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Chapter 1
Overview of the dissertation

The current and future importance and impact of Alzheimer’s Disease (AD) on society
is hard to overstate. The number of dementia patients is about 9.2 million in Europe,
about 177.000 in the Belgian population, more or less 100.000 of which live in Flanders,
with Alzheimer’s accounting for the majority of the cases [31, 120].

Advances in AD research are hindered by issues related to the diagnosis of the
disease. Still no treatment for AD is available and the efficacy of currently available
symptom-directed treatments depend highly on how early in the disease process they
are administered. Current AD diagnosis heavily depends on clinical manifestation of
the disease. Hence, patients are only diagnosed in later stages of the disease, resulting
in small symptom-directed treatment benefits. Moreover, the diagnosis is prone to
misclassification, making it imperfect. Therefore, it is not very well suited to be used
in the development of new drugs. Alternatively, the gold standard (GS) diagnostic
test of AD can only be established post-mortem by brain tissue dissection. This AD
diagnosis is costly to obtain while from a diagnostic point of view, it is useless.

Consequently, AD research is steering into the direction of the development of
diagnostic biomarkers. Preferably, these biomarkers should be measurable relatively
easy, e.g., in cerebrospinal fluid (CSF), blood or making use of imaging techniques,
and be related to the pathological process preceding the manifestation of clinical
symptoms. Formal development of such biomarkers has been found disappointing.
Many biomarkers fail to statistically show adequate and satisfactory diagnostic accu-
racy, while clinicians feel they perform very well in practice. The discrepancy between
study results and practical performance may not be surprising since in these studies
the current clinical diagnosis of AD is wrongfully considered to be a GS reference-test,

1



2 Chapter 1. Overview of the dissertation

leading to biased results of the biomarkers’ accuracy.
Because of the lack of suitable validation methods and enormous costs due to

huge sample sizes, established biomarkers are usually applied in practice without
any formal validation. In addition, currently measured AD CSF-biomarkers lead to
different values on different commercially available platforms. This implies that for
every platform, different diagnostic cut-offs should be developed. In practice, to avoid
the costly collection of GS post-mortem data, a cut-off for one platform is usually
translated to another using linear-regression-based methods. The characteristics of
these methods have never been investigated in detail and the low precision of the
resulting estimates is usually ignored.

To address these issues, some novel methods are presented in the following dis-
sertation. An introduction to diagnostic test development and Alzheimer’s Disease
research is presented in Chapter 2. Chapter 3 introduces a Bayesian latent-class mix-
ture model to allow for the development of a diagnostic biomarker-index in the absence
of a GS reference-test. In Chapter 4, the method is extended to allow for conditional
dependence between the continuous biomarkers of interest and the dichotomous im-
perfect reference-test. A novel Bayesian validation approach is developed in Chapter
5. We show that by allowing for a reasonable dependence between the development
and validation data, a large gain in the efficiency of biomarker accuracy validation
is obtained, dramatically reducing the validation-study sample size. Concerning the
transfer of AD CSF-biomarker cut-offs from one platform to another, we investigate
the characteristics of the currently applied transfer method in Chapter 6. In addi-
tion, we develop a new Bayesian transfer method and show that it is unbiased in all
considered settings while being more efficient than the current linear-regression-based
transfer method.

In conclusion, Chapter 7 contains a general discussion on the proposed methods
and introduces topics for further research.



Chapter 2
Introduction

The following sections contain a general introduction to the field of diagnostic test
development and Alzheimer’s Disease (AD) research. The fundamental concepts un-
derlying diagnostic tests are introduced along with measures of overall diagnostic
accuracy in Section 2.1. In Section 2.2, we zoom in on the construction of a diagnos-
tic index and discuss the advantages of considering a combination of diagnostic tests
over single diagnostic tests. Special care has to be taken to estimate the performance
of a new diagnostic test when no gold-standard reference-test is available. Models
resolving this issue are discussed in Section 2.3. In Section 2.4, the preference for
the Bayesian method is clarified and currently applied diagnostic accuracy methods
are described. Biomarkers are excellent candidates for the construction of diagnos-
tic tests; the importance of biomarkers in Alzheimer’s disease research is scrutinized
in Section 2.5. Finally, two data sets are introduced which are closely investigated
throughout the dissertation. Discussion of these data sets can be found in Section
2.5.2.

2.1 Diagnostic test performance

A diagnostic test is a test constructed to discriminate between patients with and
without a certain condition. Within the field of diagnostic medicine a good diagnostic
test can serve several purposes [133]. Among others, it provides health care providers
with essential information about a patient’s condition, guides the health care provider
in setting up an appropriate treatment plan, and allows understanding of disease
mechanisms by investigating changes in diagnostic outcomes over time. In order

3



4 Chapter 2. Introduction

for health care providers to be able to select the appropriate diagnostic test, its
performance should be investigated. Diagnostic test performance can be evaluated
by several diverse measures, such as costs to society, diagnostic accuracy, effect on
patient outcome, etc. Fryback and Thornbury [34] have proposed to hierarchically
order these measures such that if a diagnostic test is considered non-efficacious on a
lower level it is deemed non-efficacious at all higher levels. The main focus of this
dissertation will be on the accuracy of diagnostic tests (level 2 according to Fryback
and Thornbury’s [34] hierachy as shown in Table 2.1).

Table 2.1: A hierarchical model of efficacy applied to medical diagnostic imaging according
to Fryback and Thornbury. Taken from [34].

Level 1. Technical efficacy

Resolution of line pairs
Modulation transfer function change
Gray-scale range
Amount of mottle
Sharpness

Level 2. Diagnostic accuracy efficacy

Yield of abnormal or normal diagnoses in a case series
Diagnostic accuracy (percentage correct diagnosis in case series)
Predictive value of positive or negative examination (in a case series)
Sensitivity and specificity in a defined clinical problem setting
Measures of ROC curve height (d′) or area under the curve Az

Level 3. Diagnostic thinking in efficacy

Number (percentage) of cases in a series in which image judged ’helpful’ to making the
diagnosis
Entropy change in differential diagnosis probability distribution
Difference in clinicians’ subjectively estimated diagnosis probability pre- to posttest informa-
tion
Empirical subjective log-likelihood ratio for test positive and negative in a case series

Level 4. Therapeutic efficacy

Number (percentage) of times image judged helpful in planning management of the patient
in a case series
Percentage of times medical procedure avoided due to image information
Number or percentage of times clinicians’ prospectively stated therapeutic choices changed
after test information

Level 5. Patient outcome efficacy

Percentage of patients improved with test compared with without test
Morbidity (or procedures) avoided after having image information
Change in quality-adjusted life expectancy
Expected value of test information in quality-adjusted life years (QALYs)
Cost per QALY saved with image information

Level 6. Society efficacy

Benefit-cost analysis from societal viewpoint
Cost-effectiveness analysis from societal viewpoint
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Zweig and Campbell [136] define diagnostic-test accuracy as the ability of the test
to correctly classify subjects into clinically meaningful subgroups. For example, if
diseased and healthy patients have indistinguishable test results, the test is said to
have negligible accuracy; if test results show no overlap, the test has perfect accuracy.
Of course, most tests have some discriminative ability while displaying overlapping
results so their accuracy will be somewhere in between these two extremes. In order
to quantify the accuracy of a diagnostic test, diagnostic-test accuracy studies are per-
formed. Generally, these diagnostic-test accuracy studies are defined by the following
three key attributes. First, subjects who will undergo the diagnostic test of interest
have to be sampled. Second, some sort of interpretation or decision rule based on the
test results has to be constructed. Finally, the results of the obtained diagnostic test
results have to be compared to the results of a reference test. Preferably, this reference
test has perfect accuracy and is then termed as a gold standard (GS) reference-test.
Results based on these three attributes can be used to construct the concepts defining
diagnostic test accuracy.

2.1.1 Estimating accuracy

The measures of accuracy considered in the following section describe the intrinsic
accuracy of the diagnostic test. Intrinsic accuracy is concerned with the inherent
ability of the test to correctly identify a condition when it is present and at the same
time correctly identify the absence of a condition when it is not present [133]. In
particular, these measures compare the test results to the true condition state of the
patients. It is important to note that the intrinsic accuracy of a diagnostic test is
independent of the condition’s prevalence in the test sample. For the remainder of
the dissertation we will assume that there are only two mutually exclusive clinically
relevant subgroups, a group for which the condition is present and another for which
the condition is absent. Furthermore, the condition is present and condition is ab-
sent groups will generally be referred to as the case and control groups, respectively,
without implying any specifics to case-control studies.

If the diagnostic test under evaluation is dichotomous in nature, resulting in a
subgroup membership value for each subject in the test sample, its accuracy can be
represented by two probabilistic statements. Denote the true condition state of the
N patients in the study sample by GS reference-test result variable D, so that D = 0
for controls and D = 1 for cases. Next, represent the results of the dichotomous
diagnostic test by variable T , so that T = 0 represents diagnosis to the control group
and T = 1 indicates diagnosis to the case group. Subsequently we can define the
probability of correctly identifying cases as P (T = 1|D = 1), referred to as the
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Sensitivity of test T (SeT ). The probability of correctly identifying controls is then
defined by P (T = 0|D = 0), known as the Specificity of the dichotomous diagnostic
test T (SpT ).

An example of a diagnostic accuracy study on N subjects can be found in Table
2.2. From the N subjects, n1 suffer from the condition and for n0 the condition is
absent as indicated by the GS reference-test results. The results from the diagnostic
test of interest categorize m1 subjects to the case group while m0 subjects receive the
control label. The number of subjects for which the results from the GS reference-
test and diagnostic test agree are indicated by s1 and r0, for the case and control
diagnosis, respectively. Finally, s0 subjects for which the condition is present receive
a control diagnosis, while r1 condition-free subjects receive the case diagnosis.

The SeT of the diagnostic test under evaluation can then be estimated by the
proportion of subjects for which the condition is present who receive the case diagnosis:
ŜeT = s1/n1. The proportion of condition-free subjects who receive the control
diagnosis is then an estimate of the SpT of the diagnostic test in the considered
example: ŜpT = r0/n0.

Table 2.2: Example of results of a dichotomous diagnostic test study.

Test Result:
True Condition State Negative (T = 0) Positive (T = 1) total
Absent (D = 0) r0 r1 n0
Present (D = 1) s0 s1 n1
total m0 m1 N

When the diagnostic test under evaluation T is a continuous test, it is not possible
to express diagnostic accuracy by a single SeT and SpT pair. Every value within the
range of possible diagnostic test result values can serve as a cut-off c to dichotomize
T . Specifically, a subject can be classified to the case group when T > c and to
the control group when T ≤ c, resulting in a Se and Sp pair for every threshold c.
The accuracy of such a diagnostic test can be described by the receiver operating
characteristic (ROC) curve [135, 136, 114]. The ROC curve shows the probability of
correctly identifying a case, i.e. Se, against the probability of falsely identifying a
control as a case, i.e., 1− Sp for ordered values of c.

Methods to estimate ROC curves for continuous diagnostic-tests largely fall into
two groups, non-parametric and parametric. Empirical or non-parametric methods
involve plotting pairs of Se and 1−Sp, calculated using the empirical survival curves of
the cases and controls, for each possible cut-off value c. No particular parametrisation
or distributional assumptions regarding the continuous test need to be specified [136].
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The disadvantage of these methods is that the obtained ROC curves are usually not
smooth; see for example the black empirical ROC curve in Figure 2.1. For this reason,
non-parametric ROC curve methods involving kernel density functions, which allow
obtaining smooth ROC curves, were proposed [134, 58, 132, 100]. Rufibach [100]
proposes to use an estimator based on log-concave density estimates which, among
others, is implemented in the R-package pROC [97]. The red curve in Figure 2.1 is
the log-concave smoothed counterpart of the black empirical ROC curve.

1 − Specificity
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Figure 2.1: Example of ROC curve estimates. Empirical ROC curve is depicted in black,
the smoothed and binormal ROC curve in red and blue, respectively. The grey line indicates
the unity diagonal. Maximum Youden index for each ROC curve estimate is indicated by
the respectively coloured X.

Parametric methods assume a particular distributional form for the diagnostic-
test values for cases and controls. Often, normal distributions are assumed. Assume
that a continuous diagnostic-test T is normally distributed conditionally on the value
of D. Specifically, T |D = d ∼ N(µd, σ2

d) for d = 0 for true controls and d = 1 for
true cases. Under this so-called binormal assumption, the ROC curve of continuous
diagnostic-test T is defined by

Se(1−Sp) = Φ
(
α+ βΦ−1 (1− Sp)

)
, (2.1)
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where Se(1−Sp) denotes the sensitivity for each value of 1 − Sp, Φ(·) indicates the
cumulative standard-normal distribution function, α = (µ1 − µ0) /σ1 and β = σ0/σ1.
Maximum-likelihood estimates of means and variances of the normal distributions can
be used directly to estimate the ROC curve [70, 71, 133] and its statistics [61]. An
example of a binormal ROC curve is depicted by the blue solid line in Figure 2.1.

Alternatively, estimates can be obtained by using a Bayesian estimation approach.
A Bayesian regression method has been proposed by O’Malley et al. [78], while Gu
and Ghosal [41] have developed a method using a rank likelihood approach.

2.1.2 Summary measures of accuracy

Although the ROC curve is an elegant way to represent the properties of a diagnostic
test, in practice, summary measures based on the curve are often used. One of such
measures is the maximum Youden index (J ) [130]. The Youden index is defined as
Sec + Spc − 1 for a particular cut-off c. The point on the ROC curve furthest away
from no differentiation — the identity diagonal in ROC-space (grey line in Figure
2.1) — constitutes the maximal Youden index. Because of its link to a specific cut-
off, the maximal Youden index is also proposed as an optimal diagnostic test cut-off
criterion [86]. The maximum Youden indices are indicated in Figure 2.1 by the Xs in
the corresponding ROC curve estimates.

Another summarizing measure is the area under the ROC curve (AUC). It can
be interpreted as the probability that, when provided with a random case and a
random control, the case will have a higher diagnostic test value than the control [7].
Faraggi and Reiser [32] discuss the estimation of AUC for several ROC estimation
methods. Under the binormal ROC curve assumption, the AUC can be defined based
on Equation 2.1 as follows:

AUC = Φ
(

α√
1 + β2

)
. (2.2)

2.2 Diagnostic index

One can expect that a combination of diagnostic tests can offer a better diagnostic
accuracy than a single test. Therefore, much interest has been focused on developing
and evaluating performance of diagnostic tests based on a combination of several
tests [85, 81, 82]. Specifically, improvement of diagnostic accuracy has been shown
for CSF AD-biomarkers as well [63]. Often, combinations of tests are constructed
by using logistic-regression-type models, in which different tests are related to the
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disease status [133]. Another approach is to combine tests in such a way that the
obtained combination is optimal with respect to some measure of diagnostic accuracy
[135]. In particular, the AUC can be used as the criterion, which can be optimized
by using a model-free approach [85, 87, 44], a discriminant-function approach [77], or
a fully-parametric approach [112]. All of these approaches combine several diagnostic
tests into a single composite diagnostic test, the values of which will be denoted by
the term diagnostic index.

2.2.1 Fully-parametric approach to combine tests

In this dissertation we consider the fully-parametric approach to combine diagnostic
tests proposed by Su and Liu [112] and revisited by Liu, Schisterman and Zhu [57]. In
this approach, which is defined under the binormal assumption, the linear combination
maximizing AUC is defined by coefficients a proportional to a function of the assumed
normal distribution parameters. Consider measurements on K diagnostic tests y =
(Y1, ..., YK)T which are assumed to have a joint normal distribution conditional on
true disease status D. For the true controls (D = 0) the K-variate normal distribution
is defined by mean vector µ0 = (µ0,Y1 , ..., µ0,YK

)T and variance-covariance matrix Σ0

defined as:

Σ0 =


σ2

0,Y1
· · · ρ0,Y1,YK

σ0,Y1σ0,YK

...
. . .

...
ρ0,YK ,Y1σ0,YK

σ0,Y1 · · · σ2
0,YK

 . (2.3)

Σ0 contains the test-specific variances σ2
0,k and between-test correlations ρ0,Yk,Yj

for k, j ∈ (1, . . .K) and k 6= j. The diagnostic test values of the true cases
are assumed to follow a K-variate normal distribution with mean vector equal to
µ1 = (µ1,Y1 , ..., µ1,YK

)T and variance-covariance matrix Σ1, which is defined as
in Equation 2.3 but with test-specific variances σ2

1,k and between-test correlations
ρ1,Yk,Yj for k, j ∈ (1, . . .K) and k 6= j.

The linear combination maximizing AUC is then defined as yTa where y is the
column-vector containing the observations for all K diagnostic tests and a is defined
as [57]

a ∝ (Σ0 + Σ1)−1 (µ1 − µ0) . (2.4)

From Equation 2.4 we can see that the coefficients leading to the linear combination
which maximizes AUC are proportional to the difference in means between the case
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and control normal distributions scaled by the inverse of the sum of the respective
variance-covariance matrices. The AUC of the so-obtained diagnostic index is then
given by a complex function of parameters of the case and control K-variate normal
distributions:

AUCa = Φ
{√

(µ1 − µ0)T (Σ0 + Σ1)−1 (µ1 − µ0)
}
. (2.5)

2.3 The absence of a GS reference-test

An important issue in the development of diagnostic tests, and therefore also of di-
agnostic indices, is the availability of the correct case and control labels. Often, it
is assumed that a GS reference-test is available. As stated before, a GS reference-
test provides perfect discrimination between cases and controls. In practice, such a
reference test may not be available. For example, in the context of dementia and
Alzheimer’s disease (AD), only post-mortem pathological confirmation on brain tis-
sue can be regarded as a GS reference-test [102]; however, the confirmation is useless
from a diagnostic perspective.

Hence, in practice, the case and control labels are often based on the result of
an imperfect reference-test. Such a test may misclassify cases and controls. If the
misclassification is ignored in the development of a diagnostic test or combination of
tests, the parameters describing the accuracy of the developed test may be severely
biased.

2.3.1 Falsely assuming GS information leads to bias

The direction of the bias is related to the correlation between the misclassification
errors of the reference test and of the diagnostic test of interest [117]. When, condi-
tionally on the true disease status, the misclassification error of the reference test is
independent of that of the diagnostic test of interest, the accuracy of the diagnostic
test will be underestimated. This instance is referred to as the conditional indepen-
dence assumption. In case the misclassification errors are correlated, the size of the
correlation will determine the direction and magnitude of bias [59].

The following examples, based on Zhou et al. [133], illustrate the effect of falsely
assuming a reference test to be a GS reference-test and the impact conditional de-
pendence may have on the direction of this effect. The first example shows how true
underlying SeT and SpT of a new dichotomous diagnostic test T may be underes-
timated. Consider that the imperfect reference-test has sensitivity SeR = 0.9 and
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specificity SpR = 0.7. Moreover, assume that the new test and imperfect reference-
test are independent given the patients’ true disease status (the conditional indepen-
dence assumption). The underlying true SeT and SpT of the new test, the parameters
we actually want to estimate, are 0.8 and 0.6, respectively. Assume that the study
sample consists of 100 patients with the condition and 100 patients without the con-
dition. Given the SeR and SpR of the imperfect reference-test, of all patients with
the condition, 90 are expected to respond positively and 10 negatively to the im-
perfect reference-test. In the group of patients without the condition, the imperfect
reference-test will find 30 positive and 70 negative responders. This means that in
total, the imperfect reference-test will have identified 120 cases (90 correctly identi-
fied true cases + 30 misclassified true controls) and 80 controls (10 misclassified true
cases + 70 correctly identified true controls). Given that the true underlying SeT

of the new test is 0.8, 72 of the 90 true cases correctly identified by the imperfect
reference-test will respond positively to the new test; the remaining 18 will respond
negatively. Of the 30 true controls who have responded positively to the imperfect
reference, 12 respond positively to the new test and 18 have a negative test results;
because the true SpT of the new test is 0.6. This yields a total of 84 (= 72 + 12)
positive and 36 (= 18 + 18) negative responders to the new test in the group of 120
patients having a positive imperfect reference-test outcome (R = 1 row in Table 2.3).

Similarly, 28 of the 70 correctly identified true controls by the imperfect reference-
test will test positive on the new test, while the remaining 42 will respond negatively.
From the 10 misclassified true cases, 8 will respond positively and 2 negatively to the
new test. In total, from the 80 negative imperfect reference-test responders 36 (= 28
+ 8) will have a positive and 44 (= 42 + 2) a negative new test result (R = 0 row in
Table 2.3). Using the imperfect reference-test as a GS reference-test would imply to
use the results contained in Table 2.3 to estimate SeT and SpT of the new test. This
would lead to an estimate of SeT equal to 0.7 (84/120) and Sp equal to 0.55 (44/80).
As compared to the true values of 0.8 and 0.6, respectively, these estimates are too
small.

Table 2.3: Example of biased estimation of diagnostic-test accuracy when falsely assuming
GS information under the conditional independence assumption.

Test Result:
Reference test Negative (T = 0) Positive (T = 1) total
R = 0 44 36 80
R = 1 36 84 120
total 80 120 200
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The second example is an illustration of how the SeT and SpT of a new test can be
overestimated by falsely considering GS information from an imperfect reference-test.
The operating characteristics of both the imperfect reference-test and new dichoto-
mous diagnostic-test are the same as before: SeR = 0.9, SpR = 0.7, SeT = 0.8, and
SpT = 0.6. To achieve overestimation, the new test and imperfect reference-test are
now assumed to be conditionally dependent. In other words, the new test and imper-
fect reference-test have a tendency to misclassify the same patients. The dependence is
defined as shown in Table 2.4; for the true cases (D = 1), 10% will negatively respond
to the imperfect reference-test as well as the new test [P (R = 0, T = 0|D = 1) = 0.1],
none will have a negative result on the imperfect reference-test and a positive
result on the new test [P (R = 0, T = 1|D = 1) = 0], and 10% will have a posi-
tive result of the imperfect reference but a negative outcome for the new test
[P (R = 1, T = 0|D = 1) = 0.1]. Similarly for patients without the condition (D = 0),
10% will have a negative outcome of the imperfect reference-test and a positive result
for the new test [P (R = 0, T = 1|D = 0) = 0.1], none will have a positive imperfect
reference-test result and a negative result of the new test [P (R = 1, T = 0|D = 0) = 0]
and 30% will have a positive result of both the imperfect reference and new test
[P (R = 1, T = 1|D = 0) = 0.3]. The marginal Se and Sp of the imperfect reference
and new test can be derived from the conditional joint probabilities summarized in
Table 2.4; for instance, the true SeR of the imperfect reference-test is then defined as
P (R = 1|D = 1) = P (R = 1, T = 0|D = 1) + P (R = 1, T = 1|D = 1) = 0.1 + 0.8 =
0.9.

Table 2.4: Conditional joint probabilities of classification for an imperfect reference-test
with marginal SeR = 0.9 and SpR = 0.7 and new dichotomous diagnostic-test with SeT = 0.8
and SpT = 0.6.

Reference test D = 0 D = 1
T = 0 T = 1 T = 0 T = 1

R = 0 0.6 0.1 0.1 0
R = 1 0 0.3 0.1 0.8

In a study population consisting of 100 true cases and 100 true controls, the
conditional joint probabilities from Table 2.4, will lead to the observed frequencies in
Table 2.5 using a reasoning similar to the one used for the conditional independence
example. Again, one can now estimate the SeT and SpT of the new test considering
the imperfect reference-test as a GS reference-test. This leads to overestimated values
for SeT = 0.8 and SpT = 0.6: ŜeT = 0.92 (110/120) and ŜpT = 0.88 (70/80).
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Table 2.5: Observed joint frequencies in the case of conditional dependence between the
imperfect reference-test R and new dichotomous diagnostic test T as summarized in Table
2.4, for a sample of 100 true cases and controls.

Test Result:
Reference test Negative (T = 0) Positive (T = 1) total
R = 0 70 10 80
R = 1 10 110 120
total 80 120 200

2.3.2 Latent-class models with two classes

To overcome the absence of a GS reference-test, latent-class models with two latent
classes have been proposed to assess the accuracy of diagnostic tests. The models
employ the EM-algorithm to obtain maximum likelihood estimates of diagnostic test
accuracy and require certain strict identifiability restrictions. A traditional latent-
class analysis was proposed by Rindskopf et al. [95] for dichotomous tests assuming
conditional independence. Qu et al. [89] and Yang et al. [128] extended these ideas to
allow for conditional dependence between dichotomous diagnostic tests by introducing
continuous random effects modelling the dependence.

2.4 Preference for the Bayesian method

The traditional latent-class models mentioned in Section 2.3 usually ignore any refer-
ence test information and include only new-test data. Instead of completely ignoring
imperfect reference-test information, preferably, one would like to weigh the informa-
tion according to the prior knowledge about the accuracy of the test. For example,
in AD-biomarker research, clinical diagnosis of AD can be regarded as an imperfect
reference-test. Reports about the accuracy of the diagnosis are available in the lit-
erature [126, 11]. Using this information might be instrumental in obtaining more
reliable estimates of biomarker accuracy. This is possible within the Bayesian frame-
work. However, care has to be taken with respect to the way the prior information is
conveyed through the prior distribution. For instance, for parameters resulting from
non-linear functions, flat priors can lead to both silly as well as overly informative
prior distributions [19, 106]. Nevertheless, Bayesian analysis is becoming more com-
mon in diagnostic science [15]. Bayesian models proposed for diagnostic accuracy
studies are described in the following paragraph, grouped according to whether a GS
reference-test is assumed available or not.
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2.4.1 Proposed models

In case a GS reference-test is available, fully-parametric Bayesian inference was intro-
duced by O’Malley et al. [78] for univariate diagnostic tests, and extended to multiple
correlated tests by O’Malley et al. [77]. For the case of an imperfect reference-test, a
non-parametric Bayesian method to estimate the accuracy of continuous diagnostic-
tests was proposed by Ladouceur et al. [54]. Branscum et al. [14] proposed a Bayesian
semi-parametric model allowing inclusion of additional information in the form of
covariates or imperfect diagnostic-tests. A fully-parametric method for bivariate con-
tinuous biomarker-based diagnostic-tests was proposed by Choi et al. [18]. Bayesian
latent-class mixture models for categorical diagnostic tests were developed by Joseph
et al. [50] and extended by Scott et al. [105] to the case of several dichotomous and
one univariate continuous diagnostic-test. A Bayesian latent-class mixture model for
a single continuous test, which allows inclusion of a dichotomous imperfect reference-
test, was proposed by Wang et al. [123]. Yu et al. [131] developed a Bayesian latent-
class mixture model to estimate the optimal linear-combination of multiple continuous
tests.

2.5 Alzheimer’s disease research

Biomarkers aimed at diagnosing AD will be the guiding example throughout this
dissertation. In the following paragraphs, AD CSF-biomarkers and two data sets of
these biomarkers are briefly introduced.

2.5.1 Biomarkers

Often, diagnostic tests are developed based on biomarkers. A biomarker is ”a charac-
teristic that is objectively measured and evaluated as an indicator of normal biologic
processes, pathogenic processes, or pharmacologic responses to therapeutic interven-
tions” [22]. Biomarkers can be applied in diagnostic tests, in assessing severity or
prognosis of disease, or in monitoring response to a therapeutic intervention [91].

Recently, the importance of biomarkers in diagnosing AD was acknowledged by
including AD-categories based on CSF biomarker results [66]. CSF biomarkers for
AD fall in two classes defined by the biological change they relate to. A first class is
linked to the process of brain amyloid-beta (Aβ) protein deposition. The deposition
of this protein is observable as a low concentration of Aβ42 in the CSF. A second
class of CSF biomarkers is involved with downstream neuronal degeneration or injury,
leading to elevated CSF concentrations of total tau and phosphorylated tau (p-tau)
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[20]. Changes in these CSF biomarkers reflect the ongoing pathophysiological AD
mechanism underlying the clinical AD dementia. In particular, the pathophysiological
AD mechanism precedes the clinical AD symptoms, making the CSF biomarkers ideal
candidates to speed up the timing of AD diagnosis. This also makes them important
targets for therapeutic intervention [121].

2.5.2 Data sets

To investigate the applicability of the methods developed in this dissertation, they will
be applied to two sets of data from Alzheimer’s disease patients. One of the AD data
sets is the publically available data obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). The other is the Vrije Universiteit
Amsterdam Medisch Centrum (VUmc) data set, which consists of patients from the
memory-clinic-based Amsterdam Dementia Cohort [29]. These data sets contain ob-
servations for the three biomarkers discussed in Section 2.5.1. In addition, imperfect
reference-test information is available in the form of the clinical diagnosis of AD for
each patient. The clinical diagnosis of AD is imperfect because it suffers from clas-
sification errors (misdiagnosis) [11] and because the onset of the pathogenic process,
as reflected in biomarker changes (see Section 2.5.1), can precede the manifestation
of clinical symptoms by at least a decade [109]. Hence, a clinical non-AD diagno-
sis does not exclude underlying AD-pathology and the clinical diagnosis of AD does
not predict underlying pathology, as was recently shown in the phase-III study with
Bapineuzimab [101].

2.5.2.1 ADNI

The ADNI data set includes patients from ADNI-I. ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies, and non-profit organizations. ADNI-I subjects who (i)
agreed to undergo a lumbar puncture, (ii) had results for all three CSF biomarkers
at baseline, and (iii) belonged to either the control or AD group at baseline, were
selected for the current study. This selection resulted in a data set including 96 AD
and 109 control subjects. The CSF biomarker data were obtained by using the xMAP
platform (Luminex Corp, Austin, Texas) and INNO-BIA AlzBio3 research use only
reagents [76]. Baseline characteristics of the data are provided in Table 2.6 while
histograms of the ADNI-data are shown in Figure 2.2.
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Figure 2.2: Observed total tau, Aβ1−42, and p-tau181p values from the ADNI data set.
Clinically diagnosed controls are indicated by the green histograms, clinical cases by the red
histograms.

Table 2.6: Baseline characteristics of the study populations contained in the ADNI and
VUmc data sets. MMSE = Mini Mental State Examination score. (mean ± SD).

Dataset Group n Age(y) Female (%) MMSE Aβ42*
(pg/mL)

total tau*
(pg/mL)

p-tau181*
(pg/mL)

ADNI Control 109 76 ± 5.3 55 (50) 29 ± 1.0 206 ± 54.4 69 ± 30.2 25 ± 14.8
AD 96 75 ± 8.0 40 (42) 24 ± 1.9 142 ± 4.0 122 ± 57.0 42 ± 19.8

VUmc SMC 251 64 ± 6.6 104 (41) 28 ± 1.5 874± 251.0 302 ± 197.7 52± 24.0
AD 96 75 ± 8.0 40 (42) 24 ± 1.9 142 ± 4.0 122 ± 57.0 42 ± 19.8

*CSF-levels of Aβ1−42, total tau, and p-tau181p were determined using commercially available single-
parameter ELISA kits (INNOTEST R© AMYLOID(1-42), INNOTEST R© hTAU Ag, INNOTEST R©

PHOSPHOTAU(181P) and using the xMAP platform (Luminex Copr, Austin, Texas) and INNO-
BIA AlzBio3 reagens at VUmc and ADNI, respectively.

2.5.2.2 VUmc

The VUmc data set contains patients who received a diagnosis of either subjective
memory complaints (SMC) or probable AD. Baseline CSF was collected between Oc-
tober 1999 and November 2011. All patients underwent standard dementia screening
at baseline, including physical and neurological examination, electroencephalography
(EEG), magnetic resonance imaging (MRI), and laboratory tests. Cognitive screening
included a Mini Mental State Examination (MMSE) and a comprehensive neuropsy-
chological test battery. Diagnoses were made by consensus in a multidisciplinary team
without knowledge of the CSF results. The label of SMC was given when results of all
clinical examinations were normal, and there was no psychiatric diagnosis. Patients
with subjective complaints were considered as controls, but were only included when
the diagnosis was confirmed at follow-up visits. This resulted in 251 SMC subjects.
Probable AD (n=631) was diagnosed according to the criteria of the National Insti-
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tute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorders association (NINCDS-ADRDA), and all patients met the core
clinical National Institute on Aging - Alzheimer’s Association (NIA-AA) criteria [27].
More details about this cohort have been provided elsewhere [29]. All subjects gave
written informed consent for the use of their clinical data for research purposes. The
study was approved by the local ethical review board. CSF levels of Aβ1−42, total
tau, and p-tau181p were determined using commercially available single-parameter
ELISA kits (respectively, INNOTEST R© AMYLOID(1-42),INNOTEST R© hTAU Ag,
INNOTEST R© PHOSPHOTAU(181P)) and were not used for diagnosis. The VUmc-
data are shown in 2.3 with baseline characteristics of the data summarized in Table
2.6.
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Figure 2.3: Observed total tau, Aβ1−42, and p-tau181p values from the VUmc data set.
Clinically diagnosed controls are indicated by the green histograms, clinical cases by the red
histograms.





Chapter 3
Estimating continuous
diagnostic-index accuracy in
the presence of an imperfect
reference-test

In this chapter, a Bayesian latent-class mixture model is proposed to estimate the ac-
curacy of a diagnostic index composed of continuous biomarkers when only imperfect
reference-test information is available. The problem setting is discussed in Section
3.1. The model is developed in Section 3.2. Section 3.3 discusses important issues re-
lated to the choice of the prior distributions for the proposed model, enabling control
over the amount of prior accuracy information while addressing important issues con-
cerning model non-identifiability. Model performance is investigated by considering a
simulation study and by applying the model to real AD-data. The simulation study
and real-data application are developed in Section 3.4 and Section 3.5, respectively.
The results of both the simulation study and data application are summarized and
discussed in Section 3.6. Finally, conclusions are presented in Section 3.7.

3.1 Problem setting

To overcome the problem of estimating diagnostic-biomarker accuracy when only im-
perfect reference-test information is available (see Section 2.3), we propose a Bayesian

19
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latent-class mixture model. As discussed in Section 2.2, combining several continu-
ous biomarkers into a diagnostic index may increase diagnostic accuracy as compared
to the use of individual biomarkers. Therefore, we propose a Bayesian latent-class
mixture model to develop a diagnostic test based on an optimal linear-combination
of multiple continuous biomarkers while incorporating imperfect reference-test infor-
mation in the estimation.

On the one hand, the model is an extension of the approaches developed by
O’Malley et al. [77] who proposed a Bayesian mixture model for multiple continu-
ous biomarkers when GS reference-test information is available. Moreover, the model
can also be seen as an extension of the Bayesian latent-class mixture model of Yu
et al. [131] to estimate diagnostic accuracy of a combination of multiple continu-
ous biomarkers when no reference test information is available. On the other hand,
we extend the model of Wang et al. [123] who proposed the inclusion of imperfect
reference-test information when estimating the diagnostic accuracy of a single contin-
uous biomarker.

When developing our model, we consider a suitable parametrisation. As mentioned
in Section 2.1, the parameter of interest, AUC, is a complex function of other param-
eters. As a consequence, care is needed when choosing the prior distributions. We
propose to consider specific prior distributions for particular functions of parameters
that allow for a more controlled way of introducing prior information into the model.
Moreover, this type of latent-class mixture models generally suffers from model non-
identifiability. In this respect, informative priors may be required to mitigate these
issues without enforcing strict parameter constraints.

Finally, we show that the proposed model could prove an important tool in AD-
biomarker research, where admitting the imperfect nature of the clinical diagnosis
could be essential in obtaining reliable estimates of the accuracy of diagnostic biomark-
ers.

3.2 Methodology

Let Y denote a multivariate continuous-biomarker variable representing the results
for K biomarkers. We assume that Y follows a K-variate normal distribution with
mean and variance-covariance depending on true disease status D:

Y |D = d ∼ NK (µd,Σd) for d ∈ {0, 1}, (3.1)

where d = 0 indicates a true control and d = 1 denotes a true case.
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Sensitivity (SeT ) and Specificity (SpT ) of the reference test T can then be defined
as the probability of observing T = 1 for a true case [P (T = 1|D = 1)] and observing
T = 0 for a true control [P (T = 0|D = 0)], respectively. Specifically, we assume
that variable T follows a Bernouilli distribution conditional on true disease status D,
defined as follows:

T |D = d ∼ Bern(πd) for d ∈ {0, 1},

π0 = P (T = 1|D = 0) ≡ 1− SpT , (3.2)

π1 = P (T = 1|D = 1) ≡ SeT .

As shown in Equation (3.2), the conditional distribution of T can be defined in terms
of its sensitivity and specificity, SeT and SpT , respectively.

As mentioned in Section 2.2, we consider the AUC as the measure of diagnostic
accuracy and seek a linear combination of the K biomarkers that maximizes AUCa.
The method we will consider is the fully-parametric approach proposed by Su et al.
[112], leading to linear combination coefficients as in Equation (2.4). Applying these
coefficients to the biomarker data leads to a diagnostic index with diagnostic accuracy
denoted by AUCa in Equation (2.5).

If reference test T is a GS reference-test, both SeT and SpT are equal to 1. In
such a case, estimation of AUCa is straightforward, since the maximum likelihood
estimates of µd and Σd could be simply plugged into Equation (2.5). If reference test
T can not be assumed a GS reference-test, estimation of µd and Σd becomes difficult,
because D is unobserved. We consider it a latent variable, from now on denoted by D̃.
We propose a latent-class mixture model that uses all observed information contained
in Y and T to come up with estimates of µd and Σd.

Finally, we assume D̃ to be Bernouilli-distributed with probability of succes equal
to θ = P (D̃ = 1), which can be interpreted as the prevalence of disease.

3.2.1 Full-data likelihood

Assume that we have observed biomarker values and results of the reference test for
a sample of N individuals (indexed by i). For the remainder of this dissertation
assume Y to be the N ×K matrix containing the values of K continuous biomarkers
from the N subjects. Denote by yi = (yi1, . . . , yiK)T the K continuous biomarker
measurements for subject i. The results of the reference test T for the N individuals
are contained in column vector t = (t1, . . . , tN )T . The latent true disease-status
indicators are collected in a column vector d̃ =

(
d̃i, . . . , d̃N

)T .
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The full-data likelihood can be factorized as

P (Y , t, d̃) = P (t|Y , d̃)× P (Y |d̃)× P (d̃). (3.3)

Moreover, under the assumption of conditional independence of the biomarkers and
imperfect reference-test values, conditional on true latent disease status, equation
(3.3) simplifies to

P (Y , t, d̃) = P (t|d̃)× P (Y |d̃)× P (d̃). (3.4)

Under the assumed biomarker data distribution expressed in Equations (3.1) and
(3.2), and the assumption of the Bernouilli distributed latent disease status variable
D̃, the full-data likelihood takes the following form:

L
(
µ0,µ1,Σ0,Σ1, θ, SeT , SpT |Y , t, d̃

)
=

N∏
i=1

[
SetiT (1− SeT )1−ti 1√

(2π)K |Σ1|
exp
{
−1

2 (yi − µ1)T Σ−1
1 (yi − µ1)

}
θ

]d̃i

×

[
Sp1−ti

T (1− SpT )ti 1√
(2π)K |Σ0|

exp
{
−1

2 (yi − µ0)T Σ−1
0 (yi − µ0)

}
(1− θ)

]1−d̃i

.

(3.5)

In Equation (3.5), d̃i and ti denote, respectively, the true and reference test disease
status of individual i, with d̃i = ti = 1 for cases and 0 for controls. Moreover, θ denotes
the prevalence of disease, and SeT and SpT denote, respectively, the sensitivity and
specificity of imperfect reference-test T . The parameters of interest are µ0, µ1, Σ0,
and Σ1, as they define the AUCa, in accordance with Equation (2.5).

The direct use of the full-data likelihood for estimation of the parameters of in-
terest is not feasible as the indicators of the true disease status d̃i are not observed.
Moreover, without any information about SeT , SpT , or θ, these three parameters are
not identifiable. Hence, to estimate the model, some information about SeT , SpT ,
and/or θ has to be provided.

One could derive the observed-data likelihood by simply marginalizing (3.5) over
D̃. By defining identifying restrictions for SeT , SpT , and/or θ it would then be
possible to estimate the parameters of the model with the help of, e.g., the EM-
algorithm [24]. An alternative is to apply a Bayesian approach using the full-data
likelihood directly. This is the approach that we will consider.

Non-identifiability is an important issue for mixture models [67], as well as for
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the estimation of accuracy of imperfect diagnostic-tests [26]. In Bayesian statistics,
in order to fit a model, model identifiability is not strictly required as long as proper
priors are used. To ensure sensible posterior inference, however, non-identifiability
can be mitigated by including non-diffuse prior information [48, 39]. Where and how
much information should be included, will depend on the particular problem and data
at hand [14, 52]. In our case, available scientific prior knowledge on SeT , SpT , and/or
θ could be included to overcome non-identifiability, as proposed by Joseph et al. [50]
for a binary diagnostic-test. For model research purposes, we propose to use as diffuse
priors as possible, but keeping a clinical research setting in mind. Moreover, disease
prevalence is not assumed to be extreme and the imperfect reference-test is assumed
to be the best diagnostic-tool available. In particular, SeT and SpT are expected to
be larger than 0.5.

3.3 Prior distributions

Table 3.1 summarizes all proposed prior distributions for the parameters included in
the model. A discussion of the choice of these distributions follows below.

Prevalence

For θ, a Bayes-Laplace Beta (1, 1) prior distribution, truncated between 1/N and
(1− (1/N)), may be assumed [10]. The truncation is introduced to avoid problems
with the Bayesian-fitting of the model defined in (3.5) due to values of θ at the
boundary of the parameter space. This may result in convergence issues when MCMC
algorithms get stuck in a one-component solution instead of a mixture, a possible
indication of non-identifiability [96]. Moreover, the truncation can be interpreted as
ensuring that at least one true control and one true case is included in the data.
Other truncation limits could also be chosen. In a case-control setting, for example,
a 0.1 ≤ θ ≤ 0.9 truncation could be considered. Although more restrictive, this
truncation could make sense in a setting where the proportion of cases is known up
to a misclassification error and is not extreme.
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Table 3.1: Structure of the considered prior distributions (assuming K = 3 biomarkers).

Parameter Prior distribution
Prevalence
θ U

( 1
N ,
(
1− 1

N

))
Parameters of the dichotomous reference test
SeT Beta (a, b) trunc(0.5, 1)
SpT Beta (c, d) trunc(0.5, 1)

Mean of biomarker values control group
µ0 N3

(
0, I3106)

Näıve AUCa prior
Mean of biomarker values case group
µ1 N3

(
0, I3106)

Biomarker variance-covariance matrices
Σk Wishart(K, IK)

’Controlled’ AUCa prior
Scaled difference biomarker distribution means
δ N3 (κ,Ψ)

Biomarker-distribution standard deviations
σd,k U (0, 1000)

Cholesky-factor values of correlation matrix Rd

ld,21 U (−1, 1)
ld,31 U (−1, 1)
ld,32 U

(
−
√

1− l2d,31,
√

1− l2d,31

)

SeT and SpT

For SeT and SpT , a truncated Beta(a, b) distribution can be used. A possible trunca-
tion could be to restrict SeT + SpT > 1, expressing a larger true- than false-positive
rate [48]. The implementation of this restriction is not trivial. It requires the choice
of a joint distribution of SeT and SpT with consequences for the marginal prior dis-
tributions, because of the potential dependence between SeT and SpT induced by the
joint distribution.

One might attempt to implement the restriction while retaining the flat standard-
uniform marginal distributions for SeT and SpT . This is, however, not possible. A
formal argumentation could be built considering the copula representation of the joint
distribution function of two standard-uniform marginal distribution functions. From
the representation it follows that the joint distribution function has to be bounded by
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the Fréchet lower-bound (CL) and upper-bound (CU ) copulas. These are expressed
as

CL (u1, u2) = max {0, u1 + u2} , (u1, u2) ∈ [0, 1]2

and

CU (u1, u2) = min {u1 + u2} , (u1, u2) ∈ [0, 1]2 .

It can be shown that for CL we get P (u1 + u2 = 1) = 1, while for CU we have
P (u1 + u2 > 1) = 0.5. In other words, no joint distribution with standard-uniform
marginals will lead to P (u1 + u2 > 1) = 1 for the desired restriction.

For the independent SeT and SpT case, one could think of two uniform marginal
distributions of SeT and SpT restricted to be strictly higher than 0.5 to ensure that
their sum exceeds 1. Although restrictive, this truncation could be thought of as a
reasonable choice for the case of an imperfect reference-test for which both SeT and
SpT can be expected to be large.

To allow SeT and SpT assuming values smaller than 0.5, a possible solution is to
use a standard-uniform marginal distribution for SeT or SpT and define a suitable
conditional distribution of the other parameter. For instance,

SeT ∼ U (0, 1) , (3.6)

SpT |SeT
∼ U (1.001− SeT , 1) .

Note that this solution is ’asymmetric’ in that one of the parameters is selected to be
uniformly distributed on the (0, 1) interval. Obviously, other implementations of the
SeT+SpT > 1 restriction are also possible. They will differ in terms of informativeness
of the marginal SeT and SpT distributions and the amount of dependence between
SeT and SpT . The choice of the implementation may require a careful consideration
of the characteristics of the particular problem at hand. Both the ’independent but
restrictive’ and ’the liberal but asymmetric’ truncations solve the problem of label
switching, often encountered in Bayesian finite-mixture modelling due to model non-
identifiability [67, 36]. Both restrictions are considered and compared in the remainder
of the chapter.

Σ0 and Σ1

For the variance-covariance matrices Σ0 and Σ1, one could specify the prior distri-
butions using the scaled Wishart-distribution for the precision matrices Σ−1

0 and
Σ−1

1 . The scaled Wishart-distribution is a popular prior for precision matrices
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[77, 131, 36, 60]. In particular, the scaled Wishart-distribution with scaling ma-
trices equal to a K-dimensional identity matrix and degrees of freedom equal to K

could be applied. This choice results in a prior distribution of the variance-covariance
matrices that is often claimed to be ’uninformative’ [77, 131]. However, whether a
scaled Wishart-distribution with the number of degrees of freedom equal to the rank
of the scaling matrix can be regarded as uninformative is debatable [125, 37]. Fig-
ure 3.1 shows the results of a simple simulation exercise for the case K = 3. In
the exercise, 100,000 draws from a scaled Wishart-distribution with three degrees of
freedom and the 3 × 3 identity scaling-matrix were obtained. Panel a of Figure 3.1
presents the histogram of the three simulated variances (note that only the lower
90% of the simulated variances is shown; extreme values would make the histograms
unreadable if included). Panel b shows the histograms of the three simulated corre-
lation coefficients. From panel a it can be seen that most of the probability mass
for the distribution of variances is located below 10, which can hardly be considered
an uninformative. The simulated correlation coefficients show U-shaped histograms
which favour extreme correlations of -1 and 1.
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Figure 3.1: Results from 100,000 draws from a scaled Wishart (3, S = I3) distribution. a.
Histograms of lower 90% of simulated variances. b. Histograms of simulated correlation
coefficients.
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For this reason we consider an alternative specification of the prior distributions
for the variance-covariance matrices, proposed by Wei et al. [125]. The specification is
based on the following decomposition of the variance-covariance matrix, also known
as the ’separation strategy’, proposed by Barnard et al. [8]:

Σ = SRS,

where S is a diagonal matrix of standard deviations and R is the correlation matrix.
For example, for a 3× 3 variance-covariance matrix,

S =

σ1 0 0
0 σ2 0
0 0 σ3

 , R =

 1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

 .

In the next step, the correlation matrixR is represented by a Cholesky decomposition:

R = LLT ,

where L is a lower-triangular matrix. For example, for a 3× 3 correlation matrix:

L =

l11 0 0
l21 l22 0
l31 l32 l33

 .

The correlation coefficients contained in R can be written in terms of the elements of
L as follows:

ρ12 = l21,

ρ13 = l31,

ρ23 = ρ12ρ13 + l22l33.

Using the separation strategy, it is possible to construct less ’informative’ prior
distributions for variances and correlation coefficients than those obtained for the
’uninformative’ scaled Wishart-distribution prior (see Figure 3.1). In particular, one
can use flat-prior distributions directly on the diagonal elements (standard deviations)
of matrix S and, additionally, on (K − 1) of the

(
K2 −K

)
/2 non-zero off-diagonal

elements of the Cholesky-decomposition matrix L. For example of a 3 × 3 variance-
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covariance matrix, the prior distributions may be specified as follows:

σk ∼ U (0, 1000) ,

l11 = 1,

l21 ∼ U (−1, 1) ,

l31 ∼ U (−1, 1) ,

l32 ∼ U
(
−
√

1− l231,
√

1− l231

)
,

l22 =
√

1− l221,

l33 =
√

1− l231 − l232,

where U (a, b) denotes the uniform distribution over the interval (a, b). Figure 3.2
shows results obtained from 100,000 draws from the distributions specified above.
The histograms of the three variances, presented in panel a (note that only the lower
90% of simulated variances is included), show that the bulk of the probability mass
ranges now from 0 to 85. The histograms for the correlation coefficients, presented in
panel b, show that for the first two correlations the probability mass is equally spread
between -1 and 1, in contrast to what can be observed in panel b of Figure 3.1.

AUCa

Another aspect of the prior distribution specification is how to control the amount of
prior information assumed for the parameter of interest AUCa. As indicated in (2.5),
the AUCa is a function of the means µ0 and µ1 and variance-covariance matrices Σ0

and Σ1. It follows that prior distributions for those parameters together imply a prior
distribution for AUCa. Given the complexity of the function it is not straightforward
to deduce the prior distribution for AUCa.

To this aim a simulation exercise may be used. First, we consider the set of prior
distributions proposed by O’Malley et al. and Yu et al. [77, 131]. Figure 3.3 presents
the histogram of 100,000 values of AUCa simulated by using the flat normal priors for
µ0 as well as µ1 and the ’uninformative’ scaled Wishart-prior distributions for Σ−1

0

and Σ−1
1 (see Table 3.1). The resulting prior distribution for AUCa is a point-mass

distribution centered at 1. Upon reflection, this is not surprising. If the flat priors for
µ0 and µ1 are assumed then, a priori, no overlap between the normal distributions for
the biomarkers for cases and controls can be expected, irrespectively of the biomarker
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Figure 3.2: Results of 100,000 draws from the ’controlled’ Wei et al. [125] variance-
covariance prior distribution. a. Histograms of the lower 90% of simulated variance. b.
Histograms of simulated correlation coefficients.

variances σ2
k. However, this implies that, with a high probability, AUCa = 1.

Given that AUCa is the main parameter of interest, the priors for µ0, µ1, Σ0 and
Σ1 have to be specified in such a way that the resulting prior distribution for AUCa
is controlled. To this aim, a different parametrisation of the model is proposed.
By considering the Cholesky decomposition QTQ of (Σ0 + Σ1)−1, AUCa can be
expressed as

AUCa = Φ
{√

(µ1 − µ0)T QTQ (µ1 − µ0)
}
, (3.7)

with Q defined as an upper-triangular matrix. It follows that, upon defining the
scaled difference δ = Q (µ1 − µ0),

AUCa = Φ
(√

δT δ
)
. (3.8)

The new parametrisation consists of δ, µ0, and Q. Note that, since µ1 = Q−1δ+µ0,
a complex prior is implied for µ1, which should be verified. This prior distribution
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Figure 3.3: Simulation-based prior distribution for AUCa implied by assuming flat normal
prior distributions for µ0 and µ1 and the ’uninformative’ scaled-Wishart priors for Σ−1

0 and
Σ−1

1 .

results from the flat prior distribution for µ0, the distribution for Q implied by the
Wei et al. [125] priors for Σ0 and Σ1, and the prior distribution for δ.

Now, assume a K-variate normal prior distribution for δ with mean κ and
variance-covariance matrix Ψ. Under this assumption, an approximate distribution
for AUCa can be derived based on the distribution of quadratic forms [99, 62]. In par-
ticular, the distribution can be represented by an expansion in non-central chi-square
distributions:

f(x) =
∞∑
k=0

ckχ
2
(p+2k;ζ)Φ−1 (x)2 ×

∣∣∣∣ 2Φ−1 (x)
φ (Φ−1 (x))

∣∣∣∣ for x ∈ [0.5, 1] , (3.9)
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with

ζ =

√√√√ p∑
j=0

b2j ,

c0 =
p∏
j=1

√
1
λj
,

ck = 1
2k

k−1∑
r=0

dk−rcr,

d1 =
p∑
j=1

(
1− b2j

)(
1− 1

λj

)
,

dk =
p∑
j=1

(
1− 1

λj

)k
+ k

p∑
j=1

(
b2j
λj

)(
1− 1

λj

)k−1
,

where λ1, . . . , λp are the eigenvalues of Ψ and the vector b = (b1, . . . , bp)T =(
P TΨ−

1
2K
)T

, which is a by-product of diagonalizing Ψ by P , the p× p orthogonal
matrix of eigenvectors of Ψ. Moreover, φ (·) denotes the standard-normal density
function and Φ−1 (·) the probit function. By using a finite number of terms in the
series expansion, it is possible to approximate the distribution of AUCa for different
choices of κ and Ψ with arbitrary precision.

For instance, assume that κ = (0, 0, 0)T and that standard deviations and corre-
lation coefficients resulting from the variance-covariance matrix Ψ vary between 0.1
and 1, and 0 and 0.9, respectively. Figure 3.4 presents the histograms of 100,000
simulated values of AUCa for the 90 resulting combinations of standard deviations
and correlation coefficients. Additionally, the figure presents approximations com-
puted from the approximate expansion of 200 non-central chi-square distributions as
defined in (3.9). From the figure it can be seen that the approximations correspond
closely to the histograms when standard deviations are larger than 0.4 and correlation
coefficients are smaller than 0.7. For more extreme values, the approximation tends
to break down at the upper tail of the distribution. Despite the issues for some of the
more extreme cases, the series-expansion can be used to explore the specified prior
distribution for AUCa.
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Figure 3.4: Histograms (grey) and approximated densities (solid black line) of the simulated
AUC values.

As an example, Figure 3.5 presents the histogram of the simulated AUCa values
and the corresponding approximation of the density of the distribution of AUCa
obtained by setting κ = (0, 0, 0)T and by assuming that standard deviations and
correlation coefficients resulting from the variance-covariance matrix Ψ are equal to
0.7 and 0.6, respectively. Clearly, the distribution is much less informative than
the one implied by assuming flat normal prior distributions for µ0 and µ1 and the
’uninformative’ scaled-Wishart priors for the Σ−1

0 and Σ−1
1 (see Figure 3.3).
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Figure 3.5: Simulated (histogram) and approximated (solid line) ’controlled’ prior distri-
bution example for AUCa.

µ0 and µ1

For the prior distribution for the components of µ0, we will follow the developments
of O’Malley et al. [77] and Yu et al. [131]. In these references, normal distributions
with mean 0 and variance 106 are proposed. These distributions are essentially flat
priors.

To evaluate the implied prior distribution for µ1, 100,000 simulations were drawn
for µ1 = Q−1δ + µ0 by assuming the proposed priors for µ0, Σ0, Σ1, and δ. The
histograms for the three components of µ1 are shown in Figure 3.6, together with the
assumed normal prior distribution for µ0. The implied prior distribution for µ1 is at
least as flat (note that the x-axis ranges from -15,000 to 15,000) as the one for µ0.
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Figure 3.6: Simulated prior distribution for µ1 (histogram) based on proposed prior dis-
tributions for δ, Σ0, Σ1, and µ0 (solid line).

3.4 Simulation study

To evaluate the proposed method, the model was fitted to simulated data. Different
data-generating models, sample sizes, as well as prior distributions were implemented
to investigate model robustness and applicability.

3.4.1 Data

Data for three biomarkers were simulated. Underlying true parameter values are
presented in Table 3.2. The true control-group mean-vector µ0 was set equal to
(0, 0, 0)T . The mean vector of the cases µ1 was derived based on (2.5), applied
separately for each biomarker, by fixing the true value of AUC for each individual
biomarker at 0.75.

Four different variance-covariance structures for the biomarkers were considered.
In the homoscedastic simulation-setting, the biomarker variance-covariance matrices
for the controls and cases were assumed equal. The variances of all biomarkers were
assumed to be equal to 1. Additionally, the biomarkers were assumed independent or
dependent (correlated). In the heteroscedastic setting, different variance-covariance
matrices for the controls and cases were assumed, and again independent or dependent
biomarkers, were considered (see Table 3.2).

For the imperfect reference-test, the values of SeT and SpT were fixed at 0.85.
Finally, the prevalence of disease, θ, was assumed to be equal to 0.5.
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Table 3.2: Parameter values underlying the sampled simulation data sets.

Parameter Value
Multivariate parameters
µ0 (0, 0, 0)T

µ1 (1.1683, 1.3490, 1.5082)T

Homoscedastic case (Σ0 = Σ1)
Independent biomarkers

(
ρ = (0, 0, 0)T

)
Σ0 = Σ1

(1 0 0
0 1 0
0 0 1

)
Dependent biomarkers

(
ρ = (0.5, 0.9, 0.5)T

)
Σ0 = Σ1

( 1 0.5 0.9
0.5 1 0.5
0.9 0.5 1

)

Heteroscedastic case (Σ0 6= Σ1)
Independent biomarkers

(
ρ = (0, 0, 0)T

)
Σ0

(1 0 0
0 3 0
0 0 2

)

Σ1

(2 0 0
0 1 0
0 0 3

)
Dependent biomarkers

(
ρ = (0.5, 0.9, 0.5)T

)
Σ0

( 1 0.87 1.27
0.87 3 1.22
1.27 1.22 2

)

Σ1

( 2 0.71 2.2
0.71 1 0.87
2.2 0.87 3

)

Parameters of the dichotomous reference test
SpT 0.85
SeT 0.85

Prevalence
θ 0.5

Functions of multivariate parameters
AUC1 0.75
AUC2 0.75
AUC3 0.75
a (0.1594, 0.2237, 0.0972)T

Optimal combination parameters
µa,0 0
µa,1 0.6347
σ2
a,0 0.3490
σ2
a,1 0.2857
AUCa 0.7872
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For each of the four simulation scenarios, corresponding to the assumed variance-
covariance structures (see Table 3.2), three different sample sizes were considered:
100, 400, and 600. This led up to 12 different simulation scenarios. For each scenario
100 data sets were generated.

In addition, to investigate robustness of the model to the violation of the un-
derlying normality assumption, 100 skew-normal [4] data sets, consisting of 400 ob-
servations each, were simulated. The underlying characteristics of these data were
matched to the normal data, with biomarker-specific AUC of around 0.77, leading to
a combined AUCa of 0.9. For the imperfect reference-test, underlying sensitivity and
specificity of 0.85 were maintained. The underlying true marginal distributions are
shown in Figure 3.7.

−1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

True underlying biomarker 1 distribution

Biomarker Value

D
en

si
ty

Controls
Cases

−6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True underlying biomarker 2 distribution

Biomarker Value

D
en

si
ty

Controls
Cases

0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

True underlying biomarker 3 distribution

Biomarker Value

D
en

si
ty

Controls
Cases

Figure 3.7: Underlying skew-normal biomarker distributions. Green solid line denotes the
control distribution, red solid line denotes the case distribution.

3.4.2 Prior distributions

The prior distributions for the components of the mean-vector of the true control
group µ0 were assumed as defined in Table 3.1. For the prevalence of disease, θ,
the more restrictive U(0.1, 0.9) prior distribution was used to allow for more stable
results, especially in the small data sets.

In order to investigate the sensitivity of the model results to prior information,
several prior distributions were considered. For the sensitivity and specificity of the
imperfect reference-test, two priors were assumed (see Figure 3.8). First, a flat trun-
cated Beta(1, 1) distribution was assumed as shown in panel a of Figure 3.8. Second,
an informative truncated Beta(10, 1.765) distribution was assumed. This distribution,
shown in panel b of Figure 3.8, is centred around 0.85 with an equal-tail 95% interval
of (0.608, 0.983). In both cases, truncation to the [0.51, 1) interval, as discussed in
Section 3.3, was applied (see Figure 3.8).
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Figure 3.8: SeT /SpT -prior distributions lower-truncated to [0.51, 1). Dotted line shows
the flat SeT /SpT -prior distribution based on the Beta(1, 1) distribution. Solid line denotes
the informative SeT /SpT -prior distribution based on the Beta(10, 1.765) distribution.

For the assumed normal-distribution parameters µ1, Σ0, and Σ1, the ’näıve’ as
well as the proposed ’controlled’ AUC-prior distributions were assumed. In the ’näıve
AUCa’-prior setting, a flat N

(
0, 106) prior was assumed for µ1 while the ’uninfor-

mative’ scaled Wishart-distribution, with degrees of freedom equal to the number of
biomarkers (K) and scaling matrix equal to the K × K identity matrix, was used
for Σ0 and Σ1. These prior distributions implied the point-mass prior distribution
for AUCa as shown in Figure 3.3. In case the ’controlled’ AUCa-prior distribution
was assumed, two δ prior distributions were investigated. An optimistic AUCa-prior
distribution was defined by considering a δ-prior distribution with κ = (0, 0, 0)T and
variance-covariance matrix Ψ resulting in standard deviations and correlation coef-
ficients equal to (0.7, 0.7, 0.7) and (0.6, 0.6, 0.6), respectively. With a mean of 0.827
and 95% equal-tail interval of [0.608.0.992], this distribution disfavours small values
of AUCa, as indicated in panel a of Figure 3.9. Alternatively, a conservative AUCa-
prior distribution is assumed by considering the same κ as above and Ψ defined as
resulting in standard deviations and correlation coefficients equal to (0.5, 0.5, 0.5) and
(0.3, 0.3, 0.3), respectively. As shown in panel b of Figure 3.9, this distribution favours
moderate values of AUCa with a mean value of 0.772 and 95% equal-tail interval of
[0.588;0.943].
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Figure 3.9: Considered AUCa-prior distributions. a. ’Optimistic’ AUCa-prior distribution.
b. ’Conservative’ AUCa-prior distribution.

3.4.3 Analysis setting

Overall, the model defined in (3.5) was fitted six times to each of the simulated data
sets. In particular, it was fitted two times for each of the three AUCa-prior settings
(’näıve’, ’controlled optimistic’, and ’controlled conservative’): once assuming the flat
truncated Beta(1, 1) prior for SeT and SpT , and once with the informative truncated
Beta(10, 1.765) distribution.

The estimates of the coefficients of the model were obtained by using 10,000 sam-
ples from the posterior distribution after a burn-in period of 10,000 samples from five
independent MCMC chains. Starting values for the MCMC chains were fixed at plau-
sible data-based values for all parameters with exception of SeT and SpT which were
started at the midpoint of their parameter space, i.e., 0.75. Starting values for µ0

were based on the observed mean values for the controls. In the same line, the start-
ing values for the standard deviations and the Cholesky-decomposition components
of the correlation matrices and the case-control distribution differences scaled by the
inverse of the sum of the variance-covariance matrices were computed from their ob-
served counterparts. The starting values for the latent-disease indicator variable D̃
were taken to be the observed imperfect reference-test results.

After fitting, the results were first checked by general diagnostic-tools in order to
assess convergence of the MCMC chains. Convergence over chains was investigated by
the Gelman-Rubin convergence index, for which a cut-off value of 1.1 was applied [38].
Chain-by-chain convergence was checked by using the Geweke convergence-criterion



3.5. Real data 39

[40]. Fits for which the Gelman-Rubin index suggested non-convergence were excluded
from the results, while the Geweke index was monitored to ensure that, on average, no
more than two out of five chains were considered as non-converged for each parameter
over all simulated data sets.

The models were fitted by using OpenBUGS 3.2.1 [60]. Annotated BUGS model
codes can be found in Section A.1 of Appendix A. Results were analyzed and sum-
marized by using R 3.0.1 (x64) [90]. The R-package R2OpenBUGS [111] was used as
an interface between R 3.0.1 and OpenBUGS. Fitting times depended on sample size
and were equal to, approximately, 2, 8, and 12 hours for sample sizes of 100, 400, and
600, respectively, on a 64-bit, 2.8GHz, 8GB RAM machine.

3.5 Real data

For the real data application, the publicly available data obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data base and the data set from
the Vrije Universiteit Amsterdam Medisch Centrum (VUmc), which consists of pa-
tients from the memory-clinic-based Amsterdam Dementia Cohort, were considered
(see Section 2.5.2).

Inspection of the histograms of the observed ADNI and VUmc data in panel a
of Figures 3.10 and 3.11, leads to the observation that the histograms for total tau
and p-tau181p show right-skewness for the cases as well as the controls. Generally
this type of skewness is observed for biomarkers measured on a strictly positive scale
having values close to zero. For this reason we considered to log-transform total tau
and p-tau181p for both the ADNI and VUmc data. The log-transformation resolved
the right-skewness in the histograms, as shown in panel b of Figures 3.10 and 3.11.
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Figure 3.10: Observed distributions of the ADNI CSF-biomarker data (histograms) by clin-
ical diagnosis (green=clinical control; red=clinical case). a. Raw data. b. Log-transformed
total tau and p-tau181p.
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Figure 3.11: Observed distributions of the VUmc CSF-biomarker data (histograms) by clin-
ical diagnosis (green=clinical control; red=clinical case). a. Raw data. b. Log-transformed
total tau and p-tau181p.

The real data were analysed by applying the same proposed model that was used
for the analysis of the simulated data, as defined in (3.5). The prior distribution
for the prevalence of disease θ was equal to the one specified in Table 3.1. For SeT
and SpT , we considered two types of truncation: SeT > 0.5 and SpT > 0.5, and
SeT +SpT > 1. In particular, to restrict SeT > 0.5 and SpT > 0.5, the truncated flat
Beta (1, 1) distribution for both SeT and SpT (Figure 3.8) was assumed. On the other
hand, the SeT + SpT > 1 restriction was implemented by assuming a flat Beta (1, 1)
prior for SeT and the restricted conditional distribution of SpT given SeT , as defined
in (3.6). This prior is shown in Figure 3.12. Moreover, the AUCa-prior distribution
was also varied as in the simulation study, considering the optimistic, as well as the
conservative, AUCa-prior distributions.
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Figure 3.12: SeT - and SpT -prior restricted to SeT + SpT > 1. Dotted line shows the flat
SeT prior distribution based on the Beta(1, 1) distribution. Solid line denotes the SpT prior
distribution conditional on SeT truncated to [1.001− SeT , 1).

After fitting, convergence-diagnostics measures similar to those used in the analysis
of the simulated data were applied.

To show the impact of ignoring the imperfectness of the reference test, the logistic
regression model relating the clinical diagnosis to the three CSF-biomarkers was addi-
tionally considered [104]. The AUC was computed based on log-condense smoothing
of the empirical ROC curve as described by Rufibach [100] and implemented in the R-
package pROC [97]. The resulting AUC distribution was obtained by bootstrapping.
By definition, this model considers the clinical diagnosis as a GS reference-test.

3.6 Results

3.6.1 Simulation study

Tables 3.3 to 3.5 present the averages of the posterior medians for AUCa from all
simulation scenarios for N = 100, N = 400, and N = 600, respectively. Note that, for
each scenario, six sets of results are presented: three obtained for the analysis using
the flat prior for sensitivity and specificity of the reference test (FLAT) for every
AUCa prior-distribution, and three obtained for the analysis using the informative
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prior (INF) (see Figure 3.8).

Table 3.3: Mean of posterior AUCa medians with corresponding (standard deviation of
posterior AUCa medians) based on [number of converged data sets] for the simulated data
sets of size N = 100. FLAT — the analysis using the flat prior for sensitivity and specificity
of the reference test; INF — the analysis using the informative prior for sensitivity and speci-
ficity of the reference test (see Figure 3.8). Results obtained with the näıve, ’conservative’
(Cons.) and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.879 0.915
(0.030) [95]

0.859
(0.038) [68]

0.877
(0.036) [79]

Σ0 = Σ1 ρ = 0 INF 0.879 0.906
(0.037) [97]

0.845
(0.042) [85]

0.864
(0.045) [92]

Σ0 = Σ1 ρ 6= 0 FLAT 0.784 0.896
(0.039) [83]

0.762
(0.044) [16]

0.823
(0.065) [16]

Σ0 = Σ1 ρ 6= 0 INF 0.784 0.874
(0.048) [94]

0.754
(0.050) [35]

0.799
(0.050) [54]

Σ0 6= Σ1 ρ = 0 FLAT 0.879 0.912
(0.037) [95]

0.859
(0.042) [93]

0.876
(0.041) [95]

Σ0 6= Σ1 ρ = 0 INF 0.879 0.902
(0.042) [99]

0.858
(0.044) [98]

0.871
(0.044) [97]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.787 0.855
(0.050) [96]

0.754
(0.040) [66]

0.789
(0.048) [84]

Σ0 6= Σ1 ρ 6= 0 INF 0.787 0.836
(0.052) [99]

0.742
(0.043) [84]

0.777
(0.052) [96]

The results shown in Tables 3.3, 3.4, and 3.5 indicate non-convergence problems.
The number of converged data sets, indicated in square brackets in the tables, ranged
from 16 to 100. As already mentioned, non-convergence was defined by observing a
Gelman-Rubin convergence index > 1.1 for any of the considered parameters. The
problems were occurring for theN = 100 case and for the case of correlated biomarkers
with the same variance-covariance matrix for cases and controls irrespective of sample
size for the two ’controlled’ AUCa priors. In general, the use of the informative SeT
and SpT prior distributions decreased the rate of non-convergence. Moreover, for the
’näıve’ AUCa-prior, the non-convergence rate was significantly reduced while there
was no clear indication for a difference in the convergence rate when selecting the
’conservative’ and ’optimistic’ AUCa-priors.

It is clear from the tables that considering the ’näıve’ AUCa-prior leads to biased
estimates of AUCa. In all simulation settings, for both SeT /SpT priors and all sample
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Table 3.4: Mean of posterior AUCa medians with corresponding (standard deviation of
posterior AUCa medians) based on [number of converged data sets] for the simulated data
sets of size N = 400. FLAT — the analysis using the flat prior for sensitivity and specificity
of the reference test; INF — the analysis using the informative prior for sensitivity and speci-
ficity of the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’
(Cons.) and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.879 0.843
(0.032) [100]

0.868
(0.026) [100]

0.877
(0.025) [100]

Σ0 = Σ1 ρ = 0 INF 0.879 0.885
(0.026) [100]

0.865
(0.027) [100]

0.872
(0.026) [100]

Σ0 = Σ1 ρ 6= 0 FLAT 0.784 0.843
(0.032) [93]

0.766
(0.031) [61]

0.798
(0.032) [87]

Σ0 = Σ1 ρ 6= 0 INF 0.784 0.825
(0.033) [98]

0.754
(0.031) [88]

0.782
(0.032) [97]

Σ0 6= Σ1 ρ = 0 FLAT 0.879 0.885
(0.022) [100]

0.874
(0.022) [100]

0.879
(0.022) [100]

Σ0 6= Σ1 ρ = 0 INF 0.879 0.882
(0.022) [100]

0.871
(0.022) [100]

0.876
(0.022) [100]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.787 0.806
(0.032) [100]

0.770
(0.029) [100]

0.787
(0.030) [100]

Σ0 6= Σ1 ρ 6= 0 INF 0.787 0.802
(0.031) [100]

0.769
(0.028) [100]

0.783
(0.030) [100]

sizes, the average posterior medians are overestimating the true value. For both
’controlled’ AUCa-priors, the average posterior medians of AUCa are very close to
the true values. Note that this conclusion is based only on the data sets for which
convergence was observed. Thus, if the model converges, it provides a reliable estimate
of AUCa if a sensible prior distribution for AUCa is assumed. The priors for sensitivity
and specificity of the reference test and the ’controlled’ AUCa-priors seem to have
negligible effect on precision of the estimates.

For all other parameters, average posterior-median estimates are also close to the
true underlying values (results are shown in Appendix B). The proportion of cases
when the true parameter value is contained in the 95% credible interval varies between
0.89 and 1 for all parameters over all simulation settings.

For the skew-normal data, the average posterior-median for AUCa was equal to
0.907 (true AUCa = 0.9), with the standard deviation of the posterior medians equal
to 0.021. Fits for two of the 100 simulated data sets did not converge and for about
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Table 3.5: Mean of posterior AUCa medians with corresponding (standard deviation of
posterior AUCa medians) based on [number of converged data sets] for the simulated data
sets of size N = 600. FLAT — the analysis using the flat prior for sensitivity and specificity
of the reference test; INF — the analysis using the informative prior for sensitivity and speci-
ficity of the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’
(Cons.) and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.879 0.883
(0.022) [100]

0.866
(0.024) [99]

0.872
(0.024) [100]

Σ0 = Σ1 ρ = 0 INF 0.879 0.879
(0.023) [100]

0.863
(0.25) [100]

0.869
(0.024) [100]

Σ0 = Σ1 ρ 6= 0 FLAT 0.784 0.829
(0.029) [88]

0.770
(0.022) [66]

0.793
(0.030) [92]

Σ0 = Σ1 ρ 6= 0 INF 0.784 0.813
(0.029) [89]

0.755
(0.024) [74]

0.780
(0.028) [99]

Σ0 6= Σ1 ρ = 0 FLAT 0.879 0.887
(0.019) [100]

0.880
(0.019) [100]

0.883
(0.019) [100]

Σ0 6= Σ1 ρ = 0 INF 0.879 0.886
(0.019) [100]

0.877
(0.019) [100]

0.881
(0.019) [100]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.787 0.796
(0.026) [100]

0.775
(0.024) [100]

0.786
(0.025) [100]

Σ0 6= Σ1 ρ 6= 0 INF 0.787 0.794
(0.025) [100]

0.773
(0.024) [100]

0.784
(0.025) [100]

94% of the remaining fits the true underlying AUCa was contained in the 95% credible
interval.

3.6.2 ADNI data

Assuming a priori that both SeT and SpT > 0.5 or that SeT + SpT > 1 leads to
essentially the same posterior estimates (Table C.1 in Appendix C). Considering a
’conservative’ or ’optimistic’ AUCa-prior leads to the same posterior estimates as well
(C.1 in Appendix C). Hence, in what follows, only the estimates for the SeT /SpT
prior restricting SeT +SpT > 1 (see Figure 3.12) in combination with the ’optimistic’
AUCa-prior (see Figure 3.9) will be discussed. The posterior density of the AUC of
the optimal linear-combination of the biomarker of interest, AUCa, for the logistic
regression model, as well as for the proposed latent-class mixture model, are shown
in Figure 3.13. For the logistic regression model, the median AUCa was estimated
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to be equal to 0.883 with the 95% bootstrap-interval equal to [0.831; 0.928]. The
proposed Bayesian latent-class mixture model, accounting for the imperfect nature of
the clinical diagnosis (and using the prior for SeT and SpT as in Figure 3.12), resulted
in the median estimate of 0.984 with the 95% credible interval equal to [0.959; 0.994].
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Figure 3.13: PosteriorAUCa distribution for the ADNI-data fitted with a logistic regression
model (grey line) and the proposed-imperfect reference-test model (black line) with the flat
SeT and SpT prior distributions with SeT +SpT > 1 restriction and the ’optimistic’ AUCa-
prior distribution.

Panel a of Figure 3.14 presents the posterior distributions for the sensitivity and
specificity of imperfect reference-test T . The posterior medians for SeT and SpT were
estimated to be equal to 0.826 and 0.888, respectively. For SeT , the 95% credible
interval was equal to [0.730; 0.905], while for SpT it was equal to [0.803; 0.951],
confirming that the clinical diagnosis is indeed not a GS reference-test. The posterior
distribution for prevalence of disease θ, corresponding to considering the uniform prior
truncated between 1/N = 0.005 and 1− (1/N) = 0.995, is shown in panel b of Figure
3.14. The posterior median estimate for θ was equal to 0.500 with the 95% credible
interval [0.415; 0.587].
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Figure 3.14: Posterior distribution for the ADNI data fitted with the proposed imperfect
reference-test model, with the flat SeT and SpT prior distributions with SeT + SpT > 1
restriction and the ’optimistic’ AUCa-prior distribution. a. Posterior SeT (grey line) and
SpT (black line). b. Posterior prevalence of disease (θ).

Figure 3.15 shows the estimated probability of AD for the resulting score based
on the optimal combination of the three biomarkers by clinical diagnosis. This prob-
ability is based on the posterior median estimates of the component parameters and
optimal combination coefficients in line with Scott et al. [105]. Hereby, the probability
of AD is constrained to increase monotonically with the diagnostic score, consistent
with the results from a logistic regression model. The plot in panel a of Figure 3.15
illustrates the imperfect nature of the clinical diagnosis, i.e., potential misclassifica-
tion of several individuals. In particular, nine subjects diagnosed as having AD with
a diagnostic score smaller than 13.7 have less than 50% probability of being truly AD
patients. On the other hand, 17 subjects diagnosed clinically as not having AD, but
with a diagnostic score larger than 15.5, have more than 50% probability of being
truly AD patients.

Panel b of Figure 3.15 shows the posterior probability of AD as a function of
diagnostic score by clinical diagnosis. These probabilities are defined as the posterior
means of the true disease status for each subject based on the combined information
of biomarkers and clinical diagnosis. This way, the posterior probability of AD is not
constrained to monotonically increase with diagnostic score and has a clear Bayesian
interpretation. The plot in panel b of Figure 3.15 also clearly illustrates the imperfect
nature of the clinical diagnosis. Results show that for ten subjects diagnosed as AD
patients, the posterior probability of being truly AD is less than 50%. Of the subjects
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not clinically diagnosed as AD patients, 16 have a posterior probability of AD of more
than 50%.
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Figure 3.15: Probability of AD for estimated optimal combination score by clinical diag-
nosis (ClDiag) for the ADNI data set. Clinical controls indicated in green, clinical cases in
red. a. Estimated probability of AD. b. Posterior probability of AD.

3.6.3 VUmc data

As it was the case for the ADNI data set results, both the SeT and SpT > 0.5
and SeT + SpT > 1 restrictions and considered AUCa priors lead to essentially the
same posterior estimates (Table C.2 and Figure C.2 in Appendix C). Hence, in what
follows, only the estimates for the prior restricting SeT + SpT > 1 (see Figure 3.12)
will be discussed. The posterior density for AUCa of the optimal combination of the
three CSF-biomarkers is shown in Figure 3.16. For the logistic regression model, the
median AUCa was estimated to be equal to 0.88 with the 95% bootstrap interval equal
to [0.828; 0.926]. The proposed Bayesian latent-class mixture model, accounting for
the imperfect nature of the clinical diagnosis (and using the prior for SeT and SpT

as in Figure 3.12), resulted in the median estimate of 0.995 with the 95% credible
interval equal to [0.991; 0.998].
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Figure 3.16: Posterior AUCa distribution for the VUmc-data fitted with a logistic regres-
sion model (grey line) and the proposed imperfect reference-test model (black line) with the
flat SeT and SpT prior distributions with SeT + SpT > 1 restriction and the ’optimistic’
AUCa-prior distribution.

The posterior distributions for sensitivity and specificity of the imperfect reference-
test for the VUmc data set are presented in panel a of Figure 3.17. The posterior
medians for SeT and SpT were estimated to be equal to 0.957 and 0.853, respectively.
For SeT , the 95% credible interval was equal to [0.936; 0.974], while for SpT it was
equal to [0.803; 0.896]. The posterior distribution for prevalence of disease θ, corre-
sponding to the uniform prior truncated between 1/N = 0.001 and 1−(1/N) = 0.999,
is shown in panel b of Figure 3.17. The posterior median estimate for θ was equal to
0.701 with the 95% credible interval [0.667; 0.733].
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Figure 3.17: Posterior distribution for the VUmc data fitted with the proposed imperfect-
reference-test model, with the flat SeT and SpT prior distributions with SeT + SpT > 1
restriction and the ’optimistic’ AUCa-prior distribution. a. Posterior SeT (grey line) and
SpT (black line). b. Posterior prevalence of disease (θ).

Figure 3.18 shows the estimated probability of AD for the resulting score based
on the optimal combination of the three biomarkers by clinical diagnosis. As it was
the case for the ADNI-data set, the plot in panel a of 3.18 illustrates the imperfect
nature of the clinical diagnosis, i.e., potential misclassification of several individuals.
In particular, 48 subjects diagnosed as having AD with a diagnostic score smaller
than 22.62 have less than 50% probability of being truly AD patients. On the other
hand, 36 subjects diagnosed clinically as not having AD, but with a diagnostic score
larger than 24.7, have more than 50% probability of being truly AD patients.

Panel b of Figure 3.18 shows the posterior probability of AD as a function of diag-
nostic score by clinical diagnosis. These posterior probabilities express the probability
of having AD considering the information from both the biomarkers and the clinical
diagnosis results. Results show that for 35 subject diagnosed as AD patients, the pos-
terior probability of being truly AD is less than 50%. Of the subjects not clinically
diagnosed as AD patients, 26 have a posterior probability of AD of more than 50%.
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Figure 3.18: Probability of AD for estimated optimal combination score by clinical diag-
nosis (ClDiag) for the VUmc data set. Clinical controls indicated in green, clinical cases in
red. a. Estimated probability of AD. b. Posterior probability of AD.

3.7 Conclusions

In this chapter, we have proposed a Bayesian latent-class mixture model which esti-
mates the accuracy of an optimal linear-combination of continuous biomarkers while
accounting for the use of an imperfect reference-test. Moreover, we have proposed a
parametrisation that allows a more controlled way of introducing prior information
to the model.

Application of the model may encounter non-convergence problems, especially in
small data sets. In the simulations and particular examples considered in this chapter,
the model provided unbiased estimates of AUC of the optimal linear-combination
of biomarkers when convergence was obtained. The performance of the model was
also satisfactory for simulated skew-normal data. Hence, the model is shown to be
robust against some violation of the binormal assumption concerning the biomarker
distributions conditional on true disease status.

In both the ADNI and VUmc data application, inspection of the posterior results
for SeT , SpT , and θ shows that the prior information is substantially updated by
the data. This observation provides evidence that both of the suggested truncations
(SeT and SpT > 0.5 or SeT +SpT > 1) were successful in allowing estimation of these
parameters in the particular data application [35]. Although this does not guarantee
identifiability in every application, it demonstrates that in some applications relatively
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little prior information may be sufficient to obtain sensible results.
The results obtained for the two forms of truncated prior distributions for SeT

and SpT were essentially equal. It is important to note that the different forms lead
to different marginal prior distributions for SeT and SpT . These differences can play
a role when data contain less information to update the prior information.

While accounting for the imperfectness of clinical diagnosis in the analysis of
the ADNI and VUmc data sets, substantially higher estimates of the accuracy of
the combination of the CSF-biomarkers were obtained as compared to the analysis
which assumed that the diagnosis was perfect. Given the conditional independence
assumption, this is an expected result [59]. In the next chapter, we will investigate
the effect of the assumption on the results.



Chapter 4
Allowing for conditional
dependence between
biomarkers and the imperfect
reference-test

In the current chapter, an extension of the Bayesian latent-class mixture model, de-
veloped in Chapter 3, is proposed. The extension allows taking dependence between
biomarkers and the imperfect reference-test into account. The problem setting is
discussed in Section 4.1. The Bayesian latent-class model allowing for conditional
dependence is developed in Section 4.2. Particular prior distributions allowing for the
introduction of sensible prior information, while mitigating model non-identifiability,
are proposed in Section 4.3. The performance and applicability of the model are
investigated by performing a simulation study in Section 4.4 and by applying it to
two AD data sets in Section 4.5. The results from these applications are discussed in
Section 4.7. Concluding remarks are formulated in Section 4.8.

4.1 Problem setting

All developments and results from Chapter 3 are based on the conditional indepen-
dence assumption. This assumption implies independence between the continuous
biomarker observations and the results from the dichotomous imperfect reference-

53
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test, conditionally on the true disease status of the subjects. Because conditional
dependence describes how misclassification by the imperfect reference-test and the
biomarkers are related, it has an impact on the bias in accuracy estimates when ig-
noring the imperfectness of the reference test. The examples presented in Section 2.3
of Chapter 2 show that the introduction of conditional dependence results in over-
estimation of the accuracy of a new test, while underlying conditional independence
resulted in underestimation of the accuracy of the same test.

To account for possible conditional dependence in estimating the diagnostic ac-
curacy of several dichotomous tests in latent-class analysis, Yang and Becker [128]
have extended the ideas of Rindskopf and Rindskopf [95] by introducing continuous
random effects. Xu and Craig [127] proposed a probit latent-class model to account
for the conditional dependence between dichotomous diagnostic-tests. These models
employ the EM-algorithm to obtain maximum-likelihood estimates of the diagnostic-
test accuracy. They also allow inclusion of the imperfect reference-test information
in the form of covariate information, but, as mentioned before, the models require
certain strict identifiability restrictions to do so.

Fully-parametric Bayesian latent-class models allowing for conditional dependence
between dichotomous tests were also proposed. The models suggested by Menten et
al. [69] and Dendukuri et al. [25] extend the model proposed by Joseph et al. [50] to
account for conditional dependence.

In this chapter, we propose an extension of the Bayesian latent-class mixture model
developed in Chapter 3 to allow for conditional dependence between the continuous
biomarkers and the results of a dichotomous imperfect reference-test.

4.2 Methodology

To extend the model proposed in Chapter 3, we start by the decomposition of the full-
data likelihood P

(
Y , t, d̃

)
, as defined in (3.3). Instead of simplifying (3.3) by making

the conditional independence assumption, we propose a form of P
(
t|Y , d̃

)
, i.e. the

distribution of the imperfect reference-test results t conditional on the biomarker
values Y and the latent true disease status d̃.

To allow for dependence between the imperfect reference-test T and biomarkers y,
we propose to model the dependence through a latent continuous tolerance variable
T̃ , underlying T . In particular, we assume that T is the result of dichotomizing T̃ ,
with

T̃ |D̃ = d̃ ∼ N
(
µT̃d̃

, 1
)
,
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where d̃ = 0 for true controls and d̃ = 1 for true cases.

Consequently, the probability of observing a positive imperfect reference-test result
conditional on latent true disease-status, π0 and π1 (3.2) for d̃ = 0 and d̃ = 1,
respectively, is expressed as follows:

π0 = 1− Φ
(
−µT̃0

)
,

π1 = 1− Φ
(
−µT̃1

)
,

where µT̃d̃
denotes the mean of the continuous latent tolerance distribution for group

d̃. Note that, without loss of generality, the variance of the tolerance distribution can
be fixed to 1 (see, e.g., Renard et al. [94]).

By considering the joint distribution of T̃ and y conditional on the latent true dis-
ease status D̃, their correlation can be introduced directly. Assume that, conditionally
on D̃, T̃ and y are jointly normally distributed:(

T̃

y

)
|D̃ = d̃ ∼ NK+1

((
µT̃d̃

µYd̃

)
,Σd̃

)
,

with

Σd̃ =
(

1 τT
d̃

τ d̃ Σd̃

)
(4.1)

and

τ d̃ =
(
ρd̃,1σd̃,1, . . . , ρd̃,Kσd̃,K

)T
.

In (4.1), µT̃d̃
and µYd̃

are the mean value and mean vector of T̃ and y in group
d̃, respectively; Σd̃ is the overall variance-covariance matrix of T̃ and y in group d̃,
containing the variance of T̃ (fixed at 1), the variance-covariance matrix Σd̃ of the
continuous-biomarker vector y, and the vector of covariances τ d̃. The covariance of
T̃ and the k-th biomarker is expressed as the product of the correlation coefficient
ρd̃,k and biomarkers’ standard deviation σd̃,k.

By using the joint normal distribution (4.1), the distribution of the imperfect
reference-test T , conditional on y and D̃, can be defined by considering the dis-
tribution of T̃ conditional on y and D̃. As this conditional distribution has mean
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µT̃d̃
+ τT

d̃
Σ−1
d̃

(
y − µYd̃

)
and variance 1− τT

d̃
Σ−1
d̃
τ d̃, it follows that

T |y, D̃ = d̃ ∼ Bern (πd̃ (y)) , (4.2)

where

π0 (y) = 1− φ

−µT̃0
+ τT0 Σ−1

0
(
y − µY0

)√
1− τT0 Σ−1

0 τ 0

 ≡ 1− SpT (y) ,

π1 (y) = 1− φ

−µT̃1
+ τT1 Σ−1

1
(
y − µY1

)√
1− τT1 Σ−1

1 τ 1

 ≡ SeT (y) .

From (4.2) it follows that the imperfect reference-test T has a different sensitivity[
SeT (y) = P

(
T = 1|y, D̃ = 1

)]
and specificity

[
SpT (y) = P

(
T = 0|y, D̃ = 0

)]
for

each possible value y, which introduces the dependence between T and y conditionally
on true disease status D̃.

Combining all the developments, we arrive at the following full-data likelihood
function for a data set including observations for N individuals (indexed by i) on K

biomarkers and an imperfect reference-test T :

L

(
µY0 ,µY1 ,Σ0,Σ1, µT̃ 0

, µ
T̃ 1
, τ0, τ1, θ|Y , t, d̃

)
=

N∏
i=1

{1− SeT (yi)}
(1−ti) {SeT (yi)}

ti

exp

{
− 1

2

(
yi − µY1

)T
Σ−1

1

(
yi − µY1

)}√
(2π)K |Σ1|

θ

d̃i

×

{1− SpT (yi)}
ti {SpT (yi)}

(1−ti)
exp

{
− 1

2

(
yi − µY0

)T
Σ−1

0

(
yi − µY0

)}√
(2π)K |Σ0|

(1− θ)

1−d̃i

,

where d̃ =
(
d̃1, . . . , d̃N

)T and t = (t1, . . . , tN )T are the vectors containing, respec-
tively, the true (unobserved) disease-status indicators and observed reference-test re-
sults for the N individuals, while Y =

(
yT1 , . . . ,y

T
N

)T is the N×K matrix containing
the observed biomarker values. The parameters of interest are µY0 , µY1 , Σ0, and Σ1,
because together they define AUCa, as indicated in (2.5).

4.3 Prior distributions

Prior distributions are specified essentially in the same way as an in Chapter 3. To
mitigate model non-identifiability and allow the introduction of sensible prior infor-
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mation, prior distributions as shown in Table 4.1 are proposed.

Table 4.1: Structure of the considered prior distributions (assuming K = 3 biomarkers).

Parameter Prior distribution
Prevalence
θ U

(
1
N
,
(
1− 1

N

))
Parameters of the dichotomous reference test
SeT Beta (a, b) trunc(0.5, 1)
SpT Beta (c, d) trunc(0.5, 1)

Mean of biomarker values control group
µY0 N3

(
0, I3106

)
Scaled difference biomarker distribution means
δ N3 (κ,Ψ)

Biomarker-distribution standard deviations
σd̃,k U (0, 1000)

Cholesky-factor values of correlation matrix Rd̃
ld̃,21 U (−1, 1)
ld̃,31 U (−1, 1)
ld̃,41 U (−1, 1)

ld̃,32 U

(
−
√

1− l2
d̃,31

,
√

1− l2
d̃,31

)
ld̃,42 U

(
−
√

1− l2
d̃,41

,
√

1− l2
d̃,41

)
ld̃,43 U

(
−
√

1− l2
d̃,41
− l2

d̃,42
,
√

1− l2
d̃,41
− l2

d̃,42

)

The considered prior distributions largely coincide with the controlled prior dis-
tributions discussed in the previous chapter, though some particularities due to the
conditional dependence case are worth mentioning.

The prior distributions for the means of the latent continuous tolerance variable
T̃ , µT̃0

and µT̃1
, are derived from the considered prior distributions for SeT and

SpT of the dichotomous imperfect reference-test T . This way, restrictions can be
enforced on µT̃0

and µT̃1
, leading to a sensible interpretation of SeT and SpT . For

case-control data, a sensible choice for SeT and SpT prior-distributions is to use
independent Laplace Beta-distributions [10] restricted to the (0.5, 1] interval. Based
on the relationship defined in (4.2), this leads to the following prior distributions (φ (·)
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denotes the standard-normal density function):

SeT ∼ Beta(a, b)trunc [0.51, 1] ,

fµT̃ ,1

(
µT̃ ,1

)
={

1
B(a,b)

(
Φ
(
µT̃ ,1

))(a−1) (
1− Φ

(
µT̃ ,1

))(b−1) ∣∣φ(µT̃ ,0

)∣∣ if µT̃ ,1 ∈ (Φ (0.51) ,+∞]

0 otherwise

SpT ∼ Beta(c, d)trunc [0.51, 1] ,

fµT̃ ,0

(
µT̃ ,0

)
={

1
B(c,d)

(
Φ
(
−µT̃ ,0

))(c−1) (
1− Φ

(
−µT̃ ,0

))(d−1) ∣∣−φ(−µT̃ ,0

)∣∣ if µT̃ ,0 ∈ (−∞,−Φ (0.51)]

0 otherwise
.

As discussed in Section 3.3, other restrictions for the prior distributions of SeT
and SpT could be considered as well. Different choices may imply a dependence
between SeT and SpT , which could not be trivial to interpret and/or implement. For
this reason, we limit ourselves in the current chapter to assuming that SeT and SpT

are both strictly larger than 0.5. This restriction resolves the label-switching problem
observed for mixture models [67] and mitigates the over-parametrisation with multiple
imperfect reference-tests [26], two consequences of model non-identifiability.

For the prior distributions for the biomarker variance-covariance matrices Σ0 and
Σ1, we propose again to construct flat prior-distributions as shown in [125]. As de-
scribed in Section 3.3, this entails considering flat priors directly on the standard
deviations and correlation coefficients of Σ0 and Σ1. In the proposed parametri-
sation for the conditional dependence case (4.1), Σ0 and Σ1 are contained in the
overall variance-covariance matrices Σ0 and Σ1. Therefore, prior distributions have
to be considered for Σ0 and Σ1 to include prior distributions for the correlation
coefficients describing the potential conditional dependence between the biomarkers
and the imperfect reference-test. In particular, the overall variance-covariance matrix
is decomposed as Σd̃ = Sd̃Rd̃Sd̃, where Sd̃ and Rd̃ are, respectively, the diagonal
matrix of standard deviations and the correlation matrix for disease group d̃. Ad-
ditionally, Rd̃ is expressed as Rd̃ = Ld̃L

T
d̃

, where Ld̃ is a lower-triangular matrix.
Subsequently, wide uniform distributions are put directly on the biomarker standard
deviations σd̃ included in Sd̃, while the remaining tolerance standard deviations in
Sd̃ are fixed to 1. Finally, flat priors are put on K of the

(
(K + 1)2 − (K + 1)

)
/2

non-zero off-diagonal elements of the Cholesky decomposition-factor Ld̃ of Rd̃ (see
Table 4.1).
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4.4 Simulation study

To investigate the performance of the model, we carried out a simulation study.
The goal of this simulation study was to show adequate model performance in the
conditional-dependence case and subsequently, to investigate the impact of violating
the conditional-independence assumption.

4.4.1 Data

We simulated 400 data sets of size 600 under the conditional-dependence setting.
The underlying parameter settings are summarized in Table 4.2. These parameter
values yield biomarker data (for K = 3 biomarkers) with an underlying true AUCa of
0.787 and an imperfect reference-test with SeT = SpT = 0.85. The underlying latent
tolerance and biomarkers’ correlation coefficients were set as follows: ρ1,0 = ρ1,1 = 0,
ρ2,0 = ρ2,1 = 0.7, and ρ3,0 = ρ3,1 = 0.3.
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Table 4.2: Parameter values underlying the sampled simulation data sets.

Parameter Value
Multivariate parameters
µ0 (0, 0, 0)T

µ1 (1.1683, 1.3490, 1.5082)T

Dependent biomarkers
(
ρ = (0.5, 0.9, 0.5)T

)
Σ0

(
1 0.5×

√
1× 3 0.9×

√
1× 2

0.5×
√

1× 3 3 0.5×
√

3× 2
0.9×

√
1× 2 0.5×

√
3× 2 2

)

Σ1

(
2 0.5×

√
2× 1 0.9×

√
2× 3

0.5×
√

2× 1 1 0.5×
√

1× 3
0.9×

√
2× 3 0.5×

√
1× 3 3

)
Conditional dependent correlations
ρ0,1 = ρ1,1 0
ρ0,2 = ρ1,2 0.7
ρ0,3 = ρ1,3 0.5

Parameters of the reference test
SeT 0.85
SpT 0.85

Prevalence
θ 0.5

Functions of multivariate parameters
AUC1 0.75
AUC2 0.75
AUC3 0.75
a (0.1594, 0.2237, 0.0972)T

Optimal combination parameters
µa,0 0
µa,1 0.6347
σ2
a,0 0.3490
σ2
a,1 0.2857
AUCa 0.7872

The underlying (unobserved) true joint distribution for biomarker 1 and the latent-
tolerance from the simulation study, together with two conditional tolerance distri-
butions given a particular biomarker value, are shown in Figure 4.1. The joint dis-
tribution for the biomarker and the latent-tolerance is shown in panel a of Figure
4.1. It is clear that, conditional on true disease status, the biomarker values and
latent-tolerance values are independent (ρ1,0 = ρ1,1 = 0). Furthermore, the con-
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ditional independence is also shown in panels b and c, where different conditional
latent-tolerance distributions (y1 = 1 and y1 = 2) lead to the same conditional sen-
sitivity and specificity. Moreover, these conditional sensitivities and specificities are
equal to the marginal SeT = 0.85 and SpT = 0.85, respectively.
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Figure 4.1: True underlying biomarker and latent-tolerance distributions for biomarker 1 in
the simulation study, independent of the latent-tolerance variable conditional on true disease
status. a. Joint distribution for the biomarker and latent-tolerance. b. Latent-tolerance
distributions conditional on y1 = 1. b. Latent-tolerance distributions conditional on y1 = 2.
True-control distributions are indicated by the green dashed line, true-case distributions by
the red dashed line. Grey dashed and dotted line indicate y1 = 1 and y1 = 2, respectively.

Figure 4.2 shows the true underlying joint distribution and two conditional latent-
tolerance distributions for biomarker 2 from the simulation study. This biomarker
is correlated with the imperfect dichotomous reference-test, conditional on true dis-
ease status (ρ2,0 = ρ2,1 = 0.7). The correlation is easily observed from the elliptical
contours for the joint distributions in panel a of Figure 4.2. In panels b and c, the
latent-tolerance distributions are shown conditional on y2 = 1 and y2 = 2, respec-
tively. From these panels the conditional dependence can be seen by observing that
sensitivity and specificity of the dichotomized tolerance variable depend on the partic-
ular value of y2. Moreover, both of the indicated conditional sensitivity and specificity
values are different from the marginal SeT and SpT .
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Figure 4.2: True underlying biomarker and latent-tolerance distributions for biomarker 2 in
the simulation study, dependent on the latent-tolerance variable conditional on true disease
status. a. Joint distribution for the biomarker and latent-tolerance. b. Latent-tolerance
distributions conditional on y2 = 1. b. Latent-tolerance distributions conditional on y2 = 2.
True-control distributions are indicated by the green dashed line, true-case distributions by
the red dashed line. Grey dashed and dotted line indicate y2 = 1 and y2 = 2, respectively.

4.4.2 Prior distributions

Prior distributions for the simulation study were considered as summarized in Table
4.1. The prior distribution for the prevalence of disease θ was a uniform distribution
between 0.1 and 0.9. Parameters a, b, c, and d of the Beta prior distributions for
SeT and SpT were all set to 1, leading to flat-uniform priors. Moreover, these prior
distributions were restricted to ensure that both SeT and SpT > 0.5 (see Section 3.3).
For AUCa, the ’optimistic’ δ prior was considered with κ = (0, 0, 0)T and Ψ such
that its standard deviations and correlation coefficients were all equal to 0.7 and 0.6,
respectively. This prior distribution disfavours small AUCa values, as seen in panel
a of Figure 3.9, but still allows a wide range of plausible AUCa values.

4.5 Real data

The applicability of the proposed model was investigated by fitting it to two data sets
containing data from AD patients: the VUmc (VU University Medical Center) data
set, which consists of patients from the memory-clinic-based Amsterdam Dementia
Cohort, and the publically available data obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). Both of these data sets
have been discussed in Section 2.5.2 of Chapter 2.

As in the previous chapter, the measurements of total tau and p-tau181p from both
data sets were log-transformed. The resulting observed data distributions are shown
in Figures 3.10 and 3.11 for the ADNI and VUmc data, respectively.
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4.5.1 Prior distributions

For both data sets, the parameters of the Beta prior distributions for SeT and SpT

were set so that they allowed capturing the available information from literature [126,
11, 104, 116]. Three studies [11, 104, 116] reported high sensitivity of the clinical AD
diagnosis (ranging from 81.8% to 100%) in a mixed dementia setting; another study
[126] reported much worse sensitivities ranging from 39% to 95% and specificities
ranging from 33% to 100%. Based on this information, we formulated conservative
informative prior distributions for SeT and SpT . In particular, Beta(c = 4.15, d =
2.54) and Beta(a = 2.69, b = 1.99) distributions were used, respectively, truncated to
the [0.51, 1] interval for SeT and SpT . These literature-based informative priors are
shown in Figure 4.3. The prior distributions have a mean value of 0.620 and 0.575
for SeT and SpT , respectively. The 95% equal-tail interval for SeT ranges between
0.258 and 0.915, while the corresponding interval for SpT is equal to [0.164;0.927].
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Figure 4.3: Considered literature-based informative priors for SeT and SpT . SeT prior
denoted by the solid black line, SpT prior by the solid grey line.

As in Chapter 3, the prior information for AUCa was varied to investigate sensitiv-
ity of the results to the choice of the prior distribution. In addition to the ’optimistic’
AUCa prior (see Section 4.4.2), also a ’conservative’ prior, favouring moderate AUCa
values, was considered by setting κ = (0, 0, 0)T and defining Ψ by standard deviations
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equal to 0.5 and setting correlation coefficients to 0.3 (see panel b of Figure 3.9).
The prior distributions for the remaining parameters were considered as in Table

4.1.

4.6 Analysis settings

The proposed model, allowing for conditional dependence, was fitted to the simulated
data and the two case studies. The model assuming conditional independence, as
developed in the previous chapter, was fitted to the data as well. The latter model
can be obtained from the former by fixing the correlation parameters, ρd̃,k, expressing
dependence between the latent continuous tolerance variable T̃ and biomarkers, to
zero.

Each fit was obtained by sampling 10,000 iterations from the posterior distri-
butions from five independent MCMC chains after discarding the first 10,000 as a
burn-in. Starting values of the MCMC chains were set, as described in Section 3.4
of Chapter 3, by fixing them at plausible data-based values for all parameters with
exception of SeT and SpT , which were started at the midpoint of their parameter
space, i.e., 0.75.

After fitting the models, the results were first checked by general diagnostic-tools
in order to assess convergence of the MCMC chains. Convergence over chains was
investigated by the Gelman-Rubin convergence index, for which a cut-off value of
1.1 was applied [38]. Chain-by-chain convergence was checked by using the Geweke
convergence criterion [40]. The Geweke criterion was monitored to ensure that overall
at least three out of five chains converged.

The models were fitted by using OpenBUGS 3.2.1 [60]. Annotated BUGS model
codes can be found in Section A.2 of Appendix A. Results were analyzed and sum-
marized using R 3.0.1 (x64) [90]. The R-package R2OpenBUGS [111] was used as an
interface between R 2.14.2 and OpenBUGS. For the proposed conditional-dependence
model, fitting times were equal to 20h for each simulated and VUmc data set, and
15h for the ADNI data, on a 64-bit, 2.8 GHz, 8GB RAM machine.

4.7 Results

4.7.1 Simulation study

The results of the simulation study are summarized in Table 4.3. For the proposed
conditional-dependence model (the third column of the table), the mean of the 400
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posterior medians is very close to the true underlying values for all parameters.
The fourth column of Table 4.3 presents the results for the conditional-independence
model. It can be concluded that, on average, AUCa (true value of 0.787), SeT (true
value of 0.85), and SpT (true value of 0.85), are significantly overestimated with mean
posterior-medians equal to 0.892, 0.982, and 0.995, respectively.

Table 4.3: Mean of posterior medians, (standard deviations), and [empirical 95% confidence
intervals] for the simulated data (400 data sets of size N=600). Results are shown for both the
conditional-dependence and conditional-independence models considering the ’optimistic’
AUCa-prior distribution.

Model
Parameter True Conditional Dep. Conditional Ind.
AUCa 0.787 0.777 (0.023) [0.728;0.819] 0.892 (0.011) [0.869; 0.912]
SeT 0.85 0.834 (0.031) [0.770;0.894] 0.982 (0.013) [0.940; 0.993]
SpT 0.85 0.837 (0.027) [0.782;0.887] 0.995 (0.001) [0.993; 0.996]
θ 0.5 0.505 (0.023) [0.458;0.554] 0.510 (0.017) [0.479; 0.542]
ρ0,1 0 0.022 (0.090) [-0.146;0.213] 0
ρ0,2 0.7 0.702 (0.046) [0.608;0.782] 0
ρ0,3 0.3 0.318 (0.079) [0.165;0.470] 0
ρ1,1 0 0.020 (0.088) [-0.147;0.197] 0
ρ1,2 0.7 0.705 (0.052) [0.596;0.795] 0
ρ1,3 0.3 0.310 (0.078) [0.158;0.457] 0

4.7.2 VUmc data

Table 4.4 presents the medians of the posterior distributions obtained for the VUmc
data, together with their posterior standard deviations and 95%-credible intervals.
Results are shown for both models (assuming conditional dependence and indepen-
dence) and for both the ’conservative’ (Cons) and ’optimistic’ (Opt) AUCa-priors.
For the conditional-independence model, the medians of the AUCa distributions
corresponding to the ’conservative’ and ’optimistic’ AUCa-priors are both equal to
0.995, with respective 95%-credible intervals equal to [0.990;0.997] and [0.991;0.998],
respectively. For the conditional-dependence model, the corresponding posterior
AUCa medians are equal to 0.996 and 0.997, respectively, with 95%-credible inter-
vals [0.992;0.998] and [0.993;0.998], respectively. Because both AUCa-priors lead to
practically the same results for both models, in what follows only the results for the
’optimistic’ AUCa-prior are discussed in more detail.

Allowing for conditional dependence leads to posterior median SeT and SpT
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Table 4.4: Posterior medians, (standard deviations), and [95%-credible intervals] for the
VUmc data. In the respective columns results are shown for the conditional-dependence
and conditional-independence models considering both the ’conservative’ and ’optimistic’
AUCa-prior distribution. Correlation coefficients: ρ0,1: total tau in the control group; ρ1,1:
total tau in the AD group; ρ0,2: Aβ1−42 in the control group; ρ1,2: Aβ1−42 in the AD group;
ρ0,3: p-tau181p in the control group; ρ1,3: p-tau181p in the AD group.

Model
(AUCaPrior)

Parameter Cond. Dep.
(Cons.)

Cond. Dep.
(Opt.)

Cond. Ind.
(Cons.)

Cond. Ind.
(Opt.)

AUCa
0.996 (0.002)
[0.992;0.998]

0.997 (0.001)
[0.993;0.998]

0.995 (0.002)
[0.990;0.997]

0.995 (0.002)
[0.991;0.998]

SeT
0.940 (0.012)
[0.915;0.960]

0.940 (0.012)
[0.915;0.960]

0.955 (0.010)
[0.934;0.973]

0.954 (0.010)
[0.934;0.971]

SpT
0.818 (0.027)
[0.762;0.868]

0.823 (0.026)
[0.768;0.870]

0.850 (0.024)
[0.799;0.894]

0.850 (0.024)
[0.799;0.894]

θ
0.705 (0.017)
[0.671;0.738]

0.706 (0.017)
[0.672;0.739]

0.700 (0.016)
[0.668;0.732]

0.701 (0.016)
[0.668;0.732]

ρ0,1
0.366 (0.091)
[0.176;0.520]

0.358 (0.093)
[0.156;0.530] 0 0

ρ0,2
0.110 (0.103)
[-0.100;0.306]

0.104 (0.103)
[-0.103;0.301] 0 0

ρ0,3
0.034 (0.095)
[-0.154;0.206]

0.030 (0.100)
[-0.171;0.235] 0 0

ρ1,1
0.293 (0.091)
[0.102;0.454]

0.280 (0.097)
[0.068;0.451] 0 0

ρ1,2
0.186 (0.093)
[-0.009;0.353]

0.186 (0.092)
[-0.007;0.356] 0 0

ρ1,3
0.199 (0.091)
[0.014;0.366]

0.186 (0.098)
[-0.018;0.366] 0 0

estimates of 0.940 and 0.823, respectively, with 95%-credible intervals equal to
[0.915;0.960] and [0.768;0.870], respectively. The posterior distribution for θ has a
median of 0.706 with a 95%-credible interval of [0.672;0.739]. The posterior distri-
butions, shown in Figure 4.4, indicate that the assumed prior distributions for SeT ,
SpT , and θ are well updated by the data, even for the ’conservative’ AUCa prior,
suggesting a successful mitigation of model non-identifiability [35].

Moreover, the results show significant dependence between the clinical diagnosis
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Figure 4.4: Traceplots and posterior distributions for AUCa, SeT , SpT and θ from the
VUmc-data fit with the ’conservative’ AUCa prior-distribution.
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of AD and total tau: the 95%-credible intervals for the correlation between the la-
tent tolerance and total tau in the control (ρ0,1) and AD (ρ1,1) groups are equal to
[0.156;0.530] and [0.068;0.451], respectively, and they both exclude the value of zero.
For Aβ1−42 (ρ0,2 and ρ1,2) and p-tau181p (ρ0,3 and ρ1,3) the 95%-credible intervals do
not suggest any dependence.

Despite the correlation between the latent-tolerance and total tau, no impor-
tant difference in the posterior medians of AUCa is found between the results of
the conditional-dependence and conditional-independence models. In particular, the
medians are equal to 0.997 and 0.995 for the former and the latter, respectively, with
overlapping respective 95%-credible intervals of [0.993;0.998] and [0.991;0.998].
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4.7.3 ADNI data

Table 4.5 presents the results for the ADNI data. In this case, the resulting MCMC-
samples for the conditional-dependence model defined by using the ’conservative’
AUCa-prior require some attention. Even after 300,000 iterations, the OpenBUGS
MCMC-algorithms do not seem to have converged. Though both the Gelman-Rubin,
and Geweke convergence criteria are satisfied, inspection of the posterior distributions
shown in Figure 4.6 reveals that, for AUCa, SeT , SpT , and θ, bi-modal posteriors
are obtained caused by erratic jumps of the MCMC chains which were not able to
converge to one of two stationary distributions as indicated by the traceplots in Figure
4.6. This may be taken as implying that the use of the ’conservative’ prior for AUCa
does not provide enough information to overcome potential non-identifiability of the
model given the limited size of the data set. For this reason, the ADNI data were
also fitted with an ’intermediate’ AUCa-prior (see Figure 4.5). This AUCa-prior
distribution is characterized by κ = (0, 0, 0)T and Ψ defined by standard deviations
and correlation coefficients equal to (0.6, 0.6, 0.6) and (0.5, 0.5, 0.5), respectively. The
’intermediate’AUCa-prior distribution has a mean of 0.802 and 95% equal-tail interval
of [0.598;0.978]. Table 4.5 contains the results obtained for the ’optimistic’ as well as
the ’intermediate’ AUCa-prior distribution.
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Figure 4.5: Considered ’intermediate’ AUCa-prior distribution.
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No significant differences between the results obtained with the ’intermediate’
and ’optimistic’ AUCa-prior distributions can be observed. Therefore, only the re-
sults from the ’optimistic’ AUCa-prior setting will be discussed. The posterior me-
dians of SeT and SpT are equal to 0.808 and 0.835, respectively. The corresponding
95%-credible intervals are equal to [0.688;0.905] and [0.691;0.930], respectively. The
results obtained for the proposed conditional-dependence model do not indicate any
significant correlation between the biomarkers and the latent tolerance underlying the
AD diagnosis. The posterior AUCa distributions for the conditional-dependence and
conditional-independence models show only a slight difference. In particular, the pos-
terior medians of AUCa are equal to 0.979 and 0.983, respectively, with the respective
95% credible intervals of [0.939;0.994] and [0.961;0.994].
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Table 4.5: Posterior medians, (standard deviations), and [95%-credible intervals] for the
ADNI data. In the respective columns results are shown for the conditional-dependence and
conditional-independence models considering the ’intermediate’ and ’optimistic’ AUCa-prior
distribution. Correlation coefficients: ρ1,0: total tau in the control group; ρ1,1: total tau
in the AD group; ρ0,2: Aβ1−42 in the control group; ρ1,2: Aβ1−42 in the AD group; ρ0,3:
p-tau181p in the control group; ρ1,3: p-tau181p in the AD group.

Model
(AUCaPrior)

Parameter Cond. Dep.
(Int.)

Cond. Dep.
(Opt.)

Cond. Ind.
(Int.)

Cond. Ind.
(Opt.)

AUCa
0.976 (0.022)
[0.912;0.994]

0.979 (0.014)
[0.939;0.994]

0.982 (0.009)
[0.958;0.993]

0.983 (0.009)
[0.961;0.994]

SeT
0.805 (0.061)
[0.669;0.906]

0.808 (0.056)
[0.688;0.905]

0.818 (0.044)
[0.726;0.898]

0.818 (0.044)
[0.724;0.896]

SpT
0.829 (0.077)
[0.627;0.940]

0.835 (0.061)
[0.691;0.930]

0.880 (0.037)
[0.798;0.942]

0.879 (0.037)
[0.798;0.941]

θ
0.463 (0.091)
[0.230;0.614]

0.466 (0.071)
[0.317;0.597]

0.499 (0.043)
[0.413;0.582]

0.498 (0.043)
[0.414;0.582]

ρ0,1
0.142 (0.225)
[-0.297;0.549]

0.121 (0.185)
[-0.264;0.459] 0 0

ρ0,2
0.295 (0.250)
[-0.323;0.637]

0.277 (0.223)
[-0.288;0.584] 0 0

ρ0,3
0.186 (0.222)
[-0.257;0.560]

0.161 (0.183)
[-0.226;0.494] 0 0

ρ1,1
0.322 (0.182)
[-0.073;0.621]

0.314 (0.177)
[-0.318;0.394] 0 0

ρ1,2
0.053 (0.195)
[-0.352;0.414]

0.048 (0.182)
[-0.318;0.394] 0 0

ρ1,3
-0.079 (0.273)
[-0.580;0.468]

-0.083 (0.252)
[-0.543;0.412] 0 0
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Figure 4.6: Traceplots and posterior distributions for AUCa, SeT , SpT and θ from the
ADNI-data fit with the ’conservative’ AUCa prior-distribution. Shaded area in the traceplots
denotes first 100,000 iterations burn-in.
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4.8 Conclusions

In this chapter we have proposed a novel latent-class Bayesian mixture-model for con-
struction of a diagnostic biomarker-index in the presence of a dichotomous imperfect
reference-test. Importantly, in contrast to the currently available models, the model
does not require the conditional-independence assumption, because it explicitly allows
for a correlation between the results of the reference test and biomarkers.

The simulation study results showed adequate model performance leading to un-
biased estimates of the model parameters. Given that the posterior distributions were
substantially updated as compared to the assumed prior distributions, we concluded
that non-identifiability was mitigated [35]. On the other hand, simulation study re-
sults showed that falsely assuming conditional independence may lead to substantial
bias in the estimates of biomarker-index accuracy. The observed overestimation of
AUCa may be related to the statistically significant overestimation of SeT and SpT .
This can be explained by the model trying to capture the excess correlation of the
conditional dependence by increasing the imperfect reference-test sensitivity estimate.
Since the marginal positive rate for the reference test is fixed together with a stable
disease prevalence estimate, specificity is overestimated as well. A similar observation
was made for dichotomous tests in the paper by Pepe and Janes [84].

For the VUmc data set, the proposed parameter restrictions on SeT , SpT , and
θ, as well as the chosen prior distributions for SeT , SpT , and AUCa, addressed the
model non-identifiability issues. From the results it is clear that prior distributions
were substantially updated by the data for all parameters. Moreover, the effect of
the type of prior distribution assumed for AUCa did not seem to effect the results.
Interestingly, the model suggested dependence between clinical diagnosis and total
tau. Despite the dependence, there was not much difference in the posterior-median
AUC obtained when assuming conditional independence or allowing for conditional
dependence. A possible explanation could be that the bias in AUCa is too small to
be picked-up by the model [6]. Another explanation could be that the importance
of total tau in the linear combination comprising the diagnostic index is limited [66].
In fact, the median of the posterior distribution for coefficient âtotaltau was equal
to 9.43 and was smaller as compared to the medians for the two other biomarkers
(âAβ1−42 = 15.04; âp−tau181p = 21.92). This observation shows that, in absolute terms,
the results for total tau are the least important in the construction of the continuous
diagnostic biomarker-index.

For the ADNI data, non-identifiability issues were resolved when the proposed
parameter restrictions were considered in combination with the ’intermediate’ or ’op-
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timistic’ AUCa-prior. When the ’conservative’ AUCa-prior distribution was used, the
OpenBUGS MCMC-algorithms failed to converge. This indicates that the use of the
model may require a substantial sample size or, otherwise, a substantial amount of
prior information to provide reliable results.



Chapter 5
Incorporation of retrospective
information in prospective
diagnostic
biomarker-validation designs

The current chapter describes a Bayesian framework to estimate and validate the
accuracy of a continuous diagnostic biomarker-index in an efficient way. Section 5.1
contains the problem setting for which the proposed framework provides a solution.
The framework itself is described in Section 5.2. To investigate whether the proposed
approach does indeed provide a more efficient way of validating biomarker accuracy
a simulation study is performed as described in Section 5.3. The results of this
simulation study are described in Section 5.4. Finally, a short concluding note is
provided in Section 5.5.

5.1 Problem setting

A biomarker is ’a characteristic that is objectively measured and evaluated as an indi-
cator of normal biologic processes, pathogenic processes, or pharmacologic responses
to therapeutic interventions’ [22]. As healthcare and drug-development costs con-
tinue to increase, many consider the identification and development of biomarkers
as a solution to overcome this financial burden and ensure high-quality healthcare

75
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in the future [5, 30]. To be useful, candidate biomarkers have to be properly vali-
dated. Unfortunately, statistical validation of biomarkers is challenging and costly
when properly executed [16, 91].

In this chapter, we focus on the prospective validation of a diagnostic-biomarker
index. As in previous chapters, interest lies in the accuracy of the index in distinguish-
ing cases in a case-control population. The index can consist of a single biomarker
or a combination of biomarkers. Combining continuous biomarkers into indices has
been shown to increase the diagnostic accuracy over considering biomarkers alone
[85, 81, 82, 63].

There is no clear general strategy for diagnostic-test development and validation
[93]. Several suggestions for such a strategy have been made [83, 91]. For instance,
according to Zhou, Obuchowski, and McClish [133], the assessment of the accuracy of
diagnostic tests should be structured in three phases: an ’Exploratory’, a ’Challenge’,
and a ’Clinical’ phase. These phases categorize biomarker research in identification,
development, and validation of diagnostic tests. As a starting point, we consider a set
of identified diagnostic biomarkers from which we want to develop a biomarker index.
This, usually limited, development study results in a biomarker index maximizing
some diagnostic property.

As discussed in Section 2.1, the diagnostic properties of a continuous diagnostic-
biomarker index can be summarized by a receiver operator characteristic (ROC) curve.
Moreover, because it is more convenient to interpret a single measure than a complete
curve, the area under the ROC curve (AUC) is often considered to represent the
accuracy of the continuous diagnostic-biomarker index. The AUC can be interpreted
as the probability that the observed value of a randomly selected case will be larger
than that of a randomly selected control [7, 133, 135].

In Chapter 3 we have proposed to use a Bayesian latent-class mixture model to
select the appropriate continuous diagnostic-biomarker index and to estimate its ROC
curve and the corresponding AUCa. This model allows estimating the accuracy of
the diagnostic test even in the absence of a gold-standard (GS) reference-test. A GS
reference-test provides perfect discrimination between cases and controls. In practice,
such a reference test may not be available and this can potentially lead to biased
accuracy estimates (see Section 3.6).

Moreover, the proposed Bayesian latent-class mixture model enables estimating
the accuracy of a continuous diagnostic-index based on a linear combination of several
biomarkers. By following the suggestion of Su and Liu [112], the combination is such
that it maximizes the accuracy of the index expressed by AUC. After the development
study, validation proceeds by setting up a prospective study aimed at re-estimation
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of the accuracy of the developed continuous diagnostic-biomarker index. A validation
criterion is agreed upon and, after gathering new data, the validation study confirms
or disproves the validity of the index. Whether the sampling populations of the de-
velopment and validation study have to be completely independent or not, depends
on the goal of the validation at hand. For example, Zhou et al. [133] proposed over-
lapping population definitions for each of the diagnostic-test accuracy study phases.
In principle, the entire range between completely independent and completely equal
sampling populations can be of interest in the validation of diagnostic biomarkers.

In cases when development and validation populations are not required to be
completely independent, one could think about introducing information from the
development study into the validation study. Frequentist approaches can only manage
such an introduction under the assumption of complete equality between the sampling
populations, which leads to data pooling. Applying the Bayesian framework allows
a more focused introduction of prior information [110]. By summarizing available
knowledge in a prior distribution, the knowledge can be updated by new data resulting
in a posterior distribution representing the updated knowledge. It is by virtue of this
mechanism that the Bayesian framework has already gained popularity in diagnostic
science [15].

In a Bayesian approach, population comparability can be defined using the con-
cept of ’exchangeability’, crucial in the context of introducing external evidence into
data analysis. Spiegelhalter et al. [110] discuss a continuum of the relevance of histor-
ical information based on this concept. At one extreme of this continuum, complete
independence between the historical studies and the current one may be assumed.
At the other extreme, individual measurements can be considered exchangeable, i.e.,
sampling populations can be assumed equal. In the latter case, historical information
could be included by considering the historical posterior information as the current
prior, which is equivalent to pooling the current and historical data. Between the two
extremes, there is a range of possible solutions. When the assumption of exchange-
able observations is considered too strong, discounting methods based on the use of,
e.g., power priors, could be considered to down-weigh historical evidence [45, 74]. If
exchangeability can only be assumed at the level of the parameters, historical infor-
mation can be included by considering the posterior predictive distribution as prior
information [110]. By making one of the aforementioned assumptions, information
from the development study can be effectively introduced as prior information into
the validation study, with an appropriate weighting that depends on the degree of
comparability between the respective populations.

The focus of the current chapter is two-fold. First, we develop a Bayesian
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method which allows incorporating the development-study information about the ac-
curacy of the diagnostic-biomarker index into the design and analysis of a prospective
validation-study. Second, we investigate the potential gain regarding the design of
the validation study, related to incorporating the development-study information.

5.2 Methodology

5.2.1 Development-study analysis

In the development study, the main goal is to select the appropriate optimal
biomarker-combination that could serve as the index. We assume that we are in-
terested in constructing a diagnostic-biomarker index which maximizes the AUC in
the absence of a GS reference-test.

Consider data from N subjects, for which values of K biomarkers and the result of
an imperfect diagnostic-test T are available. In this setting, we can apply the model
proposed in Chapter 3.

The Bayesian model is fitted to the data by MCMC, implemented using the Open-
BUGS [60] software. Annotated BUGS code can be found in Section A.1 of Appendix
A. MCMC sampling results in empirical samples of the posterior distributions for
all defined parameters and all of their functions. As a result, empirical posterior
distributions for the optimal-combination coefficients contained in a, are obtained.
Additionally, we also obtain the empirical posterior distribution for AUCa. This dis-
tribution already contains information about the performance of the to-be-validated
diagnostic-biomarker index.

By using the aforementioned Bayesian approach, two valuable pieces of informa-
tion become available after the development study. First, we obtain the estimates
â (e.g., as the posterior medians) of the coefficients of the linear combination of
biomarkers maximizing the AUC. Second, an empirical posterior distribution for the
value of the AUC of the optimal linear-combination, AUCa, becomes available.

5.2.2 Validation-study analysis

The estimated optimal linear-combination coefficients are used in the prospective
validation-study including n subjects. In particular, for the i-th subject from the
validation data set, the value of the diagnostic index ya,i is obtained as follows: ya,i =
yTi × â, where yi denotes a K-dimensional column-vector of biomarker values for the
i-th subject. Denote by µ0 and σ2

0 , respectively, the mean value and variance of the
diagnostic index for controls. Similarly, let µ1 and σ2

1 denote, respectively, the mean
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value and variance of the diagnostic index for cases. In addition, for every subject in
the validation study also the result of the imperfect reference-test T , with SeT and
SpT , is available. Then, the full-data likelihood for the validation study is expressed
as follows:

L
(
µ0, µ1, σ

2
0 , σ

2
1 , θ, SeT , SpT |ya, t, d̃

)
=

n∏
i=1

[
SetiT (1− SeT )1−ti 1√

2πσ2
1
exp

{
1

2σ2
1

(ya,i − µ1)2
}
θ

]d̃i

×

[
Sp1−ti

T (1− SpT )ti 1√
2πσ2

0
exp

{
1

2σ2
0

(ya,i − µ0)2
}

(1− θ)
]1−d̃i

, (5.1)

where ya = (ya,1, . . . , ya,n)T , t = (t1, . . . , tn)T is the vector containing the imperfect
reference-test results for all subjects, and d̃ =

(
d̃1, . . . , d̃n

)T is the vector containing
the (latent) indicators of the true disease-status. Note that we make the conditional
independence assumption, i.e., that the imperfect reference-test results t and the
diagnostic biomarker-index observations ya are independent, conditionally on latent
true disease-status d̃.

Furthermore, the likelihood is reparametrised by introducing parameter

γ =

√
(µ1 − µ0)2

σ2
0 + σ2

1
.

The AUC of the diagnostic index of the validation study, AUC∗a , can then be defined
as follows:

AUC∗a = Φ

√ (µ1 − µ0)2

σ2
0 + σ2

1

 = Φ (γ) . (5.2)

Using γ as a parameter allows introduction of the information about the AUC
of the optimal linear-combination of biomarkers, obtained in the development study.
Toward this aim, a prior distribution for γ has to be constructed. This is what we
consider next.

5.2.3 Transfer from posterior to prior distribution for AUC∗a
Translating the information about AUCa obtained in the development study into
a prior distribution for AUC∗a in the validation study requires some consideration.
AUCa is a complex function of other parameters, as can be seen from (2.5). As
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shown in (3.7), it is possible to express AUCa in terms of a scaled difference between
the mean biomarker-values of the cases and controls. A similar approach is applied in
the validation study, as shown in (5.2). Upon comparing equations (3.8) and (5.2), one
can conclude that the posterior distribution for

√
δT δ from the development study

can be used to construct a prior distribution for γ in the validation study. The form of
the posterior distribution for

√
δT δ is not obvious, as it depends on δ = Q (µ1 − µ0).

Given that
√
δT δ only takes positive values on the real line, a log-normal distribution

could be considered as a plausible approximation.

This suggestion was investigated by means of simulations. Data sets of small
(N = 150) and moderate (N = 400) size with different underlying AUCa values were
simulated. In particular, AUCa equal to 0.6, 0.75, and 0.9 was considered. These
values span the parameter space of AUCa, excluding the unlikely values of 0.5 and
1. On the AUC-scale, the posterior distributions for AUCa = 0.6 and AUCa = 0.9
are expected to be skewed due to the proximity to the parameter-space boundaries
(0.5 and 1). On the other hand, the posterior distribution for the AUCa = 0.75 data
is more likely to be symmetrically shaped. The resulting posterior distributions of√
δT δ were approximated by a normal and log-normal distribution with mean and

variance equal to the respective mean and variance of the obtained MCMC samples of√
δT δ and its logarithm. The left-hand-side column of Figure 5.2 shows the resulting√
δT δ posterior distributions with the normal and log-normal approximations for

N = 150. The right-hand-side column of Figure 5.1 shows the results for N = 400.

Figure 5.1 shows that, in most cases, the difference between the histograms and
the log-normal and normal approximations is very subtle. In the case of AUCa = 0.6,
the best approximation seems to depend on sample size. For N = 400 it appears that
the normal approximation is slightly better in capturing the mode of the posterior
distribution. For N = 150, the log-normal approximation seems to outperform the
normal approximation. The empirical evidence from this simulation exercise indi-
cates that the posterior distribution of

√
δT δ can be approximated well by a normal

distribution with mean and variance equal to the respective mean and variance of
the MCMC samples of

√
δT δ obtained in the development study if sample size is

sufficient. When only limited data is available and AUCa is small, a log-normal ap-
proximation could be considered. Transforming the

√
δT δ posterior distributions and

their approximations to the AUC-scale results in conclusions regarding the quality of
approximation similar to those expressed above for

√
δT δ (see Figure 5.2).
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Figure 5.1: Empirical posterior distributions for
√
δT δ resulting from data with different

accuracy (rows) and sample sizes (columns). The dashed lines denote the log-normal (grey)
and normal (black) approximation. a. Posterior of data with AUCa = 0.6. b. AUCa = 0.75
and c. AUCa = 0.9. The left hand side column shows results for N = 150, the right hand
side column for N = 400.
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Figure 5.2: Empirical posterior distributions for
√
δT δ resulting from data with different

accuracy (rows) and sample sizes (columns) transformed to AUCa-scale. The dashed lines
denote the transformed log-normal (grey) and transformed normal (black) approximation.
a. Posterior of data with AUCa = 0.6. b. AUCa = 0.75 and c. AUCa = 0.9. The left hand
side column shows results for N = 150, the right hand side column for N = 400.
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If the normal approximation to the
√
δT δ posterior from the development study

is used, the following form of the prior distribution for AUC∗a in the validation study
can be proposed:

fAUC∗a
(AUCa) =

fy
(
Φ−1 (AUCa)

)
×
∣∣∣∣ 1
φ (Φ−1 (AUCa))

∣∣∣∣ for AUCa ∈ [0.5; 1] , (5.3)

where fy (·) is a normal distribution with parameters µ and σ equal to the posterior
mean and standard deviation of

√
δT δ, Φ−1 (·) denotes the probit function, and

φ (·) is the density of the standard-normal distribution. In case we want to ignore
the development study information, it is clear from (5.3) that assuming a standard-
normal distribution for γ leads to a constant function for AUC∗a , i.e., to a flat prior
distribution for AUC∗a .

As summarized in Table 5.1, the prior distributions for the remaining parameters
introduced in (5.1) have the same form as for the development study (see Section 3.3
of Chapter 3 for the argumentation about the choice of these priors).

Table 5.1: Prior distributions for all parameters in the model for the validation study.
x̂√

δT δ|Y
and s2√

δT δ|Y
denote the empirical mean and variance of the posterior distributions

of
√
δT δ coming from the development study.

Parameter Prior distribution
Prevalence
θ U (0.1, 0.9)

Parameters of the dichotomous reference test
SeT Beta (a, b) trunc(0.5, 1)
SpT Beta (c, d) trunc(0.5, 1)

Mean of biomarker values control group
µ0 N3

(
0, I3106)

Scaled difference biomarker distribution means
γ N

(
x̂√

δT δ|Y , s
2√
δT δ|Y

)
Biomarker-distribution standard deviations
σd̃ U (0, 1000)

In order to obtain posterior results for the considered parameters, the proposed
model is fitted by MCMC, as implemented in the OpenBUGS software. The annotated
BUGS code is provided in Section A.3 of Appendix A.
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5.2.4 Validation criterion

By combining likelihood (5.1) with the proposed prior distributions (Table 5.1), a
posterior distribution for AUC∗a is obtained. The posterior can be used to decide
whether the diagnostic-biomarker index can be considered validated or not. Toward
this end, a validation criterion is required. We consider a Bayesian hypothesis testing
rule as the validation criterion [110]. In particular, let us consider the following null-
and alternative-hypotheses:

H0 : AUC ≤ τ,

H1 : AUC > τ,

where τ is a fixed value, possibly depending on the biomarkers and application of
interest. If, for example, current diagnostic tests are already very accurate, a larger
validation criterion would be selected than when the current tests are only of moderate
accuracy. Based on the posterior distribution of AUC∗a , we compute the probability
of H0. If this probability is smaller than α, say, we consider the diagnostic index as
validated.

5.3 Simulation study

To compare the effect of including information about the accuracy from the devel-
opment study, as opposed to ignoring this information, we performed a simulation
study. In this simulation study, we evaluated the power to reject the proposed null
hypothesis, i.e., to satisfy the validation criterion, for a series of sample sizes. Power
was defined as the proportion of simulated data sets for which the null hypothesis
was rejected. For each sample size, the power was investigated for a study using the
informative prior distribution for AUC∗a based on the development study, and for a
study using the flat prior for AUC∗a resulting from a standard-normal distribution for
γ.

We simulated data for three correlated biomarkers, which followed a different nor-
mal distribution for cases and controls (for a summary of all underlying parameters,
see Table 5.2). For each of the biomarkers, the individual diagnostic-performance
was described by AUC = 0.75. The true underlying optimal linear-combination of
the biomarkers, defined by the vector of coefficients a = (0.1594, 0.2237, 0.0972)T ,
yields AUCa = 0.7872. In addition, we assumed that an imperfect reference-test was
available with sensitivity and specificity of 0.85. Furthermore, the prevalence of cases
in the sample, θ, was considered to be equal to 0.5.
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Table 5.2: Parameter values underlying the sampled simulation data sets.

Parameter Value
Multivariate parameters
µ0 (0, 0, 0)T

µ1 (1.1683, 1.3490, 1.5082)T

Dependent biomarkers
(
ρ = (0.5, 0.9, 0.5)T

)
Σ0

(
1 0.5×

√
1× 3 0.9×

√
1× 2

0.5×
√

1× 3 3 0.5×
√

3× 2
0.9×

√
1× 2 0.5×

√
3× 2 2

)

Σ1

(
2 0.5×

√
2× 1 0.9×

√
2× 3

0.5×
√

2× 1 1 0.5×
√

1× 3
0.9×

√
2× 3 0.5×

√
1× 3 3

)
Parameters of the reference test
SeT 0.85
SpT 0.85

Prevalence
θ 0.5

Functions of multivariate parameters
AUC1 0.75
AUC2 0.75
AUC3 0.75
a (0.1594, 0.2237, 0.0972)T

Optimal combination parameters
µa,0 0
µa,1 0.6347
σ2
a,0 0.3490
σ2
a,1 0.2857
AUCa 0.7872

We assumed that, prior to the validation study, results from a single development
study consisting of 400 observations were available. In particular, the results from the
model developed in Chapter 3, with the ’optimistic’ AUCa-prior and flat SeT /SpT
prior distributions with the SeT and SpT > 0.5 restriction, was considered. Due
to sampling variability, the realizations of a single development study can lead to
different posterior distributions for AUCa which can influence validation results. To
acknowledge this, three development studies were selected based on their sampling
probability. In particular, 200 development studies were sampled and ordered by
their posterior median estimate of AUCa. Subsequently, the development studies
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corresponding to the 2.5-, 50-, and 97.5-percentile were selected. The 2.5- and 97.5-
percentile development studies led to posterior distributions that underestimated and
overestimated, respectively, the AUCa value with the posterior median AUCa equal to
0.7296 and 0.8469, respectively (see the histograms in Figure 5.3). The 50-percentile
development study yielded an unbiased posterior median AUCa estimate equal to
0.7873. For each of these development studies, the estimate of the optimal linear-
combination coefficients vector â (see Table 5.3) and the posterior

√
δT δ distribution

were retained. Because of the moderate size of the development studies (N = 400),
the normal approximation to the

√
δT δ-posterior distribution was considered.
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Figure 5.3: Posterior distributions (histograms) for the three selected development studies,
providing underestimated (a.), unbiased (b.), and overestimated (c.) value of AUCa. The
dashed black line presents the AUC∗a-prior corresponding to the (discounted by 200%) normal
approximation to the posterior

√
δT δ distribution. The dashed grey line denotes the flat

AUC∗a-prior corresponding to the standard-normal prior for γ. Validation criterion (τ) and
true underlying AUC∗a are indicated by the dotted grey and black vertical line, respectively.

Under the assumption that AUCa and AUC∗a are exchangeable, but that the indi-
vidual observations from the development and validation study are not, the posterior
predictive-distribution for

√
δT δ would have been the preferred prior for γ. As this

distribution is not obtainable when only one development study is available, we dis-
counted the posterior distribution of

√
δT δ to account for sampling variability. In

particular, the standard deviations of the approximating normal distributions for the
three simulated development-studies were multiplied by two. The resulting discounted
informative prior-distributions for AUCa are shown, together with the flat prior, in
Figure 5.3.

To calculate the power of the validation study, 200 data sets were simulated with
sample sizes equal to 100, 400, 600, and 800. In each data set, the simulated biomarker
values for each subject were transformed into the diagnostic index by using the es-
timates of a obtained in each of the three selected development studies (Table 5.3).
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In this way, for each development study and sample size combination, 200 validation
data sets with ’univariate’ biomarker-based index were obtained.

Table 5.3: Estimates (based on posterior medians) of the optimal linear-coefficient vector
â for the three considered development data studies and their corresponding true underlying
values.

Development data set
â 2.5%-tile 50%-tile 97.5%-tile True
â1 0.0610 0.0985 0.0200 0.1594
â2 0.1673 0.2101 0.2557 0.2237
â3 0.0966 0.1271 0.3046 0.0972

For the analysis of the validation data sets, the prior distributions were defined
as indicated in Table 5.1. In particular, for µ0, a flat normal prior N(0, 106) was
considered. For σ0 and σ1, uniform prior distributions defined between 0 and 1000
were used. As in the development study, sensitivity and specificity of the imperfect
reference-test were given Beta(1, 1) priors, left truncated to be larger than 0.5 in
order to ensure identifiability. Finally, a uniform distribution between 0.1 and 0.9
was assumed as the prior distribution for θ. Avoiding the extremes of the parameter
space for θ alleviates convergence problems with the MCMC algorithms deployed to
fit the model.

To compare the power estimates for the proposed design with the power of the ’tra-
ditional’ frequentist design, we investigated whether the well-known fact that Bayesian
analysis is asymptotically identical to frequentist analysis if a flat prior is assumed
applies to the case of the moderate data set sizes considered in this chapter. To this
aim, we considered data with the true disease status information. In particular, the
Bayesian power simulation with a flat AUC∗a-prior was compared to the frequentist
power simulation, as well as to the results of a frequentist power calculation [133].
The underlying true settings were as before (Table 5.2) and the diagnostic index was
constructed based on â of the development study that yielded the unbiased estimate
of a (see Table 5.3).

The frequentist power simulation was performed by bootstrapping the 60%-
confidence interval (note that the significance level (α) of 20% was assumed) around
the point estimate of AUC∗a under the binormal assumption [81]. In case the
lower limit of this interval exceeded 0.75, H0 was considered to be rejected and the
diagnostic-biomarker index was considered validated. This type of hypothesis testing
based on the 60%-confidence interval is equivalent to a one-sided hypothesis test with
the type-I error probability equal to 0.2. The proportion of the cases when H0 was
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rejected provided an estimate of the frequentist power.
For the frequentist power calculation, the following general equation was consid-

ered:

1− β = Φ−1


√
nc (θ0 − θ1)2 − zα

√
V0

(
θ̂
)

√
V1

(
θ̂
)

 .

In the equation, (1-β) is the desired power, Φ−1 (·) is the probit function, θ0 and
θ1 represent the conjectured AUC∗a under H0 and H1, respectively, nc denotes the
considered number of cases, and zα indicates the upper α-quantile of a standard-
normal distribution. The number of controls is accounted for by the definition of the
variance functions, depending on the ratio of controls versus cases. V0

(
θ̂
)

and V1

(
θ̂
)

represent the variance function of AUC∗a under H0 and H1, respectively. Estimates
of V0

(
θ̂
)

and V1

(
θ̂
)

are expressed as indicated in Obuchowski et al. [75], under
the assumption that the data are observed on a truly continuous scale and follow an
underlying binormal distribution:

V̂
(
θ̂
)

=
[

0.0099× exp
(
−a

2

2

)]
×

[(
5a2 + 8

)
+
(
a2 + 8

)
R

]
−
[

0.0398× a2exp

(
−a

2

2

)]
,

where a = Φ−1
(
θ̂
)
× 1.414, and R denotes the ratio of patients without the disease

to those with the disease. In the considered example with prevalence equal to 0.5,
R = 1.

As for the validation criterion, we considered τ = 0.75. This can be interpreted
as considering a hypothesis test to investigate whether the biomarker index is signif-
icantly more accurate than any of the biomarkers alone. For the proposed model,
taking development study accuracy information into account, α was set equal to 0.2.
In other words, we regarded the diagnostic-biomarker index to be validated if the
posterior probability that AUC ≤ 0.75 was smaller than 0.2 (see the illustration in
Figure 5.4). In order to ensure valid power comparisons, type-I error characteristics
for both the proposed and the ’traditional’ prior setting were investigated by consid-
ering results under the null hypothesis (see Appendix D). Figure D.1 in Appendix D
shows that for α = 0.2, a significant difference in type-I error between the two prior
settings is observed. Therefore, α was lowered to 0.06 and 0.15 for the ’traditional’
prior setting considering the 2.5- and 50-percentile development studies, respectively.
For the 97.5-percentile development study, α was increased to 0.4. Adjusting α results
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in type-I errors which are statistically non-significant for all considered sample sizes
(Figure D.2 in Appendix D), with exception of the N=100 case for the 97.5-percentile
development study setting.
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Figure 5.4: Example of a validated diagnostic-biomarker index for τ = 0.75 and α = 0.2.
The posterior distribution of AUC∗a is denoted by the solid black line. The dashed grey
line indicates the validation criterion τ and the dashed black line indicates the observed
α-quantile of the posterior AUC∗a distribution.

According to the discounted prior-distributions shown in Figure 5.3, the prior
probability that AUC ≤ 0.75 considering the proposed model, taking the develop-
ment study accuracy information into account, is equal to 0.62, 0.26, and 0.007 for
the underestimating, unbiased, and overestimating development-study, respectively.
Since the prior for the ’traditional’ setting is a flat prior between 0.5 and 1, the prior
probability that AUC ≤ 0.75 in this case, is equal to 0.5.

Thus, in total, each of the 200 validation-study data sets was analysed seven times:
ignoring the prior information about AUC∗a , but including the true disease status (to
compare the flat-prior Bayesian and frequentist results); ignoring the prior informa-
tion about AUC∗a , while including the imperfect reference-test result (for each of the
three selected development studies, to obtain power estimates for the ’traditional’
study design); and including the prior information about AUC∗a and the imperfect
reference-test result (for each of the three selected development studies, to obtain
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power estimates for the proposed validation-study design).
The models were fitted using OpenBUGS 3.2.1 [60]. Annotated BUGS-model code

can be found in Section A.3 of Appendix A. Results were analyzed and summarized
using R 3.0.1 (x64) [90]. The R-package R2OpenBUGS [111] was used as an interface
between R 2.14.2 and OpenBUGS. For all data fits, five chains were considered,
with 10,000 iterations retained after a 10,000 iteration burn-in. For the development
study, fitting time was approximately 8 hours. Fitting times for the validation studies
depended on the sample size and were equal to, approximately, seven, 30, 35, and 45
minutes for sample sizes of 100, 400, 600, and 800, respectively, on a 64-bit, 2.6 GHz,
8GB RAM machine.

5.4 Results

Table 5.4 presents the results for the frequentist power obtained from calculations
(’Freq Calc’), simulations (’Freq Sim’), and simulations for the Bayesian analysis
with a flat AUC∗a-prior (’Freq’). There were no convergence problems when fitting
the Bayesian model in any of the scenarios. Table 5.4 does not indicate any sta-
tistically significant differences between the obtained power estimates. Thus, it can
be concluded that, for the considered sample sizes, the frequentist approach and the
Bayesian flat-prior analysis provide equivalent results.

Table 5.4: Results of the comparison between the frequentist and Bayesian flat-prior power
simulations/calculations. Proportions (standard errors) of validated diagnostic biomarker-
indices are given for all considered validation study sample sizes for the frequentist calculation
(’Freq Calc’), simulation (’Freq Sim’), and the Bayesian flat prior simulation (’Freq’).

Validation study sample size
Model n=100 n=400 n=600 n=800
Freq Calc 0.48 0.79 0.88 0.93
Freq Sim 0.50 (0.04) 0.77 (0.03) 0.89 (0.02) 0.96 (0.01)
Freq 0.38 (0.04) 0.74 (0.03) 0.87 (0.02) 0.94 (0.02)

The results of the simulation of the validation-study power are presented in Figure
5.5. For each of the three considered development data sets (panels a – c), the
empirical power is presented as a function of the validation study size for the case
when the informative AUC∗a-prior (shown in Figure 5.3) is used, as well as when the
flat AUC∗a-prior (corresponding to the ’traditional’ analysis) is applied. Note that,
in all considered cases, not more than 1% of non-convergence was observed (data not
shown).
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Overall, power tends to increase with an increasing validation-study sample size.
However, when the prior information is too optimistic, as it is the case of the devel-
opment study that overestimates the AUC∗a value, the power decreases with an in-
creasing validation-study sample size (panel c of Figure 5.5). This is understandable,
because substantial validation data is needed to ’correct’ the information provided by
the severely-biased prior distribution.

As compared to the ’traditional’ flat-prior approach, including the prior informa-
tion from the development study increases the power, as long as the prior information
does not (severely) underestimate the true diagnostic accuracy (panel a of Figure 5.5).
Note that the situation depicted in panel a of Figure 5.5 is observed for a development
study corresponding to the 2.5-percentile of the distribution of the posterior median
estimates of AUCa. Thus, it is an unlikely situation. In our setting, when using
the prior obtained from a development study that correctly estimates the AUCa, ap-
proximately 100 subjects would be required in the validation study to obtain a power
of 0.53 (panel b of Figure 5.5). In a ’traditional’ flat-prior study, reaching the same
power would require 600 subjects.
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Figure 5.5: Empirical power as a function of the validation study sample size for the
underestimated (a.), unbiased (b.), and overestimated (c.) development study information.
Results are indicated for the flat (grey circles connected by the dashed line) and informative
(black circles connected by the solid line) AUC∗a-priors. The 95% confidence interval for
each estimate is indicated by the respective plus-signs.

5.5 Conclusions

We have proposed a novel Bayesian latent-class mixture model to validate a diagnostic
index based on a combination of correlated biomarkers. The model allows incorpo-
ration of prior information about the accuracy of the index. Toward this aim, the
posterior information about

√
δT δ from the development study of a moderate sample
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size can be approximated by a normal distribution and used as a prior distribution
for γ in the validation study. Based on the exchangeability principle, the normal ap-
proximation can be used to specify a range of priors, from a completely flat one to the
one matching the posterior distribution from the development study. Depending on
the particular implementation and comparability of the development and validation
study sampling populations, a prior between these two exchangeability extremes can
be selected [110, 17, 56].

In the presented simulation study, it was assumed that a validation study will be
performed after results from a single development study were obtained. To investigate
the range of expected results, the posterior information from the development studies
corresponding to the 2.5-, 50-, and 97.5-percentiles of the posterior median AUCa

range was considered for the use as prior information. To account for sampling vari-
ability in a single application, the standard deviation of the approximated posterior
distribution was discarded by a factor of two. Results show that using the prior infor-
mation derived from a development study can lead to substantial gains in efficiency.
In particular, when the 50-percentile development study information was included in
the validation study, rejecting H0 at a similar significance level with power of about
0.53 required about 20% of the validation sample size needed for a ’traditional’ study,
i.e., when ignoring this information. Overall, efficiency was gained in all settings,
except when the underestimating development study was considered in combination
with validation study sample sizes smaller than 400 observations.



Chapter 6
Transferring cut-off values
between assays for
Alzheimer’s disease
CSF-biomarkers

In the following chapter, a novel two-stage Bayesian model to transfer AD CSF-
biomarkers cut-off values from a current to a new assay is proposed. The problem
setting is discussed in Section 6.1. The currently applied linear-regression-based cut-
off transfer method and novel two-stage Bayesian model are discussed and developed,
respectively, in Section 6.2. To investigate model performance and its applicability to
real data sets, the proposed model is applied to simulated and two real Alzheimer’s
disease CSF-biomarker data sets. A description of the simulation study can be found
in Section 6.3, while the real data set application is discussed in Section 6.4. Results
from both the simulation study and the real data applications can be found in Section
6.5. Finally, concluding remarks can be found in Section 6.6.

6.1 Problem setting

Over the past two decades, numerous studies have assessed potential applications of
cerebrospinal fluid (CSF) biomarkers in the field of Alzheimer’s disease (AD). There
is a general agreement across studies that an initial decrease in CSF-Aβ1−42, followed

93
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by an increase in total tau and/or phosphorylated tau, is a reflection of ongoing
neuropathology (amyloidopathy, tauopathy) of the AD type in the brain of affected
subjects [47, 79]. In addition, CSF biomarker analysis was integrated in (research)
criteria for diagnosis of AD [66, 28]. Position Emission Tomography (PET) imaging
has been approved by the Food and Drug Administration (FDA) to identify subjects
with ongoing amyloidopathy [129]. The European Medicine Agency (EMA) qualified
the combination of CSF-Aβ1−42 and total tau for use as a tool for patient stratification
and patient enrichment in clinical trials [68].

However, these guidance documents do not specify the use of a specific assay or
technology, nor do they provide advice for the manufacturer on acceptance criteria
for analytical and diagnostic-performance requirements. A laboratory that desires in-
tegration of AD biomarker quantification in its portfolio has the choice among several
commercially available assays, which differ with respect to their world-wide availabil-
ity, ease-of-use, technology, design, critical raw materials (antibodies, calibrators),
regulatory status, as well as the level of validation [3]. At present, there is no ref-
erence standard or reference method that is fully representative for the endogenous
peptide [73] and the same assay can generate different values across different labora-
tories [119, 115, 12, 108]. Efforts to improve the assays’ between-lab variability are
already on-going [119, 64, 21].

The use of a biomarker assay for patient classification implies the need to es-
tablish a cut-off value to assign patients to the desired categories (e.g. No-AD/AD).
At present, these cut-offs cannot be derived universally and each laboratory has to
establish its own cut-off for the assay of choice [51, 13]. These efforts are time-
consuming and require well-characterized samples, preferably from subjects with
autopsy-confirmed AD. It has been shown that cut-off values derived by using the
clinical diagnosis as the reference test lead to a shift in the cut-off value as com-
pared to using the autopsy confirmed diagnosis [116], with suboptimal sensitivity and
specificity as a result. However, well-characterized samples like those obtained from
clinical trials or world-wide consortia, are not widely available in quantities sufficient
for repeated testing. Therefore, the data sets used to derive a cut-off value are often
small with a total of 100 to 200 measurements [107, 118, 72, 80, 43], resulting in cut-off
values with high uncertainty. These precision aspects are typically ignored in practice
[9] and, to our knowledge, have not been reported for AD CSF-biomarkers. When a
laboratory wants to convert a test procedure for a specific analyte to a newer assay,
the cut-off value has to be derived for this new assay. The best way to do this is by
testing samples of well-diagnosed subjects. In the absence of these samples, however,
it is a common practice to test available samples ’side-by-side’ with the current and
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new assay and to transfer the measurements and/or the cut-off value of the current
assay to the new assay by means of a linear-regression formula [42, 65, 46, 124, 49].
To our knowledge, the validity and the effect of this cut-off transfer method on the
clinical performance of the biomarker measured with the new assay has not been
studied.

In this chapter, we study the properties of the linear-regression-based method
of transferring the cut-off value of a current assay to a new assay. Moreover, we
compare it to a novel Bayesian method that we have developed. Toward this aim, we
undertake a simulation study and apply the methods to two sets of data with Aβ1−42

measurements from the BIODEM lab of the University of Antwerp. In the process,
we also evaluate the precision of the obtained cut-off estimates as a function of the
size of data sets.

6.2 Methods

In the next section the currently applied linear-regression-based cut-off transfer
method is discussed and a novel two-stage Bayesian method is proposed. As a starting
point we first discuss the assumed data structure, assumptions, and notation used in
the remainder of this chapter.

6.2.1 Data structure, assumptions, and notation

Consider two assays that measure the same biomarker (Y ), a current one (which
generates data indicated by Yc) and a new one (producing Yn). Moreover, assume
that, conditional on true disease status D, these biomarker values are distributed
according to a bivariate normal distribution:(

Yc

Yn

)
|D = d ∼ N2

((
µc,d

µn,d

)
,

(
σ2
c,d ρdσc,dσn,d

ρdσn,dσc,d σ2
n,d

))
,

where µc,d and µn,d are the mean of the biomarker distribution in disease group d

(d = 0 for controls; d = 1 for cases) for the current and new assay, respectively. More
specifically, we assume that µj,1 ≥ µj,0 for j ∈ {n, c}. The variances of the respective
current- and new-assay biomarker distributions for group d are denoted by σ2

c,d and
σ2
n,d. Finally, the true disease-status-dependent correlation between both assays is

denoted by ρd.
Based on the assumption of normally-distributed biomarker data and a particular

order of the biomarker-distribution means with respect to true disease status D, the
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assay-specific optimal cut-offs maximizing the Youden-index (indexed by j ∈ {c, n})
can be defined by [103]

cj =

(
µj,1σ

2
j,0 − µj,0σ2

j,1
)
− σj,0σj,1

√
(µj,0 − µj,1)2 + (σj,0 − σj,1) ln

(
σ2
j,0/σ

2
j,1
)(

σ2
j,0 − σ2

j,1
) . (6.1)

Assuming equal variances [132], (6.1) simplifies to:

cj = µj,0 + µj,1
2 . (6.2)

In general, we assume that two sets of data are available. One data set contains
measurements only from the current assay on which the cut-off, cc, for the current
assay is estimated. This data set will be referred to as the current-assay cut-off
data set. For this data set assume that GS reference-test information is available.
The second data set, referred to as the new-assay-transfer data set contains data
from samples measured side-by-side on both assays, but for which GS reference-test
information is lacking.

In the next section, the overall strategy is to combine the information about cc
from the current-assay cut-off data set, with the information contained in the new-
assay data set to come up with an estimate for cn. In general, a linear-regression-based
transfer method (see Section 6.2.2) is applied. In order to avoid biased estimates, we
propose a two-stage Bayesian latent-class model as developed in Section 6.2.3.

6.2.2 Linear-regression-based cut-off transfer

Current-assay cut-off estimation

A variety of ROC curve estimation and cut-off selection methods exist [132] when
the information about the disease-status of the subjects is available. It is beyond the
scope of this dissertation to compare the performance of all methodologies. To come
up with an estimate of ĉc from the current-assay cut-off data set, we focused on the
fully non-parametric (empirical) direct estimation method, in which the cut-off value
is obtained by selecting the (observed) biomarker value with the highest Youden-index
[86, 130]. This approach is often used to establish cut-off values for AD biomarkers
[107, 118, 72, 80]. It is appropriate because sensitivity and specificity are deemed of
equal importance in AD diagnosis [13]. Hence, the prevalence of AD and the relative
cost of a false-negative classification, as compared to a false-positive classification, are
not included in the selection of an ’optimal’ cut-off [9, 42, 86, 33]. The standard error
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(SE) and 95% confidence interval (CI) of the estimated cut-off value can be estimated
by bootstrapping.

New-assay cut-off estimation

If data containing biomarker measurements from the new-assay were available, to-
gether with results from a GS reference-test, the new-assay cut-off could be estimated
applying the methods described in the previous paragraph. However, usually no GS
reference-test information is available in the new-assay-transfer data set, but mea-
surements on both assays are available. In this case, one could think of using the
information about the linear relationship between the current and new assay to trans-
late ĉc to the new assay as an estimate for ĉn. This is exactly what is done in the
linear-regression-based cut-off transfer method. An estimate of the relation between
the current- and new-assay is obtained by fitting the following linear-regression model:

Yn,i = β0 + β1Yc,i + εi with εi ∼ N
(
0, σ2) , (6.3)

where (Yc,i, Yn,i) is the pair of measurements for subject i obtained with the current
(c) and new (n) assay, contained in the new-assay-transfer data set. The cut-off value
of the new assay (ĉn) is then obtained by transforming the cut-off value of the current
assay (ĉc) as follows:

ĉn = β̂0 + β̂1ĉc, (6.4)

where β̂0 and β̂1 are the estimated coefficients of linear-regression model (6.3).
The SE of the new-assay cut-off value can be estimated with the delta method

[98], taking into account the SE of the current-assay cut-off, as well as the uncertainty
about the estimated regression parameters.

Note that the regression model (6.3) is fitted to the entire data set, which contains
a mixture of control and AD subjects. Thus, the method assumes that the same linear
relationship holds in the control and AD populations. If this is not the case, however,
model (6.3) is wrong. This can be shown analytically with the following simplified
example.
Assume that assay-specific variances are equal, irrespective of true disease status D,
for assay j ∈ {c, n}:

σj,0 = σj,1 ≡ σj . (6.5)

Then the cut-off of assay j ∈ {c, n}, cj , is defined by (6.2) and we can define the
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sensitivity (Sej) and specificity (Spj) of cj as

Sej = 1− Φ{(cj − µj,1)/σj},

Spj = Φ{(cj − µj,0)/σj},

such that

Sej = Spj ≡ Φ{(µj,1 − µj,0)/2σj},

where Sej and Spj are sensitivity and specificity of assay j ∈ {c, n}, respectively, and
Φ(·) is the cumulative distribution function of the standard-normal distribution.

Under (6.5), we get that Yn, conditionally on Yc = y and D = d, follows a normal
distribution with mean µn,d − ρd σn

σc
µc,d + ρd

σn

σc
y and variance σ2

n(1− ρ2
d). Note that

µn,d − ρd σn

σc
µc,d is the intercept and ρd

σn

σc
is the slope of the regression of Yn on Yc.

Consider a sample, for which P (D = 1) ≡ π. If we estimate the regression of Yn
on Yc without the information about the disease status of the subjects, we will be
estimating the following regression line:

π

(
µn,1 − ρ1

σn
σc
µc,1 + ρ1

σn
σc
y

)
+ (1− π)

(
µn,0 − ρ0

σn
σc
µc,0 + ρ0

σn
σc
y

)
. (6.6)

That is, we will be estimating a mixture of the regression lines for cases (D = 1) and
controls (D = 0).

Now, assume that we will compute the cut-off for the novel assay, c∗n, say, by
applying the regression equation (6.6) to the cut-off cc, given in (6.2). We then
obtain:

c∗n = π
(
µn,1 − ρ1

σn
σc
µc,1 + ρ1

σn
σc

µc,1 + µc,0
2

)
+ (1− π)

(
µn,0 − ρ0

σn
σc
µc,0 + ρ0

σn
σc

µc,1 + µc,0
2

)
(6.7)

= µn,0 + π(µn,1 − µn,0) + σn
µc,1 − µc,0

2σc
{(1− π)ρ0 − πρ1} .

In general, c∗n, defined in (6.7), is not equal to cn, given in (6.2). In other words,
transfer of the cut-off for the current assay (cc) to a cut-off for the novel assay by
using a regression fitted to the mixed sample without using the disease-labels will, in
general, not result in the correct cut-off (cn), which provides the maximum Youden-
index.

Assume that ρ0 = ρ1 ≡ ρ, i.e., that the slopes of the regression lines for the D = 0
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and D = 1 sub-samples are equal. Then

c∗n = µn,0 + π(µn,1 − µn,0) + (1− 2π)ρσn
µc,1 − µc,0

2σc
. (6.8)

Now, if π = 0.5, then c∗n, defined in (6.8), becomes equal to cn, given in (6.2). Thus,
if the sample is an equal mixture of cases and controls and the slopes of the regression
lines are equal, the regression-based transfer will yield the correct cut-off. However,
if π 6= 0.5, the result will be biased.

Finally, if we assume that ρ0 = ρ1 ≡ ρ and that µn,1 − ρσn µc,1
σc

= µn,0 − ρσn µc,0
σc

,
i.e., that the slopes and the intercepts of the regression lines for the D = 0 and D = 1
sub-samples are equal, then c∗n, defined in (6.8), becomes equal to cn, given in (6.2),
irrespectively of π. Thus, in case the regression lines for the D = 0 and D = 1
sub-samples are equal, the regression-based transfer method will yield the correct
cut-off.

Consequently, using the estimated coefficients from (6.4) may lead to a biased
cut-off value for the new assay. In fact, as shown above, assuming bivariate normality
with equal variances, unbiased results are obtained only if (1) the regression lines have
the same intercept and slope in the AD and control groups, or if (2) the regression
lines have the same slope in both groups and the data set contains an equal number
of diseased and control subjects.

An example of a biased setting is shown in Figure 6.1. In panel a of this figure, the
underlying theoretical binormal distributions are indicated in green for the controls
and red for the cases. The different dependence between the current and new platform
observations conditional on the true disease status – indicated by the red and green
solid-line, respectively – is apparent. The cut-off estimated by the linear-regression-
based transfer method is indicated by the blue dashed-line. The true underlying
cut-off of the new platform is indicated by the black dashed-line. It is clear from
panel a of Figure 6.1 that the new-assay cut-off ĉn obtained by the linear-regression
transfer method is biased. Panel b shows a random sample of 64 observations from the
theoretical setting displayed in panel a. Without any indication of the true disease
status of the subjects contained in the data, it is very difficult to conclude from panel
b of Figure 6.1 whether there is a different linear relationship between the current-
and new-assay for AD and control patients.

In order to obtain unbiased and more efficient estimation of the new cut-off esti-
mate ĉn, we propose a two-stage Bayesian approach which is discussed in the next
section.
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Figure 6.1: Illustration of a possible underlying true setting where the application of
the linear-regreassion based cut-off transfer method would lead to a biased estimate of the
new-assay cut-off. a. True underlying bivariate normal distributions by true disease status.
Control and case distributions are indicated in green and red, respectively. Underlying linear
relations are indicated by the solid lines colored by the respective disease group – estimated
linear-regression relation indicated in blue. The new-assay cut-off is indicated by the dashed
line, colored based on its estimation method – blue = linear-regression-based; black = true
cut-off. b. Example of simulated data (N = 64) based on the true underlying setting shown
in panel a.

6.2.3 Two-stage Bayesian cut-off transfer method

This approach is a novel method that allows transferring the current-assay cut-off
value to a new assay when the disease-status of the subjects, for which measurements
for the current and new assays were collected, is unavailable or only based on an
imperfect clinical-diagnosis.

Stage 1

In the first stage, information about the distribution of the current-assay measure-
ments is obtained by analysing the current-assay cut-off data set, in which GS
reference-test information (autopsy-confirmation) of the diagnosis is also available.
In particular, normal distributions are fitted to the measured biomarker-values (or
transformations thereof) for the AD and control group by using a Bayesian model
with as uninformative prior distributions as possible.
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The likelihood of this latent-class model with two classes is defined as follows:

L (µc,0, µc,1, σc,0, σc,1|yc,d) =

Nc∏
i=1

 1√
2πσ2

c,1

exp

{
1

2σ2
c,1

(yc,i − µc,1)2

}di

×

 1√
2πσ2

c,0

exp

{
1

2σ2
c,0

(yc,i − µc,0)2

}1−di

, (6.9)

where µc,d and σ2
c,d are the mean and variance of the AD (d = 1) and control (d = 0)

current-assay biomarker distributions, respectively. Vector yc = (yc,1, . . . , yc,Nc)T

contains the biomarker data on Nc subjects (indexed by i) measured with the current-
assay and d = (d1, . . . , dNc)T contains their GS reference-test values.

As in Chapter 5, we propose to reparametrise the problem in terms of γc =
Φ−1 (AUCc). We assume a flat prior distribution for the AUC of the current-
assay (AUCc), while the prior for the mean of the AD group is defined as µc,1 =[
Φ−1 (AUCc)×

√
σ2
c,0 + σ2

c,0

]
+ µc,0. As shown in Section 5.2 of Chapter 5, a

standard-normal distribution prior for γc leads to a flat prior for AUCc. The prior dis-
tributions for the remaining parameters µc,0, σc,0, and σc,1 are summarized in Table
6.1.

Table 6.1: Proposed prior distributions for stage 1 of the two-stage Bayesian cut-off esti-
mation approach.

Parameter Prior distribution
Mean of biomarker values control group
µc,0 N

(
0, 106)

Scaled difference biomarker distribution means
γc N (0, 1)

Biomarker-distribution standard deviations
σc,d U (0, 1000)

After fitting the model defined in (6.9), results are obtained for parameters µc,0,
γc, σc,0, and σc,1 in the form of posterior distributions, which can be used in the
second stage of the analysis.



102 Chapter 6. Transferring CSF-biomarker assay cut-off values

Stage 2

In the second stage, a Bayesian latent-class model with two classes is fitted to the
new-assay-transfer data set. In this data set, measurements of the current and new
assays are available for all subjects, but there is no GS information for the subjects’
diagnosis. The latent-class model predicts the unknown disease status (AD or control)
of the subjects using the biomarker values obtained with both assays.

The full-data likelihood of the Bayesian latent-class model in the second stage has
a similar structure as the model presented in Section 3.2 of Chapter 3. The full-data
likelihood expressed with the parameters of the problem at hand is defined as follows:

L
(
µ0,µ1,Σ0,Σ1, θ|Y , d̃

)
=

N∏
i=1

 1√
(2π)K |Σ1|

exp

{
−1

2 (yi − µ1)T Σ−1
1 (yi − µ1)

}
θ

d̃i

×

 1√
(2π)K |Σ0|

exp

{
−1

2 (yi − µ0)T Σ−1
0 (yi − µ0)

}
{1− θ}

1−d̃i

, (6.10)

where µd̃ =
(
µc,d̃, µn,d̃

)T
are the mean vectors containing the current- and new-

assay means in the respective latent-disease status groups (d̃ = 0 for controls,
d̃ = 1 for cases). Moreover, Y =

(
yT1 , . . . ,y

T
N

)T , with yi = (yc,i, yn,i)T con-
taining the biomarker values for the current- and new-assay for subject i. Vector
d̃ = (d1, . . . , dN )T contains the latent-disease status indicators for all N subjects,
respectively. Finally, the overall variance-covariance matrices Σ0 and Σ1 are defined
as

Σd̃ =
(

σ2
c,d̃

ρd̃σc,d̃σn,d̃

ρd̃σn,d̃σc,d̃ σ2
n,d̃

)
for d̃ ∈ {0, 1} ,

where the variances of the respective current- and new-assay biomarker distributions
for disease group d̃ are denoted by σ2

c,d̃
and σ2

n,d̃
. Finally, ρd̃ denotes the correlation be-

tween the current- and new-assay biomarker values conditional on latent-true disease
status d̃. As in the first stage, the model is reparametrised such that γc = Φ−1 (AUCc)
and γn = Φ−1 (AUCn).

The proposed prior distributions for the second-stage model are summarized in
Table 6.2. In order to improve the efficiency of the estimation of ĉn, we propose to
include information from the current-assay cut-off data set. The prior distributions
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for the parameters of the current-assay normal distributions in the second stage are
constructed by considering informative normal distributions with mean and variance
based on the posterior distributions from stage 1. These parameters are set equal to
the empirical mean and variance from the obtained posterior samples from the first
stage. To ensure strictly positive values for σc,0 and σc,1, the considered normal prior
distributions are truncated to be larger than 0. For the remaining parameters, flat
priors are assumed.

Table 6.2: Proposed prior distributions for stage 2 of the two-stage Bayesian cut-off esti-
mation approach. x̂µc,0|yc

and s2
µc,0|yc

, and xγc|yc
and s2

γc|yc
denote the empirical mean

and variance of the posterior distributions of µc,0 and γc, respectively, coming from the first
stage.

Parameter Prior distribution
Prevalence
θ U (0.1, 0.9)

Mean of biomarker values control group
µc,0 N

(
xµc,0|yc

, s2
µc,0|yc

)
µn,0 N

(
0, 106)

Scaled difference biomarker distribution means
γc N

(
xγc|yc

, s2
γc|yc

)
γn N (0, 1)

Biomarker-distribution standard deviations
σc,d N

(
xσc,d

, s2
σc,d

)
trunc(0,+∞)

σn,d U (0, 1000)

Correlation between current- and new-assay
ρd U (−1, 1)

The model then estimates the normal-distribution parameters (means and vari-
ances) for the biomarker values of both assays in the AD and control populations.
Using the posterior estimates in (6.1) leads to a posterior distribution of ĉn, from
which a point-estimate can be selected. The precision of the new-assay cut-off value
is estimated by the standard deviation of the posterior distribution of the cut-off
value.

6.2.4 Data sets

Two data sets were available for which AD CSF-biomarker cut-off transfer was con-
sidered. The first data set was obtained from BIODEM, the Reference Center for
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Biological Markers of Dementia (University of Antwerp, Belgium) and contained in-
formation about two AD cohorts. The second data set, contained data for one cohort
from Euroimmun AG.

INNOTEST-EUROIMMUN data

This set of data consists of two parts. The first part is a data set with CSF Aβ1−42

values of 42 age-matched control and 42 autopsy-confirmed-AD subjects measured
with the ELISA kit INNOTESTr − βAMYLOID(1−42) tested in the BIODEM lab
(referred to as unpublished CSF-data in [118]). This is the current-assay cut-off data
set (see Section 6.2), as the information of the autopsy-confirmed-AD status of sub-
jects is available. Figure 6.2 presents the histograms of the INNOTEST measurements
for the control and AD groups.

Observed current−assay cut−off INNOTEST data

Aβ1−42 (pg/ml)

F
re

qu
en

cy

200 400 600 800 1000 1200

0
2

4
6

8
10

Control
AD

Figure 6.2: Histograms of the INNOTEST measurements for the control (green) and AD
(red) groups (current-assay cut-off data set).

The second part was a data set consisting of CSF Aβ1−42 values of 64 samples,
tested side-by-side with the INNOTEST (current) assay and the EUROIMMUN AG
(new) assay (see Figure 6.3). This is the new-assay transfer data set, because there
is no autopsy-confirmed diagnosis available for the samples.
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Figure 6.3: Scatter plot of the INNOTEST and EUROIMMUN measurements (new-assay
cut-off data set).

INNOTEST-INNOBIA data

This set of data contained CSF Aβ1−42 values of 95 control and 51 autopsy-confirmed
AD subjects, measured with the commercially available single-parameter ELISA kit
INNOTESTr− βAMYLOID(1−42) (current-assay) and the multiplex xMAP format
(Luminex Corp, Austin, Texas) with INNO-BIA AlzBio3 (new-assay). In this data set
(described in [72]) information about the autopsy-confirmed-AD status of subjects is
available for both the current- and the new-assay. Figure 6.4 presents the histograms
of the INNOTEST and INNOBIA measurements for the control and AD groups. The
scatter-plot of the measurements together with estimated regression lines for both
diagnosis groups is shown in Figure 6.5.
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Figure 6.4: Histograms of the observed measurements for the control (green) and AD (red)
groups. a. INNOTEST data. b. INNOBIA data.
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Figure 6.5: Scatter plot of INNOTEST and INNOBIA measurements, with a common
regression line (dashed black line) and regression lines by group (repectively colored solid
lines).
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6.3 Simulation study

To check the performance of the proposed two-stage Bayesian model described in the
previous section, a simulation study was performed. Correlated bivariate normal data,
Yd = (Yc,d, Yn,d)T , expressing a linear relationship between Yc,d and Yn,d conditionally
on group d, were generated. We assumed a perfect linear-relationship between the
parameters of the marginal normal distributions for each group d. Specifically, we
assumed µn,d = β0,d + β1,dµc,d and σ2

n,d = β2
1,dσ

2
c,d, for the marginal means and

variances, respectively. The assumed correlation between Yc,d and Yn,d, denoted by
ρd, effects the relationship between the parameters such that

Yn,d = β∗0,d + β∗1,dYc,d,

with

β∗0,d = β0,d + (1− ρd)β1,dµc,d,

β∗1,d = ρdβ1,d.

β∗0,d and β∗1,d are referred to as the observed intercept and slope of the linear relation
between the current- and new-assay in the respective disease status groups.

6.3.1 Simulation scenarios

Two simulation scenarios were considered. In the first setting, data were simulated
assuming a similar ’observed’ relationship between the current- and new-assay mea-
surements for both the AD and the control populations. The second scenario cor-
responds to the example already shown in Figure 6.1, where a different relationship
between the current- and new-assay measurements was assumed depending on true
disease status d. Table 6.3 contains the parameter values of both scenarios.

Scenario 1

In the first scenario (see the second column of Table 6.3), data were simulated assum-
ing a similar ’observed’ relationship between the current- and new-assay measurement
for both disease populations and a disease prevalence of 0.5. In order to obtain the
same ’observed’ regression line in both disease groups, i.e. that, β∗0,0 = β∗0,1, and
β∗1,0 = β∗1,1 we need to ensure that
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ρ0 = ρ1 ≡ ρ,

β1,0 = β1,1 ≡ β1,

β0,1 = β0,0 + (1 + ρ)β1 (µc,0 − µc,1) .

As can be seen from the second column of Table 6.3, the considered parameters
comply with these prerequisites. In terms of the operating characteristics, the first
simulation scenario represents data with AUC = 0.76 for both the current- and new-
assay, while at the optimal cut-off, sensitivity and specificity are equal to 0.83 and
0.6, respectively, for both assays.

Figure 6.6 shows the underlying true distributions (panel a) and an example of a
simulated data set (panel b) based on the underlying true distributions. As expected,
only a negligible difference between the true cut-off of the new-assay (dashed black
line) and the estimated cut-off using the linear regression translation method (dashed
blue line) can be observed.
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Figure 6.6: Illustration of a possible underlying true setting where the application of the
linear-regression-based cut-off transfer method would lead to a satisfactory unbiased estimate
of the new-assay cut-off. a. True underlying bivariate normal distributions by true disease
status. Control and case distributions are indicated in green and red, respectively. Under-
lying linear relations are indicated by the solid lines colored by the respective disease group
– estimated linear-regression relation indicated in blue. The new-assay cut-off is indicated
by the dashed line, colored based on its estimation method – blue = linear-regression-based;
black = true cut-off. b. Example of simulated data (N = 64) based on the true underlying
setting shown in panel a.

Scenario 2

The parameters underlying the second simulation scenario are summarized in the
third column of Table 6.3. In this scenario, the prevalence of disease is assumed to
be 0.8 and the parameter values were selected as to show a clear bias in the case the
linear-regression transfer method would be applied. For this simulation setting the
AUC of the current and new assay are equal to 0.83 and 0.72, respectively. At the
cut-off maximizing the Youden index, the sensitivity and specificity are equal to 0.87
and 0.53, respectively.
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Table 6.3: Underlying true parameter values used to simulate the data for the simulation
study.

Parameter Values for
Setting 1

Values for
Setting 2

Distribution parameters
µc,0 0.00 0.00
µc,1 1.54 1.40
µn,0 -80.00 -80.00
µn,0 -78.90 -78.23

σ2
c,0 3.30 1.30
σ2
c,1 1.48 1.48
σ2
n,0 1.57 1.30
σ2
n,1 0.68 0.37

Correlation coefficients
ρ0 0.92 0.92
ρ1 0.82 0.82

Linear coefficients
β0,0 -80 -80
β0,1 -79.96 -79.93
β1,0 0.69 1
β1,1 0.68 0.5
β̂0,0 -80 -80
β̂0,1 -79.78 -79.81
β̂1,0 0.64 0.92
β̂1,1 0.56 0.41

Simulation-study size

For each simulation scenario, current-assay cut-off data and new-assay transfer data
were simulated. The current-assay cut-off data sets contained (simulated) biomarker
values measured with the current assay and the AD-status of the subjects. To investi-
gate the effect of sample size on the estimation of the new-assay cut-off, we considered
sample sizes of 84, 150, and 300 subjects. The smallest sample size (84) was chosen to
be equal to the available real data in the INNOTEST-EUROIMMUN current-assay
cut-off data set (see Section 6.2.4).

The new-assay-transfer data sets contained (simulated) biomarker values measured
with the current- and new-assay, but no true disease status of the subjects. As for
the current-assay cut-off data sets, sample size was varied and sample sizes of 64, 150,
and 300 subjects were considered. Again, the smallest sample size (64) corresponds
to the available new-assay-transfer data contained in the INNOTEST-EUROIMMUN
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data (see Section 6.2.4). For each considered data set type and sample size, 400 data
sets were simulated.

6.3.2 Model fitting and diagnostics

For each current-assay cut-off and new-assay-transfer data set combination, the cut-
off for the new-assay was estimated with the linear-regression transfer model and
the proposed two-stage Bayesian model. In addition, also the results for the implied
sensitivity and specificity of the cut-off are considered.

The SE and 95% CI for the linear-regression transfer-method estimates were ob-
tained by bootstrapping. Ten-thousand bootstrapped data sets were sampled, cut-off
values were obtained, and the sample standard deviation of the resulting 10,000 cut-
off values was taken as the estimate of the SE. The 95% confidence interval for the
estimated cut-off value was obtained by selecting the 2.5 and 97.5% percentiles of the
bootstrapped cut-off values.

For the two-stage Bayesian model, the estimates of the parameters of interest were
obtained by using 10,000 samples from the posterior distribution after a burn-in period
of 10,000 samples from five independent MCMC chains. Median posterior values were
considered as point-estimates and retained for each data set fit. Starting values for
the MCMC chains were fixed at plausible data-based values for all parameters.

After fitting, the results were first checked by general diagnostic-tools in order to
assess convergence of the MCMC chains. Convergence over chains was investigated by
the Gelman-Rubin convergence index, for which a cut-off value of 1.1 was applied [38].
Chain-by-chain convergence was checked by using the Geweke convergence criterion
[40]. Fits for which the Gelman-Rubin index suggested non-convergence were excluded
from the results, while the Geweke index was monitored to ensure that, on average, no
more than two out of five chains were considered as non-converged for each parameter
over all simulated data sets.

The models were fitted by using OpenBUGS 3.2.1 [60]. Annotated BUGS code
can be found in Section A.4 of Appendix A. Results were analyzed and summarized
using R 3.0.1 (x64) [90]. The R-package R2OpenBUGS [111] was used as an interface
between R 3.0.1 and OpenBUGS.

6.4 Data application

Model applicability was also investigated by fitting the two data sets described in
Section 6.2.4.
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For the INNOTEST-EUROIMMUN data set, autopsy-confirmed-AD status is only
available for the current-assay data; hence, the cut-off for the new-assay has to be
transferred from the current-assay.

Since in the INNOTEST-INNOBIA data set autopsy-confirmed-AD status is avail-
able for both the current- and the new-assay, it is possible to directly estimate the
cut-off value for the new-assay. By discarding the autopsy-confirmed-AD status in
this data set, we can consider it a new-assay-transfer data set and use it to trans-
fer the current-assay cut-off estimate from the INNOTEST-EUROIMMUN current-
assay data set. This allows us to compare the transferred new-assay cut-off to the
estimate directly from the INNOTEST-INNOBIA data set. Moreover, since autopsy-
confirmed-AD status is available, it is possible to directly estimate and compare sen-
sitivity and specificity related to the differently estimated cut-off values.

6.4.1 Model fitting and diagnostics

For each data set, the cut-off for the new-assay was estimated with the linear-
regression transfer model and the proposed two-stage Bayesian model. In addition,
the results for the implied sensitivity and specificity of the cut-off are also considered.

The SE and 95% CI for the linear-regression transfer method estimates were ob-
tained as in the simulation study (see Section 6.3.2).

As for the simulation study, the estimates of the coefficients of the model were
obtained by using 10,000 samples from the posterior distribution after a burn-in period
of 10,000 samples from five independent MCMC chains. After fitting, convergence-
diagnostics measures similar to those used in the analysis of the simulated data were
applied (see Section 6.3.2).

6.5 Results

6.5.1 Simulation study

We investigated the performance of the linear-regression-based method (see Section
6.2.2) and the Bayesian approach (see Section 6.2.3) using the simulated data (see
Section 6.3). Figure 6.7 shows the means and 95% empirical intervals of the 400 cut-
off estimates for all settings in the two considered simulation study scenarios. In the
first simulation scenario, a similar linear relationship between the current- and new-
assay measurements in the control and AD populations was assumed. As expected,
in this case, the left panel of Figure 6.7 shows that both methods result in unbiased
estimates of the cut-off value, i.e., the estimated values are on average equal to the
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true value for the linear-regression-based transfer as well as the two-stage Bayesian
method.

In terms of efficiency, the two-stage Bayesian approach provides more efficient
results in all sample size settings as compared to the linear-regression-based transfer
method, as indicated by the narrower 95% CIs. Within each approach, sample size
seems to affect efficiency differently. For the linear-regression-based transfer method,
it is the sample size of the current-assay cut-off data set which is most important
in terms of efficiency. Increasing the current-assay cut-off data set size decreases the
length of the 95% CI more than increasing the size of the new-assay-transfer data set.
For the two-stage Bayesian approach the opposite is observed. Efficiency is increased
more by considering larger new-assay-transfer data sets than increasing the size of
the current-assay cut-off data set.

To make the results more interpretable, summary statistics of the sensitivity and
specificity, corresponding to the estimated cut-off values, are presented in Table 6.4.
In the table, the means and empirical 95% CIs of the cut-off estimates as well as the
corresponding sensitivities and specificities are contained for all simulation settings
for the first simulation scenario. Results show that for the largest data set combi-
nation, Nc = Nt = 300, the empirical 95% CI of the new-assay cut-off estimate is
[−80.092;−79.292] and [−79.925;−79.193] for the linear-regression-based and two-
stage Bayesian approach, respectively. The corresponding sensitivity and specificity
of these cut-offs lead to 95%-CIs of [0.692; 0.946] and [0.474; 0.718], and [0.7262; 0.896]
and [0.525; 0.659] for the linear-regression-based and two-stage Bayesian approach, re-
spectively. Although the two-stage Bayesian approach results are consistently more
precise, the 95% CIs of the sensitivity and specificity estimates are still considerably
wide.
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In the second simulated scenario, different linear relationships between the current-
and new-assay measurements in the control and AD populations were assumed. In
this case, the linear-regression-based method leads to biased estimates of the cut-off
value, for the reasons explained in Section 6.2. On the other hand, the Bayesian
approach provides unbiased estimates of the cut-off value (Figure 6.7).

From Figure 6.7 it is also clear that, in terms of efficiency, increasing current-
assay data set size increases efficiency for the linear-regression-based approach while
considering larger new-assay-transfer data set size improves efficiency of the two-stage
Bayesian approach.

Similar conclusions can be drawn for the sensitivity and specificity corresponding
to the estimated cut-off values (see Table 6.5). From the table, the bias for the linear-
regression-based approach is apparent for the estimated sensitivity and specificity cor-
responding to the new-assay cut-off. In terms of precision, for the Nc = Nt = 300 set-
ting, the empirical 95%-CIs of Seĉn and Spĉn are [0.574; 0.880; ] and [0.537; 0.729], and
[0.818; 0.916] and [0.484; 0.578] for the linear-regression-based and two-stage Bayesian
approach, respectively.
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Figure 6.7: Means and 95% confidence intervals (based on empirical estimates of the mean
and variance obtained from the 400 cut-off values for the simulated data sets) for estimated
cut-off values for the new assay obtained with the linear-regression and Bayesian method,
for the first and second simulation scenario (see text). Cut-off values were rescaled to obtain
a true cut-off values equal to 0. Nc: Sample size ’current-assay cut-off’ data, Nt: Sample
size ’new-assay-transfer’ data.

6.5.2 INNOTEST-EUROIMMUN data set

For the INNOTEST assay, the cut-off value was estimated directly from the diagnostic
labels in the current-assay cut-off data set. In particular, the estimated value was
equal to 638.5 (SE=55.39, 95% CI = [508.5, 728.0]), the same value as reported
previously [118]. The sensitivity and specificity corresponding to the estimated cut-
off value were equal to, respectively, 0.87 (SE=0.083, 95% CI = [0.64, 0.90]) and 0.62
(SE=0.069, 95% CI = [0.52, 0.79]). Worth noting are wide CIs for the estimated
values.

For the EUROIMMUN assay, the cut-off value was obtained by transferring the IN-
NOTEST cut-off value by using the linear-regression-based method and the Bayesian
approach. In particular, the cut-off value obtained by the linear-regression-based
method was equal to 364.4 (SE=39.48, 95% CI = [269.7, 426.8]), while for the Bayesian
approach it was equal to 402.8 (posterior-distribution SD=31.68, 95% credible inter-
val = [348.0, 473.9]). The obtained cut-off values are quite different, but given their
precision, they cannot be seen as statistically significantly different.

To visualize the importance of the uncertainty about the derived cut-offs for the
INNOTEST and EUROIMMUN assays, the cut-off values and the accompanying 95%
CIs were plotted on the scatter plot of biomarker values measured with both assays
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(Figure 6.8). The 95% CI for the INNOTEST cut-off value ranges from 508.5 pg/ml
to 728.0 pg/ml or, expressed on a relative scale, from -20% to +14% of the estimated
cut-off value. The 95% CI for the EUROIMMUN-assay cut-off value obtained by the
linear-regression-based method ranges from 269.7 to 426.8 pg/ml or from -26% to
+17% of the estimated cut-off value. The wide 95%CI for both assays imply that,
by assuming different cut-off values within the CIs, the Aβ1−42 -based disease-status
could be potentially altered for 13 of 64 subjects (20%) for the INNOTEST assay and
17 of 64 subjects (27%) for the EUROIMMUN assay.
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Figure 6.8: Scatter plot of Aβ1−42 values measured with INNOTEST (X-axis) and EU-
ROIMMUN (Y-axis) with estimated cut-off values and 95% CIs. INNOTEST: cut-off value
based on the non-parametric ROC curve estimate and maximal Youden-index. EUROIM-
MUN: cut-off value obtained by the linear-regression-based method.

6.5.3 INNOTEST-INNOBIA data set

We first obtained cut-off values and their SEs for both assays using the fully non-
parametric ROC-curve (see Section 6.2) estimated based on the available diagnosis
information (Table 6.6, first two columns). Worth noting are wide 95% CIs for the esti-
mated cut-off values, which indicate substantial uncertainty due to the limited sample
size of the data set. This is similar to the case of the INNOTEST-EUROIMMUN
current-assay cut-off data set (see Section 6.4).
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Table 6.6: Estimates of cut-off values and the corresponding sensitivity and specificity
for the INNOTEST-INNOBIA data set. Standard errors (SE) and 95% confidence (CI)
or credible (CrI) intervals are indicated between round and squared brackets, respectively.
First 2 columns: Estimated directly with non-parametric ROC analysis; last 2 columns:
Estimates for the INNOBIA assay obtained by transferring the INNOTEST cut-off with
linear regression and the novel two-stage Bayesian approach.

Parameter

INNOTEST
Non-para

ROC Estimate
(SE) [95% CI]

INNOBIA
Non-para

ROC Estimate
(SE) [95% CI]

INNOBIA
Lin. Reg.
Estimate

(SE) [95% CI]

INNOBIA
2-Stage Bayes

Estimate
(SE) [95% CrI]

Cut-off 539.5 (37.69)
[437.0; 553.1]

159.15 (3.13)
[147.6; 168.5]

172.8 (8.9)
[147.6; 179.6]

167.5 (5.58)
[156.1; 178.0]

Sensitivity 0.94 (0.046)
[0.80; 0.94]

0.88 (0.022)
[0.78; 0.90]

0.90 (0.035)
[0.78; 0.90]

0.91 (0.027)
[0.85; 0.95]

Specificity 0.88 (0.028)
[0.85; 0.95]

0.92 (0.016)
[0.84; 0.94]

0.80 (0.051)
[0.78; 0.94]

0.90 (0.024)
[0.84; 0.94]

The estimated cut-off value for INNOTEST Aβ1−42 (539.5 pg/ml) is the same as
the published value (see [72]) and somewhat smaller than the value obtained in the
INNOTEST-EUROIMMUN current-assay cut-off data set (638.5 pg/ml). However,
taking into account the considerable uncertainty associated with the estimates pre-
sented in Table 6.6, the difference could be either due to random variation or could
be caused by changes over time in lab equipment or assay reagents.

Similarly to the 95% CIs for the cut-off values, the CIs for sensitivity and speci-
ficity, implied by the estimated cut-off values, are also wide. They indicate substantial
uncertainty about the diagnostic performance of the assays.

In the next step, we estimated the cut-off value for the INNOBIA assay by applying
the linear-regression-based and Bayesian methods to the INNOTEST-INNOBIA new-
assay-transfer data set (see Section 6.4). The slopes of the linear relationship between
the observed values of the assays were significantly different between AD and control
cohorts (p = 0.0374), regression lines shown in Figure 6.5. The results are presented in
Table 6.6 (last two columns). The obtained cut-off values are equal to 172.8 and 167.5
for the linear-regression-based method and the novel Bayesian approach, respectively.
They are similar to the value of 159.1 obtained by the direct estimation (see Table
6.6, column 2), especially taking into account the limited precision of the obtained
estimates.
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6.6 Conclusions

The upcoming commercialization of a new generation of immunoassays for CSF AD-
biomarkers will include the full automation of tests, improved between-center and
between-lot variability, link to a reference method, and availability of run-validation
or proficiency panels [49, 53, 55, 23]. It is hoped that these improved assays will
enable the introduction of universal cut-off levels for the AD CSF-biomarkers [13].
However, due to the lack of left-over samples from the most important observational
studies which have been used to document the value for the markers, it will be difficult
or almost impossible to confirm the clinical utility of the new biomarker assays using
samples which have been analysed previously with the first generation of assays.

In this chapter, we have proposed a novel, Bayesian approach to the problem of
transferring a cut-off value to a new assay. Results of the simulation study suggest that
the method performs better than the often-used linear-regression-based method. In
particular, the latter requires that there exists a common linear relationship between
the current- and new-assay measurements in the control and AD populations. If
this assumption is violated, the method produces incorrect estimates of the cut-off
value for the new assay. The validity of the common linear relationship cannot be
verified if no reliable clinical-diagnosis information is available; yet, this is exactly the
reason why a transfer of an existing cut-off value may be needed. Note that for the
INNOTEST-INNOBIA Aβ1−42 data set, the assumption could be verified and was
shown not to hold (Figure 6.5).

The proposed Bayesian approach does not make an assumption of the linear re-
lationships. In addition, the Bayesian method results in unbiased and less variable
estimates of the cut-off as compared to the linear-regression method. The comparison
of widths of the 95% CI for different sample sizes (Figure 6.7, Table 6.4) demonstrates
that the differences in precision between both methods are substantial, with the pre-
cision of the Bayesian cut-off for the smallest sample sizes (84 and 64) almost equal
to the precision of the linear regression cut-off for the largest sample sizes (300 and
300).

Given that the Bayesian method provides unbiased cut-off estimates regardless of
the linear relationships between assay results and makes better use of the available
data, it is preferred over the linear regression method when a cut-off needs to be
transferred.

The Bayesian approach does require that the biomarker measurements (or a trans-
formed version thereof) are normally distributed. The Box-Cox transformation as a
way of normalizing biomarker values has been shown to perform well in the ROC con-



6.6. Conclusions 121

text [80, 33]. If needed, the method could be adapted to a semi-parametric approach
as the mixture of Dirichlet processes, which was proposed by [113] to establish an
optimal threshold using a Bayesian approach when the disease status is known.





Chapter 7
Concluding remarks and
future work

7.1 Concluding remarks

In this dissertation, we have proposed Bayesian models and approaches to accommo-
date issues related to the diagnosis of Alzheimer’s Disease. The proposed methods are
aimed at facilitating the development and validation of CSF-biomarker-based indices
when only imperfect reference-test information is available.

Overall, the use of a Bayesian approach offers important flexibility. By construc-
tion, it can accommodate any prior information related to, e.g., the AUC of the com-
bination of biomarkers or the diagnostic performance of the imperfect reference-test.
Moreover, issues related to model non-identifiability can be mitigated by introduc-
ing a small amount of information over many parameters. In contrast, a frequentist
approach would require strict restrictions on particular parameters. Throughout the
dissertation, these important characteristics of Bayesian statistics have been applied.

Diagnostic accuracy estimation

Estimating diagnostic biomarker-index’ accuracy when only imperfect reference-test
information is available is not straightforward. Ignoring the imperfectness of the
reference test results in biased estimates which may lead to the rejection of important
and useful biomarkers. In Chapters 3 and 4 we have proposed a Bayesian latent-
class model which provides unbiased estimates of the accuracy of a biomarker index,

123
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even when the biomarkers underlying the index are correlated with the imperfect
reference-test (see Chapter 4). The results obtained in these chapters suggest that
the reports indicating disappointing results of diagnostic performance for the AD
CSF-biomarkers might be due in part to the fact that clinical diagnosis was treated
as a GS reference-test.

Validation

After the development of a diagnostic biomarker-index, the index should be validated.
Currently, validation is rarely performed because of the need for large sample sizes
or expensive data to reach adequate power of the validation study and the lack of an
efficient statistical framework. In particular, GS reference-test data is usually scarce
and expensive to obtain, while imperfect reference-test information contains less use-
ful information for validation, causing validation sample sizes to increase. In Chapter
5, we have proposed such a framework allowing efficient validation of a diagnostic
biomarker-index. Based on the exchangeability assumption of the parameters of the
development and validation studies, a large reduction of the required sample size was
shown possible. When exchangeability of observations or parameters is less obvious,
the proposed method could still be applied. In principle, any informed prior distribu-
tion concerning the accuracy of a diagnostic index can be combined with validation
study data. For example, diagnostic tools for children could be validated by includ-
ing information from adults [92, 122]. Such priors should be constructed with care
and accompanied by a clear discussion about the included available information. In
our opinion, sacrificing independence between development and validation could be
warranted when doing so would render a validation study feasible.

Cut-off transfer

As discussed in Chapter 6, developing and validating a diagnostic AD CSF-biomarker
cut-off for a particular commercially available assay does not imply the applicability
of the cut-off on other assays measuring the same biomarker. If new development
and validation studies are to be avoided, the current cut-off can be transferred to a
new assay. Underlying linear-relation assumptions of the currently applied method
may lead to biased estimates of the new cut-off, resulting in a diagnostic test with
different operating characteristics depending on the applied platform. Therefore, a
novel two-stage Bayesian method has been proposed in Chapter 6. We have shown
that this method leads to unbiased and more precise estimates than the currently
applied linear-regression-based method. However, with the current size of develop-
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ment and validation studies, only imprecise cut-off estimates, in terms of operating
characteristics, are available. This is generally overlooked and not communicated in
practice, but extremely important to acknowledge.

7.2 Topics for future work

Several assumptions and methodological aspects underlying the developed approaches
are worth further investigation. In particular, the following sections discuss possible
extensions and generalisations of the models developed in this dissertation. Possible
future developments for the Bayesian latent-class mixture model are discussed in
Section 7.2.1. Extensions of the developed validation and cut-off transfer method are
proposed in Sections 7.2.2 and 7.2.3, respectively.

7.2.1 Bayesian latent-class mixture model

Weaknesses latent-class mixture models

Several weaknesses regarding latent-class mixture models in the context of binary or
ordinal tests have been discussed [1, 84, 88, 2]. A first issue relates to the definition of
disease. In the absence of a GS reference-test, disease is considered a latent concept.
In this case, it is not easy to define disease explicitly as in this type of models, it is the
entity which simply links the tests. Secondly, although accounting for conditionally
dependent tests can resolve biased estimates with respect to test accuracy, different
proposals for dependence models lead to different results in different contexts. How
these limitations translate to the models proposed in this dissertation remains to
be investigated. The first issue may be mitigated by introduction of partial gold
standard reference-test information [2]. By following the ideas of [88] one could think
of investigating the second issues by defining other dependence models and comparing
the impact of these models on the results.

Transformation to normality

Currently, the Bayesian latent-class mixture model has been developed for biomark-
ers which are normally distributed or for which a transformation to normality exists,
conditional on true disease status. For many biomarkers such a transformation is
required (e.g., see the application in Chapter 3). At this point it is up to the user to
select an appropriate transformation which should be applied before the model can be
fitted to the data. This is generally not an easy task especially when only imperfect
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reference-test information is available. For example, under the assumption of con-
ditional independence between biomarker and imperfect reference-test, the observed
distribution of the biomarker, conditional on the imperfect reference-test values, will
be skewed, as shown in Figure 7.1. Although the underlying biomarker distributions
for true cases and controls is normal (indicated by the dashed lines), the misclassi-
fication in the reference test causes the observed distributions to be skewed towards
each other (shown by the histograms).
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Figure 7.1: Underlying true (dashed lines) and observed (histograms) biomarker distribu-
tions by imperfect reference-test. Cases (red) and controls (green) are misclassified under
the conditional independence assumption between biomarker and imperfect reference-test.

To overcome the need of pre-specifying the form of transformation to normality,
an extension of the proposed model could be developed. In particular, by including a
Box-Cox power transformation into the model, it should be possible to estimate the
most appropriate transformation to normality while considering this on the scale of
the true latent-disease status. This may not be straightforward, however, because of
non-identifiability issues related to the introduction of this power parameter.

Selection of optimal biomarker combination

In current applications, it has been assumed that the biomarkers of interest, consti-
tuting the diagnostic index, are already identified and that interest only lies in how
to optimally combine these biomarkers into a linear combination. A possible future
use of the model could be to investigate a pool of biomarkers and select the linear
combination of ’optimal’ biomarkers. This selection could be made based on the es-
timated values of the elements in â. In order to do this, the model should be able to
perform with a large number of biomarkers, many of which might not be useful for
purposes of classification.
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7.2.2 Validation

Model-based weighting of development-study information

As an alternative to discounting development-study posterior information as prior
information in the validation study, model-based approaches could be considered. One
could extend the proposed model by implementing the power-prior [45, 74] or meta-
analytic approach methods developed to include historical information into Bayesian
analysis. In order to account for conflicting prior and data information, these methods
can even be extended by considering the commensurate and robustified versions for
the power- and meta-analytic-prior method, respectively. Specifically, the methods
allow estimation of the amount of prior information that will be included in the
analysis of new data according to how well the prior and new data agree.

Validation criterion

Alternative criteria to conclude to validation can be proposed as well. Given the
Bayesian setting one could think of reformulating the hypothesis test into a criterion
based on the posterior AUCa distribution which could be assessed continuously during
the validation process. The validation process could then be concluded when enough
information has been obtained to consider validation or not.

Conditional dependence setting

Conditional dependence between the biomarkers and imperfect reference-test will also
effect the diagnostic accuracy estimates in the validation model. Future work could
entail the extension of the validation model in a similar way as proposed in Chapter 4.
More specifically, one could allow for conditional dependence between the continuous
diagnostic-index and the imperfect reference-test by considering a latent tolerance
variable underlying the imperfect reference-test results.

7.2.3 Cut-off transfer

One-stage Bayesian approach

An obvious extension of the proposed two-stage Bayesian model to transfer a current-
assay cut-off to a new-assay cut-off, is to consider a general one-stage approach.
This should be possible by considering a joint model for the current-assay and new-
assay-transfer data sets. One could consider the combined data set where, for one
set of observations, only measurements for the current assay are available together
with true disease status information. For the remaining observations, measurements
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for both assays are available, but true disease status information is missing. By
virtue of the Bayesian method, these missing components are considered as parameters
characterised by posterior information, enabling estimation of the parameters defining
the assumed underlying mixture of multivariate normal distributions.

Model-based weighting of stage one information

As for the validation model, the two-stage Bayesian transfer model also includes
prior information for several parameters coming from previously obtained posterior
distributions. Currently, the introduction of this information is only based on heuristic
arguments and approximations. Further work is needed to investigate the impact of
these approximations and the possibility to invoke the (commensurate) power- and/or
(robustified) meta-analytic approach-prior definitions to end up with a model-based
weighting of prior information.
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Appendix A
R Codes

A.1 BUGS model for the Bayesian latent-class
model assuming conditional independence

The following code relates to the models developed in Sections 3.2.1 and 5.2.1 of
Chapters 3 and 5, respectively.

model{
## Hyperpriors
# Prevalence
theta ˜ dunif(Trunc_Par[1],Trunc_Par[2]);

### Priors
## Latent true disease status
for(i in 1:N){

D[i] ˜ dbern(theta);
D_ind[i] <- D[i] + 1;

}

## Precision matrices
for(Prec.index in 1:2){

# Cholesky decomposition of correlation matrix
L[Prec.index,1,1] <- 1;

L[Prec.index,1,2] ˜ dunif(-1,1);
L[Prec.index,1,3] ˜ dunif(-1,1);

Lim[Prec.index] <- sqrt(1-(pow(L[Prec.index,1,3],2)));
L23[Prec.index] ˜ dunif(-1,1);
L[Prec.index,2,3] <- Lim[Prec.index]*L23[Prec.index];

L[Prec.index,2,2] <- sqrt(1-pow(L[Prec.index,1,2],2));
L[Prec.index,3,3] <- sqrt(1-((pow(L[Prec.index,1,3],2))+(pow(L[Prec.index,2,3],2))));

145
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L[Prec.index,2,1] <- 0;
L[Prec.index,3,1] <- 0;
L[Prec.index,3,2] <- 0;

for(k1 in 1:K){
for(k2 in 1:K){

R[Prec.index,k1,k2] <- inprod(L[Prec.index,1:K,k1],L[Prec.index,1:K,k2]);
}

}

# Standard deviation matrix
for(k in 1:K){

Sd[Prec.index,k] ˜ dunif(0,1000);
}

# Definition of Variance covariance matrix Sigma
for(k1 in 1:K){

for(k2 in 1:K){
Sigma[Prec.index,k1,k2] <- (equals(k1,k2) * pow(Sd[Prec.index,k1],2))
+ ((1-equals(k1,k2))*Sd[Prec.index,k1]*R[Prec.index,k1,k2]*Sd[Prec.index,k2]);

}
}

# Define precision matrix
Prec[Prec.index,1:K,1:K] <- inverse(Sigma[Prec.index,1:K,1:K]);

}

## Scaled difference vector
ScD[1:K] ˜ dmnorm(Kappa[1:K],Psy_Inv[1:K,1:K]);

## Cholesky decomposition of inverse of pooled variance covariance matrix
# Pooled Variance Covariance matrix
for(k1 in 1:K){

for(k2 in 1:K){
Sigma_Pooled[k1,k2] <- Sigma[1,k1,k2] + Sigma[2,k1,k2];

}
}

# Inverse of pooled variance covariance matrix
Sigma_Pooled_Inv[1:K,1:K] <- inverse(Sigma_Pooled[1:K,1:K]);

# Cholesky decomposition of inverse of pooled variance covariance matrix
L2[1,1] <- sqrt(Sigma_Pooled_Inv[1,1]);
L2[2,1] <- (1/L2[1,1]) * Sigma_Pooled_Inv[2,1];
L2[3,1] <- (1/L2[1,1]) * Sigma_Pooled_Inv[3,1];
L2[1,2] <- 0;
L2[2,2] <- sqrt(Sigma_Pooled_Inv[2,2]-pow(L2[2,1],2));
L2[3,2] <- (1/L2[2,2]) * (Sigma_Pooled_Inv[3,2] - (L2[3,1]*L2[2,1]));
L2[1,3] <- 0;
L2[2,3] <- 0;
L2[3,3] <- sqrt(Sigma_Pooled_Inv[3,3]-(pow(L2[3,1],2)+pow(L2[3,2],2)));

# Inverse of cholesky factor of inverse of pooled variance covariance matrix
L2_Inv[1:K,1:K] <- inverse(L2[1:K,1:K]);
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## Normal component means
for(k in 1:K){

Mu[k,1] ˜ dnorm(0,1.E-6);
Mu[k,2] <- inprod(L2_Inv[1:K,k],ScD[1:K]) + Mu[k,1];

}

## Clinical diagnosis parameters
Se ˜ dbeta(Se_Prior[1],Se_Prior[2])T(0.51,);
Sp ˜ dbeta(Sp_Prior[1],Sp_Prior[2])T(0.51,);

## Likelihood
for(i in 1:N){

# Continuous Biomarker part
Y[i,1:K] ˜ dmnorm(mean[i,],Prec[D_ind[i],,]);
for(k in 1:K){

mean[i,k] <- (Mu[k,1] * (2-D_ind[i])) + (Mu[k,2] * (D_ind[i]-1));
}

# Clinical diagnosis part
T[i] ˜ dbern(ProbT[i]);
ProbT[i] <- (Se * (D_ind[i]-1)) + ((1-Sp) * (2-D_ind[i]));

}

# Biomarker performance measure AUC
for(k in 1:K){

Mu_diff[k] <- Mu[k,2] - Mu[k,1];
a[k] <- inprod(Sigma_Pooled_Inv[k,1:K],Mu_diff[1:K]);

}

AUC <- phi(pow(inprod(a[1:K],Mu_diff[1:K]),0.5));
}

A.2 BUGS model for the Bayesian latent-class
model allowing for conditional dependence

The represented code relates to the model developed in Section 4.2 of Chapter 4.

model{
#### Hyperpriors
### Prevalence
theta ˜ dunif(Trunc_Par[1],Trunc_Par[2]);

#### Priors
### Latent true disease status
for(i in 1:N){

D[i] ˜ dbern(theta);
D_ind[i] <- D[i] + 1;

}

### Latent tolerance distribution parameters
## Means
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# Beta Se/Sp priors
dummy_Mu1 <- 0;
dummy_Mu1 ˜ dloglik(logLike_Mu1);
logLike_Mu1 <- loggam(Sp_Prior[1] + Sp_Prior[2]) - loggam(Sp_Prior[1])
- loggam(Sp_Prior[2]) + log(pow(phi(-MuT[1]),(Sp_Prior[1]-1))
* pow((1-phi(-MuT[1])),(Sp_Prior[2]-1)) * abs(exp(-0.5*pow(MuT[1],2))/sqrt(2*3.14)));

MuT[1] ˜ dflat()T(,-0.02506891);

dummy_Mu2 <- 0;
dummy_Mu2 ˜ dloglik(logLike_Mu2);
logLike_Mu2 <- loggam(Se_Prior[1] + Se_Prior[2]) - loggam(Se_Prior[1])
- loggam(Se_Prior[2]) + log(pow((1-phi(-MuT[2])),(Se_Prior[1]-1))
* pow((1-(1-phi(-MuT[2]))),(Se_Prior[2]-1)) * abs(exp(-0.5*pow(MuT[2],2))/sqrt(2*3.14)));

MuT[2] ˜ dflat()T(0.02506891,);

### Overall distribution parameters
## Standard deviations
Sd[1,1] <- 1; # Latent Tolerance
Sd[2,1] <- 1;
Sd[1,2] ˜ dunif(0,1000); # Biomarker 1
Sd[2,2] ˜ dunif(0,1000);
Sd[1,3] ˜ dunif(0,1000); # Biomarker 2
Sd[2,3] ˜ dunif(0,1000);
Sd[1,4] ˜ dunif(0,1000); # Biomarker 3
Sd[2,4] ˜ dunif(0,1000);

## Cholesky decomposition of correlation-matrix
L[1,1,1] <- 1;
L[2,1,1] <- 1;

# Correlations
L[1,1,2] ˜ dunif(-1,1);
L[2,1,2] ˜ dunif(-1,1);
L[1,1,3] ˜ dunif(-1,1);
L[2,1,3] ˜ dunif(-1,1);
L[1,1,4] ˜ dunif(-1,1);
L[2,1,4] ˜ dunif(-1,1);

# L23
Lim1[1] <- sqrt(1-(pow(L[1,1,3],2)));
Lim1[2] <- sqrt(1-(pow(L[2,1,3],2)));

L23[1] ˜ dunif(-1,1);
L23[2] ˜ dunif(-1,1);

L[1,2,3] <- Lim1[1]*L23[1];
L[2,2,3] <- Lim1[2]*L23[2];

# L24
Lim2[1] <- sqrt(1-(pow(L[1,1,4],2)));
Lim2[2] <- sqrt(1-(pow(L[2,1,4],2)));

L24[1] ˜ dunif(-1,1);
L24[2] ˜ dunif(-1,1);
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L[1,2,4] <- Lim2[1]*L24[1];
L[2,2,4] <- Lim2[2]*L24[2];

# L34
Lim3[1] <- sqrt(1-(pow(L[1,1,4],2) + pow(L[1,2,4],2)));
Lim3[2] <- sqrt(1-(pow(L[2,1,4],2) + pow(L[2,2,4],2)));

L34[1] ˜ dunif(-1,1);
L34[2] ˜ dunif(-1,1);

L[1,3,4] <- Lim3[1]*L34[1];
L[2,3,4] <- Lim3[2]*L34[2];

L[1,2,2] <- sqrt(1-pow(L[1,1,2],2));
L[2,2,2] <- sqrt(1-pow(L[2,1,2],2));

L[1,3,3] <- sqrt(1-((pow(L[1,1,3],2))+(pow(L[1,2,3],2))));
L[2,3,3] <- sqrt(1-((pow(L[2,1,3],2))+(pow(L[2,2,3],2))));

L[1,4,4] <- sqrt(1-((pow(L[1,1,4],2))+(pow(L[1,2,4],2))+(pow(L[1,3,4],2))));
L[2,4,4] <- sqrt(1-((pow(L[2,1,4],2))+(pow(L[2,2,4],2))+(pow(L[2,3,4],2))));

L[1,2,1] <- 0;
L[2,2,1] <- 0;
L[1,3,1] <- 0;
L[2,3,1] <- 0;
L[1,3,2] <- 0;
L[2,3,2] <- 0;
L[1,4,1] <- 0;
L[2,4,1] <- 0;
L[1,4,2] <- 0;
L[2,4,2] <- 0;
L[1,4,3] <- 0;
L[2,4,3] <- 0;

# Recreate Overall correlation matrix
for(k1 in 1:K){

for(k2 in 1:K){
R[1,k1,k2] <- inprod(L[1,1:K,k1],L[1,1:K,k2]);
R[2,k1,k2] <- inprod(L[2,1:K,k1],L[2,1:K,k2]);

}
}

# Overall Variance-Covariance matrix Sigma
for(k1 in 1:K){

for(k2 in 1:K){
Sigma[1,k1,k2] <- (equals(k1,k2) * pow(Sd[1,k1],2))
+ ((1-equals(k1,k2))*Sd[1,k1]*R[1,k1,k2]*Sd[1,k2]);

Sigma[2,k1,k2] <- (equals(k1,k2) * pow(Sd[2,k1],2))
+ ((1-equals(k1,k2))*Sd[2,k1]*R[2,k1,k2]*Sd[2,k2]);

}
}
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# Define overall precision matrix
Prec[1,1:K,1:K] <- inverse(Sigma[1,1:K,1:K]);
Prec[2,1:K,1:K] <- inverse(Sigma[2,1:K,1:K]);

### Biomarker distribution parameters
## Means
# Scaled difference vector
ScD[1:(K-1)] ˜ dmnorm(Kappa[1:(K-1)],Psy_Inv[1:(K-1),1:(K-1)]);

## Cholesky decomposition of inverse of pooled biomarker variance-covariance matrix SigmaX
# Biomarker variance-covariance matrix SigmaX
for(k1 in 2:K){

for(k2 in 2:K){
SigmaX[1,k1-1,k2-1] <- (equals(k1,k2) * pow(Sd[1,k1],2))
+ ((1-equals(k1,k2))*Sd[1,k1]*R[1,k1,k2]*Sd[1,k2]);

SigmaX[2,k1-1,k2-1] <- (equals(k1,k2) * pow(Sd[2,k1],2))
+ ((1-equals(k1,k2))*Sd[2,k1]*R[2,k1,k2]*Sd[2,k2]);

}
}

# Define Biomarker precision matrix
PrecX[1,1:(K-1),1:(K-1)] <- inverse(SigmaX[1,1:(K-1),1:(K-1)]);
PrecX[2,1:(K-1),1:(K-1)] <- inverse(SigmaX[2,1:(K-1),1:(K-1)]);

# Pooled Biomarker Variance-Covariance matrix
for(k1 in 1:(K-1)){

for(k2 in 1:(K-1)){
SigmaX_Pooled[k1,k2] <- SigmaX[1,k1,k2] + SigmaX[2,k1,k2];

}
}

# Inverse of pooled Biomarker variance-covariance matrix
SigmaX_Pooled_Inv[1:(K-1),1:(K-1)] <- inverse(SigmaX_Pooled[1:(K-1),1:(K-1)]);

# Cholesky decomposition of inverse of pooled Biomarker variance-covariance matrix
L2[1,1] <- sqrt(SigmaX_Pooled_Inv[1,1]);
L2[2,1] <- (1/L2[1,1]) * SigmaX_Pooled_Inv[2,1];
L2[3,1] <- (1/L2[1,1]) * SigmaX_Pooled_Inv[3,1];
L2[1,2] <- 0;
L2[2,2] <- sqrt(SigmaX_Pooled_Inv[2,2]-pow(L2[2,1],2));
L2[3,2] <- (1/L2[2,2]) * (SigmaX_Pooled_Inv[3,2] - (L2[3,1]*L2[2,1]));
L2[1,3] <- 0;
L2[2,3] <- 0;
L2[3,3] <- sqrt(SigmaX_Pooled_Inv[3,3]-(pow(L2[3,1],2)+pow(L2[3,2],2)));

# Inverse of cholesky factor of inverse of pooled Biomarker variance-covariance matrix
L2_Inv[1:(K-1),1:(K-1)] <- inverse(L2[1:(K-1),1:(K-1)]);

# Biomarker Means
for(k in 1:(K-1)){

MuX[1,k] ˜ dnorm(0,1.E-6);
MuX[2,k] <- inprod(L2_Inv[1:(K-1),k],ScD[1:(K-1)]) + MuX[1,k];

}

### Remaining shared latent tolerance and biomarker Sigma entries
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## Latent tolerance - biomarker covariance vector
Tau[1,1] <- Sigma[1,1,2];
Tau[2,1] <- Sigma[2,1,2];

Tau[1,2] <- Sigma[1,1,3];
Tau[2,2] <- Sigma[2,1,3];

Tau[1,3] <- Sigma[1,1,4];
Tau[2,3] <- Sigma[2,1,4];

# Latent-tolerance covariance - biomarker precision product
for(k in 1:(K-1)){

Cov_Prec_Prod[1,k] <- inprod(Tau[1,1:(K-1)],PrecX[1,1:(K-1),k]);
Cov_Prec_Prod[2,k] <- inprod(Tau[2,1:(K-1)],PrecX[2,1:(K-1),k]);

}

Cov_Prec_Cov_Prod[1] <- inprod(Cov_Prec_Prod[1,1:(K-1)],Tau[1,1:(K-1)]);
Cov_Prec_Cov_Prod[2] <- inprod(Cov_Prec_Prod[2,1:(K-1)],Tau[2,1:(K-1)]);

#### Likelihood
for(i in 1:N){

### Continuous Biomarker part
Y[i,1:(K-1)] ˜ dmnorm(MuX[D_ind[i],],PrecX[D_ind[i],,]);

### Clinical diagnosis part
T[i] ˜ dbern(ProbT[i]);

for(k in 1:(K-1)){
Obs_Mean_Diff[i,k] <- Y[i,k] - MuX[D_ind[i],k];

}

Cov_Prec_Cen_Mean[i] <- inprod(Cov_Prec_Prod[D_ind[i],1:(K-1)],Obs_Mean_Diff[i,1:(K-1)]);

ProbT[i] <- 1-phi(-(MuT[D_ind[i]] + Cov_Prec_Cen_Mean[i]) / sqrt(1-Cov_Prec_Cov_Prod[D_ind[i]]));
}

### Parameter transformations of interest
# Reference test Se and Sp
Se <- 1-phi(-MuT[2]);
Sp <- phi(-MuT[1]);

# Biomarker performance measure AUC and linear coefficients a
for(k in 1:(K-1)){

Mu_diff[k] <- MuX[2,k] - MuX[1,k];
a[k] <- inprod(SigmaX_Pooled_Inv[k,1:(K-1)],Mu_diff[1:(K-1)]);

}

AUC <- phi(pow(inprod(a[1:(K-1)],Mu_diff[1:(K-1)]),0.5));
}
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A.3 BUGS model for the Bayesian latent-class
model of a validation study under the condi-
tional independence assumption

The following code relates to the model developed in Section 5.2.2 of Chapter 5.

model{
### Priors
## Precisions
# Standard deviations

for(k in 1:2){
Sd[k] ˜ dunif(0,1000);
Prec[k] <- pow(Sd[k],-2);
Var[k] <- pow(Sd[k],2);

}

sum_var <- Var[1] + Var[2];
pooled_var <- pow(sum_var,0.5);

## Scaled difference vector
AUC_star ˜ dnorm(mean_star,prec_star);

## Normal component means
Mu[1] ˜ dnorm(0,1.E-6);
Mu[2] <- (AUC_star*pooled_var) + Mu[1];

## Creating indicator
for(i in 1:N){

D_ind[i] <- D[i] + 1;
}

## Likelihood
for(i in 1:N){

# Continuous Biomarker part
Y[i] ˜ dnorm(mean[i],Prec[D_ind[i]]);
mean[i] <- (Mu[1] * (2-D_ind[i])) + (Mu[2] * (D_ind[i]-1));

}

# Biomarker performance measure AUC
AUC <- phi(AUC_star);

}

A.4 BUGS model for the Bayesian two-stage ap-
proach to estimate the optimal new-assay cut-
off

The represented code relates to the model developed in Section 6.2.3 of Chapter 6.

## STAGE 1
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model{
## Priors
# Standard deviation matrix
for(Sd.index in 1:2){

Sd[Sd.index] ˜ dunif(0,1000);
Sigma[Sd.index] <- pow(Sd[Sd.index],2);
Prec[Sd.index] <- pow(Sd[Sd.index],-2);

}

## AUCst parameterization priors
# Priors on individual AUCs of platforms
AUCst ˜ dnorm(0,1);

## Normal component means
Mu[1] ˜ dnorm(0,1.E-6);
Mu[2] <- (AUCst * sqrt(Sigma[1] + Sigma[2])) + Mu[1];

## Likelihood
# Validation data set
for(i in 1:Nc){

D_ind[i] <- Dc[i] + 1;
Y_c[i] ˜ dnorm(Mu[D_ind[i]],Prec[D_ind[i]]);

}

# Calculation of AUC
AUC <- phi(AUCst);

}

### STAGE 2
model{

### Priors
## Prevalence Hyperprior
theta ˜ dunif(Trunc_Par[1],Trunc_Par[2]);

## Latent true disease status
for(i in 1:Nt){

D[i] ˜ dbern(theta); # Prevalance parameter for complete D-vector
D_ind[i] <- D[i] + 1; # Create indicator 1-2

}

## Precision matrices
# Standard deviation matrix [1st platform]
Sd[1,1] ˜ dnorm(Pr_Mu_SdC0,Pr_Tau_SdC0)T(0,);
Sd[2,1] ˜ dnorm(Pr_Mu_SdC1,Pr_Tau_SdC1)T(0,);

for(Prec.index in 1:2){
# Cholesky decomposition of correlation matrix
L[Prec.index,1,1] <- 1;
L[Prec.index,1,2] ˜ dunif(-1,1); # Prior on correlation
L[Prec.index,2,2] <- sqrt(1-pow(L[Prec.index,1,2],2));
L[Prec.index,2,1] <- 0;

# Construct correlation matrix from cholesky factors
for(k1 in 1:K){

for(k2 in 1:K){
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R[Prec.index,k1,k2] <- inprod(L[Prec.index,1:K,k1],L[Prec.index,1:K,k2]);
}

}

# Standard deviation matrix [2nd platform]
Sd[Prec.index,2] ˜ dunif(0,1000);

# Definition of Variance covariance matrix Sigma through multiplication by Sd and R
for(k1 in 1:K){

for(k2 in 1:K){
Sigma[Prec.index,k1,k2] <- (equals(k1,k2) * pow(Sd[Prec.index,k1],2))
+ ((1-equals(k1,k2))*Sd[Prec.index,k1]*R[Prec.index,k1,k2]*Sd[Prec.index,k2]);

}
}

# Define precision matrix
Prec[Prec.index,1:K,1:K] <- inverse(Sigma[Prec.index,1:K,1:K]);

}

## AUCst parameterization priors
# Priors on individual AUCs of platforms
AUCst[1] ˜ dnorm(Pr_Mu_AUCst,Pr_Tau_AUCst);
AUCst[2] ˜ dnorm(0,1);

## Normal component means
Mu[1,1] ˜ dnorm(Pr_Mu_MuC0,Pr_Tau_MuC0);
Mu[1,2] ˜ dnorm(0,1.E-6);

for(k in 1:K){
Mu[2,k] <- (AUCst[k] * sqrt(Sigma[1,k,k] + Sigma[2,k,k])) + Mu[1,k];

}

## Likelihood
# Translation data set
for(i in 1:Nt){

Y_t[i,1:K] ˜ dmnorm(Mu[D_ind[i],],Prec[D_ind[i],,]);
}

# Calculation of AUC
AUC[1] <- phi(AUCst[1]);
AUC[2] <- phi(AUCst[2]);

}



Appendix B
Simulation results

In the following tables, the results are shown for the remaining parameters (Se, Sp,
and θ) estimated in the simulation study described in Section 3.4 of Chapter 3. In
this chapter the results for AUCa are discussed in Section 3.6.
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Sensitivity (Se)

N = 100

Table B.1: Mean of posterior Se medians with corresponding (standard deviation of pos-
terior Se medians) based on [number of converged data sets] for the simulated data sets of
size N = 100. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity of
the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.),
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.85 0.779
(0.078) [95]

0.826
(0.062) [68]

0.810
(0.067) [79]

Σ0 = Σ1 ρ = 0 INF 0.85 0.835
(0.057) [97] 0.854 (0.043) [85] 0.845

(0.049) [92]

Σ0 = Σ1 ρ 6= 0 FLAT 0.85 0.723
(0.082) [83]

0.762
(0.098) [16]

0.786
(0.094) [16]

Σ0 = Σ1 ρ 6= 0 INF 0.85 0.806
(0.069) [94]

0.841
(0.061) [35]

0.832
(0.063) [54]

Σ0 6= Σ1 ρ = 0 FLAT 0.85 0.800
(0.062) [95]

0.815
(0.055) [93]

0.815
(0.056) [95]

Σ0 6= Σ1 ρ = 0 INF 0.85 0.836
(0.050) [99]

0.854
(0.040) [98]

0.853
(0.041) [97]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.85 0.778
(0.077) [96]

0.823
(0.695) [66]

0.804
(0.067) [84]

Σ0 6= Σ1 ρ 6= 0 INF 0.85 0.831
(0.056) [99]

0.859
(0.045) [84]

0.851
(0.046) [96]
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N = 400

Table B.2: Mean of posterior Se medians with corresponding (standard deviation of pos-
terior Se medians) based on [number of converged data sets] for the simulated data sets of
size N = 400. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity of
the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.),
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.85 0.842
(0.046) [100]

0.858
(0.045) [100]

0.850
(0.045) [100]

Σ0 = Σ1 ρ = 0 INF 0.85 0.856
(0.038) [100]

0.873
(0.037) [100]

0.865
(0.037) [100]

Σ0 = Σ1 ρ 6= 0 FLAT 0.85 0.806
(0.084) [93]

0.874
(0.054) [61]

0.847
(0.068) [87]

Σ0 = Σ1 ρ 6= 0 INF 0.85 0.842
(0.064) [98]

0.880
(0.043) [88]

0.863
(0.051) [97]

Σ0 6= Σ1 ρ = 0 FLAT 0.85 0.838
(0.033) [100]

0.845
(0.032) [100]

0.842
(0.032) [100]

Σ0 6= Σ1 ρ = 0 INF 0.85 0.848
(0.030) [100]

0.854
(0.029) [100]

0.853
(0.029) [100]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.85 0.837
(0.053) [100]

0.852
(0.046) [100]

0.840
(0.052) [100]

Σ0 6= Σ1 ρ 6= 0 INF 0.85 0.848
(0.048) [100]

0.856
(0.045) [100]

0.852
(0.046) [100]
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N = 600

Table B.3: Mean of posterior Se medians with corresponding (standard deviation of pos-
terior Se medians) based on [number of converged data sets] for the simulated data sets of
size N = 600. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity of
the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.),
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.85 0.833
(0.043) [100]

0.51
(0.044) [99]

0.842
(0.044) [100]

Σ0 = Σ1 ρ = 0 INF 0.85 0.846
(0.038) [100]

0.859
(0.038) [100]

0.852
(0.038) [100]

Σ0 = Σ1 ρ 6= 0 FLAT 0.85 0.803
(0.059) [88]

0.855
(0.053) [66]

0.832
(0.057) [92]

Σ0 = Σ1 ρ 6= 0 INF 0.85 0.818
(0.050) [89]

0.875
(0.041) [74]

0.850
(0.044) [99]

Σ0 6= Σ1 ρ = 0 FLAT 0.85 0.837
(0.026) [100]

0.841
(0.026) [100]

0.838
(0.026) [100]

Σ0 6= Σ1 ρ = 0 INF 0.85 0.842
(0.024) [100]

0.846
(0.024) [100]

0.845
(0.024) [100]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.85 0.833
(0.026) [100]

0.847
(0.037) [100]

0.841
(0.037) [100]

Σ0 6= Σ1 ρ 6= 0 INF 0.85 0.845
(0.033) [100]

0.854
(0.033) [100]

0.851
(0.033) [100]
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Specificity (Sp)

N = 100

Table B.4: Mean of posterior Sp medians with corresponding (standard deviation of pos-
terior Sp medians) based on [number of converged data sets] for the simulated data sets of
size N = 100. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity of
the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.),
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.85 0.776
(0.086) [95]

0.839
(0.080) [68]

0.826
(0.078) [79]

Σ0 = Σ1 ρ = 0 INF 0.85 0.839
(0.059) [97]

0.864
(0.051) [85]

0.856
(0.053) [92]

Σ0 = Σ1 ρ 6= 0 FLAT 0.85 0.684
(0.096) [83]

0.754
(0.101) [16]

0.738
(0.105) [16]

Σ0 = Σ1 ρ 6= 0 INF 0.85 0.779
(0.081) [94]

0.848
(0.087) [35]

0.842
(0.078) [54]

Σ0 6= Σ1 ρ = 0 FLAT 0.85 0.796
(0.075) [95]

0.815
(0.068) [93]

0.810
(0.072) [95]

Σ0 6= Σ1 ρ = 0 INF 0.85 0.833
(0.058) [99]

0.849
(0.050) [98]

0.848
(0.051) [97]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.85 0.760
(0.083) [96]

0.787
(0.070) [66]

0.784
(0.074) [84]

Σ0 6= Σ1 ρ 6= 0 INF 0.85 0.820
(0.063) [99]

0.842
(0.055) [84]

0.839
(0.056) [96]
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N = 400

Table B.5: Mean of posterior Sp medians with corresponding (standard deviation of pos-
terior Sp medians) based on [number of converged data sets] for the simulated data sets of
size N = 400. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity of
the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.),
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.85 0.842
(0.055) [100]

0.858
(0.053) [100]

0.855
(0.053) [100]

Σ0 = Σ1 ρ = 0 INF 0.85 0.857
(0.046) [100]

0.867
(0.043) [100]

0.866
(0.044) [100]

Σ0 = Σ1 ρ 6= 0 FLAT 0.850 0.801
(0.072) [93]

0.868
(0.070) [61]

0.845
(0.066) [87]

Σ0 = Σ1 ρ 6= 0 INF 0.85 0.829
(0.058) [98]

0.874
(0.042) [88]

0.860
(0.053) [97]

Σ0 6= Σ1 ρ = 0 FLAT 0.85 0.842
(0.038) [100]

0.849
(0.038) [100]

0.0848
(0.038) [100]

Σ0 6= Σ1 ρ = 0 INF 0.85 0.852
(0.034) [100]

0.859
(0.034) [100]

0.856
(0.034) [100]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.85 0.838
(0.046) [100]

0.849
(0.043) [100]

0.847
(0.044) [100]

Σ0 6= Σ1 ρ 6= 0 INF 0.85 0.849
(0.040) [100]

0.862
(0.038) [100]

0.859
(0.038) [100]
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N = 600

Table B.6: Mean of posterior Sp medians with corresponding (standard deviation of pos-
terior Sp medians) based on [number of converged data sets] for the simulated data sets of
size N = 600. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity of
the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.),
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.85 0.845
(0.042) [100]

0.861
(0.042) [99]

0.852
(0.042) [100]

Σ0 = Σ1 ρ = 0 INF 0.85 0.857
(0.037) [100]

0.868
(0.036) [100]

0.864
(0.036) [100]

Σ0 = Σ1 ρ 6= 0 FLAT 0.850 0.807
(0.070) [88]

0.884
(0.042) [66]

0.846
(0.060) [92]

Σ0 = Σ1 ρ 6= 0 INF 0.85 0.850
(0.054) [89]

0.889
(0.032) [74]

0.864
(0.042) [99]

Σ0 6= Σ1 ρ = 0 FLAT 0.85 0.845
(0.031) [100]

0.850
(0.031) [100]

0.0846
(0.031) [100]

Σ0 6= Σ1 ρ = 0 INF 0.85 0.852
(0.029) [100]

0.857
(0.029) [100]

0.856
(0.029) [100]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.85 0.844
(0.032) [100]

0.849
(0.031) [100]

0.846
(0.031) [100]

Σ0 6= Σ1 ρ 6= 0 INF 0.85 0.851
(0.029) [100]

0.857
(0.029) [100]

0.854
(0.029) [100]
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Prevalence (θ)

N = 100

Table B.7: Mean of posterior θ medians with corresponding (standard deviation of posterior
θ medians) based on [number of converged data sets] for the simulated data sets of size
N = 100. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity
of the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.)
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.5 0.500
(0.131) [95]

0.514
(0.102) [68]

0.518
(0.104) [79]

Σ0 = Σ1 ρ = 0 INF 0.5 0.504
(0.095) [97]

0.508
(0.070) [85]

0.508
(0.077) [92]

Σ0 = Σ1 ρ 6= 0 FLAT 0.5 0.455
(0.186) [83]

0.487
(0.202) [16]

0.441
(0.198) [16]

Σ0 = Σ1 ρ 6= 0 INF 0.5 0.477
(0.156) [94]

0.500
(0.140) [35]

0.493
(0.133) [54]

Σ0 6= Σ1 ρ = 0 FLAT 0.5 0.499
(0.104) [95]

0.504
(0.079) [93]

0.506
(0.089) [95]

Σ0 6= Σ1 ρ = 0 INF 0.5 0.500
(0.090) [99]

0.502
(0.064) [98]

0.502
(0.067) [97]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.5 0.490
(0.131) [96]

0.472
(0.093) [66]

0.482
(0.108) [84]

Σ0 6= Σ1 ρ 6= 0 INF 0.5 0.490
(0.103) [99]

0.483
(0.079) [84]

0.486
(0.082) [96]
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N = 400

Table B.8: Mean of posterior θ medians with corresponding (standard deviation of posterior
θ medians) based on [number of converged data sets] for the simulated data sets of size
N = 400. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity of
the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.),
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.5 0.501
(0.060) [100]

0.500
(0.054) [100]

0.498
(0.56) [100]

Σ0 = Σ1 ρ = 0 INF 0.5 0.497
(0.050) [100]

0.499
(0.045) [100]

0.498
(0.047) [100]

Σ0 = Σ1 ρ 6= 0 FLAT 0.5 0.511
(0.121) [93]

0.503
(0.081) [61]

0.508
(0.092) [87]

Σ0 = Σ1 ρ 6= 0 INF 0.5 0.495
(0.090) [98]

0.503
(0.050) [88]

0.499
(0.068) [97]

Σ0 6= Σ1 ρ = 0 FLAT 0.5 0.501
(0.039) [100]

0.0501
(0.037) [100]

0.499
(0.038) [100]

Σ0 6= Σ1 ρ = 0 INF 0.5 0.500
(0.036) [100]

0.500
(0.035) [100]

0.501
(0.035) [100]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.5 0.503
(0.062) [100]

0.504
(0.053) [100]

0.507
(0.056) [100]

Σ0 6= Σ1 ρ 6= 0 INF 0.5 0.501
(0.055) [100]

0.504
(0.048) [100]

0.504
(0.050) [100]
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N = 600

Table B.9: Mean of posterior θ medians with corresponding (standard deviation of posterior
θ medians) based on [number of converged data sets] for the simulated data sets of size
N = 600. FLAT — the analysis using the flat prior for sensitivity and specificity of the
reference test; INF — the analysis using the informative prior for sensitivity and specificity of
the reference test (see Figure 3.8). Results obtained with the ’näıve’, ’conservative’ (Cons.),
and ’optimistic’ (Opt.) AUCa prior.

Data Gen. Model Se/Sp True AUCa − Prior
VarCov Corr prior AUC Näıve Cons. Opt.

Σ0 = Σ1 ρ = 0 FLAT 0.5 0.503
(0.052) [100]

0.500
(0.049) [99]

0.501
(0.050) [100]

Σ0 = Σ1 ρ = 0 INF 0.5 0.502
(0.045) [100]

0.504
(0.042) [100]

0.502
(0.043) [100]

Σ0 = Σ1 ρ 6= 0 FLAT 0.5 0.498
(0.090) [88]

0.512
(0.049) [66]

0.507
(0.071) [92]

Σ0 = Σ1 ρ 6= 0 INF 0.5 0.518
(0.068) [89]

0.507
(0.037) [74]

0.509
(0.048) [99]

Σ0 6= Σ1 ρ = 0 FLAT 0.5 0.506
(0.034) [100]

0.507
(0.033) [100]

0.506
(0.033) [100]

Σ0 6= Σ1 ρ = 0 INF 0.5 0.507
(0.032) [100]

0.506
(0.032) [100]

0.506
(0.032) [100]

Σ0 6= Σ1 ρ 6= 0 FLAT 0.5 0.510
(0.040) [100]

0.510
(0.037) [100]

0.509
(0.038) [100]

Σ0 6= Σ1 ρ 6= 0 INF 0.5 0.510
(0.036) [100]

0.507
(0.034) [100]

0.508
(0.035) [100]



Appendix C
Se/Sp prior sensitivity

Results of the ADNI and VUmc data fits using the two different forms of prior dis-
tribution restrictions for SeT and SpT and considering the conservative (Cons.) and
optimistic (Opt.) AUCa prior distributions, are summarized in Tables C.1 and C.2.
Posterior medians of AUCa, SeT , SpT , and θ are essentially the same, irrespective of
the assumed prior distribution restriction or AUCa prior distribution, for both data
sets. Therefore, we can conclude that the more restrictive SeT and SpT > 0.5 does
not introduce enough extra prior information to significantly change the posterior
results.

Moreover, the difference between the conservative and optimistic AUCa priors is
not informative enough to affect the posterior results. AUCa posterior distributions
for the logistic regression (LR), optimistic (Opt.) and conservative (Cons.) model
fits considering the SeT and SpT > 0.5 restriction are shown in Figures C.1 and C.2.
Comparing the posterior distributions from the results considering the optimistic
(black solid line) and conservative AUCa-prior (black dashed line) confirms that the
AUCa prior does not significantly effect the posterior results.
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Table C.1: Posterior median results of the parameters of interest after fitting the ADNI
data with both the SeT and SpT > 0.5, and the SeT +SpT > 1 prior distribution restriction
(see Figure 3.12).

SeT/SpT Prior

Parameter AUCa
Prior Beta (1, 1) T [0.51, 1) Se ∼ Beta (1, 1)

Sp|Se ∼ Beta (1, 1) T [1.001− Se, 1)
AUCa Cons. 0.978[0.948,0.991] 0.978[0.948,0.992]
AUCa Opt. 0.983[0.958,0.994] 0.983[0.960,0.994]

SeT Cons. 0.832[0.736,0.913] 0.831[0.735,0.914]
SeT Opt. 0.825[0.730,0.908] 0.826[0.730,0.905]

SpT Cons. 0.890[0.807,0.952] 0.890[0.806,0.953]
SpT Opt. 0.889[0.804,0.952] 0.888[0.803,0.951]

θ Cons. 0.496[0.411,0.581] 0.497[0.411,0.583]
θ Opt. 0.500[0.413,0.586] 0.500[0.415,0.587]

Table C.2: Posterior median results of the parameters of interest after fitting the VUmc
data with both the SeT and SpT > 0.5, and the SeT +SpT > 1 prior distribution restriction
(see Figure 3.12).

SeT/SpT Prior

Parameter AUCa
Prior Beta (1, 1) T [0.51, 1) Se ∼ Beta (1, 1)

Sp|Se ∼ Beta (1, 1) T [1.001− Se, 1)
AUCa Cons. 0.994[0.990;0.997] 0.995[0.989,0.997]
AUCa Opt. 0.995[0.991;0.998] 0.995[0.991,0.998]

SeT Cons. 0.958[0.937;0.975] 0.958[0.937,0.975]
SeT Opt. 0.957[0.936;0.974] 0.957[0.936,0.974]

SpT Cons. 0.853[0.801;0.897] 0.854[0.803,0.897]
SpT Opt. 0.853[0.802;0.897] 0.853[0.803,0.896]

θ Cons. 0.700[0.667;0.732] 0.700[0.667,0.732]
θ Opt. 0.701[0.668;0.733] 0.701[0.667,0.733]
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Figure C.1: Posterior AUCa distribution for the ADNI-data fitted with a logistic regression
model (grey line) and the proposed-imperfect reference-test model (black line) with the flat
SeT and SpT prior distributions with SeT +SpT > 1 restriction, considering the ’optimistic’
(solid line) and ’conservative’ (dashed line) AUCa-prior distribution.
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Figure C.2: Posterior AUCa distribution for the VUmc-data fitted with a logistic regression
model (grey line) and the proposed-imperfect reference-test model (black line) with the flat
SeT and SpT prior distributions with SeT +SpT > 1 restriction, considering the ’optimistic’
(solid line) and ’conservative’ (dashed line) AUCa-prior distribution.



Appendix D
Type-I error investigation

In order to ensure that the resulting power estimates from the simulation study con-
sidered in section 5.3 of Chapter 5 can be compared, type-I error characteristics have
to be investigated. By considering the same simulated data sets as in Chapter 5,
characterised by a true AUCa of 0.787, estimates of type-I error probability can be
obtained by setting δ = 0.79. The proportion of simulated data sets for which the
null hypothesis: AUCa ≤ 0.79, is rejected with a particular value of α can then be
assumed an estimate of type-I error probability.

Figure D.1 shows the empirical type-I error probabilities considering the four
validation-study sample size settings for the three considered development studies.
In Figure D.1, the grey dashed line denotes the empirical probabilities in case de-
velopment study accuracy information is ignored while the black solid line denotes
results for the case when this information is included. The results shown in the figure
assume that in both prior settings α = 0.2. It is clear from the figure that for the
2.5- and 50-percentile development studies, including development study accuracy in-
formation into the validation study leads to a decreased type-I error probability. For
the over-estimating 97.5-percentile development study, including development-study
accuracy information increases the probability of type-I error.
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Figure D.1: Empirical type-I error probability as a function of the validation study sample
size for the underestimated (a.), unbiased (b.), and overestimated (c.) development study
information. Results are indicated for the flat (grey circles connected by the dashed line) and
informative (black circles connected by the solid line) AUC∗a-priors in case α = 0.2 for both
the flat and informative setting. The 95% confidence interval for each estimate is indicated
by the respective plus-signs.

By adjusting the α values for the ’traditional’ prior setting in the considered
development study cases, it is possible to reach statistically non-significant type-I error
probability differences. Figure D.2 contains the results for the empirical type-I error
probabilities when α was lowered to 0.06 and 0.15 for the ’traditional’ prior setting
in case the 2.5- and 50-percentile development studies were considered, respectively.
In case validation was performed of the 97.5-percentile development study, α was
increased to 0.4. With exception of the case of a validation study sample size of
N = 100 of the 97.5-percentile development study, all type-I error probabilities are
statistically non-significant between the two prior settings. Considering these adjusted
α values for the flat-prior setting, allows for valid power comparisons.
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Figure D.2: Empirical type-I error probability as a function of the validation study sample
size for the underestimated (a.), unbiased (b.), and overestimated (c.) development study
information. Results are indicated for the flat (grey circles connected by the dashed line)
and informative (black circles connected by the solid line) AUC∗a-priors in case α = 0.2 for
the informative setting and α = 0.06, α = 0.15, and α = 0.4 for the flat setting after the
respective development studies. The 95% confidence interval for each estimate is indicated
by the respective plus-signs.





Summary

Alzheimer’s Disease (AD) is an enormous burden on society and future perspectives
foresee this burden only to increase. The need for a treatment for AD is growing
but at the same time advances in AD research are hindered by issues related to the
diagnosis of the disease. The currently used clinical diagnosis of AD is known to be
imperfect while the perfect post-mortem diagnosis is expensive and useless from a
diagnostic point of view. Therefore, the need for easily measurable biomarkers is high
but many fail to show statistically adequate diagnostic accuracy. One of the reasons
may be biased estimation of biomarker accuracy due to the use of the imperfect
clinical diagnosis as a reference test without acknowledging this.

The main goal of this dissertation was the development of methods facilitating the
development of biomarker-based diagnostic tests for AD. The first research question
focuses on how to efficiently estimate the accuracy of a diagnostic biomarker-index.
Because of the lack of a gold-standard reference-test, currently available methods
making use of the true disease labels would lead to biased accuracy estimates. There-
fore, we propose the use of a Bayesian latent-class mixture model in Chapter 3. The
model allows to include the information from an imperfect reference-test while ac-
counting for its imperfectness. Care has to be taken with respect to the inclusion
of prior information since a combination of uninformative priors may lead to an ex-
tremely informative prior for the parameter of interest. Therefore, an alternative
parametrisation is proposed to allow the inclusion of prior information directly on the
accuracy of the diagnostic-biomarker index. We show that, when appropriate priors
are chosen, this model provides unbiased estimates of the diagnostic biomarker-index’
accuracy. Moreover, the results suggest that the reports indicating disappointing re-
sults of diagnostic performance of the AD CSF-biomarkers might by due in part to
the fact that the clinical diagnosis was treated as a GS reference-test.
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The assumption that the considered biomarkers are independent of the reference
test, conditionally on the true disease status, is untestable and only heuristically en-
forceable. Therefore, the proposed Bayesian latent-class model is extended in Chapter
4. By considering that the imperfect reference-test is a dichotomized version of an
underlying continuous latent-tolerance variable, conditional dependence between the
biomarkers and the reference test are modelled directly. Assuming that the contin-
uous tolerance variable and the biomarkers are jointly normally distributed, their
correlation can be estimated. Therefore, the estimated accuracy of the diagnostic
biomarker-index is corrected for any possible conditional dependence between the
biomarkers and reference test without the need for any untestable heuristic argu-
mentation. In terms of the AD application, it is shown that, although statistically
significant conditional dependence is observed, it has no significant impact on the
accuracy estimate of the diagnostic biomarker-index.

The focus of the second research question is on the validation of a developed di-
agnostic biomarker-index. Because of the need for large sample sizes or expensive
data to reach adequate power of the validation study together with the lack of an effi-
cient statistical framework, validation is rarely performed. In Chapter 5 we propose a
Bayesian framework allowing efficient validation of a diagnostic biomarker-index. By
making use of the exchangeability assumption of the parameters of the development
and validation studies, accuracy information obtained in the development study can
be included into the validation study. In particular, an approximation to the posterior
distribution of the accuracy parameter from the development study, is carried over
to the validation study. Validation is defined as an hypothesis test, testing whether a
particular validation criterion value can be rejected. Before comparing the proposed
analysis to a ’traditional’ analysis in which the development-study information is ig-
nored, significance levels of the hypothesis test are adjusted to obtain comparable
type-I error probabilities. We show that, although the information from the develop-
ment study is discarded by doubling its standard deviation, a large reduction of the
required sample size is possible. In particular, the considered settings shows a reduc-
tion to about 20% of the required sample size compared to a validation study ignoring
the development-study accuracy information to reach a power of approximately 0.53.

The development and validation of a diagnostic AD CSF-biomarker cut-off for a
particular commercially available assay does not imply the applicability of the cut-
off on other assays, measuring the same biomarker. This would imply setting up
time-consuming and expensive studies. Therefore, the third research question inves-
tigates the transfer of the cut-off value of an AD CSF-biomarker from a currently
used assay to a new one, without having to conduct new development and valida-
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tion studies. The validity and the effect of the currently applied linear-regression
transfer-method on the clinical performance of the biomarker measured with a new
assay, have never been investigated. In Chapter 6 we establish that if the underlying
assumptions of the linear-regression-based transfer-method are violated the results
are biased. This entails that the diagnostic biomarker has different operating char-
acteristics depending on the assay on which it is measured. Therefore, we propose
a novel two-stage Bayesian approach which leads to unbiased and more precise esti-
mates than the linear-regression-based transfer-method. The approach first estimates
the distributional characteristics of the diagnostic-biomarker on the current assay
based on the results of a GS reference-test. Next, the posterior information is in-
troduced in the second stage as prior information. In the second stage, the cut-off
of the new-assay is estimated by considering data measured on both assays side-by-
side. Because of the introduction of the information on the current assay in the
first stage, no GS information is required to end up with unbiased estimates. The
proposed Bayesian approach provides more precise cut-off estimates than the linear-
regression-based transfer-method. Though, with the limited sample size of currently
considered development and validation studies, only imprecise cut-off estimates are
available. This means that the currently used cut-offs have large uncertainty in terms
of operating characteristics, which is rarely acknowledged.





Samenvatting

De ziekte van Alzheimer heeft een enorme impact op onze huidige samenleving en
voorspellingen menen dat deze impact enkel zal toenemen. De nood aan een doel-
treffende behandeling voor Alzheimer neemt toe terwijl vooruitgang in het onderzoek
naar de ziekte belemmerd wordt door moeilijkheden met de diagnose van de ziekte.
Van de momenteel gehanteerde klinische diagnose van Alzheimer, weet men dat deze
niet perfect is. De post-mortem diagnose is dan weer wel perfect, maar kostelijk en
vanuit diagnostisch oogpunt onbruikbaar. Daarom is de nood aan eenvoudig te meten
biomerkers groot. Vele biomerkers, echter, slagen er niet in om statistisch voldoende
diagnostische nauwkeurigheid aan te tonen. Een van de redenen zou kunnen zijn dat
men, door de foutieve aanname dat de klinische diagnose een perfecte referentietest
zou zijn, tot een vertekende schatting van diagnostische nauwkeurigheid komt.

Het hoofddoel van deze verhandeling was om methoden te ontwikkelen die de ont-
wikkeling van diagnostische tests voor Alzheimer op basis van biomerkers, zouden
kunnen ondersteunen. De eerste onderzoeksvraag richt zich op het efficiënt schatten
van de nauwkeurigheid van een diagnostische index gebaseerd op biomerkers. Bij
gebrek aan een gouden standaard referentietest, leiden de huidige methoden, die ge-
bruik maken van de ware onderliggende ziekte status, mogelijks tot vertekende schat-
tingen van de nauwkeurigheid. Om die reden stellen wij een Bayesian latent-class
mixture model voor in Hoofdstuk 3. Dit model laat toe om de informatie vervat in
een niet-perfecte referentietest, toch op te nemen tijdens de schatting van diagnosti-
sche nauwkeurigheid, terwijl er rekening mee wordt gehouden dat deze niet perfect
is. Men dient zorg te besteden aan de wijze waarop men prior informatie aan het
model toevoegt. Een combinatie van niet-informatieve priors kan immers leiden tot
een zeer informatieve prior voor de parameter waarin men gëınteresseerd is. Om dit
te vermijden, stellen wij een alternatieve parameterizatie voor, die het toelaat om
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de prior informatie rechtstreeks te veronderstellen op het niveau van de nauwkeu-
righeid van de diagnostische biomerker-index. We tonen aan dat, wanneer geschikte
priors worden gekozen, het voorgestelde model een niet-vertekende schatting van de
nauwkeurigheid van de diagnostische biomerker-index kan maken. De resultaten sug-
gereren ook dat de voorgaande teleurstellende resultaten inzake de nauwkeurigheid
van de Alzheimer biomerkers mogelijk te wijten zijn aan het foutief beschouwen van
de klinische diagnose als een perfecte referentietest.

De aanname dat de beschouwde biomerkers onafhankelijk zijn van de referentie-
test, gegeven de ware ziekte status, is niet testbaar en kan enkel via heuristische
argumentatie aannemelijk gemaakt worden. Hierom, wordt het Bayesian latent-class
model uitgebreid in Hoofdstuk 4. Door aan te nemen dat de niet-perfecte referentie-
test een dichotome versie is van een onderliggende continue latente tolerantievariabele,
kan de conditionele afhankelijkheid tussen de biomerkers en de referentietest recht-
streeks gemodelleerd worden. Onder de veronderstelling dat de gezamenlijke distri-
butie van de continue tolerantievariabele en de biomerkers een multi-variate normaal
distributie is, kan de beschouwde correlatie geschat worden. Hierdoor is de geschatte
nauwkeurigheid van de diagnostische biomerker-index gecorrigeerd voor een mogelijke
conditionele afhankelijkheid tussen de biomerkers en de referentietest zonder zich te
hoeven beroepen op heuristische argumentatie. Wat betreft een applicatie op data
van Alzheimer patiënten, tonen we aan dat hoewel er sprake is van statistisch sig-
nificante conditionele afhankelijkheid, dit geen effect heeft op de schatting van de
nauwkeurigheid van de diagnostische biomerker-index.

De tweede onderzoeksvraag betreft de validatie van een ontwikkelde diagnostische
biomerker-index. Om tot een toereikende power van de validatiestudie te komen,
zijn er momenteel zulke grote steekproefgroottes of kostelijke data nodig in combi-
natie met een gebrek aan efficiënte statistische modellen, dat er zelden tot validatie
wordt overgegaan. In Hoofdstuk 5 stellen wij een Bayesiaans model voor dat toelaat
om de nauwkeurigheid van een diagnostische biomerker-index efficiënt te valideren.
Door gebruik te maken van de uitwisselbaarheidsassumptie, wordt het mogelijk om
nauwkeurigheidsinformatie, vergaard in de ontwikkelingsstudie, te introduceren in de
validatiestudie. In het bijzonder kan een benadering van de posterior distributie van
de nauwkeurigheidsparameter, geschat in de ontwikkelingsstudie, overgedragen wor-
den als prior informatie voor de validatiestudie. Validatie is gedefinieerd in de vorm
van een hypothese-toets die nagaat of een bepaald validatie criterium al dan niet kan
worden weerlegd. Bij het vergelijken van de voorgestelde analyse met de ’traditionele’
analyse, waarbij de nauwkeurigheidsinformatie van de ontwikkelingsstudie buiten be-
schouwing gelaten wordt, worden eerst de significantie niveaus van de hypothese-toets
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aangepast zodanig dat vergelijkbare kansen op een type-I fout worden bekomen. We
tonen aan dat, hoewel de informatie van de ontwikkelingsstudie wordt gereduceerd
door de standaarddeviatie van deze informatie te verdubbelen, een significante re-
ductie mogelijk is van de benodigde steekproefgrootte. In het beschouwde voorbeeld,
kan deze reductie tot ongeveer 20% van de ’traditioneel’ benodigde steekproefgrootte
gaan om een zelfde power van ongeveer 0.53 te bekomen.

De ontwikkeling en validatie van de drempelwaarde van een diagnostische Alzhei-
mer biomerker voor een bepaald commercieel beschikbaar platform, impliceert niet
automatisch de overdraagbaarheid van de drempelwaarde naar een ander platform,
dat dezelfde biomerker meet. Dit betekent dat er nieuwe tijdrovende en kostelijke
studies moeten worden opgezet. Om te vermijden dat er nieuwe ontwikkelings- en
validatiestudies zouden moeten uitgevoerd worden, spitst de derde onderzoeksvraag
zich toe op de overdraagbaarheid van biomerker drempelwaarden van een huidig toe-
gepast platform naar een nieuw platform. De geldigheid en het effect van de huidige
toegepaste lineaire-regressie overdrachtsmethode op de klinische nauwkeurigheid van
de biomerker, gemeten op het nieuwe platform, zijn tot op heden nooit onderzocht. In
Hoofdstuk 6 stellen we vast dat wanneer de onderliggende aannames van de huidige
overdrachtsmethode geschonden zijn, vertekende resultaten bekomen worden. Deze
vaststelling houdt in dat, afhankelijk van het platform waarop de biomerker gemeten
wordt, diens klinische nauwkeurigheid varieert. Daarom stellen wij een nieuwe twee-
fase Bayesiaanse aanpak voor die tot onvertekende en preciezere resultaten leidt dan
de huidige overdrachtsmethode. De voorgestelde methode schat eerst de distributi-
onele kenmerken van de diagnostische biomerker, gemeten op het huidige platform,
in combinatie met de resultaten van een gouden standaard referentietest. Vervolgens
wordt de posterior informatie in de tweede fase aangebracht als prior informatie. In
de tweede fase wordt de drempelwaarde van het nieuwe platform geschat door mid-
del van data gemeten op beide platforms. Omdat de informatie omtrent het huidige
platform via de eerste fase wordt binnengebracht, is er geen nood meer aan gou-
den standaard referentietest informatie om tot onvertekende schattingen te komen.
Hoewel de voorgestelde Bayesiaanse methode tot preciezere schattingen leidt dan de
huidige overdrachtsmethode, blijven de schattingen nog steeds zeer onzeker omwille
van de beperkte steekproefgroottes van de ontwikkelings- en validatiestudies. Dit
betekent dat er op dit ogenblik grote onzekerheid bestaat rond de gebruikte drempel-
waarden in termen van klinische nauwkeurigheid, onzekerheid die zelden bekrachtigd
wordt.
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