

weak dependence.

In marginal models with exchangeable correlation structure, Geys, Molenberghs
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and Lipsitz (1998) show that PL and GEE2 approaches have strong common bases.

More specifically, the set of GEE2 equations for estimating marginal parameters is

closely related to the corresponding set of WPL equations, whereas the set of GEE2

equations for estimating association parameters is closely related to the corresponding

set of PL equations. The authors conclude that when main interest lies in the marginal

parameters, WPL should be preferred whereas if main interest lies in the association

parameters, use of PL should be recommended.

Kuk and Nott (2000) support this conclusion using an argument based on the

theory of optimal estimating functions. They show that for a simple model with mar-

ginal probability π (no covariates) and common pairwise correlation ρ, the optimally

weighted score equations are

N∑

j=1

1

nj − 1

∂p`
(m)
j

∂π
= 0 (3.22)

and

N∑

j=1

∂p`
(m)
j

∂ρ
= 0, (3.23)

where p`
(m)
j is the log pairwise likelihood from the marginal model for cluster j. In

other words, derivatives with respect to the marginal parameter π should be weighted

but not those with respect to the association parameter ρ. Hence to solve this pair

of equations, one should alternate between maximizing WPL with respect to π for a

given ρ and maximizing PL with respect to ρ for a given π.

We shall now apply the argument of Kuk and Nott (2000) to the multilevel probit

model of interest here. To this end, we consider a model with a single intercept term

β (no covariates) and a random intercept with variance θ = σ2
u.

We first introduce some notation, by defining `ii′j = P (yij , yi′j) and letting

p`′j =

(
∂p`j

∂β
,
∂p`j

∂θ

)T

denote the vector of first derivatives of p`j , and

p`′′j =




∂2p`j

∂β2

∂2p`j

∂β∂θ

∂2p`j

∂β∂θ
∂2p`j

∂θ2



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denote the matrix of second derivatives.

The argument of Kuk and Nott (2000) proceeds by noting that the optimal weight-

ing of p`j in the score equation is given by

N∑

j=1

JjK
−1
j p`′j = 0, (3.24)

where Jj = E[−p`′′j ] and Kj = cov[p`j ] = E[p`′jp`′j
T

]. They go on by evaluating Jj

and Kj under the simplifying assumption of independence. After some straightfor-

ward but tedious calculations, we obtain

Jj = C
nj

2 E[−`′′12j ] = C
nj

2 E[`′12j`
′
12j

T

] = C
nj

2 ζ




2 −β

−β β2

2 + ζ


 ,

(3.25)

where

ζ =
φ2(β)

Φ(β) [1 − Φ(β)]
.

Similarly, it can be shown that

Kj = cov[
∑

i′>i

`′ii′j ] = C
nj

2 cov[`′12j ] + 2C
nj

2 njcov[`′12j , `
′
13j ], (3.26)

where we have used the fact that cov[`′ikj , `
′
i′k′j ] = 0 under the independence assump-

tion. Now cov[`′12j ] = E[−`′′12j ] is given above and

cov[`′12j , `
′
13j ] = E[`′12j`

′
13j

T

] =




1 −β
2

−β
2

β2

4


 .

After substitution into (3.26) and some algebra, we find

Kj = (nj − 1)C
nj

2 ζ




2 −β

−β β2

2 + ζ
nj−1




and

JjK
−1
j =




1
nj−1 0

(nj−2)β
nj−1 1


 .

In comparison, Kuk and Nott (2000) found

JjK
−1
j =




1
nj−1 0

0 1


 ,
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which led them to the pair of equations (3.22)–(3.23).

From the above argument we obtain a weighted equation for the fixed parameter

but a weighted sum of pseudo-score functions for the random parameter. It can be

noted, however, that the weights will not be strongly dependent on cluster size – at

least when clusters are large since (nj −2)/(nj −1) ' 1 in this case – but the resulting

equation will depend on the fixed parameters, which prevents us from drawing the

same conclusions as Kuk and Nott (2000).

To supplement this result and gain further insight into the problem, we report

some asymptotic efficiency calculations to compare the weighted and unweighted MPL

estimators. We consider the same model as in the above discussion, with β = 0, 1, 2, 3

and θ = 0, 0.25, 0.5, 1, 2, 4. Clusters are either of size 3, 4, or 5 and assumed each

to occur with equal probability. For fixed cluster size, expression (3.21) can be used

to calculate the asymptotic variance matrix of the MPL estimators and appropriate

weighting can be introduced to calculate the asymptotic variance matrix of the MWPL

estimators. The results for each estimator are then combined to calculate the required

expectations.

Table 3.3 reports asymptotic efficiencies of the MPLE relative to the MWPLE

for each combination of parameter values. When there is none or little intra-cluster

correlation (i.e., θ is close to 0), the MPLE appears to be more efficient for the

random parameter but for the fixed parameter the conclusion depends on its true

assumed value. If the success probability evaluated at the mean of the random-

effect distribution is large (i.e., β is small), the MWPLE is more efficient than the

MPLE, whereas the reverse holds true for more extreme success probabilities. As

the association among responses becomes stronger, the MWPLE tends to be more

efficient than the MPLE for both parameters. In conclusion, none of the MPLE or

MWPLE is uniformly more efficient than the other and losses of efficiency between

the two estimators are modest (less than 10%). In view of Table 3.3, the MWPLE

tends to perform slightly better than the MPLE overall, especially when θ > 0.5, that

is, for values of θ that we have found to be relatively common in practice.
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Table 3.3. Asymptotic efficiency of MPL versus MWPL in the random-intercept

model. Cell entries are asymptotic relative efficiencies (percentages) for β̂ (first row)

and θ̂ (second row).

θ

β 0 0.25 0.5 1 2 4

0 94.0 91.0 89.8 88.8 88.0 87.5
107.8 100.1 97.4 95.1 93.4 92.3

1 97.5 94.3 92.7 88.8 89.7 87.5
107.8 100.8 97.8 95.1 93.4 92.3

2 105.3 101.2 98.3 95.2 92.8 91.0
107.8 102.9 99.2 95.7 93.5 92.3

3 107.6 105.2 101.6 97.4 94.4 92.4
107.8 105.5 101.5 96.8 93.8 92.3

3.6 Example: a Meta-Analysis of Trials in Schizo-

phrenic Subjects

To illustrate MPL estimation on a real set of data, we consider a group of five random-

ized clinical trials comparing the effect of risperidone to conventional antipsychotic

agents (or placebo) for the treatment of chronic schizophrenia. Schizophrenia has long

been recognized as a heterogeneous disorder with patients suffering from both “neg-

ative” and “positive” symptoms. Negative symptoms are characterized by deficits

in social functions (poverty of speech, apathy, emotional withdrawal, etc.). Positive

symptoms entail more florid symptoms such as delusions, hallucinations and disor-

ganized thinking, which are superrimposed on the mental status (Kay, Fiszbein and

Opler, 1987).

Several measures can be considered to assess a patient’s global condition. The

Positive and Negative Syndrome Scale (PANSS) (Kay, Fiszbein and Opler, 1987)

consists of 30 items that provide an operationalized, drug-sensitive instrument, which

is highly useful for both typological and dimensional assessment of schizophrenia.

Another useful scale is the Clinician’s Global Impression (CGI), which is generally
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Figure 3.1. Schizophrenia data: Proportion (on the probit scale) of patients who

have experienced clinical improvement since baseline as a function of time.

accepted as a subjective clinical measure of change. In the five trials in question,

we have measures of the CGI overall change versus baseline. This is a 7-grade scale

which ranges from 1=‘very much improved’ to 7=‘very much worsened’ and is used

by the treating physician to assess a subject’s overall clinical improvement compared

to baseline.

Only subjects who received optimal doses of risperidone (4-6 mg/day) or an active

control (haloperidol, perphenazine, zuclopenthixol) are included in the analysis, to

provide a total number of 805 patients. We transform the CGI overall change versus

baseline into a binary outcome by defining a success (Yij = 1) as clinical improvement

since baseline (CGI grade of 1 or 2) and a failure otherwise.

Depending on the trial, treatment was administered for a period of 4 to 8 weeks

and overall, we have scores for the CGI overall change versus baseline at weeks 1,

2, 4, 6 and 8. Figure 3.1 shows the proportion (on the probit scale) of patients

who experienced clinical improvement since baseline as a function of time for each
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Table 3.4. Schizophrenia data: ML (with 20 quadrature nodes), MPL and MWPL

parameter estimates and their estimated standard errors.

ML MPL MWPL

Parameter Estimate S.E. Estimate S.E. Estimate S.E.

Fixed-Effects Structure:

Intercept -0.665 0.327 -0.504 0.333 -0.581 0.346

Week1 -1.833 0.375 -1.827 0.362 -1.796 0.392

Week2 -1.055 0.321 -1.062 0.316 -1.075 0.336

Week4 -0.725 0.268 -0.778 0.270 -0.753 0.284

Week6 -0.216 0.230 0.219 0.231 -0.238 0.239

Treat×Week1 0.343 0.248 0.250 0.253 0.308 0.243

Treat×Week2 0.708 0.241 0.571 0.250 0.670 0.242

Treat×Week4 0.814 0.281 0.689 0.291 0.743 0.288

Treat×Week6 0.641 0.358 0.477 0.371 0.574 0.378

Treat×Week8 0.575 0.457 0.384 0.468 0.470 0.485

Random-Effects Structure:

σ11 2.124 0.243 1.994 0.253 2.022 0.285

σ12 -0.068 0.050 -0.040 0.056 -0.063 0.060

σ22 0.491 0.064 0.484 0.060 0.526 0.063

Coding for Treat: 0 = active control, 1 = risperidone.

treatment group.

A saturated ‘treatment by time’ model, with a distinct parameter for each treat-

ment and time combination, is considered for the proportion of patients who expe-

rienced clinical improvement since baseline. We further assume a random intercept

and a random slope in the model. ML, MPL and MWPL parameter estimates along

with their estimated standard errors are reported in Table 3.4. Note that for the

random-effects structure, the parameters of the upper triangular Cholesky factor of

Ωu = Σ
T

Σ are given. For the ML procedure, adaptive Gaussian quadrature was used

to evaluate the likelihood. Different numbers (q = 10, 20, 50) of quadrature nodes

were tested and while there were sizeable differences between q = 10 and q = 20 for
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some of the parameters, estimates obtained with q = 20 and q = 50 did not differ

much. These models were fitted using the SAS NLMIXED procedure (SAS Institute

Inc., 2000) and the corresponding computing times on a Personal Computer (PC)

with Pentium 450MHz processor were about 99 min for q = 10, 340 min for q = 20

and 1705 min for q = 50. The MPL and MWPL procedures, on the other hand, took

about 4 min to run to completion, thus providing a substantial improvement.

Table 3.4 shows that parameter estimates do not differ much accross all three pro-

cedures, at least in view of the variability attached to these estimates. Interestingly,

variance estimates, which were calculated based on (3.16), are smaller with MWPL

than MPL here, although it can be observed that most of the parameter estimates

are smaller in size as well.

3.7 Simulation Study

A simulation study was conducted to further evaluate the performances of the MPLE

in finite samples and compare it with the ML and PQL2 estimators in relatively

simple two-level models for binary responses. Of particular interest are the loss of

efficiency induced by the MPLE and the overall bias/variance trade-off.

The underlying model from which data were simulated was taken to be:

Φ−1(P [yij = 1|ui]) = β0 + β1xij + z
T

ijui. (3.27)

with β0 = 0.5 and β1 = 1. The results reported here are for a covariate x with values

generated from a uniform distribution over [−1, 1] for each observation in a cluster.

The case of a cluster-specific covariate was also considered and conclusions are briefly

discussed below. In model (3.27) we assume either a random intercept (zij = 1) or

a random intercept and slope (zij = (1, xij)
T

). The random effects were generated

from independent normal distributions with identical variances (0.5 or 1). To form

the binary outcome yij , we further generated individual random components N(0, 1)

so that the binary outcome was set to 1 when the linear predictor plus the sum of

the random effects and the individual random component was greater than 0. The

number of clusters was fixed to either 20 or 50, and all clusters had sizes taken from a

uniform distribution on [10, 30]. The results were based on 500 replicates under each

scenario.

For each generated data set, parameters were estimated using ML, PQL2 and MPL

procedures. For ML, adaptive Gaussian quadrature with 10 quadrature nodes was
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utilized to evaluate the marginal likelihood function. The Double-Dogleg routine was

employed to maximize the marginal likelihood function and the sample information

matrix was estimated using numerical second-order derivatives (with forward differ-

ence approximation) upon convergence. To obtain PQL2 estimates, the approach of

Goldstein and Rasbash (1996), and its implementation in MLwiN (Goldstein et al.,

1998), were followed. Finally, the MPL procedure was implemented as outlined in

Section 3.3. Results reported hereafter are for the weighted estimator as it was found

more efficient than the unweighted estimator under the chosen simulation settings.

Note that for ML and MWPL, an absolute gradient convergence criterion of 0.001

was specified, whereas for PQL2 a relative parameter criterion of 0.001 was used.

Results for the random-intercept model are summarized in Figures 3.2 and 3.3.

These figures present box and whisker plots of the simulated estimates for each pa-

rameter. The whiskers extend from the interquartile range (the box) as far as the

data extend to a distance not exceeding 1.5 interquartile range. The thick mark in

the box represents the median. Also included as horizontal lines are the mean ±1

root mean square error (MSE). Note that in these figures and subsequent ones, we

have occasionally removed a few extreme values from the plots (but not from the

calculations of summary statistics) for better readibility.

In both figures estimates of the fixed parameters show no systematic bias, except

for the slope parameter which seems to be slightly biased upward under PQL2. Esti-

mates of σ2
u0 were located, on average, on the true value of the parameter and their

distribution is, as can be expected, slightly skewed to the right, this being more pro-

nounced with smaller sample sizes (Figure 3.2). When comparing MSEs of β0 and β1,

there is little difference across all three estimation methods, with a slight advantage to

ML. For σ2
u0, MSEs were also smaller with ML when σ2

u0 = 0.5 but were, surprisingly,

in favor of PQL2 when σ2
u0 = 1. When looking at the relative efficiency of the MWPL

estimator to the ML estimator (which was estimated as the ratio of the variance of

the ML parameter estimates over that of the MWPL estimates), efficiency losses were

around 10% (ranging from 5 to 18%) for all parameters accross the four simulation

settings.

We found the good performance of the PQL2 estimator when σ2
u0 = 1 quite

surprising as this goes against the preconceived idea that PQL2 is biased downwards

for large variance components. It should be stressed, however, that PQL2 has been

studied mostly in models with logit link, which suggests that the link specification

may be an important consideration when fitting multilevel models to binary data
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Figure 3.2. Boxplots of ML, MWPL and PQL2 simulated parameter estimates

under Model (3.27) with random intercept ∼ N(0, σ2
u0). Top panel: 20 clusters with

σ2
u0 = 0.5; Bottom panel: 20 clusters with σ2

u0 = 1.
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Figure 3.3. Boxplots of ML, MWPL and PQL2 simulated parameter estimates

under Model (3.27) with random intercept ∼ N(0, σ2
u0). Top panel: 50 clusters with

σ2
u0 = 0.5; Bottom panel: 50 clusters with σ2

u0 = 1.
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Table 3.5. Simulations results (1000 replicates) to compare PQL2 estimates in the

random-intercept model with logit and probit link. Means are reported with Monte

Carlo error given between parentheses.

Parameter Probit Logit

β0 0.506 (0.005) 0.499 (0.005)

β1 1.028 (0.003) 1.008 (0.004)

σ2
u0 0.991 (0.008) 0.963 (0.009)

using the PQL algorithm. To further investigate this hypothesis, 1000 data sets of

50 clusters were generated from the random-intercept model, with the value of the

variance parameter equal to 1. This was done using logit and probit links and results

are summarized in Table 3.5. Note that the simulation setting is comparable to the

one used by Goldstein (1995, p. 100). Results for the logit link are indeed very close

to those reported by Goldstein and show the downward bias present in σ2
u0, with the

values of the fixed parameters close to their true value. For the probit link the bias

in the variance parameter is essentially eliminated, but there apparently is a bias

transfer to the slope parameter, now with upward tendency. The reason behind this

is not entirely clear. It can be recalled, however, that the PQL algorithm entails

iterative fitting of linear models that assume normality of the level 1 residuals. The

latter assumption seems, in fact, better satisfied with the probit link in the random-

intercept model. This, in turn, might lead to improved estimation of the variance

parameter. We will see below, however, that this is not always so.

Results for the random-intercept-and-slope model are summarized in Figures 3.4

and 3.5. The three estimation procedures yielded, on average, similar results for the

fixed parameters β0 and β1. No clear bias tendency could be detected in PQL2 esti-

mates of β1 under this scenario. MSEs for β0 were comparable under ML and PQL2

when σ2
u0 = σ2

u1 = 0.5 and were smaller under PQL2 when σ2
u0 = σ2

u1 = 1. Variance

parameters exhibit substantially more variability here. In Figure 3.4, the distribution

of ML and MWPL estimates for σ2
u0 and σ2

u1 is shifted towards larger values, whereas

the opposite happens with PQL2. With larger sample sizes (Figure 3.5), ML and

MWPL estimators were located, on average, on their true values but this was less

clear with PQL2 (see bottom panel). Interestingly, though, MSEs of σ2
u0 and σ2

u1
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were lower with PQL2. The covariance parameter σu01 was, on average, correctly

estimated with all three estimation methods. Finally, if we look at the relative ef-

ficiency of MWPL to ML, the loss was typically less than 15% for the fixed-effects

parameters and σ2
u0, and about 40% for σu01 and σ2

u1.

When the covariate x was cluster-specific (i.e., taking the same value for all obser-

vations within a cluster), conclusions remained essentially unchanged in the random-

intercept model. In the random-intercept-and-slope model, convergence was an issue

with all three procedures. With the smaller sample sizes (20 clusters), convergence

rates were about 60% with ML and MWPL and dropped to less than 30% with

PQL2. Fixed-effects parameters were reasonably well estimated but variance para-

meters were relatively biased (downwards for σ2
u0 and upwards for σ2

u1) and their

distribution markedly skewed with all three procedures. With larger sample sizes,

convergence rates were about 80% with ML and MWPL and about 50% with PQL2.

The bias in the variance parameters was still present albeit to a lesser extent. The

efficiency loss of the MWPL estimator compared to the ML estimator was moderate

(< 20%) in both settings.

To further evaluate the performance of MWPL in data sets with clusters of smaller

size, an additional set of simulations was performed. The intent was to match a

longitudinal study design, so these simulations were based on the following model:

Φ−1(P [yij = 1|ui]) = β0 + β1tij + z
T

ijui. (3.28)

with β0 = −1, β1 = 0.5 and tij = 0, . . . , 4. The random effects had variance equal to

1. The number of subjects was taken to be 100, each subject having between 1 and

5 observations (randomly determined).

Results for the random-intercept model are summarized in Figure 3.6. ML and

MWPL procedures behave comparably, with a small loss of efficiency for MWPL

compared to ML (< 10%). Interestingly, PQL2 seemed to perform worse under this

scenario: all parameters appear to be biased and to exhibit more variability.
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Figure 3.6. Boxplots of ML, MWPL and PQL2 simulated parameter estimates under

Model (3.28) with random intercept.

For the random-intercept-and-slope model (Figure 3.7), convergence difficulties

were more frequent. With PQL2, a solution could be obtained in approximately 75%

of the cases. With ML and MWPL procedures, convergence was easier to achieve

(≈ 95% of the cases) although some solutions had unusually large values for some

of the parameters, especially (co)variance parameters. After deleting these cases, we

were left with about 90% of the observations. Note that the convergence criterion

was lowered in order to detect solutions converging towards a non positive-definite

covariance matrix Ωu, which partly caused the aforementioned problem. Figure 3.7

shows that ML and MWPL behave comparably. The efficiency loss of MWPL over

ML was about 15% for fixed parameters, about 30% for the parameters σ2
u0 and σu01,

whereas it was negligeable for σ2
u1. This is in line with the asymptotic results reported

in Section 3.4 (see Table 3.2) where a similar setting was considered. Finally, even

though PQL2 exhibits less variability, it seems to fail quite dramatically in this setting

and variance parameters are seriously biased downwards.
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Figure 3.7. Boxplots of ML, MWPL and PQL2 simulated parameter estimates under

Model (3.28) with random slope.

3.8 Discussion

To conclude, we attempt to better delineate advantages and disadvantages of fitting

multilevel models with binary responses using MPL for estimation purposes.

One of the advantages of MPL over ML stands at the computational level since the

PL function involves evaluation of univariate and bivariate probits only, regardless of
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Table 3.6. Median computing times (seconds) for fitting random-effects model (3.27)

to 100 simulated data sets using ML and MPL.

Dimension of random effects

1 2 3

ML 3.0 57.5 408.2

MPL 86.4 116.0 185.8

Simulation settings:
- clusters of size between 10 and 30
- random-effects variances equal to 1

the number of specified random effects. Obviously, its use will not be very appealing

when the number of random effects is small since ML estimation could be effectively

used instead. It should be recalled that the computational cost to evaluate the mar-

ginal likelihood using a quadrature-based method increases exponentially with the

dimension of integration. With MPL, on the other hand, the complexity increases

roughly as a quadratic function of cluster size.

To further illustrate this point, we report in Table 3.6 the median computing times

for fitting model (3.27) to 100 simulated data sets for random effects of dimension 1

to 3. A quadratic term x2
ij was added to get random effects of dimension 3. As can be

seen, MPL is clearly not advantageous with random effects of dimension less than 3,

at least in data sets with similarly large cluster sizes, but it becomes attractive with

three-dimensional random effects.

Another facet of the problem was illustrated by the analysis of the schizophrenia

data in Section 3.6 which showed how efficient MPL can be from a computational

standpoint when clusters are of small size, even in a situation where only two random

effects are specified. Based on these considerations, we can tentatively recommend

the use of MPL estimation in multilevel probit models when:

• clusters are of small sizes, such as typically is the case in many longitudinal

studies;

• and/or the random structure of the model to be fitted is complex.

An additional advantage of MPL is its numerical stability since it does not involve
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possibly unstable operations like matrix inversions. Convergence rates for MPL were

found comparable to those for ML in our simulation study. Approximate methods

such as PQL, on the other hand, can sustain a great deal of numerical problems and

from our personal experience, it is not uncommon that the algorithm fails to converge

in practical applications, the problem being worsened as more complex models are

fitted. It was clearly seen from our simulation study that the algorithm can behave

well in some settings and fail miserably in others. Furthermore, the PQL2 algorithm

appears to be sensitive to extreme success probabilities (i.e. ≈ 0 or ≈ 1). Thus,

convergence rates in the first set of simulations were high because values chosen for

the fixed parameters correspond to success probabilities in the mid-range (centered

around 0.6) of the unit interval. However, they drop off significantly as soon as

one departs from this setting. For instance, a value of β0 = −2 in the random-

intercept model (3.27) gives convergence rates of about 90% when σ2
u0 = 0.5 and

about 60% when σ2
u0 = 1. This is even worse in the random-intercept-and-slope

model, where our implementation of the procedure becomes highly unstable with

convergence rates as low as 10%. If we add to this the fact that the PQL algorithm

produces biased estimates and that the bias is dependent on the link specification and

affects more or less severely different parameters, it becomes difficult to make definite

recommendations about the use of this algorithm in general. It should be noted,

however, that PQL runs much faster than either PL and ML so it might happen to

be the only procedure worth of consideration.

While MPL estimation was advocated on the basis of its computational ease,

this comes with a price, namely, loss of efficiency. The asymptotic calculations of

Section 3.4 and our simulation study showed a generally moderate loss (less than

20%), although it can attain up to 35% for some parameters.

Another drawback, clearly, is that MPL will not be applicable to any hierarchi-

cally structured data set and practical limitations on the number of levels will arise.

For instance, in a three-level model all possible pairs within and between level 2 units

pertaining to the same level 3 unit should be considered. This will become computa-

tionally prohibitive as the number of levels and the cluster size increase. Note that

an application of MPL estimation in a three-level model will be presented in the next

chapter.

An interesting practical situation that can reduce the computational burden of

the procedure is when covariates are discrete. In this case it suffices to consider

solely contributions of (within-cluster) pairs of observations with different covariate
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values, while keeping track of the multiplicities for each combination. If this is coupled

with the ordinary (unweighted) MPL estimation procedure, then only observations

with different covariate values across the whole data set need to be kept, thereby

making evaluation of the PL function inexpensive. It should be observed that cluster

membership information is still required to calculate the covariance matrix of the

parameter estimates via the sandwich estimator.

In this chapter we have focused exclusively on models dealing with a probit link

specification. Even though a logit link would be straightforward to specify by assum-

ing a standard logistic rather than normal distribution for ε̃ij in (3.18), this yields

intractable integrals for pairwise probabilities and thus, MPL estimation cannot be

applied in a beneficial manner. As discussed in Section 3.3, we do not see this as a

strong limitation. One could also view the latent variable assumption as a restriction

of the present approach. While this assumption may be sensible in many applications,

it will not always be so. Moreover, the existence of the latent variable is usually un-

verifiable in practice. We emphasize, however, that this assumption was made only

to facilitate mathematical developments (through probabilistic identities) and we do

not necessarily need to believe that the threshold model holds.

Finally, when the response variable is measured on an ordinal rather than binary

scale, Hedeker and Gibbons (1994) show how model (3.17) can be extended. In

this case a number of thresholds or ‘cut-off’ points must be considered to define

the different response categories, which then become additional parameters to be

estimated in the model. The MPL approach can be easily extended to deal with this

kind of situations.



Chapter 4

Validation of Surrogate

Endpoints in Multiple

Randomized Clinical Trials

with Discrete Outcomes

4.1 Introduction

The evaluation of a treatment (Z) is based on the observation of a clinically meaningful

endpoint which is referred to as the “true” or “final” endpoint (T ). Often the true

endpoint upon which treatment benefits will ultimately be assessed is distant in time

or measured at high expense, making it worthwhile to consider an intermediate or

surrogate endpoint (S) that can be measured earlier, more conveniently, or more

frequently than the endpoint of interest.

The validation of surrogate endpoints in clinical trials is a controversial issue (El-

lenberg and Hamilton, 1989; Boissel et al., 1992; Lagakos and Hoth, 1992; Fleming

et al., 1994; Fleming and DeMets, 1996; De Gruttola et al., 1997; Chuang-Stein and

DeMasi, 1998) and should be rigorously established. In a landmark paper, Prentice

(1989) proposed a definition as well as a set of operational criteria to validate surrogate

endpoints, but they are equivalent solely if the surrogate and true endpoints are binary

65
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(Buyse and Molenberghs, 1998). Freedman, Graubard, and Schatzkin (1992) supple-

mented these criteria with the so-called proportion of treatment explained (PTE),

which quantifies the proportion of treatment effect on the true endpoint that is me-

diated through the surrogate endpoint. This quantity has some drawbacks, however.

First, it is not a genuine proportion in the strict sense and can take values on the

whole real line. Also, confidence limits for this quantity tend to be wide in general,

unless the sample size is large. Flandre and Saidi (1999) and Molenberghs et al.

(2002) further discuss difficulties associated with PTE.

Buyse and Molenberghs (1998) suggest to replace the proportion explained by

two quantities: the relative effect, linking the effects of treatment on both endpoints

at the population level, and the adjusted association, an individual-level measure of

agreement between the two endpoints after accounting for the effect of treatment.

They focused on the case where both the surrogate and true endpoints are either

binary or normally distributed. Technically, a joint model for the two endpoints is

required. The relative effect is defined as RE = β/α, where α and β denote the

effects of Z on S and T respectively. For normally distributed endpoints the adjusted

association γZ is the correlation between S and T after correcting for treatment,

whereas for binary endpoints γZ can take the form of a log odds ratio for example.

Buyse and Molenberghs (1998) show that when the true and surrogate endpoints are

normally distributed, PTE is essentially the product of the relative effect and the

adjusted association. This suggests that PTE is, in effect, a composite quantity, a

mixture of two aspects of the model: the fixed effects (population-averaged level) and

the random component (individual level).

In order to be informative and of practical value, the validation of a surrogate

endpoint will typically require a large number of observations. It is therefore useful

to consider situations where data are available from multiple randomized experiments.

Buyse et al. (2000) show how the relative effect and the adjusted association can be

extended in the presence of multiple grouping units (e.g. trials in a meta-analytic

setting). With this approach the surrogate endpoint validation issue is examined at

each of the two levels of interest, that is, at the trial level and at the individual level.

Whereas the paper of Buyse et al. (2000) treats the methodologically appealing

case of two normally distributed endpoints, situations abound in practice where the

endpoints are of a different nature, such as failure-time or binary outcomes. The ques-

tion then arises as to which model should be used for specifying the joint distribution

of the surrogate and true endpoints. The answer is rarely trivial, mainly because of
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the absence of flexible tools like the multivariate normal distribution and the linear

mixed model. For example, when both endpoints are time-to-event variables, an ex-

tension of the method can be based on the use of copula models (Burzykowski et al.,

2001). Another interesting situation is when the endpoints are of a mixed continuous

and discrete nature, in which case a latent variable approach based on a probit-linear

or Plackett-Dale model can be used (Molenberghs, Geys and Buyse, 2001). In the

present chapter we describe an extension of the method to deal with binary outcomes.

Most of the results presented here can be found in Renard et al. (2002a).

In Section 4.2 we describe the meta-analytic approach to surrogate endpoint vali-

dation proposed by Buyse et al. (2000). Computational difficulties, causing frequent

failures of the algorithm to converge, are also discussed. We show, in Section 4.3, how

the model can be extended to the case of two binary endpoints. The task amounts

to fit a three-level model with a four-dimensional random-effects structure, which

we propose to do using the maximum pairwise likelihood (MPL) estimation method

described in the previous chapter. Some simulations are reported in Section 4.4 to

assess the impact of such factors as the number of trials and the trial size on the two

key surrogacy measures used in the validation process. Finally, in Section 4.5 the

method is illustrated on the schizophrenia data introduced in the previous chapter

(Section 3.6).

4.2 Surrogate Endpoint Validation: Two Normally

Distributed Endpoints

We first describe the meta-analytic approach to surrogate endpoint validation devel-

oped by Buyse et al. (2000) in the case of two normally distributed endpoints and

then turn to computational difficulties associated with the random-effects modeling

methodology.

4.2.1 A Hierarchical Model

Two distinct modeling strategies can be followed, based on a two-stage fixed effects

representation on the one hand and random effects on the other hand.

We start by describing the two-stage model. The first stage is based upon a joint
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regression model for S and T :

{
Sij = µSi + αiZij + εSij ,

Tij = µTi + βiZij + εTij ,
(4.1)

where the indices i and j refer to trials and subjects within trials respectively; µSi

and µT i are trial-specific intercepts; and αi and βi are the trial-specific effects of Z

on the two endpoints in trial i = 1, . . . , N . Finally, εSij and εT ij are correlated error

terms, assumed to be normally distributed with mean zero and covariance matrix

Σ =

(
σSS σST

σST σT T

)
. (4.2)

At the second stage, we assume that




µSi

µT i

αi

βi




=




µS

µT

α

β




+




mSi

mT i

ai

bi




, (4.3)

where the second term on the right-hand side is assumed to follow a zero-mean normal

distribution with covariance matrix

D =




dSS dST dSa dSb

dST dT T dTa dTb

dSa dTa daa dab

dSb dTb dab dbb




. (4.4)

The random-effects representation is obtained by combining the two steps above:

{
Sij = µS + mSi + (α + ai)Zij + εSij ,

Tij = µT + mT i + (β + bi)Zij + εTij .
(4.5)

4.2.2 Trial-Level Surrogacy

Since both the individual- and trial-level associations are of interest, the surrogate

endpoint validation issue is examined at each of these levels. A key motivation for

validating a surrogate endpoint is to be able to predict the effect of treatment on the

true endpoint, based on the observed effect of treatment on the surrogate endpoint. It

is therefore essential to explore the quality of the prediction of the treatment effect on
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the true endpoint by (a) information obtained in the validation process based on trials

i = 1, . . . , N and (b) information available on the surrogate endpoint in a new trial,

i = 0 say. Fitting either the fixed-effects model (4.1) or the mixed-effects model (4.5)

to data from a meta-analysis provides estimates for the parameters and the variance

components. Suppose then that a new trial i = 0 is considered for which data are

available on the surrogate endpoint but not on the true endpoint. We then fit the

following linear model to the surrogate outcomes S0j :

S0j = µS0 + α0Z0j + εS0j .

Estimates for mS0 and a0 are

m̂S0 = µ̂S0 − µ̂S,

â0 = α̂0 − α̂.

We are interested in the estimated effect of Z on T , given the effect of Z on S. To

this end, observe that (β + b0|mS0, a0) follows a normal distribution with mean and

variance:

E(β + b0|mS0, a0) = β +

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
µS0 − µS

α0 − α

)
,

var(β + b0|mS0, a0) = dbb −
(

dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)
.

This suggests to call a surrogate ‘perfect at the trial level’ if the conditional variance

given by the last expression is equal to zero. A measure to assess the quality of the

surrogate at the trial level is therefore given by the coefficient of determination

R2
trial = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)

dbb
. (4.6)

This coefficient is unitless and ranges in the unit interval if the corresponding variance-

covariance matrix D is positive-definite, two desirable features for its interpretation.

Intuition can be gained by considering the special case where the prediction of b0

can be done independently of the random intercept mS0. The above expressions then
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reduce to

E(β + b0|a0) = β +
dab

daa
(α0 − α),

var(β + b0|a0) = dbb −
d2

ab

daa
,

and we have

R2
trial = R2

bi|ai
=

d2
ab

daadbb
.

This implies that R2
trial

= 1 if the trial-level treatment effects are multiples of each

other.

So far we have examined the surrogate endpoint validation issue from a meta-

analytic standpoint, that is, it was implicitly assumed that grouping units are ran-

domized clinical trials. This needs not always be so and grouping units can actually

represent any relevant experimental unit such as center, investigator or country for

example. In the sequel, however, we shall continue to refer to the corresponding R2

surrogacy coefficient as a “trial”-level measure (R2
trial).

4.2.3 Individual-Level Surrogacy

At the individual level, we consider the association between the surrogate and the

final endpoints after adjustment for the treatment effect. To this end, we need the

conditional distribution of T , given S and Z. From (4.1) we derive

Tij |Sij ∼ N
{
µTi − σT Sσ−1

SS
µSi + (βi − σT Sσ−1

SS
αi)Zij + σT Sσ−1

SS
Sij ;

σT T − σ2
T S

σ−1
SS

}
.

Similarly, the random-effects model (4.5) yields

Tij |Sij ∼ N
{
µT + mT i − σT Sσ−1

SS
(µS + mSi) + [β + bi − σT Sσ−1

SS
(α + ai)]Zij

+σT Sσ−1
SS

Sij ; σT T − σ2
T S

σ−1
SS

}
,

where conditioning is also on the random effects. It follows that the association

between both endpoints after adjustment for the treatment effect is captured by

R2
indiv

= R2
εT ij |εSij

=
σ2

ST

σSSσT T

, (4.7)

the squared correlation between S and T after adjustment for the trial and treatment

effects.
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4.2.4 Surrogate Evaluation

A surrogate endpoint will be termed ‘valid’ if it is both trial-level valid (R2
trial

≈ 1)

and individual-level valid (R2
indiv ≈ 1). Guidelines about how close R2

trial and R2
indiv

have to be to 1 are hard to formulate in full generality. This will be based, preferably,

upon expert opinion and confidence limits for these coefficients should be examined.

To be useful in practice, a surrogate must be able to predict the effect of treatment

upon the true endpoint with sufficient precision to safely distinguish between effects

that are clinically worthwhile from effects that are not. This requires both that the

estimate of β +b0 be sufficiently large and that the prediction interval of this quantity

be sufficiently narrow.

It should be noted that the validation criteria proposed here do not require the

treatment to have a significant effect on either endpoint. In particular, it is possible

to have α ≡ 0 and yet have a perfect surrogate. Indeed, even though the treatment

may not have any effect on the surrogate endpoint as a whole, the fluctuations around

zero in individual trials (or other experimental units) can be very strongly predictive

of the effect on the true endpoint. However such a situation is unlikely to occur since

the heterogeneity between the trials is generally small compared to that between

individual patients.

4.2.5 Computational Issues

In the remainder of this chapter we shall focus on the random-effects modeling strat-

egy. Model (4.5) can be regarded as a two-level multivariate or, more precisely, as

a three-level model with a four-dimensional random structure at the trial (i.e. third)

level. This model can be quite challenging to fit in practice. In particular, we have

repeatedly observed convergence failures of the Newton-Raphson algorithm used to

obtain ML estimates in real data sets. Therefore, it is worth investigating which

features of the problem may facilitate convergence of the algorithm for this kind of

models.

Several factors were explored: number of trials, size of the between-trial variability

(compared to residual variability), number of patients per trial, normality assump-

tion, and strength of the correlation between random effects. Among those, number

of trials and between-trial variability were found to have most impact on the conver-

gence properties of the Newton-Raphson algorithm used to maximize the likelihood.

Table 4.1 shows the number of runs for which convergence could be achieved within
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Table 4.1. Number of runs (over 500) for which convergence was achieved within 20

iterations. Percentages are given in parentheses.

Number of trials

σ2 50 20 10

1 500 (100.0) 498 (99.6) 412 (82.4)

0.1 491 (98.2) 417 (83.4) 218 (43.6)

20 iterations. In each case, 500 runs were performed, assuming the following model:
{

Sij = 45 + mSi + (3 + ai)Zij + εSij ,

Tij = 50 + mT i + (5 + bi)Zij + εTij ,

where (mSi, mT i, ai, bi) ∼ N(0, D) with

D = σ2




1 0.8 0 0

0.8 1 0 0

0 0 1 0.9

0 0 0.8 1




and (εSij , εT ij) ∼ N(0, Σ) with

Σ = 3

(
1 0.8

0.8 1

)
.

The number of trials was fixed at either 10, 20 or 50, each trial involving 10 subjects

randomly assigned to treatment groups. The σ2 parameter was set to 0·1 or 1.

From Table 4.1, we see that when between-trial variability is large (σ2 = 1), little

convergence problems occur, except when the number of trials is strongly reduced.

When between-trial variability is small (σ2 = 0.1), convergence failures are more

frequent and the situation deteriorates as the number of trials decreases.

These simulation results indicate that there should be enough variability at the

trial level, and a sufficient number of trials, to obtain convergence of the Newton-

Raphson algorithm used to obtain parameter estimates from model (4.5). When

these requirements are not fulfilled, one must rely on simpler models, such as the

two-stage model (4.1) for example.
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4.3 Surrogate Endpoint Validation: Two Binary

Outcomes

4.3.1 The Model

In order to extend the methodology to the case of two binary endpoints, we assume

a latent variable formulation as in Chapter 3. That is, we posit the existence of a

pair of continuously distributed latent variables (S̃ij , T̃ij) yielding the actual binary

outcomes (Sij , Tij) after dichotomization. These unobservable variables are assumed

to have a joint normal distribution and the realized value of Sij (resp. Tij) equals 1

if S̃ij > 0 (resp. T̃ij > 0), and 0 otherwise.

We are now in a suitable position to follow the modeling strategy outlined in the

previous section. Consider the random-effects model




S̃ij = µS + mSi + (α + ai)Zij + ε̃Sij ,

T̃ij = µT + mT i + (β + bi)Zij + ε̃T ij ,
(4.8)

which is model (4.5) but on the latent variable scale. This yields the following model

for the observed binary outcomes:




Φ−1(P [Sij = 1|mSi, ai, mTi, bi]) = µS + mSi + (α + ai)Zij ,

Φ−1(P [Tij = 1|mSi, ai, mT i, bi]) = µT + mT i + (β + bi)Zij . (4.9)

As discussed in Section 3.3, not all parameters in the model are identifiable and we

constrain σSS and σT T to be equal to 1. The Σ matrix defined in (4.2) can therefore

be replaced by

Σ =

(
1 ρST

ρST 1

)
. (4.10)

The above formulation is particularly attractive since the coefficients of determina-

tion defined in the previous section can readily be employed without any modification,

although at the individual level the interpretation of R2
indiv is bound, formally, to the

postulated latent variables that give rise to the observed binary responses.

4.3.2 Model Estimation

A crucial step with the proposed methodology is to fit the above model. A direct

likelihood-based approach is unlikely to be satisfactory. Indeed, the four-dimensional
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random structure of the model signifies use of Monte-Carlo methods to accomplish

numerical integration and these are computationally involved. Since the framework is

meta-analytical in nature, which means that very large data sets can be anticipated

in practical applications, the computational burden may well be unbearable.

Approximate methods such as PQL (see Section 2.4) could a priori be good con-

tenders since they are computationally efficient but we will not retain this approach,

for two reasons. Firstly, the two measures of surrogacy are defined in terms of the ran-

dom components of the model (matrices D and Σ) but the PQL algorithm is known

to provide biased estimates for these components, which is not desirable. Secondly,

this algorithm tends to be numerically unreliable and the problem is aggravated with

complex models such as that we wish to use.

As a consequence, we propose to fit model (4.9) using the maximum pairwise

likelihood (MPL) approach studied in the preceding chapter. Since we are dealing with

a three-level model, we have to consider distinct contributions of pairwise likelihoods,

reflecting different types of association, as illustrated in Figure 4.1:

(i) the association between the surrogate and true endpoints measured on the same

individual;

(ii) the association between the surrogate endpoints measured on two distinct indi-

viduals;

(iii) the association between the true endpoints measured on two distinct individuals;

(iv) the association between the surrogate and true endpoints measured on two

distinct individuals.

More formally, the contribution of the ith trial to the log PL can be written

p`i =

2ni∑

j=1

j−1∑

k=1

`jk, (4.11)

where `jk is the likelihood of the pair (Yij , Yik) and Y i = (Si1, . . . , Sini
, Ti1, . . . , Tini

),

that is:

`jk = Y (11)

jk log p(11)

jk + Y (10)

jk log p(10)

jk + Y (01)

jk log p(01)

jk + Y (00)

jk log p(00)

jk ,

with

p(lm)

jk = P [Yij = l, Yik = m]
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Figure 4.1. Association structure between the surrogate and true endpoints for two

distinct individuals j and k in trial i.

indiv. j indiv. k

Sij (ii)� - Sik Surrogate

True

(i)

6

?

(iv)
������*

�������

(i)

6

?

Tij (iii)� - Tik

and

Y (lm)

ij =

{
1 if Yij = l and Yik = m,

0 otherwise.

As before, each term in (4.11) can be decomposed in terms of univariate and

bivariate probits and inference can proceed by maximizing the log PL function (see

Section 3.3 for further details). Finally, upon convergence of the algorithm, the two

surrogacy measures R2
trial and R2

indiv are calculated using formulas (4.6) and (4.7).

Approximate standard errors for these two quantities can be obtained using the delta

method.

4.4 Simulations

A simulation study was conducted to further examine the behavior of the MPL esti-

mator under different scenarios with varying trial numbers and sizes. Of particular
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interest is the impact of these factors on R2
trial and R2

indiv and to investigate convergence

issues as well.

The true underlying model in our simulation was taken to be:




S̃ij = (0 + mSi) + (−1 + ai)Zij + ε̃Sij ,

T̃ij = (0 + mTi) + (−2 + bi)Zij + ε̃Tij ,

with

D =




1
√

0.8 0 0√
0.8 1 0 0

0 0 1
√

0.8

0 0
√

0.8 1




and

Σ =

(
1 ρST

ρST 1

)
.

Note that additional simulations involving more complex forms of the D matrix led

to similar conclusions.

Data were generated using different scenarios with fixed and variable trial sizes.

We report only on a small set of simulations with fixed trial sizes (20 trials with 10 and

100 subjects) and different values of ρST . Conclusions remained basically unchanged

when trial size was allowed to vary. In each case, 250 replicates were generated.

Results are presented in Table 4.2 where for each parameter, we have reported the

5%-trimmed mean, the simulation S.D. and the mean of the estimated standard errors

(based on second-order numerical derivatives).

Estimates of the fixed-effects parameters seem to exhibit some bias with the

smaller sample size (first two settings) but this bias is essentially eliminated when

sample size increases (third setting). The estimated standard errors are relatively

close to the empirical ones in all three sets of simulations. Variance parameters of the

D matrix tend to be overestimated in smaller samples, owing to the higher degree

of skewness in their distribution. The same comment applies, to a lesser extent, to

covariance parameters, especially when their magnitude is large. These problems are

not observed with the larger sample size (20 trials of size 100). It can also be noticed

that standard errors of the variance parameters tend to be underestimated.

The parameter ρST was overestimated in the first two simulation settings, es-

pecially in the first one where the bias is sizeable and the estimates exhibit more

variability than in the second setting. It was, however, correctly estimated in the
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Table 4.2. Simulation results (250 replications).

20 trials, 10 subj. 20 trials, 10 subj. 20 trials, 100 subj.

(ρST =
√

0.5) (ρST =
√

0.8) (ρST =
√

0.8)

Parameter True mean s.d. s.e. mean s.d. s.e. mean s.d. s.e.

µS 0 0.012 0.305 0.290 0.003 0.284 0.285 0.018 0.237 0.233

α -1 -1.041 0.515 0.485 -1.040 0.511 0.490 -1.012 0.293 0.288

µT 0 0.009 0.301 0.299 0.008 0.315 0.294 0.050 0.232 0.236

β -2 -2.048 0.820 0.731 -2.061 0.656 0.696 -1.995 0.469 0.408

dSS 1 1.094 0.939 0.802 1.081 0.821 0.778 0.995 0.454 0.406

dST

√

0.8 0.955 0.722 0.647 0.986 0.659 0.671 0.906 0.385 0.374

dT T 1 1.291 0.956 0.860 1.157 0.819 0.812 1.031 0.404 0.415

dSa 0 -0.064 0.884 0.801 -0.072 0.765 0.750 -0.007 0.343 0.359

dTa 0 0.060 0.775 0.729 -0.018 0.736 0.711 0.002 0.328 0.351

daa 1 1.455 1.796 1.596 1.479 1.702 1.527 1.040 0.604 0.550

dSb 0 0.044 0.850 0.803 0.008 0.668 0.731 -0.026 0.463 0.427

dTb 0 -0.097 0.959 0.908 -0.105 0.741 0.805 -0.041 0.483 0.452

dab

√

0.8 1.004 1.190 1.109 1.053 1.138 1.092 0.863 0.618 0.516

dbb 1 1.584 2.066 1.926 1.402 1.784 1.618 1.022 1.063 0.762

ρST
† 0.774 0.119 0.122 0.917 0.067 0.076 0.896 0.026 0.025

R2
trial 0.8 0.827 0.243 0.331 0.835 0.241 0.342 0.858 0.195 0.167

R2
indiv

† 0.608 0.182 0.184 0.843 0.116 0.138 0.803 0.047 0.045

Converged 203 (81%) 153 (61%) 250 (100%)

† See column headers for true value of ρST .

third setting, once trial size is large. Standard errors are well approximated in each

case. The same comments hold for the derived parameter R2
indiv = ρ2

ST
. The R2

trial pa-

rameter suffers from upward bias in all three simulation settings and its distribution

is strongly skewed towards small values. The amount of bias in this parameter could

be attenuated by increasing replication at the trial level.

A final comment concerns convergence of the algorithm. Convergence percentages

are reported in the last row of Table 4.2. It can be observed how these are affected by

the magnitude of ρST and the trial size. Note that the numbers given in the first two

settings exclude cases where the solution lied close to the boundary of the parameter

space (value of det(D) close to 0 or value of ρST close to 1). As expected, this problem
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was more frequent with the largest value of ρST (second setting). No convergence

problems were encountered in the last set of simulations which was characterized by

a larger number of subjects in each trial.

For purposes of comparison we also used the PQL procedure, as implemented in

the SAS macro GLIMMIX (Wolfinger and O’Connell, 1993), to analyze each sim-

ulated data set based on the second simulation scenario. Besides the well-known

downward bias occuring in the (co)variance parameters (D and ρST ), the proportion

of data sets where the algorithm converged was dramatically low. This proportion

was about 44% with an unconstrained Σ matrix and dropped to about 25% when the

elements on the main diagonal of Σ were constrained to equal 1. In addition, even

when the algorithm did actually converge, the resulting D matrix was not always

positive-definite, therefore yielding R2
trial

values outside the unit interval. Although

the GLIMMIX macro is known to perform poorly in general, convergence difficulties

are not attributable to this fact alone but rather hint upon a problem inherent to the

algorithm itself. Convergence towards solutions lying on the boundary of the para-

meter space was also observed consistently in the analysis of real data sets using the

MLwiN package, as illustrated in the next section.

4.5 Example: a Meta-Analysis of Trials in Schizo-

phrenic Subjects

To illustrate the methodology, we use the data introduced in Section 3.6. Recall

that these data come from five clinical trials comparing the effects of risperidone to

conventional antipsychotic agents for the treatment of chronic schizophrenia.

Even though we are not in a standard context for surrogate endpoint validation due

to the lack of a gold standard, we consider as our primary measure (true endpoint) the

CGI overall change versus baseline, dichotomized as an indicator of global improve-

ment, i.e. a CGI score equal to 1 (=‘very much improved’), 2 (=‘much improved’)

or 3 (=‘minimally improved’). As a surrogate measure for global improvement, we

take clinical response defined as a 20% or higher reduction in the PANSS score from

baseline to endpoint. This corresponds to a commonly accepted criterion for defining

a clinical response (Kay et al., 1988). In other words, we seek to quantify the extent

to which a response in PANSS, a measure of psychiatric disorder, can predict clinical

improvement as observed by the physician.
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Table 4.3. Pooled data for the schizophrenia example: Surrogate endpoint (S) =

response in PANSS score; True endpoint (T ) = improvement in CGI overall change

versus baseline.

T

Z S 0 1

Active Control 0 151 (72)† 58 (28)

1 15 ( 6) 220 (94)

Risperidone 0 91 (71) 37 (29)

1 20 ( 9) 213 (91)

† Frequency (row percentage)

Pooled data from the five trials are presented in Table 4.3. It can be seen that the

relationship between S and T is very strong (ORST = 31.5, χ2 = 261.4, P < 0.0001),

as can be expected. Note that patients were rated by the same treating physicians

on both scales, thereby bringing some possible contamination bias. Table 4.3 shows

parameter estimates and their standard errors for model (4.9). This model was fitted

using the PQL2 procedure implemented in the MLwiN software package (Goldstein

et al., 1998) and using the MPL approach. Since the number of trials is too small in

this example, centers were treated as grouping units. Thus, 176 units were available

for analysis.

As can be seen in Table 4.4, the MPL procedure leads to an estimated D matrix

that is positive-definite. With PQL2, on the other hand, some elements of D were

constrained to be zero and as a result, the estimated value of the R2
trial

coefficient

cannot even be calculated. This makes direct comparison of parameter estimates for

D rather difficult between PQL2 and MPL. This put aside, fixed-effects parameter

estimates are quite similar and the anticipated loss of efficiency in MPL estimates

is moderate (less than 15%). Also, the parameter ρST exhibits both a much higher

point estimate and a much larger standard error.

Interestingly, the estimated value of R2
trial

is really low (0.006), whereas the esti-

mated value of R2
indiv is rather high (0.924). The latter confirms the strong association

between S and T (at the individual level) which was seen in Table 4.3 and suggests
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that they both capture overlapping components of a subject’s psychotic status . The

very low estimated value for R2
trial

, on the other hand, shows that S provides very bad

predictions for treatment effects on T (at the center level), thereby making of clinical

response a rather poor surrogate for clinical improvement according to our criterion.

Here, we see one advantage of this approach in that individual and ‘trial’ (center

in this example) level components of association can be completely disentangled. In

such an example, this is important since both are indeed very different.

As an additional analysis, we also considered dichotomizing CGI as a score of

1 or 2 versus others. This choice gives a greater sense of confidence that a patient

is effectively responding to treatment. According to guidelines for clinical trials on

attention deficit hyperactivity disorder†, which is a disease related to schizophrenia,

the current consensus seems to give preference to this criterion as a response indicator.

Interestingly, the resulting R2 values were R2
trial = 0.733 and R2

indiv = 0.824, which

seems to support this view. Note that the estimated standard error of R2
trial

was quite

large (S.E.=2.071), which might indicate that some numerical difficulties are in play,

so this result should be taken with care.

4.6 Conclusions

We have proposed an extension of the approach of Buyse et al. (2000) to assess the

validity of a surrogate endpoint in a meta-analytic context when both the surrogate

and the final endpoints are discrete in nature, the emphasis being on binary outcomes.

This was done by adopting a latent variable model formulation which allows us to

carry over previously proposed measures of surrogacy in a natural way, under the

assumption that the latent variables are normally distributed. This, in turn, dictates

the use of a joint probit model for the surrogate and the true endpoints.

The major difficulty rests in parameter estimation since, on the one hand, a direct

likelihood approach would be computationally involved and, on the other hand, stan-

dard approximate methods such as PQL may not be satisfactory since interest centers

directly on the random components of the model. This was our prime motivation for

using the MPL approach as it provides a net balance between computational burden

and bias, although at the (small) price of lower efficiency.

†From the consensus meeting of the European College of Neuropsychopharmacology at Nice,

March 2002 (personal communication).
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Table 4.4. Results for the schizophrenia data using PQL2 and MPL. Parameter

estimates and standard errors are reported.

PQL2 MPL

Parameter Estimate S.E. Estimate S.E.

µS 0.227 0.056 0.233 0.062

α† 0.166 0.046 0.161 0.049

µT 0.441 0.054 0.445 0.062

β† 0.100 0.050 0.109 0.057

dSS 0.126 0.050 0.121 0.057

dST 0.088 0.042 0.091 0.055

dT T 0.083 0.045 0.076 0.063

dSa - - -0.005 0.054

dTa - - -0.004 0.040

daa - - 0.001 0.005

dSb -0.007 0.024 0.006 0.046

dTb 0.001 0.022 0.024 0.041

dab - - -0.001 0.002

dbb 0.029 0.023 0.059 0.045

ρST 0.679 0.018 0.961 0.027

R2
trial - - 0.006 0.082

R2
indiv

0.461 0.024 0.924 0.052

† Treatment coding: -1 = active control, +1 = risperidone.

It is well-known that generalized linear mixed models are challenging to fit in

general and can pose numerous estimation problems. From our personal experience,

it is not so uncommon for the PQL algorithm to exhibit numerical instability and

fail to converge. The problem is even worse with the second order PQL algorithm

(PQL2) and with more complicated models such as (4.9). We saw in the previous

chapter that MPL tends to be more robust against convergence problems, which gives

an added advantage to this procedure.
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Numerical problems should nevertheless be expected to occur frequently in the

kind of applications sought here. In particular, such factors as the number of trials,

between-trial variability and trial size can be critical for improving convergence prop-

erties of the algorithm, just as they are for normally distributed endpoints. Obviously,

these problems remain topical here, if not worsened, as less information is conveyed

by binary response variables than by continuous ones.

To conclude, we briefly outline how the method can be extended to ordinal end-

points. We can adopt the “threshold concept” and assume that there are unobservable

latent variables that are related to the actual responses S and T through a series of

cutoff points. For instance, if S has K categories, we need to define a set of (K − 1)

threshold values γ1 < . . . < γK−1 and postulate that S and the corresponding nor-

mally distributed latent variable, U say, are connected by

S = k ⇔ γk−1 < U ≤ γk, k = 1, . . . , K

with γ0 = −∞ and γK = +∞ and where, for convenience, we can assume that γ1 = 0.

On the latent variable scale, we can again consider model (4.8) and the associated

coefficients of determination as measures of surrogacy at the trial and individual

levels. Parameter estimation can proceed as before by considering the likelihood of all

possible pairs of outcomes. Threshold values used to define S and T are simply extra

parameters to be estimated in the PL function. An extension to mixed situations,

where one endpoint is discrete and the other is continuous, is also feasible. The

same modeling strategy can be followed, with one of the components assumed to be

normally distributed and the other being obtained via a latent, normally distributed,

variable. The PL function does then involve evaluation of univariate probits only.
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Part II :

Longitudinal Data Modeling
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Chapter 5

Repeated-Measures Models

to Evaluate a Hepatitis B

Vaccination Program

5.1 Introduction

The aim of this chapter is to provide an introduction to the analysis of longitudinal

data and to discuss some of the associated modeling-related issues. To illustrate

the concepts, we shall utilize data from a hepatitis B vaccination program that was

conducted in 1985–86 in a Belgian institution for the mentally handicapped in order

to evaluate the long-term persistence of antibodies against hepatitis B surface antigen

(anti-HBs) after vaccination in this population. The data, as well as the main scientific

questions, will be described in Section 5.2.

To analyze the data, a standard linear mixed model will be used. An attractive

feature of linear mixed models for longitudinal data is that they enable the analyst

to discriminate between three specific components of variation in the data, which are

between-subjects variability, serial correlation and measurement error. These different

aspects will be portrayed in Section 5.3.

An important consideration with longitudinal data is the formulation of a suitable

model to describe the evolution of the response variable over time, especially when

prediction is a valued goal of analysis. Time trends are commonly modeled with

85
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low-order polynomials but these are known to be poor for prediction purposes due

to their asymptotic behavior. Fractional polynomials, which will be discussed in

Section 5.4, constitute a highly flexible tool in this respect. They provide a wide

range of functional forms and are straightforward to fit, two very appealing features.

In Section 5.5 we present the model building procedure for two specific models.

The first one, saturated in time, easily deals with the nonlinearity of the profiles and is

helpful for making comparisons between groups at different time points for instance.

The second model describes temporal decline in antibody titers more parsimoniously

and is more useful for making long-term predictions. Section 5.6 illustrates the issue

of prediction one year past the study end. We conclude with a few remarks in the

last section. Note that most of the contents of this chapter can be found in Renard

et al. (2001).

5.2 Hepatitis B Vaccination Program and Scientific

Questions

Mentally handicapped individuals residing in institutions are at high risk for he-

patitis B virus (HBV) acquisition and subsequent carrier state. The higher risk of

non-parenteral transmission in this population is due to the typical behavior of men-

tally retarded patients, the type of mental retardation and the closed setting of the

institutions which all enhance spreading of the virus.

Hepatitis B vaccination of residents and staff is a general recommendation and

has become part of today’s hepatitis B prevention programs. Data on long-term

persistence of antibodies against HBV are scarce, especially in this population. Data

available from other high-risk populations showed that 67 to 85% of the vaccinated

individuals still had antibody levels higher than 10 International Units/Liter (IU/L),

9 to 12 years after the first vaccine dose (Hadler et al., 1986; Tabor et al., 1993;

Coursaget et al., 1994; Da Villa et al., 1996; Wainwright et al., 1997).

In previous studies several factors have been described to cause a higher risk in

the acquisition of hepatitis B virus infection. These factors include age, age at admis-

sion, duration of residency, type of mental retardation (Down’s syndrome (DS) versus

other types of mental retardation (OMR)), sex and use of anti-epileptic medication

(Vellinga, Van Damme and Meheus, 1999). Sex, age and type of mental retardation

are also of influence on the response to vaccination (Vellinga, Van Damme, Weyler et
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al., 1999).

In 1985–86 a hepatitis B vaccination program was conducted in an Belgian institu-

tion for the mentally handicapped to evaluate the long-term persistence of anti-HBs

after vaccination in this population. Blood samples were drawn from residents in

that institution, who were then all vaccinated with three doses of hepatitis B vac-

cine (Engerix-BTM, SmithKline Beecham Biologicals, Rixensart, Belgium) according

to a month 0-1-6 schedule. Serum samples were taken after each vaccine dose and if

residents did not meet the (arbitrary) antibody level of 100 IU/L at month 7, they

received an extra vaccine dose at month 12. If the requirement of 100 IU/L was still

not met at month 13, additional booster doses were administered (these residents

were however not further included in the program). All residents received a booster

dose after 5 years, at month 60.

Of the 196 seronegative residents originally included in the program, only 97 were

included in the analysis of the follow-up after 11 years. They had blood samples taken

yearly for the first 5 years and at year 11. Sixty seven of them received 4 vaccine

doses (at months 0, 1, 6, plus a booster at month 60) and 30 received 5 doses (at

months 0, 1, 6, 12, plus a booster at month 60). Further details can be found in Van

Damme et al. (1989) and Vellinga, Van Damme, Weyler et al. (1999).

Interest focuses on describing the evolution of the mean log titer over time, while

accounting for prognostic factors such as sex, body mass index, duration of residency,

age at admission into the institution, type of mental retardation, use of antiepileptic

drugs and number of vaccine doses received. Additional questions also involve pre-

dicting antibody level at years 11 (end of study) and 12 (one year past the end) based

on the fitted model.

While the main epidemiological interest lies in the population-averaged prediction,

the model enables one to perform individual-specific predictions as well. Both model

building and prediction are complicated by the fact that individual and average pro-

files are highly nonlinear (see Figures 5.1a and 5.1b), combined with the absence of

measurements between years 5 to 11.
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Figure 5.1. (a) Longitudinal trends in log(anti-HBs+1) for residents with DS (solid

line) and OMR (dashed line). Cross symbols indicate missing values.

(b) Average log(anti-HBs+1) over time for residents with DS (solid line) and OMR

(dashed line).

(c) Ordinary least squares (OLS) residual profiles obtained upon fitting a saturated

mean structure to log(anti-HBs+1).

(d) Variance of the OLS residuals over time for residents with DS (solid line) and

OMR (dashed line).
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5.3 The Linear Mixed Model With Serial Correla-

tion

In this section, we briefly review the general linear mixed-effects model, with some

emphasis on components of random variability that are typically encountered in lon-

gitudinal data.

Linear mixed-effects models for longitudinal data were proposed by Laird and

Ware (1982). Serial correlation was added by Diggle (1988). See Diggle, Liang and

Zeger (1994) and Verbeke and Molenberghs (2000) for a general overview.

A linear mixed model for longitudinal data can be written as follows:

Y i = Xiβ + Zibi + εi, (5.1)

where Y i = (Yi1, . . . , Yini
)† is the ni dimensional response vector for subject i, 1 ≤

i ≤ N , N is the number of subjects, Xi and Zi are (ni ×p) and (ni × q) known design

matrices, β is the p dimensional vector containing the fixed effects, bi ∼ N(0, D)

is the q dimensional vector containing the random effects, εi ∼ N(0, Σi) is a ni

dimensional vector of residual components, and b1, . . . , bN , ε1, . . . , εN are assumed

to be independent. Inference is based on the marginal distribution of the response

vector Yi, that is:

Y i ∼ N(Xiβ, ZiDZ ′
i + Σi). (5.2)

Random effects in model (5.1) stem from heterogeneity between individuals. This

means that various aspects of their behavior may exhibit inter-individual random

variation. For example, it is conceivable that some subjects will have a high immune

response, and will remain so throughout the study period.

The residual variability εi in (5.1) may be further refined and decomposed into

the following qualitatively distinct components (Diggle, Liang and Zeger, 1994):

• Serial correlation: This component arises due to the fact that pairs of mea-

surements (such as antibody titers) that are taken closer in time often show a

stronger similarity than pairs taken further apart.

• Measurement error: Measurement errors occur when the measurement

process itself introduces an element of random variability. For instance, there

†Note that we will henceforth make use of the standard index notation for longitudinal data, that

is, the first index refers to individuals, while the second refers to measurement occasions.
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might be substantial variation in results from bioassays of blood samples, even

when two measurements are taken at the same time from the same subject, or

when a sample is split into two subsamples which are then analyzed separately.

This distinction leads to the decomposition εi = ε
(1)

i + ε
(2)

i , where





ε
(1)

i ∼ N(0, τ2Hi),

ε
(2)

i ∼ N(0, σ2Ini
).

(5.3)

In this expression, the first component ε
(1)

i captures serial correlation, while the second

represents measurement error. The covariance matrix Hi only depends on i through

the number ni of observations and through the time points tij at which measurements

are taken.

The structure of the matrix Hi is determined by the autocorrelation function

ρ(tij − tik), for some decreasing function ρ(.) with ρ(0) = 1. A first simplifying

assumption is that it depends only on the time interval between two measurements

Yij and Yik, i.e. ρ(tij − tik) = ρ(| tij − tik |). Two popular choices for ρ(.) are

the exponential and Gaussian models defined respectively as ρ(u) = exp(−φu) and

ρ(u) = exp(−φu2), with φ > 0.

When model (5.1) contains solely a random intercept between subjects, a serially

correlated component and a measurement error, a useful aid to the formulation of an

appropriate model for the covariance structure, especially the autocorrelation func-

tion, is the variogram (Diggle, 1990). For a stochastic process Y (t), the variogram is

defined as V (u) = 1
2E[Y (t) − Y (t − u)]2. Under the specified model, this reduces to

V (u) = σ2 + τ2[1 − ρ(u)] (Diggle, Liang and Zeger, 1994).

Decomposition (5.3) assumes that the variance of residual components εi is con-

stant over time. However, individual profiles in Figure 5.1a exhibit a decrease in

variability during the first half of the study, which is confirmed by the plot of the

variance function displayed in Figure 5.1d. One way to accomodate variance het-

erogeneity is through a log-linear variance model producing exponential local effects,

also called dispersion effects (Littell et al., 1996). In this model, measurement errors

take the form σ2diag[exp(Uδ)], where U is a design matrix and δ a vector of disper-

sion parameters. This affords a way of modeling variability in terms of effects to be

specified, such as time in the present study.



5.4 Fractional Polynomials with Longitudinal Data 91

5.4 Fractional Polynomials with Longitudinal Data

Fractional polynomials were proposed by Royston and Altman (1994) as a flexible

tool for parsimonious parametric modeling. In simple terms, a fractional polynomial

φ(X ; β, p) is a linear combination of real-valued powers of X , where X represents

some (not necessarily continuous) covariate. More formally, a fractional polynomial

φ(X ; β, p) of degree m can be defined as the function

β0 +
m∑

j=1

βjX
(pj),

where the βj are regression parameters and p = (p1, . . . , pm) is a real-valued vector

of powers with p1 < . . . < pm. The notation X(p) denotes the Box-Tidwell power

transformation

X(p) =

{
Xp , p 6= 0

log X , p = 0

Note that the above definition can be extended to the case of equal powers (see

Royston and Altman, 1994).

By definition, fractional polynomials extend the family of the Box-Tidwell power

transformation and the class of conventional polynomials. A great advantage of frac-

tional polynomials over classical polynomials is that they provide a wide range of

functional forms and their behavior near the extreme values is often more reasonable.

It is possible, for instance, to generate a variety of curves some of which approach

a horizontal asymptote for large values of X , a feature that classical polynomials do

not share.

Another advantage of fractional polynomials is that they are straightforward to

fit. To determine the ‘best’ value of m and p, Royston and Altman (1994) propose to

restrict the power terms to a small predefined set of integer and non-integer values –

they suggest using P = {−2,−1,−0.5, 0, 0.5, 1, 2, . . . , max(3, m)} – and to select the

best power vector as that associated with the model with the highest likelihood (or

equivalently with the lowest deviance). As with conventional polynomials, the degree

m of the fractional polynomial is selected either informally on a priori grounds or by

increasing m until no worthwile improvement in the fit can be detected. In practice,

it seems that a choice of m = 2 or m = 3 is typically sufficient.

Whereas the same broad principles hold with longitudinal data, formulation of the

model must be approached with greater care since in addition to modeling the mean
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structure, modeling of the covariance structure must be undertaken. General guide-

lines for model building with longitudinal data involve the following steps (Verbeke

and Molenberghs, 2000):

• Selection of a preliminary mean structure: it is recommended to use an

overelaborated model for the mean response profile.

• Selection of a preliminary random-effects structure: we have to select a

set of random effects to be included in the covariance model.

• Selection of a residual covariance structure: conditional on the previously

selected set of random effects, we need to specify the residual covariance matrix

Σi.

• Model reduction: based on the residual covariance structure specified in the

previous step, we can investigate whether the included random effects are re-

ally needed in the model. After selection of the final covariance structure, the

preliminary mean structure can be simplified.

The model building process as just described lends itself to a simple strategy to

determine the best power vector p: after an appropriate covariance structure has

been selected, the best-fitting m-tuple of power terms from P can be chosen based on

the likelihood criterion. This will preferably be done using several variance-covariance

structures to make the procedure more robust. A drawback of the approach, however,

is that time effects prespecified in the random-effects structure will typically differ

from those selected in the mean structure. For example, one may have specified a

random-effects structure with an intercept, t and t2, where t denotes the time variable.

On the other hand, the selection of a fractional polynomial of order 2 may result in

an intercept plus the terms log t and t−1. This seems rather unnatural if the model is

to be interpreted as a random-coefficients model, where the random effects represent

subject-specific corrections to the average response profile.

The latter remark suggests another possible strategy to choose a power vector by

comparing models that include the same random and fixed time effects, in addition to

possibly allow for a fixed serial correlation process. Thus, in the above example, the

model including fixed and random effects for the intercept, t and t2 could be compared

to the model including fixed and random effects for the intercept, log t and t−1 and

that with highest likelihood would be selected. After the procedure has been run, it



5.5 Time-evolution of Antibodies 93

would be advisable to assess the appropriateness of the assumed covariance structure

to check if model fit can be improved. Note that this procedure is more likely to run

into convergence problems because of the diversity of random-effects structures to be

fit.

As can be seen, none of the two aforedescribed procedures is perfect and one may

be preferred over the other depending on the context. When there is a small number of

fixed measurement occasions for example, the first method might be preferable since

an unstructured matrix can be assumed for the marginal variance-covariance matrix

of a response vector and emphasis put on selecting a power vector for fixed effects

only. In more general situations (e.g. with unequal measurement times), random

effects and/or serial correlation structures will typically be needed and either of the

two proposed strategies can be used. Also, more complex procedures can presumably

be conceived. For example, a selection procedure could be ideally to simplify a ‘super’

model incorporating all time effects with power terms in P , both as random and fixed

effects. Of course, it is unlikely that such a model can be fit in practice.

5.5 Time-evolution of Antibodies

In this section, we address the question of specifying a model that adequately describes

the evolution of log antibody titer over time. Hence, we need to consider appropriate

mean, variance and covariance models. Since the profiles are quite messy due to

unequally spaced measurement occasions and booster effects, it is essential to conduct

an exploratory data analysis.

As shown in Figures 5.1a and 5.1b, individual and mean profiles of log(anti-

HBs+1) for DS and OMR are clearly nonlinear and show peaks after booster doses.

Individual profiles follow approximately the same pattern with the main difference

between profiles lying in the vertical shift. This suggests a strong contribution of an

individual random intercept. Average profiles show a difference in anti-HBs between

the two groups. Also, these profiles exhibit steep increases immediately after boosters,

followed by a gradual decrease which appears to be nonlinear.

Figure 5.2 depicts an estimate of the empirical variogram for these data. It was

constructed using standardized ordinary least squares residuals obtained upon fitting

a saturated groups-by-times model (where group is type of mental retardation). Also

shown in this figure is a smooth loess estimate of the variogram (Cleveland, 1979).

The between-subject variance seems relatively large in these data, accounting for
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Figure 5.2. Sample variogram of log antibody residuals (the horizontal line estimates

the process variance; the dashed line represents a smooth estimate of the variogram).

about one half of the total variability. The measurement error is also substantial,

accounting approximately for the other half of the process variance. This variogram

leaves little room for a serially correlated component. Note that in this context, it is

essential to use standardized residuals to remove variance heterogeneity in the data,

ensuring that the process variance is constant and equal to one.

Following the guidelines sketched in the previous section, we now turn to model

building and outline the successive steps to retain a final model. Type of mental

retardation, duration of residency and number of vaccine doses (as a group variable)

were allowed to have specific effects at each sample occasion. We also included time-

constant effects for sex (male versus female), use of antiepileptic drugs (yes versus

no), body mass index, and age at admission in the institution, since there was no

indication of a time trend for these covariates.

The preliminary variance model acknowledges the presence of serial correlation and

includes the following random effects: an intercept, a linear time slope, and number

of vaccine doses (0/1-coded group variable). An unstructured form is assumed for the
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3 × 3 random-effects variance matrix D.

We first select an appropriate serial process, as shown in Table 5.1. Models with

exponential (B) and Gaussian (C) serial correlation are compared to the model with

no serial process (A) using the likelihood ratio test statistic (denoted G2 in the ta-

ble). These tests strongly reject the null hypothesis of no serial process. At this

stage, we decided to keep the exponential model for comparison purposes with a first

analysis of the data. As a rule of thumb, however, one should generally go for the

model with the largest value of the deviance (or another criterion, such as Akaike’s or

Schwarz’s Bayesian information criteria). Note that substantially no differences were

seen between the two models.

Next, the random-effects structure may be simplified. Three hierarchically ordered

models are presented in the second part of Table 5.1. One must be very careful in

interpreting the significance of random effects using the likelihood ratio test statistic

G2: the associated testing problem is indeed non-standard as the null hypothesis lies

on the boundary of the parameter space of the alternative hypothesis (Verbeke and

Molenberhs, 2000). The reference distribution for the B–D comparison is a 50:50

mixture of χ2
2 and χ2

3. Similarly, for the comparison of Models D and E we obtain a

50:50 mixture of χ2
1 and χ2

2 variables. These distributions have been utilized to cal-

culate the corresponding p-values. Thus, at this stage we select model D, comprising

a random intercept and a random time slope.

Finally, retaining the covariance structure we have just selected, the mean model

can be reduced. Effects kept in the final model were time, type of mental retardation

and number of vaccine doses (with unstructured time effects), duration of residency

(with a linear time trend), use of antiepileptic medication and sex (time-constant

effects). Although not significant, sex was kept in the model for reasons of external

comparison.

Parameter estimates for this model are shown in Table 5.2. Note that the random

intercept and random time slope are assumed to be independent. In fact, a compar-

ison between model-based and empirical (or robust) standard errors revealed large

discrepancies (relative increases more than three-fold for most of the estimates) in

the final model. Empirical standard errors correct for potential misspecification of

the covariance structure (Liang and Zeger, 1986; Diggle, Liang and Zeger, 1994) and

disagreement between both types of standard errors might point to an inadequately

specified covariance structure. Arguably, we had little reason to believe that the

selected covariance structure is substantially incorrect. Therefore, it is wise to attain
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Table 5.1. Selection of a serial correlation process and a random-effects structure.

Nr. of parameters Comp.

Model Description Random Serial Deviance Model G2 d.f. p-value

Selection of a serial correlation process:

A Without serial process 6 0 2623.72

B Exponential process 5† 2 2575.23 A 48.49 1 < 0.0001

C Gaussian process 6 2 2574.31 A 49.41 2 < 0.0001

Selection of a random-effects structure:

B Int., time and nr. of doses 5† 2 2575.23

D Intercept and time 3 2 2578.54 B 3.31 0.269††

E Intercept 1 2 2606.22 D 23.68 < 0.0001†††

† One parameter could not be estimated due to parameter constraints.
†† From a 50-50 mixture of χ2

2 and χ2
3 distributions.

††† From a 50-50 mixture of χ2
1 and χ2

2 distributions.
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a trade-off between model fit as reported by likelihood ratios and differences occuring

between model-based and empirical standard errors. In particular, assuming a diago-

nal instead of an unstructured covariance matrix for the random effects yields a much

better model in this respect and was therefore retained as our final model. Most of

the estimated empirical standard errors in Table 5.2 do not exhibit changes of more

than 25% compared to model-based standard errors.

It is worth noting that the effect of Down’s syndrome on antibody titer was signifi-

cant at months 24, 36 and 48, indicating a faster decline in anti-HBs in this population

than in other mentally retarded. There did not seem to be a difference in immediate

response to vaccination between these two groups. Also, we see that the extra dose

given at month 12 in G2† had sufficiently elevated antibody titer so as to render it

almost indistinguishable from antibody titer in G1 until year 5. Yet, administration

of a booster dose at that time again led to better responses in G1 and this was still

visible at year 11.

A similar modeling exercice can be performed on post-vaccination data, that is,

data available after the last vaccination, at month 6 (G1) or 12 (G2). We simply need

to specify specific models for both groups since post-vaccination times are different.

We can set up a model for pre-booster data (until month 60) and then transpose

this model to post-booster data, using an indicator variable for the time of booster

administration. For instance, a simple model ignoring potential covariates could be

written as follows:

E[Yij ] =

{
β

(1)
0 + β

(1)
1 I(tj ≥ 55) + φ(tj − 55.I(tj ≥ 55)) in group G1,

β
(2)
0 + β

(2)
1 I(tj ≥ 49) + φ(tj − 49.I(tj ≥ 49)) in group G2,

where φ(t) is a fractional polynomial.

The process of selecting a covariance structure resulted in similar conclusions as

before, with the difference that no spatial process was found necessary. For the

selection of the mean structure, the antibody titer measurement obtained at the last

vaccination could possibly be included as a baseline value in addition to the other

covariates, but this was not possible because no measurements were taken at month

6. Instead, the first log antibody titer measurement was used as baseline. Selected

covariates were type of mental retardation (with a different effect depending on the

†G1 (resp. G2) refers to the group of residents vaccinated according to a month 0-1-6 (resp.

0-1-6-12) schedule.
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Table 5.2. Parameter estimates and standard errors (model-based; empirically cor-

rected) for the final model (original data).

Effect Time Estimate (S.E.) Effect Time Estimate (S.E.)

Mean Structure: Mean Structure (continued):

Intercept 9.361 (0.408; 0.378) Number of doses 36 -0.250 (0.272; 0.303)

Time 1 -6.801 (0.207; 0.238) Number of doses 48 0.003 (0.331; 0.346)

Time 2 -4.296 (0.210; 0.198) Number of doses 60 0.243 (0.324; 0.335)

Time 7 - † Number of doses 61 -2.009 (0.410; 0.445)

Time 12 -1.664 (0.181; 0.126) Number of doses 132 -1.997 (0.410; 0.412)

Time 13 -0.539 (0.358; 0.366) Residency -0.040 (0.015; 0.012)

Time 24 -3.361 (0.196; 0.188) Residency?Time 0.005 (0.002; 0.002)

Time 36 -3.682 (0.213; 0.187) Sex -0.013 (0.225; 0.230)

Time 48 -4.214 (0.275; 0.268) Antiepileptic drugs -0.629 (0.239; 0.232)

Time 60 -4.687 (0.308; 0.246)

Time 61 1.621 (0.338; 0.253)

Time 132 -1.924 (0.585; 0.549) Random-Effects:

DS/OMR 1 0.598 (0.638; 0.535) Intercept 0.659

DS/OMR 2 0.374 (0.676; 0.623) Time 0.015

DS/OMR 7 -0.023 (0.564; 0.562) Serial Structure:

DS/OMR 12 -0.303 (0.605; 0.821) Variance 0.581

DS/OMR 13 - †† Rate of exponential decrease (1/ρ) 2.319

DS/OMR 24 -1.562 (0.527; 0.739) Measurement Error:

DS/OMR 36 -1.749 (0.459; 0.596) Time 1 1.323

DS/OMR 48 -1.498 (0.559; 0.621) Time 2 1.367

DS/OMR 60 -0.613 (0.543; 0.436) Time 7 0.758

DS/OMR 61 -0.833 (0.692; 0.541) Time 12 0.701

DS/OMR 132 -1.180 (0.691; 0.386) Time 13 0.778

Number of doses 1 -1.337 (0.367; 0.238) Time 24 0.479

Number of doses 2 -1.781 (0.402; 0.358) Time 36 0.000

Number of doses 7 -2.447 (0.330; 0.357) Time 48 0.455

Number of doses 12 -2.708 (0.348; 0.418) Time 60 0.474

Number of doses 13 -††† Time 61 1.307

Number of doses 24 -0.106 (0.305; 0.361) Time 132 0.310

DS/OMR: 1 = DS, 0 = OMR; Number of doses: 1 = 5 doses, 0 = 4 doses.

Sex: 1 = male, 0 = female; Antiepileptic drugs: 1 = use, 0 = no use.
† Month 7 taken as reference point because the decision to give an extra booster dose was taken at that time.
†† No measurements were available at month 13 in DS patients.
††† No measurements were available at month 13 in the group that was administered 4 vaccine doses.

number of vaccine doses administered), use of antiepileptic medication and sex. Table

5.3 presents the parameter estimates of the final model, for the fixed effects only.

In order to visually assess the fit of these two models, Figure 5.3 shows observed

and predicted average profiles for combinations of number of vaccine doses and type
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Table 5.3. Parameter estimates and standard errors (model-based; empirically cor-

rected) for the fixed effects of the final model (post-vaccination data).

Effect Estimate (S.E.) Effect Estimate (S.E.)

Intercept G1 8.808 (0.299; 0.284) Intercept G2 6.389 (0.503; 0.582)�
( ��� 55) 3.501 (0.151; 0.163)

�
( ��� 49) 1.358 (0.272; 0.346)

( ��� 55
�
( ��� 55)) � 3 -0.384 (0.202; 0.178) ( ��� 49

�
( ��� 49)) � 3 1.601 (0.455; 0.446)

log( ��� 55
�
( ��� 55)) -1.120 (0.052; 0.057) log( ��� 49

�
( ��� 49)) -0.435 (0.131; 0.154)

DS/OMR G1 -0.494 (0.673; 0.702) DS/OMR G2 -2.706 (0.688; 0.533)

Sex 0.037 (0.278; 0.276) Use of antiepileptic -0.632 (0.284; 0.281)
drugs

of mental retardation. For predicted average profiles, all other covariate effects were

set equal to their mean values.

5.6 Prediction at Year 12

This section addresses the issue of predicting antibody titer at year 12, i.e. one year

after last follow-up contact. This extrapolation problem was complicated by the

design feature that no measurements were available between months 61 and 132,

whereas apparently we have to cope with nonlinear profiles. While the use of a time-

saturated model for the mean structure is viable to tackle these features, it is less

useful when it comes to prediction purposes, in particular when interest centers on

future prediction. We nevertheless propose two simple methods to perform such a

prediction and compare the results to the straightforward approach provided by the

fractional-polynomial model on post-vaccination data.

The first approach merely uses a linear extrapolation based on an individual’s

last two measurements (at months 61 and 132). The resulting extrapolations are

then averaged out to obtain prediction at month 144. Obviously, this approach can

be criticized as being overly simple since the profiles are clearly nonlinear over the

first five years. A refinement of this method might consist of overlaying profiles

for the month 61-132 period with profiles from the first part of the study and then

extrapolating until month 144. This raises some technical difficulties though, since

the starting point of the first period (time of the last vaccine dose) depends upon the
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Figure 5.3. Observed and predicted mean profiles for combinations of number of

vaccine doses and type of mental retardation: a) original data; b) post-vaccination

data
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Table 5.4. Predicting log antibody titer (IU/L) at year 12: a) Approach 1: linear

interpolation (original data); b) Approach 2: refined linear interpolation (original

data); c) Approach 3: fractional-polynomials model (post-vaccination data)

Group Approach 1 Approach 2 Approach 3

4 vaccine doses (G1) 7.05 7.38 7.13 (0.23)†

5 vaccine doses (G2) 5.01 5.42 5.41 (0.35)†

† Standard errors are reported in parentheses.

group being considered: month 7 for group G1 and month 13 for G2. Using month

24 as a cut-off point to split the first time period into two pieces, we can linearly

approximate the profiles in these two time windows, translate them to the month

61-132 period, extrapolate until month 144 and eventually average the results out

accross the two groups.

Predictions at year 12 based on these two extrapolation schemes are displayed in

Table 5.4, together with the prediction inferred from the model on post-vaccination

data. As can be seen, all three approaches yield quite similar results if we look at the

variability of the predictions in the third model.

We conclude this section with two remarks. Firstly, in this study prediction takes

place only one year after completion of the study, which is not too distant in time

compared to the duration of the study. Had prediction to be done several years

later, we would presumably observe larger discrepancies. Secondly, in studies where

more emphasis is to be put on prediction, it is a good idea to plan some intermittent

assessment occasions to aid in modeling long-term temporal evolution. A simple

model, e.g. using fractional polynomials, might then be used straightforwardly for

making long-term inference with more confidence.

5.7 Conclusions

We have illustrated linear mixed models methodology for longitudinal data in the

evaluation of a hepatitis B vaccination program. This approach was based upon recog-

nition that response to vaccination may be attributed to a combination of individual-
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specific characteristics but also to different other sources of (unknown) variability.

Use of random effects in this setting was already proposed by Coursaget et al. (1994)

and Gilks et al. (1993) who considered between-individuals variability in a Bayesian

random-effects model.

On accomodating individual-specific effects, the model enables a much more pre-

cise assessment of important explanatory variables, such as number of vaccine doses

received, whether or not a person has Down’s syndrome, and of course time effects.

In particular, the strong contributions of random intercepts and serial correlation

show the importance of the initial response as well as the individual trajectory for

the further evolution of anti-HBs profiles. Models that restrict attention to geometric

mean titers (GMT) calculation are not able to include such individual-specific effects,

typically resulting in less precise inference, also for the fixed effects.

In this study, no difference could be detected between DS and OMR patients in

their immediate response, but we found that DS induces an accelerated decrease in

antibody titers, implying that the rate of decline in antibody titers might be different

in these two populations. This might explain why some other studies attempting to

demonstrate a difference between DS and OMR patients in their anti-HBs response

after vaccination have failed (see Vellinga, Van Damme, Bruckers et al. (1999) for a

further discussion). Another point concerns whether antiepileptic medication has an

influence on the immune system. However, it is hard to decide whether this is due

to the medication itself, or rather an indication for the influence of epilepsy, or both

(De Ponti et al. (1993) further discuss this point).

While there is some interest in modeling the complete set of data from a descrip-

tive viewpoint, this could only be achieved with the help of a time-saturated model

to account for the high nonlinearity in the profiles. If one is interested in a more

parsimonious, parametric description of the temporal decline in antibody titer, to

address such questions as long-term inference, one needs to resort to an alternative

solution. Focusing the analysis on post-vaccination data was a suitable alternative,

permitting simple parametric modeling of the anti-HBs evolution over time. Obvi-

ously, the absence of intermittent measurements between year 5 and 11 may somehow

weaken the long-term prediction process, and we need to make certain assumptions

such that the rate of decline after booster administration at month 60 is similar to

the rate of decline after time of last vaccination. It was nevertheless reasurring to

see that predicted values at year 12 were all in good agreement, independently of the

model or method chosen. All in all, we see that each of these two models may bring
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their own insight into the data and their combined use may better serve the purpose

of a sensitivity analysis.

In conclusion, we suggest that linear mixed models are considered as a viable

alternative to analyze data from vaccination evaluation studies.
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Chapter 6

Estimating Reliability Using

Non-Linear Mixed Models

With Repeated Binary Data

6.1 Introduction

Measurement in psychiatric health sciences seldomly relies on objective criteria. The

subjective nature of the information to be gathered renders the development of scales

in this area far from easy. One difficulty is that external conditions can influence the

response that is given on such a scale like, for example, the person who administers the

test or the time of measurement. Therefore, whenever a mental health measurement

scale is developed, its psychometric properties are typically checked. An important

property in this respect is reliability , which reflects the amount of error inherent in

any measurement and hence, in a general sense, how replication of the administration

would give a different result (Streiner and Norman, 1995).

In classical test theory, the outcome of a test is modeled as

X = τ + ε, (6.1)

where X represents an observation or measurement, τ is the true score and ε the

corresponding measurement error. It is assumed that the measurement errors are

mutually uncorrelated as well as with the true scores.

105
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The reliability of a measuring instrument is defined as the ratio of the true score

variance to the observed score variance, i.e.,

R =
var(τ)

var(X)
=

var(τ)

var(τ) + var(ε)
. (6.2)

In practice, repeated measures are needed to disentangle these two components of

variability. Thus, in the case of two parallel measurements, we have X1 = τ + ε1 and

X2 = τ + ε2 with ε1 and ε2 independent; hence

corr(X1, X2) =
var(τ)

var(τ) + var(ε)
= R. (6.3)

In other words, the reliability of an instrument is merely the correlation between

independent replications of measuring the same subject. The outcomes X1 and X2

can, for example, be two subscores of a test, in which case we are also referring

to split-halve reliability. If the scores are two measurements of the same instrument,

measured at different moments in time, then we are dealing with test-retest reliability.

When the scores are obtained by two different raters, at one moment in time, then

the measure is called inter-rater reliability.

There are also situations (e.g. a clinical trial) where repeated or longitudinal mea-

sures have been taken, rather than a single measure or pair of measures. This was

exemplified in Section 3.6 using data from five clinical trials where repeated measures

on the PANSS and CGI scales were planned over the course of the study period. When

the rating scale is continuous or quasi-continuous (e.g. PANSS), reliability can be as-

sessed by taking full advantage of the modeling power of linear mixed models. This

includes correcting for important covariate effects and allowing for a possibly compli-

cated covariance structure between measurements. Unlike in the classical approach,

reliability is no longer summarized by a single figure but rather as a time-dependent

function (Laenen et al., 2002).

The objective in this chapter is to utilize related methodology when the rating

scale is binary (e.g. dichotomized CGI) rather than (quasi-)continuous. This raises

a number of issues. Firstly, estimation of reliability through formula (6.3) is not

straightforward and we shall see in Section 6.2 how this can be accomplished in the

context of generalized linear mixed models (GLMMs). Secondly, formulation of a

random-effects model that acknowledges for the presence of autocorrelation is not

trivial with repeated binary data. Standard GLMMs assume that random effects are

the unique source to account for residual correlation among responses and we are not
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aware of a likelihood-based model formulation that can further handle autocorrelation.

In Section 6.3, we propose an extension of the latent variable approach described in

Chapter 3, where the (latent) residual terms are assumed to be realizations of a

Gaussian process. This artifice allows to introduce some form of autocorrelation in

the model, albeit on the latent variable scale, and to assess reliability in a simple

manner.

6.2 Estimating Reliability in Generalized Linear Mi-

xed Models

If we adopt the view that reliability is nothing else but a measure of correlation

between pairs of measurements, then we must derive the marginal variance-covariance

matrix of an outcome vector yi = (yi1, . . . , yini
). We shall now examine how this can

be done in GLMMs and then turn to the specific case of the probit model where

simplifications occur.

6.2.1 General Model

The model can be specified as follows:

g(E[yij |ui]) = x
T

ijβ + z
T

ijui, (6.4)

where yij is the binary outcome at the jth occasion for subject i, xij is a set of

explanatory variables, ui ∼ N(0, Σu) and g(.) is a preset link function. Further-

more, conditionally on the random effects ui, the yij ’s are assumed to be independent

Bernoulli variables.

The marginal covariance matrix of yi is

Vi = cov[E(yi|ui)] + E[cov(yi|ui)] (6.5)

with j, k element

[Vi]jk =

∫
(fij − πij)(fik − πik)φ(ui; Σu)dui

+ I(j = k)

∫
fij(1 − fij)φ(ui; Σu)dui, (6.6)

where fij = g−1(x
T

ijβ + z
T

ijui), πij = E[yij ] =
∫

fijφ(ui; Σu)dui, and φ(u; Σu)

denotes the density function of a N(0, Σu) random variable.
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Except in some special cases (identity link), numerical integration must be under-

taken to evaluate (6.6). It is easy to check that

[Vi]jj = πij(1 − πij), j = 1, . . . , ni

and

[Vi]jk =

∫
fijfikφ(ui)dui − πijπik , j 6= k,

so the evaluation of ni(ni + 1)/2 integrals is required.

The problem of calculating corr(yij , yik) is, in fact, similar to that of estimating

the intraclass correlation coefficient in GLMMs. Goldstein, Browne and Rasbash

(2002) discuss four different methods that provide at least approximate estimates of

an intraclass correlation measure in generalized linear multilevel models. These are:

1. model linearization by using a first order Taylor expansion; 2. simulation from the

fitted model; 3. fitting a binary linear model where the binary response is treated as

continuous; and 4. a latent variable approach. We will not further consider the first

and third methods which are based on approximations. Although the fourth approach

could be followed, the resulting intraclass correlation measure formally stands at the

postulated latent variable level and thus is less relevant. We will therefore focus on

the simulation method in the rest of this section.

The following procedure can be used to compute corr(yij , yik) with the simulation

method:

1. From the fitted model (6.4), generate a large number m (say 10000) of values

for the random effects ui from the normal distribution N(0, Σ̂u). Let us denote

these simulated values by u
t,?
i (t = 1, . . . , m).

2. Compute the m corresponding values of fij and fik, denoted f t,?
ij and f t,?

ik re-

spectively (t = 1, . . . , m). Let vt,?
ij = f t,?

ij (1 − f t,?
ij ).

3. Estimate cov(yij , yik), var(yij) and var(yik) from (6.6) after noting that:

• the first integral in (6.6) can be approximated by the sample covariance

ĉov(f t,?
ij , f t,?

ik );

• the second integral in (6.6) can be approximated by the sample mean vt,?
ij .

Whereas in linear mixed models reliability is a function of the random-effects

covariates zij only, a further difficulty with GLMMs is that it depends on all of
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the covariates included in the model, making it complicated to display this measure

concisely.

We now illustrate the computations on the schizophrenia data using a logit link

specification. A saturated treatment by time model with random intercept and slope

is assumed. The model was fitted with the SAS procedure NLMIXED using adaptive

Gaussian quadrature with 20 nodes. Table 6.1 presents the values of reliability as

a function of treatment group and measurement occasions. It shows that reliability

decreases with increasing time lag and is larger at later measurement occasions. Also,

estimates are somewhat higher in the risperidone group.

Table 6.1. CGI: Reliability as a function of treatment group and measurement oc-

casions (logit link). The model includes a random intercept and a random slope.

Active Control Risperidone

Time 1 2 4 6 8 1 2 4 6 8

1 0.529 0.426 0.333 0.276 0.593 0.504 0.416 0.348
2 0.567 0.479 0.418 0.592 0.520 0.459
4 0.654 0.608 0.675 0.637
6 0.741 0.745
8

6.2.2 Probit Model

Under a probit link specification, computation of corr(yij , yik) greatly simplifies, after

noting that

πij = P (yij = 1) = Φ


 x

T

ijβ√
1 + z

T

ijΣuzij


 , (6.7)

and
∫

fijfikφ(ui)dui = P (yij = 1, yik = 1)

=Φ2




x
T

ijβ√
1 + z

T

ijΣuzij

,
x

T

ikβ√
1 + z

T

ikΣuzik

;
z

T

ijΣuzik√
1 + z

T

ijΣuzij

√
1 + z

T

ikΣuzik


. (6.8)
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These equalities are easy to verify in the latent variable model that can (at least

conceptually) be associated with model (6.4). See Section 3.3 for further details.

As an illustration, we fit the same model as above, using the probit link instead

of the logit. Values of the log likelihood are almost identical in both cases (logit:

-2`=2839.7; probit: -2`=2839.4) so the two models provide comparable fits based on

this criterion. Table 6.2 presents values of reliability as a function of treatment group

and measurement occasions. As can be seen, they are close to those presented in

Table 6.1.

Table 6.2. CGI: Reliability as a function of treatment group and measurement oc-

casions (probit link). The model includes a random intercept and a random slope.

Active Control Risperidone

Time 1 2 4 6 8 1 2 4 6 8

1 0.527 0.423 0.328 0.270 0.587 0.496 0.407 0.339
2 0.563 0.476 0.415 0.588 0.516 0.456
4 0.656 0.611 0.674 0.638
6 0.744 0.748
8

6.3 Estimating Reliability in the Probit Model with

Autocorrelation

Models discussed in the previous section attempt to explain the source of residual

correlation, after correcting for covariate effects, exclusively by specifying random

effects in the model. Clearly, just as it might be in linear models, the conditional

independence assumption may be untenable and therefore, we would like to have

a model which explicitly recognizes the possibility of an autocorrelation structure.

This might also afford an alternative way of parameterizing our model, perhaps more

parsimonously.

While this can be accomodated without great difficulty in linear mixed models by

assuming a certain autocorrelation structure on the residuals, it is not obvious how
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to proceed in the context of non-linear models with binary responses. When there is

a small number of fixed occasions, a simple solution to introduce dependence among

the binary responses after conditioning on the covariates and random effects is to

consider a multilevel multivariate model in which each individual’s response sequence

is treated as a multivariate outcome vector of fixed length. Yang, Heath and Goldstein

(2000), for instance, use this artifice to analyze longitudinal binary responses from a

panel study of voting intentions in Great Britain. The advantage of this approach is

that the dependence between the responses is modeled by the covariance structure at

the individual level (i.e. level 2) rather than at the measurement occasion level (i.e.

level 1).

When measurement occasions are not fixed, Barbosa and Goldstein (2000) propose

to extend the standard multilevel model for binary outcomes by allowing the (level 1)

residuals to be correlated. More precisely, they write the covariance between residuals

for individual i at occasions j and k
√

πij(1 − πij)πik(1 − πik)f(|tij − tik|),

where the conditional mean πij = E[yij |ui] is modeled by (6.4) and f(s) = α +

exp(−h(s)). The PQL algorithm can be employed to fit this model and its implemen-

tation follows that for continuously distributed responses as explained in Goldstein,

Healy and Rasbash (1994).

A drawback with the proposal of Barbosa and Goldstein (2000) is that it corrects

for autocorrelation in an ad hoc way and thus is outside the likelihood framework. We

are actually not aware of a general likelihood-based model formulation that addresses

this problem. The model described hereafter is such an attempt, albeit restricted to

probit link specification.

6.3.1 The Model

The model that we propose for repeated binary data has many similarities with the

model discussed by Heagerty and Lele (1998), which deals with binary spatial data. A

random-effects structure can be incorporated as in standard GLMMs and the model

further acknowledges for a form of autocorrelation, albeit not directly on the observed

responses.

As in Chapter 3, the model is introduced from a latent variable perspective:

ỹij = x
T

ijβ + z
T

ijuj + ε̃ij . (6.9)
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The residual error terms ε̃ij are no longer assumed to be mutually independent,

however. Instead, we suppose that they are realizations from a Gaussian stationary

process ε̃(t) with autocorrelation function

corr(ε̃(s), ε̃(t)) = ρ(|t − s|).

Following Goldstein, Healy and Rasbash (1994), we shall assume that ρ(u) =

exp(−g(u)), where g(u) is a positive increasing function, not necessarily linear. For

example, one can have g(u) = αu (exponential model), g(u) = αu2 (Gaussian model)

or, more generally, g(u) =
∑

k αkuk for any polynomial constrained to take on positive

values on [0, +∞[. As pointed out by Goldstein, Healy and Rasbash (1994), a difficulty

when g(u) is a polynomial is that successive powers tend to be highly correlated and

this may cause estimation difficulties. Another possible choice is then to add an inverse

polynomial term such as in g(u) = α1u + α2u
−1, which avoids the high correlations

associated with the ordinary polynomial. Another useful extension is to make the

parameters αk explicitly dependent on some explanatory variables as, for example,

with g(u) = (α0 + α1zij)u. As to the choice of the function g, Goldstein, Healy

and Rasbash (1994) state that it should “contain as few parameters as necessary to

be flexible enough to describe real data. [ . . . ] There seems to be little substantive

guidance on choice, and it is likely that different functional forms will be appropriate

for different kinds of data.”

6.3.2 Model Estimation

The log likelihood for the observed (binary) data can be written

N∑

i=1

1∑

ai1,... ,aini
=0

δai1,... ,aini
log

∫
P [yi1 = ai1, . . . , yini

= aini
|ui]φ(ui)dui, (6.10)

with

δai1,... ,aini
=

{
= 1 if yi1 = ai1, . . . , yini

= aini
;

= 0 otherwise.

This expression entails the evaluation of multivariate normal probabilities. For

instance, we have

P [yi1 = 1, . . . , yini
= 1|ui] = P [ỹi1 > 0, . . . , ỹini

> 0|ui]

=

∫ ξi1

−∞

. . .

∫ ξini

−∞

φ(x1, . . . , xni
; R(ti))dx1 . . . dxni

,
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where ξij = x
T

ijβ+z
T

ijui and the matrix R(ti) has jkth element equal to ρ(|tij − tik|).
Unless the number of measurements is very small (ni = 2), the log likelihood is

cumbersome to evaluate and therefore, an alternative estimation method would be

desirable. We propose, again, to use maximum pairwise likelihood (MPL). As a matter

of fact, the MPL estimation procedure described in Chapter 3 requires only minor

modifications in the computation of bivariate marginal probabilities to be applicable

in the present context. For instance, previously we had

P [yij = 0, yik = 0] = Φ2 (ξij , ξik; ρijk)

with

ξij =
−x

T

ijβ√
var[ỹij ]

and

ρijk =
z
T

ijΣuzik√
1 + z

T

ijΣuzij

√
1 + z

T

ikΣuzik

,

whereas for the new model, this needs to be updated as

ρijk =
z
T

ijΣuzik + ρ(|tij − tik|)√
1 + z

T

ijΣuzij

√
1 + z

T

ikΣuzik

.

Apart from such minor modifications, the whole estimation procedure remains un-

changed.

6.3.3 Simulations

To assess the finite sample properties of MPL with the proposed model, we conducted

a small simulation study using a longitudinal model with random intercept N(0, σ2
u)

and time as sole covariate. Different numbers of measurement occasions (ni = 5, 10,

20) and individuals (N = 100, 500, 1000) were considered. In each case, measurement

times were taken to be equally spaced on the interval [0, 4]. An exponential model for

the autocorrelation structure was assumed. Note that the autocorrelation parameter

α was log transformed to avoid constrained optimization.

Results are presented in Tables 6.3–6.5 based on 100 simulated data sets under

each scenario. For each parameter the mean, simulation S.D. and mean estimated

S.D. are reported, as well as the relative bias compared to the true value assumed by
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Table 6.3. MPL Estimates based on 100 simulations (N = 100 subjects).

Estimate Relative Simulation Estimated
Parameter Model (mean) bias (%) S.D. S.D. (mean)

��� = 5 (Converged = 70)

β0 -2 -2.655 -32.8 0.745 1.032
β1 0.5 0.665 33.0 0.186 0.256
σu 1 1.551 55.1 0.622 1.161
α 0.25 0.729 191.6 0.599 0.870

��� = 10 (Converged = 70)

β0 -2 -2.584 -29.2 0.870 0.824
β1 0.5 0.648 29.6 0.217 0.199
σu 1 1.467 46.7 0.699 0.856
α 0.25 0.525 110.0 0.394 0.355

��� = 20 (Converged = 74)

β0 -2 -2.466 -23.3 0.732 0.830
β1 0.5 0.619 23.8 0.182 0.202
σu 1 1.371 37.1 0.625 0.865
α 0.25 0.448 79.2 0.271 0.295

the model. Standard error calculations for the mean and (transformed) dependence

parameters were based on the estimator (3.16) in Chapter 3. Precision estimates for

α were then obtained using the delta method.

These simulations indicate that the mean and dependence parameters are strongly

biased with a small number of subjects (N = 100), the parameter α being mostly

affected. Increasing the number of measurements somewhat reduces the extent of

bias. With a medium number of subjects (N = 500), parameters are still largely

biased when the number of measurement occasions is small (ni = 5) but the bias falls

within more acceptable limits with an increased number of measurement occasions.

The parameter α is still noticeably biased, though. With a large number of subjects

(N = 1000), the bias for the mean parameters and the parameter σu becomes small

but for the autocorrelation parameter α it is still sizeable with data sets containing as

many as 20,000 observations. Restricting attention to precision estimates, we see that

they tend to slightly overestimate the sampling variability, especially for the variance

parameter σu.

Also reported in each table are the numbers of simulated data sets where conver-
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Table 6.4. MPL Estimates based on 100 simulations (N = 500 subjects).

Estimate Relative Simulation Estimated
Parameter Model (mean) bias (%) S.D. S.D. (mean)

��� = 5 (Converged = 86)

β0 -2 -2.266 -13.3 0.470 0.542
β1 0.5 0.571 14.2 0.122 0.136
σu 1 1.224 22.4 0.436 0.582
α 0.25 0.389 55.6 0.202 0.219

��� = 10 (Converged = 88)

β0 -2 -2.177 -8.9 0.391 0.418
β1 0.5 0.547 9.4 0.098 0.105
σu 1 1.159 15.9 0.372 0.436
α 0.25 0.322 28.8 0.123 0.132

��� = 20 (Converged = 86)

β0 -2 -2.135 -6.8 0.405 0.461
β1 0.5 0.535 7.0 0.101 0.115
σu 1 1.073 7.3 0.410 0.637
α 0.25 0.297 18.8 0.118 0.132

Table 6.5. MPL Estimates based on 100 simulations (N = 1000 subjects).

Estimate Relative Simulation Estimated
Parameter Model (mean) bias (%) S.D. S.D. (mean)

��� = 5 (Converged = 89)

β0 -2 -2.068 -3.4 0.328 0.424
β1 0.5 0.516 3.2 0.081 0.106
σu 1 1.041 4.1 0.327 0.486
α 0.25 0.288 15.2 0.107 0.137

��� = 10 (Converged = 90)

β0 -2 -2.087 -4.4 0.311 0.354
β1 0.5 0.518 3.6 0.077 0.088
σu 1 1.055 5.5 0.308 0.375
α 0.25 0.281 12.4 0.099 0.104

��� = 20 (Converged = 86)

β0 -2 -2.037 -1.9 0.293 0.321
β1 0.5 0.507 1.4 0.073 0.080
σu 1 1.016 1.6 0.288 0.352
α 0.25 0.271 8.4 0.086 0.091
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gence could be achieved. Several types of convergence failure can be detected. As

usual, this might be due to a failure of the optimization procedure to converge. Also,

some problems arise when the parameter σu converges to the boundary value 0 or

when the parameter α grows large (which means no autocorrelation according to the

exponential model), and we call these convergence failures too. In practice, they can

easily be traced since the hessian matrix is near-singular and yields very large values of

variance estimates. All cases of convergence failures were ignored in the computation

of summary statistics shown in Tables 6.3–6.5. From the simulations reported here,

number of subjects appears to be the most determining factor to reduce convergence

difficulties.

6.3.4 Application to the Schizophrenia Data

We take a saturated treatment by time model for the mean structure and a random

intercept. For the autocorrelation structure, we assumed that g(u) = αuγ and tried

several values of γ (=-1, 0.5, 1, 2). The exponential model (γ = 1) provided the

best fit. We also fitted a model with g(u) = α1u + α2u
−1 but σ̂u converged to the

boundary value 0.

In Table 6.6, parameter estimates and standard errors are reported for the random-

intercept model and the model with random intercept and exponential autocorrelation

structure. As can be seen, parameter estimates for the model with autocorrelation are

all attenuated by an amount of around 30%. This is largely due to the fact that the

residual error terms in (6.9) are allowed to be autocorrelated. The log PL value for

this model shows an improvement in the fit of the model. In comparison, the log PL

value for the model with random intercept and random slope is -1714.8, which shows

yet a bigger improvement over the random-intercept model, although at the cost of

2 extra parameters. We also tried to add an exponential autocorrelation structure

to the random-intercept-and-slope model but the algorithm converged to a solution

with non positive-definite matrix Σ̂u.

Finally, reliability can be easily estimated using formulas (6.7) and (6.8), by ad-

justing the latter as indicated in Section 6.3.2. Table 6.7 presents the values of reli-

ability as a function of treatment group and measurement occasions for the random-

intercept model with exponential autocorrelation structure. Compared to Table 6.2,

these estimates tend to be higher at early measurement occasions and smaller at later

measurement occasions.
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Table 6.6. Schizophrenia data: MPL parameter estimates and standard errors for

the random-intercept model with and without autocorrelation. The exponential model

was taken for the autocorrelation structure.

Random Intercept
Random Intercept + Autocorrelation

Parameter Estimate S.E. Estimate S.E.

Intercept -0.269 0.158 -0.179 0.120
Week1 -1.881 0.175 -1.343 0.197
Week2 -1.165 0.166 -0.878 0.158
Week4 -0.702 0.157 -0.519 0.132
Week6 -0.209 0.144 -0.155 0.109
Treat×Week1 0.288 0.211 0.190 0.152
Treat×Week2 0.581 0.207 0.425 0.155
Treat×Week4 0.542 0.208 0.388 0.156
Treat×Week6 0.333 0.315 0.236 0.160
Treat×Week8 0.198 0.222 0.139 0.168
σ 1.830 0.108 1.117 0.231
log α -1.338 0.332

log PL -1727.0 -1722.2

Coding for ‘Treat’: 0 = active control, 1 = risperidone.

6.4 Conclusions

In this chapter we have focused on situations where clinical trial data with repeated

measures have been collected on a particular measuring instrument and interest cen-

ters on assessing its reliability. If the rating scale is continuous or quasi-continuous,

reliability can be estimated by taking full advantage of the modeling power of linear

mixed models. Unlike in the classical approach, it is no longer summarized by a single

figure but rather as a time-dependent function.

When repeated binary data have been gathered, we may want to employ related

methodology for examining reliability of the instrument. Our first goal was therefore

to clarify how reliability can be estimated when a standard generalized linear mixed

model has been fitted to the data. A difficulty is that reliability is then a function

of the covariates incorporated in the model and hence is much more awkward to
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Table 6.7. CGI: Reliability as a function of treatment group and measurement oc-

casions for the random-intercept model with exponential autocorrelation structure.

Active Control Risperidone

Time 1 2 4 6 8 1 2 4 6 8

1 0.642 0.467 0.365 0.339 0.699 0.544 0.471 0.430
2 0.580 0.447 0.402 0.609 0.500 0.444
4 0.577 0.481 0.607 0.499
6 0.609 0.609
8

summarize. We have also shown that reliability is appreciably easier to estimate

when a probit link specification is assumed since only simple probit functions must

be evaluated in this case.

As a complementary manner of accounting for the dependence among the binary

responses, it might be useful to introduce an autocorrelation structure in a gener-

alized linear model with random effects. To that end, we adopted a latent variable

perspective where the residual error terms are assumed to be realizations of a Gaussian

process, which constraints the link function to be probit. This afforded us a way to

introduce a source of autocorrelation in the model, albeit on the latent variable scale.

Since the likelihood function is cumbersome to evaluate, we proposed MPL for

estimation purposes as it involves only minor modifications compared to the procedure

discussed in Chapter 3. The series of simulations presented in Section 6.3.3 suggest

that in practice, a very large sample size might be necessary for the asymptotic

properties of the MPL estimator to hold and that autocorrelation parameters may be

subject to substantial bias. This warrants further research on alternative estimation

methods or on computationally efficient approaches to evaluate the likelihood.

Finally, convergence difficulties should be anticipated to occur quite frequently in

practical applications. Even in linear mixed models, convergence failures are relatively

common when modeling of the covariance structure involves joint specification of

random effects and a term of serial correlation, simply because these two variability

components cannot easily be disentangled. Obviously, this phenomenon should be

amplified with binary data, which convey less information.



Chapter 7

Validation of a Longitudinally

Measured Surrogate Marker

for a Time-to-Event Endpoint

7.1 Introduction

In recent years, interest in modeling the relationship between a time-to-event endpoint

and longitudinally measured data has developed considerably. This problem occurs

naturally in many biomedical or public health studies where participants are followed

over time. In such studies, measurements on a number of outcomes can be obtained

at different occasions and times to certain clinical events observed as well.

In randomized clinical trials the main question is often whether a new treatment

has some beneficial effect on the time to a specific clinical event, the endpoint of

primary interest. The time elapsed between randomization and this event, however,

can be very long and it may therefore be desirable to find a surrogate for the clinical

outcome of interest that is less distant in time, thereby permitting a trial to be

completed sooner and making a potentially useful treatment available earlier to a

wider range of patients. A well-known example is in AIDS research where an early

proposal of surrogate marker for clinical outcomes such as disease progression or

survival was the number of CD4 T-lymphocytes (see e.g. De Gruttola et al., 1993;

Choi et al., 1993; Tsiatis, De Gruttola and Wulfsohn, 1995).

119
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The objective here is to extend the methodology of Buyse et al. (2000), which was

introduced in Section 4.2, to the case of a biomarker measured repeatedly over time

and a time-to-event endpoint. Technically, a joint model for longitudinal measure-

ments and event time data is required. Research on this topic has received substantial

attention over recent years and some useful references include Pawitan and Self (1993),

De Gruttola and Tu (1994), Taylor, Cumberland and Sy (1994), Faucett and Thomas

(1996), Lavalley and De Gruttola (1996), Hogan and Laird (1997), Wulfsohn and

Tsiatis (1997), Henderson, Diggle and Dobson (2000) and Xu and Zeger (2001). The

model of Henderson, Diggle and Dobson (2000) will be adopted here. Their approach

assumes standard models for the longitudinal and event time data and postulates a

latent bivariate Gaussian process inducing stochastic dependence between the mea-

surement and event processes.

The chapter is organized as follows. Section 7.2 introduces the motivating example

which involves a set of two randomized clinical trials in advanced prostate cancer and

where we seek to evaluate the usefulness of prostate-specific antigen (PSA) level as a

surrogate for survival. Section 7.3 shows how the methodology of Buyse et al. (2000)

can be adapted to the case of a longitunally measured marker and a time-to-event

endpoint. The methodology is then applied to the prostate cancer data in Section 7.4.

Note that the results presented in this chapter can be found in Renard et al. (2002b).

7.2 Motivating Study

We consider a set of two open-label multicenter clinical trials in which patients with

advanced prostate cancer were randomized either to oral liarozole, an experimental

retinoic acid metabolism-blocking agent developed by Janssen Research Foundation,

or to an antiandrogenic drug: cyproterone acetate (CPA) in the first trial (Debruyne

et al., 1998) and flutamide in the second. The two trials accrued 312 and 284 patients

in centers spread over 9 and 10 countries, respectively. All patients were in relapse

after first-line endocrine therapy.

The primary endpoint in each trial was survival time after randomization. As-

sessments were undertaken before the start of treatment and repeated at 2 weeks,

monthly for six months and every three months thereafter, until patients show clin-

ical progression or develop a serious adverse event. All patients were then followed

up until death. The assessments included measurement of prostate-specific antigen

(PSA) level. PSA is a glycoprotein that is found almost exclusively in normal and
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neoplastic prostate cells. Serum PSA usually rise in men who have prostate cancer,

but also with some infections of the prostate or non-malignant diseases such as benign

prostatic hyperplasia. As a consequence, changes in PSA often antedate changes in

bone scan, and they have been used as a response indicator in patients with androgen-

independent prostate cancer (Kelly et al., 1993; Sridhara et al., 1995; Smith et al.,

1998). It is therefore of interest to study more formally to which extent a sequence

of PSA measurements can be a valuable surrogate for a patient’s survival.

Figure 7.1 shows plots of the individual log-transformed PSA profiles. To avoid

overly cluttered plots, profiles were shadowed and 30 randomly chosen subjects are

depicted using darker lines. As can be seen, the length of the individual sequences

of PSA measurements is highly variable accross patients, with only a few individuals

having very long sequences. Figure 7.2 displays PSA and survival summaries for each

trial. The (log-transformed) PSA data were smoothed using the LOESS technique

(Cleveland, 1979); the survival curves were obtained using the Kaplan-Meier estimator

(Kaplan and Meier, 1958). Notice the scatter of points in the left-hand plots: most

of the subjects had their PSA measurements taken within the first few months after

treatment randomization.

To further investigate the effect of “dropout” induced by patients being taken

off study upon clinical progression, we plotted the mean profiles per dropout pattern

according to visits as they were planned in the protocol (thus not using the exact date

of PSA measurement). This is shown in Figure 7.3 for the combined data from the

two trials, with the label “control” referring to CPA/flutamide and “experimental”

to liarozole. Late-dropout patterns were not represented because of the scarcity of

data after 1.5 year. Noticeable in the plot is that patients who progressed early tend

to have a higher initial PSA value and do not exhibit an early decline in their PSA

level. Also, the mean PSA evolution among subjects who progressed belatedly can

be contrasted with the relatively flat curves displayed in Figure 7.2.

7.3 Modeling Approach

As explained in Section 4.2, Buyse et al. (2000) examine the surrogacy issue in a

meta-analytic context at two distinct levels. At the trial level, the surrogacy measure

can be approached from two different modeling perspectives: one is to fit the random-

effects model (4.5) from which R2
trial can be immediately obtained via expression (4.6);

the other is to fit the fixed-effects model (4.1) and, in a second stage, to estimate R2
trial
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Figure 7.1. Individual log-transformed PSA profiles for the liarozole trials (30 ran-

domly chosen subjects are plotted using darker lines).

as the coefficient of determination from the linear regression model

β̂i = λ0 + λ1µ̂Si
+ λ2α̂i + εi.

In either case, the association at the individual level (R2
indiv) is a by-product of the

joint model. Of course, inference will preferably be based on (4.5) but this model is

difficult to fit in practice and does not go without numerous convergence problems

(see Section 4.2.5). Whereas emphasis in Chapter 4 was on random-effects modeling,

we will focus on the two-stage approach here.

To extend the methodology, a joint model for longitudinal measurements and event

time data is required. To that end, we consider the model proposed by Henderson,

Diggle and Dobson (2000). We will follow their notation and thus, we consider a

set of N grouping units (trial, center, etc.) with subjects within the ith unit being

followed for some time τi. The jth subject in unit i provides a set of measurements

{yijk : k = 1, . . . , nij} at times {tijk : k = 1, . . . , nij}, together with the realization

of a counting process {Nij(u) : 0 ≤ u ≤ τi} for the time-to-event endpoint and a

zero-one process {Hij(u) : 0 ≤ u ≤ τi} indicating whether a subject is at risk of
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Figure 7.2. Longitidunal and event time summaries for the liarozole trials (left:

smoothed PSA profiles; right: survival curves).
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Figure 7.3. Mean PSA profiles per “dropout” patterns (the black diamonds represent

the mean PSA level of those patients who only have a baseline measurement).

experiencing an event at time u.

A central feature of the model is to postulate an unobserved (latent) zero-mean

bivariate Gaussian process, Wij(t) = {W1ij(t), W2ij(t)}, to describe the association

between the longitudinal measurement and event processes. The measurement and

intensity models are linked as follows:

(1) The sequence of measurements {yijk : k = 1, . . . , nij} of a subject is modeled

using a standard linear mixed model, possibly allowing for a serially correlated

component:

Yijk = µij(tijk) + W1ij(tijk) + εijk , (7.1a)

where µij(tijk) describes the mean response profile and εijk ∼ N(0, σ2
e) is a

sequence of mutually independent measurement errors. We will let αi denote

the vector of parameters for the trial-specific treatment effects used in modeling

the mean response profile. Examples will be given in what follows.



7.3 Modeling Approach 125

(2) The event intensity process is modeled using a semi-parametric model

λij(t) = Hij(t)λ0(t) exp{βiZij + W2ij(t)}, (7.1b)

where the form of λ0(t) is left unspecified. The parameters βi represent trial-

specific treatment effects on the hazard function.

The specification of W1ij and W2ij can take a variety of forms. As a basic example,

suppressing indices for notational simplicity, one could consider W1(t) = U1 + U2t,

with (U1, U2) being normally distributed with mean zero and covariance matrix G, to

specify a model with random intercept and random slope for the longitudinal marker.

The W2(t) process could then include different effects for the initial value (U1), the

slope (U2) or the current value (U1 + U2t) of the marker according to the assumed

model, yielding W2(t) = γ1U1 +γ2U2+γ3(U1+U2t). Inclusion of a frailty component,

orthogonal to the measurement process, is also possible if necessary.

Following Henderson, Diggle and Dobson (2000), the expectation maximization

(EM) algorithm can be employed to fit the model. Upon convergence of the algorithm,

the coefficients of determination R2
trial

and R2
indiv

can practically be obtained as follows.

The inclusion of (fixed) trial-specific coefficients in both the longitudinal measurement

and intensity models permits estimation of R2
trial

. Unlike in the simpler normal setting

which involves solely trial-specific intercepts and treatment effects, the longitudinal

measurement model will require, in general, extra terms to model time evolution of

the marker. For practical purposes, we will therefore suppose that the mean response

profile within each treatment group can be specified parsimoniously, as a low-order

(conventional or fractional) polynomial or as a continuous piecewise linear function of

time. To illustrate the calculation of R2
trial, suppose that the trajectory of the marker

is quadratic over time within each treatment group. Then µij(tijk) can be written

µij(tijk) = µ0i + µ1itijk + µ2it
2
ijk + α0iZijk + α1iZijktijk + α2iZijkt2ijk

and R2
trial

defined as the coefficient of determination in the regression model

β̂i = λ0 + λ1α̂0i + λ2α̂1i + λ3α̂2i + εi.

At the individual level it is natural to consider the association between W1(t)

and W2(t) in the above model. In consequence, R2
indiv

will not refer directly to the

association between the two endpoints but rather, to the association between the

two components of the bivariate latent process which governs the longitudinal and



126 Chapter 7. Validation of a Longitudinally Measured Surrogate Marker

event processes. This association can no longer be summarized by a single number,

however. It will now be a time-dependent measure since the association between the

marker and the event process can be defined relative to any time over the course of

measurement of the marker. In fact, this could even be extended to the association

between the marker, as measured at some time t1, and the event process defined at

a later time t2 ≥ t1, thereby yielding a surface to describe the association between

the longitudinal and event processes. This feature can be important in selecting an

optimal time at which the marker should be evaluated, either to enhance clinical

judgment or even further, to predict the event time of interest.

To illustrate the derivation of R2
indiv

(t), we consider the aforementioned example

with W1(t) = U1 + U2t and W2(t) = γ1U1 + γ2U2 + γ3(U1 + U2t). The correlation

between W1(t) and W2(t), for any fixed time t, can be easily calculated since W1(t)

and W2(t) have a joint normal distribution. Thus, if (U1, U2) ∼ N(0, G), we have:

var[W1(t)] = G11 + 2G12t + G22t
2,

var[W2(t)] = (γ2
1 + 2γ1γ3)G11 + 2(γ1γ2 + γ1γ3t + γ2γ3)G12

+(γ2
2 + 2γ2γ3t)G22 + γ2

3var[W1(t)],

covar[W1(t), W2(t)] = γ1G11 + (γ2 + γ1t)G12 + γ2G22t + γ3var[W1(t)],

from which the (squared) correlation between W1(t) and W2(t) can be easily derived

by plugging in estimates for γ1, γ2, G11, G12 and G22. This function, that will be

termed “model-based”, is entirely based on the assumptions made in our model. A

more heuristic estimate, which we will refer to as “empirical”, could be derived along

the same lines of development, except that sample estimators based on the expected U

values obtained at the final step of the EM algorithm are substituted for the elements

of G. Thus, G11 is replaced by v̂ar{Û1i}, G22 by v̂ar{Û2i} and G12 by ĉovar{Û1i, Û2i}.

It should be stressed that the resulting curve is still strongly dependent on some

aspects of the model. For example, should we assume that W2(t) = γW1(t), then

R2
indiv

(t) ≡ 1. As one departs from this simple model and further terms are added, a

finer characterization of the curve is allowed in its admissible forms. Because of this,

we recommend to include a sufficiently large number of association parameters {γk}
in the model.
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7.4 Application to the Advanced Prostate Cancer

Data

In this section, we apply the proposed methodology to the liarozole data introduced in

Section 7.2. We will utilize pooled data from the two trials and will refer to control and

experimental arms as in Figure 7.3. Since our methodology requires the estimation of

the treatment effects in multiple trials or other meaningful groups of patients, we will

use country as a grouping unit within each trial in order to have a sufficient number

of patients in each unit. This enables us to define 19 groups containing between 3

and 69 patients per group. For the analysis, however, two of these groups had to be

excluded: in one of them (n = 3), subjects were accrued in only one treatment arm

and no events were observed in the second (n = 8).

Figure 7.4 depicts summaries of the data in terms of the basic entities connected

through model (7.1a)-(7.1b), that is, the sequences of longitudinal measurements on

the marker and the hazard function for survival. The bottom figure was obtained

by smoothing the Nelson-Aalen estimator of the hazard rate with an Epanechnikov

kernel function (Ramlau-Hansen, 1983).

A first step in the analysis is to specify a parsimonious model that captures time

evolution of the marker within each treatment group. A simplistic attempt could

involve second-order polynomials. While this choice may, at first, seem odd after

inspection of the average profiles (top panel in Figure 7.4), this is more in agreement

with what Figure 7.3 suggested. This was also confirmed by a likelihood ratio test as

the introduction of a quadratic term (with random coefficient) in the model yields a

large drop in deviance.

As a possible refinement, we can employ fractional polynomials to better char-

acterize time evolution of the marker. We used the second strategy described in

Section 5.4 to select the power vector, while allowing for treatment-specific curves.

Starting from the set of powers ranging from -2 to 2 by step of 0.5 and restricting

the search over fractional polynomials of degree 2, the values 0.5 and 1 were selected.

Note that using the other selection strategy, with given random effects for the inter-

cept, t and t2, the pair (0.5, 1) also yields one of the best fits. Our final model for

the longitudinal PSA measurements therefore includes fixed (treatment-specific) and

random effects for the intercept, t and
√

t [Note: comparison of this final model with

the original one also yields a large drop in deviance].

Now that we have chosen a parsimonious description of the temporal evolution of
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Figure 7.4. Longitudinal and event time summaries for the combined liarozole trials.

Top panel: smoothed log PSA profiles; Bottom panel: smoothed estimates of the hazard

rate.
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the marker, the next step is to formulate the joint model for the PSA measurements

and survival time data, with trial-specific effects for each term. The model can be

written:

Yijk = µ0i + µ1itijk + µ2i

√
tijk + α0iZij + α1iZijtijk + α2iZij

√
tijk

+ U0j + U1jtijk + U2j

√
tijk + εijk , (7.2a)

and

λij(t)=λ0(t) exp{βiZij + γ0U0j + γ1U1j + γ2U2j + γ3(U0j + U1jt + U2j

√
t)},

(7.2b)

with i denoting country (within trial), j referring to individual patients and k to

measurement occasions.

As explained in Section 7.3, R2
trial

can be calculated as the coefficient of deter-

mination in the regression of {β̂i} on {α̂0i, α̂1i, α̂2i}, which yields a value of 0.517.

This mid-range value is presumably too low to permit reliable prediction of treatment

effects on survival, having observed the effect of treatment on the marker. Confidence

limits on R2
trial

can be obtained based on the assumption that αi and βi are normally

distributed (as in (4.3)), from which the distribution of the coefficient of determina-

tion can be derived (Algina, 1999; Ding, 1996). More specifically, a 95% confidence

interval can be obtained by finding values of R2
trial

for which the corresponding es-

timates are approximately equal to the 2.5% and 97.5% quantiles of the cumulative

distribution function of R2. In our example, the resulting confidence limits for R2
trial

are [0.013, 0.748], thus showing that the trial-level association is estimated rather im-

precisely due to the relatively small number of units available to estimate treatment

effects.

Remark that dependence between the marker and survival endpoint is a compli-

cating assumption with our methodology. If interest centers on trial-level surrogacy

alone, a naive approach might be to assume independence between the two outcomes,

which greatly simplifies computations since the two models can then be fitted sep-

arately. Tibaldi et al. (2002) explore this issue in the case of normally distributed

endpoints (Section 4.2) and conclude that simplified computational methods perform

quite well. Obviously, as one departs from the multivariate Gaussian framework, it is

not at all clear whether such a simplistic approach works effectively well. For com-

paritive purposes, we calculated R2
trial by fitting separately models (7.2a) and (7.2b)

with γ0 = γ1 = γ2 = γ3 = 0. This results in a value of R2
trial

= 0.291 which is much
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lower than the one found above (although confidence limits should not be overlooked).

Thus, ignoring dependence between the marker and the survival endpoint might give

misleading inference on R2
trial in this setting, although this issue should be further

explored.

Figure 7.5a shows the model-based and empirical curves R2
indiv(t) for model (7.2a)-

(7.2b). Both curves agree fairly well over the time range considered. They start from

a relatively low level (∼ 0.3), then raise sharply until a value of about 0.9 at year

1 and stabilize at that level thereafter. Although the interpretation of such a plot

holds, strictly speaking, at the level of the latent processes W1(t) and W2(t), this

would suggest that initially, PSA level bears relatively little information on a patient’s

future survival but as information on the marker is gathered over time (mostly within

the first year of treatment), it achieves a better capability to predict survival, with no

further gain in subsequent years. For comparison purposes, the plot in the right panel

(Figure 7.5b) shows the same curves under the model with quadratic time evolution

and individual-level random effects for the intercept, t and t2. The two curves show

a similar behavior within the first year after randomization, but then a dip can be

observed. Also, it can be noticed that the two curves do not coincide so well. It is not

clear whether this is caused by the inferior fit of the model, or by constraints imposed

by the model itself, but this calls for caution when interpreting such curves. We do

believe that they might shed some light on the basic intricacies between the marker

and the survival endpoint under study, but they should not be over-interpreted as

they may be strongly model-dependent.

7.5 Conclusions

An extension of the surrogate endpoint validation methodology of Buyse et al. (2000)

was proposed for the case where a longitudinally measured biomarker is a potential

surrogate for a survival endpoint. To that end, the formulation of Henderson, Diggle

and Dobson (2000) was adopted for the joint model relating the marker and the

survival time.

A limiting feature arises from the inherent complexity of joint modeling longitudi-

nal measurements and event time data, which is most noticeable in the computational

aspect of this approach. As a result, intensive computing times can be expected in

the type of applications covered here because of the typically large size of the meta-

analytic data sets required for our validation exercise.
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Figure 7.5. Plots of the model-based and empirical R2
indiv

(t) curves. Left panel: final

model (int., t,
√

t). Right panel: original model (int., t, t2).

Another limiting feature comes from the use of the EM fitting algorithm, which

fails to deliver precision estimates of parameters. In their paper, Henderson, Diggle

and Dobson (2000) obtained standard errors by a Monte-Carlo method, refitting the

model to simulated data sets generated using parameter values taken from the original

analysis. Clearly, such a procedure may be exceedingly time-consuming here, unless

one has a powerful computer at one’s disposal.

In view of these comments, there is a strong need to further investigate the per-

formance of simplified computational methods (such as based on the independence

assumption) compared to our joint modeling approach. In particular, an extensive

simulation study would be mostly welcome but would necessitate access to powerful

computational resources, which we did not have.

At the trial level, which is of most interest in practice, the R2
trial

surrogacy mea-

sure can be easily derived by considering extra terms to characterize the longitudinal

evolution of the marker, and our method provides point estimates and uncertainty

measures for this parameter. In addition, the individual-level surrogacy can be ex-
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plored through the function R2
indiv(t) which captures the association induced by the

two underlying Gaussian processes, W1(t) and W2(t), used in the joint model. Since

the latter quantity is primarily of interest for exploratory purposes and since com-

putation of the precision estimates within the joint model is cumbersome, we do not

attach uncertainty measures to R2
indiv(t) here. Note that if precision estimates were

available for the model parameters, it could also help to incorporate measurement

error introduced by the fact that estimates of the αi’s and the βi’s are effectively

employed when estimating R2
trial

.

Finally, it would be desirable to further investigate model adequacy (with an

application to R2
indiv

(t) in mind, for example) or the diagnostic assessment of fitted

models. Unfortunately, such tools are currently lacking and this is an area for further

research, as pointed out by Henderson, Diggle and Dobson (2000).

As to the clinical interpretation of this work, we saw that PSA level and survival

seem, as expected, to be strongly related, at least when a sufficiently large amount of

information has been gathered on the marker. While bearing in mind that the R2
trial

coefficient was estimated with large uncertainty, the value that was found stands in

the mid-range of the unit interval and would prevent us from formulating any firm

conclusion, had it been estimated more precisely. This points to an issue, not of

the methodology, but rather of the biological nature of the marker. Thus, we may

tentatively state that PSA level has some value as a surrogate marker for survival

(for the class of treatments considered in the two trials at least) but presumably is

not a very good one. Obviously, these results should be taken with caution since

this study involved only a couple of clinical trials with a relatively limited number of

subjects. The issue of validiting a surrogate marker will, ideally, be based on a much

more extended set of randomized trials and will cover different classes of therapies

commonly used for the treatment of patients with the disease in question.



Chapter 8

Concluding Remarks and

Further Research

This work has focused on methods aimed at modeling data that are correlated. More

specifically, we have been concerned with two types of data frequently encountered in

applied statistics: multilevel and longitudinal data. Even though formally, multilevel

data structures can be regarded as encompassing nearly all other types of correlated

data, including longitudinal data, the distinction between these two data types is

maintained since they each have their own pecularities and field of research.

8.1 Pairwise Likelihood Estimation

A significant part of our work (Chapters 3, 4 and 6) was devoted to models for

binary responses. The difficulty in evaluating the likelihood for models with discrete

correlated data has led to alternative methods of estimation and to an extensive body

of research in the literature. The aim of our work was to study in more depth the

use of maximum pairwise likelihood (MPL) as an estimation tool in multilevel models

with binary responses. Pairwise likelihood is a special example of pseudo-likelihood,

a notion first introduced by Besag (1975) and which amounts to construct a product

(of pieces) of likelihoods.

Although several authors have already used MPL to model clustered binary data,

it was not investigated, to our knowledge, in the multilevel modeling framework, that

133
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is, using a ‘subject-specific’ rather than ‘population-averaged’ approach. In Chap-

ter 3 we examined the merits of MPL for estimation purposes in multilevel models

with binary responses. To summarize, MPL enjoys appealing asymptotic properties

(such as consistency and asymptotic normality) and is computationally simple. In

compromise, MPL estimators are subject to some loss of efficiency.

Our work has concentrated on a very limited aspect of modeling however, and there

are yet a number of issues to examine if we wish to use MPL estimation routinely.

These are briefly discussed below.

8.1.1 Model Checking and Diagnostics

An important step in the process of data modeling is to check various features of the

fitted model. This usually involves checking goodness-of-fit of the model, checking

model assumptions, and detecting possibly influential observations.

Surprisingly, little work has been done on model checking and model diagnostics in

generalized linear mixed models and this topic alone would definitely deserve further

research. In relation to our work, we think that the following points would be of

particular interest.

Normality of Random Effects

An important assumption in (generalized) linear mixed models is that the random ef-

fects are normally distributed. A first issue is therefore to obtain individual estimates

for the random effects. In linear mixed models, Empirical-Bayes (EB) estimates are

often used for diagnostic purposes (Verbeke and Molenberghs, 2000). EB estimates

are also employed in generalized linear models with random effetcs, although they

have no closed-form expression and thus are typically approximated by the mode of

the posterior distribution using estimated values of the parameters (see, e.g., Stiratelli,

Laird and Ware, 1994).

Basic checks of the normality assumption for random effects are usually limited

to examination of the distribution of EB estimates, using histograms or normal prob-

ability plots for example. As shown by Verbeke and Lesaffre (1996) however, such

histograms may be misleading and these authors suggest to extend the standard lin-

ear mixed model to the so-called “heterogeneity model” which involves a mixture of

normal distributions for the random effects. The two models can then be compared

and the assumption of normality for random effects formally tested. Obviously, this
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work would need to be pursued within the realm of generalized linear mixed models,

whatever method is used for estimation of model parameters.

Influence Measures

In general, influence measures aim at determining whether some observations have

undue influence on the estimates of the model parameters and hence how sensitive is

the fitting of the model to such observations. With longitudinal (or, more generally,

clustered) data we actually need to distinguish between influential subjects (influence

of the observations from a particular subject) and influential observations (a particular

observation from a particular subject).

One approach to detecting influential observations is local influence (Cook, 1986).

Using a case-weight pertubation scheme where it is investigated how much the parame-

ter estimates are affected by changes in the weights of the log-likelihood contributions

of specific subjects, Lesaffre and Verbeke (1998) derive local influence measures in

linear mixed models. More recently, Ouwens, Tan and Berger (2001) extended these

local influence measures in generalized linear models with random effects.

Since these local influence measures are based on perturbations of the likelihood

function, it would be worthy to investigate whether similar measures can be derived

for pseudo-likelihood functions and, if this path proves to be unsuccessful, to propose

other influence measures for use with pseudo-likelihood estimation.

8.1.2 Missing Data

Another area where pseudo-likelihood methods would benefit from further research

is when data are incomplete (or missing). A problem with incomplete data is that

ignoring the missingness mechanism can result in misleading inference. Based on

the well-known terminology of Rubin (1976) and Little and Rubin (1987), missing

data mechanisms can be classified as missing completely at random (MCAR), miss-

ing at random (MAR) and missing not at random (MNAR). A remarkable fact about

likelihood-based estimation is that MCAR and MAR mechanisms are ignorable (pro-

vided an unrestrictive separability condition on the parameter spaces is satisfied). In

practical terms this means that MCAR and MAR missingness mechanisms can simply

be ignored in the analysis of the data within the likelihood framework.

Unfortunately, the MAR mechanism will a priori not be ignorable if pseudo-

likelihood estimation is to be pursued. This can be seen if we consider the following
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factorization, which is the basis of the so-called selection models,

f(yi, ri) = f(yi)f(ri|yi),

where ri denotes the missing data indicator. In previous chapters we have been only

concerned with modeling of the first factor, that is, of the joint distribution of the

response vector. The above formula shows, however, that an additional factor must be

taken into consideration with missing data, which allows the data analyst to formulate

a model for the missingness mechanism.

While pseudo-likelihood estimation may result in biased estimators under MAR,

it would still be useful to evaluate the robustness of the method to missing data.

Since a pseudo-likelihood is essentially composed of likelihoods, an hypothesis would

be that it is more robust than other methods purely based on estimating equations

(such as GEE). Also, it would be worth investigating the performance of a “weighted”

approach, in the sense of Robins, Ronitzky and Zhao (1995) and Fitzmaurice, Molen-

berghs and Lipsitz (1995) who discuss weighted GEE, an extension of GEE which

yields asymptotically unbiased estimates under MAR provided the models for the

mean structure and missingness mechanism are correctly specified.

8.1.3 Crossed Random-Effects Models

Throughout we have exclusively considered models where population units are hier-

archically structured. There are cases, however, where units at the same level of a

hierarchy are simultaneously classified by more than one factor. For example, school

pupils may be classified by the school they attend as well as the neighborhood they

live in. Since schools usually attract pupils from several neighborhoods, these two

factors are crossed.

Random effects can be specified (as usual) for each of the crossed factors; hence

crossed random-effects models extend the standard multilevel models. Interestingly,

it can be shown that this kind of models can be analyzed using procedures designed

for purely hierarchical or multilevel structures, although they are technically and

computationally more demanding.

We now briefly discuss some work in progress about crossed random-effects mod-

els for binary responses, which are much more challenging to fit than the standard

generalized linear multilevel models.
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Consider the following model:

g(πi(j1j2)) = x
T

ijβ + u1j1 + u2j2 , (8.1)

where i is the level 1 index, and j1 and j2 are level 2 indices for two classification

factors (the parentheses mean grouped classifications at the same level). Thus, the

model assumes two random intercepts to represent heterogeneity between units from

both classifications.

The major difficulty with likelihood estimation stems from the fact that the local

independence assumption no longer holds and hence the integral over the random

effects does not simplify. More specifically, the marginal likelihood takes the form

L =

∫ ∏

j1,j2,i

π
yi(j1j2)

i(j1j2) (1 − πi(j1j2))
1−yi(j1j2)φ(u1j1 , u2j2)du, (8.2)

where u contains all u1j1 ’s and u2j2 ’s. In consequence, the dimension of integration is

now dramatically higher and the only practical way to carry out likelihood estimation

is to resort to Monte Carlo techniques, which are computationally intensive.

Thus, we are clearly in a situation where pairwise likelihood might be of great

help when fitting of a model such as (8.1) is needed. This entails considering

all pairwise probabilities of the kind P (yi(j1j2), yi′(j1j2)), P (yi(j1j2), yi′(j1j′2)
), and

P (yi(j1j2), yi′(j′1j2)). Of course, this may represent a considerable amount of con-

tributions depending on the size of the data set.

A problem yet to solve with this approach is to estimate standard errors of the

parameters. Indeed, we saw in Section 3.2 that the asymptotic variance-covariance

matrix of the pseudo-likelihood estimator takes the form

J(θ0)
−1K(θ0)J(θ0)

−1, (8.3)

with

J(θ) = Eθ

[
− ∂2

∂θ∂θ
T

log L

]

and

K(θ) = Eθ

[
∂

∂θ
log L

∂

∂θ
T

log L

]
= varθ

[
∂

∂θ
log L

]
.

In this expression, J(θ0) can be easily estimated, using second-order derivatives as

in (3.15) or crossed products of first-order derivatives as in (3.16). For K(θ0), the

estimator

KN(θ0) =
∂

∂θ
log L(θ0)

∂

∂θ
T

log L(θ0)
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would be consistent, but θ0 is not available. Of course, the plug-in estimator

KN(θ̃) =
∂

∂θ
log L(θ̃)

∂

∂θ
T

log L(θ̃)

cannot be used since it is identically zero by definition of θ̃. In fact, what we are

lacking here is independent replication over subjects (or clusters), which allowed us

to use the following estimator in Chapter 3:

KN(θ̃) =
N∑

i=1

∂

∂θ
log p`i(θ̃)

∂

∂θ
T

log p`i(θ̃).

In marginal generalized linear models, some empirical variance estimators have

been proposed to solve this problem (see Lumley and Heagerty (1999) for example),

albeit mostly in the context of spatial data. The work of Lumley and Mayer-Hamblett

(2002), however, is directed towards sparse correlation structures, including those with

crossed design, and contains interesting results (e.g. central limit theorem) that might

ultimately prove useful to derive imprecision measures for MPL estimators.

8.2 Evaluation of Surrogate Endpoints

In Chapter 4 we have presented an approach to surrogate endpoint validation using

data from multiple randomized clinical trials, as proposed by Buyse et al. (2000).

A first critical step was to extend the method initially developed for two normally

distributed endpoints. In this work the approach was extended to deal with discrete

outcomes and to the case where a longitudinally measured biomarker is used as a

surrogate for a failure-time variable.

In addition to the references already cited in Section 4.1, we can mention the work

of Burzykowski (2001) who studied in detail the proposed methodology when the

true endpoint is a failure-time variable and introduced a useful concept, the surrogate

threshold effect, which is defined as the minimum value of treatment effect on the

surrogate endpoint for which the predicted effect on the true endpoint would be

significantly different from 0. In addition to providing information relevant to the

practical use of a surrogate endpoint, the surrogate threshold effect also has a natural

interpretation from a clinical point of view, as it can be expressed in terms of treatment

effect necessary to be observed to predict a significant treatment effect on the true

endpoint. Therefore, its use might facilitate communication between statisticians and

clinicians regarding results of a validation of a surrogate endpoint.
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Also, in the context of repeated measurements on both the surrogate and the

true endpoint, we refer to the work of Alonso, Geys, Molenberghs et al. (2002) who

generalize the R2 surrogacy measures using the so-called variance reduction factor

(VRF), a measure which summarizes the variability of the repeated measurements on

the true endpoint over all trials. As shown by Alonso, Geys, Kenward et al. (2002),

the VRF can even be regarded as a special member of a large class of canonical

correlation functions that can be used to study surrogacy at the trial and individual

levels.

On related topics worth of further research, we think that more work should be

done to evaluate computationally simpler modeling strategies and compare them to

the more elaborate modeling techniques currently proposed. As shown by Tibaldi et

al. (2002) in the case of two normally distributed endpoints, such strategies produce

results reasonably close to those obtained from the full random-effects model (4.5). It

would be interesting to investigate whether this is true in other settings, such as the

longitudinal-survival situation of Chapter 7, and if not, what is the amount of bias

and/or loss of precision attributed to such strategies.
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Samenvatting

Dit werkt richt zich op het formuleren van modellen en het schatten van parame-

ters en hun bijhorende precisiematen voor hiërarchische (multilevel) en longitudinale

gegevens. Dergelijke gegevens komen zeer frequent voor. We noemen eerst enkele

belangrijke voorbeelden.

In de Belgische Volksgezondheidsenquête (1997 en 2001; Hoofdstuk 2) worden re-

spondenten bevraagd. De selectie van respondenten gebeurt in verscheidene stappen.

Eerst wordt een deel van de steekproef toegekend aan de drie regio’s van het land,

waarna een proportionele verdeling over de provincies volgt. Binnen elke provincie

worden gemeenten geselecteerd, met selectiekans proportioneel aan de grootte van de

provincie. Wanneer een gemeente geselecteerd wordt betekent dit dat er 50 inter-

views zullen afgenomen worden. Bij grotere gemeenten kunnen verscheidene groepen

geselecteerd worden. Binnen gemeenten worden huishoudens geselecteerd en binnen

huishoudens respondenten. Het zal duidelijk wezen dat er in een zorgvuldige analyse

rekening dient gehouden met de stratificatie over regio’s en provincies, en met de

hiërarchische selectie van respondenten binnen huishoudens en huishoudens binnen

gemeente. Bovendien zijn de selectiekansen verschillend van individu tot individu,

waardoor met wegingsfactoren dient rekening gehouden te worden. Eén van de gevol-

gen is dat respondenten niet noodzakelijk van elkaar onafhankelijk zijn.

Een ander belangrijk voorbeeld is surrogaatrespons in klinische studies (Hoofd-

stuk 4). Met surrogaatrespons bedoelen we een eindpunt in een klinische studie (bijv.

prostaat specifiek antigen) dat gebruikt wordt ter vervanging van het werkelijke eind-

punt (bijv. overlijden ten gevolge van kanker). De rationale voor de vervanging van

een werkelijk eindpunt door een surrogaat is besparing in tijd en/of steekproefgrootte.

Een dergelijke vervanging is echter slechts mogelijk na een zorgvuldige studie van de

kwaliteit van een surrogaat. Waar Prentice (1989) gebruikt maakte van één enkele
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studie om een surrogaat te valideren, hebben Buyse et al (2000) een meta-analytisch

kader voorgesteld. Hierdoor ontstaat opnieuw een hiërarchische gegevensstructuur.

Ten eerste worden patiënten binnen studies geselecteerd en ten tweede worden twee

eindpunten (surrogaat en werkelijk) voor elke patiënt opgetekend. In dit werk wordt

uitgegaan van een meta-analyse in schizofrenie en van studies in prostaatkanker.

Een derde gebied waar hiërarchische gegevens ontstaan is longitudinale studies.

Met deze term duiden we studies aan waarbij patiënten niet één enkele keer doch

herhaald in de tijd gemeten worden. Ook metingen aan dezelfde patiënt kunnen a

priori niet als onafhankelijk beschouwd worden.

Het beschouwen van hiërarchische gegevens heeft belangrijke methodologische im-

plicaties. Vooreerst dient men zorgvuldig na te denken, meer dan bij onafhanke-

lijke gegevens, over de formulering van de modellen. Dit geldt reeds wanneer de

responsvariabelen continu (normaal verdeeld) zijn (Verbeke en Molenberghs 2000),

maar a fortiori ook wanneer gegevens discreet (binair, categorisch) zijn (Fahrmeir en

Tutz 1994, Diggle, Liang en Zeger 1994). Immers, de keuze van model heeft gevolgen

voor de aard en de interpretatie van de modelparameters. Het beantwoorden van vra-

gen op populatieniveau (bijv. het verschil tussen twee armen in een klinische studie)

vereist een andere aanpak dan het beantwoorden van vragen op individueel niveau

(bijv. de predictie van een later niveau van antilichamen bij een patiënt op basis van

eerdere niveaus, in vaccinatiestudies; zie Hoofdstuk 5). In het eerste geval formuleert

men best marginale modellen, in het tweede geval zijn modellen met random effecten

meer aangewezen.

Een tweede implicatie van hiërarchische modellen is dat er zeer zorgvuldig di-

ent nagedacht over schattingsmethoden. Waar dit probleem beheersbaar blijft bij

continue hiërarchische gegevens (lineair gemengde modellen of multilevel modellen,

zoals gëımplementeerd in de SAS procedure MIXED of in MLwiN), zijn er meer

problemen bij niet-continue gegevens. Een veelbelovende techniek in dit verband

is pseudo-likelihood. Hierbij wordt een ingewikkelde likelihood vervangen door een

andere, beter beheersbare functie. Een prominente vorm van pseudo-likelihood is

paarsgewijze likelihood. Deze methode wordt voorgesteld in de context van een mul-

tilevel probit model (Hoofdstuk 3). Het uitgangspunt is dat interesse uitgaat naar de

regressieparameters en eventueel ook naar de associatie tussen twee responsen binnen

eenzelfde hiërarchisch niveau, maar niet naar hogere orde associaties. In plaats van

een likelihood te moeten neerschrijven voor een cluster van hoge dimensie, wordt een

dergelijk cluster vervangen door alle mogelijk paren. Er wordt aangetoond dat deze
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procedure consistente en asymptotisch normaal verdeelde schatters oplevert, en dat

de efficiëntie behoorlijk is, daar waar tegelijk belangrijke winsten in termen van com-

putertijd worden opgeleverd. Het is ook mogelijk deze procedure met wegingsfactoren

te combineren.

Paarsgewijze likelihood kan ook gebruikt worden in de context van surrogaat-

validatie met categorische respons (Hoofdstuk 4). Het is belangrijk op te merken dat

deze aanpak toelaat het meta-analytische kader van Buyse et al (2000), ontwikkeld

voor continue gegevens, ook toe te passen op binaire gegevens, en dit met behoud

van interpretatie van parameters, de mogelijkheid om met random effecten te werken,

en de mogelijkheid om de kwaliteit van surrogaten uit te drukken met behulp van

intüıtief aantrekkelijke R2 maten.

In Hoofdstuk 5 worden herhaalde metingen, afkomstig van vaccinatiestudies,

bekeken. Belangrijke problemen zijn het voorkomen van booster doses en de noodzaak

aan predictie te doen op jaar 12, gegeven vroegere waarnemingen.

In Hoofdstuk 6 wordt een uitbreiding van een hiërarchisch model voor binaire

gegevens voorgesteld, waarbij naast random effecten ook seriële correlatie wordt inge-

bouwd. Een flexibel model van dit type werd niet eerder voorgesteld. Ook hier wordt

gebruik gemaakt van paarsgewijze likelihood. Het model wordt toegepast op het

schatten van psychometrische betrouwbaarheid in de context van klinische studies in

psychiatrie. Deze aanpak heeft als voordeel dat zeer flexibele hiërarchische datasets

kunnen gebruik worden, wat de klassieke vormen van betrouwbaarheid, zoals test-

hertest betrouwbaarheid, uitbreidt.

Een bijzondere belangrijke vorm van surrogaatrespons is een longitudinaal surro-

gaat (zoals prostaat-specifiek antigen) voor een overlevingstijd als werkelijk eindpunt.

Een dergelijke setting vereist het gemeenschappelijk modeleren van beide responsen.

Zeker met het voorkomen van censurering is dit een situatie die de nodige zorgvuldige

reflectie verdiend. Een mogelijk model, met toepassing in de validering van surrogaa-

trespons, wordt gegeven in Hoofdstuk 7.
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