

2014 | Faculty of Sciences

DOCTORAL DISSERTATION

Heredity of zinc tolerance in Suillus luteus and impact of metal pollution on ectomycorrhizal fungal communities

Doctoral dissertation submitted to obtain the degree of doctor of Science: Biology, to be defended by:

Michiel Op De Beeck

Promoter: Prof. Dr Jan Colpaert

Voorwoord

Deze studie werd mogelijk gemaakt dankzij tal van medewerkers, collega's, vrienden en familie. Zij hebben allemaal het huidige project en mij gesteund op professioneel en/of persoonlijk vlak. Ten eerste zou ik graag prof. dr. Jan Colpaert en prof. dr. Jaco Vangronsveld willen bedanken om mij de mogelijkheid te geven onderzoek te verrichten in het Centrum voor Milieukunde aan de Universiteit Hasselt. In het bijzonder wil ik prof. dr. Jan Colpaert bedanken voor zijn intellectuele steun voor het huidige project en om mijn interesse in mycologie verder aan te wakkeren. Graag zou ik ook de jury van mijn doctoraatsthesis willen bedanken voor hun constructieve commentaar. In het bijzonder wil ik prof. dr. Henk Schat van de Universiteit van Amsterdam bedanken voor zijn uitgebreide discussie van de zinktolerantie data die in deze thesis werden gepresenteerd. Ook prof. dr. Stéphane Declerck van de Université Catholique de Louvain wil ik bedanken voor zijn samenwerking in het huidige project. dr. Tony Remans wil ik graag bedanken voor zijn input, discussies en technische ondersteuning tijdens verschillende studies. Marc Missoorten ben ik zeer dankbaar voor het verstrekken van toegang tot het studieveld in Hechtel-Eksel en voor zijn hulp tijdens veldwerk. Graag zou ik (voormalige) collega's willen bedanken die mij hebben gesteund tijdens mijn doctoraatsthesis en voor het doorgeven van hun kennis en ervaringen. Meer bepaald ben ik dr. Kristin Adriaensen, dr. Erik Krznaric, dr. François Rineau, dr. Joske Ruytinx, dr. Mark Smits, Jan Wevers, Laura Coninx, Hoai Nguyen en alle studenten die hebben bijgedragen aan dit project zeer dankbaar. Ook alle collega's binnen het Centrum voor Milieukunde hebben bijgedragen in het tot stand brengen van de huidige thesis met nuttige suggesties, technische ondersteuning, discussies en inspiratie. Ten slotte, wil ik graag mijn familie bedanken voor hun liefde en steun.

Preface

This study has been made possible thanks to numerous collaborators, colleagues, friends and family who have all supported this project and myself on a professional and/or personal level during the past few years. First of all, I would like to gratefully thank prof. dr. Jan Colpaert and prof. dr. Jaco Vangronsveld for giving me the opportunity to conduct research at the Centre for Environmental Sciences at Hasselt University. More specifically, I would also like to thank prof. dr. Jan Colpaert for his intellectual support of the current study and to further strengthen my interest in mycology. I would like to thank the jury of my PhD thesis for their constructive comments. In particular, I would like to thank prof. dr. Henk Schat of Amsterdam University for the elaborate discussion of the zinc-tolerance data presented in this thesis. I am also very grateful to prof. dr. Stéphane Declerck of the Catholic University of Louvain for his collaboration and support of the current project. I would like to thank dr. Tony Remans for his input, discussions and technical support during different studies. Furthermore, I am very grateful to Marc Missoorten for providing access to the study site in Hechtel-Eksel and for assisting in fieldwork. I would also like to thank (former) colleagues who have supported me during my PhD thesis and for passing down their knowledge and experiences. In particular, I am very grateful to dr. Kristin Adriaensen, dr. Erik Krznaric, dr. Francois Rineau, dr. Joske Ruytinx, dr. Mark Smits, Jan Wevers, Laura Coninx, Hoai Nguyen and all the students who have contributed to this project. Many more colleagues at the Centre for Environmental Research have been an important part of this PhD thesis. They all contributed in some way and have helped to shape this research project with useful suggestions, technical support, discussions and inspiration. Finally, I would like to thank my family for their love and support.

Samenvatting

Verhoogde concentraties aan zware metalen in bodems, zoals zink en cadmium, zijn toxisch voor de meeste organismen. Vele organismen kunnen dan ook niet overleven in bodems verontreinigd met zware metalen. In enkele zeldzame gevallen zorgt deze selectiedruk voor evolutionaire aanpassingen aan metaalhomeostase mechanismen. Dit fenomeen is goed bestudeerd voor planten, maar slechts weinig is geweten over adaptieve metaaltolerantie bij schimmelsoorten die in associatie met deze planten leven. In hoofdstuk twee wordt een genetische studie gepresenteerd met als doel een beter inzicht te krijgen in de genetische structur van zinktolerantie bij Suillus luteus. In deze studie werden verschillende zinktolerantie fenotypes waargenomen in dikaryote ouderlijke stammen, in monokaryote nakomelingen van deze stammen en in kruisingen tussen monokaryote nakomelingen. Op basis van deze fenotypes werd geconcludeerd dat zinktolerantie in S. luteus wordt overgedragen door onvolledige dominantie. Enkele mogelijke modellen die de genetische architectuur van zinktolerantie in S. Iuteus kunnen verklaren, werden in deze studie getest en werden besproken in hoofdstuk twee. Verder heeft een door metalen-geïnduceerde selectiedruk tot gevolg dat populaties van gevoelige organismen plaats zullen ruimen voor meer resistente soorten of soorten die adaptieve metaaltolerantie hebben ontwikkeld. Hierdoor zullen op de meest verontreinigde bodems zich slechts een beperkt aantal soorten kunnen vestigen, waardoor specifieke gemeenschappen ontstaan. Zulke metaal-specifieke gemeenschappen zijn ook sinds lange tijd bekend in het plantenrijk. Met deze plantengemeenschappen zijn vermoedelijk ook specifieke schimmelgemeenschappen geassocieerd. Hiernaar is echter aanzienlijk minder onderzoek verricht in het verleden omdat het bestuderen van (hoofdzakelijk) ondergrondse schimmelgemeenschappen veel moeilijker is dan het bestuderen van plantengemeenschappen. Echter, recente ontwikkelingen in moleculaire biologie hebben gedetailleerde

SAMENVATTING

beschrijvingen van schimmelgemeenschappen mogelijk gemaakt. In het derde hoofdstuk wordt een technische studie gepresenteerd waarin het optimaliseren van de vereiste moleculaire technieken voor het bestuderen van ondergrondse schimmelgemeenschappen als doel werd gesteld. De amplificatie-eigenschappen van de primers die het best presteerden in deze verkennende studie werden getest en vergeleken met andere primers die courant worden gebruikt voor het bestuderen van schimmelgemeenschappen. In hoofdstuk vier worden de in hoofdstuk drie geoptimaliseerde technieken gebruikt voor het bestuderen van schimmelgemeenschappen in de bodem van een pioniersdennenbos in een met zink en cadmium vervuild studiegebied. Naast het karakteriseren van de schimmelgemeenschappen aanwezig in dit vervuilde gebied, werd ook de invloed van metaalverontreiniging op de diversiteit en structuur van de schimmelgemeenschapen bestudeerd. Hoewel duidelijke correlaties tussen de concentraties aan zware metalen en de samenstelling van schimmelgemeenschappen werden waargenomen, werden geen consistente effecten vastgesteld op de schimmeldiversiteit. De aanwezigheid van de meest dominante soorten in dit studiegebied werd besproken. In het vijfde hoofdstuk wordt een studie gepresenteerd waarin de schimmelgemeenschappen die voorkomen in vervuild gebied werden vergeleken met schimmelgemeenschappen in een controlegebied, eveneens in pioniersdennenbos. De soortensamenstellingen van de schimmelgemeenschappen in beide studiegebieden kwamen grotendeels overeen, maar de relatieve abundanties duidden op een verschuiving in de dominantie van aanwezige soorten. Opnieuw werden geen effecten van gemeten omgevingsfactoren op de schimmeldiversiteit vastgesteld. Veranderingen in de relatieve abundanties van aanwezige schimmels over verschillende jaren, duidden bovendien op dynamische ecosystemen in de bestudeerde pioniersbossen. Een opvallende dynamiek is de verdringing van ascomyceet fungi door basidiomyceet fungi in de ectomycorrhizatips van Pinus in de aanplanting op verontreinigde bodem. Mogelijk heeft het dynamische karakter van deze ecosystemen een belangrijke rol gespeeld
in het ontstaan van metaaltolerante schimmels zoals S. luteus. Ten slotte worden in het zesde en laatste hoofdstuk de meest belangrijke bevindingen van de vier studies die tijdens dit project werden uitgevoerd samengevat en bediscussieerd. Ook worden perspectieven geboden waarop toekomstige studies zich zouden kunnen toespitsen.

Summary

High concentrations of heavy metals in soils, such as zinc and cadmium, are toxic to most organisms. Many organisms are unable to survive in metal-polluted soils. In rare occasions, this selection pressure may cause evolutionary adaptations in the metal homeostasis mechanisms of organisms exposed to increased concentrations of heavy metals. This phenomenon is well studied for plants, but only limited information is available on adaptive metal tolerance in symbiotic fungi that live together with these plants. In chapter two, a genetics study is presented aiming to provide insight in the genetic architecture of zinc tolerance in Suillus /uteus. In this study, contrasting zinc tolerance phenotypes were observed in dikaryotic, parental strains, in monokaryotic offspring of these strains and in crosses between monokaryotic strains. Based on these phenotypes, it was concluded that zinc tolerance in S. luteus is inherited through incomplete dominance. Some potential models for the genetic architecture of zinc tolerance in S. luteus were tested and are discussed in chapter two. Furthermore, metal-induced selection pressure may cause populations of sensitive organisms to collapse, leaving only adapted species. Hence, on most polluted sites, only a limited number of organisms may thrive, giving rise to unique communities. Such (pseudo-)metallophyte plant associations have been studied extensively in the past. However, also specific fungal communities are likely to be associated with these plant communities. Nevertheless, much less research has been conducted on these fungal communities in the past, since studying (mainly) belowground fungal communities is more difficult than studying plant communities. Recent developments in molecular biology, however, enabled detailed identification of fungal communities. In the third chapter, a technical study is presented aiming to optimize the required molecular tools for studying belowground fungal communities. The amplification-efficiencies of the primers that were found to be the most efficient in amplifying a broad range of fungal taxa were compared to other primers that are frequently used to
study fungal communities. In chapter four, the optimized techniques described in chapter three were used to study fungal communities in soils of pioneer pine forests thriving on a zinc and cadmium polluted site. Beside characterizing the fungal communities in this study site, also the influence of metal pollution on fungal diversity and fungal community structures were analysed. Whereas clear correlations were found between fungal community compositions and metal concentrations, no consistent effects on fungal diversity were detected. The presence of the most dominant species in this site were discussed. In the fifth chapter, a study is presented in which the fungal communities in a metal polluted site were compared to fungal communities in a control site, both associated with a pioneer pine forest. The species composition of the fungal communities in both sites was very similar. However, the relative abundances of these species indicated a dominance shift. Striking community dynamics in which basidiomycetes replaced ascomycetes in the ectomycorrhizal root tips of pine trees were observed. Again, no effects of measured environmental factors on fungal diversity were observed. Moreover, changes in the relative abundances of present species indicated that the studied pioneer ecosystems are very dynamic. The dynamics of these pioneer ecosystems potentially played an important role in the evolution of metal-tolerant fungi such as S. Iuteus. Finally, in the sixth, and last chapter, the most important conclusions of the current project were summarized and discussed and perspectives for future studies are given.

Index

Chapter 1: Introduction 1
References 13
Chapter 2: Heredity of zinc tolerance in Suillus luteus: anectomycorrhizal basidiomycete adapted to heavy metaltolerance23
Summary 23
Keywords 23
Introduction 24
Materials and methods 25
Results 30
Discussion 41
Acknowledgments 44
References 45
Supporting Information 50
Chapter 3: Comparison and validation of some ITS primer pairs usefufor fungal metabarcoding studies65
Summary 65
Keywords 66
Introduction 67
Materials and methods 69
Results 75
Discussion 85
Acknowledgments 91
References 92
Supporting Information 99
Chapter 4: Impact of metal pollution on fungal diversity andcommunity structures111
Summary 111
Keywords 111
Introduction 112
Materials and methods 113
Results 120
Discussion 130
Acknowledgments 136
References 137
Supporting Information 145
Chapter 5: Comparison of ectomycorrhizal communities of pioneerScots pine forests (Pinus sylvestris L.) on a metal-pollutedand non-polluted site163
Summary 163
Keywords 163
Introduction 164
Materials and methods 165
Results 171
Discussion 182
Acknowledgments 185
References 186
Supporting Information 191
Chapter 6: Conclusions and future perspectives. 205
References 217
Appendix A 223
Appendix B 235
Appendix C 259

Chapter 1: Introduction

History of metal pollution in the Campine region

Since the onset of the Industrial Revolution in the mid-18 ${ }^{\text {th }}$ century, metals such as zinc (Zn) and lead (Pb) have been extracted on an industrial scale through pyrometallurgical processes. The first zinc smelters were built in the United Kingdom around 1740 (Morgan, 1985). When the Industrial Revolution spread to mainland Europe, the pyrometallurgical industry initially started growing around Liège in Belgium and in Silesia (Silesia corresponded to an area covering a large part of current Poland, Germany and the Czech Republic). Flue gasses exited the plants unfiltered and had a devastating impact on the health of many people in densely populated areas such as Liège. Therefore, new zinc smelters were built in lowpopulated areas such as the Campine region in Belgium and the Netherlands in the early and mid-nineteenth century. The pyrometallurgical industry continued to operate in these areas until the mid- $20^{\text {th }}$ century. In Belgium, zinc smelters were built in Overpelt (1880), Balen (1885) and Lommel (1904) and near the Belgian border in the Netherlands in Budel (1892) (Colpaert et al., 2004). The pyrometallurgical process developed in Belgium was initially adopted throughout Europe and was later also adopted in the United States. It was the main pyrometallurgical method that was used during the first 100 years of large-scale Zn and Pb production. In this so-called Belgian-type horizontal retort process, ores containing ZnS, PbS, ZnO and PbO were heated together with charcoal to $1400{ }^{\circ} \mathrm{C}$ in ceramic retorts. In the ceramic retorts, charcoal reduced Zn and Pb containing minerals to $\mathrm{Zn}+\mathrm{CO}$ and $\mathrm{Pb}+\mathrm{CO}$ to prevent their oxidation. At $1400{ }^{\circ} \mathrm{C}$, most Zn and Pb are converted to gasses and S is converted to SO_{2}. Gaseous Zn and Pb were subsequently collected in water-cooled condensers and CO and SO_{2} gasses exited the plants as flue gas (Morgan, 1985). Unfortunately, this early pyrometallurgical process was very inefficient. It proved to be very difficult to tightly regulate the temperatures during the entire process. Consequently, large quantities of Zn and Pb gasses exited

Chapter 1

the plants as flue gas as well. Beside Zn and Pb , the ores used for metal extraction, typically also contained high concentrations of cadmium (Cd). Since Cd has a melting point of $321^{\circ} \mathrm{C}$ and a boiling point of $767^{\circ} \mathrm{C}$, also most Cd was converted to a gas in the ceramic retorts. During the $18^{\text {th }}$ and $19^{\text {th }}$ century, Cd was not collected because its physical properties did not allow Cd to be used in construction or to manufacture tools and equipment. Only later, in the $20^{\text {th }}$ century, Cd would be collected in metal smelters and used in Nickel-Cadmium batteries and to stabilize plastics. As a consequence, large quantities of $\mathrm{S}, \mathrm{Zn}, \mathrm{Pb}$ and Cd were emitted from zinc smelters in the Campine region during the period between 1880 and 1973. Through precipitation, metal ions in the industrial vapours settled in the near vicinity of zinc smelters, polluting vast areas in the vicinity of the zinc smelters. Moreover, despite its high metal concentrations, water that had been used to cool condensers was discharged in nearby rivers and creeks. Used retorts, condensers and ores (metal slugs) still contained large quantities of Zn, Pb and Cd as well. In the $20^{\text {th }}$ century, this industrial waste has been widely used for road and railway construction, on school and farm yards, for stabilization of industrial terrains or private properties, spreading the pollution even further throughout Belgium and the Netherlands (Verlaek and Weynants, 2006). It is estimated that 290 km of roads have been constructed with metal-polluted waste from zinc smelters and that a total area of $700 \mathrm{~km}^{2}$ has been polluted with high concentrations of metals in the Campine region of Belgium alone (Hogervorst et al., 2007). Since 1973, electrochemical processes replaced pyrometallurgical processes. Since the switch to this new technology, Cd emissions from the zinc smelter in Overpelt, for example, decreased from $125,000 \mathrm{~kg}$ per year to 130 kg per year (Verlaek and Weynants, 2006). However, since metal ions are not degradable, they remain present in high concentrations in the environment to date. The toxicity of these metals is most visible on the vegetation at polluted sites. So-called metal deserts in the Campine region, some of which span several square kilometres, are still devoid of most vegetation, decades after emissions from zinc smelters have been cut.

Why are metal ions toxic?

To understand why metals are toxic at specific concentrations, first a distinction between two groups of metals needs to be made. Some metal ions are required for growth and repair of cells. They are, for example, cofactors in many enzymes or they can be structural components of cell walls, cell organelles and cell- or endomembranes. These metals are collectively called "essential nutrients" and their concentrations in cells are tightly regulated. However, when the concentrations of these metals in cells become too high, they become toxic. Examples of essential metal ions are zinc (Zn), iron (Fe), copper (Cu), magnesium (Mg), manganese (Mn), etc. (Gadd, 1993). Other metal ions are not required for normal growth and repair by most organisms and they are denoted as "non-essential nutrients". Examples include lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), caesium (Cs), etc. (Gadd, 1993). They can become toxic at even lower concentrations when compared to essential elements.

Toxic concentrations of metal ions exert high levels of stress to cells mainly because they replace other bound metals from their binding sites. Hence, proteins my become inhibited or denatured and cell structures may become disrupted, potentially causing membrane leakage (Hall, 2002). Indirectly, metal ions may also cause oxidative stress to cells by engaging in chain reactions, with for example cell membranes, causing lipid peroxidation. This potentially results in cell leakage and eventually cell death (Dietz et al., 1999). Finally, metal ions that are present in excess may replace essential metal ions, resulting in deficiency effects (Van Assche and Clijsters, 1990). It is clear that increased concentrations of metals in cells can cause high levels of stress in various ways. This increased cellular stress, may in turn lead to a decrease in the fitness of organisms living in metal polluted environments. If the metal-induced stress indeed causes a reduction in the fecundity of an organism, this organism will have a selective disadvantage compared to other organisms of the same species and its genotype will be selected against. This metal-induced selection pressure does not only act on individual species, it will also select for those species in a community

Chapter 1

that have the capacity to adapt to toxic environments. Even though the impact of metal pollution is also widely studied for invertebrates such as nematodes (Salamun et al., 2012) and Collembola (Janssens et al., 2009) and for prokaryotes (Porter and Rice, 2013), the current project will focus on the effects of metal pollution on fungi in terrestrial environments and, where possible, comparisons to what is known about the impact of metal pollution on plant species and plant communities will be made.

Effects of metal-induced selection pressure at the species level

Both fungi and plants will typically avoid the accumulation of toxic concentrations in the cytoplasm, rather than develop proteins or cellstructures that resist high concentrations of metals or reactive oxygen species (Hall, 2002). A large number of genes are known to be involved in preventing the build-up of toxic concentrations of metal ions or to reduce or repair damage caused by metal ions in both plants and fungi. A detailed description of known genes involved in these mechanisms is beyond the scope of the current introduction and can be found in Schat et al. (1996), Schat and Vooijs (1997), Hall (2002) and Verbruggen et al. (2009) for plants, in Bellion et al. (2006) for filamentous fungi and in Li et al. (1997) and Clemens and Simm (2003) for yeast. Instead, an overview will be given of the potential mechanisms that may be selected for under metal-induced selection pressure.
A first defence mechanism that can be employed by plants and fungi is the exudation of organic acids, such as oxalic acid, to sequester and precipitate metal ions extracellularly. However, it needs to be noted that many exudates in fact increase the availability of metals and are therefore not likely to occur as defence mechanisms against high concentrations of metals (Li et al., 2005). Next, the cell wall and cell membrane can also prevent the accumulation of excess metal ions in the cytoplasm. Negative charges on proteins and polysaccharides in the cell wall can bind large amounts of metal ions and cell wall components, such as pectins, may become more methylated in the cell wall, reducing its metal binding
capacity, in response to metal exposure (Colzi et al., 2011). In Paxillus involutus, a reduction in the production of hydrophobins suggested that cysteine, that would be used in the production of hydrophobins under normal growth conditions, was used for the production of cysteine-rich molecules in the cytoplasm. These cysteine-rich molecules could subsequently sequester excess metal ions in the cytoplasm of Paxillus involutus cells exposed to high metal concentrations (Jacob et al., 2004). Moreover, transport proteins in the cell membrane of both plants and fungi have been shown to be actively involved in the efflux of metal ions, preventing the build-up of high intracellular metal concentrations (Hall, 2002; Bellion et al., 2006). However, as soon as too many metal ions enter the cell, they have to be sequestered to prevent them from causing damage. Both in plants and fungi, metallothioneins, glutathione and phytochelatins can perform this role in the cytoplasm. Metal-ligand complexes can subsequently be stored intracellularly in vacuoles (Hall, 2002; Bellion et al., 2006). When cells are exposed to such high concentrations of metals that even these mechanisms are insufficient to protect the cell, damage will be inflicted to cell structures and DNA and the redox balance of the cell will be disrupted. In these cases, repair mechanisms such as the production of heat shock proteins may be upregulated to protect and repair damaged proteins. The redox balance, in turn, can be restored through superoxide dismutases, ascorbate, glutathione, peroxidases and catalases (Cuypers et al., 2011). The up- or down regulation of genes involved in the general homeostasis, such as the ones describes above, are considered to be metal resistance mechanisms and they are present in all plants and fungi.
Random mutations and genetic recombination in species with sexual reproduction cause new genotypes to be formed in natural populations continuously. Hence, individuals that can tolerate increased concentrations of metals can be present at low frequencies in natural populations. This has, for example, been shown for grasses where 0.1% to 0.5% of grass populations growing on non-polluted soils were found to be metal- tolerant

Chapter 1

(Bradshaw and McNeilley, 1981; Al-Hiyaly et al., 1993). However, when metal-induced selection pressure is present, genotypes of a given species that exhibit metal tolerance may have an increased fecundity relative to other genotypes of that same species. Consequently, the genotype with an increased fecundity may become more frequent in a population. The negative impact of metals on spore production or mycelial growth in fungi and flower or seed production in plants have been shown in the past, indicating that increased metal concentrations may indeed reduce the fecundity of plants (Hancock et al., 2012) or fungi (Andrade et al., 2004; Sridhar et al., 2005). As soon as individuals of a given species with a particular genetic trait become frequent in a population, a new ecotype is said to have been formed. Only in those cases where substantial differences exist in the metal tolerance between different ecotypes of a given species, that species is said to have developed adaptive metal tolerance. Only few examples of true adaptive metal tolerance in mycorrhizal fungi have been reported (Colpaert, 2008). The few known examples of adaptive metal tolerance in mycorrhizal fungi include: aluminium tolerance, which was found in Pisolithus tinctorius (Egerton-Warburton and Griffin, 1995); nickel tolerance in Pisolithus albus (Jourand et al., 2010) and Cenococcum geophilum (Goncalves et al., 2009) and zinc tolerance in Suillus bovinus, Rhizopogon Iuteolus and Suillus luteus (Colpaert et al., 2000; 2004). In higher plants, the most well-known examples of true adaptive metal tolerance can be found in grass species such as Agrostis capillaris (Al-Hiyaly et al., 1993) but also a few dicotyledonous plants have been found to develop adaptive metal tolerance. Examples of the latter group are Silene vulgaris, Noccaea caerulescens (formerly known as Thlaspi caerulescens) and Arabidopsis halleri (Alford et al., 2010). The genetic basis for adaptive metal tolerance has been thoroughly studied in plants and was reviewed by Schat et al. (1996), Schat and Vooijs (1997), Hall (2002) and Verbruggen et al. (2009), but the genetic architecture for adaptive metal tolerance in fungi is poorly understood. Therefore, in the current project, a genetic study was conducted to investigate the genetic architecture of zinc
tolerance in Suillus luteus (L.: Fr.) Roussel (Chapter 2). Suillus luteus is a basidiomycete that forms ectomycorrhizal associations with trees of the genus Pinus. Fruiting bodies of this fungus can be frequently found on sandy soils both in metal-polluted and non-polluted young pioneer pine forests in the Campine region of Belgium. Zn - and Cd- tolerant ecotypes of this species have been described from different populations in the northern part of Limburg, Belgium in the past (Colpaert et al., 2004; Krznaric et al., 2009) and Cu - tolerant ecotypes have been described from Cu mine spoils in Norway (Adriaensen et al., 2005). In most cases, adaptive metal tolerance in plants and fungi has been found to be metal-specific. Hence, different metals may select for different genes, even within the same species. Also for Suillus luteus, Zn and Cd tolerance appear not to be linked to one another. The current project will be focused on the genetic architecture of Zn tolerance in Suillus luteus. In this study, two major questions were investigated. (i) How many genes are involved and to what extent does every gene affect the zinc tolerance trait? Theoretically, a continuous number of genes may be involved in an adaptive metal tolerance mechanism and the contribution of each gene may be scaled on a continuous scale as well. However, in practice one would attempt to distinguish between a discrete set of possible genetic determinants to gain an idea of the genetic organization of adaptive metal tolerance in a given species. Three discrete models may be distinguished and compared to observed heredity patterns (following Macnair, 1993). (a) The tolerance trait may be determined by one major gene with the possibility of minor modifier genes adjusting the expression of that major gene. (b) A multigenic model may be found in which a small number of genes strongly determine the tolerance trait. (c) A polygenic model in which a more or less large number of genes determine the tolerance trait and in which each of these genes has a small relative contribution to that tolerance trait. (ii) The second question that can be investigated is how different alleles of a gene and the different genes of a trait interact with each other. For example: are alleles dominant, recessive, co-dominant or is there incomplete dominance

Chapter 1

and do different genes act additively or epistatically? The study featured in chapter 2 attempts to give an answer to both questions for the zinc tolerance trait in S. Iuteus.

Effects of metal-induced selection pressure at the community level
The effects of metal pollution are most visible on plant communities. Plant communities thriving on metal-enriched soils largely consist of welladapted plant species and/or ecotypes unique to metalliferous soils. Across different metals and over a wide geographical range, it is striking that the same plant species are capable of developing pioneer metallophytes (Antonovics et al., 1971). For example Silene vulgaris, Arabidopsis halleri and Noccaea caerulescens can be frequently found in metal-polluted sites where other plant species fail to build stable populations. An example of a unique plant community that is specifically associated with metal polluted sites can be found in La Calamine in Belgium. In La Calamine, a number of zinc mines were constructed since rock formations rich in Zn and Pb surface in this region. The plant community that thrives on these metalliferous soils was first described by Schwickerath (1944). This so-called Violetum calaminariae association harbours plant species with ecotypes endemic to a single or only a few sites in La Calamine. Examples are Viola lutea subsp. calaminaria, Noccaea cearulescens var. calaminaria, Armeria maritima var. calaminaria, Festuca aquisgranensis, Minuartia verna subsp. hercynica and Silene vulgaris subsp. humilis. Some other plant species that can be found in this association, but that are not restricted to metal-polluted sites in La Calamine, include Cochleaira pyrenaica, Cardaminopsis halleri and Festuca ovina subsp. ophioliticola. In Germany, in Siegerland and eastern Westphalia, specific zinc grassland flora can be found as well. This plant association is characterized by the occurrence of other subspecies of Armeria maritima such as Armeria maritima subsp. bottendorfensis at Bottendorf in Saxony-Anhalt and Armeria maritima subsp. hornburgensis at Eisleben in Sachen-Anhalt. Armeria maritima subsp. halleri also occurs in Mechernich in the Eifel. This plant association is called Armerietum halleri
and can not only be recognized by the occurrence of this typical A. maritima subspecies, but also by the lack of Viola lutea subsp. calaminaria and Noccaea caerulescens subsp. calaminaria. These examples illustrate that only a limited number of plant species can specifically adapt to metal-rich environments, giving rise to specific plant associations. Both examples of well-characterized plant communities also illustrate our vast and longstanding knowledge of (pseudo-) metallophytes. In sharp contrast, very little is known about which fungal species occur in metal-polluted soils since the lifestyle of most fungi is much more cryptic than that of most vascular plants. Nevertheless, mycorrhizal fungi have been shown to be able to protect their plant partners from excessive metals and they may even promote the growth of host plants under stressful conditions (Adriaensen et al., 2003). Especially during plant establishment and early growth of saplings in metal-polluted environments, mycorrhizal fungi are vital partners (Wilkinson and Dickinson, 1995). Hildebrandt (1999), for example described that Viola lutea subsp. calaminaria from the Violetum calaminariae association is unable to grow on metal-polluted soils without the presence of a specific arbuscular mycorrhizal fungal strain (Glomus Br 1). To better understand ecosystem development and functioning in stressful environments, it would therefore be interesting to also gain an idea of the fungal species that occur in metal-polluted sites and which species are unable to colonize these sites. To further understand the development of mycorrhizal and plant communities in metal-polluted environments, also the impact of high metal concentrations on fungal communities needs to be assessed.

Metal pollution or the experimental introduction of high concentrations of metal ions to soil-born fungal communities have been shown to adversely affect fungal communities in numerous ways. A strong reduction in, for example, microbial activity (Azarbad et al., 2013), microbial biomass (Azarbad et al., 2013; Rieder and Frey, 2013), number of cultivable fungi (Bååth et al., 2005), soil fungal diversity (Hui et al., 2012), soil fungal richness (Hui et al., 2012; Xu et al., 2012), fungal growth and root

Chapter 1

colonization (Hagerberg et al., 2011; Xu et al., 2012) and enzyme activity (Mackie et al., 2013) have been observed in previous studies. Also changes in the fungal community composition have been observed (Chodak et al., 2013; Corneo et al., 2013; Hui et al., 2011; Jumpoonen et al., 2010; Macdonald et al., 2011). An equally large number of studies, however, indicated that metal pollution may also have a more neutral impact on fungal communities. For example, Anderson et al. (2008) and Kandeler et al. (2000) both observed that fungal community compositions remain unaltered under metal stress. Furthermore, neutral effects of metal pollution have been observed by Huang et al. (2012), where fungal richness, diversity, rank abundance and root colonization remained unaffected by metal pollution. In some cases, even an increase in soil fungal presence (PLFA: Frostegaard et al., 1993; 1995), diversity (Wu et al., 2010) and enzyme activity (Rajapaksha et al., 2004) have been found due to increased metal concentrations. Whereas, many of these studies mainly focused on the impact of metals on fungal communities, studies also taking the variation into account of present vegetation, found that plant species present in polluted sites and plant diversity may be more important factors shaping fungal communities in metal-polluted sites than the present metal concentrations (Shao et al., 2012; Thion et al., 2012). Also soil pH (Chodak et al., 2013), soil moisture, soil structure (Corneo et al., 2013) and organic matter content in metal-polluted soils (Gomes et al., 2010) may alter the way fungal communities respond to high concentrations of metal ions. From these studies, it is clear that the interaction of fungi with their environment is very complex and dependant on a number of biotic and abiotic factors. Very few of these studies, however, also identified the fungal species that were present in polluted soils or on mycorrhizal roots of plants. Since the number of cases of true adaptive metal tolerance in fungi is as limited as is the case for plants, probably only few fungal species are capable to adapt to growth in metalliferous soils. Hence, it would be interesting to obtain a picture of which fungal species increase or decrease in abundance with increasing metal pollution. With the development of a whole new range of
molecular techniques (collectively called next-generation sequencing), determining the composition of microbial communities at a species-level has recently become possible. One of these techniques, 454 pyrosequencing (Margulies et al., 2005), was employed in the current project and optimized for studying below-ground fungal communities. 454 pyrosequencing requires the amplification of DNA barcode regions, followed by sequencing of the obtained amplicons ("metabarcoding": Taberlet et al., 2012). The fungal internal transcribed spacer region (ITS) of the rDNA operon has been recognized as the formal fungal barcode (Schoch et al., 2012). Recent 454 pyrosequencing studies usually relied on primer pairs that were designed in the 90s to amplify target rDNA regions. However, these primers were designed based on a limited number of known fungal ITS sequences and were shown to efficiently amplify fungal ITS sequences only of DNA extracted from pure cultures. In order to amplify target rDNA regions in environmental samples, primer pairs have to overcome a number of constraints that could reduce PCR efficiency, such as the presence of humic acids and fenols that may be co-extracted with DNA. Moreover, they have to efficiently and specifically amplify target DNA regions in the presence of high concentrations of non-target DNA. Hence, in the current project, different primers were initially tested using 454 pyrosequencing, real-time PCR (qPCR) and in silico analyses. The most promising primer pair was shown to amplify the ITS2 region of the fungal rDNA much more efficiently and robustly than other tested primer pairs (Ihrmark et al., 2012; Toju et al., 2012) and was therefore selected to be used in our fungal community studies (Chapter 3).

Using the results of 454 pyrosequencing optimization, the impact of soil metal pollution on fungal communities thriving in a site polluted with Zn and Cd and in a control site was investigated. Both sites had very similar soil structures (dry sandy soils) and the dominating plant species was Scots pine (Pinus sylvestris). Beside the impact of metal pollution, also local spatial and temporal variations and the impact of physical and chemical soil parameters on fungal communities were investigated to understand the

Chapter 1

importance of metal pollution in shaping the studied fungal communities. In a first study, a selected polluted site in Lommel-Maatheide was investigated, allowing for a detailed comparison between fungal communities thriving in soil patches that mainly differed in their Zn - and Cd-content, but that were very similar for other environmental factors (Chapter 4). In chapter 5, this study site was compared to a control site, located in Hechtel-Eksel. This allowed us to compare the fungal communities of two pioneer pine forests with contrasting soil chemistry and to get a picture of naturally occurring fungal communities associated with pioneer pine forests in the Campine region.

References

Adriaensen K, van der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV (2003). A zinc-adapted fungus protects pines from zinc stress. New Phytologist 161: 549-555.

Adriaensen K, Vrålstad T, Noben J-P, Vangronsveld J, Colpaert JV (2005). Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applied and Environmental Microbiology 71: 7279-7284.

Alford ER, Pilon-Smits EAH, Paschke MW (2010). Metallophytes - a view from the rizosphere. Plant and Soil 337: 33-50.

Al-Hiyaly SAK, McNeilly T, Bradshaw AD, Mortimer AM (1993). The effect of zinc contamination from electricity pylons. Genetic constraints on selection for zinc tolerance. Heredity 70: 22-32.

Anderson IC, Parkin PI, Campbell CD (2008). DNA- and RNA-derived assessments of fungal community composition in soil amended with sewage sludge rich in cadmium, copper and zinc. Soil Biology and Biochemistry 40: 2358-2365.

Andrade SAL, Abreu CA, de Abreu MF, Silveira APD (2004). Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology 26: 123-131.

Antonovics J, Bradshaw AD, Turner RG (1971). Heavy metal tolerance in plants. Advances in Ecological Research 7: 1-85.

Chapter 1

Azarbad H, Niklińska M, van Gestel CAM, van Straalen NM, Röling WFM, Laskowski R (2013). Microbial community structure and functioning along metal pollution gradients. Environmental Toxicology and Chemistry 32: 1992-2002.

Bååth E, Díaz-Raviña, Bakken LR (2005). Microbial biomass, community structure and metal tolerance of a naturally Pb -enriched forest soil. Microbial Ecology 50: 496-505.

Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters 254: 173-181.

Bradshaw AD, McNeilly T (1981). Evolution and pollution. Studies in Biology 130: 1-76.

Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology 64: 7-14.

Clemens S, Simm C (2003). Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatins-dependent pathway is the main cadmium detoxification mechanism. New Phytologist 159: 323330.

Colpaert JV, Muller LAH, Lambaerts M, Adriaensen K, Vangronsveld J (2004). Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytologist 162: 549-559.

Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J (2000). Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist 147: 367-379.

Colzi I, Doumett S, Del Bubba M, Fornaini J, Arnetoli M, Gabbrielli R, Gonnelli C (2011). On the role of the cell wall in the phenomenon of copper tolerance in Silene paradoxa L. Environmental and Experimental Botany 72: 77-83

Corneo PE, Pellegrini A, Cappellin L, Roncador M, Chierici M, Gessler C, Pertot I (2013). Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiology Ecology 84: 588-602.

Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N et al. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology 168: 309-316.

Dietz K-J, Baier M, Krämer U (1999). Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J, eds. Heavy metal stress in plants: from molecules to ecosystems. Springer-Verlag, Berlin. pp. 73-97.

Egerton-Warburton L, Griffin B (1995). Differential responses of Pisolithus tinctorius isolates to aluminium in vitro. Canadian Journal of Botany 73: 1229-1233.

Frostegård Å, Tunlid A, Bååth E (1993). Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology 59: 3605.

Frostegård \AA, Tunlid A, Bååth E (1997). Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biology and Biochemistry 28: 55-63.

Chapter 1

Gadd GM (1993). Interactions of fungi with toxic metals. New Phytologist 124: 25-60.

Gomes NCM, Landi L, Smalla K, Nannipieri P, Brookes PC, Renella G (2010). Effects of Cd - and Zn -enriched sewage sludge on soil bacterial and fungal communities. Ecotoxicology and Environmental Safety 73: 1255-1263.

Goncalves SC, Martins-Loucao MA, Freitas H (2009). Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19: 221-230.

Hagerberg D, Manique N, Brandt KK, Larsen J, Nybroe O, Olsson S (2011). Low concentration of copper inhibits colonization of soil by the arbuscular mycorrhizal fungus Glomus intraradices and changes the microbial community structure. Microbial Ecology 61: 844-852.

Hall JL (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1-11.

Hancock LMS, Ernst CL, Charneskie R, Ruane LG (2012). Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in Flax (Linum usitatissimum; Lineaceae). American Journal of Botany 99: 1445-1452.

Hildebrandt U, Kaldorf M, Bothe H (1999). The zinc violet and its colonization by arbuscular mycorrhizal fungi. Journal of Plant Physiology 154: 709-717.

Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E, Roels HA, Carleer R et al. (2007). House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environmental Research 103: 30-37.

Huang J, Nara K, Lian C, Zong K, Peng K, Xue S, Shen Z (2012). Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in $\mathrm{Pb}-\mathrm{Zn}$ mine sites of central south China. Mycorrhiza 22: 589-602.

Hui N, Jumpponen A, Niskanen T, Liimatainen K, Jones KL, Koivula T, Romantschuk M, Strömmer R (2011). EcM fungal community structure, but not diversity, altered in a Pb -contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiology Ecology 76: 121-132.

Hui N, Liu XX, Kurola J, Mikola J, Romantschuk M (2012). Lead (Pb) contamination alters richness and diversity of the fungal, but not the bacterial community in pine forest soil. Boreal Environment Research 17: 46-58.

Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenk J, Strid Y, Stenlid J et al. (2012) New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology 82: 666-677.

Jacob C, Courbot M, Martin F, Brun A, Chalot M (2004). Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Letters 576: 423-427.

Chapter 1

Janssens TKS, Roelofs D, van Straalen NM (2009). Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Science 16: 3-19.

Jourand P, Ducousso M, Loulergue-Majorel C, Hannibal L, Santoni S, Prin Y, Lebrun M (2010). Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiology Ecology 72: 238-249.

Jumpponen A, Jones KL, Mattox JD, Yeage C (2010). Massively parallel 454sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular ecology 19: 41-53.

Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000). Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils 32: 390-400.

Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009). Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd. Environmental pollution 157: 1581-1588.

Li TQ, Yang XE, Jin XF, He ZL, Stofella PJ, Hu QH (2005). Root responses and metal accumulation in two contrasting ecotypes of Sedum alfredii Hance under lead and zinc toxic stress. Journal of Environmental Science and Health Part A - Toxic/Hazardous Substances \& Environmental Engineering 40: 1081-1096.

Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997). A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proceedings of the National Society of the United States of America 94: 42-47.

Macdonald CA, Clark IM, Zhao F-J, Hirsch PR, Singh BK, McGrath SP (2011). Long-term impacts of zinc and copper enriched sewage sludge additions on bacterial, archaeal and fungal communities in arable and grassland soils. Soil Biology and Biochemistry 43: 932-941.

Mackie KA, Müller T, Zikeli S, Kandeler E (2013). Long-term copper application in an organic vineyard modifies spatial distribution of soil microorganisms. Soil Biology and Biochemistry 65: 245-253.

Macnair MR (1993). The genetics of metal tolerance in vascular plants. New Phytologist 124: 541-559.

Margulies M, Egholm M, Altman WE, Attyia S, Bader JS, Bemben LA, Berka J, Braverman MS et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380.

Morgan SWK (1985). Zinc and its alloys and compounds. Ellis Horwood Limited, Hemel, Hemstead, Herts. pp. 245

Porter SS, Rice KJ (2013). Trade-offs, spatial heterogeneity, and the maintenance of microbial diversity. Evolution 67: 599-608.

Rajapaksha RMCP, Tobor-Kaplon MA, Bååth E (2004). Metal toxicity affect fungal and bacterial activities in soil differently. Applied and Environmental Microbiology 70: 2966.

Rieder SR, Frey B (2013). Methyl-mercury affects microbial activity and biomass, bacterial community structure but rarely the fungal community structure. Soil Biology and Biochemistry 64: 164-173.

Chapter 1

Salamun P, Renco M, Kucanova E, Brazova T, Papajova I, Miklisova D, Hanzelova V (2012). Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology 21: 2319-2330.

Schat H, Vooijs R (1997). Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis. New Phytologist 136: 489-496.

Schat H, Vooijs R, Kuiper E (1996). Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50: 1888-1895.

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241-6246

Schwickerath M (1944). Das Hohe Venn und seine Randgebiete, Vegetation, Boden, Landschaft. Gustav Fisher, Jena. pp. 170-178.

Shao Y, Zhang W, Liu Z, Sun Y, Chen D, Wu J, Zhou L, Xia H et al. (2012). Responses of soil microbial and nematode communities to aluminium toxicity in vegetated oil-shale-waste lands. Ecotoxicology 21: 2132-2142.

Sridhar KR, Barlocher F, Krauss GJ, Krauss G (2005). Response of aquatic hyphomycete communities to changes in heavy metal exposure. International Review of Hydrobiology 90: 21-32.

Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 8: 2045-2050.

Thion C, Cébron A, Beguiristain T, Leyval C (2012). Long-term in situ dynamics of the fungal communities in a multi-contaminated soil are mainly driven by plants. FEMS Microbiology Ecology 82: 169-181.

Toju H, Tanabe AS, Yamamoto S, Sato H (2012). High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7: e40863.

Van Assche F, Clijsters H (1990). Effects of metals on enzyme activity in plants. Plant, Cell and Environment 13: 195-206.

Verbruggen N, Hermans C, Schat H (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181: 759-776.

Verlaek M, Weynants K (2006). FAQ Zware Metalen Noorderkempen 2006. Medische Milieukundigen bij de Limburgse LOGO's.

Wilkinson DM, Dickinson NM (1995). Metal resistance in trees - the role of mycorrhizae. Oikos 72: 298-300.

Wu FY, Bi YL, Leung HM, Ye ZH, Lin XG, Wong MH (2010). Accumulation of $\mathrm{As}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Cd}$ and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Applied Soil Ecology 44: 213-218.

Xu ZY, Tang M, Chen H, Ban YH, Zhang HH (2012). Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Science of the Total Environment 435: 453-464.

Chapter 2: Heredity of zinc tolerance in Suillus luteus: an ectomycorrhizal basidiomycete adapted to heavy metal tolerance

Op De Beeck M, Schat H, Vangronsveld J, Colpaert JV

Summary

In rare cases, selection pressure imposed by high metal concentrations in soils triggers evolutionary adaptation of metal homeostasis mechanisms. This phenomenon has been studied thoroughly in some plant species but hardly any knowledge is available on adaptive metal tolerance in mycorrhizal fungi. To gain further insight in adaptive metal tolerance in mycorrhizal fungi, the genetic architecture of zinc tolerance in Suillus luteus was investigated using dose-response experiments. The ratios of zinctolerant versus zinc-sensitive monokaryotic isolates were studied for thirty families of spore cultures. Crosses between monokaryotic strains were established in vitro and tested as well. Varying proportions of zinc-tolerant monokaryotic sibling strains were found for eighteen out of thirty families. Six families consisted of only zinc-sensitive siblings and six families consisted of only tolerant siblings. A strong correlation was found between the average EC_{50}-values of contributing monokaryotic strains and the $\mathrm{EC}_{50}-$ values of resulting crosses. Zinc tolerance in S. luteus was found to be inherited through incomplete dominance and is under control of a limited number of genes. Possible models for the genetic architecture of zinc tolerance in S. Iuteus are discussed.

Keywords: adaptive metal tolerance, heredity, metals, mycorrhiza, zinc

Chapter 2

Introduction

Soils polluted with high concentrations of metals induce high levels of stress not only to plants, but also to the plant-associated soil-borne microorganisms. A large number of studies have investigated how plants cope with toxic levels of metal ions (reviewed by Hall, 2002; Verbruggen et al., 2009 and Nagajyoti et al., 2010). Some well-studied examples of plant species that can tolerate and in some cases even hyper-accumulate metal ions include Noccaea cearulescens (formerly Thlaspi caerulescens), Silene vulgaris and Arabidopsis halleri (Alford et al., 2010). Relatively few studies have investigated the contribution of plant-associated micro-organisms, including mycorrhizal fungi, in the plant defence against elevated metal concentrations (reviewed by Meharg, 2003 and Colpaert et al., 2011). Soil micro-organisms playing an active role in alleviation of metal-induced stress in plants, need themselves sufficient protection against metal toxicity. A number of mechanisms can help to protect mycorrhizal fungi from toxicity at intermediate concentrations of metal ions. Such mechanisms are considered to be resistance mechanisms and they include up- or down regulation of genes involved in metal homeostasis and stress responsive genes. Binding of metal ions to the fungal cell wall or extracellular sequestration of metal ions with organic chelators may also help to reduce metal exposure (Bellion et al., 2006). However, eventually, high concentrations of metal ions in the cytoplasm result in severe toxicity, leading to a decreased fitness. Reduced growth and reduced spore production due to elevated levels of metal ions have been reported for a number of fungal species (Andrade et al., 2004; Sridhar et al., 2005). Elevated concentrations of metal ions are also known to reduce fruit and seed production in plants (Hancock et al., 2012). Hence, it is clear that metal toxicity imposes a strong selection pressure. In few cases, this selection pressure gives rise to metal-tolerant ecotypes. Only those cases where marked differences exist in the metal tolerance of different ecotypes of a species are considered to be cases of true adaptive metal tolerance
(Meharg, 2003). Adaptive metal tolerance and associated molecular mechanisms are, again, better documented for plant species (Macnair, 1993; Verbruggen et al., 2009; Willems et al., 2010) than for their associated symbionts. In most cases, a few "strategic" plant genes are found to play important roles in adaptive metal tolerance and tolerance mechanisms in plants are typically found to be metal specific (Schat et al., 1996; Schat \& Vooijs, 1997). Only few examples of true adaptive metal tolerance in mycorrhizal fungi have been reported (Colpaert, 2008) and underlying molecular mechanisms are poorly understood. The few known examples of adaptive metal tolerance in mycorrhizal fungi include: aluminium tolerance, which was found in Pisolithus tinctorius (EgertonWarburton \& Griffin, 1995); nickel tolerance in Pisolithus albus (Jourand et al., 2010) and Cenococcum geophilum (Goncalves et al., 2009) and zinc tolerance in Suillus bovinus, Rhizopogon luteolus and Suillus luteus (Colpaert et al., 2000; 2004). To gain more insight in the genetic basis of adaptive metal tolerance in mycorrhizal fungi, the current study aimed to characterize the genetic architecture of zinc tolerance in S. luteus. We hypothesized that zinc tolerance in S. Iuteus is a heritable trait and that this trait is controlled by only one or a few genes. We assume that the key mechanism of metal tolerance in S. luteus is relatively simple as the evolution of zinc tolerance in the studied population should have started no more than 150 years ago.

Materials and methods

Culturing of Suillus Iuteus strains

The standard growth medium used for growing S. luteus cultures was a slightly modified Fries medium (Fries, 1978). The medium used in the current study contained $5.43 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \bullet$ tartrate, $0.41 \mathrm{mM} \mathrm{MgSO} 4 \cdot 7 \mathrm{H}_{2} \mathrm{O}$, $0.22 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 0.18 \mathrm{mM} \mathrm{CaCl} 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.34 \mathrm{mM} \mathrm{NaCl}, 1.34 \mathrm{mM} \mathrm{KCL}, 0.24$ $\mathrm{mM} \mathrm{H}_{3} \mathrm{BO}_{3}, 20 \mu \mathrm{M} \mathrm{ZnSO} 4 \cdot 7 \mathrm{H}_{2} \mathrm{O}, 5.01 \mu \mathrm{M} \mathrm{CuSO} 4 \cdot 5 \mathrm{H}_{2} \mathrm{O}, 50.29 \mu \mathrm{M}$ $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 0.16 \mu \mathrm{M}\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 73.99 \mu \mathrm{M} \mathrm{FeCl} 3 \cdot 6 \mathrm{H}_{2} \mathrm{O}, 33.3 \mathrm{mM}$

Chapter 2

D-glucose, $55.51 \mu \mathrm{M}$ myo-inositol, $0.3 \mu \mathrm{M}$ thiamine $\cdot \mathrm{HCl}, 0.1 \mu \mathrm{M}$ biotin, $0.59 \mu \mathrm{M}$ pyridoxine, $0.27 \mu \mathrm{M}$ riboflavin, $0.82 \mu \mathrm{M}$ nicotinamide, $0.73 \mu \mathrm{M}$ paminobenzoic acid, $0.46 \mu \mathrm{M}$ Ca-pantothenate. The pH was corrected to 4.8 . Agar was added to $1 \%(w / v)$. Cultures were grown at $23^{\circ} \mathrm{C}$.

Isolation of Suillus luteus cultures and description of study sites

Suillus luteus (L.: Fr.) Roussel is a basidiomycete that forms ectomycorrhizal associations with conifers from the genus Pinus. Both partners typically occur during early colonization stages on nutrient-poor sandy soils. S. luteus cultures used in this study were collected during the autumns of 2009, 2010 and 2011 from three populations in the northern part of Limburg, Belgium. Two populations were sampled growing on metalcontaminated sites in Lommel-Maatheide (LM; 51¹4'12.12" N, $5^{\circ} 15^{\prime} 45.90^{\prime \prime} \mathrm{E}$) and Lommel-Sahara (LS; 51 $14^{\prime} 43.85^{\prime \prime} \mathrm{N}, 5^{\circ} 16^{\prime} 42.99^{\prime \prime} \mathrm{E}$). Both sites are contaminated mainly with zinc, cadmium and lead due to pyrometallurgical activities in the area that started at the end of the nineteenth century. The third population was sampled in Paal (P; 51 ${ }^{\circ}$ $3^{\prime} 33.62$ " N, $5^{\circ} 10^{\prime} 30.96^{\prime \prime}$ E). This last site has no elevated concentrations of metal ions and isolates collected here served as a control population. The LS and P populations were previously sampled in 1992 (Colpaert et al., 2004), though present isolates are probably from different genets (young trees). The Lommel-Maatheide population must be different from our previous studies because the original pine plantation at LM was clear cut. New pine trees were planted on an adjacent plot in 2008. A more detailed description of the study sites can be found in Colpaert et al., 2004. Zinc concentrations in pine needles collected from the LM site ranged between 170 and $550 \mu \mathrm{~g} \mathrm{~g}^{-1} \mathrm{Zn}$. Pine needles collected from LS contained between 100 and $200 \mu \mathrm{~g} \mathrm{~g}^{-1} \mathrm{Zn}$ and in the control site in P , pine needles contained between 20 and $50 \mu \mathrm{~g} \mathrm{~g}^{-1} \mathrm{Zn}$.

Ten basidiocarps were collected from each population. In the field, stems and any debris were removed from the caps. Caps were subsequently sealed in plastic bags to protect them from desiccation during
transportation. In the lab, cleaned caps were placed over Petri dishes containing solid Fries medium for five minutes to collect spores. This was repeated ten times for each cap. The resulting culture plates were incubated for twenty to thirty days at $23^{\circ} \mathrm{C}$. Between day twenty and thirty, spores started germinating and germinating spores were isolated under a binocular loupe. Isolated spores were put on fresh solid Fries media resulting in monokaryotic, haploid strains. Monokaryotic strains from the same cap (parent) are denoted as sibling strains in the remainder of the text. Twenty sibling strains were isolated from each basidiocarp. After collecting spores, sterile mycelium was isolated from parent caps and cultured on solid Fries medium to obtain dikaryotic cultures. These cultures are denoted as parental strains. A dikaryotic parental strain together with its twenty monokaryotic sibling strains are denoted as a family. Crosses between monokaryotic strains were obtained by placing two monokaryotic strains, originating from different families, on culture media at a distance of 0.5 cm from each other. Crosses were made between zinc-tolerant monokaryons of different families, between zinc-sensitive monokaryons of different families and between zinc-tolerant and zinc-sensitive monokaryons of different families. In this way, three crossing groups were created: sensitive x sensitive, sensitive x tolerant and tolerant x tolerant. For this experiment, four zinc-tolerant and four zinc-sensitive monokaryotic strains were selected from each of three families (one family for each of the three studied S. Iuteus populations). All crosses between monokaryotic strains of different families were established for each of these 24 selected monokaryons. No crosses between siblings were established (Fig. S2.1). After ten days of incubation, the contact zone was transferred to fresh Fries medium. After another ten days of incubation, dikaryotized mycelium was transferred to fresh Fries medium. To ensure complete dikaryotization, mycelia were subcultured another three times before cultures were tested for their ploidy and zinc tolerance. All pair-wise crosses resulted in 192 potentially crossed strains (there are eight crossing combinations for each of the 24 monokaryons that were selected for this experiment). From these,

Chapter 2

120 fully dikaryotized crosses were selected and tested, including 37 crosses between two tolerant monokaryons, 35 crosses between two sensitive monokaryons and 48 crosses between a zinc-sensitive and a zinctolerant monokaryon.

Testing the ploidy of cultures

To ensure that all dikaryotic strains (parental strains and crosses) were diploid and to ensure that all monokaryotic strains (sibling strains) were haploid, the ploidy of all strains was checked using microsatellite markers. To this end, DNA was extracted from cultures using the DNeasy Plant Mini Kit according to the manufacturer's instructions (Qiagen, Venlo, Netherlands). Isolated DNA was amplified with microsatellite markers Sulu08 and Sulu10 using PCR (Table S2.1; Muller et al., 2006). PCR conditions were as follows: initial denaturation at $95^{\circ} \mathrm{C}$ for two minutes, followed by 35 cycles of $95^{\circ} \mathrm{C}$ (30s), $55^{\circ} \mathrm{C}$ (30s) and $72^{\circ} \mathrm{C}$ (60 s) and a final extension phase at $72^{\circ} \mathrm{C}$ for 10 minutes. Reactions were carried out in 25 $\mu \mathrm{l}$ reaction volumes using the FastStart High Fidelity PCR System (Roche Applied Science, Mannheim, Germany). Each reaction contained $2.75 \mu \mathrm{l}$ FastStart $10 x$ reaction buffer, $1.8 \mathrm{mM} \mathrm{MgCl}, 0.2 \mathrm{mM}$ dNTP mix, $0.4 \mu \mathrm{M}$ of each primer, 1.25 U FastStart HiFi polymerase and 50 ng template DNA (as measured by a Nanodrop spectrophotometer). Amplified DNA was separated using gel electrophoresis on 4% agarose gels. Gels were run at 70 V for 6 hours.

Dose-response experiments

Monokaryotic strains were grown for fourteen days on cellophane covered Fries medium enriched with zinc in the following concentrations: $0 \mathrm{mM}, 1.5$ $\mathrm{mM}, 3.1 \mathrm{mM}, 6.2 \mathrm{mM}, 12.3 \mathrm{mM}$ and 18.5 mM . Zinc was added to the standard growth medium as $\mathrm{ZnSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$. Dikaryotic strains (parental strains and crosses) were exposed to the same zinc concentrations for ten days. All strains were tested in triplicate. At harvest, mycelia were collected from the treatment plates, lyophilized and their dry weights were measured
with an accuracy of 0.1 mg . EC_{50}-values (the zinc concentrations which inhibit growth by 50\%; Colpaert et al., 2004) were calculated from the dry weights using non-linear regression in R 3.0.3 (The R Foundation for Statistical Computing, Vienna, Austria). No extrapolations were allowed, setting the maximum for EC_{50}-values at 18.5 mM . After weighing, the dried mycelia that had been exposed to 1.5 mM additional zinc were wet digested at $120^{\circ} \mathrm{C}$ three times with $\mathrm{HNO}_{3} 65 \%$ and finally with $\mathrm{HCl} 37 \%$. The mycelia of the 1.5 mM Zn treatment were selected for element analyses because of the low toxicity of this treatment, allowing for good growth of all isolates. Concentrations of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), magnesium (Mg), calcium (Ca), phosphorus (P) and sulphur (S) were measured in the mycelium digests using inductively-coupled plasma optical emission spectroscopy (ICP-OES).

Statistical analyses

Statistical analyses were performed in R 3.0.3. Normal distributions of the residuals of models were checked with the Shapiro-Wilk test, while the homoscedasticity of variances was analysed using either Bartlett's or the Fligner-Killeen test. Depending on the distribution of the estimated parameters, either ANOVA or the Kruskal-Wallis Rank Sum Test was used to check for significant differences in variances of parameters. Two-by-two comparisons were performed using either Tukey Honest Significant Differences (HSD) tests or Pairwise Wilcoxon Rank Sum Tests. Box-Cox power transformations were performed using the package MASS 7.3-29 in R. Cluster analyses were performed using the package mclust 4.2 (Fraley and Raftery, 2002) in R.

Chapter 2

Results

Testing the ploidy of cultures

Of the microsatellite locus targeted by Sulu8, 5 alleles are known from the S. luteus populations studied here, whereas 16 alleles are known for the microsatellite locus targeted by Sulu10 (Muller et al., 2006). A dikaryon can be recognized by the presence of two DNA bands after gelelectrophoresis if both nuclei carried a different allele for the tested locus. Both microsatellite alleles differ in sequence length and therefore appear as two separate bands on a gel. In case both nuclei carry the same allele for a given microsatellite locus, only a single band is visible. Monokaryons display only a single band for each microsatellite after gel-electrophoresis since they carry only a single allele of each microsatellite locus. Crossed strains contain both microsatellite alleles of the haploid strains that were used to establish the respective crossed strain. Using the Sulu08 and Sulu10 microsatellite markers (Muller et al., 2006), monokaryotic and dikaryotic strains could be successfully distinguished from each other using gel electrophoresis. These results also confirmed the successful in vitro dikaryotization in selected crossed strains (Fig. S2.2).

Description of zinc tolerance phenotypes

Zn tolerance phenotypes were determined based on EC_{50}-values and mycelial Zn concentrations. Both parameters were plotted relative to each other for the parental strains (Fig. 2.1A) and monokaryotic strains (Fig. 2.1B). The EC_{50}-values and mycelial Zn concentrations had a relationship best described by a power function (Box-Cox power transformation: $\lambda=$ 0). Indeed, when both the EC_{50}-values and mycelial Zn concentrations were log transformed, a significant linear correlation was observed, both for the monokaryotic (Pearson's product moment correlation coefficient (R^{2}): $\mathrm{R}^{2}=$ $-0.71, \mathrm{p}<0.01$) and for the parental strains ($\mathrm{R}^{2}=-0.88, \mathrm{p}<0.01$).

Figure 2.1 Correlation between EC_{50}-values and mycelial zinc concentrations measured by inductively-coupled plasma - optical emission spectroscopy (ICP-OES) on acid digested Suillus luteus mycelia. A. Parental strains ($n=30$). B. Monokaryotic strains ($n=600$). Results from non-linear regressions are given in insets. Clusters identified by Cluster Analysis are indicated in different colours. Strains originating from Paal are indicated with circles. Strains originating from Lommel-Sahara are indicated with triangles and strains originating from Lommel-Maatheide are indicated with squares.

Using model-based (Bayesian Information Criterion) Cluster Analysis, discrete clusters were determined (Fig. 2.1). The optimal number of clusters to describe collected data was 5 for the monokaryotic strains and 2 for the parental strains. Assuming these clusters can be interpreted as

Chapter 2

Zn tolerance phenotypes, the following phenotypes were distinguished for the monokaryotic strains: strains clustering into phenotype 1 had $\mathrm{EC}_{50}{ }^{-}$ values ranging from 18 mM to 18.6 mM and mycelial Zn concentrations of 0.1 to $3 \mathrm{mg} \mathrm{g}^{-1}$ dry weight; strains belonging to phenotype 2 had $\mathrm{EC}_{50^{-}}$ values ranging from 12.5 to 18 mM and mycelial Zn concentrations of 0.1 to $3 \mathrm{mg} \mathrm{g}^{-1}$ dry weight; strains belonging to phenotype 3 had EC_{50}-values ranging from 5 to 12.5 mM and mycelial Zn concentrations ranging from 0.1 to $3 \mathrm{mg} \mathrm{g}^{-1}$ dry weight; phenotype 4 strains had EC_{50}-values ranging between 3 to 5 mM and mycelial Zn concentrations between 3 to $6 \mathrm{mg} \mathrm{g}^{-1}$ dry weight; phenotype 5 strains had EC_{50}-values ranging between 0 to 3 mM and mycelial Zn concentrations ranging between 3 to $12 \mathrm{mg} \mathrm{g}^{-1}$ dry weight. The tolerance phenotypes observed for the parental strains were the following: phenotype 1 with EC_{50}-values ranging between 5 and 13 mM and mycelial Zn concentrations ranging between 1.6 and $4.5 \mathrm{mg} \mathrm{g}^{-1}$ dry weight and phenotype 2 with EC_{50}-values ranging between 0 and 5 mM and mycelial Zn concentrations ranging between 4.5 to $7 \mathrm{mg} \mathrm{g}^{-1}$ dry weight. Whereas EC_{50}-values differed significantly between all five phenotypes of monokaryons (Tukey HSD: p < 0.01 for all pairwise comparisons; Fig. 2.2C), mycelial Zn concentrations were the same for phenotypes 1, 2 and 3 (Tukey HSD: p > 0.05 for all pairwise comparisons; Fig. 2.2D). The two phenotypes observed for parental strains also differed significantly from each other in their EC_{50}-values (t-test: p < 0.01; Fig. 2.2A) and mycelial Zn content (t-test: $\mathrm{p}<0.01$; Fig. 2.2B). Based on our previous population studies, tolerance phenotypes 1, 2 and 3 can be described as Zn -tolerant phenotypes (having EC50-values > 5 mM and mycelial Zn concentrations < $3 \mathrm{mg} \mathrm{g}^{-1}$ dry weight), whereas phenotypes 4 and 5 are Zn -sensitive phenotypes (having EC_{50}-values $<5 \mathrm{mM}$ and mycelial Zn concentrations between 3 and $12 \mathrm{mg} \mathrm{g}^{-1}$ dry weight) (Colpaert et al., 2004). For a small portion of the data ($<5 \%$) the description of phenotypes as either Zn tolerant or Zn -sensitive was not unambiguous. Beside differences in $\mathrm{EC}_{50^{-}}$ values and mycelial Zn concentrations, also mycelial $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Mo}$ and S content differed between phenotypes (one-way ANOVA: p < 0.01; Fig.

S2.3). Furthermore, a significant positive correlation was found between mycelial Zn and Fe concentrations ($R^{2}=0.80, p<0.01$ for parental strains and $R^{2}=0.51, p<0.01$ for monokaryotic strains; Fig. S2.4).

Figure 2.2 Differences in mycelial zinc concentration and EC_{50}-values between observed zinc tolerance phenotypes. A. EC_{50}-values of parental strains ($\mathrm{n}=30$). B. Mycelial zinc concentrations of parental strains. C. EC 5_{50}-values of monokaryotic strains ($n=600$). D. Mycelial zinc concentrations of monokaryotic strains. Significant differences at the 95% confidence level are indicated with different letters.

Chapter 2

Calculation of the genetic component of phenotypic variation

Large variations in EC_{50}-values were observed, especially within Zn -tolerant phenotypes. To estimate the relative contribution of the Zn tolerance trait to observed variations in EC_{50}-values, two-way ANOVA analyses were performed for each family. In this way, the variation in EC_{50}-values was divided into four components: a genetic component attributable to Zn tolerance ("Genotype"), a genetic component that contains part of the genetic component of Zn tolerance but that also contains other genetic factors that influence the growth of isolates ("Genotype:Treatment interaction"), variation introduced by Zn treatments ("Treatment") and random variation introduced by environmental variables ("Environment") (Table 2.1). On average, a large proportion ($91 \% \pm 1 \%$ SE) of the phenotypic variation in families with only Zn -sensitive siblings could be explained by the Zn treatment. For families with mostly tolerant siblings and families with varying proportions of tolerant siblings, Zn treatment was responsible for a smaller proportion of the total phenotypic variation (49\% $\pm 7 \%$ SE and $53 \% \pm 3 \%$ respectively). $26 \% \pm 6 \%$ SE and $25 \% \pm 2 \%$ SE of the phenotypic variation was accounted for by differences in genotypes (differences in Zn tolerance) in families with mainly tolerant siblings and families with both tolerant and sensitive sibling strains respectively, whereas only $3 \% \pm 1 \%$ SE of the phenotypic variation was accounted for by genotypic differences in families with only Zn -sensitive siblings. $23 \% \pm$ $4 \% \mathrm{SE}, 21 \% \pm 1 \% \mathrm{SE}$ and $5 \% \pm 1 \%$ of the total variation was accounted for by genotype:treatment interactions in families with mainly Zn -tolerant siblings, families with varying proportions of Zn -tolerant siblings and families with only sensitive siblings respectively. Only a small proportion of the phenotypic variation could be explained by environmental factors (3\% $\pm 0.4 \%$ SE, $1 \% \pm 0.2 \%$ SE and $1 \% \pm 0.1 \%$ SE for families with mainly tolerant siblings, families with only sensitive siblings and families with varying proportions of tolerant siblings respectively). Results from two-way ANOVAs can be found in Table S2.2 for the parental strains and in Table S2.3 for the monokaryotic strains

Table 2.1 Proportion of tolerant offspring for each tested family of Suillus luteus cultures and the relative contribution to differences in EC_{50}-values of the factors Genotype (G), Treatment (T) and Environment (E) (see Results section for more details). Strains originating from the sampled populations in Paal, Lommel-Maatheide and Lommel-Sahara are indicated with "P", "LM" and "LS" respectively.

Family	Parental phenotype	Proportion zinc tolerant siblings (\%)	$\begin{gathered} \text { G } \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\%) \end{gathered}$	G X T interaction (\%)	$\begin{gathered} E \\ (\%) \end{gathered}$
LM07	Tolerant	45	23	56	19	1
LM08	Tolerant	45	35	36	27	2
LM10	Tolerant	65	10	73	16	1
LM17	Tolerant	90	41	38	19	2
LM19	Tolerant	100	19	56	22	3
LM22	Tolerant	85	12	71	14	3
LM24	Tolerant	100	50	17	32	2
LM26	Tolerant	55	13	72	14	1
LM32	Tolerant	45	26	50	22	1
LM33	Tolerant	50	18	55	24	2
LS01	Tolerant	35	22	57	20	1
LS02	Tolerant	35	15	65	18	1
LS03	Tolerant	55	29	49	21	1
LS04	Tolerant	50	29	52	19	1
LS05	Tolerant	45	33	39	27	1
LS06	Tolerant	45	22	59	18	1
LS08	Tolerant	55	27	47	25	1
LS11	Tolerant	100	19	66	13	2
LS20	Tolerant	40	21	59	19	1
LS26	Tolerant	85	15	44	36	5
P01	Tolerant	50	45	34	20	1
P05	Tolerant	50	40	36	23	1
P07	Tolerant	45	22	56	20	2
P28	Tolerant	40	17	62	19	1
P02	Sensitive	0	7	85	8	1
P08	Sensitive	0	2	93	4	1
P13	Sensitive	0	2	94	4	1
P14	Sensitive	0	2	93	5	0
P23	Sensitive	0	2	91	5	1
P30	Sensitive	0	3	89	6	2

Chapter 2

Phenotypic variation in mycelial Zn concentrations was evaluated with oneway ANOVAs. Variations in mycelial Zn concentrations between parental genotypes accounted for 98% of the total variation in mycelial Zn concentrations for the Lommel-Maatheide population and for 98\% and 99\% of variation in mycelial Zn concentrations for the Lommel-Sahara and Paal population respectively. For the monokaryotic strains, differences in genotypes accounted for 92.7% to 99.6% of the total variation in mycelial Zn concentrations. Results from one-way ANOVAs can be found in Table S2.4 for the parental strains and in Table S2.5 for the monokaryotic strains.

Model testing to determine the potential genetic architecture of zinc tolerance in Suillus Iuteus

The distribution of the above-described phenotypes of monokaryotic strains were studied for each family ($\mathrm{n}=30$) of S. Iuteus strains individually, taking into account that phenotypes 1, 2 and 3 are considered to be Zn -tolerant phenotypes and phenotypes 4 and 5 are considered to be Zn -sensitive phenotypes. The number of Zn -tolerant phenotypes were subsequently counted for each family and potential segregation patterns were tested against observed proportions of Zn -tolerant phenotypes (Table 2.1). Theoretically, a continuous number of genes could be involved in the Zn tolerance mechanism in Suillus luteus. However, from a practical point of view, Mendelian heredity patterns can be studied, considering a discrete number of genes, in order to obtain an overview of the genetic architecture of metal tolerance (Macnair, 1993). Therefore, in the following analyses, two possible Mendelian heredity patterns were tested against observed segregation patterns. Both models were selected based on the observed proportions of Zn -tolerant phenotypes in each family. Model 1: According to a first potential model, the observed Zn tolerance phenotypes are determined by a single gene with two tolerance alleles: a Zn -sensitive allele and a Zn -tolerant allele, resulting in two phenotypes. According to this model, three segregation patterns could be observed, resulting in either $0 \%, 50 \%$ or 100% tolerant siblings per family. Model 2: According to a
second potential Mendelian heredity model, two genes could be involved, each with two different alleles. This last model would give rise to five phenotypes, each phenotype with an increasing level of Zn tolerance. Possible segregation patterns in families according to this model include: $0 \%, 25 \%, 50 \%, 75 \%$ and 100% tolerant siblings per family. For 25 out of 30 tested families, chi-squared tests revealed that model 1 was a highly suitable model to describe the genetic architecture of Zn tolerance in S . luteus. For the remaining 5 families (the ones with 65% to 85% tolerant offspring), model 2 was more suitable although model 1 still had a significant fit to the observed data (Chi-squared tests: all p >0.05). For six families collected in the control-site in Paal, the parental strains had Zn sensitive phenotypes and 100% of the siblings were sensitive to Zn . For another six families (two collected in Lommel-Sahara and four in LommelMaatheide), the parental strains were found to be tolerant to Zn and nearly 100% of their offspring were Zn -tolerant as well. For the remaining 18 families, varying proportions of tolerant siblings were found (range: 35\% to 65%; Table 2.1).

Crossing-experiments

Crosses were established between Zn -tolerant monokaryons (phenotypes 1, 2 and 3) and Zn -sensitive monokaryons (phenotypes 4 and 5). The averages of the EC_{50}-values of the monokaryotic strains that were used to establish a specific crossed strain were calculated as the "expected EC_{50} values". The actual EC50-values of the crossed strains were calculated from the dose response curves as the "observed EC_{50}-values". Expected and observed mycelial Zn concentrations were calculated in the same way. A strong positive correlation was found between observed and expected $\mathrm{EC}_{50^{-}}$ values ($R^{2}=0.91 ; p<0.01$; Fig. 2.3A) and observed and expected mycelial Zn concentrations ($\mathrm{R}^{2}=0.73 ; \mathrm{p}<0.01$; Fig. 2.3B). This indicates that the tolerance phenotypes of two contributing monokaryotic strains are averaged out in the Zn tolerance phenotype of the resulting crossed strain.

Chapter 2

A

oLM10 xLS2 Δ LS2 xP5 םP5 x LM10

OLM10 XLS2 Δ LS2 XP5 \quad PP5 XLM10

Figure 2.3 Correlations between observed (experimentally measured) and expected (average of tolerance measure of two monokaryotic strains that contributed to the crossed strain) EC_{50}-values and mycelial zinc concentrations of crosses between monokaryotic Suillus luteus strains. A. Correlation between observed and expected $E C_{50}$-values of crossed strains ($\mathrm{n}=120$). B. Correlation between observed and expected mycelial zinc concentrations of crossed strains ($n=120$). The population a family originated from is indicated as follows: "P" for Paal, "LM" for LommelMaatheide and "LS" for Lommel-Sahara. Results from linear regressions are given in insets. Crosses between monokaryons from families LM10 and LS2 are indicated with circles. Crosses between monokaryons from families P5 and LM10 are indicated with squares. Crosses between monokaryons from families LS2 and P5 are indicated with triangles.

Hence, there is an equal contribution of each nucleus in the Zn tolerance and Zn uptake in S . luteus (incomplete dominance of potential "tolerance alleles"). From Fig. 2.4 it is also clear that, on average, crosses between sensitive monokaryons resulted in sensitive crosses with low EC_{50}-values and high mycelial Zn concentrations. Crosses between two Zn -tolerant strains resulted in highly tolerant crossed strains with high EC_{50}-vlaues and low mycelial Zn concentrations. Crosses between sensitive and tolerant strains had intermediate EC_{50}-values and Zn concentrations (Fig. 2.4)

Chapter 2

Figure 2.4 Results from dose-response experiments conducted on crosses of monokaryotic Suillus luteus strains. A. Relationship between EC_{50}-values and mycelial zinc concentrations for crossed strains ($n=120$). Sensitive x sensitive crosses are indicated in green. Sensitive x tolerant crosses are indicated in orange. Tolerant x tolerant crosses are indicated in red. B. Differences in mycelial zinc concentrations between crossing types (sensitive x sensitive $n=35$, sensitive x tolerant $n=48$, tolerant x tolerant $n=37$). C. Differences in E_{50}-values between crossing types (sensitive x sensitive $n=35$, sensitive x tolerant $n=48$, tolerant x tolerant $n=37$). Significant differences at the 95% significance level are indicated with different letters.

DIscussion

Previous research indicated the existence of Zn - and Cd-tolerant ecotypes of the ectomycorrhizal basidiomycete Suillus luteus in the northern part of Limburg, Belgium (Colpaert et al., 2000; 2004; Krznaric et al., 2009) and of Cu-tolerant ecotypes growing on mine spoils in Norway (Adriaensen et al., 2005). Metal tolerance mechanisms were shown to be metal specific for S. luteus (Adriaensen et al., 2005). Element profiles, furthermore, suggested that Zn tolerance in Suillus species is based on an exclusion mechanism (Colpaert et al., 2005; Ruytinx et al., 2013). To gain insight in the genetic architecture of Zn tolerance in S . Iuteus, the heredity of Zn tolerance in S. luteus was investigated in the current study. Prior to studying the heredity of Zn tolerance in S . Iuteus, the ploidy of tested strains was checked. Using the Sulu08 and Sulu10 microsatellite markers described by Muller et al. (2006) it was possible to distinguish monokaryotic (haploid) strains from dikaryotic (diploid) strains (Fig. S2.2). These results confirmed the successful isolation of monokaryotic strains grown from single spores. They also confirmed that the in vitro crossing of monokaryotic strains was successful, resulting in dikaryotic strains. S. luteus is known to have a bipolar (unifactorial) mating system (Fries \& Neumann, 1990) as opposed to most other Basidiomycota, who have a tetrapolar (bifactorial) mating system. The inbreeding potential (potential crossing ratio between siblings) therefore is 50%, but the outbreeding potential (potential crossing ratio between two monokaryons originating from a different family) is nearly 100\% (Carlile et al., 2006).

To study the genetic architecture of Zn tolerance in S. Iuteus, we collected sporulating basidiocarps from Zn -polluted and non-polluted areas. Although we expected to find homogeneously Zn-tolerant or Zn -sensitive S. Iuteus populations in all areas, as was observed in our previous study (Colpaert et al., 2000), some reciprocal introgression was detected in this study. Six out of ten parental strains that originated from the control population in Paal, were found to be sensitive to elevated Zn

Chapter 2

concentrations, whereas four strains showed some Zn tolerance. The fact that four tolerant isolates were collected in the control population in Paal is not too surprising however. S. luteus is a typical pioneer species that relies mainly on wind and animals for the dispersal of its spores. Spores can therefore be easily dispersed over several kilometres. Muller et al. (2004, 2007) investigated the genetic variability of the same S. Iuteus populations investigated here. They found surprisingly large genetic variability in the Paal and Lommel populations as well as a significant gene-flow between the S. Iuteus populations. Therefore, it is possible that Zn tolerance genes got established in the gene pool of the control population in Paal at the time of sampling, as long as these genes do not reduce the fitness of individuals. Parental strains collected in Lommel-Maatheide and Lommel-Sahara were all found to be tolerant to some degree to increased concentrations of Zn (Fig. 2.1A).

The heredity models that were most suitable to explain our data imply either the presence of two genes, each potentially having two alleles or the presence of a single gene with multiple alleles. However, a heredity model implying the presence of a single gene with two alleles could not be rejected based on our data. Whereas significant differences between EC_{50}-values of all monokaryotic phenotypes were observed, no differences were found in the mycelial Zn content of tolerant phenotypes (Fig. 2.2C). These results suggest the presence of a single gene locus that is responsible for the major differences in mycelial Zn concentrations and EC_{50}-values between Zn tolerant and Zn -sensitive strains, whereas a second gene locus could be responsible for additional differences in EC_{50}-values. A genetic architecture based on the presence of a single or two Zn tolerance loci would correspond to the genetic patterns of metal tolerance described for many plant species (Macnair, 1993). However, the significant contribution of genotype:treatment interactions (Table 2.1) to differences in EC_{50}-values in families with mainly tolerant siblings and families with varying proportions of tolerant siblings indicate that other genetic factors, which are not necessarily linked to the observed Zn tolerance trait, further
influenced the response of S. Iuteus strains to increasing Zn concentrations. For example, intracellular sequestration of Zn with metallothioneins, glutathione or phytochelatins, storage in vacuoles, etc. may influence the growth of both sensitive and tolerant S. luteus strains, but these mechanisms are not necessarily part of the adaptive zinc tolerance trait in S. Iuteus. Increased concentrations of S in phenotype 3 of the monokaryons suggest that, at least for this phenotype, sulphur-rich compounds could be present in higher concentrations than in other phenotypes (Fig. S2.3H). Since Zn is an essential nutrient, intracellular Zn concentrations are tightly regulated. Hence, minor modifier genes are expected to play an important role in maintaining Zn homeostasis as well. Furthermore, it is also possible that multiple copies of a "tolerance gene" exist in the genome of S. Iuteus. In metal-tolerant plants, variability in metal tolerance and accumulation among different populations has been partly explained by copy-number expansion of genes involved in metal tolerance and homeostasis. Most of these multi-copy genes code for metal transporters (Craciun et al., 2012). To elucidate which genes are involved and to what extent they contribute to adaptive Zn tolerance in S . Iuteus, targeted molecular and proteomics studies need to be conducted in the future. Element profiles of the parental and monokaryotic strains revealed a correlation between mycelial Zn and Fe contents (Fig. S2.4). Since Zn and Fe ions resemble each other chemically and use similar transporters, it is possible that Zn transport mechanisms also translocate some Fe through low-affinity transport and vice versa (Gadd, 1993). EC50-values and mycelial Zn concentrations were strictly inversely correlated, both in parental (Fig. 2.1A) and monokaryotic strains (Fig. 2.1B). The presence of low Zn concentrations in tolerant isolates and high Zn concentrations in sensitive isolates supports previous findings that metal tolerance in Suillus species can be attributed to an exclusion mechanism (Colpaert et al., 2004; Ruytinx et al., 2013).

To study the contribution of individual nuclei in the Zn tolerance of S . luteus, crosses were established between monokaryons of different families. When the average EC_{50}-values and mycelial Zn concentrations of

Chapter 2

monokaryons that were crossed, were plotted against the measured $\mathrm{EC}_{50^{-}}$ values and mycelial Zn concentrations of the resulting dikaryons, a strong positive correlation was found for the EC_{50}-values (Fig. 2.4 A) as well as for the mycelial Zn concentrations (Fig. 2.4B). These results indicate that the tolerance phenotype of a dikaryon is the result of the phenotypes of both contributing monokaryotic strains and hence, that Zn tolerance in S. Iuteus is inherited through incomplete dominance.

Conclusions

The goal of the current study was to gain insight in the genetic architecture of the Zn tolerance trait in S . Iuteus. Based on the segregation patterns observed in this study, it is expected that either one or two genes are responsible for the major difference in Zn tolerance between different isolates of S. Iuteus. Other genes or variable copy numbers of a tolerance gene could account for variations in the tolerance level of isolates. Furthermore, dose-response experiments conducted on crosses between monokaryotic strains indicated that Zn tolerance is inherited through incomplete dominance in S. Iuteus. Finally, support was found for the exclusion mechanism that was shown to be responsible for Zn tolerance in Suillus in previous studies.

Acknowledgements

The authors would like to thank Marc Missoorten for granting access to the study sites and assistance during field work.

References

Adriaensen K, Vrålstad T, Noben J-P, Vangronsveld J, Colpaert JV (2005). Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applied and Environmental Microbiology 71: 7279-7284.

Alford ER, Pilon-Smits EAH, Paschke MW (2010). Metallophytes - a view from the rizosphere. Plant and Soil 337: 33-50.

Andrade SAL, Abreu CA, de Abreu MF, Silveira APD (2004). Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology 26: 123-131.

Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters 254: 173-181.

Carlile MJ, Watkinson SC, Gooday GW (2006). The Fungi. Academic Press, London.

Colpaert JV (2008). Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In: Avery S, Stratford M, van West P, eds. Stress in yeasts and filamentous fungi. Elsevier Academic Press, London. pp 157173.

Colpaert JV, Adriaensen K, Muller LAH, Lambaerts M, Faes C, Carleer R, Vangronsveld J (2005). Element profiles and growth in Zn -sensitive and Zn-resistant Suilloid fungi. Mycorrhiza 15: 628-634.

Colpaert JV, Muller LAH, Lambaerts M, Adriaensen K, Vangronsveld J (2004). Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytologist 162: 549-559.

Chapter 2

Colpaert JV, van Assche JA (1992). The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New phytologist 123: 325-333.

Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J (2000). Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist 147: 367-379.

Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011). How metaltolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science 68: 17-24.

Craciun AR, Meyer CL, Chen JG, Roosens N, De Groodt R, Hilson P, Verbruggen N (2012). Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. Journal of experimental botany 63: 41794189.

Egerton-Warburton L, Griffin B (1995). Differential responses of Pisolithus tinctorius isolates to aluminium in vitro. Canadian Journal of Botany 73: 1229-1233.

Fries N (1978). Basidiospore germination in some mycorrhiza-forming Hymenomycetes. Transactions of the British Mycological Society 70: 319324.

Fries N, Neumann W (1990). Sexual incompatibility in Suillus luteus and S. granulatus. Mycological research 94: 64-70.

Fraley C, Raftery AE (2002). Model-based clustering, discriminant analysis and density estimation. Journal of the American Statistical Association 97: 611-631.

Gadd GM (1993). Interactions of fungi with toxic metals. New Phytologist 124: 25-60.

Goncalves SC, Martins-Loucao MA, Freitas H (2009). Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19: 221-230.

Hall JL (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1-11.

Hancock LMS, Ernst CL, Charneskie R, Ruane LG (2012). Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in Flax (Linum usitatissimum; Lineaceae). American Journal of Botany 99: 1445-1452.

Jourand P, Ducousso M, Loulergue-Majorel C, Hannibal L, Santoni S, Prin Y, Lebrun M (2010). Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiology Ecology 72: 238-249.

Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009). Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd. Environmental pollution 157: 1581-1588.

Macnair MR (1993). The genetics of metal tolerance in vascular plants. New Phytologist 124: 541-559.

Meharg AA (2003). The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research 107: 1253-1265.

Chapter 2

Muller LAH, Lambaerts M, Vangronsveld J, Colpaert JV (2004). AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytologist 164: 297-303.

Muller LAH, Lambaerts M, Vangronsveld J, Colpaert JV (2006). Isolation and characterization of microsatellite loci from the ectomycorrhizal basidiomycete Suillus luteus. Molecular ecology notes 6: 165-166.

Muller LAH, Vangronsveld J, Colpaert JV (2007). Genetic structure of Suillus luteus populations in heavy metal polluted and unpolluted habitats. Molecular Ecology 16: 4728-4737.

Nagajyoti PC, Lee KD, Sreekanth TVM (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8: 199216.

Ruytinx J, Nguyen H, Van Hees M, Op De Beeck M, Vangronsveld J, Carleer R, Colpaert JV, Adriaensen K (2013). Zinc export results in tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics 5: 1225-1233.

Schat H, Vooijs R (1997). Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis. New Phytologist 136: 489-496.

Schat H, Vooijs R, Kuiper E (1996). Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50: 1888-1895.

Sridhar KR, Barlocher F, Krauss GJ, Krauss G (2005). Response of aquatic hyphomycete communities to changes in heavy metal exposure. International Review of Hydrobiology 90: 21-32.

Verbruggen N, Hermans C, Schat H (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181: 759-776.

Willems G, Frérot H, Gennen J, Salis P, Saumitou-Laprade P, Verbruggen N (2010). Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri×Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. New Phytologist 187: 368-379.

Chapter 2

Supporting Information

Supporting Information Figure S2.1 Schematic representation of the crossing scheme used to establish diploid crosses between haploid Suillus luteus strains. All pairwise crosses $(\mathrm{n}=192)$ were established between haploid strains of different families. No crosses between siblings were established. All pairwise combinations are illustrated for three out of twenty-four haploid strains. Haploid strains are indicated with " n ". Crosses are indicated with " x ".

Supporting Information Figure S2.2 Gel-electrophoresis results of PCR amplification with Sulu08 and Sulu10 microsatellite markers. These microsatellite markers were used in the current study to determine the ploidy of parental, monokaryotic and crossed Suillus luteus strains in the current study (Muller et al., 2006). A. Microsatellite marker Sulu08. B. Microsatellite marker Sulu10. " $n+n$ " indicates a dikaryotic, parental strain. " n " indicates a monokaryotic strain. "x" indicates a crossed strain. Two bands in a single lane indicate the presence of two alleles of the specified marker in a strain, while the presence of a single band is indicative for a single allele of a given microsatellite marker. Left and right of the sample lanes are 50 base pair (bp) ladders.

Chapter 2

Supporting Information Figure S2.3 Correlations between mycelial zinc and iron concentrations of Suillus luteus strains. A. Parental strains $(n=30)$. B. Monokaryotic strains ($n=161$). Results of linear regressions are given in insets.

Chapter 2

Supporting Information Figure S2.4 Differences in element concentrations between sensitive and tolerant monokaryotic Suillus luteus strains ($\mathrm{n}=161$). A. Iron. B. Magnesium. C. Manganese. D. Copper. E. Molybdenum. F. Calcium. G. Phosphorus. H. Sulphur. Differences in mycelial element concentrations at the 95% confidence level are indicated with different letters.

Supporting Information Table S2.1 Selected microsatelite markers from Suillus luteus (Muller et al., 2006). Both microsatellite markers were used in this study to check the ploidy of strains used in dose-response experiments.

Locus	Array	p.o.	Primer sequence (5'-3')	$\begin{aligned} & \text { a.s.r. } \\ & \text { (4) } \\ & \text { (bp) } \\ & (5) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}{ }_{(6)} \end{aligned}$	EMBL a.n. (7)
Sulu08	$(\mathrm{GAC})_{8}$	$\mathrm{F}^{(2)}$	GATAGCTTTCATGCCAATCG	$\begin{gathered} \hline 196- \\ 238 \end{gathered}$	$\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$	$\begin{gathered} \text { AM055 } \\ 723 \end{gathered}$
		$\mathrm{R}^{(3)}$	GACTAGGCGTGTTGGAGACG			
Sulu10	(GAT) ${ }_{23}$	$F^{(2)}$	CGAGCTCCAGCAGTTACACG	$\begin{gathered} 189- \\ 264 \end{gathered}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \text { AM055 } \\ 725 \end{gathered}$
		$\mathrm{R}^{(3)}$	AAAACGCTTCTTCTGGTTGG			

(1) p.o.: primer orientation
${ }^{(2)} \mathrm{F}$: forward
${ }^{(3)} \mathrm{R}$: reverse
(4) a.s.r.: allele size range
${ }^{(5)} \mathrm{bp}$: base pairs
(6) T_{a} : annealing temperature $\left({ }^{\circ} \mathrm{C}\right)$
(7) EMBL a.n.: EMBL accession number.

Chapter 2

Supporting Information Table S2.2 Results of two-way ANOVAs used to calculate the relative contribution of genotype-, treatment-, or environmentally-induced variation in observed EC_{50}-values between dikaryotic Suillus luteus strains ($\mathrm{n}=30$) collected from two metal-polluted sites (Lommel-Maatheide: LM and LommelSahara: LS) and a control site (Paal: P).

Family	Part of phenotypic variation	Variance	F-value	p-value	Relative contribution to phenotypic variation (\%)
LM	Genotype	37.65	53.09	<0.01	7
	Treatment	428.01	965.75	<0.01	79
	Genotype:Treatment	66.99	18.89	<0.01	12
	Environment	11.17			2
	Genotype	95.70	177.85	<0.01	9
LS	Treatment	757.97	5634.69	<0.01	75
	Genotype:Treatment	155.36	57.75	<0.01	15
	Environment	6.78			1
					10
P Genotype	71.54	256.69	<0.01	10	
	Treatment	520.20	3733.00	<0.01	76
	Genotype:Treatment	93.75	67.28	<0.01	14
	Environment	3.68			1

Supporting Information Table S2.3 Results of two-way ANOVAs used to calculate the relative contribution of genotype-, treatment-, or environmentally-induced variation in observed EC_{50}-values between monokaryotic Suillus luteus strains ($\mathrm{n}=$ 600) collected from two metal-polluted sites (Lommel-Maatheide: LM and LommelSahara: LS) and a control site (Paal: P).

Family	Part of phenotypic variation	Variance	F-value	p-value	```Relative contribution to phenotypic variation (%)```
LM07	Genotype	373.60	200.25	< 0.01	23
	Treatment	909.13	2213.73	< 0.01	56
	Genotype:Treatment	311.95	34.14	< 0.01	19
	Environment	23.18			1
LM08	Genotype	633.01	213.10	< 0.01	35
	Treatment	662.92	1071.21	<0.01	36
	Genotype:Treatment	495.64	33.37	< 0.01	27
	Environment	37.13			2
LM10	Genotype	180.18	111.98	< 0.01	10
	Treatment	1320.06	3117.70	< 0.01	73
	Genotype:Treatment	285.16	35.45	< 0.01	16
	Environment	20.32			1
LM17	Genotype	470.80	310.66	< 0.01	41
	Treatment	442.11	1050.20	<0.01	38
	Genotype:Treatment	224.12	29.58	< 0.01	19
	Environment	19.20			2
LM19	Genotype	101.76	79.57	< 0.01	19
	Treatment	299.51	936.77	< 0.01	56
	Genotype:Treatment	120.81	18.89	< 0.01	22
	Environment	16.11			3
LM22	Genotype	92.45	43.23	< 0.01	12
	Treatment	547.40	972.62	<0.01	71
	Genotype:Treatment	109.37	10.23	< 0.01	14
	Environment	27.01			3

Chapter 2

LM24

LM26

M32

M33

Genotype	230.07	113.05	<0.01	18
Treatment	694.48	1160.20	<0.01	55
Genotype:Treatment	304.05	29.88	<0.01	24
Environment	25.86			2
Genotype	291.54	295.29	<0.01	22
Treatment	766.80	2395.37	<0.01	57
Genotype:Treatment	263.87	50.01	<0.01	20
Environment	16.30			1
Genotype	218.43	209.67	<0.01	15
Treatment	935.91	3413.97	<0.01	65
Genotype:Treatment	261.81	50.26	<0.01	18
Environment	13.16			1
Genotype	376.14	353.75	<0.01	29
Treatment	634.24	2234.16	<0.01	49
Genotype:Treatment	273.38	51.09	<0.01	21
Environment	15.30			1
Genotype	415.18	506.57	<0.01	29
Treatment	744.02	3449.62	<0.01	52
Genotype:Treatment	269.79	65.84	<0.01	19
Environment	10.35			1

LS5	Genotype	228.43	491.35	<0.01	33
	Treatment	274.92	1537.45	< 0.01	39
	Genotype:Treatment	190.67	82.03	<0.01	27
	Environment	6.01			1
LS6	Genotype	203.81	361.91	< 0.01	22
	Treatment	532.40	3592.55	< 0.01	59
	Genotype:Treatment	166.44	59.11	< 0.01	18
	Environment	7.11			1
LS8	Genotype	384.26	473.77	<0.01	27
	Treatment	665.38	3117.39	< 0.01	47
	Genotype:Treatment	355.87	87.75	< 0.01	25
	Environment	10.25			1
LS11	Genotype	124.88	94.39	< 0.01	19
	Treatment	443.08	1272.57	< 0.01	66
	Genotype:Treatment	86.41	13.06	< 0.01	13
	Environment	16.71			2
LS20	Genotype	345.48	359.40	< 0.01	21
	Treatment	964.77	4014.66	< 0.01	59
	Genotype:Treatment	303.64	63.18	< 0.01	19
	Environment	12.11			1
LS26	Genotype	54.98	36.47	< 0.01	15
	Treatment	162.95	410.82	< 0.01	44
	Genotype:Treatment	134.97	17.91	< 0.01	36
	Environment	19.04			5
P1	Genotype	600.99	581.84	< 0.01	45
	Treatment	450.84	1745.88	< 0.01	34
	Genotype:Treatment	260.60	50.46	< 0.01	20
	Environment	13.01			1
P5	Genotype	506.66	388.88	< 0.01	40
	Treatment	452.61	1250.61	< 0.01	36
	Genotype:Treatment	295.35	45.34	< 0.01	23
	Environment	16.50			1

Chapter 2

P7

P28

P2

P8

P13

Genotype	40.54	30.24	<0.01	2
Treatment	1875.78	5317.27	<0.01	94
Genotype:Treatment	70.94	10.58	<0.01	4
Environment	16.93			1

P14

P23

Genotype	36.78	27.03	<0.01	2
Treatment	1439.09	3806.87	<0.01	91
Genotype:Treatment	84.10	12.36	<0.01	5
Environment	17.24			1
Genotype	42.46	25.89	<0.01	3
Treatment	1125.96	2471.52	<0.01	89
Genotype:Treatment	71.71	8.75	<0.01	6
Environment	20.77			2

Supporting Information Table S2.4 Results of one-way ANOVAs used to calculate the relative contribution of genotypic differences in mycelial Zn concentrations between dikaryotic Suillus luteus strains $(\mathrm{n}=30)$ collected from two metal-polluted sites (Lommel-Maatheide: LM and Lommel-Sahara: LS) and a control site (Paal: P).

Family	Part of phenotypic variation	Variance	F-value	p-value	Relative contribution to phenotypic variation (\%)
LM	Genotype Environment	1.44	107.52	<0.01	98
	0.03			2	
LS	Genotype	1.18	88.47	<0.01	98
	Environment	0.03			2
		Genotype	5.84	230.31	<0.01
P	Environment	0.06			99

Chapter 2

Supporting Information Figure S2.5 Results of one-way ANOVAs used to calculate the relative contribution of genotypic differences in mycelial Zn concentrations between monokaryotic Suillus luteus strains $(\mathrm{n}=600)$ collected from two metal-polluted sites (Lommel-Maatheide: LM and Lommel-Sahara: LS) and a control site (Paal: P).

Family	Part of phenotypic variation	Variance	F-value	p-value	```Relative contribution to phenotypic variation (%)```
LM10	Genotype	174.53	483.08	< 0.01	100
	Environment	0.76			0
LM17	Genotype	11.50	104.05	<0.01	98
	Environment	0.23			2
LM19	Genotype	22.58	103.03	<0.01	98
	Environment	0.46			2
LM22	Genotype	37.98	154.55	<0.01	99
	Environment	0.52			1
LM24	Genotype	27.18	150.08	<0.01	99
	Environment	0.38			1
LM26	Genotype	374.63	372.39	<0.01	99
	Environment	2.12			1
LM32	Genotype	256.61	266.23	<0.01	99
	Environment	2.03			1
LM33	Genotype	275.29	300.73	< 0.01	99
	Environment	1.93			1
LM7	Genotype	269.55	286.94	< 0.01	99
	Environment	1.98			1
LM8	Genotype	354.07	350.10	<0.01	99
	Environment	2.13			1
LS1	Genotype	65.46	107.29	<0.01	98
	Environment	1.29			2
LS11	Genotype	5.11	64.09	<0.01	97
	Environment	0.17			3
LS2	Genotype	675.30	404.68	<0.01	99
	Environment	3.51			1
LS20	Genotype	58.73	139.74	<0.01	99
	Environment	0.89			1

LS26	Genotype	9.08	36.69	<0.01	95
	Environment	0.52			5
LS3	Genotype	17.82	76.58	<0.01	97
	Environment	0.49			3
LS4	Genotype	196.55	253.78	<0.01	99
	Environment	1.63			1
LS5	Genotype	75.54	154.94	< 0.01	99
	Environment	1.03			1
LS6	Genotype	359.84	358.06	<0.01	99
	Environment	2.12			1
LS8	Genotype	497.20	457.96	<0.01	100
	Environment	2.29			0
P1	Genotype	174.11	253.46	<0.01	99
	Environment	1.45			1
P13	Genotype	39.92	44.50	< 0.01	95
	Environment	1.89			5
P14	Genotype	107.89	60.97	<0.01	97
	Environment	3.73			3
P2	Genotype	37.90	26.52	< 0.01	93
	Environment	3.01			7
P23	Genotype	213.21	156.22	< 0.01	99
	Environment	2.87			1
P28	Genotype	287.94	320.58	< 0.01	99
	Environment	1.89			1

Chapter 2

P30	Genotype	121.80	100.39	<0.01	98
	Environment	2.55			2
P5	Genotype	427.30	360.60	<0.01	99
	Environment	2.49			1
P7	Genotype	321.80	363.01	<0.01	99
	Environment	1.87			1
					95
P8	Genotype	45.82	42.13	<0.01	9
	Environment	2.29			5

Chapter 3: Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies

doi: 10.1371/journal.pone. 0097629

Op De Beeck M, Lievens B, Busschaert P, Declerck S, Jaco
Vangronsveld J, Colpaert JV

Summary

Current metabarcoding studies aiming to characterize microbial communities generally rely on the amplification and sequencing of relatively short DNA regions. For fungi, the internal transcribed spacer (ITS) region in the ribosomal RNA (rRNA) operon has been accepted as the formal fungal barcode. Despite an increasing number of fungal metabarcoding studies, the amplification efficiency of primers is generally not tested prior to their application in metabarcoding studies. Some of the challenges that metabarcoding primers should overcome efficiently are the amplification of target DNA strands in samples rich in non-target DNA and environmental pollutants, such as humic acids, that may have been co-extracted with DNA. In the current study, three selected primer pairs were tested for their suitability as fungal metabarcoding primers. The selected primer pairs include two primer pairs that have been frequently used in fungal metabarcoding studies (ITS1F/ITS2 and ITS3/ITS4) and a primer pair (ITS86F/ITS4) that has been shown to efficiently amplify the ITS2 region of a broad range of fungal taxa in environmental soil samples. The selected primer pairs were evaluated in a 454 amplicon pyrosequencing experiment, real-time PCR (qPCR) experiments and in silico analyses. Results indicate that experimental evaluation of primers provides valuable information that could aid in the selection of suitable primers for fungal metabarcoding studies. Furthermore, we show that the ITS86F/ITS4 primer pair outperforms other primer pairs tested in terms of in silico primer efficiency, PCR efficiency, coverage, number of reads and number of species-level

Chapter 3

operational taxonomic units (OTUs) obtained. These traits push the ITS86F/ITS4 primer pair forward as highly suitable for studying fungal diversity and community structures using DNA metabarcoding.

Keywords: community analysis, soil fungi, internal transcribed spacer (ITS), next generation sequencing, 454 amplicon pyrosequencing, operational taxonomic unit (OTU), real-time PCR (qPCR)

Introduction

Until the late 1980s, microbial ecologists and taxonomists have relied on culturing and morphological and physiological characteristics to describe microbial communities and members thereof. In the last two decades, DNA sequencing has revolutionized the way microbial communities are being characterized (Stahl et al., 1984; Hugenholtz and Pace, 1996). In addition, since the introduction of pyrosequencing by Margulies et al. (2005), characterization of microbial communities has undergone a second revolution as this technology (used by e.g. Sogin et al. (2006) and Buée et al. (2009)) enables detailed microbial community characterization at greater sequencing depth than was deemed possible via cloning and Sanger sequencing. A number of next-generation sequencing technologies now enable researchers to identify a large number of organisms from environmental samples using relatively short DNA sequences. This molecular identification method has been termed metabarcoding (Taberlet et al., 2012). Nevertheless, whatever sequencing technology is used, DNA metabarcoding generally depends on the amplification of barcode regions using taxon-specific primers (Hebert et al., 2003). Such primers need to be universal enough to cover a large group of taxa (e.g. the fungal kingdom), but at the same time have to result in amplicons that are variable enough to efficiently distinguish between closely related species or to identify operational taxonomic units (OTUs) (Hebert et al., 2003; Justé et al., 2008). For fungi and oomycetes, the internal transcribed spacer region (ITS; spanning the ITS1, 5.8S and ITS2 regions) in the ribosomal RNA (rRNA) operon has been recognized as the formal DNA barcoding region (Seifert, 2009; Begerow et al., 2010; Schoch et al., 2012).

The full ITS region in fungi has an average length of 500 and 600 base pairs (bp) for ascomycetes and basidiomycetes, respectively, and an average length of 600 bp across all fungal lineages (Porter and Golding, 2011). As current 454 amplicon pyrosequencing (using Roche's Genome Sequencer FLX (GS-FLX) instrument and Titanium chemistry) generates read lengths

Chapter 3

averaging 450 bp , it is impossible to span the entire ITS region in a single run. Even with recent advances in sequencing technologies that enable sequencing across the entire ITS region, it will probably remain desirable for fungal metabarcoding studies to exclude the 5.8 S region of the rRNA operon. The inclusion of conserved regions in DNA sequences are known to increase the risk of chimera formation during PCR (Haas et al., 2011). Therefore, generally, either the ITS1 or the ITS2 region is used in ecological studies aiming at the characterization of fungal communities.

Primers that will be used in metabarcoding studies should be able to efficiently amplify their target DNA regions in the presence of high concentrations of non-target DNA and contaminants, such as humic acids, that may have been co-extracted with DNA (Kosch and Summers, 2013). Therefore, in silico testing of primers is expected to result in an incomplete picture of how primers will behave during amplification of DNA extracted from environmental samples. Comparing the amplification efficiency and robustness of primers used in metabarcoding studies is important because differences in primer efficiency may result in strong biases in favour of more easily amplifiable sequences during PCR reactions, potentially influencing our view on fungal communities (Polz and Cavanaugh, 1998; Jumpponen, 2007; Engelberktson et al., 2010). Moreover, a primer set that covers a large proportion of the species that compose a community of interest and that produces a reliable outcome is desired as ecological metabarcoding studies typically rely on a single primer pair to map microbial diversity. The most commonly used primers in fungal ecology for sequence-based fungal identification at the species level were published by White et al. (1990): ITS1, ITS2, ITS3 and ITS4, and by Gardes and Bruns (1993): ITS1F and ITS4B. Whereas the primers developed by White et al. (1990) had a broad spectrum, ITS1F and ITS4B were developed to be specific for fungi and basidiomycetes respectively (Gardes and Bruns, 1993). ITS1F is most frequently combined with ITS2 to amplify the ITS1 region of the fungal rRNA operon and ITS3 is usually combined with ITS4 to amplify the ITS2 region. These primer pairs have been used in many branches of
mycological research in the past twenty years and are popular tools in recent fungal community studies as well (Buée et al., 2009; Jumpponen and Jones, 2009; Amend et al., 2010; Ghannoum et al., 2010; Jumpponen et al., 2010; Tedersoo et al., 2010; also reviewed in Hibbett et al. (2011)). The aim of the current study was to evaluate the amplification efficiency of these established primer pairs and to compare them to a selected primer pair (ITS86F/ITS4) that has been shown to specifically and efficiently amplify ITS sequences from a broad range of fungal taxa in human blood samples as well as in environmental soil samples (Vancov and Keen, 2009).

Materials and methods

Study site and soil sampling

A pioneer pine forest on a stabilised sand dune in the northern part of Limburg, Belgium (Hechtel-Eksel: $51^{\circ} 7^{\prime} 33^{\prime \prime} \mathrm{N}, 5^{\circ} 22^{\prime} 22^{\prime \prime}$ E) was selected to obtain samples for this study. The study site is not freely accessible. To gain access to this study site, please contact the responsible authorities (Table S3.1). The soil in this study site is a dry sandy soil without a litter layer, poor in organic matter and slightly acidic. The average organic carbon content for this site is 0.7% and the average pH is 4.7. The pioneer vegetation at the study site is dominated by young Scots pine trees (Pinus sylvestris L.), mosses and lichens, with only few grasses and heather shrubs (Calluna vulgaris (L.) Hull). Tree ages at the time of sampling ranged from one to five years. The region has an average annual rainfall of 800 mm per square meter and the average annual temperature is $10^{\circ} \mathrm{C}$ (Royal Meteorological Institute, Ukkel, Belgium).
Soil samples for fungal community characterization were collected in November 2009. Samples were collected at a depth of 0 to 20 cm using a soil corer with a diameter of 1 cm . Four replicate soil samples were collected within a distance of ten centimetres from each other for seven sampling locations. Each sampling location was chosen close to a three to five year old pine tree randomly selected in the field. Selected pine trees were at

Chapter 3

least 20 m apart from each other. The 4 replicate soil samples were pooled for each sampling location, resulting in a total of seven pooled samples. Samples were sealed in plastic bags and tightly closed to prevent desiccation during transportation. Upon arrival in the lab, soil samples were sieved using a 2 mm sieve to homogenize the sample and remove roots, large pieces of organic matter and stones. Samples were subsequently stored at $-80^{\circ} \mathrm{C}$ until DNA was extracted. No protected species were sampled during the study.

DNA extraction, PCR amplification and pyrosequencing

Approximately 250 mg of soil was used for each DNA extraction. DNA was extracted in quadruplicate from each pooled sample using the UltraClean Soil DNA Isolation Kit according to the manufacturer's protocol (MoBio, Carlsbad, CA, USA). This resulted in four replicates for each of seven pooled soil samples. Subsequently, amplicon libraries were created using barcodetagged primers for the primer pairs ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4 (Table 3.1).

Table 3.1 Primers used in the current study.

Primer (1)	Primer sequence (5'-3')	rRNA operon binding site	Reference
ITS1F (F)	CTTGGTCATTTAGAGGAAGTAA	SSU	Gardes and Bruns, 1993 White et al., 1990
ITS2 (R)	GCTGCGTTCTTCATCGATGC	$5.8 S$	White et al., 1990
ITS3 (F)	GCATCGATGAAGAACGCAGC	$5.8 S$	White et al., 1990
ITS4 (R)	TCCTCCGCTTATTGATATGC	LSU	Turenne et al., 1999
ITS86F (F)	GTGAATCATCGAATCTTTGAA	$5.8 S$	Vancov and Keen, 2009
ITS86R (R)	TTCAAAGATTCGATGATTCAG	$5.8 S$	

Both forward and reverse primers were synthesized with a tail containing the Roche 454 pyrosequencing adaptors and a sample-specific 10 bp barcode (multiplex identifiers: MIDs) (Carlsen et al., 2012) enabling sorting out the obtained sequences after sequencing (Roche Applied Science, Mannheim, Germany). Fusion primers were designed according to the scheme provided in Table S3.2.

DNA samples were amplified using a Techne TC-5000 thermocycler (Bibby Scientific Limited, Staffordshire, UK) under the following conditions: initial denaturation at $95^{\circ} \mathrm{C}$ for 2 minutes, followed by 40 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 30 seconds, annealing at $55^{\circ} \mathrm{C}$ for 30 seconds and extension at $72^{\circ} \mathrm{C}$ during 1 minute; a final extension phase was performed at $72^{\circ} \mathrm{C}$ during 10 minutes. Reactions were carried out in 25μ reaction volumes using the FastStart High Fidelity PCR System (Roche Applied Science, Mannheim, Germany). Each reaction contained $2.75 \mu \mathrm{l}$ FastStart 10x reaction buffer, $1.8 \mathrm{mM} \mathrm{MgCl}, 0.2 \mathrm{mM}$ dNTP mix, $0.4 \mu \mathrm{M}$ of each primer, 1.25 U FastStart HiFi polymerase and 5 ng template DNA (as measured by a Nanodrop spectrophotometer)

Amplified DNA was cleared from PCR primers and primer dimers using the Agencourt AMpure XP System according to the manufacturer's protocol (Beckman Coulter, Brea, CA, USA). Finally, purified dsDNA was quantified with the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) and a Fluostar Omega plate reader (BMG Labtech, Ortenberg, Germany) and subsequently pooled in equimolar concentrations. The resulting amplicon pool, containing all 84 samples, was sequenced on one fourth of a Pico Titer Plate on a Roche Genome Sequencer FLX System using Titanium chemistry (Roche Applied Science, Mannheim, Germany) according to the manufacturer's instructions.

Chapter 3

Bioinformatics processing

The standard flowgram format (SFF) file that resulted from the interpreted flowgrams was deposited in the NCBI Sequence Read Archive under accession number SRP026207 (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra). From the original SFF file, three separate quality and fasta files were created with a custom biopython script according to the three primer pairs used (Table S3.2). Further analyses were carried out in Mothur 1.31.2 on the individual fastq and fasta files (Schloss et al., 2009). Quality trimming in Mothur removed reads shorter than 200 bases, reads longer than 600 bases, reads with homopolymers longer than 8 bases and reads containing ambiguous bases. Reads were trimmed when the average Phred quality score dropped below 35 over a window of 50 bases. Next, sequences were compared to each other and duplicate sequences were replaced by a single sequence, while archiving the abundance data of the unique sequences. Subsequently, unique reads were checked for chimeric sequences using the Uchime tool in Mothur followed by their removal from the datasets. Unique reads were aligned with the pairwise alignment tool in Mothur. Finally, species-level OTUs were defined based on a 97% sequence similarity level, which is within the range of intraspecific ITS sequence similarity (Blaalid et al., 2013). In order to further remove potential sequencing errors from the analysis, global singletons (i.e. OTUs represented by only a single sequence over an entire dataset) were removed (Tedersoo et al., 2010).

Because the primer pairs resulted in different amounts of reads per sample, the number of reads per sample were rarefied to 200 reads per sample. Samples for which less than 200 reads were obtained were removed from the dataset. For ITS1F/ITS2 14 of 28 samples were removed. For ITS3/ITS4 4 samples were removed and for ITS86F/ITS4 no samples were removed. Inter-sample rarefaction curves were constructed based on 10,000 iterations. Subsequently, intra-sample diversity, richness and Good's coverage estimates were calculated in Mothur 1.31.2 based on 10,000 iterations. BLAST searches for a representative sequence of each OTU (as
determined by Mothur) were conducted using the PlutoF v2.0 massBLASTer online tool (Abarenkov et al., 2010). Reads were blasted against the UNITE (Kõljalg et al., 2005) and INSD (Nakamura et al., 2013) databases. Resulting HTML files were combined with the abundance data obtained in Mothur using a custom Python script. This script also acquired the names of species or genera that resemble Latin binomials with the highest BLAST score, avoiding unidentified OTUs in the databases to be seen as best BLAST hits. Unidentified OTUs were indicated as "not applicable (NA)".

Quantitative real-time PCR

To evaluate the performance of the primer pairs amplifying target DNA from a heterogeneous pool of DNA in environmental samples, all primer pairs were tested in a qPCR set-up. A 2 -fold dilution series (1:1 to $1: 64$) was made from twelve DNA samples (ranging from $5 \mathrm{ng} \mu^{-1}$ to $78 \mathrm{pg}_{\mathrm{\mu l}} \mathrm{l}^{-1}$, including one no-template control (NTC) for each sample). Amplification was performed in optical 96-well plates using a 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) and SYBR Green chemistry. PCR conditions were as follows: initial denaturation at $95^{\circ} \mathrm{C}$ for two minutes, followed by 40 cycles of $95^{\circ} \mathrm{C}$ (30s), $55^{\circ} \mathrm{C}$ (30s) and $72^{\circ} \mathrm{C}$ (60s) and a final extension phase at $72^{\circ} \mathrm{C}$ for 10 minutes followed by the generation of a dissociation curve to verify amplification specificity. These qPCR conditions were chosen to mimic the PCR conditions used during the PCR step prior to emPCR and amplicon pyrosequencing. Reactions contained $2.5 \mu \mathrm{~L}$ template DNA, $5 \mu \mathrm{~L} 2 x$ Fast SYBR ${ }^{\circledR}$ Green Master Mix (Applied Biosystems, Foster City, CA, USA), 0.3μ l forward and reverse primers ($3.3 \mu \mathrm{M}$ each) and $1.9 \mu \mathrm{~L}$ nuclease-free $\mathrm{H}_{2} \mathrm{O}$ in a total volume of $10 \mu \mathrm{~L}$. PCR efficiencies (E) were calculated as $\mathrm{E}=\left(10^{-1 / \text { slope }}-1\right) \times 100$. To assess a potential PCR-bias at the phylum level, DNA was extracted from 15 pure cultures including 5 basidiomycetes (Lentinula edodes (MUCL 44827), Agrocybe praecox (MUCL 46727), Coniophora marmorata (MUCL 39471), Suillus luteus (UH-Slu-LM8-n1) and Antrodia vaillantii (MUCL 54533)), 5 ascomycetes (Cladosporium cladosporioides (MUCL 53652),

Chapter 3

Cryptosporiopsis radicicola (MUCL 53485), Monilinia laxa (MUCL 30841), Arthroderma otae (MUCL 39756) and Galactomyces geotrichum (MUCL 52377)), 2 glomeromycetes (Rhizophagus clareus (MUCL 46238) and Rhizophagus sp. (MUCL 41833)) and 3 zygomycetes (Mortierella verticillata (MUCL 9658), Absidia corymbifera (MUCL 38907) and Mucor hiemalis (MUCL 15439)). DNA was extracted from cultures using the DNeasy Plant Mini Kit according to the manufacturer's instructions (Qiagen, Venlo, Netherlands). DNA concentrations extracted from pure cultures used for qPCR ranged from $5 \mathrm{ng} \mu^{-1}$ to $20 \mathrm{ng} \mu^{-1}$. PCR bias at the phylum level was tested according to the qPCR protocol described above.

In silico evaluation of primer pairs

To evaluate the primer-to-target mismatches in silico, primers were tested with PrimerProspector 1.0.1 (Walters et al., 2011) against sequences downloaded from NCBI. Three sets of sequences were downloaded from NCBI containing only full-length fungal $5.8 \mathrm{~S}, 18 \mathrm{~S}$ and 28 S sequences. Duplicate sequences were removed using Mothur 1.31.2. ITS1F was tested against 3,748 18S rDNA sequences. ITS2, ITS3 and ITS86F were tested against 4,421 5.8S rDNA sequences. ITS4 was tested against 4,270 28 S rDNA sequences. For comparison, also all primers described by Ihrmark et al. (2012) and Toju et al. (2012) were tested. All tests were performed as described by Walters et al. (2011) using standard settings. Primer scores were calculated based on the following formula: weighted score $=$ non-3' mismatches $\times 0.40+3^{\prime}$ mismatches $\times 1.00+$ non-3' gaps $\times 1.00+3^{\prime}$ gaps x 3.00. An additional penalty score of 3.00 was assigned if the final 3^{\prime} base of a primer had a mismatch with its target sequence (Walters et al., 2011).

Statistical analysis

Statistical analyses were conducted in R 2.13.0 (The R Foundation for Statistical Computing, Vienna, Austria). Normal distributions of the residuals of models were checked with the Shapiro-Wilk test, while homoscedasticity of variances was analysed using either Bartlett's or the Fligner-Killeen test. Depending on the distribution of the estimated parameters, either ANOVA or the Kruskal-Wallis Rank Sum Test was used to check for significant differences in variances of parameters. Two-by-two comparisons were conducted using either Tukey Honest Significant Differences tests or Pairwise Wilcoxon Rank Sum Tests. Poisson corrections were implemented for abundance data. Distributions of ratios were compared with Pearson's Chi-squared tests. Non-metric multi-dimensional scaling (NMDS) was performed using the Vegan 2.0-8 package in R .

Results

Parametrical analysis of 454 amplicon pyrosequencing data

For the three tested primer pairs, GS-FLX sequencing of the amplicon libraries generated a total of 151,650 reads. For a read to be successfully assigned to a sample, we required that both the forward and the reverse MIDs and primers were identified in a read with no more than one erroneous base in the MIDs and no more than two erroneous bases in the primer sequences. Based on the primer and MID sequences, 65,133 reads were assigned to their respective sample and 86,517 reads remained unassigned. The average length of reads assigned to either ITS1F/ITS2, ITS3/ITS4 or ITS86F/ITS4 prior to quality checking and trimming was 314, 331 and 369 bp respectively (excluding primers). The average read length of the unassigned reads was 116 bp (including primers, data not shown). Rarefaction curves were constructed showing the rarefied number of OTUs defined at a 97% sequence similarity threshold relative to the number of samples (Fig. 3.1). These results indicate that, on average, a higher OTU richness and a better coverage of the fungal community can be expected

Chapter 3

for the ITS86F/ITS4 and ITS3/ITS4 primer pairs. The lowest OTU richness and coverage was predicted for the ITS1F/ITS2 primer pair. As most rarefaction curves tended towards saturation, the sequencing depth was assumed to be sufficient to retrieve the most abundant fungal OTUs in analysed soil samples that are detectable by the respective primers and 454 amplicon pyrosequencing.

Figure 3.1 Rarefaction curves for each of the three primer pairs used in this study: ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4. In these graphs, the number of samples is plotted against the rarefied number of operational taxonomic units (OTUs) that were created based on a 97% sequence similarity cut-off value

To compare primer pair performance in the 454 amplicon pyrosequencing experiment, averages of the number of reads were calculated across replicates (four replicates per sample) and samples (seven samples) for each primer pair. The average number of reads per sample obtained by ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4 after quality trimming differed significantly ($\mathrm{p}<0.01$) and primer pairs yielded on average (\pm standard error) $356(\pm 26), 523(\pm 43)$ and $797(\pm 34)$ high quality reads per sample, respectively (Fig. 3.2A). The average number of OTUs found for
each primer pair at a 97% sequence similarity threshold (observed OTU richness) also differed significantly ($p<0.01$). The highest OTU richness was observed for ITS86F/ITS4 with an average of 62 OTUs per sample (min $=42$; max $=106$). ITS1F/ITS2 yielded on average 32 OTUs per sample ($\min =15$; max $=60$), whereas ITS3/ITS4 resulted in an average of 50 OTUs per sample ($\min =27$; $\max =76$) (Fig. 3.2B). Diversity was estimated with the inverse Simpson index. The inverse Simpson index differed significantly between ITS86F/ITS4 and ITS1F/ITS2, whereas with ITS1F/ITS2 a lower diversity was found than with ITS86F/ITS4 ($p=0.04$). However, no significant differences were found between ITS3/ITS4 and ITS1F/ITS2 or between ITS3/ITS4 and ITS86F/ITS4 ($p=0.31$ and $p=$ 0.53 , respectively) (Fig. 3.2C). The average Good's coverage per sample obtained for ITS1F/ITS2 was 96.8\% (min = 93.8\%, max = 98.9\%), whereas the average Good's coverage obtained for ITS3/ITS4 and ITS86F/ITS4 was 96.5\% ($\mathrm{min}=93.2 \%, \max =99.0 \%$) and 97.5\% (min = $95.3 \%, \max =99.6 \%$) respectively (Fig. 3.2D). Significant differences in Good's coverage were found between ITS3/ITS4 and ITS86F/ITS4 ($\mathrm{p}<$ 0.01). However, no significant differences were found between ITS1F/ITS2 and ITS3/ITS4 ($p=0.81$) or between ITS1F/ITS2 and ITS86F/ITS4 ($p=$ $0.31)$.

Community similarity compared between primer pairs

To compare the fungal community characterized with ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4 at the species and phylum level, a representative sequence of each OTU (as selected by Mothur) was blasted against the UNITE and INSD databases using the massBLASTer tool in PlutoF v2.0 (Abarenkov et al., 2010). Relative frequency distributions of the obtained species-level OTUs and phyla were analysed with chi-squared tests for the different primer pairs, based on the average abundances across replicates (four) and samples (seven).

Chapter 3

Figure 3.2 Parametrical comparison between the three primer pairs used in this study (ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4). A. Average number of sequences obtained after quality trimming. B. Average number of operational taxonomic units (OTUs), based on a 97% sequence similarity cut-off value. C. Average inverse Simpson index. D. Average Good's coverage. Averages were calculated across replicates (four) and samples (seven) for each primer pair. Differences at the 95\% significance level are indicated with an asterisk "*".

Representative reads of OTUs that could not be coupled to an accession of either the UNITE or INSD databases were considered as unidentified OTUs (indicated as not applicable "NA" in Appendix A). A total of 51 unidentified OTUs were found of which 50 were found with ITS86F/ITS4 and 1 with ITS3/ITS4. BLAST scores and corresponding E-values for all OTUs can be found in Appendix A. At the species level, differences were observed between the fungal communities identified by the three primer pairs studied ($p<0.01$). To give an idea of the fungal communities identified by each primer pair, pie charts displaying the top ten most abundant OTUs were constructed covering $68 \%, 62 \%$ and 64% of all sequences obtained with ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4, respectively (Fig. 3.3). Using the ITS1F/ITS2 primer pair (targeting the ITS1 region) a total of 183 OTUs across all samples were observed, with the most abundant OTUs corresponding to Sistotrema sp. Fr. (27\%), Rhizopogon luteolus Fr. (9\%), Wilcoxina mikolae (Chin S. Yang \& H.E. Wilcox) Chin S. Yang \& Korf (8\%), Cladophialophora minutissima M.L. Davey \& Currah (7\%), and Capronia sp. Sacc. (5\%) (Fig. 3.3A). The primer pairs ITS3/ITS4 and ITS86F/ITS4 (targeting the ITS2 region) identified 333 and 346 OTUs across all samples, respectively. In line with ITS1F/ITS2, the fungal communities identified with ITS3/ITS4 and ITS86F/ITS4 were also dominated by Sistotrema sp. (21-19\%), but the subdominant OTUs were not exactly the same (Fig. $3.3 \mathrm{~B}, \mathrm{C})$. Interesting to note is that the soil samples are dominated by ectomycorrhizal and ericoid mycorrhizal fungi and mycobionts from lichens. Based on field observations, we assumed that the fungal community in the pioneer forest that was sampled in this study would be relatively species poor compared to old forest soils (Buée et al., 2009) and that biotrophic fungi would dominate over saprotrophic ones. These assumptions were confirmed by all three primer pairs (Fig. 3.3). At the phylum level, differences were found between all primer pairs tested ($p<0.01$ for all comparisons) (Fig. 3.4). Nevertheless, the majority of OTUs identified by all tested primer pairs belonged to the phyla Ascomycota (56\% to 71\%), followed by Basidiomycota (14\% to 17\%). A minority of OTUs identified, belonged to the Zygomycota (3% to 4\%), Chytridiomycota (3% to 4%) and Glomeromycota (0\% to 3\%) (Fig. 3.4).

Chapter 3

Figure 3.3 Relative abundance for the top ten most abundant species-level operational taxonomic units (OTUs), based on a 97% sequence similarity cut-off value, obtained for each of the three primer pairs studied (ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4). Reads that did not result in a BLAST hit against the UNITE or INSD databases were indicated as "not applicable (NA)". Ecological functions of OTUs are indicated between brackets behind the OTU identities (ECM: ectomycorrhizal, ERM: ericoid mycorrhizal, SAP: saprotrophic, LICH: lichenized, END: endophytic). OTUs not belonging to the top ten most abundant OTUs were pooled in the category "Remaining taxa". OTUs that appear exclusively in a single chart are indicated in grayscale. OTUs that can be found in multiple pie charts are indicated in colour. OTU abundance scores were averaged across replicates (four) and samples (seven). A. ITS1F/ITS2. B. ITS3/ITS4. C. ITS86F/ITS4.

Figure 3.4 Relative number of OTUs belonging to different fungal phyla. OTUs that could not be assigned to a phylum were grouped together under "not applicable (NA)". Averages were calculated across replicates (four) and samples (seven). A. ITS1F/ITS2. B. ITS3/ITS4. C. ITS86F/ITS4.

Repeatability of metabarcoding results

The repeatability of the molecular identification of fungal OTUs from environmental samples was compared between the three tested primer pairs to assess their experimental robustness. Replicates of samples were compared for each primer pair using NMDS with Bray-Curtis dissimilarities. In this analysis, samples with a similar OTU-composition will have smaller

Chapter 3

Bray-Curtis distances than samples with more dissimilar OTU compositions. In general, for all three primer pairs, replicates from the same sample grouped closely together (especially for ITS3/ITS4) (Fig. S3.1). Hence, the results of molecular identification of fungal OTUs are fairly consistent between replicated samples using the current experimental set-up. In order to test the possibility that some OTUs are missed in metabarcoding analyses based on the amplification and sequencing of target DNA from a single DNA extraction, results from the four replicated DNA extractions of the same sample were compared (Fig. S3.2). This assessment was performed for the four most abundant OTUs, representing Sistotrema sp., Rhizopogon luteolus, Cladophialophora minutissima and Wilcoxina mikolae. From Fig. S3.2, it is clear that in some replicated extractions of the same sample abundant OTUs can be missed. These results indicate that PCR amplification and sequencing can best be performed on multiple DNA extractions from the same environmental sample that are pooled prior to PCR in order to obtain an accurate picture of a fungal community.

Efficiency of primer pairs studied

To test the amplification efficiency of the three primer pairs in a heterogeneous pool of DNA (environmental sample) a qPCR experiment was conducted. More specifically, a 2-fold dilution series, ranging from 1:1 to 1:64 dilutions of twelve randomly selected DNA samples were amplified with randomly selected ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4 primers with MIDs and 454 adaptors attached. For ITS1F/ITS2, exponential amplification was obtained between 24 and 32 PCR cycles for ten out of twelve samples (data not shown). For two samples no exponential amplification phase was obtained within 40 cycles with this primer pair. ITS3/ITS4 showed exponential amplification after 22 to 36 cycles for all twelve samples, whereas ITS86F/ITS4 already showed an exponential amplification phase after 20 to 31 cycles for all samples (data not shown). Average PCR efficiencies (\pm standard error) were calculated to be 76% (\pm

4\%) for ITS3/ITS4, 82\% ($\pm 5 \%$) for ITS1F/ITS2 and 97\% ($\pm 6 \%$) for ITS86F/ITS4 (Table 3.2).

Table 3.2 Average PCR amplification efficiencies obtained for twelve environmental DNA samples using quantitative real-time PCR

Primer pair	ITS1F_ITS2	ITS3_ITS4	ITS86F_ITS4
Average (\%)	82	76	97
Standard error (\%)	4	5	6
Minimum (\%)	64	67	78
Maximum (\%)	97	103	120

Phylum-level PCR bias

qPCR amplification efficiency did not significantly differ between primer pairs tested (ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4), nor between phyla (Ascomycota, Basidiomycota, Glomeromycota and Zygomycota) (Fig. 3.5). Two-way ANOVA resulted in $p=0.14$ for phylum and $p=0.59$ for primer pair. Primer pair - rDNA target combinations with poor PrimerProspector scores tended to have slightly lower PCR efficiencies, but these differences were not significant. Species used for this experiment and PCR efficiencies can be found in Table S3.4 and Table S3.5, respectively.

In silico evaluation of primers

In a final analysis, the primer-to-target mismatches of the three primer pairs used in this study were evaluated with PrimerProspector (Walters et al., 2011). PrimerProspector was used to calculate a score for each primer based on mismatches between primers and target DNA sequences. The closer the score of a primer is to 0 , the fewer mismatches were detected between primers and target sequences. The average scores (\pm standard error) for primers used in our study were: ITS1F $=4.55(\pm 0.05)$, ITS2 $=$ $0.70(\pm 0.03)$, ITS3 $=0.58(\pm 0.03)$, ITS4 $=3.96(\pm 0.04)$ and ITS86F $=$ 0.52 (± 0.02) (Table 3.3). Moreover, it was found that 44% of the tested sequences had a mismatch with the last base at the 3^{\prime} end of primer ITS1F. This particular mismatch between the last base at the 3^{\prime} end of a primer

Chapter 3

sequence and a target sequence occurred with only $9 \%, 4 \%, 16 \%$ and 3% of the tested sequences for ITS2, ITS3, ITS4 and ITS86F respectively (Table 3.3). For comparison, also the primers suggested by Ihrmark et al. (2012) and Toju et al. (2012) were tested with PrimerProspector. Also in this analysis, ITS86F was found to have the best primer score of all tested primers (Table S3.5).

Figure 3.5 Phylum-level PCR bias assessed using qPCR. Average PCR efficiencies were calculated for each phylum using 5 basidiomycetes, 5 ascomycetes, 2 glomeromycetes and 3 zygomycetes. Error bars represent standard errors. No significant differences between primer pairs and phyla were found at the 95% confidence level.

Table 3.3 Results of in silico testing of primers using PrimerProspector 1.0.1 (Walters et al., 2011).

Primer ${ }^{(1)}$	Number of sequences tested	$3 '$ end base mismatch (\%)	Average score \pm SE
ITS1F (F)	3748	44%	4.6 ± 0.05
ITS2 (R)	4421	9%	0.7 ± 0.03
ITS3 (F)	4421	4%	0.6 ± 0.03
ITS4 (R)	4270	16%	4.0 ± 0.04
ITS86F (F)	4421	3%	0.0 ± 0.00

Average PrimerProspector scores are shown \pm standard errors (SE).
${ }^{(1)}$ Primers are indicated as forward (F) or reverse (R).

DIscussion

Amplification and sequencing of short, standard DNA regions (metabarcoding) is becoming an increasingly popular tool for the characterization of fungal communities. Nevertheless, in most fungal metabarcoding studies, primers are generally used without being tested for their efficiency to amplify heterogeneous DNA pools, which may affect our view on studied fungal communities. Whereas the most commonly used primers in fungal metabarcoding studies were designed in the 90s for species identification of a limited number of focal species, environmental metabarcoding studies generally aim to characterize diverse communities in environmental samples. Hence, primers used for fungal metabarcoding should be able to amplify a broad range of target DNA sequences in a sample that is also rich in non-target DNA and that may contain environmental contaminants (Kennedy and Oswald, 2011). Even though recent efforts have resulted in new primers that could amplify a large proportion of target fungal DNA sequences (Ihrmark et al., 2012; Toju et al., 2012), an experimental evaluation of PCR efficiency and primer performance should be performed on real environmental samples.

Initially, also ITS1F/ITS86R was included in our study design, but this primer pair was discarded from the study as no amplification was obtained in exploratory PCR and gel-electrophoresis tests. A plausible explanation for this failure can be found in the fact that the reverse primer (ITS86R) used and reported by Turenne et al. (1999) and Vancov and Keen (2009) contains an incorrect base at the 3^{\prime} end of the primer sequence. In order to be the perfect reverse complement of ITS86F, the sequence of ITS86R should be 5'-TTCAAAGATTCGATGATTCAC-3', and not 5'-TTCAAAGATTCGATGATTCAG-3' as reported. GS-FLX sequencing of the amplicon pool resulted in 151,650 raw reads prior to quality trimming. Of these reads, 65,133 were assigned to their respective sample and 86,517 reads remained unassigned. The unassigned reads were investigated manually revealing that the majority were primer sequences probably

Chapter 3

resulting from primer dimers in our sequenced amplicon pool. Most likely, these primer dimers were not sufficiently removed during post-PCR cleanup steps.

Rarefaction curves were constructed for each primer pair (Fig. 3.1). These rarefaction curves indicate that the highest rarefied OTU richness and best coverage of the fungal community can be expected for the ITS86F/ITS4 and ITS3/ITS4 primer pairs. The average observed number of reads and the average observed number of OTUs (derived from these reads at a 97% sequence identity cut-off) indeed were highest for the ITS86F/ITS4 primer pair (797 reads and 62 OTUs on average per sample) and the ITS3/ITS4 primer pair (523 reads, 50 OTUs) and were much lower for the ITS1F/ITS2 primer pair (356 reads and 32 OTUs) (Fig. 3.2). The average observed diversity per sample, estimated by the inverse Simpson index, did not differ between ITS3/ITS4 and ITS86F/ITS4, but was significantly lower for ITS1F/ITS2 (Fig. 3.2). Overall, the low number of OTUs per sample found in the current study, are in sharp contrast with the more than 1000 OTUs per gram of forest soil found by Buée et al. (2009) based on amplification with the ITS1F/ITS2 primer pair. This difference in richness may be explained by the fact that pioneer forests probably contain relatively fewer fungal species compared to old forest soils (Buée et al., 2009). Additionally, overestimation or underestimation of species richness can also originate from data handling and analysis (Bazzicalupo et al., 2013). Based on the in silico performance and high Good's coverage calculated for ITS86F, it can be expected that the 62 OTUs found on average per sample by the ITS86F/ITS4 primer pair is close to the real species richness for the pioneer ecosystem growing on stabilised sand dunes which were studied here. The 50 OTUs per sample found by ITS3/ITS4 and the 32 OTUs found by ITS1F/ITS2, are probably underestimations due to a more narrow primer spectrum and/or lower PCR efficiencies. The fact that a high Good's coverage was found for the ITS1F/ITS2 primer pair despite a low observed OTU richness indicates that this primer pair is unable to multiply the ITS1 region of a large number of fungi. This is also supported by the in silico
analysis. In this analysis, ITS1F was shown to have the poorest primer score of 4.6 and its sequence was shown to have a mismatch at the final base at the 3^{\prime} end of the primer (having a detrimental effect on amplification efficiency (Lefever et al., 2013)) with no less than 44% of the tested fungal sequences (Table 3.3). The large number of mismatches between the ITS1F primer and its target sequences was previously also addressed by Bellemain et al. (2010) and Ihrmark et al. (2012). In comparison, the ITS4 primer was given a score of 4.0 and was found to have a primer-to-target mismatch at the 3^{\prime} end of the primer with only 16% of the tested sequences. For the ITS2, ITS3 and ITS86F primers a score of $0.7,0.6$ and 0.0 was obtained respectively (Table 3.3). These primers were shown to have a mismatch at the 3^{\prime} end of the primer with only $9 \%, 4 \%$ and 4% of the tested sequences, respectively (Table 3.3), illustrating their broad amplification potential. Furthermore, our in silico analyses indicated that the primers suggested by Ihrmark et al. (2012) and Toju et al. (2012) had more mismatches to their respective target sequences than ITS86F.

To test how these parametrical differences would translate to amplification efficiency during PCR amplification preceding emulsion PCR (emPCR) and pyrosequencing, a first qPCR experiment was conducted. To this end, DNA was extracted from 12 soil samples and amplified with the same primer pairs used in the pyrosequencing experiment. The calculated PCR efficiencies were 82% for ITS1F/ITS2, 76% for ITS3/ITS4 and 97% for ITS86F/ITS4 (Table 3.2). From these PCR efficiencies, it is clear that ITS86F/ITS4 amplified its target ITS regions with greater efficiency than the other two primer pairs. Contrary to our expectations from the in silico analysis, ITS3/ITS4 obtained a lower efficiency than the ITS1F/ITS2 primer pair. This could be explained by the fact that also other factors determine the amplification efficiency of PCR reactions beside binding and dissociation of primers to their target DNA sequences. Such factors include the temperature-dependent properties of target DNA sequences and primer sequences in the PCR mixture, the temperature-dependent behaviour of

Chapter 3

the used polymerase enzyme mixtures, the use of ROX as an endogenous reference dye, etc. (Kennedy and Oswald, 2011). Alternatively, the range of target sequences that ITS1F and ITS2 may bind to during PCR amplification is smaller, but the sequences that do get bound by these primers are amplified efficiently.

To see whether differences in amplification efficiency between primer pairs would also be reflected in the identities of the OTUs identified in the 454 amplicon pyrosequencing experiment, a representative read for each OTU was blasted against the UNITE and INSD databases and the BLAST hits with the highest score and a species or genus name were used to reconstruct the fungal community for each primer pair (Fig. 3.3). According to all three primer pairs, the soil fungal community was dominated by an OTU corresponding to Sistotrema sp. Additionally, all primer sets produced a number of OTUs that were commonly identified by all primer pairs (Fig. 3.3). The community identified by the three tested primer pairs still differed significantly, however. These differences confirm the finding that targeting either the ITS1 or the ITS2 region may result in different pictures of the fungal communities at the OTU level, as was previously assessed by both in silico (Nilsson et al., 2009) and sequencing studies (Bazzicalupo et al., 2013; Monard et al., 2013). In addition, it was found that primers targeting the same ITS region do not necessarily result in the same OTU composition (Fig. 3.3), highlighting the importance of primer choice in a given study. However, it needs to be noted that in comparative studies, it has been shown that an ecological signal can be much stronger than the differences in community composition originating from primer choice (Monard et al., 2013).

At the phylum level, significant differences between ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4 were found as well (Fig. 3.4). Although in varying proportions, all three primer pairs identified more OTUs belonging to ascomycetes ($70 \%, 71 \%$ and 56% respectively) than basidiomycetes ($17 \%, 14 \%$ and 15%), but also Chytridiomycota (3\%, 4\%, 4\%), Glomeromycota (0\%, 3\% and 2\%) and Zygomycota (3\%, 3\% and 4\%)
were detected (Fig. 3.4). This might suggest that more ascomycetes were present in the soil at the time of investigation. However, amplification of DNA from ascomycetes may be favoured relative to amplification of DNA from basidiomycetes as the ITS sequences for ascomycetes are generally shorter than basidiomycete ITS sequences (this is especially true for the ITS2 region (Porter and Golding, 2011)) and amplification of shorter DNA fragments is favoured during PCR. Whereas in previous in silico analyses indeed a phylum-level bias was expected for some of the primers used (Bellemain et al., 2010), no such bias was found in the current study based on experimental data derived from qPCR of DNA extracted from 15 fungal species belonging to the major fungal phyla (Fig. 3.5).

Whatever the aim of a metabarcoding study, results obtained from metabarcoding need to be reliable. To assess the repeatability of the fungal metabarcoding experiment, we analysed four replicate DNA extractions of seven soil samples separately. The analysis of all replicates of samples revealed that replicated analysis of the same sample with a specific primer pair generally results in similar fungal community compositions (Fig. S3.1). This is especially true for the ITS3/ITS4 and ITS86F/ITS4 primer pairs as their replicated samples clustered nicely together. However, this is less true for the ITS1F/ITS2 primer pair, where replicates of samples tend to have greater projected Bray-Curtis distances (Fig. S3.1). Moreover, we have shown that it is possible to miss certain OTUs, even abundant ones, when one sequences amplicon pools that are constructed from a single DNA extraction (Fig. S3.2). It is therefore advisable to extract DNA from environmental samples in multiple replicates, pool the eluates and perform PCR and sequencing on the DNA from the mixed eluate. This observation is in line with other studies performed previously, demonstrating that at least three replicated extractions are required to obtain a DNA pool that is representative for the microbial community present in a given soil sample (Feinstein et al., 2009; Lindahl et al., 2013).
Apart from the technical issues that were addressed in this study, our data also provided a glimpse at the fungal community present in the studied

Chapter 3

site. Based on field observations of above-ground basidiocarps, we assumed that pioneer pine forests in the Campine region in Belgium are dominated by biotrophic species (mostly lichens, ectomycorrhizal and ericoid mycorrhizal fungi) over saprotrophic species. All three primer pairs confirmed this assumption, but they found different fungal OTUs to be dominant. According to the results obtained with ITS1F/ITS2, the fungal community in the studied site was dominated by OTUs corresponding to Sistotrema sp. (27\%), followed by Rhizopogon luteolus (9\%), Wilcoxina mikolae (8\%) and Cladophialophora minutissima (7\%) (Fig. 3.3) (Davey and Currah, 2007). These OTUs were also found to be very important members of the studied community according to ITS3/ITS4 and ITS86F/ITS4 as they appeared in the top ten of the most abundant OTUs found by both primer pairs, although in varying proportions (Fig. 3.3). Sistotrema sp., likely an important member of our studied ecosystem, was recently shown to be polyphyletic, containing both ectomycorrhizal and saprotrophic taxa (Münzenberger et al., 2012). The reads that were found in the current study correspond to Sistotrema strains that were sampled from ectomycorrhizal root tips of Pinus contorta Dougl. growing on coastal sand dunes (Ashkannejhad and Horton, 2006). This genus provides a fine example of the power of molecular tools, such as DNA metabarcoding, to draw attention to ecologically important, cryptic fungal species. Based on field observations alone (basidiocarps observations and root tip morphotying), we never expected this genus to be so abundant in this pioneer ecosystem.

Concluding remarks

In many fungal metabarcoding studies universal primers from previous phylogenetic or ecological studies are used without first performing an evaluation of their spectrum and performance for high-throughput sequencing, potentially resulting in a biased description of fungal communities. Whereas in silico PCR analyses on sequences retrieved from sequence databases may suggest promising primers (Ihrmark et al., 2012;

Toju et al., 2012), we showed that an experimental set-up to evaluate their usefulness in practice provides complementary information on the actual performance of the primers for high-throughput sequencing of environmental samples. Indeed, here we demonstrated that the choice of primers has a significant impact on how fungal communities are translated into OTU communities and subsequent data analysis. As such, before setting up large scale sequencing experiments, we recommend to first test a number of promising primer pairs, e.g. selected with in silico analyses, under real PCR conditions for a subset of the samples under investigation. In case an in-depth characterization of a fungal community is desired, the use of more than one primer pair is advisable. We also showed that quantitative real-time PCR, evaluating the efficiency of selected primer pairs, may help in selecting the most efficient primer pairs. After all, using primer pairs that are not very efficient in amplifying DNA from an environmental sample will undoubtedly result in a low number of reads, and consequently in biased community descriptions.

In this study, the primer pair ITS86F/ITS4, which amplifies the ITS2 region of the fungal rRNA operon, was shown to be the most suitable primer pair for the characterization of fungal communities with metabarcoding. This primer pair not only resulted in superior amplification efficiency leading to a significantly higher number of reads, but also yielded a high number of OTUs belonging to different phyla. In addition, this primer pair resulted in a robust amplification reaction for the broadest range of samples and across replicated extractions.

Acknowledgements

The authors would like to thank Remans T . for assisting in the qPCR experiments and Waud M. for performing the pyrosequencing run.

Chapter 3

References

Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M et al. (2010). PlutoF - a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics 6: 189-196.

Amend AS, Seifert KA, Bruns TD (2010). Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology 19: 5555-5565.

Ashkannejhad S, Horton TR (2006). Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytologist 169: 345-354.

Bazzicalupo AL, Bálint M, Schmitt I (2013). Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecology 6: 102-109.

Begerow D, Nilsson H, Unterseher M, Maier W (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology 87: 99-108.

Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology 10: 1-9.

Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013). ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources 13: 218-224.

Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009). 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist 184: 449-456.

Carlsen T, Aas AB, Lindner D, Vrålstad T, Schumacher T, Kauserud H (2012). Don't make a mista(g)ke: is tag switching an overlooked source of error in amplicon pyrosequencing studies? Fungal Ecology 5: 747-749.

Davey ML, Currah RS (2007). A new species of Cladophialophora (hyphomycetes) from boreal and montane bryophytes. Mycological Research 111: 106-116.

Egger KN (1995). Molecular analysis of ectomycorrhizal fungal communities. Canadian Journal of Botany 73: 1415-1415.

Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P (2010). Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME Journal 4: 642647.

Feinstein LM, Sul WJ, Blackwood CB (2009). Assessment of bias associated with incomplete extraction of microbial DNA from soil. Applied and Environmental Microbiology 75: 5428-5433.

Gardes M, Bruns TD (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.

Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010). Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathogens 6: e1000713.

Chapter 3

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D et al. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research 21: 494-504.

Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society BBiological Sciences 270: 313-321.

Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson HR (2011). Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biology Reviews 25: 38-47.

Hugenholtz P, Pace NR (1996). Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends in Biotechnology 14: 190-197.

Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenk J, Strid Y, Stenlid J et al. (2012). New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology 82: 666-677.

Jumpponen A (2007). Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data. Microbiology Ecology 53: 233-246.

Jumpponen A, Jones KL (2009). Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytologist 184: 438-448.

Jumpponen A, Jones KL, Mattox D, Yaege C (2010). Massively parallel 454sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology 19: 41-53.

Justé A, Thomma BPHJ, Lievens B (2008). Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiology 25: 745-761.

Kennedy S, Oswald N (2011). PCR troubleshooting and optimization: the essential guide. Caister Academic Press, Norwich.

Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Hoiland K et al. (2005). UNITE: a database providing webbased methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166: 1063-1068.

Kosch TA, Summers K (2013). Techniques for minimizing the effects of PCR inhibitors in the chytridiomycosis assay. Molecular Ecology Resources 13: 230-236.

Lefever S, Pattyn F, Hellemans J, Vandesompele J (2013). Singlenucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clinical Chemistry 59: 1470-1480.

Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjoller R, Kõljalg U, Pennanen T et al. (2013). Fungal community analysis by highthroughput sequencing of amplified markers - a user's guide. New Phytologist 199: 288-299.

Chapter 3

Margulies M, Egholm M, Altman WE, Attyia S, Bader JS, Bemben LA, Berka J, Braverman MS et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380.

Martin KJ, Rygiewicz PT (2005). Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiology 5: 28.

Monard C, Gantner S, Stenlid J (2013). Utilizing ITS1 and ITS2 to study environmental fungal diversity using pyrosequencing. FEMS Microbiology Ecology 84: 165-175.

Münzenberger B, Schneider B, Nilsson RH, Bubner B, Larsson KH, Huttl RF (2012). Morphology, anatomy, and molecular studies of the ectomycorrhiza formed axenically by the fungus Sistotrema sp . (Basidiomycota). Mycological Progress 11: 817-826.

Nakamura Y, Cochrane G, Karsch-Mizrachi I (2013) The international nucleotide sequence database collaboration. Nucleic Acids Research 41: D21-D24.

Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters 296: 97101.

Polz MF, Cavanaugh CM (1998). Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology 64: 37243730.

Porter TM, Golding GB (2011). Are similarity- or phylogeny-based methods more appropriate for classifying internal transcribed spacer (ITS) metagenomic amplicons? New Phytologist 192: 775-782.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541.

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241-6246.

Seifert KA (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources 9: 83-89.

Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006). Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences of the United States of America 103: 12115-12120.

Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984). Analysis of hydrothermal vent-associated symbionts by ribosomal-RNA sequences. Science 224: 409-411.

Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 8: 2045-2050.

Chapter 3

Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E et al. (2010). 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist 188: 291-301.

Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7: e40863.

Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM (1999). Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. Journal of Clinical Microbiology 37: 1846-1851.

Vancov T, Keen B (2009). Amplification of soil fungal community DNA using the ITS86F and ITS4 primers. FEMS Microbiology Letters 296: 91-96.

Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R (2011). PrimerProspector: de novo design and taxonomic analysis of PCR primers. Bioinformatics 27: 1159-1161.

White TJ, Bruns TD, Lee SB, Taylor JW (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. Academic Press, San Diego. pp. 315-322.

Supporting Information

Supporting Information Table S3.1 Contact addresses for access to the study site.

Lt. Col. Van Reckem
Military Domain Camp Beverloo
Kwartier 4 RCI
Koningin Louisa-Marialaan 3
BE - 3970 Leopoldsburg

Lt. Col. Fuchs
Comm. E. Gorrens
Military Domain Camp Beverloo
Bureel Planning
Koninklijk Park
BE - 3970 Leopoldsburg
Phone: +32 (0) 11395335
Phone: +32 (0) 11395336
E-mail: eddy.gorrens@mil.be

Chapter 3

Supporting Information Table S3.2 Primer and study design used in the 454 amplicon pyrosequencing experiment. Samples ($n=7$), replicates of samples ($n=$ 4) and used primers are indicated. Primers used for pyrosequencing are displayed as their respective components (454 adapter, multiplex identifier (MID) and fungal ITS primers).

Sa. (1)	Re. (2)	Am. (3)	Forward primer			Reverse primer		
			454 adapter (4)	MID (5)	Fungal ITS primer (6)	454 adapter (4)	MID (5)	Fungal ITS primer (6)
1	1	1	A	12	ITS1F	B	8	ITS2
		2	A	12	ITS3	B	8	ITS4
		3	A	12	ITS86F	B	8	ITS4
	2	4	A	9	ITS1F	B	12	ITS2
		5	A	9	ITS3	B	12	ITS4
		6	A	9	ITS86F	B	12	ITS4
	3	7	A	8	ITS1F	B	7	ITS2
		8	A	8	ITS3	B	7	ITS4
		9	A	8	ITS86F	B	7	ITS4
	4	10	A	8	ITS1F	B	8	ITS2
		11	A	8	ITS3	B	8	ITS4
		12	A	8	ITS86F	B	8	ITS4
2	1	13	A	12	ITS1F	B	9	ITS2
		14	A	12	ITS3	B	9	ITS4
		15	A	12	ITS86F	B	9	ITS4
	2	16	A	9	ITS1F	B	7	ITS2
		17	A	9	ITS3	B	7	ITS4
		18	A	9	ITS86F	B	7	ITS4
	3	19	A	8	ITS1F	B	9	ITS2
		20	A	8	ITS3	B	9	ITS4
		21	A	8	ITS86F	B	9	ITS4
	4	22	A	9	ITS1F	B	8	ITS2
		23	A	9	ITS3	B	8	ITS4
		24	A	9	ITS86F	B	8	ITS4
3	1	25	A	9	ITS1F	B	9	ITS2
		26	A	9	ITS3	B	9	ITS4
		27	A	9	ITS86F	B	9	ITS4
	2	28	A	10	ITS1F	B	12	ITS2
		29	A	10	ITS3	B	12	ITS4
		30	A	10	ITS86F	B	12	ITS4
	3	31	A	10	ITS1F	B	7	ITS2
		32	A	10	ITS3	B	7	ITS4
		33	A	10	ITS86F	B	7	ITS4
	4	34	A	8	ITS1F	B	10	ITS2
		35	A	8	ITS3	B	10	ITS4
		36	A	8	ITS86F	B	10	ITS4

Chapter 3

Sequence name	Primer sequence ($5^{\prime}-3$ ')	Reference
A	CGTATCGCCTCCCTCGCGCCATC	
B	CTATGCGCCTTGCCAGCCCGCTC	
ITS1F	CTTGGTCATTTAGAGGAAGTAA	Gardes and Bruns, 1993
ITS2	GCTGCGTTCTTCATCGATGC	White et al., 1990
ITS3	GCATCGATGAAGAACGCAGC	White et al., 1990
ITS4	TCCTCCGCTTATTGATATGC	White et al., 1990
ITS86F	GTGAATCATCGAATCTTTGAA	Vancov and Keen, 2009
MID7	CGTGTCTCTA	
MID8	CTCGCGTGTC	
MID9	TAGTATCAGC	
MID10	TCTCTATGCG	
MID11	TGATACGTCT	
MID12	TACTGAGCTA	
${ }^{(1)}$ Sa.: sample		
${ }^{(2)}$ Am.: amplicon		
${ }^{(3)}$ Re.: replicate		
${ }^{(4)} \mathrm{A}$: 454 pyrosequencing adapter $\mathrm{A}, \mathrm{B}: 454$ pyrosequencing adapter B		
${ }^{(5)}$ MID: Multiplex identifier		
${ }^{(6)}$ ITS: Internal transcribed spacer		

Chapter 3

Genus/species	Strain	Family	Order	Phylum
Cladosporium cladosporioides	MUCL 53652	Cladosporiaceae	Capnodiales	Ascomycota
Cryptosporiopsis radicicola	MUCL 53485	Dermateaceae	Helotiales	Ascomycota
Monilinia laxa	MUCL 30841	Sclerotiniaceae	Helotiales	Ascomycota
Arthroderma otae	MUCL 39756	Arthrodermataceae	Onygenales	Ascomycota
Galactomyces geotrichum	MUCL 52377	Dipodascaceae	Saccharomycetales	Ascomycota
Lentinula edodes	MUCL 44827	Omphalotaceae	Agaricales	Basidiomycota
Agrocybe praecox	MUCL 46727	Strophariaceae	Agaricales	Basidiomycota
Coniophora marmorata	MUCL 39471	Coniophoraceae	Boletales	Basidiomycota
Suillus luteus	UH-Slu-Lm8-n1	Suillaceae	Boletales	Basidiomycota
Antrodia vaillantii	MUCL 54533	Fomitopsidaceae	Polyporales	Basidiomycota
Rhizophagus clareus	MUCL 46238	Glomeraceae	Glomerales	Glomeromycota
Rhizophagus sp.	MUCL 41833	Glomeraceae	Glomerales	Glomeromycota
Mortierella verticillata	MUCL 9658	Mortierellaceae	Mortierellales	Zygomycota
Absidia corymbifera	MUCL 38907	Cunninghamellaceae	Mucorales	Zygomycota
Mucor hiemalis	MUCL 15439	Mucoraceae	Mucorales	Zygomycota

Chapter 3
Supporting Information Table S3.4 PCR efficiencies determined with qPCR of all species and primer pair combinations used to assess phylum-level PCR bias in the current study.

Genus/species	Strain		PCR efficiency (\%)	
		ITS1F/ITS2	ITS3/ITS4	ITS86F/ITS4
Cladosporium cladosporioides	MUCL 53652	55	85	92
Cryptosporiopsis radicicola	MUCL 53485	58	56	131
Monilinia laxa	MUCL 30841	74	72	78
Arthroderma otae	MUCL 39756	36	80	91
Galactomyces geotrichum	MUCL 52377	106	87	39
Lentinula edodes	MUCL 44827	70	39	77
Agrocybe praecox	MUCL 46727	73	98	112
Coniophora marmorata	MUCL 39471	73	64	69
Suillus luteus	UH-Slu-Lm8-n1	85	88	94
Antrodia vaillantii	MUCL 54533	51	88	101
Rhizophagus clareus	MUCL 46238	117	126	85
Rhizophagus sp.	MUCL 41833	116	82	74
Mortierella verticillata	MUCL 9658	106	74	86
Absidia corymbifera	MUCL 38907	60	74	65
Mucor hiemalis	MUCL 15439	88	98	93
Average		78	81	86
Standard error		6	5	5

Supporting Information Table S3.5 PrimerProspector (Walters et al., 2011) results for all primers investigated in this study and investigated by Ihrmark et al. (2012) and Toju et al. (2012).

Primer binding site and orientation	Primer name	Primer sequence (5'-3')	$\begin{gathered} 3^{\prime} \\ \text { mismatch } \\ (\%) \end{gathered}$	Average Primer Prospector Score	Standard Error on Score	Reference
$\begin{gathered} 5.8 \mathrm{~S} \\ \text { (forward) } \end{gathered}$	ITS86F	GTGAATCATCGAATCTTTGAA	3	0.00	0.00	Turenne et al., 1999
	ITS3	GCATCGATGAAGAACGCAGC	4	0.58	0.03	White et al., 1990
	gITS9	GAACGCAGCRAAIIGYGA	4	0.41	0.02	Ihrmark et al., 2012
	fiTS7	GTGARTCATCGAATCTTTG	4	0.49	0.02	Ihrmark et al., 2012
	gITS7	GTGARTCATCGARTCTTTG	4	0.49	0.02	Ihrmark et al., 2012
	ITS3_KYO1	AHCGATGAAGAACRYAG	5	0.42	0.02	Toju et al., 2012
	ITS3_KYO2	GATGAAGAACGYAGYRAA	2	0.40	0.02	Toju et al., 2012
	58A1F	GCATCGATGAAGAACGC	5	0.51	0.02	Martin and Rygiewicz, 2005
	58A2F	ATCGATGAAGAACGCAG	6	0.52	0.02	Martin and Rygiewicz, 2005
$\begin{gathered} 5.8 \mathrm{~S} \\ \text { (reverse) } \end{gathered}$	ITS2	GCTGCGTTCTTCATCGATGC	9	0.70	0.03	White et al., 1990
	ITS10mun	GCTGCGTTCTTCATCGAT	3	0.48	0.02	Egger, 1995
	ITS2_KYO1	CTRYGTTCTTCATCGDT	2	0.37	0.02	Toju et al., 2012
	ITS2_KYO2	TTYRCTRCGTTCTTCATC	5	0.49	0.02	Toju et al., 2012
	58A2R	CTGCGTTCTTCATCGAT	3	0.47	0.02	Martin and Rygiewicz, 2005

Chapter 3

Primer binding site and orientation	Primer name	Primer sequence (5'-3')	3' mismatch (\%)	```Average Primer Prospector Score```	Standard Error on Score	Reference
$\begin{gathered} 28 \mathrm{~S} \\ \text { (reverse) } \end{gathered}$	ITS4B	CAGGAGACTTGTACACGGTCCAG	41	5.75	0.03	Gardes and Bruns, 1993
	ITS4_KYO1	TCCTCCGCTTWTTGWTWTGC	23	3.71	0.04	Toju et al., 2012
	ITS4_KYO2	RBTTTCTTTTCCTCCGCT	44	4.39	0.03	Toju et al., 2012
	ITS4_KYO3	CTBTTVCCKCTTCACTCG	42	3.47	0.04	Toju et al., 2012
	ITS4	TCCTCCGCTTATTGATATGC	16	3.96	0.04	White et al., 1990
	ITS8mun	CTTCACTCGCCGTTACTA	61	4.07	0.03	Egger, 1995
	NL6Amun	CAAGTGCTTCCCTTTCAACA	10	3.49	0.03	Egger, 1995
	NL6Bmun	CAAGCGTTTCCCTTTCAACA	9	3.32	0.03	Egger, 1995
	NLB3	GGATTCTCACCCTCTATGA	13	3.04	0.03	Martin and Rygiewicz, 2005
	NLB4	GGATTCTCACCCTCTATGAC	53	4.17	0.04	Martin and Rygiewicz, 2005
	NLC2	GAGCTGCATTCCCAAACAACTC	25	3.90	0.04	Martin and Rygiewicz, 2005

Chapter 3						
Primer binding site and orientation	Primer name	Primer sequence (5' - 3')	3' mismatch (\%)	```Average Primer Prospector Score```	Standard Error on Score	Reference
$\begin{gathered} 18 \mathrm{~S} \\ \text { (forward) } \end{gathered}$	ITS1	TCCGTAGGTGAACCTGCGG	12	2.29	0.04	White et al., 1990
	ITS1F	CTTGGTCATTTAGAGGAAGTAA	44	4.55	0.05	Gardes and Bruns, 1993
	ITS1F_KYO1	CTHGGTCATTTAGAGGAASTAA	36	4.11	0.05	Toju et al., 2012
	ITS1F_KYO2	TAGAGGAAGTAAAAGTCGTAA	15	3.43	0.04	Toju et al., 2012
	ITS5	GGAAGTAAAAGTCGTAACAAGG	8	2.96	0.04	White et al., 1990
	ITS9mun	TGTACACACCGCCCGTCG	27	3.34	0.04	Egger, 1995
	NSI1	GATTGAATGGCTTAGTGAGG	36	4.11	0.04	Martin and Rygiewicz, 2005
	NSA3	AAACTCTGTCGTGCTGGGGATA	40	4.66	0.04	Martin and Rygiewicz, 2005

Chapter 3

Supporting Information Figure s3.1 Non-metric multi-dimensional scaling (NMDS) comparing community dissimilarities (based on Bray-Curtis distances) between each replicate ($n=4$) of a sample ($n=7$). Replicates are indicated by the same icon colour within a graph. Replicates with more similar communities are plotted more closely together than more dissimilar replicates. A. ITS1F/ITS2. B. ITS3/ITS4. C. ITS86F/ITS4.

Chapter 3

Supporting Information Figure S3.2 Bar charts displaying the relative amount of reads that were assigned to a specific species-level operational taxonomic unit (OTU) by each primer pair used in this study (ITS1F/ITS2, ITS3/ITS4 and ITS86F/ITS4). Only the four most abundant species-level OTUs were displayed. The x-axes display all replicates and samples separately, where replicates appear as bars in the same colour and samples as different colours. The y-axes show the amount of reads found by a specific primer pair for one replicate of a sample relative (\%) to the total amount of reads found for that OTU across all primer pairs, replicates and samples. A. Sistotrema sp. B. Cladophialophora minutissima C. Wilcoxina mikolae and D. Rhizopogon luteolus.

Chapter 4: Impact of metal pollution on fungal diversity and community structures

Op De Beeck M, Lievens B, Busschaert P, Rineau F, Smits M, Vangronsveld J, Colpaert JV

Summary

The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metaltolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping belowground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. Iuteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed.

Keywords: mycorrhiza, metabarcoding, metal pollution, zinc, cadmium, fungal diversity

Chapter 4

Introduction

Due to pyrometallurgical industry, vast areas throughout the world have been polluted with high concentrations of heavy metals such as zinc (Zn), cadmium (Cd), lead (Pb) and copper (Cu). Increased concentrations of metals in soils are known to adversely affect biodiversity. At low metal exposure, many organisms can still survive through metabolic adjustments. However, when cellular metal homeostasis becomes disrupted, populations of more sensitive organisms are expected to collapse, leaving only most adapted species (Bradshaw and McNeilly, 1981; Al-Hiyaly et al., 1990; Mergeay et al., 2003). Ernst (1990) for example, observed a decrease in floristic diversity along transects towards metal smelters. Consequently, specialized plant communities occur on metal-polluted soils, mainly consisting of metal-resistant (plants with sufficient phenotypic plasticity to survive the harsh conditions) and metal-tolerant plant species (plants with genotypes adapted to high metal concentrations through micro-evolution). Whereas some plant species are endemic to metal-polluted sites, others can build stable populations on both polluted and non-polluted sites. Especially grasses are well-known to develop metal-tolerant ecotypes (Schat et al., 2000), but also a few dicotyledonous plant species have been found to flourish on metal-polluted soils (Alford et al., 2010). In sharp contrast to the vast body of literature that is available on (pseudo)metallophytes, little is known about the fungal species that occur in metalpolluted soils. Studying fungal diversity is crucial to understand belowground ecosystem functioning. Moreover, the presence or absence of key mycorrhizal fungi may have a strong impact on the establishment and fitness of plants on metal-polluted sites (Hildebrandt et al., 1999). Recent studies focusing on phytoremediation of metal-polluted soils have illustrated that mycorrhiza can protect their host plants from metal-toxicity and even enhance the efficiency of phytoremediation by enhancing plant growth, the mobilization of metal ions and the translocation of metals to plants (Leung et al., 2013). A better understanding of belowground fungal
community structures and the factors shaping fungal communities therefore provide information that will not only help us to understand fungal ecology in general, they will also help us to develop strategies to reduce or remediate the human impact on the living environment.
In the past, the impact of metal pollution on microbial communities has been studied (e.g. Chodak et al., 2013; Corneo et al., 2013). In general, shifts in microbial community compositions are found, but most studies do not reveal which species dominate belowground communities in metalpolluted soils and which species are unable to colonize highly polluted soil patches. To better understand ecosystem functioning and community dynamics in stressful environments, it is desirable to identify members of communities of interest at a species level. For example, basidiocarps of Zn - and Cd-tolerant strains of the ectomycorrhizal basidiomycete Suillus luteus (L.) Roussel, can be frequently found in pioneer conditions on Zn and Cd-polluted sites in the Campine region in Belgium (Colpaert et al., 2000; 2004; Krznaric et al., 2009). We therefore hypothesized that S. luteus would dominate the belowground fungal communities of metalpolluted sites in the Campine region. Furthermore, we also hypothesized that metal pollution would be a strong driving factor determining fungal communities thriving in these soils. To estimate the relative importance of metal pollution in shaping fungal communities, we also evaluated the effects of a number of environmental variables that are known to potentially affect fungal community composition and fungal diversity at the species level (Hartmann et al., 2012; Azarbad et al., 2013; Uroz et al., 2013).

Materials and methods

Study site and sampling

A study site located in a metal pollution gradient in the Campine region in the northern part of Belgium (Lommel-Maatheide: 51¹4' $10^{\prime \prime \prime} \mathrm{N} ; 5^{\circ} 15^{\prime}$ $50 " \mathrm{E}$) was selected for this study (Colpaert et al., 2004). The study site is part of a large area that has been contaminated by a zinc smelter that was

Chapter 4

active from 1904 until 1974. This particular zinc smelter has been shut down for almost forty years, but still hardly any vegetation had re-colonized the polluted area by the start of the current study. One year old nursery seedlings of Scots pine (Pinus sylvestris L.) were planted in 2008 in an area where topsoil was removed and where no trees have been present for the past few decades. The disturbance of the topsoil introduced great heterogeneity in the newly exposed soil and resulted in large differences in metal concentrations over short distances. Trees were planted in a grid with a distance of approximately two meters between each tree. Mosses, lichens, and a few grass species form the accompanying primary pioneer vegetation at this site. The soil at the study site is a dry sandy soil without a litter layer, poor in organic matter and slightly acidic. The average soil organic carbon content was $0.8 \% \pm 0.2 \%$ (SE) and the average pH was 4.8 ± 0.1 (SE). Zn concentrations in pine needles, one year after pine trees were planted, ranged from $176 \mu \mathrm{~g} \mathrm{~g}{ }^{-1}$ dry pine needle weight to $545 \mu \mathrm{~g} \mathrm{~g}$ ${ }^{1}$ with an average of $348 \mu \mathrm{~g} \mathrm{~g}{ }^{-1}$. Cd concentrations ranged from $0.1 \mu \mathrm{~g} \mathrm{~g}^{-1}$ to $7 \mu \mathrm{~g} \mathrm{~g}^{-1}$ dry pine needle weight with an average of $2 \mu \mathrm{~g} \mathrm{~g}{ }^{-1}$. In the Campine region, pines growing on non-polluted soils contain roughly $50 \mu \mathrm{~g}$ $\mathrm{g}^{-1} \mathrm{Zn}$ and $<0.1 \mu \mathrm{~g} \mathrm{~g}{ }^{-1} \mathrm{Cd}$ in their needles. An overview of all measured environmental variables can be found in Fig. 4.1 and Fig. S4.1. The region has an average annual rainfall of 800 mm per square meter and the average annual temperature is $10^{\circ} \mathrm{C}$ (Royal Meteorological Institute, Ukkel, Belgium). For the current study, twenty-two pine trees were randomly selected and marked in 2009 within an area of 40 m by 400 m . Soils were sampled in November 2009 and again in November 2011. More specifically, for fungal community analysis soil samples were collected with a soil corer with a diameter of 1 cm at a depth of 0 to 20 cm . For each tree, five samples were collected according to the cardinal directions at different distances from the stem. These included samples collected immediately next to the stem and at a distance of $25 \mathrm{~cm}, 50 \mathrm{~cm}, 75 \mathrm{~cm}$ and 100 cm from the stem bases (Fig. S4.2).

Figure 4.1 Comparison between sampling years (2009 and 2011) of environmental variables that correlated with observed fungal community compositions. Significant differences at the 95% confidence level are indicated with an asterisk (*). A. Soil Zn concentrations. B. Needle Zn concentrations. C. Soil Cd concentrations. D. Needle Cd concentrations. E. Soil organic matter (OM) content.

Chapter 4

Samples were pooled for each of these distances and mixed before they were sealed in plastic bags and brought to the laboratory, resulting in a total of five pooled samples for each tree with each sample representing a certain distance from the stem. Additionally, samples for physical and chemical soil characterization were collected next to each selected tree with a soil corer with a diameter of 10 cm at a depth of 0 to 20 cm . To estimate the metal concentrations that pine trees were exposed to in the field, pine needles were collected from the most recently emerged shoots. Following arrival in the lab, soil samples for fungal community analysis were homogenized, sieved with a 2 mm sieve to remove small rocks, roots, twigs and grasses, and stored at $-80^{\circ} \mathrm{C}$. Samples for soil characterization were dried at ambient temperature for two weeks before physical and chemical analyses were conducted. Collected pine needles were dried for two weeks at $60^{\circ} \mathrm{C}$ before being analysed for their metal content.

Soil physical and chemical characterization

pH was measured in both a water extract (10 g soil extracted with 25 ml distilled water) and a KCl extract (10 g soil extracted with 25 ml 1 M KCl) of soil samples. Conductivity was measured on the water extracts. Soil organic matter content (OM) was analysed with the Walkley and Black method (Walkley and Black, 1934). Cation exchange capacity (CEC) was measured according to Rhoades' method (Rhoades, 1982). Exchangeable cations were extracted using $0.1 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ (25 ml for 5 g soil). Dried pine needles were digested with nitric acid (65\%) and hydrochloric acid (37\%) at 120 ${ }^{\circ}$ C. Concentrations of zinc (Zn), cadmium (Cd), iron (Fe), magnesium (Mg), potassium (K), copper (Cu) and manganese (Mn) were measured with inductively-coupled plasma - optical emission spectroscopy (ICP-OES) in samples obtained from calcium nitrate extraction and pine needle digestion. Calcium (Ca) concentrations were measured in pine needle digests.

Characterization of the fungal communities

To characterize the fungal communities in soil samples, DNA was extracted using the UltraClean soil DNA isolation kit (MoBio, Carlsbad, CA, USA) from approximately 250 mg of soil according to the manufacturer's instructions. DNA was extracted in quadruplicate from each soil sample (5 per tree) and replicated extracts were pooled per sample prior to PCR amplification using the ITS86F forward primer (Vancov and Keen, 2009) and ITS4 reverse primer (Gardes and Bruns, 1993). This primer pair was shown to efficiently amplify the fungal internal transcribed spacer 2 (ITS2) region and characterize fungal communities using 454 amplicon pyrosequencing (Waud et al., 2014; Op De Beeck et al., 2014). "Fusion" primers, required for the 454 process, were designed according to the guidelines for 454 GSFLX Titanium Lib-A sequencing containing the Roche 454 pyrosequencing adapters and a 10-bp multiplex identifier (MID) barcode in between each adapter and primer sequence (Table S4.1). DNA was amplified using a Techne TC-5000 thermocycler (Bibby Scientific Limited, Staffordshire, UK) under the following conditions: initial denaturation at $95^{\circ} \mathrm{C}$ for 2 minutes, followed by 40 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 30 seconds, annealing at $55^{\circ} \mathrm{C}$ for 30 seconds and extension at $72^{\circ} \mathrm{C}$ during 1 minute. A final extension phase was performed at $72^{\circ} \mathrm{C}$ during 10 minutes. Reactions were carried out in 25μ l reaction volumes using the FastStart High Fidelity PCR System (Roche Applied Science, Mannheim, Germany). Each reaction contained 2.75μ l FastStart 10x reaction buffer, $1.8 \mathrm{mM} \mathrm{MgCl}, 0.2 \mathrm{mM}$ dNTP mix, $0.4 \mu \mathrm{M}$ of each primer, 1.25 U FastStart HiFi polymerase and 5 ng template DNA (as measured by a Nanodrop spectrophotometer). Amplified DNA was cleared from PCR primers and primer dimers using the Agencourt AMPure XP system according to the manufacturer's protocol (Beckman Coulter, Brea, CA, USA). Next, purified DNA was quantified with the QuantiT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) and a Fluostar Omega plate reader (BMG Labtech, Ortenberg, Germany) and pooled into four equimolar amplicon libraries (10^{7} molecules per $\mu \mathrm{l}$) of 55 samples. Each of the four resulting amplicon pools (two pools for the

Chapter 4

samples from 2009 and two pools for the samples from 2011) were sequenced on one fourth of a pico titer plate on a Roche Genome Sequencer FLX system using Titanium chemistry (Roche Applied Science, Mannheim, Germany) according to the manufacturer's instructions.

The four Standard Flowgram Format (SFF) files that resulted from the interpreted flowgrams were submitted to the NCBI Sequence Read Archive under accession number SRP028404 (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra). The information in the separate SFF files was combined in a single quality and a fasta file using a custom Python script. Further analyses were performed in Mothur 1.31.2 (Schloss et al., 2009). Quality trimming in Mothur was used to remove reads shorter than 200 bases, reads longer than 600 bases, reads containing homopolymers longer than 8 bases and reads containing ambiguous bases. Reads were trimmed when the average Phred quality score dropped below 35 over a window of 50 bases (Schloss et al., 2009). Next, sequences were compared to each other and duplicate sequences were replaced by a single sequence, while archiving the abundance data of the unique sequences. Unique reads were checked for chimeric sequences with the Uchime software implemented in Mothur and chimeric sequences were removed from the dataset. Unique reads were subsequently aligned with the pairwise alignment tool in Mothur using default settings. Finally, species-level operational taxonomic units (OTUs) were defined based on a 97\% sequence similarity cut-off, which is generally within the range of intraspecific ITS sequence similarity (Blaalid et al., 2013). In order to further remove potential sequencing errors from the dataset, singletons were removed (Tedersoo et al., 2010; Waud et al., 2014). Subsequently, rarefaction curves at the level of each tree were constructed and Good's coverage scores were calculated with Mothur for each tree. OTU richness, Pielou evenness scores and inverse Simpson indices were calculated for each tree in R 3.0.3 (The R Foundation for Statistical Computing, Vienna, Austria). In parallel, diversity parameters were also calculated based on a dataset in which the number of reads per sample was rarefied to 500 reads per sample
(10 samples did not meet this requirement and were omitted for this analysis). However, no differences in fungal diversity patterns were observed between the rarefied and non-rarefied datasets. We therefore opted to keep all sequencing information in our dataset (not rarefying the number of reads per sample). BLAST searches for a representative sequence of each OTU (as determined by Mothur) were performed using PlutoF v2.0 (Abarenkov et al., 2010). Reads were blasted against the UNITE (Kõljalg et al., 2005) and INSD (Nakamura et al., 2013) databases. Resulting HTML files were combined with the abundance data obtained in Mothur using a custom Python script. This script also acquired the names of species and/or genera that resemble Latin binomials with the highest BLAST score, avoiding unidentified OTUs in the databases to be seen as best BLAST hits. OTUs of for which no BLAST hits were found, were indicated as "not applicable (NA)"

Statistical analysis

Statistical analyses were carried out in R 3.0.3 (The R Foundation for Statistical Computing, Vienna, Austria). Normal distributions of the residuals of models were checked with the Shapiro-Wilk test, while the homoscedasticity of variances were analysed using either Bartlett's or the Fligner-Killeen test. Depending on the distribution of the estimated parameters, either ANOVA or the Kruskal-Wallis rank sum test was used to check for significant differences in variances of parameters. Two-by-two comparisons were conducted using either Tukey's Honest Significant Differences tests or Pairwise Wilcoxon Rank Sum tests. Correlations between diversity parameters and measured soil parameters were calculated based on Pearson's product moment correlation coefficient (R^{2}). Non-Metric Multi-dimensional Scaling (NMDS) was conducted using the metaMDS() function of the vegan package (version 2.0-10; Oksanen et al., 2013) in R. Canonical Correspondence Analysis (CCA) model building was conducted based on the cca() function of the vegan package and CCA analysis was based on the decorana() and envfit() functions of the vegan

Chapter 4

package. To analyse distance decay of similarity across different spatial and temporal scales, linear models were fitted to the data and the mantel() function of the vegan package was used to assess the significance of model fits. Mantel tests were conducted using the mantel() function of the vegan package in R. PERMANOVA analyses were conducted in R using the adonis() function of the vegan package. Distance matrices for community data were based on Bray-Curtis distances using read abundances. The distance matrix for the geographical position of trees and distances between samples and years were based on Euclidian distances. Indicator species analysis was conducted using the multipat() function of the indicspecies package (version 1.7.1; De Caceres and Legendre, 2009) in R. Spatial and temporal autocorrelations were tested based on Moran's I, using the Moran.I() function of the ape package (version 3.1-1; Paradis et al., 2004) in R.

RESULTS

Belowground fungal communities in a single young Scots pine plantation (Lommel-Maatheide: $51^{\circ} 14^{\prime} 10^{\prime \prime} \mathrm{N} ; 5^{\circ} 15^{\prime} 50^{\prime \prime} \mathrm{E}$) were identified for two sampling years (2009 and 2011) using 454 amplicon pyrosequencing (Margulies et al., 2005). This pioneer forest is growing on a site where polluted bare topsoil was removed in 2004. This disturbance introduced heterogeneity in the newly exposed sandy soil and resulted in large differences in metal concentrations over short distances. To estimate the overall metal exposure of individual pine trees, soil samples and last-year pine needles from 22 pine trees were collected for element analysis. Measured environmental variables which were found to be important in determining the fungal community compositions in the current study are shown in Fig. 4.1. Variables that did not contribute to the structure of the fungal communities can be found in Fig. S4.1.

Four amplicon libraries were sequenced, each on one fourth of a picotiter plate. These sequencing runs resulted in 368,085 raw reads before quality trimming and assigning the reads to their respective sample. After quality
trimming and assigning reads to the different samples (220 samples, 22 trees, 5 distances, 2 sampling years), 346,364 high-quality reads remained in the dataset. Rarefaction curves assessing the OTU richness per tree generally approached saturation and indicated that 25 to 80 OTUs can be expected in the samples collected in 2009 and between 15 and 70 OTUs for the samples collected in 2011 (Fig. 4.2). Averages of calculated Good's coverage scores were $95 \% \pm 1 \%$ (SE) for the 2009 sampling session and $96 \% \pm 0.1 \%$ (SE) for the 2011 sampling session, indicating that the sequencing depth was sufficient to accurately describe the fungal communities at the tree level.

Local spatial and temporal variations in fungal diversity

Local variations in fungal diversity were studied at two spatial scales: within a one meter radius of pine trees (using individual samples collected at different distances from a pine stem as sampling units) and across the entire study site (using pine trees as sampling units) and a temporal scale (comparison of two sampling years: 2009 and 2011). No significant differences between OTU richness indices were found for samples collected within a one meter radius from pine stems (three-way ANOVA using fungal diversity measures as dependent variables and sampling locations and sampling period as fixed, dependent variables: $p=0.38$), nor between inverse Simpson indices ($p=0.32$) or Pielou evenness indices ($p=0.70$). Significant differences, however, were found at the level of the study site (using trees as sampling units; three-way ANOVA: p < 0.01 for OTU richness indices, inverse Simpson indices and Pielou evenness indices) and between sampling years (three-way ANOVA: p < 0.01 for OTU richness indices, inverse Simpson indices and Pielou evenness indices). None of the interaction terms were significant ($p>0.05$). Spatial and temporal autocorrelation (based on Moran's I) of diversity data were tested on the same scales as described above.

Chapter 4

Figure 4.2 Rarefaction curves at the level of individual trees. Rarefaction curves are based on the average number of OTUs of five samples that were collected at different distances from the same pine tree $(\mathrm{n}=22)$. OTUs were generated in Mothur based on a 97% sequence similarity cut-off. A. Rarefaction curves for the 2009 sampling session. B. Rarefaction curves for the 2011 sampling session.

Spatial autocorrelation was not observed for samples collected within a one meter radius from the same pine tree (OTU richness: $p=0.91$, Pielou evenness: $p=0.59$ and inverse Simpson indices: $p=0.83$), nor at the level of the entire study site (OTU richness: $p=0.95$, Pielou evenness: p $=0.15$ and inverse Simpson indices: $\mathrm{p}=0.46$). However, temporal autocorrelation was observed between sampling years ($p<0.01$ for all diversity measures).

Local spatial and temporal variations in fungal community structure

Observed fungal community compositions were investigated on the same spatial and temporal scales as the ones used for fungal diversity analyses. Three-way PERMANOVAs (using community distance matrices based on Bray-Curtis distances as dependent variables and sampling location and sampling period as fixed, independent variables) revealed a significant difference in fungal community composition between samples collected within a one meter radius of pine trees, between individual trees across the study site and between sampling years (all p < 0.01).

To analyse community similarities (based on 1 - Bray-Curtis distances (BC)) across spatial and temporal scales, distance decay of similarity analyses were conducted (Fig. S4.3). No significant decay of similarity was observed within a one meter radius from pine trees, between different pine trees across the study site, nor between sampling years (slopes: -0.0003, 0.00008 and -0.01 for distances between individual samples, distances between trees and distances between years respectively). The significance of these decay patterns were verified with Mantel tests (Mantel statistic: r $=-0.06, p=1.00 ; r=-0.07, p=0.84$ and $r=-0.08, p=1.00$ respectively) These results indicate that the fungal communities in samples collected further away from each other (either in space or in time) can be as similar to each other as the fungal communities of samples collected close to each other. Differences in the fungal community composition of samples that were collected at different distances from each other were visualized using non-metric multi-dimensional scaling (NMDS). As can be observed in Fig.

Chapter 4

4.3, samples did not cluster according to the distance to the stem they were collected at, but some samples did tend to cluster according to trees. A more detailed comparison of the OTU composition of the fungal community observed in 2009 and the one observed in 2011, revealed that of the 771 OTUs that were observed across both datasets, 240 OTUs (31\%) that were present in 2009, no longer were detected in 2011, whereas 182 OTUs (24\%) were newly discovered. 349 OTUs (45\%) were shared between both sampling years. OTUs that were lost or gained from the datasets, however, all had very low abundances, whereas all OTUs with a relative read abundance $>1 \%$ were shared between the datasets. To test whether some fungal species were significantly associated with a specific sampling year or sampling distance to a stem, indicator species analyses were conducted. Using a community matrix excluding fungal OTUs with an average relative read abundance of $<1 \%$, no indicator species were identified. When OTUs with low abundances (<1\%) were included in the dataset, 93 species were found to specifically associate with a particular sampling year or sampling distance from pine stems. Results of indicator species analyses including OTUs with a low average relative read abundance can be found in Table S4.2.

Relationships between observed fungal communities and their environment

Spatial autocorrelation was studied for the main environmental factors (soil and needle Zn and Cd concentrations) based on Moran's I. No spatial autocorrelation was observed for soil $\mathrm{Zn}(\mathrm{p}=0.46)$, soil $\mathrm{Cd}(\mathrm{p}=0.37)$, needle $\mathrm{Zn}(\mathrm{p}=0.63$) or needle Cd concentrations ($p=0.12$). Significant correlations between a number of measured environmental variables and fungal diversity measures were observed, but none of the correlations were consistent between the 2009 and 2011 datasets (Table S4.3). To investigate how different environmental factors relate to the observed fungal community compositions, a canonical correspondence analysis (CCA) was performed on the 2009 and 2011 datasets.

$$
\square d=0 \mathrm{~cm} \quad \diamond d=25 \mathrm{~cm} \quad \Delta d=50 \mathrm{~cm} \quad \circ \mathrm{~d}=75 \mathrm{~cm} \quad+\mathrm{d}=100 \mathrm{~cm}
$$

$\square d=0 \mathrm{~cm} \quad \diamond d=25 \mathrm{~cm} \quad \Delta d=50 \mathrm{~cm} \quad 0 \mathrm{~d}=75 \mathrm{~cm} \quad+\mathrm{d}=100 \mathrm{~cm}$

Figure 4.3 Non-metric multi-dimensional scaling (NMDS) plots displaying dissimilarities (based on Bray-Curtis distances) in the fungal community composition of samples that were collected at different distances from the same tree ($d=$ distance). A. Results of the 2009 analysis. B. Results of the 2011 analysis. OTUs were generated in Mothur based on a 97% sequence similarity cut-off.

CHAPTER 4

Both for the 2009 and 2011 sampling sessions, soil organic matter (OM), needle Zn and Cd concentrations and soil Zn and Cd concentrations were found to be significantly correlated with the observed fungal community composition (Permutation tests resulted in $p<0.01$ for all five parameters; only the top ten most abundant OTUs were displayed to avoid crowding of the graphs; Fig. 4.4). Since all five parameters were strongly correlated with each other (all p < 0.01 both for the 2009 and 2011 datasets), it is impossible to separate the individual effects of Zn, Cd and OM. In the 2009 CCA analysis, RA1 explained 28% of the total variance and RA2 explained 27% of the total variance. For the 2011 dataset, RA1 explained 42% of the total variance and RA2 explained 23% of the variance (Fig. 4.4). Nine of the ten most abundant OTUs neither had a strongly increased nor a decreased abundance in more severely polluted samples. Only OTUs corresponding to Inocybe lacera (Fr.) P. Kumm. were more abundant in samples with lower metal concentrations and a lower OM content (Fig. 4.4). It is noteworthy that 22% of all OTUs (including low-abundant OTUs) in the 2009 dataset had an increased relative abundance (average read count for a specific OTU per sample relative to the average total read count of each sample) in samples with higher Zn, Cd and OM concentrations, whereas 18% had a decreased relative abundance in these samples. 60\% of all OTUs were equally abundant in all samples in the 2009 dataset. In the 2011 dataset, only 1% of all OTUs were less abundant in more polluted samples, whereas 67% were more abundant in more severely polluted samples. The remaining 32\% of OTUs were equally abundant in all samples in the 2011 dataset.

The relative abundances of the top ten most abundant OTUs were displayed in pie charts (Fig. 4.5). The remaining, less abundant OTUs, were grouped together as "Remaining taxa" in this figure. Average relative abundances of all OTUs, BLAST Scores, corresponding E-values and species or genera to which the OTUs corresponded can be found in Appendix B.

Figure 4.4 Canonical correspondence analysis (CCA) displaying the relationship between fungal community composition and environmental parameters near trees $(\mathrm{n}=22)$. A. CCA of the 2009 sampling session. B. CCA of the 2011 sampling session. OTUs were generated in Mothur based on a 97% sequence similarity cut-off. OTU abundances of five samples that were collected at different distances from the same pine tree were averaged-out. Only those environmental parameters that significantly correlated with fungal community compositions at the 95% confidence level are shown. Of the fungal OTUs, only the top ten most abundant OTUs are shown.

Figure 4.5 Pie charts displaying the top ten most abundant fungal OTUs and their average relative abundance per sample for A. the 2009 dataset and B. the 2011 dataset. OTUs were generated in Mothur based on a 97% sequence similarity cutoff. Abundances of OTUs not appearing in the list of top ten most abundant OTUs were combined under "Remaining taxa". Fungal lifestyles are indicated between brackets behind the genus or species name that corresponds to the respective OTU. ECM: ectomycorrhizal. SAP: saprotrophic. ERM: ericoid mycorrhizal. AM: arbuscular mycorrhizal. END: endophytic. PLANT PATH: plant pathogen.

Chapter 4

From Fig. 4.5, it is clear that the same top three most abundant OTUs represented a high proportion (49% and 59%) of all reads identified in the 2009 and 2011 datasets, respectively. These OTUs corresponded to Sistotrema sp. Fr., Suillus luteus and Wilcoxina mikolae (Chin S. Yang \& H.E. Wilcox) Chin S. Yang \& Korf and on average accounted for 19\% (range: 0% to 83%), 17% (range: 0% to 45%) and 13% (range: 0% to 28%) of all reads identified in 2009 and for 32\% (range: 3\% to 77\%), 15\% (range: 4% to 32%) and 12% (range: 2% to 36%) of all reads identified in 2011 (Fig. 4.5), respectively. Other OTUs that were frequently encountered in both the 2009 and 2011 datasets corresponded to Sagenomella humicola (Onions \& G.L. Barron) W. Gams (3\% in 2009 and 4\% in 2011), Rhizoscyphus ericae (D.J. Read) W.Y. Zhuang \& Korf (3\% in 2009 and 4\% in 2011), Cadophora finlandica (C.J.K. Wang \& H.E. Wilcox) T.C. Harr. \& McNew (2\% in 2009 and 4\% in 2011) and Inocybe lacera (2\% both in 2009 and in 2011) (Fig. 4.5).

DISCUSSION

Local spatial and temporal variations in observed fungal communities

In order to determine the effects of metal pollution on fungal communities, we investigated local spatial and temporal variations in the observed belowground fungal communities. Factors potentially affecting the spatial structure of fungal communities in the immediate vicinity of a tree are decreasing root density (Peay et al., 2011) and root age (Last et al., 1987). Both factors decrease with increasing distance from the stem base of a tree and may recruit different ectomycorrhizal fungi. However, we found no evidence for such a pattern in the current circumstances Furthermore, fungal populations in the immediate vicinity of the studied communities provide fungal inoculum to the new pine plantation and could therefore cause spatial structuring of the fungal communities at the scale of the study site (Peay et al., 2010). Our analyses, however, revealed that samples
collected close to each other (either in space or time) can be very similar to samples collected further apart from each other (Fig. 4.3 and Fig. S4.3). We did not find any significant structuring of the observed fungal communities in time or space and overall observed fungal communities in different years or sampling locations within the study area were very similar to each other. Although introduction of fungal inoculum from surrounding fungal populations is likely (Muller et al., 2004), it is considered a minor factor in influencing the structure of the studied fungal communities. Comparison of the OTU composition of the 2009 and 2011 datasets revealed that only a small proportion (47\%) of the observed OTUs were shared between the 2009 and 2011 sampling sessions. Nevertheless, all OTUs that were lost from the 2009 dataset or gained in the 2011 dataset had very low abundances suggesting that these OTUs were most likely fungal spores or other propagules that are picked up due to the high sensitivity of 454 amplicon pyrosequencing. Hence, the large proportion of OTUs that were either lost or gained between the two datasets are not necessarily selected against because of high metal concentrations. Probably they reflect random detection of propagules in the environmental samples. A possible approach to reduce the detection of metabolically inactive propagules would be an analysis of environmental precursor ITS rRNA instead of DNA (van der Linde and Haller, 2013). Analyses excluding OTUs with a low abundance, however, still revealed differences in the fungal community compositions observed in 2009 and 2011. Since all abundant OTUs were shared between the communities observed in 2009 and 2011, the differences between the community compositions in both years are mainly due to differences in the relative abundances of OTUs shared between both datasets. Also, the fungal diversity of 2009 differed from the fungal diversity in 2011. These results suggest that the studied pioneer fungal communities are still highly dynamic. The observed decrease in OTU richness from 2009 to 2011 together with the fact that the abundances of more OTUs were positively correlated with soil metal pollution and soil OM content in 2011 (67\%) than in 2009 (22\%) suggests that a shift towards a

Chapter 4

fungal community with more metal-resistant and metal-tolerant ecotypes is taking place. On the other hand, also seasonal fluctuations in climate might be responsible for some differences between the fungal community identified in 2009 and the one observed in 2011 (Jumpponen et al., 2010; Davey et al., 2012). To confirm the hypothesis that the present metal pollution is indeed selecting for metal-tolerant ecotypes, strains of abundant species will need to be isolated from the field and tested for their Zn - and Cd- tolerance

Linking observed fungal community composition and diversity to environmental parameters

Both for the 2009 and 2011 sampling sessions, strong correlations were found between Zn and Cd concentrations and soil OM content and fungal community compositions (Fig. 4.4). However, since these environmental parameters were also strongly correlated with each other, it is difficult to separate the individual effects of these parameters. More specifically, the chemical interaction between soil OM content and Zn and Cd concentrations is a well-known process that could be triggered by the effects of metaltoxicity on microbial communities. Because of a reduced microbial decomposition rate, organic matter could accumulate in highly polluted patches of soil (Chodak et al., 2013), and on the other hand, any increase in soil OM content could further cause an increased sequestration of metal ions. In our study, the actual range in metal concentrations in soil and pine needles is more pronounced than the range in soil OM content (Fig. 4.1). Anyhow, increased concentrations of metal ions and soil OM content, individually, have been shown to affect the composition of fungal communities in previous studies. Macdonald et al. (2007; 2008), for example, have shown that the composition of fungal communities, characterized with terminal restriction fragment length polymorphisms (TRFLP), were altered due to increased concentrations of Zn and Cu . Furthermore, Macdonald et al. (2007) found that the abundance of some fungal terminal restriction fragments (TRFs) increased significantly with
increasing Zn concentrations in soils, whereas other fungal TRFs were lost completely in metal-polluted sites. Hui et al. (2011) investigated the effects of increased Pb concentrations on ectomycorrhizal communities in Pinus sylvestris stands in Southern Finland. Similar to the findings in our study (Fig. 4.4), Hui et al. (2011) found that increased metal concentrations in boreal forest soils significantly altered the composition of ectomycorrhizal communities, but the fungal diversity remained unchanged. However, changes in fungal diversity caused by increased metal concentrations and varying soil OM content have been reported in previous studies. High concentrations of metals, for example, have been found to decrease microbial species diversity in metal-polluted fields (e.g. Chodak et al., 2013) and soil organic matter content has been shown in the past to strongly affect fungal diversity in various ways (Hartmann et al., 2012; Azarbad et al., 2013). Although each environmental factor probably did affect fungal diversity on its own, overall, fungal diversity remained unchanged throughout our study site despite considerable variations in metal concentrations and soil OM content. The fact that some authors do find effects of metal pollution on fungal diversity whereas other studies do not, may be due to differences in the metal species involved and the actual toxicity of metal ions. It is, for example, well known that microbial communities may alter the form of metal species (Gadd, 1993) and environmental parameters such as soil pH and cation exchange capacity may strongly affect the availability (and hence the toxicity) of metal ions as well. The Zn and Cd concentrations in our study site were clearly toxic to pine trees as a number of trees with more than $400 \mu \mathrm{~g} \mathrm{~g}^{-1}$ needle Zn in the study site showed substantial leaf chlorosis.

Dominant fungal species in the investigated communities

From Fig. 4.5, it is clear that three fungal OTUs strongly dominated the fungal community in Lommel-Maatheide. These OTUs corresponded to Sistotrema sp., Suillus luteus and Wilcoxina mikolae and their dominance appears to have increased from 2009 to 2011. Interestingly, S. Iuteus and

Chapter 4

W. mikolae are both species that have been associated with metal-polluted soils in previous studies. S. luteus is an ectomycorrhizal basidiomycete that typically occurs in pioneer pine stands. Additionally, previous research has shown the presence of Zn - and Cd-tolerant ecotypes of this species in the studied area (Colpaert et al., 2004; Krznaric et al., 2009). W. mikolae is an ectomycorrhizal ascomycete. It is a cosmopolitan species that has been isolated from a wide range of environments, including metal-rich mine spoils (Prabhu et al., 1996). The most abundant OTU identified in the current study corresponds to a Sistotrema species (strain B216) that has been described as an ectomycorrhizal basidiomycete isolated from sand dunes in the USA (Ashkannejhad and Horton, 2006). Species in this genus have not been described to occur in metal-polluted soils so far. Since it was the most abundant fungal OTU present in our study site, both in 2009 and in 2011, it would be interesting to investigate Zn and Cd tolerance of this Sistotrema population. Beside S. luteus, two other Suilloid fungi - S. bovinus and Rhizopogon luteolus - have been found to have developed Zn and/or Cd-tolerant ecotypes in the Campine region in Belgium (Colpaert et al., 2004). S. bovinus was detected in only one sample in the 2009 dataset with an abundance of 5% and in five samples in the 2011 dataset with abundances up to 5%. Since S. bovinus occurs in later stages of forest succession than S. luteus, this species is expected to become more dominant as the pine stand ages. R. Iuteolus, also a typical pioneer species, was detected in 16 samples in 2009 with an abundance ranging between 1% and 5% and in 19 samples in 2011 with an abundance ranging between 1% and 9%. On a regional scale, R. luteolus is a declining species most likely because of its sensitivity to high nitrogen deposition and soil acidification (Arnolds, 1991). Other interesting OTUs that appeared in the list of top ten most abundant OTUs corresponded to the genus Entrophospora R.N. Ames \& R.W. Schneid and the species Cadophora finlandica (C.J.K. Wang \& H.E. Wilcox) T.C. Harr. \& McNew. OTUs corresponding to Entrophospora were the sixth most abundant OTU in the 2009 dataset and the eleventh most abundant OTU in the 2011 dataset
(data not shown). This genus has been found in Cu mine spoils in previous studies (da Silva et al., 2005). C. finlandica is an ascomycete species belonging to the Rhizoscyphus ericae aggregate (Vrålstad et al., 2000). Fungal species in this species aggregate are believed to be able to form ectomycorrhizal and ericoid mycorrhizal associations with different plant species (Vrålstad, 2004). These fungal species can be frequently found in metal-polluted soils as well (Gorfer et al., 2009) where they may improve plant nutrition and enhance plant survival under harsh conditions (Mrnka et al., 2009). The abundance of only one of the most abundant OTUs was clearly negatively correlated with increasing Zn, Cd and OM concentrations. This OTU corresponds to the ectomycorrhizal basidiomycete Inocybe lacera, a typical basidiomycete of primary successions (Jumpponen et al., 2002). Even though some reports indicated the presence of Inocybe species on metal-polluted mine spoils (Huang et al., 2012), OTUs corresponding to I. lacera in our study were more abundant in samples with lower Zn, Cd and OM concentrations. Overall, it is noteworthy that the fungal communities in the studied site were dominated by biotrophic species and in particular by ectomycorrhizal fungi, testifying to the importance of these fungal symbionts in disturbed pioneer pine forests.

Conclusions

No spatial structuring of the studied fungal communities was found within a one meter radius surrounding sampled trees nor at the scale of the entire study site. However, Zn - and Cd concentrations, together with soil OM content, were shown to correlate well with fungal community compositions. Hence, we conclude that metal pollution and soil OM content are the most important factors shaping the studied pioneer fungal communities. None of the measured environmental parameters were found to consistently correlate with fungal diversity indices. This is not to say that these factors do not influence fungal diversity individually, but overall no effect of the microbial environment on fungal diversity was observed. The abundance of most fungal OTUs identified in the current study either positively correlated

Chapter 4

with increasing metal pollution and soil OM content or had a similar abundance in all samples. The present results and our previous observations on metal-tolerant Soilloid ecotypes suggest that the harsh environmental conditions in the studied site are selecting for metalresistant and metal-tolerant genotypes (ecotypes), maintaining a relatively high fungal diversity which presumes sufficient genetic and phenotypic variation in pioneer fungi. Nevertheless, it was shown that a restricted number of, probably well adapted, ectomycorrhizal fungal species dominated the studied communities. S. luteus was found to be one of the most abundant species, as was hypothesized. Other species that were found to be dominant in the studied fungal communities, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica provide interesting new opportunities to further investigate the presence of metalresistance and metal-tolerance in fungi growing in metal-polluted sites.

Acknowledgements

The authors would like to thank Marc Missoorten for granting access to the study site and for his assistance during fieldwork. Furthermore, we would like to thank Michael Waud for performing the pyrosequencing run.

Chapter 4

References

Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M et al. (2010). PlutoF - a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics 6: 189-196.

Alford ER, Pilon-Smits EAH, Paschke MW (2010). Metallophytes - a view from the rizosphere. Plant and Soil 337: 33-50.

Al-Hiyaly SAK, McNeilly T, Bradshaw AD (1990). The effect of zinc contamination from electricity pylons - contrasting patterns of evolution in 5 grass species. New Phytologist 114: 183-190.

Arnolds E (1991). Decline of ectomycorrhizal fungi in Europe. Agriculture Ecosystems \& Environment 35: 209-244.

Ashkannejhad S, Horton TR (2006). Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytologist 169: 345-354.

Azarbad H, Niklińska M, van Gestel CAM, van Straalen NM, Röling WFM, Laskowski R (2013). Microbial community structure and functioning along metal pollution gradients. Environmental Toxicology and Chemistry 32: 1992-2002.

Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013). ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources 13: 218-224.

Bradshaw AD, McNeilly T (1981). Evolution \& Pollution. Institute of Biology, London.

Chapter 4

Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology 64: 7-14.

Colpaert JV, Muller LAH, Lambaerts M, Adriaensen K, Vangronsveld J (2004). Evolutionary adaptation to zinc toxicity in populations of Suilloid fungi. New Phytologist 162: 549-559.

Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J (2000). Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist 147: 367-379.

Corneo PE, Pellegrini A, Cappellin L, Roncador M, Chierici M, Gessler C, Pertot I (2013). Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiology Ecology 84: 588-602.
da Silva GA, Trufem SFB, Junior OJS, Maia LC (2005). Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza 15: 47-53.

Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H (2012). Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytologist 195: 844-856.

De Caceres M, Legendre P (2009). Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566-3574.

Ernst WHO (1990). Mine vegetations in Europe. In: Shaw AJ ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton. pp 21-37.

Gadd GM (1993). Interactions of fungi with toxic metals. New Phytologist 124: 25-60.

Gardes M, Bruns TD (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.

Gorfer M, Persak H, Berger H, Brynda S, Bandian D, Strauss J (2009). Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycological Research 113: 1377-1388.

Hartmann M, Howes CG, VanInsberghe D, Yu H, Bachar D, Christen R, Nilsson RH, Hallam SJ et al. (2012). Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME Journal 6: 2199-2218.

Hildebrandt U, Kaldorf M, Bothe H (1999). The zinc violet and its colonization by arbuscular mycorrhizal fungi. Journal of Plant Physiology 154: 709-717.

Huang J, Nara K, Lian CL, Zong K, Peng KJ, Xue SG, Shen ZG (2012). Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in $\mathrm{Pb}-\mathrm{Zn}$ mine sites of central south China. Mycorrhiza 22: 589-602.

Hui N, Jumpponen A, Niskanen T, Liimatainen K, Jones KL, Koivula T, Romantschuk M, Strömmer R (2011). ECM fungal community structure, but not diversity, altered in a Pb -contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiology Ecology 76 : 121-132.

Chapter 4

Jumpponen A, Jones KL, Mattox JD, Yeage C (2010). Massively parallel 454sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology 19: 41-53.

Jumpponen A, Trappe JM, Cázares E (2002). Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12: 43-49.

Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Hoiland K et al. (2005). UNITE: a database providing webbased methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166: 1063-1068.

Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009). Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd. Environmental Pollution 157: 1581-1588.

Last FT, Dighton J, Mason PA (1987). Successions of sheathing mycorrhizal fungi. Trends in Ecology and Evolution 2: 157-161.

Leung H-M, Wang Z-W, Ye Z-H, Yung K-L, Peng X-L, Cheung K-C (2013). Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23: 549-563.

Macdonald CA, Campbell CD, Bacon JR, Singh BK (2008). Multiple profiling of soil microbial communities identifies potential genetic markers of metalenriched sewage sludge. FEMS Microbiology Ecology 65: 555-564.

Macdonald CA, Singh BK, Peck JA, van Schaik AP, Hunter LC, Horswell J, Campbell CD, Speir TW (2007). Long-term exposure to Zn-spiked sewage sludge alters soil community structure. Soil Biology \& Biochemistry 39: 2576-2586.

Margulies M, Egholm M, Altman WE, Attyia S, Bader JS, Bemben LA, Berka J, Braverman MS et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380.

Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J et al. (2003). Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metalresponsive genes. FEMS Microbiology Reviews 27: 385-410.

Mrnka L, Tokarova H, Vosatka M, Matejka P (2009). Interaction of soil filamentous fungi affects needle composition and nutrition of Norway spruce seedlings. Trees-Structure and Function 23: 887-897.

Muller LAH, Lambaert M, Vangronsveld J, Colpaert JV (2004). AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytologist 164: 297-303.

Nakamura Y, Cochrane G, Karsch-Mizrachi I (2013). The international nucleotide sequence database collaboration. Nucleic Acids Research 41: D21-D24.

Oksanen J, Blanchet GF, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P et al. (2013). vegan: Community Ecology Package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan

CHAPTER 4

Op De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV (2014). Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One. doi: 10.1371/journal.pone.0097629.

Paradis E, Claude J, Strimmer K (2004). APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.

Peay KG, Garbelotto M, Bruns TD (2010). Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness in mycorrhizal tree islands. Ecology 91: 3631-3640.

Peay KG, Kennedy PG, Bruns TD (2011). Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecology 4: 233-240.

Prabhu V, Biolchini PF, Boyer GL (1996). Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. Biometals 9: 229-234.

Rhoades JD (1983). Cation exchange capacity. In: Page AL ed. Methods of soil analysis, Part 2 Chemical and microbiological properties. 2nd edn. American Society Of Agronomy, Madison. pp. 149-157.

Schat H, Llugany M, Bernhard R (2000). Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G eds. Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton. pp. 171-188.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541.

Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E et al. (2010). 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist 188: 291-301.

Uroz S, Ioannidis P, Lengelle J, Cebron A, Morin E, Buée M, Martin F (2013). Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway Spruce plantation. PLoS One 8: e55929.

Vancov T, Keen B (2009). Amplification of soil fungal community DNA using the ITS86F and ITS4 primers. FEMS Microbiology Letters 296: 91-96.
van der Linde S, Haller S (2013). Obtaining a spore free fungal community composition. Fungal Ecology 6: 522-526.

Vrålstad T, Fossheim T, Schumacher T (2000). Piceirhiza bicolorata - the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytologist 145: 549-563.

Vrålstad T (2004). Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytologist 164: 7-10.

Walkley A, Black IA (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29-37.

Chapter 4

Waud MJ, Busschaert P, Ruyters S, Jacquemyn H, Lievens B (2014). Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Molecular Ecology Resources. doi: 10.1111/1755-0998.12229.

SUPPORTING INFORMATION

C

D

Chapter 4

Supporting Information Figure S4.1 Comparison of measured environmental variables between sampling years (2009 and 2011). Statistically significant differences at the 95% confidence level are indicated with an asterisk (*). Box-plots display the first (25%) and third (75%) quartile, the median, maximum and minimum observed values. Soil Cu concentrations were below the detection limit of $0.1 \mathrm{\mu g} \mathrm{~g}^{-1}$. A. pH (KCl-derived). B. pH ($\mathrm{H}_{2} \mathrm{O}$-derived). C. CEC. D. Conductivity. E. Soil Fe concentrations. F. Needle Fe concentrations. G. Soil Mg concentrations. H. Needle Mg concentrations. I. Soil Mn concentrations. J. Needle Mn concentrations. K. Soil K concentrations. L. Needle K concentrations. M. Needle Ca concentrations. N. Needle Cu concentrations.

Chapter 4

Supporting Information Figure S4.2 Sampling design used in the current studies to collect soil samples for fungal community analysis. This sampling design was used for each selected tree ($\mathrm{n}=22$).

Supporting Information Figure S4.3 Results of distance decay of similarity analyses displaying the decay of community similarity (1- Bray-Curtis distances (BC)) A. at the scale of individual samples collected at different distances from a pine stem ($\mathrm{d}=0 \mathrm{~cm}, 25 \mathrm{~cm}, 50 \mathrm{~cm}, 75 \mathrm{~cm}$ and 100 cm) B. at the scale of the study site (using individual trees as sampling unit) and C. between sampling years (2009 and 2011). Results of linear regressions and Mantel tests are given in insets.

CHAPTER 4

Supporting Information Table S4.1 Results of indicator species analysis displaying fungal species significantly associated with samples collected from different distances from a pine stem ($\mathrm{d}=0 \mathrm{~cm}, 25 \mathrm{~cm}, 50 \mathrm{~cm}, 75 \mathrm{~cm}$ or 100 cm or combinations thereof) or samples collected in different years (2009 or 2011). The association of all fungal species with specific samples shown in these tables were significant at the 95% confidence level.

Sample	p- value	Rel. abund. $(\%)$ (1)	SE on Rel. abund.	
	Species			
	Heyderia abietis	0.001	0.134	$4.244 \mathrm{E}-06$
	Chalara microchona	0.001	0.462	$1.268 \mathrm{E}-05$
	Phialocephala virens	0.001	0.259	$7.998 \mathrm{E}-06$
	Antarctic yeast CBS 8941	0.001	0.210	$1.026 \mathrm{E}-05$
	Rhodotorula philyla	0.001	0.106	$5.963 \mathrm{E}-06$
	Xenopolyscytalum pinea	0.001	0.062	$3.056 \mathrm{E}-06$
	Pyrenochaetopsis microspora	0.001	0.035	$2.051 \mathrm{E}-06$
0 cm	Sistotrema alboluteum	0.009	0.050	$8.599 \mathrm{E}-06$
	Fusicladium cordae	0.002	0.008	$8.035 \mathrm{E}-07$
	Zalerion arboricola	0.009	0.004	$6.526 \mathrm{E}-07$
	Dactylaria lanosa	0.031	0.008	$1.772 \mathrm{E}-06$
	Exobasidium inconspicuum	0.039	0.003	$7.789 \mathrm{E}-07$
	Lecanora polytropa	0.041	0.006	$1.451 \mathrm{E}-06$
	Scoliciosporum umbrinum	0.039	0.003	$7.789 \mathrm{E}-07$
	Myrmecridium phragmitis	0.048	0.008	$1.157 \mathrm{E}-06$
25 cm	Sporobolomyces gracilis	0.029	0.021	$1.274 \mathrm{E}-06$
	Clitopilus sp FZ1433	0.035	0.007	$1.317 \mathrm{E}-06$
	Spizellomyces pseudodichotomus	0.002	0.053	$2.728 \mathrm{E}-06$
	Spizellomyces plurigibbosus	0.006	0.018	$1.507 \mathrm{E}-06$
50 cm	Hypholoma fasciculare	0.011	0.015	$1.102 \mathrm{E}-06$
	Laetisaria lichenicola	0.036	0.054	$6.942 \mathrm{E}-06$
	Rhizophydium sp JEL 385	0.015	0.006	$1.524 \mathrm{E}-06$
	Cladonia borealis	0.021	0.011	$1.343 \mathrm{E}-06$

Chapter 4

	Acephala macrosclerotiorum	0.001	0.886	1.335E-05
0	Lophodermium pinastri	0.011	0.087	2.917E-06
cm	Teratosphaeria microspora	0.007	0.056	$1.664 \mathrm{E}-06$
+	Mortierella sp TR158	0.015	0.132	5.258E-06
25	Helicodendron websteri	0.009	0.036	2.386E-06
cm	Cryptosporiopsis ericae	0.01	0.022	$1.168 \mathrm{E}-06$
	Bullera miyagiana	0.031	0.015	$1.302 \mathrm{E}-06$
$\begin{gathered} 0 \\ \mathrm{~cm} \end{gathered}$				
+ 100	Microsphaeropsis proteae	0.049	0.023	2.529E-06
cm				
25				
cm	Xanthoria parietina		0.016	
$\begin{aligned} & + \\ & 75 \end{aligned}$		0.011		1.172E-06
cm				
0				
cm+				
25	Meliniomyces bicolor	0.007	0.063	2.381E-06
cm				
$\begin{gathered} + \\ 50 \end{gathered}$				
cm				
0				
cm				
+				
25	Epacris microphylla root associated fungus 5	0.05	0.023	$1.236 \mathrm{E}-06$
$\begin{gathered} \mathrm{cm} \\ + \end{gathered}$				
100				
cm				
50	Collophora rubra	0.001	0.134	3.290E-06
cm	Caloplaca cerina	0.003	0.066	2.549E-06
$\begin{gathered} + \\ 75 \end{gathered}$	Phaeophyscia exornatula	0.016	0.066	$2.549 \mathrm{E}-06$
cm				
$\begin{gathered} + \\ 100 \end{gathered}$	Cryptococcus sp MD76 1BY	0.041	0.019	$1.044 \mathrm{E}-06$
cm				
25	Camarographium koreanum	0.001	0.793	6.305E-06
cm	Stictis radiata	0.001	0.425	$3.607 \mathrm{E}-06$
$+$	Ophiocordyceps sinensis	0.002	0.554	6.160E-06
50	Preussia sp SL08070	0.042	0.262	3.584E-06
cm	Aureobasidium pullulans	0.011	0.228	4.735E-06
$\begin{gathered} + \\ 75 \end{gathered}$	Podospora ellisiana	0.002	0.115	3.201E-06
cm				
$\begin{gathered} + \\ 100 \\ \mathrm{~cm} \\ \hline \end{gathered}$	Macroconia leptosphaeriae	0.039	0.199	6.203E-06

Chapter 4

	Rachicladosporium pini	0.001	0.213	2.630E-06
	Phialophora sp DF36	0.001	0.276	2.710E-06
	Aureobasidium pullulans	0.001	0.228	4.735E-06
	Teratosphaeria capensis	0.001	0.112	1.459E-06
	Mortierella elongata	0.001	0.175	2.168E-06
	Cryptococcus aff amylolyticus AS 22398	0.001	0.117	$1.541 \mathrm{E}-06$
	Rhynchostoma proteae	0.001	0.132	$1.706 \mathrm{E}-06$
	Macroconia leptosphaeriae	0.001	0.199	6.203E-06
	Pringsheimia euphorbiae	0.001	0.088	$1.471 \mathrm{E}-06$
	Phaeosphaeria avenaria	0.001	0.121	2.483E-06
	Phaeosphaeria nodorum	0.001	0.071	$1.228 \mathrm{E}-06$
	Porosphaerella cordanophora	0.004	0.144	2.804E-06
	Rhizophlyctis rosea	0.002	0.101	2.091E-06
	Fusarium solani	0.006	0.072	$1.317 \mathrm{E}-06$
	Cladosporium cladosporioides	0.005	0.072	1.174E-06
	Ascomycota sp AR 2010	0.001	0.062	$1.279 \mathrm{E}-06$
	Lyophyllum sp Cultivar Jpn	0.001	0.042	$1.410 \mathrm{E}-06$
	Cryptococcus skinneri	0.003	0.052	$1.454 \mathrm{E}-06$
	Cylindrocladiella camelliae	0.001	0.034	$1.049 \mathrm{E}-06$
	Microscypha ellisii	0.003	0.043	$1.188 \mathrm{E}-06$
	Arnium macrotheca	0.001	0.061	2.896E-06
2009	Strumella coryneoidea	0.001	0.039	$2.198 \mathrm{E}-06$
	Articulospora proliferata	0.015	0.051	$1.676 \mathrm{E}-06$
	Mortierella cystojenkinii	0.019	0.035	$1.494 \mathrm{E}-06$
	Cryptococcus terricola	0.021	0.040	1.495E-06
	Phialemonium curvatum	0.005	0.047	2.241E-06
	Ganoderma applanatum	0.001	0.016	8.468E-07
	Passalora zambiae	0.001	0.019	$1.128 \mathrm{E}-06$
	Powellomyces hirtus	0.01	0.023	$1.722 \mathrm{E}-06$
	Spizellomyces plurigibbosus	0.003	0.018	1.507E-06
	Cryptococcus sp MD76 1BY	0.039	0.019	$1.044 \mathrm{E}-06$
	Xanthoria parietina	0.021	0.016	$1.172 \mathrm{E}-06$
	Inocybe ochroalba	0.037	0.023	2.612E-06
	Talaromyces thermophilus	0.006	0.010	1.034E-06
	Hypholoma fasciculare	0.047	0.015	$1.102 \mathrm{E}-06$
	Bacidina chloroticula	0.047	0.014	$1.108 \mathrm{E}-06$
	Archaeospora sp isa33	0.018	0.012	$1.932 \mathrm{E}-06$
	Candida morakotiae	0.025	0.007	9.670E-07
	Dactylaria higginsii	0.023	0.006	8.865E-07
	Myxotrichum carminoparum	0.035	0.007	$9.210 \mathrm{E}-07$
	Lophodermium pini excelsae	0.045	0.017	2.015E-06
	Mycena olida	0.047	0.018	4.691E-06
	Pochonia suchlasporia	0.047	0.009	$1.784 \mathrm{E}-06$

2011	Lecythophora mutabilis	0.001	0.119	$2.355 \mathrm{E}-06$
	Helicodendron websteri	0.005	0.036	$2.386 \mathrm{E}-06$
	Leotiomycetes sp NK264	0.003	0.029	$1.618 \mathrm{E}-06$
	Cenococcum geophilum	0.013	0.015	$1.410 \mathrm{E}-06$
	Mycena corynephora	0.037	0.011	$1.245 \mathrm{E}-06$

${ }^{(1)}$ Rel. abund.: Relative read abundance
${ }^{(2)}$ SE on Rel. abund.: Standard deviation on relative read abundance

Chapter 4

Supporting Information Table S4.2 Pearson's correlation coefficients (R^{2}) between measured soil parameters and fungal diversity indices. Fungal diversity indices were calculated in R based on OTU abundances. OTUs were generated in Mothur based on a 97% sequence similarity cut-off. Significant correlations at the 95% confidence level are indicated in bold.

Environmental parameter	2009 dataset			2011 dataset		
	Rich. (5)	Pielou evenn. (6)	Inv. Simp.	Rich. (5)	Pielou evenn. (6)	Inv. Simp. (7)
OM ${ }^{(1)}$	0.41	0.30	-0.41	0.41	0.27	-0.24
CEC ${ }^{(2)}$	-0.04	-0.17	0.16	0.04	0.02	0.03
Conduct. ${ }^{(3)}$	0.47	0.47	-0.37	0.15	0.19	-0.20
pH KCl	0.29	0.37	-0.16	-0.07	0.08	-0.06
$\mathrm{pH} \mathrm{H}_{2} \mathrm{O}$	0.36	0.33	-0.16	-0.03	0.07	0.02
Soil Zn ${ }^{(4)}$	0.24	0.22	-0.19	0.31	0.29	-0.27
Soil Cd ${ }^{(4)}$	0.24	0.27	-0.23	0.31	0.39	-0.33
Soil Fe ${ }^{(4)}$	-0.12	-0.09	0.07	-0.31	-0.55	0.61
Soil Mg ${ }^{(4)}$	0.33	0.46	-0.31	0.07	0.03	-0.05
Soil Mn ${ }^{(4)}$	0.09	0.15	-0.18	0.01	-0.03	-0.08
Soil K ${ }^{(4)}$	0.16	0.25	-0.29	-0.04	-0.17	0.09
Soil Cu ${ }^{(4)}$	0.28	0.14	-0.17	0.05	0.12	-0.17
Needle Zn ${ }^{(4)}$	0.20	0.25	-0.32	0.37	0.29	-0.28
Needle Cd ${ }^{(4)}$	0.18	0.07	-0.16	0.24	0.15	-0.18
Needle Fe ${ }^{(4)}$	0.01	0.07	-0.06	-0.03	-0.08	0.10
Needle Mg ${ }^{(4)}$	0.20	0.25	-0.29	0.38	0.38	-0.32
Needle Mn ${ }^{(4)}$	-0.03	-0.12	0.05	-0.07	-0.08	-0.01
Needle K ${ }^{(4)}$	0.34	0.39	-0.47	-0.07	-0.04	-0.11
Needle Cu ${ }^{(4)}$	0.19	0.30	-0.25	-0.18	-0.24	0.18
Needle Ca ${ }^{(4)}$	-0.14	0.08	0.11	0.38	0.36	-0.31

${ }^{(1)}$ OM: Soil organic matter (\%)
${ }^{(2)}$ CEC: Cation exchange capacity (meq $100 \mathrm{~g}^{-1}$)
${ }^{(3)}$ Conduct.: Conductivity ($\mu \mathrm{S} \mathrm{cm}^{-1}$)
${ }^{(4)}$ Measured in $\mu \mathrm{g} \mathrm{g}^{-1}$ dry weight
${ }^{(5)}$ Rich.: OTU richness
${ }^{(6)}$ Pielou evenn.: Pielou evenness index
${ }^{(7)}$ Inv. Simp.: Inverse Simpson index
Supporting Information Table S4.3 Primer design used in the current study to construct "fusion primers" for 454 amplicon pyrosequencing.

Amplicon pool	Sample ${ }^{(1)}$	Forward primer			Reverse primer		
		454 adapter ${ }^{(2)}$	MID ${ }^{(3)}$	Fungal ITS primer (4)	454 adapter ${ }^{(2)}$	MID ${ }^{(3)}$	Fungal ITS primer ${ }^{(4)}$
Pool 1	LM_5.1_2009	A	MID6	ITS86F	B	MID6	ITS4
Pool 1	LM_5.2_2009	A	MID6	ITS86F	B	MID7	ITS4
Pool 1	LM_5.4_2009	A	MID7	ITS86F	B	MID6	ITS4
Pool 1	LM_34.1_2009	A	MID7	ITS86F	B	MID7	ITS4
Pool 1	LM_6.1_2009	A	MID6	ITS86F	B	MID8	ITS4
Pool 1	LM_27.5_2009	A	MID8	ITS86F	B	MID6	ITS4
Pool 1	LM_32.2_2009	A	MID7	ITS86F	B	MID8	ITS4
Pool 1	LM_12.1_2009	A	MID8	ITS86F	B	MID7	ITS4
Pool 1	LM_32.1_2009	A	MID8	ITS86F	B	MID8	ITS4
Pool 1	LM_21.5_2009	A	MID6	ITS86F	B	MID9	ITS4
Pool 1	LM_32.3_2009	A	MID9	ITS86F	B	MID6	ITS4
Pool 1	LM_12.4_2009	A	MID7	ITS86F	B	MID9	ITS4
Pool 1	LM_12.5_2009	A	MID9	ITS86F	B	MID7	ITS4
Pool 1	LM_12.2_2009	A	MID8	ITS86F	B	MID9	ITS4
Pool 1	LM_12.3_2009	A	MID9	ITS86F	B	MID8	ITS4
Pool 1	LM_21.1_2009	A	MID9	ITS86F	B	MID9	ITS4
Pool 1	LM-21.3_2009	A	MID6	ITS86F	B	MID10	ITS4
Pool 1	LM_31.3_2009	A	MID10	ITS86F	B	MID6	ITS4
Pool 1	LM_31.5_2009	A	MID7	ITS86F	B	MID10	ITS4
Pool 1	LM_21.2_2009	A	MID10	ITS86F	B	MID7	ITS4
Pool 1	LM_4.1_2009	A	MID8	ITS86F	B	MID10	ITS4
Pool 1	LM_4.2_2009	A	MID10	ITS86F	B	MID8	ITS4
Pool 1	LM_11.1_2009	A	MID9	ITS86F	B	MID10	ITS4
Pool 1	LM_11.2_209	A	MID10	ITS86F	B	MID9	ITS4
Pool 1	LM_31.1_2009	A	MID10	ITS86F	B	MID10	ITS4
Pool 1	LM_31.2_2009	A	MID6	ITS86F	B	MID11	ITS4
Pool 1	LM_27.3_2009	A	MID11	ITS86F	B	MID6	ITS4

NNNNNNNNNNNNNNNmmmmmmmmmmmmmmmmmmm

Chapter 5: Comparison of ectomycorrhizal communities of pioneer Scots pine forests (Pinus sylvestris L.) on a metal-polluted and non-polluted site

Op De Beeck M, Vangronsveld J, Colpaert JV

Summary

The impact of soil metal pollution on plant communities has been studied extensively in the past. However, very little is known about the fungal species that are associated with these plant communities on metal-polluted soils. To characterize the fungal communities that are associated with plants thriving on metal-polluted soils, the current study aimed to identify the ectomycorrhizal fungi associated with Pinus sylvestris (L.) using 454 pyrosequencing on a metal-polluted and a non-polluted site in the Campine region in Belgium. The ectomycorrhizal communities at both study sites were shown to consist mainly of the same fungal species, but a consistent shift in the relative abundances of these species was observed, whereas no differences in fungal diversity were found. In metal polluted soil, roots tips of young pines were initially largely colonised by stress-tolerant Ascomycota that were mostly replaced by metal-tolerant Basidiomycota within 2 years.

Keywords: metal pollution, ectomycorrhiza, pioneer community, metabarcoding, 454 pyrosequencing

Chapter 5

Introduction

Worldwide, vast areas have become contaminated with high concentrations of metals due to pyrometallurgical industry and mining activities. High concentrations of metal ions in soils have been found to have detrimental effects on fungal, plant and bacterial populations. Ernst (1990) for example, observed a decrease in floristic diversity along a metal pollution gradient towards metal smelters. Hence, plant communities thriving on metalliferous soils often consist of highly adapted plant species, some of which may even be endemic to a restricted number of metalliferous sites. For example, in La Calamine in Belgium, a plant community was described in 1931 growing in areas where metal-rich ores surface (Schwickerath, 1944). This so-called Violetum calaminariae association harbours plant species that are typical for metal-enriched environments such as Silene vulgaris and Armeria maritima. Other representatives, for example Noccaea caerulescens (formerly Thlaspi caerulescens) are typically metal-accumulating plants that have potential to clean up metal-contaminated soils (Reeves and Baker, 2000). Nevertheless, relatively few tree species can survive on metalliferous soils with high metal loads. Metallophyte vegetation on naturally metalliferous soils in western and northern Europe are slowly invaded by ectomycorrhizal Betula sp., Salix sp., Pinus sp. and by arbuscular mycorrhizal Acer sp. (Colpaert and Vandenkoornhuyse, 2001). In many sites, tree growth is seriously affected by metal stress and metals in leaves or needles can reach toxic concentrations.

In contrast to our vast and long-standing knowledge on plant communities that thrive on metal-polluted soils, much less is known about the soil-born microorganisms that are associated with these pseudo-(metallophytes). An important reason for this lack of knowledge is the obvious practical difficulty in assessing belowground microbial communities and populations. However, developments in molecular biology now provide us with some tools that allow for the detection and accurate identification of belowground fungi in roots and soil. Ectomycorrhizal (ECM) fungi can be found
everywhere potential host trees are colonising metal-contaminated soils. Knowledge on the fungal communities from these metal-polluted soils is not only important for our general understanding of the functioning of natural ecosystems in stressful environments, this knowledge may also help us in developing strategies to remediate polluted areas (Turnau et al., 2008; Solíz-Domínguez et al., 2011). Furthermore, a thorough understanding of the impact of metal pollution on fungal diversity and fungal community dynamics is necessary to understand the faith of ECM fungi and plants after their introduction to metal-polluted environments. Therefore, the current study aimed to characterize and compare the ectomycorrhizal community associated with pioneer pine forests (Pinus sylvestris L.) growing on a metal-polluted and a non-polluted site in the Campine region in Belgium using 454 pyrosequencing (Margulies et al., 2005) and to assess the effects of metal pollution on fungal biodiversity and community composition.

Materials and Methods

Study sites and sampling

Fungal communities were sampled in two pioneer Scots pine forests (Pinus sylvestris L.) growing on sandy soils in the Campine region in Belgium. The first fungal community was sampled in a metal-polluted site in LommelMaatheide (LM: $51^{\circ} 14^{\prime} 10^{\prime \prime} \mathrm{N} ; 5^{\circ} 15^{\prime} 50^{\prime \prime} \mathrm{E}$). $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ extractable soil Zn and Cd concentrations in this site range from 1 to $197 \mathrm{mg} \mathrm{g}^{-1}$ dry weight (d. $\mathrm{wt}) \mathrm{Zn}$ and <0.1 to $1.56 \mu \mathrm{~g} \mathrm{~g}^{-1} \mathrm{~d}$. wt Cd. The second site is situated in Hechtel-Eksel (HE: $51^{\circ} 7^{\prime} 33^{\prime \prime} \mathrm{N}, 5^{\circ} 22^{\prime} 22^{\prime \prime} \mathrm{E}$). This site is hardly polluted by pyrometallurgical activities and is used as a reference site in this study. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ extractable soil Zn concentrations in this site range from 3 to 13 $\mu \mathrm{g} \mathrm{g}{ }^{-1} \mathrm{~d}$. wt and Cd concentrations were below the detection limit of $0.1 \mu \mathrm{~g}$ g^{-1} d. wt. Mosses, lichens, and a few grass species form the accompanying primary pioneer vegetation at both sites. In HE, also a few Calluna vulgaris (L.) Hull. shrubs occur on the study site. The soil at both study sites is a

Chapter 5

dry sandy soil without a litter layer, poor in organic matter and slightly acidic. The average soil organic matter (OM) content in HE was $0.7 \% \pm 0.1$ \% (standard error: SE) and the average pH was 4.5 ± 0.02 (SE). In LM, the average OM content was $0.8 \% \pm 0.1$ (SE) and the average pH was 4.6 ± 0.07 (SE). More detailed information on measured environmental variables in LM and HE can be found in Fig. S5.1. The region has an average annual rainfall of 800 mm per square meter and the average annual temperature is $10^{\circ} \mathrm{C}$ (Royal Meteorological Institute, Ukkel, Belgium). The pioneer forest in LM is growing on a site where most polluted topsoil was removed. This disturbance introduced heterogeneity in the newly exposed soil and resulted in large differences in metal concentrations over short distances. To estimate the overall metal exposure of individual pine trees in LM, soil samples and last-year pine needles from 22 one-year old trees were collected for Zn and Cd analysis. Finally, a subset of 10 trees containing between 200 and $400 \mu \mathrm{~g} \mathrm{Zn} \mathrm{g}{ }^{-1} \mathrm{~d}$. wt in needles were selected for the fungal community analysis. Needles of these trees were not chlorotic, though the critical leaf tissue concentrations affecting growth in most plants ranges from 200 to $300 \mu \mathrm{~g} \mathrm{Zn} \mathrm{g}{ }^{-1}$ d. wt (Påhlsson, 1989).
These 10 trees were compared to 10 one-year old trees from HE, containing from 20 to $90 \mu \mathrm{~g} \mathrm{Zn} \mathrm{g}{ }^{-1} \mathrm{~d}$. wt in needles (Fig. S5.1). Selected pine trees were at least 20 m apart from each other.

For the characterization of fungal communities, soil and root tip samples were collected at both sites in November 2009 and in November 2011. Soil samples were collected with a soil corer with a diameter of 1 cm at a depth of 0 cm to 20 cm . For each tree, five samples were collected according to the cardinal directions at different distances from the stem. These included samples collected immediately next to stems and at a distance of 25 cm , $50 \mathrm{~cm}, 75 \mathrm{~cm}$ and 100 cm from stems (Fig. S4.2). Samples were pooled for each of these distances and mixed, resulting in a total of five pooled samples for each tree with each sample representing a certain distance from the stem. Additionally, roots from selected pine trees were collected in both sampling years. Two long roots were unearthed per tree from the
stem base up to the growth tip of the roots. In the lab, roots were washed with tap water to remove most adhering soil. For each tree, all visible short root tips were collected from the entire length of the long roots, pooled and homogenized. Samples for physical and chemical soil characterization were collected next to each tree with a soil corer with a diameter of 10 cm at a depth of 0 to 20 cm . Soil samples for fungal community analysis were homogenized, sieved with a 2 mm sieve to remove small stones, roots, and other debris, and stored at $-80^{\circ} \mathrm{C}$. Samples for soil characterization were dried at ambient temperature for two weeks before physical and chemical analyses were conducted. Collected pine needles were dried for two weeks at $60^{\circ} \mathrm{C}$ before being analysed for their metal content.

Soil physical and chemical characterization

pH was measured in both a water extract (10 g soil extracted with 25 ml distilled water) and a KCl extract (10 g soil extracted with 25 ml 1 M KCl) of soil samples. Conductivity was measured on the water extracts. Soil organic matter content (OM) was analysed with the Walkley and Black method (Walkley and Black, 1934). Cation exchange capacity (CEC) was measured according to Rhoades' method (Rhoades, 1982). Exchangeable cations were extracted using $0.1 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ (25 ml for 5 g soil). Dried pine needles were digested with nitric acid (65\%) and hydrochloric acid (37\%) at 120 ${ }^{\circ} \mathrm{C}$. Concentrations of zinc (Zn), cadmium (Cd), iron (Fe), magnesium (Mg), potassium (K), copper (Cu) and manganese (Mn) were measured with inductively-coupled plasma - optical emission spectroscopy (ICP-OES) in samples obtained from calcium nitrate extraction and pine needle digestion. Calcium (Ca) concentrations were measured in pine needle digests.

Characterization of the fungal communities

To characterize the fungal communities in soil and root tip samples, DNA was extracted using the UltraClean soil DNA isolation kit (MoBio, Carlsbad CA, USA) from approximately 250 mg of soil or root tips according to the manufacturer's instructions. DNA was extracted in quadruplicate from each

Chapter 5

sample and replicated extracts were pooled per sample prior to PCR amplification using the ITS86F forward primer (Vancov and Keen, 2009) and ITS4 reverse primer (Gardes and Bruns, 1993). This primer pair was shown to efficiently amplify the fungal internal transcribed spacer 2 (ITS2) region and characterize fungal communities using 454 pyrosequencing (Op De Beeck et al., 2014). "Fusion" primers, required for the 454 process, were designed according to the guidelines for 454 GS-FLX Titanium Lib-A sequencing containing the Roche 454 pyrosequencing adapters and a 10bp multiplex identifier (MID) barcode in between each adapter and primer sequence (Table S5.1). DNA was amplified using a Techne TC-5000 thermocycler (Bibby Scientific Limited, Staffordshire, UK) under the following conditions: initial denaturation at $95^{\circ} \mathrm{C}$ for 2 minutes, followed by 40 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 30 seconds, annealing at $55^{\circ} \mathrm{C}$ for 30 seconds and extension at $72^{\circ} \mathrm{C}$ during 1 minute. A final extension phase was performed at $72^{\circ} \mathrm{C}$ during 10 minutes. Reactions were carried out in $25 \mu \mathrm{l}$ reaction volumes using the FastStart High Fidelity PCR System (Roche Applied Science, Mannheim, Germany). Each reaction contained $2.75 \mu \mathrm{l}$ FastStart 10x reaction buffer, 1.8 mM MgCl, 0.2 mM dNTP mix, $0.4 \mu \mathrm{M}$ of each primer, 1.25 U FastStart HiFi polymerase and 5 ng template DNA (as measured by a Nanodrop spectrophotometer). Amplified DNA was cleared from PCR primers and primer dimers using the Agencourt AMPure XP system according to the manufacturer's protocol (Beckman Coulter, Brea, CA, USA). Next, purified DNA was quantified with the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) and a Fluostar Omega plate reader (BMG Labtech, Ortenberg, Germany) and pooled into five equimolar amplicon libraries (10^{7} molecules per $\mu \mathrm{l}$) of 40 to 50 samples. Each of the five resulting amplicon pools were sequenced on one fourth of a pico titer plate on a Roche Genome Sequencer FLX system using Titanium chemistry (Roche Applied Science, Mannheim, Germany) according to the manufacturer's instructions.
The five Standard Flowgram Format (SFF) files that resulted from the interpreted flowgrams were submitted to the NCBI Sequence Read Archive
under accession number SRP037968 (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra). The information in the separate SFF files was combined in a single quality and a fasta file using a custom Python script. Further analyses were performed in Mothur 1.31.2 (Schloss et al., 2009). Quality trimming in Mothur was used to remove reads shorter than 200 bases, reads longer than 600 bases, reads containing homopolymers longer than 8 bases and reads containing ambiguous bases. Reads were trimmed when the average Phred quality score dropped below 35 over a window of 50 bases (Schloss et al., 2009). Next, sequences were compared to each other and duplicate sequences were replaced by a single sequence, while archiving the abundance data of the unique sequences. Unique reads were checked for chimeric sequences with the Uchime software implemented in Mothur and chimeric sequences were removed from the dataset. Unique reads were subsequently aligned with the pairwise alignment tool in Mothur, using default settings. Finally, species-level operational taxonomic units (OTUs) were defined based on a 97% sequence similarity cut-off, which is generally within the range of intraspecific ITS sequence similarity (Blaalid et al., 2013). In order to further remove potential sequencing errors from the dataset, singletons were removed (Tedersoo et al., 2010). Subsequently, rarefaction curves at the level of individual trees were constructed and Good's coverage was calculated with Mothur for each tree. OTU richness, Pielou evenness scores and inverse Simpson indices were calculated for each tree in R 3.0.3 (The R Foundation for Statistical Computing, Vienna, Austria). Since rarefication of the number of reads per sample did not result in any major changes in the fungal diversity patterns or community structures, we kept all observed reads in samples. BLAST searches for a representative sequence of each OTU (as determined by Mothur) were performed using PlutoF v2.0 (Abarenkov et al., 2010). Reads were blasted against the UNITE (Kõljalg et al., 2005) and INSD (Nakamura et al., 2013) databases. Resulting HTML files were combined with the abundance data obtained in Mothur using a custom Python script. This script also acquired the names of species and/or genera

Chapter 5

that resemble Latin binomials with the highest BLAST score, avoiding unidentified OTUs in the databases to be seen as best BLAST hits. Unidentified OTUs were indicated as "not applicable (NA)".

Statistical analysis

Statistical analyses were carried out in R 3.0.3 (The R Foundation for Statistical Computing, Vienna, Austria). Normal distributions of the residuals of models were checked with the Shapiro-Wilk test, while the homoscedasticity of variances were analysed using either Bartlett's or the Fligner-Killeen test. Depending on the distribution of the estimated parameters, either ANOVA or the Kruskal-Wallis rank sum test was used to check for significant differences in variances of parameters. Two-by-two comparisons were conducted using either Tukey's Honest Significant Differences tests or Pairwise Wilcoxon Rank Sum tests. Correlations between diversity parameters and measured environmental parameters were calculated based on Pearson's product moment correlation coefficient (R^{2}). Non-Metric Multi-dimensional Scaling (NMDS) was conducted using the metaMDS() function of the vegan package (version 2.0-10; Oksanen et al., 2013) in R. Canonical Correspondence Analysis (CCA) model building was based on the cca() function of the vegan package and CCA analysis was based on the decorana() and envfit() functions of the vegan package. Mantel tests were conducted using the mantel() function of the vegan package in R. PERMANOVA analyses were conducted in R using the adonis() function of the vegan package. Distance matrices for community data were based on Bray-Curtis distances using read abundances.

Results

The 454 amplicon pyrosequencing runs resulted in a total of 460,354 raw reads across soil and root tip samples. After quality trimming and assigning reads to samples, 424,296 high-quality reads remained in the dataset. Calculation of Good's coverage scores indicated that in 2009, 95\% $\pm 0.9 \%$ (SE) and in $201196 \% \pm 0.2 \%$ (SE) of all fungal OTUs present in soil samples in LM were detected. For the fungal communities sampled in HE, it was calculated that in $2009,96 \% \pm 0.5 \%$ (SE) of the present OTUs were sampled and $96 \% \pm 0.8 \%$ (SE) in 2011. Good's coverage scores for root tips collected from LM trees in 2009 and 2011 were $95 \% \pm 0.6 \%$ (SE) and $96 \% \pm 0.9 \%$ (SE) respectively. Good's coverage scores for root tips collected from HE trees in 2009 and 2011 respectively were $96 \% \pm 0.2 \%$ (SE) and $97 \% \pm 0.1 \%$ (SE). These results indicate that the used sampling depth was sufficient to identify most fungal species present in both soil and root tip samples.

Comparison of environmental parameters

Environmental parameters were compared between the metal-polluted site LM and the control site HE using a two-way ANOVA. Environmental parameters were used as dependent variables and study site and sampling year were used as fixed, independent variables. Significant differences in almost all environmental variables were found between study sites. For a few environmental variables (Needle Mg, Needle Mn, Needle K and Needle Cu) differences between sampling years were observed as well. More detailed information about differences in environmental variables between LM and HE are presented in Fig. S5.1.

Comparison of fungal diversity parameters

Fungal diversity parameters (OTU richness, Pielou evenness and inverse Simpson index) were compared among study sites (LM and HE) and sampling years (2009 and 2011) using two-way ANOVA. Fungal diversity

Chapter 5

parameters were used as dependent variables and spatio-temporal variables as fixed, independent variables. No significant differences between study sites or sampling years were observed ($p=0.32$ for sampling year and $p=0.46$ for study site; Fig. 1).

Figure 5.1 Comparison of fungal diversity measures between a metal-polluted site in Lommel-Maatheide (LM) and a control site in Hechtel-Eksel (HE). A. OTU richness. B. Inverse Simpson index. C. Pielou evenness. No significant differences at the 95% confidence level were observed.

Comparison of fungal community compositions

Fungal community compositions were compared between sampling years and study sites using two-way PERMANOVA. A community distance matrix (based on Bray-Curtis distances) was used as dependent variable and spatial and temporal scales were used as independent, fixed effects. Significant differences in the fungal community compositions were observed both between study sites and sampling years ($p<0.01$).

Subsequently, a more detailed comparison was made between the fungal communities based on the presence or absence of individual OTUs. Presence-absence of OTUs in specific combinations of sampling years and study sites are presented as a Venn diagram in Fig. S5.2. From this Venn diagram it is clear that of a total of 719 OTUs identified in this study, a large proportion (48.5\%) was uniquely identified in single year-site combinations. Another relatively large proportion of OTUs (18.6\%) were shared by all sampling year and study site combinations. Interestingly, all OTUs with an average relative abundance > 1% were shared by all sampling years and study sites.

Effects of environmental parameters on fungal diversity

Correlations between measured environmental parameters and fungal diversity measures were calculated. A number of environmental factors were negatively correlated with OTU richness in the 2011 dataset ($\mathrm{p}<$ 0.05): CEC, pH ($\mathrm{H}_{2} \mathrm{O}$-derived), needle Zn , needle Cd and needle Cu concentrations. Furthermore, a positive correlation ($p<0.05$) between OTU richness and soil Fe, Mg and K was observed for the 2011 dataset. Whereas CEC and needle Cu concentrations were also negatively correlated with Pielou evenness indices ($\mathrm{p}<0.05$), soil Mg and K concentrations showed a positive correlation with Pielou evenness indices in the 2011 dataset ($p<0.05$). In the 2009 dataset, however, none of these correlations were significant. A complete list of Pearson's correlation coefficients between environmental parameters and fungal diversity indices can be found in Table S5.2.

Chapter 5

Effects of environmental parameters on fungal community composition

Canonical correspondence analyses (CCA) comparing fungal community dissimilarities (based on Bray-Curtis distances) show that both in 2009 and 2011 the LM and HE communities differ from each other (Fig. 2). Many of the measured environmental factors were found to significantly correlate with the fungal community compositions in both sampling years (Permutation tests; all $\mathrm{p}<0.01$; Fig. 2). Two main gradients were identified, consisting of different inter-correlating factors. A first gradient mainly represented the degree of metal pollution and consisted of needle Zn, Cd and Ca concentrations and soil Zn and Cd concentrations. The second gradient consisted of soil $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}$ and K concentrations. For the 2009 analysis, RA1 represented 42% of the total variation and RA2 represented 28\%. For the 2011 analysis, RA1 and RA2 represented 34\% and 27% of the total variation, respectively (Fig. 2). On the CCA plots, only the top ten most abundant OTUs for each site were shown to prevent crowding of the graphs. A number of OTUs were consistently more abundant in LM than in HE. These OTUs corresponded to Suillus Iuteus, Sagenomella humicola, Cadophora finlandica, Wilcoxina mikolae and Inocybe lacera. OTUs that were consistently more abundant in HE samples corresponded to Rhizopogon luteolus, Cryptococcus podzolicus, Rhizoscyphus ericae and Vonarxia vagans. The OTU that was the most abundant OTU in most samples corresponded to Sistotrema sp. The relative abundances of the top ten most abundant OTUs per site and sampling year are displayed in Fig. 3. A complete list of all OTUs identified in the current study, their average relative abundances across the entire study, BLAST scores and corresponding E-values can be found in Appendix C.

Chapter 5

∞
 Suillus luteus

Inocybe lacera | PH $\left(\mathrm{H}_{2} \mathrm{O}\right.$-derived | |
| :--- | :--- |
| Needle Zn | |
| | |
| Needle Cd | |
| | |
| | |
| | |

Figure 5.2 Results of Canonical Correspondence Analysis (CCA) correlating fungal community structure (based on Bray-Curtis dissimilarities) with measured environmental parameters for a metal-polluted site in Lommel-Maatheide (LM) and a control site in Hechtel-Eksel (HE) for two sampling years (2009 and 2011). A. CCA plot comparing LM and HE samples collected in 2009. B. CCA plot comparing LM and HE samples collected in 2011.

Chapter 5

D

- Sistotrema sp. (SAP/ECM)
aSuillus luteus (ECM)
\square Wilcoxina mikolae (END/ECM)
-Inocybe lacera (ECM)
\square Sagenomella humicola (SAP)
\square Cadophora finlandica (ECM)
\square Rhizoscyphus ericae (END/ERM/ECM)
\square Agaricus pinsitus (SAP)
\square Acephala macrosclerotiorum (ECM)
- Sagenomella diversispora (SAP)
\square Remaining taxa

Figure 5.3 Pie charts displaying the top ten most abundant fungal species identified in soil samples using 454 amplicon pyrosequencing. A. Hechtel-Eksel 2009. B. Lommel-Maatheide 2009. C. Hechtel-Eksel 2011. D. Lommel-Maatheide 2011. Species not occurring in the list of top ten most abundant species are grouped together as "Remaining taxa". Lifestyles of fungal species are given between brackets: ECM (ectomycorrhizal), ERM (ericoid mycorrhizal), AM (arbuscular mycorrhizal), SAP (saprotrophic), PATH (pathogenic), END (endophytic).

Fungal species identified from root tip samples

A number of the OTUs that were identified in soil samples were also found in root tip samples (Fig. 4). From Fig. 4 it is clear that even though OTUs corresponding to Sistotrema sp. were very dominant in soil samples in both sampling years and sites, some other OTUs were found to dominate the fungal communities identified from root tip samples. Root tips collected in HE were largely dominated by Rhizopogon luteolus (accounting for 61\% of all reads identified in 2009 and 49\% in 2011). Other dominant OTUs identified from root tips in HE corresponded to Rhizoscyphus ericae (5\% in 2009 and 9\% in 2011), Acephala macrosclerotiorum (1\% and 9\% respectively). Sistotrema sp. accounted for 7% and 4% of all reads identified from root tips collected in HE in 2009 and 2011 respectively. In LM, Suillus luteus dominated root tip samples (accounting for 14% and 55% of all reads identified in 2009 and 2011 respectively). Also Rhizoscyphus ericae was frequently identified (13\% in 2009 and 10% in 2011), together with Wilcoxina mikolae (23% in 2009 and 5\% in 2011), Cadophora finlandica (9\% in 2009 and 6% in 2011), Suillus bovinus (8% in 2009 and 3\% in 2011) and Sagenomella humicola (4\% in 2009 and 1\% in 2011). At the phylum level, root tips were dominated by Ascomycota in LM in 2009, but Basidiomycota dominated the root tips of pines in 2011 in this study site. In HE, Basidiomycota dominated the root tips in both sampling years (Fig. S5.3).

Chapter 5

B

Figure 5.4 Pie charts displaying the top ten most abundant fungal species identified in root tip samples using 454 amplicon pyrosequencing. A. Hechtel-Eksel 2009. B. Lommel-Maatheide 2009. C. Hechtel-Eksel 2011. D. Lommel-Maatheide 2011. Species not occurring in the list of top ten most abundant species are grouped together as "Remaining taxa". Lifestyles of fungal species are given between brackets: ECM (ectomycorrhizal), ERM (ericoid mycorrhizal), AM (arbuscular mycorrhizal), SAP (saprotrophic), PATH (pathogenic), END (endophytic).

Chapter 5

DIscussion

The effects of metal pollution on plant communities has been studied extensively in the past, but little is known about the fungal symbionts that occur with these plant communities. A number of studies have been conducted to investigate the effect of increased concentrations of metals on microbial communities. Whereas many studies reported shifts in fungal communities caused by increasing concentrations of metal ions, they usually do not reveal which fungal species are associated with plants thriving on metal-polluted sites and which species are unable to colonize polluted soils (e.g. Chodak et al., 2013; Corneo et al., 2013).

In the current study, we identified the fungal communities associated with Scots pine trees on a metal-polluted and a control site. The fungal communities at both study sites consisted mainly of the same fungal species as all OTUs with a relative read abundance $>1 \%$ were shared between both study sites (Fig. S5.2). However, the relative abundances of OTUs differed markedly between the study sites, indicating a shift in the relative abundance of fungal species that are otherwise characteristic for pioneer pine ecosystems in the Campine region in Belgium. Differences between both fungal communities were found to be strongly related to the presence of metal pollution on the one hand and soil mineral content on the other hand (Fig. 2). These results are in line with previous studies where shifts in ectomycorrhizal communities have been linked to changes in nutrient concentrations and the presence of metal-pollution (Toljander et al., 2006 and Hui et al., 2011, respectively). On the other hand, metal pollution appears to have little or no effect on fungal diversity (Fig. 1 and Hui et al., 2011). Differences in the observed fungal communities between sampling years suggest that colonization of soils by fungi in the investigated pioneer pine forests must be very dynamic. Possibly, seasonal fluctuations in fungal colonisation of soils and root systems resulted in different amounts of mycelium in soil samples and on collected pine roots from which DNA was extracted. The variation in frequency of dominant species in soil
and roots suggests that root and soil colonization by mycelia is a rapid process with a high turnover between years in the studied pioneer forests. These results also confirm findings by Pickles et al. (2010) where both spatial and temporal differences in ECM fungal communities associated with Pinus sylvestris were found at similar spatial and temporal scales as the ones investigated in the current study. A high turn-over rate of fungal mycelium in metal-polluted soils would favour the evolution of adaptive metal tolerance over short time spans, explaining why adaptive metal tolerance is most often observed in r-strategists amongst bacteria, fungi and plants and hardly ever in k-strategists such as woody tree species. The dynamics of the observed fungal communities associated with pine roots were also obvious at the phylum level (Fig. S5.3). Whereas the communities were dominated by Basidiomycota for both sampling years in HE, Ascomycota dominated the primary pioneer fungal communities in LM in 2009. In 2011, however, Basidiomycota became the most abundant phylum on root tips in LM. Since the first sampling session for the current study took place only one year after the pine trees were planted in LM, stress-tolerant pioneer ectomycorrhizal Basidiomycota were probably not sufficiently available to colonize pine roots and to establish their extensive mycelia. In the absence of Basidiomycota, opportunistic and endophytic Ascomycota colonized the available short roots. It remains unclear whether these associations benefit the host plants. By 2011, however, mycelial networks of Suilloids outcompeted the ubiquitous Ascomycota that were dominant in 2009

The observed OTU richness for all study sites and sampling years was much lower than the observed richness in older forest soils, such as the ones studied by Hartmann et al., 2014 and Voříšková et al., 2014. In our studies, 518 OTUs were identified at a 97\% sequence similarity cut-off in HE across sampling years. In LM, 521 OTUs were identified. In comparison, 1,007 OTUs (at the genus level) were identified in Fagus sylvatica (L.) and Picea abies (L.) Karst forest soils in Switzerland by Hartmann et al. (2014) and 2,534 OTUs (excluding singletons) were identified by Voříšková et al.

Chapter 5

(2014) in a Quercus petraea (Matt.) Liebl. forest stand in the Czech Republic. The relatively low number of OTUs identified in our study is probably typical for young pioneer forests (Kipfer et al., 2011).

Fungal species identified in the polluted and non-polluted sites

In both sites, root tip and soil samples were found to be dominated by only a few ECM fungal species, whereas the majority of OTUs had very low relative abundances. This abundance pattern is typical for ECM fungi (Horton and Bruns, 2001). However, the species abundance patterns of the root tip samples differed greatly from the abundance patterns observed in soil samples (Fig. 3,4). Nevertheless, our study confirms that Suilloid fungi are the primary root colonisers of pine trees thriving in pioneer conditions (Ashkannejhad and Horton, 2006). The discrepancy in occurrence of the ECM fungi identified in root tip samples and soil samples in this study probably reflects differences in exploration types and life history traits of the different ECM species (Genney et al., 2006). Root tips collected from HE were strongly dominated by Rhizopogon luteolus, whereas Suillus luteus and Wilcoxina mikolae dominated root tips collected in LM. In LM, S. Iuteus becomes more dominant on root tips of the 3-year old trees, mainly at the expense of W. mikolae mycorrhizas. Dominance of Suillus luteus was expected in the metal-polluted site since this species has been shown in the past to have developed Zn - and Cd-tolerant populations in the LM region (Colpaert et al., 2004; Krznaric et al., 2009). Interestingly, the dominant position of Suillus luteus in LM soil and root samples appears to be taken up by Rhizopogon luteolus in HE. Rhizopogon luteolus occupies a very similar ecological (belowground) niche compared to S. luteus, but it may be less adapted to high metal concentrations at the LM site. In a previous study, we recorded a higher in vitro adaptation potential for Zn tolerance in S. Iuteus than in R. luteolus (Colpaert et al., 2004). Some species, mostly Ascomycota, that appeared in the list of top ten most abundant fungal species in LM have been observed in metal-polluted soils and other stressful environments in previous studies, suggesting that these
species exhibit substantial metabolic resilience to the harsh conditions or that they have developed adaptive metal tolerance mechanisms as did S. luteus (Colpaert et al., 2004). For example, Wilcoxina mikolae, Cadophora finlandica and Inocybe lacera have all been observed in metal-enriched soils in previous investigations (Prabhu et al., 1996, Gorfer et al., 2009 and Huang et al., 2012 respectively). These fungi are therefore interesting candidates to test for metal-resistance and/or -tolerance mechanisms.

Conclusions

Fungal communities thriving in pioneer pine forests in the Campine region of Belgium were shown to be dominated by a few pioneer ECM fungal species such as Sistotrema sp., Wilcoxina mikolae, Suillus luteus and Rhizopogon luteolus. Both in metal-polluted and non-polluted forest soils, the same fungal species were detected, but their relative abundances differed markedly. Statistical analysis indicated the existence of two gradients that correlate well with the observed fungal community compositions. The first gradient corresponded to metal pollution and the second gradient was found to be composed of the soil minerals $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn}$ and K. Since for both the metal-polluted and non-polluted sites very similar diversity measures were found and all abundant species were shared between study sites, differences in ECM fungal community structures were attributed to abundance shifts of species that are otherwise probably typical for the studied fungal pioneer communities. Differences between sampling years revealed a highly dynamic fungal community, suggesting that mycelial exploration of pioneer soils is a process with a high turnover rate.

Acknowledgements

The authors would like to thank Marc Missoorten for granting access to the study sites and for assistance during fieldwork. We would also like to thank Michael Waud for performing the pyrosequencing runs.

Chapter 5

References

Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M et al. (2010). PlutoF - a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics 6: 189-196.

Ashkannejhad S, Horton TR (2006). Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytologist 169: 345-354.

Påhlsson AMB (1989). Toxicity of heavy metals ($\mathrm{Zn}, \mathrm{Cu}, \mathrm{Cd}, \mathrm{Pb}$) to vascular plants - a literature review. Water Air and Soil Pollution: 47: 287-319.

Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013). ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources 13: 218-224.

Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology 64: 7-14.

Colpaert JV, Vandenkoornhuyse P (2001). Mycorrhizal fungi. In: Prasad MNV ed. Metals in the Environment: Analysis by Biodiversity. Marcel Dekker, New York.

Colpaert JV, Muller LAH, Lambaerts M, Adriaensen K, Vangronsveld J (2004). Evolutionary adaptation to zinc toxicity in populations of Suilloid fungi. New Phytologist 162: 549-559.

Corneo PE, Pellegrini A, Cappellin L, Roncador M, Chierici M, Gessler C, Pertot I (2013). Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiology Ecology 84: 588-602.

Ernst WHO (1990). Mine vegetations in Europe. In: Shaw AJ ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton, pp. 21-37.

Gardes M, Bruns TD (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.

Genney DR, Anderson IC, Alexander IJ (2006). Fine-scale distribution of pine ectomycorrhizas and their extrametrical mycelium. New Phytologist 170: 381-390.

Gorfer M, Persak H, Berger H, Brynda S, Bandian D, Strauss J (2009). Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycological Research 113: 1377-1388.

Hartmann M, Niklaus PA, Zimmermann S, Schutz S, Kremer J, Abarenkov K, Lüscher P, Widmer F et al. (2014). Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME Journal 8: 226244.

Horton TR, Bruns TD (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10: 1855-1871.

Chapter 5

Huang J, Nara K, Lian CL, Zong K, Peng KJ, Xue SG, Shen ZG (2012). Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in $\mathrm{Pb}-\mathrm{Zn}$ mine sites of central south China. Mycorrhiza

22: 589-602.

Hui N, Jumpponen A, Niskanen T, Liimatainen K, Jones KL, Koivula T, Romantschuk M, Strömmer R (2011). ECM fungal community structure, but not diversity, altered in a Pb -contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiology Ecology 76: 121-132.

Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011). Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167: 219-228.

Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K et al. (2005). UNITE: a database providing webbased methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166: 1063-1068.

Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009). Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd. Environmental Pollution 157: 1581-1588.

Margulies M, Egholm M, Altman WE, Attyia S, Bader JS, Bemben LA, Berka J, Braverman MS et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380.

Nakamura Y, Cochrane G, Karsch-Mizrachi I (2013). The international nucleotide sequence database collaboration. Nucleic Acids Research 41: D21-D24.

Oksanen J, Blanchet GF, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P et al. (2013). vegan: Community Ecology Package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan

Op De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV (2014). Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One. doi: 10.1371/journal.pone. 0097629.

Pickles BJ, Genney DR, Potts JM, Lennon JJ, Andreson IC, Alexander IJ (2010). Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytologist 186: 755-768.

Prabhu V, Biolchini PF, Boyer GL (1996). Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. Biometals 9: 229-234.

Reeves RD, Baker AJM (2000). Metal-accumulating plants. In: Raskin I, Ensley BD eds. Phytoremediation of toxic metals: Using plants to clean up the environment. John Wiley \& Sons, New York.

Rhoades JD (1983). Cation exchange capacity. In: Page AL ed. Methods of soil analysis, Part 2 Chemical and microbiological properties, 2nd edn. American Society Of Agronomy, Madison. pp. 149-157.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541.

Chapter 5

Schwickerath M (1944). Das Hohe Venn und seine Randgebiete, Vegetation, Boden, Landschaft. Gustav Fischer, Jena. pp. 170-178.

Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM (2011). Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Science of the Total Environment 409: 1009-1016.

Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E et al. (2010). 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist 188: 291-301.

Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS (2006). Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytologist 170: 873-884.

Turnau K, Anielska T, Ryszka P, Gawroński S, Ostachowicz B, Jurkiewicz A (2008). Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes - new solution for waste revegetation. Plant and Soil 305: 267-280.

Vancov T, Keen B (2009). Amplification of soil fungal community DNA using the ITS86F and ITS4 primers. FEMS Microbiology Letters 296: 91-96.

Voříšková J, Brabcová V, Cajthaml T, Baldrian P (2014). Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist 201: 269-278.

Walkley A, Black IA (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29-37.

Supporting Information

Chapter 5

Chapter 5

Supporting Information Figure S5.1 Environmental parameters measured in the current study in Lommel-Maatheide (LM: metal-polluted site) and Hechtel-Eksel (HE: control site). All parameters were measured in 2009 and again in 2011. Significant differences at the 95% confidence level are indicated with letters. A. Soil organic matter (OM). B. Cation exchange capacity (CEC). C. Soil conductivity. D. pH (KClderived). E. pH ($\mathrm{H}_{2} \mathrm{O}$-derived). F. Soil zinc concentration. G. Soil cadmium concentration. H. Soil iron concentration. I. Soil magnesium concentration. J. Soil manganese concentration. K. Soil potassium concentration. L. Needle zinc concentration. M. Needle iron concentration. N. Needle cadmium concentration. O. Needle magnesium concentration. P. Needle manganese concentration. Q. Needle potassium concentration. R. Needle calcium concentration. S. Needle copper concentration. Cadmium concentrations in pine needles and soil samples and copper concentrations in soil samples were below the detection limit of $0.1 \mu \mathrm{~g} \mathrm{~g}{ }^{-1}$ for samples collected in HE.

Chapter 5

Supporting Information Figure S5.2 Venn diagram showing the overlap in operational taxonomic unit (OTU) composition between study sites (a metal-polluted site in Lommel-Maatheide: LM and a control site in Hechtel-Eksel: HE) and sampling years (2009 and 2011). Numbers represent the number of OTUs identified in a given study site or sampling year. A total of 719 OTUs across study sites and sampling years were identified.

Chapter 5

Supporting Information Figure S5.3 Fungal community composition of root tip samples at the phylum level for the metal polluted site in Lommel-Maatheide (LM) and the control site in Hechtel-Eksel (HE). Samples were collected in 2009 and again in 2011. A. HE 2009 fungal community. B. LM 2009 fungal community. C. HE 2011 fungal community. D. LM 2011 fungal community.

Chapter 5

Supporting Information Table S5.1 Primer design used in the current study to construct fusion primers for 454 amplicon pyrosequencing.

Pool	Sample ${ }^{(1)}$	Forward primer			Reverse primer		
		454 Ada- pter (2)	MID (3)	Fungal ITS primer (4)	454 Ada- pter (2)	MID (3)	Fungal ITS primer (4)
1	LM_11.1_2009	A	6	ITS86F	B	6	ITS4
1	LM_11.2_209	A	6	ITS86F	B	7	ITS4
1	LM_11.3_2009	A	7	ITS86F	B	6	ITS4
1	LM_11.4_2009	A	7	ITS86F	B	7	ITS4
1	LM_11.5_2009	A	6	ITS86F	B	8	ITS4
1	LM_12.1_2009	A	8	ITS86F	B	6	ITS4
1	LM_12.2_2009	A	7	ITS86F	B	8	ITS4
1	LM_12.3_2009	A	8	ITS86F	B	7	ITS4
1	LM_12.4_2009	A	8	ITS86F	B	8	ITS4
1	LM_12.5_2009	A	6	ITS86F	B	9	ITS4
1	LM_2.1_2009	A	9	ITS86F	B	6	ITS4
1	LM_21.1_2009	A	7	ITS86F	B	9	ITS4
1	LM_21.2_2009	A	9	ITS86F	B	7	ITS4
1	LM_21.3_2009	A	8	ITS86F	B	9	ITS4
1	LM_21.4_2009	A	9	ITS86F	B	8	ITS4
1	LM_21.5_2009	A	9	ITS86F	B	9	ITS4
1	LM_27.1_2009	A	6	ITS86F	B	10	ITS4
1	LM_27.2_2009	A	10	ITS86F	B	6	ITS4
1	LM_27.3_2009	A	7	ITS86F	B	10	ITS4
1	LM_27.4_2009	A	10	ITS86F	B	7	ITS4
1	LM_27.5_2009	A	8	ITS86F	B	10	ITS4
1	LM_29.3_2009	A	10	ITS86F	B	8	ITS4
1	LM_30.1_2009	A	9	ITS86F	B	10	ITS4
1	LM_30.2_2009	A	10	ITS86F	B	9	ITS4
1	LM_30.3_2009	A	10	ITS86F	B	10	ITS4
1	LM_30.4_2009	A	6	ITS86F	B	11	ITS4
1	LM_30.5_2009	A	11	ITS86F	B	6	ITS4
1	LM_31.1_2009	A	7	ITS86F	B	11	ITS4
1	LM_31.2_2009	A	11	ITS86F	B	7	ITS4
1	LM_31.3_2009	A	8	ITS86F	B	11	ITS4
1	LM_31.4_2009	A	11	ITS86F	B	8	ITS4
1	LM_31.5_2009	A	9	ITS86F	B	11	ITS4
1	LM_5.1_2009	A	11	ITS86F	B	9	ITS4
1	LM_5.2_2009	A	10	ITS86F	B	11	ITS4
1	LM_5.3_2009	A	11	ITS86F	B	10	ITS4
1	LM_5.4_2009	A	11	ITS86F	B	11	ITS4
1	LM_5.5_2009	A	6	ITS86F	B	12	ITS4
1	LM_2.2_2009	A	12	ITS86F	B	6	ITS4
1	LM_2.3_2009	A	7	ITS86F	B	12	ITS4

1	LM_2.4_2009	A	12	ITS86F	B	7	ITS4
1	LM_2.5_2009	A	8	ITS86F	B	12	ITS4
1	LM_28.1_2009	A	12	ITS86F	B	8	ITS4
1	LM_28.2_2009	A	9	ITS86F	B	12	ITS4
1	LM_28.3_2009	A	12	ITS86F	B	9	ITS4
1	LM_28.4_2009	A	10	ITS86F	B	12	ITS4
1	LM_28.5_2009	A	12	ITS86F	B	10	ITS4
1	LM_29.1_2009	A	11	ITS86F	B	12	ITS4
1	LM_29.2_2009	A	12	ITS86F	B	11	ITS4
1	LM_29.4_2009	A	12	ITS86F	B	12	ITS4
1	LM_29.5_2009	A	6	ITS86F	B	13	ITS4
2	LM_11.2_2011	A	6	ITS86F	B	6	ITS4
2	LM_11.3_2011	A	6	ITS86F	B	7	ITS4
2	LM_11.4_2011	A	7	ITS86F	B	6	ITS4
2	LM_11.5_2011	A	7	ITS86F	B	7	ITS4
2	LM_12.1_2011	A	6	ITS86F	B	8	ITS4
2	LM_12.2_2011	A	8	ITS86F	B	6	ITS4
2	LM_12.4_2011	A	7	ITS86F	B	8	ITS4
2	LM_2.4_2011	A	8	ITS86F	B	7	ITS4
2	LM_2.5_2011	A	8	ITS86F	B	8	ITS4
2	LM_21.1_2011	A	6	ITS86F	B	9	ITS4
2	LM_21.2_2011	A	9	ITS86F	B	6	ITS4
2	LM_21.3_2011	A	7	ITS86F	B	9	ITS4
2	LM_21.5_2011	A	9	ITS86F	B	7	ITS4
2	LM_27.1_2011	A	8	ITS86F	B	9	ITS4
2	LM_27.2_2011	A	9	ITS86F	B	8	ITS4
2	LM_27.4_2011	A	9	ITS86F	B	9	ITS4
2	LM_27.5_2011	A	6	ITS86F	B	10	ITS4
2	LM_28.1_2011	A	10	ITS86F	B	6	ITS4
2	LM_28.2_2011	A	7	ITS86F	B	10	ITS4
2	LM_28.3_2011	A	10	ITS86F	B	7	ITS4
2	LM_29.2_2011	A	8	ITS86F	B	10	ITS4
2	LM_29.5_2011	A	10	ITS86F	B	8	ITS4
2	LM_30.2_2011	A	9	ITS86F	B	10	ITS4
2	LM_30.3_2011	A	10	ITS86F	B	9	ITS4
2	LM_31.1_2011	A	10	ITS86F	B	10	ITS4
2	LM_31.2_2011	A	6	ITS86F	B	11	ITS4
2	LM_31.3_2011	A	11	ITS86F	B	6	ITS4
2	LM_31.4_2011	A	7	ITS86F	B	11	ITS4
2	LM_11.1_2011	A	11	ITS86F	B	7	ITS4
2	LM_12.3_2011	A	8	ITS86F	B	11	ITS4
2	LM_12.5_2011	A	11	ITS86F	B	8	ITS4
2	LM_2.1_2011	A	9	ITS86F	B	11	ITS4
2	LM_2.2_2011	A	11	ITS86F	B	9	ITS4
2	LM_2.3_2011	A	10	ITS86F	B	11	ITS4
2	LM_21.4_2011	A	11	ITS86F	B	10	ITS4
2	LM_27.3_2011	A	11	ITS86F	B	11	ITS4

Chapter 5

2	LM_28.4_2011	A	6	ITS86F	B	12	ITS4
2	LM_28.5_2011	A	12	ITS86F	B	6	ITS4
2	LM_29.1_2011	A	7	ITS86F	B	12	ITS4
2	LM_29.3_2011	A	12	ITS86F	B	7	ITS4
2	LM_29.4_2011	A	8	ITS86F	B	12	ITS4
2	LM_30.1_2011	A	12	ITS86F	B	8	ITS4
2	LM_30.4_2011	A	9	ITS86F	B	12	ITS4
2	LM_30.5_2011	A	12	ITS86F	B	9	ITS4
2	LM_31.5_2011	A	10	ITS86F	B	12	ITS4
2	LM_5.1_2011	A	12	ITS86F	B	10	ITS4
2	LM_5.2_2011	A	11	ITS86F	B	12	ITS4
2	LM_5.3_2011	A	12	ITS86F	B	11	ITS4
2	LM_5.4_2011	A	12	ITS86F	B	12	ITS4
2	LM_5.5_2011	A	6	ITS86F	B	13	ITS4
3	HE_03.1_2009	A	6	ITS86F	B	6	ITS4
3	HE_03.2_2009	A	6	ITS86F	B	7	ITS4
3	HE_03.3_2009	A	7	ITS86F	B	6	ITS4
3	HE_03.4_2009	A	7	ITS86F	B	7	ITS4
3	HE_03.5_2009	A	6	ITS86F	B	8	ITS4
3	HE_10.1_2009	A	8	ITS86F	B	6	ITS4
3	HE_10.2_2009	A	7	ITS86F	B	8	ITS4
3	HE_10.3_2009	A	8	ITS86F	B	7	ITS4
3	HE_10.4_2009	A	8	ITS86F	B	8	ITS4
3	HE_10.5_2009	A	6	ITS86F	B	9	ITS4
3	HE_12.1_2009	A	9	ITS86F	B	6	ITS4
3	HE_12.2_2009	A	7	ITS86F	B	9	ITS4
3	HE_12.3_2009	A	9	ITS86F	B	7	ITS4
3	HE_12.4_2009	A	8	ITS86F	B	9	ITS4
3	HE_12.5_2009	A	9	ITS86F	B	8	ITS4
3	HE_17.1_2009	A	9	ITS86F	B	9	ITS4
3	HE_17.2_2009	A	6	ITS86F	B	10	ITS4
3	HE_17.3_2009	A	10	ITS86F	B	6	ITS4
3	HE_17.4_2009	A	7	ITS86F	B	10	ITS4
3	HE_17.5_2009	A	10	ITS86F	B	7	ITS4
3	HE_18.1_2009	A	8	ITS86F	B	10	ITS4
3	HE_18.2_2009	A	10	ITS86F	B	8	ITS4
3	HE_18.3_2009	A	9	ITS86F	B	10	ITS4
3	HE_18.4_2009	A	10	ITS86F	B	9	ITS4
3	HE_18.5_2009	A	10	ITS86F	B	10	ITS4
3	HE_23.1_2009	A	6	ITS86F	B	11	ITS4
3	HE_23.2_2009	A	11	ITS86F	B	6	ITS4
3	HE_23.3_2009	A	7	ITS86F	B	11	ITS4
3	HE_23.4_2009	A	11	ITS86F	B	7	ITS4
3	HE_23.5_2009	A	8	ITS86F	B	11	ITS4
3	HE_24.1_2009	A	11	ITS86F	B	8	ITS4
3	HE_24.2_2009	A	9	ITS86F	B	11	ITS4
3	HE_24.3_2009	A	11	ITS86F	B	9	ITS4

3	HE_24.4_2009	A	10	ITS86F	B	11	ITS4
3	HE_24.5_2009	A	11	ITS86F	B	10	ITS4
3	HE_27.1_2009	A	11	ITS86F	B	11	ITS4
3	HE_27.2_2009	A	6	ITS86F	B	12	ITS4
3	HE_27.3_2009	A	12	ITS86F	B	6	ITS4
3	HE_27.4_2009	A	7	ITS86F	B	12	ITS4
3	HE_27.5_2009	A	12	ITS86F	B	7	ITS4
3	HE_29.1_2009	A	8	ITS86F	B	12	ITS4
3	HE_29.2_2009	A	12	ITS86F	B	8	ITS4
3	HE_29.3_2009	A	9	ITS86F	B	12	ITS4
3	HE_29.4_2009	A	12	ITS86F	B	9	ITS4
3	HE_29.5_2009	A	10	ITS86F	B	12	ITS4
3	HE_30.1_2009	A	12	ITS86F	B	10	ITS4
3	HE_30.2_2009	A	11	ITS86F	B	12	ITS4
3	HE_30.3_2009	A	12	ITS86F	B	11	ITS4
3	HE_30.4_2009	A	12	ITS86F	B	12	ITS4
3	HE_30.5_2009	A	6	ITS86F	B	13	ITS4
4	HE_03.1_2011	A	6	ITS86F	B	6	ITS4
4	HE_03.2_2011	A	6	ITS86F	B	7	ITS4
4	HE_03.3_2011	A	7	ITS86F	B	6	ITS4
4	HE_03.4_2011	A	7	ITS86F	B	7	ITS4
4	HE_03.5_2011	A	6	ITS86F	B	8	ITS4
4	HE_10.1_2011	A	8	ITS86F	B	6	ITS4
4	HE_10.2_2011	A	7	ITS86F	B	8	ITS4
4	HE_10.3_2011	A	8	ITS86F	B	7	ITS4
4	HE_10.4_2011	A	8	ITS86F	B	8	ITS4
4	HE_10.5_2011	A	6	ITS86F	B	9	ITS4
4	HE_12.1_2011	A	9	ITS86F	B	6	ITS4
4	HE_12.2_2011	A	7	ITS86F	B	9	ITS4
4	HE_12.3_2011	A	9	ITS86F	B	7	ITS4
4	HE_12.4_2011	A	8	ITS86F	B	9	ITS4
4	HE_12.5_2011	A	9	ITS86F	B	8	ITS4
4	HE_17.1_2011	A	9	ITS86F	B	9	ITS4
4	HE_17.2_2011	A	6	ITS86F	B	10	ITS4
4	HE_17.3_2011	A	10	ITS86F	B	6	ITS4
4	HE_17.4_2011	A	7	ITS86F	B	10	ITS4
4	HE_17.5_2011	A	10	ITS86F	B	7	ITS4
4	HE_18.1_2011	A	8	ITS86F	B	10	ITS4
4	HE_18.2_2011	A	10	ITS86F	B	8	ITS4
4	HE_18.3_2011	A	9	ITS86F	B	10	ITS4
4	HE_18.4_2011	A	10	ITS86F	B	9	ITS4
4	HE_18.5_2011	A	10	ITS86F	B	10	ITS4
4	HE_23.1_2011	A	6	ITS86F	B	11	ITS4
4	HE_23.2_2011	A	11	ITS86F	B	6	ITS4
4	HE_23.3_2011	A	7	ITS86F	B	11	ITS4
4	HE_23.4_2011	A	11	ITS86F	B	7	ITS4
4	HE_23.5_2011	A	8	ITS86F	B	11	ITS4

Chapter 5

4	HE_24.1_2011	A	11	ITS86F	B	8	ITS4
4	HE_24.2_2011	A	9	ITS86F	B	11	ITS4
4	HE_24.3_2011	A	11	ITS86F	B	9	ITS4
4	HE_24.4_2011	A	10	ITS86F	B	11	ITS4
4	HE_24.5_2011	A	11	ITS86F	B	10	ITS4
4	HE_27.1_2011	A	11	ITS86F	B	11	ITS4
4	HE_27.2_2011	A	6	ITS86F	B	12	ITS4
4	HE_27.3_2011	A	12	ITS86F	B	6	ITS4
4	HE_27.4_2011	A	7	ITS86F	B	12	ITS4
4	HE_27.5_2011	A	12	ITS86F	B	7	ITS4
4	HE_29.1_2011	A	8	ITS86F	B	12	ITS4
4	HE_29.2_2011	A	12	ITS86F	B	8	ITS4
4	HE_29.3_2011	A	9	ITS86F	B	12	ITS4
4	HE_29.4_2011	A	12	ITS86F	B	9	ITS4
4	HE_29.5_2011	A	10	ITS86F	B	12	ITS4
4	HE_30.1_2011	A	12	ITS86F	B	10	ITS4
4	HE_30.2_2011	A	11	ITS86F	B	12	ITS4
4	HE_30.3_2011	A	12	ITS86F	B	11	ITS4
4	HE_30.4_2011	A	12	ITS86F	B	12	ITS4
4	HE_30.5_2011	A	6	ITS86F	B	13	ITS4
5	HE_03_roots_2009	A	6	ITS86F	B	6	ITS4
5	HE_03_roots_2011	A	6	ITS86F	B	7	ITS4
5	HE_10_roots_2009	A	7	ITS86F	B	6	ITS4
5	HE_10_roots_2011	A	7	ITS86F	B	7	ITS4
5	HE_12_roots_2009	A	6	ITS86F	B	8	ITS4
5	HE_12_roots_2011	A	8	ITS86F	B	6	ITS4
5	HE_17_roots_2009	A	7	ITS86F	B	8	ITS4
5	HE_17_roots_2011	A	8	ITS86F	B	7	ITS4
5	HE_18_roots_2009	A	8	ITS86F	B	8	ITS4
5	HE_18_roots_2011	A	6	ITS86F	B	9	ITS4
5	HE_23_roots_2009	A	9	ITS86F	B	6	ITS4
5	HE_23_roots_2011	A	7	ITS86F	B	9	ITS4
5	HE_24_roots_2009	A	9	ITS86F	B	7	ITS4
5	HE_24_roots_2011	A	8	ITS86F	B	9	ITS4
5	HE_27_roots_2009	A	9	ITS86F	B	8	ITS4
5	HE_27_roots_2011	A	9	ITS86F	B	9	ITS4
5	HE_29_roots_2009	A	6	ITS86F	B	10	ITS4
5	HE_29_roots_2011	A	10	ITS86F	B	6	ITS4
5	HE_30_roots_2009	A	7	ITS86F	B	10	ITS4
5	HE_30_roots_2011	A	10	ITS86F	B	7	ITS4
5	LM_02_roots_2009	A	8	ITS86F	B	10	ITS4
5	LM_02_Roots_2011	A	10	ITS86F	B	8	ITS4
5	LM_05_roots_2009	A	9	ITS86F	B	10	ITS4
5	LM_05_roots_2011	A	10	ITS86F	B	9	ITS4
5	LM_11_roots_2009	A	10	ITS86F	B	10	ITS4
5	LM_11_roots_2011	A	6	ITS86F	B	11	ITS4
5	LM_12_roots_2009	A	11	ITS86F	B	6	ITS4

5	LM_12_roots_2011	A	7	ITS86F	B	11	ITS4
5	LM_21_roots_2009	A	11	ITS86F	B	7	ITS4
5	LM_21_roots_2011	A	8	ITS86F	B	11	ITS4
5	LM_27_roots_2009	A	11	ITS86F	B	8	ITS4
5	LM_27_roots_2011	A	9	ITS86F	B	11	ITS4
5	LM_28_roots_2009	A	11	ITS86F	B	9	ITS4
5	LM_28_roots_2011	A	10	ITS86F	B	11	ITS4
5	LM_29_roots_2009	A	11	ITS86F	B	10	ITS4
5	LM_29_roots_2011	A	11	ITS86F	B	11	ITS4
5	LM_30_roots_2009	A	6	ITS86F	B	12	ITS4
5	LM_30_roots_2011	A	12	ITS86F	B	6	ITS4
5	LM_31_roots_2009	A	7	ITS86F	B	12	ITS4
5	LM_31_roots_2011	A	12	ITS86F	B	7	ITS4
Primer	component name		Primer sequence (5'-3')				
A			CGTATCGCCTCCCTCGCGCCATCAG				
B			CTATGCGCCTTGCCAGCCCGCTCAG				
ITS86F			GTGAATCATCGAATCTTTGAA				
ITS4			TCCTCCGCTTATTGATATGC				
MID6			ATATCGCGAG				
MID7			CGTGTCTCTA				
MID8			CTCGCGTGTC				
MID9			TAGTATCAGC				
MID10			TCTCTATGCG				
MID11			TGATACGTCT				
MID12			TACTGAGCTA				
MID13			CATAGTAGTG				

${ }^{(1)}$ LM: Lommel-Maatheide. HE: Hechtel-Eksel
${ }^{(2)} A: 454$ pyrosequencing adapter $A, B: 454$ pyrosequencing adapter B
${ }^{(3)}$ MID: Multiplex identifier
${ }^{(4)}$ ITS: Internal transcribed spacer

Chapter 5

Supporting Information Table S5.2 Pearson's correlation coefficients (R^{2}) correlating measured environmental variables and fungal diversity indices for the control site in Hechtel-Eksel and the metal-polluted site in Lommel-Maatheide. Fungal diversity indices were calculated in R based on OTU abundances. OTUs were generated in Mothur based on a 97% sequence similarity cut-off. Significant correlations at the 95% confidence level are indicated in bold. Cadmium concentrations in pine needles and soil samples collected in HE and copper concentrations in soil samples collected from both sites were below the detection limit of $0.1 \mu \mathrm{~g} \mathrm{~g}^{-1}$.

Environmental parameter	2009 dataset			2011 dataset		
	Rich. (5)	Pielou evenn. (6)	Inv. Simp.	Rich. (5)	Pielou evenn.	Inv. Simp (7)
OM ${ }^{(1)}$	0.01	-0.16	-0.08	0.19	-0.03	-0.01
CEC ${ }^{(2)}$	-0.02	-0.03	-0.04	-0.57	-0.58	-0.39
Conduct. ${ }^{(3)}$	0.22	0.22	0.23	0.38	0.18	0.21
pH KCl	0.34	0.28	0.27	0.11	0.13	0.00
pH H2O	-0.10	-0.27	-0.11	-0.45	-0.40	-0.35
Soil $\mathrm{Zn}{ }^{(4)}$	0.42	0.43	0.44	0.17	0.26	0.23
Soil Cd ${ }^{(4)}$	0.34	0.26	0.33	-0.05	0.08	0.04
Soil Fe ${ }^{(4)}$	0.18	0.34	0.20	0.54	0.37	0.26
Soil Mg ${ }^{(4)}$	0.39	0.37	0.23	0.61	0.53	0.43
Soil Mn ${ }^{(4)}$	0.16	0.25	0.05	0.24	0.25	0.06
Soil K ${ }^{(4)}$	0.31	0.33	0.18	0.58	0.47	0.35
Needle Zn ${ }^{(4)}$	-0.31	-0.41	-0.31	-0.49	-0.33	-0.27
Needle Cd ${ }^{(4)}$	-0.24	-0.36	-0.26	-0.46	-0.38	-0.30
Needle Fe ${ }^{(4)}$	-0.04	-0.32	-0.25	-0.29	-0.38	-0.25
Needle Mg ${ }^{(4)}$	-0.01	0.21	-0.01	0.37	0.31	0.16
Needle Mn ${ }^{(4)}$	-0.10	0.08	-0.17	0.35	0.28	0.05
Needle K ${ }^{(4)}$	-0.24	0.07	-0.03	0.07	0.33	0.28
Needle Ca ${ }^{(4)}$	-0.15	-0.27	-0.17	-0.36	-0.23	-0.19
Needle Cu ${ }^{(4)}$	-0.23	-0.36	-0.30	-0.48	-0.45	-0.34
${ }^{(1)}$ OM: Soil organic matter (\%) (2) CEC: Cation exchange capacity (meq ${ }^{(3)}$ Conduct.: Conductivity ($\mu \mathrm{S} \mathrm{cm}{ }^{-1}$) ${ }^{(4)}$ Measured in $\mu \mathrm{g} \mathrm{g}^{-1}$ dry weight ${ }^{(5)}$ Rich.: OTU richness ${ }^{(6)}$ Pielou evenn.: Pielou evenness index ${ }^{(7)}$ Inv. Simp.: Inverse Simpson index						

Chapter 6: Conclusions and future perspectives

Genetic architecture of Zinc tolerance in Suillus luteus

Previous studies indicated the presence of zinc-tolerant ecotypes in the ectomycorrhizal basidiomycete Suillus luteus, in different populations in the northern part of Limburg, Belgium (Colpaert et al., 2004). The ecotypes from metal-polluted soils were found to have higher EC_{50}-values than ecotypes from non-polluted soils, when exposed to increasing Zn concentrations. Whereas dikaryotic isolates sampled in Lommel-Maatheide and Lommel-Sahara had EC_{50}-values exceeding 6 mM , isolates collected from Paal had EC_{50}-values below 6 mM (Colpaert et al., 2004). To study the genetic architecture of this Zn -tolerance trait, the same sites were sampled in 2008, 2009 and 2010 for the current study. Since most isolates collected for the current study were sampled near young pine trees, the genets collected for are most likely different from the ones studied by Colpaert et al. (2004). Evaluation through microsatellite markers indicated the successful isolation of monokaryotic cultures from single spores, dikaryotic, parental strains from basidiocarps and the successful in vitro dikaryotisation of crosses between monokaryons. Based on dose-response experiments, five hypothetical Zn -tolerance phenotypes were identified. Whereas all five phenotypes had different EC_{50}-values, their mycelial Zn content suggested the existence of only two distinct phenotypes (one phenotype having mycelial Zn concentrations below $3 \mathrm{mg} \mathrm{g}^{-1} \mathrm{~d}$. wt. and one phenotype having mycelial Zn concentrations well above $3 \mathrm{mg} \mathrm{g}^{-1} \mathrm{~d}$. wt.). These results suggest that one gene could be responsible for the regulation of internal Zn concentrations in S. luteus isolates. If this is the case, this gene would be pleiotropic, influencing both the mycelial Zn concentration and growth (EC E_{50}-values) of studied isolates. Differences in EC_{50}-values could then be explained by genetic factors that are not necessarily linked to the hypothesized Zn -tolerance gene locus. In a number of plant species, for example, metal tolerance is regulated by a

Chapter 6

single major gene locus and the expression of this major gene locus is further fine-tuned by minor modifier genes (Macnair, 1993). Alternatively, a single Zn -tolerance gene could be present in multiple copies in the genome of S. luteus. Differences in mycelial Zn concentrations could then be explained by the presence or absence of Zn -tolerance alleles in all copies of the gene for a given isolate and variations in EC_{50}-values could be caused by differences in the expression levels of copies or differences in the Zn transportation efficiency of proteins produced by these genes. This too is a very plausible situation as in metal-tolerant plants, variability in metal tolerance and accumulation among different plant populations has been partly explained by copy-number expansion of genes involved in metaltolerance and -homeostasis as well (Craciun et al., 2012). Dividing the total variation of EC_{50}-values into different components such as genotypeinduced variation, Zn -treatment-induced variation and variation induced by the environment, a large proportion of the total phenotypic variation was found to be explained by differences between genotypes (on average 25\% $\pm 2 \% \mathrm{SE}$), but also a large proportion of this phenotypic variation was explained by genetic factors that are not necessarily linked to differences in Zn -tolerance genotypes ($21 \% \pm 1 \%$). Since Zn is an essential nutrient, cytoplasmic Zn concentrations are tightly regulated by a wide spectrum of cellular processes. For example, intracellular sequestration of excess Zn ions with metallothioneins, glutathione, phytochelatins or variations in vacuolar storage efficiency could be responsible for a better growth of S. luteus isolates exposed to high Zn concentrations, but such mechanisms would not influence Zn exclusion from cells. Hence, a number of Zn homeostasis mechanisms potentially affect EC_{50}-values, partially obscuring true Zn -tolerance phenotypes, without altering mycelial Zn concentrations. Another confounding factor that may influence the interpretation of phenotypic differences in Zn -tolerance between S . luteus strains is the way EC_{50}-values are typically calculated. In the current study, EC_{50}-values were calculated based on the dry weights of mycelia. Growth, however, is a polygenic trait and typically results in a continuum of possible mycelium
sizes. A discrete number of Zn -tolerance phenotypes could therefore be obscured by the continuous nature of mycelial growth. Similarly, early studies of metal-tolerance in plants led to the conclusion that metal tolerance in plants must be a polygenic trait. Polygenic inheritance of metal tolerance has been suggested, for example, for Zn tolerance in Silene vulgaris (Bröker, 1963), Anthoxanthum odoratum (Gartside and McNeilly, 1974a) and Agrostis capillaris (Gartside and McNeilly, 1974b), Pb tolerance in Festuca ovina (Wilkins, 1960) and Al tolerance in Zea mays (Magnavaca et al., 1987). On the other hand, studies designed for testing Mendelian segregation of metal tolerance concluded that adaptive metal tolerance is generally governed by a single or a few major genes. Examples can be found in Cu tolerance in Mimulus guttatus (Macnair and Watkins 1983), Silene vulgaris (Schat and ten Bookum, 1992) and Agrostis capillaris (Macnair, 1990) and As tolerance in Holcus lanatus (Macnair et al., 1992) and Agrostis capillaris (Watkins and Macnair, 1991). In a number of these cases, evidence was found for the presence of one or two minor modifier genes as well (see Table 1 in Macnair, 1993). In parallel, scaling of Zn tolerance phenotypes of S. Iuteus to mycelial weights in our experiments, undoubtedly introduced at least some degree of continuity, making it more difficult to identify a discrete genetic architecture for the Zn -tolerance trait in S. Iuteus. To obtain more insight in the genetic architecture of the Zn tolerance trait in S. Iuteus, we opted to test the fit of two Mendelian heredity patterns that were selected based on observed Zn -tolerance phenotypes. According to a first possible model, a single gene locus could be responsible for the Zn -tolerance trait in S . Iuteus. If two alleles exist for this gene locus (a Zn -tolerance and a Zn -sensitivity allele), this model predicts the existence of two distinct Zn -tolerance phenotypes. According to a second model, two genes could be responsible for Zn -tolerance, each locus having two alleles. In this case, five different phenotypes would exist, ranging from highly Zn -sensitive, over intermediary Zn -tolerant to highly Zn -tolerant phenotypes. At first sight, our experimental data appear to support the second model. Chi-squared tests confirmed that the second model indeed

Chapter 6

had a better fit to the experimental data than the first model, but model 1 still had a significant fit to all observed data and could therefore not be discarded. If Zn -tolerance in S. luteus would indeed be governed by two genes, one gene could, for example, be responsible for Zn -exclusion and another one could be responsible for additional variations in growth rates. Also a model where a single gene is responsible for Zn -tolerance, however, could fit model 2 , if this gene has multiple copies that result in contrasting tolerance phenotypes. Alternatively, a genetic architecture comprised of two Zn -tolerance loci could result in segregation patterns that would fit model 1 instead of model 2 if both loci are tightly coupled on the same chromosome. Because it is currently still impossible to acquire progeny from in vitro created crosses of S. Iuteus, it is impossible to further evaluate the suitability of either model. Hence, future targeted molecular and proteomics studies will need to be conducted to further unravel which genes are exactly responsible for each of the observed phenotypes. Furthermore, our data indicated that the phenotype of a crossed strain is determined by both monokaryons that contributed to this crossed strain. Hence, $\mathrm{Zn}-$ tolerance in S. luteus is inherited through incomplete dominance of the gene(s) that is (are) responsible for the Zn -tolerance trait. The strictly inverse relationship between EC_{50}-values and mycelial Zn concentrations observed for all isolates, suggest that Zn -exclusion is responsible for the Zn-tolerance trait in Suillus luteus. Zn-exclusion has recently been shown to infer Zn-tolerance in Suillus bovinus (Ruytinx et al., 2013), suggesting parallel evolution of Zn -tolerance in these closely related species. However, it needs to be noted that currently no experimental data have been collected that would indicate that the Zn -tolerance trait in S. Iuteus is based on the same gene loci in the different populations that were investigated, nor that Zn -tolerance in S. luteus and S. bovinus are based on the same gene loci. Recently, the genome of S. Iuteus has been sequenced. Future re-sequencing of a number of strains with contrasting Zn -tolerance phenotypes could be conducted and comparative genomics could subsequently reveal more details about the genetic architecture of Zn -
tolerance in different S. Iuteus and S. bovinus populations. Results obtained from targeted gene expression analysis and functional proteomics of genes and proteins involved in the Zn -homeostasis in S . Iuteus could be linked to the results obtained in the current study to estimate the importance of individual genes and proteins for metal-homeostasis in S. luteus. It would also be interesting to compare the genetic architecture of Zn tolerance and Cd tolerance in both Suillus species. Since Cd is a non-essential element, little or no genetic factors, other than the genes involved in Cd tolerance, are expected to affect mycelial Cd concentrations and mycelial growth. Hence, studies investigating Cd tolerance are probably not confounded by cellular metal-homeostasis and a more clear picture of the genes involved in Cd tolerance could be obtained. Comparative genomics could finally reveal which genes are most susceptible to metal-induced selection pressure across different fungal species, providing key information about the micro-evolutionary processes that shape natural communities in disturbed environments.

Effect of metal pollution on fungal biodiversity and community STRUCTURES

Local spatial and temporal variations in ectomycorrhizal communities

Besides differences in metal concentrations, a number of other environmental factors are known to affect fungal diversity and community compositions. These confounding factors may alter our view on the effects of metal pollution on fungal communities. To obtain a clearer picture of the impact of metal pollution, the effects of a number of environmental variables on fungal diversity and community compositions were investigated before focusing on the effects of metal pollution. Local variations in root density and root age of host tree species have been found to alter mycorrhizal community structures (Peay et al., 2010 and Last et al., 1987). Whereas young, newly emerging, root tips may be colonized by

Chapter 6

typical pioneer species, older parts of root systems may be colonized by fungi that typically appear in later stages of succession. On the other hand, senescent parts of root networks may be primarily occupied by saprotrophic species. Results obtained in our studies for both a metal-polluted site (Lommel-Maatheide) and a control site (Hechtel-Eksel), however, indicated that the studied fungal communities near stems of pine trees are not necessarily more similar to each other than they are to fungal communities that were sampled further away from stems. In line with these results, Branco et al. (2013) did not find any correlations between fungal community composition (detected in in-growth bags) and sampling distance from pine stems either, even though the ages of the pine trees investigated by Branco et al. (2013) were much older (trees were either 16 years old or between 50 and 80 years old) than the pine trees investigated in our studies (ranging from 2 to 5 years old). Individual pine trees in our studies were found to harbor slightly different fungal communities across the study sites, but no spatially-explicit structuring was observed at the scale of the study sites. Also between sampling years (2009 and 2011) some differences in the fungal communities were found, but in general, fungal communities were composed of the same fungal species across sampling sessions. The main differences in fungal communities were attributable to changes in the relative abundances of the fungal species over the two-year period. Since the pioneer communities investigated in our studies have hardly any plant cover and the sandy soils contain almost no organic matter, there is very little buffer capacity for the ecosystems against climatic variations and therefore moisture and temperature fluctuations are probably strong factors influencing the growth of mycelia in soils. The presence of seasonal dynamics in fungal communities have been reported in previous studies as well (Jumpponen et al., 2010; Davey et al., 2012; Vořísková et al., 2014). Davey et al. (2012), for example, observed a clear decrease in fungal richness during summer and winter months, whereas during late spring and late autumn, the OTU richness peaked. Also the total fungal biomass in soils appears to follow this trend
(Vořísková et al., 2014). Even at the phylum-level large changes in the fungal community compositions across sampling years were obvious in our studies, both in soil samples and on root tips of pine trees. Whereas Ascomycota dominated the metal-polluted study site in 2009, Basidiomycota took over this dominant position in 2011. In the control site, Basidiomycota dominated the fungal communities in both sampling years. Since the studied primary pioneer ecosystem in the metal-polluted site is very young (trees were planted in this study site one year before the first sampling session of our studies took place), the dominance of Ascomycota in 2009 is attributable to the dominant presence of spores and other fungal propagules and ascomycete mycelia in the study site and the absence of larger mycelial networks of Basidiomycota that would take much longer to get established. It is not until two years later, in 2011, that Basidiomycota appear to have formed their large mycelial networks and start to outcompete the smaller mycelia and propagules of some opportunistic Ascomycetes. It is clear that the studied pioneer ecosystems are still highly dynamic. Such highly dynamic communities may favor the development of metal-tolerant ecotypes and could, at least partly, explain the rapid evolution of Zn - and Cd tolerant ecotypes of Suillus luteus (Colpaert et al., 2004; Krznaric et al., 2009). Finally, the absence of spatial structuring of fungal communities at the level of the study sites suggested that mainly local environmental variables are responsible for structuring the studied communities. Whereas input of fungal inoculum from surrounding population is undoubtedly a factor that influences which fungal species are present in the study sites (Muller et al., 2004), it is probably not the strongest driving factor in determining the structure of the studied fungal communities.

Chapter 6

Relationship between ectomycorrhizal communities and their abiotic environment

Overall, the studied fungal communities consisted largely of the same fungal species across study sites and sampling years and OTU richness remained fairly constant over sampling years. Despite clear similarities in the overall composition, differences in the relative abundances of present species were observed, indicating shifts in the abundance patterns of species that are otherwise characteristic for pioneer pine forests thriving on sandy Campine soils. The differences in fungal community structures across study sites were found to be mainly correlated with metal-pollution and soil mineral content. More specifically, a metal-pollution gradient, mainly consisting of Zn and Cd pollution, was found to be an important factor correlating with the fungal community composition in the metal-polluted site, whereas soil Fe, Mg, Mn and K concentrations were found to correlate well with fungal community compositions in the control site. These results confirm earlier findings that soil mineral content may be an important factor in determining fungal community composition (Toljander et al., 2006), as is the presence of metal-pollution (Hui et al., 2011). Similar to the findings in our studies, Hui et al. (2011) did not observe a strong effect of metal pollution on fungal diversity. This discrepancy between effects of metal pollution on fungal community composition and the absence of an effect on fungal diversity suggests that in metal-polluted sites certain fungal species are replaced by fungi with similar ecological niches, but with a greater capacity to adapt to high concentrations of metal ions. The shift from a community dominated by (among others) Suillus luteus in the metalpolluted site to a dominance of its sister species, Rhizopogon luteolus, in the control site could be an example of the selection by heavy metal pollution for adapted species. However, it needs to be noted that some studies did report detrimental effects of metal pollution on fungal diversity (Chodak et al., 2013). Differences in reports on the effects of metal pollution on fungal diversity may be due to differences in the metal species involved and the actual toxicity of metal species in certain ecosystems. For
example, microbial communities and abiotic variables, such as soil moisture content, pH, cation exchange capacity, etc. may influence the availability, and hence, the toxicity of metal ions (Gadd, 1993). In our study site in Lommel-Maatheide, Zn and Cd concentrations were clearly phytotoxic as a number of the present pine trees were already fully necrotic within one year after their plantation in 2008.

Dominant species of studied ectomycorrhizal communities

Overall, the observed OTU richness in our studies was low compared to the richness of fungal communities that are reported from older forest soils. Whereas in our studies between 500 and 800 fungal OTUs were detected across study sites and sampling years, Hartmann et al. (2014) identified well over 1000 OTUs from a Fagus sylvatica and Picea abies forest in Switzerland and Vořísková et al. (2014) identified over 2500 OTUs in a Quercus petrea forest in the Czech Republic. However, a relatively low number of OTUs is probably typical for young pioneer forests (Kipfer et al., 2011). Furthermore, all study sites were clearly dominated by only a few OTUs with the remaining OTUs having low relative abundances. Such abundance patterns are considered to be typical for ectomycorrhizal fungal communities (Horton and Bruns, 2001). Both from root tip samples and soil samples it was also clear that the studied fungal communities were dominated by Suilloid fungi, confirming their importance as primary root colonizers of pine trees thriving in pioneer conditions (Ashkannejhad and Horton, 2006). Substantial differences were observed between the fungal communities identified in soils samples and those detected in root tip samples. These differences most likely reflect differences in exploration types and life history traits of the fugal species present in the investigated sites (Genney et al., 2006). Interestingly, a number of the fungal species that were found to be dominant members of the communities thriving in metal-polluted soils have been identified from metal-polluted areas or mine spoils in previous studies. Almost invariably, fungal communities identified in soil samples were dominated by a Sistotrema sp. strain (B216). This

Chapter 6

strain was described as an ectomycorrhizal fungus occurring in pioneer sand dunes in the USA (Ashkannejhad and Horton, 2006), but in general Sistotrema species are more often associated with wood and pine needle decay. Species in this genus appear to be frequently associated with heath vegetation and typically occur in very dry habitat (Ashkannejhad and Horton, 2006; Ryberg et al., 2011). Sistotrema species show hardly any formation of true mycorrhizal root tips and their status as true ectomycorrhizas is still under debate (Potvin et al., 2012). In our studies, this genus was readily detected in soil samples but it was shown to be far less dominant on collected pine roots, suggesting that this genus may indeed not form substantial ectomycorrhizal mycelium on pine roots. Nevertheless, this species was almost equally abundant in soil samples in the metal-polluted site than in the control site. The abundance of this Sistotrema strain makes it an interesting subject to study metal-resistance and/or metal-tolerance mechanisms. Suillus luteus was shown to be a dominant member of the fungal community identified in soil samples and on root tips in the metal-polluted site as well. In the control site, however, it was found to be far less dominant. Instead, Rhizopogon luteolus appears to have replaced the dominant position of S. luteus in the control site. Both ectomycorrhizal species are typical primary pioneer species that can rapidly colonize young pine forests. The dominant position of S. luteus was expected, since fruiting bodies of this species can be frequently found on the metal-polluted sites in the Lommel area (Colpaert et al, 2004; Krznaric et al., 2009). A relatively low abundance of R. Iuteolus in the polluted site in Lommel-Maatheide could be explained by the fact that it is less adapted to high metal concentrations. Indeed, in a previous study we recorded a higher in vitro adaptation potential for Zn tolerance in S . Iuteus than in R. luteolus (Colpaert et al., 2004). On the other hand, extensive gene-flow between different populations of S. Iuteus in Lommel was detected previously (Muller et al., 2004), indicating frequent exchange of spores between heavy metal-adapted and unadapted populations. In contrast to S. Iuteus, R. Iuteolus forms hypogeous fruiting bodies and dispersal of
metal-tolerance genes may be therefore be more limited than is the case for S. luteus. Population genetics studies could cast some light on the dispersal of metal-tolerance genes in the future. The species that were found to be dominant members of the fungal communities thriving in the metal-polluted soils in our community studies are potential candidates for such population genetics studies, given that they do indeed possess adaptive metal tolerance and that they can be cultured in vitro. Wilcoxina mikolae is an ectomycorrhizal ascomycete that has been identified on pine roots in a number of studies. In accordance with observations from other studies, this species is often found to be a dominant member of ectomycorrhizal fungal communities (Nguyen, 2012). Even though W. mikolae has been detected in mine-spoils in the past (Prabhu et al 1996) and in our studies this species was found to be the third most abundant species, both in metal-polluted and non-polluted soil samples, its resistance or tolerance to increased concentrations of metal ions has not yet been assessed. Cadophora finlandica is an ascomycete species that can form mycorrhizal structures with ectomycorrhizal and ericoid mycorrhizal plants and is part of a species complex termed the Rhizoscyphus ericae aggregate (REA; Vrålstad et al., 2000). This species is frequently isolated from metalpolluted soils (Gorfer et al., 2009) and potential Zn - and Cd detoxification mechanisms have been studied, attributing metal-resistance to several extracellular proteins with unknown functions and plasma-membrane and endomembrane localized metal-transport proteins (Gorfer et al., 2009). C. finlandica was found to be more dominant in root tips than in soil samples and occurred frequently in the metal-polluted site in Lommel-Maatheide. However, it was not specifically associated with this site as it also appeared in the list of top ten most abundant OTUs identified from root tips in the control site in Hechtel-Eksel. Similar to C. finlandica, Rhizoscyphus ericae is a member of the REA aggregate (Vrålstad et al., 2000) and it is frequently identified in conifer roots. R. ericae is known to be able to form both ectomycorrhizal and ericoid mycorrhizal symbioses with different plant species (Grelet et al., 2010). Our studies are the first to report a frequent

Chapter 6

occurrence of this species in metal-polluted soils. In our studies more reads belonging to this species were found on pine roots than in soil samples, but reads identified as R. ericae were almost equally abundant in the metalpolluted site than in the control site. Finally, also Inocybe lacera appeared in the list of top ten most abundant OTUs for both sampling years, but it was clearly more abundant in the metal-polluted site than in the control site. Both for soil and root tip samples, similar abundance patterns were observed. Inocybe species are ectomycorrhizal basidiomycetes that typically occur during early stages of primary and secondary succession (Jumpponen et al., 2002). Even though sister species of I. lacera (I. curvipes) have been identified in $\mathrm{Pb}-\mathrm{Zn}$ mine sites in China (Huang et al., 2012), I. lacera itself has not yet been reported from metal-polluted sites. Since the above-mentioned fungal species are probably resistant to some degree to high concentrations of metal ions and since they typically occur during early stages of plant development, they could be very useful to improve phytoremediation and/or phytostabilisation of metal-polluted areas. Recent studies focusing on phytoremediation of metal-polluted soils have illustrated that mycorrhiza can protect their host plants from metaltoxicity and even enhance the efficiency of phytoremediation by enhancing plant growth, the mobilization of metal ions and the translocation of metals to plants (Leung et al., 2013).

References

Ashkannejhad S, Horton TR (2006). Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytologist 169: 345-354.

Branco S, Bruns TD, Singleton I (2013). Fungi at a small scale: spatial zonation of fungal assemblages around single trees. PLoS One 8: e78295

Bröker W (1963). Genetische-physiologische Untersuchungen uber die Zincvertraglichkeit von Silene inflata Sm. Flora Jena 153: 122-156.

Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology 64: 7-14.

Colpaert JV, Muller LAH, Lambaerts M, Adriaensen K, Vangronsveld J (2004). Evolutionary adaptation to zinc toxicity in populations of Suilloid fungi. New Phytologist 162: 549-559.

Craciun AR, Meyer CL, Chen JG, Roosens N, De Groodt R, Hilson P, Verbruggen N (2012). Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. Journal of experimental botany 63: 41794189.

Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H (2012). Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytologist 195: 844-856.

CHAPTER 6

Gadd GM (1993). Interactions of fungi with toxic metals. New Phytologist 124: 25-60.

Gartside DW, McNeilly T (1974a). Genetic studies in heavy metal tolerant plants 1. Genetics of zinc tolerance in Anthoxanthum odoratum. Heredity 32: 287-297.

Gartside DW, McNeilly T (1974b). Genetic studies in heavy metal tolerant plants 2. Genetics of zinc tolerance in Agrostis tenuis. Heredity 33: 303308.

Genney DR, Anderson IC, Alexander IJ (2006). Fine-scale distribution of pine ectomycorrhizas and their extrametrical mycelium. New Phytologist 170: 381-390.

Gorfer M, Persak H, Berger H, Brynda S, Bandian D, Strauss J (2009). Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycological Research 113: 1377-1388.

Grelet G-A, Johnson D, Vrålstad T, Alexander IJ, Anderson IC (2010). New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytologist 188: 210-222.

Hartmann M, Niklaus PA, Zimmermann S, Schutz S, Kremer J, Abarenkov K, Lüscher P, Widmer F, Frey B (2014). Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME Journal 8: 226-244.

Horton TR, Bruns TD (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10: 1855-1871.

Huang J, Nara K, Lian CL, Zong K, Peng KJ, Xue SG, Shen ZG (2012). Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in $\mathrm{Pb}-\mathrm{Zn}$ mine sites of central south China. Mycorrhiza 22: 589-602.

Hui N, Jumpponen A, Niskanen T, Liimatainen K, Jones KL, Koivula T, Romantschuk M, Strömmer R (2011). ECM fungal community structure, but not diversity, altered in a Pb-contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiology Ecology 76 : 121-132.

Jumpponen A, Jones KL, Mattox JD, Yeage C (2010). Massively parallel 454sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology 19: 41-53.

Jumpponen A, Trappe JM, Cázares E (2002). Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12: 43-49.

Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011). Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167: 219-228.

Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009). Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd. Environmental pollution 157: 1581-1588.

Last FT, Dighton J Mason PA (1987). Successions of sheathing mycorrhizal fungi. Trends in Ecology \& Evolution 2: 157-161.

Chapter 6

Leung H-M, Wang Z-W, Ye Z-H, Yung K-L, Peng X-L, Cheung K-C (2013). Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23: 549-563.

Macnair MR (1990). The genetics of metal tolerance in natural populations. In: Shaw JA, ed. Heavy metal tolerance in plants : evolutionary aspects. CRC Press, Boca Raton. pp. 235-255.

Macnair MR (1993). The genetics of metal tolerance in vascular plants. New Phytologist 124: 541-559.

Macnair MR, Cumbes QJ, Meharg AA (1992). The genetics of arsenate tolerance in Yorkshire fog Holcus lanatus. Hereditv 69: 325-335.

Macnair MR, Watkins AD (1983). The fitness of the copper tolerance gene in Mimulus guttatus in uncontaminated soil. New Phytologist 95: 133-137.

Magnavaca R, Gardner CO, Clark RB (1987). Inheritance of aluminium tolerance in maize. In: Gabelman WH, Loughman BC, eds. Genetic aspects of plant mineral nutrition. Martinus Nijhoff, Dordrecht. pp. 201-212.

Muller LAH, Lambaerts M, Vangronsveld J, Colpaert JV (2004). AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytologist 164: 297-303.

Nguyen NH, Hynson NA, Bruns TD (2012). Stayin' alive: survival of mycorrhizal fungal propagules from 6-yr-old forest soil. Fungal Ecology 5: 741-746.

Peay KG, Garbelotto M, Bruns TD (2010). Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness in mycorrhizal tree islands. Ecology 91: 3631-3640.

Potvin LR, Richter DL, Jurgensen MF, Dumroese RK (2012). Association of Pinus baksiana Lamb. and Populus tremuloides Michx. seedling fine roots with Sistotrema brinkmannii (Bres.) J. Erikss. (Basidiomycotina). Mycorrhiza 22: 631-638.

Prabhu V, Biolchini PF, Boyer GL (1996). Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. Biometals 9: 229-234.

Ruytinx J, Nguyen H, Van Hees M, Op De Beeck M, Vangronsveld J, Carleer R, Colpaert JV, Adriaensen K (2013). Zinc export results in tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics 5: 1225-1233.

Ryberg M, AndreasenM, Björk RG (2011). Weak habitat specificity in ectomycorrhizal communities associated with Salix herbacea and Salix polaris in alpine tundra. Mycorrhiza 21: 289-296.

Schat H, ten Bookum WM (1992). Genetic control of copper tolerance in Silene vulgaris. Heredity 68: 219-229.

Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS (2006). Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phyt ologist 170: 873-884.

Voříšková J, Brabcová V, Cajthaml T, Baldrian P (2014). Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist 201: 269-278.

Chapter 6

Vrålstad T, Fossheim T, Schumacher T (2000). Piceirhiza bicolorata - the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytologist 145: 549-563.

Watkins AJ, Macnair MR (1991). Genetics of arsenic tolerance in Agrostis capiltaris L. Heredity 66: 47-54.

Wilkins DA (1960). The measurement and genetical analysis of lead tolerance in Festuca ovina. Report of the Scottish Plant Breeding Station: 85-98.

Appendix A

BLAST hit References, E-values and corresponding BLAST scores for all OTUs identified at a 97% sequence similarity cut-off in the study presented in chapter 3. OTUs were blasted against the UNITE and INSD databases using the massBLASTer tool available from PlutoF v2.0 (http://unite.ut.ee/workbench.php). OTUs that did not have a BLAST hit in the UNITE or INSD databases were indicated as "not applicable (NA)".

Reference name	Score	E-value
Abrothallus suecicus	318	5.E-86
Absconditella lignicola	168	1.E-40
Absidia caerulea	470	1.E-131
Acanthostigma perpusillum	311	8.E-84
Acephala macrosclerotiorum	436	1.E-121
Acremonium sp BCC 14080	340	1.E-92
Acremonium strictum	411	1.E-113
Agaricus pinsitus	542	4.E-153
Alatospora acuminata	180	3.E-44
Aliquandostipite khaoyaiensis	87	2.E-16
Alternaria alternata	412	2.E-114
Alternaria consortialis	481	5.E-135
Alternaria rosae	484	5.E-136
Alternaria tenuissima	486	2.E-136
Alternaria triticina	462	2.E-129
Amanita muscaria	586	2.E-166
Anhellia nectandrae	355	7.E-97
Antarctic yeast CBS 8941	473	1.E-132
Anthracothecium prasinum	88	2.E-16
Arachnopeziza aurata	396	3.E-109
Arnium gigantosporum	288	5.E-77
Arnium macrotheca	467	9.E-131
Arthrinium sacchari	477	1.E-133
Arthrobotrys oligospora	86	1.E-15
Articulospora proliferata	431	8.E-120
Ascobrunneispora aquatica	229	4.E-59
Ascomycota sp 6 RB 2011	383	1.E-105
Ascomycota sp AM12	374	2.E-102
Ascomycota sp AR 2010	420	2.E-116
Ascomycota sp ARIZ OCAsh3 11	393	2.E-108
Ascomycota sp CH Co12	457	1.E-127
Ascomycota sp GMU LL 02 B3	443	1.E-123
Ascomycota sp I306	391	6.E-108
Ascomycota sp r433	150	2.E-35
Aspergillus viridinutans	497	8.E-140
Aspicilia cinerea	252	7.E-66
Aspicilia dendroplaca	265	6.E-70
Aspicilia verruculosa	320	2.E-86
Asteridiella obesa	75	2.E-12

Asterophora sp aurim714	332	3.E-90
Athelia epiphylla	420	2.E-116
Athelopsis lembospora	484	6.E-136
Aulographina pinorum	361	8.E-99
Aureobasidium pullulans	480	1.E-134
Bacidina chloroticula	392	3.E-108
Bacidina flavoleprosa	142	5.E-33
Barriopsis fusca	237	1.E-61
Basidiodendron caesiocinereum	163	4.E-39
Beauveria pseudobassiana	468	5.E-131
Bellemerea alpina	196	2.E-49
Belonopsis eriophori	359	3.E-98
Betamyces americaemeridionalis	193	5.E-48
Bipolaris sorokiniana	391	6.E-108
Bjerkandera fumosa	510	9.E-144
Boletus edulis	732	$0 . E+00$
Botryobambusa fusicoccum	375	3.E-103
Botryosporium longibrachiatum	97	3.E-19
Botryotinia fuckeliana	462	2.E-129
Bovista dermoxantha	547	7.E-155
Brunneodinemasporium brasiliense	337	1.E-91
Bryoglossum gracile	348	4.E-95
Bullera globispora	245	5.E-64
Bullera sakaeratica	226	3.E-58
Cadophora finlandica	454	6.E-127
Calcarisporiella thermophila	161	2.E-38
Calcarisporium arbuscula	336	4.E-91
Calyptrozyma arxii	351	5.E-96
Camarographium koreanum	320	2.E-86
Candida homilentoma	86	8.E-16
Candida novakii	240	2.E-62
Candida ontarioensis	103	6.E-21
Candida santamariae	527	7.E-149
Capronia pulcherrima	337	1.E-91
Capronia sp 94003b	420	1.E-116
Capronia sp 94006a	288	8.E-77
Capronia sp 96003a	366	2.E-100
Catenulifera brachyconia	426	2.E-118
Catenulifera brevicollaris	329	2.E-89
Catenulostroma hermanusense	444	8.E-124
Catenulostroma microsporum	465	3.E-130
Catenulostroma protearum	391	7.E-108
Cenococcum geophilum	431	8.E-120
Ceratocystis paradoxa	480	1.E-134
Cercophora sulphurella	168	1.E-40
Cercospora sophorae	551	5.E-156
Chaenothecopsis pusiola	65	1.E-09
Chaetomidium arxii	453	1.E-126
Chaetomium aureum	486	2.E-136
Chaetomium cupreum	431	6.E-120
Chaetomium jodhpurense	370	1.E-101
Chaetomium nigricolor	473	1.E-132
Chaetosphaeria bombycina	253	2.E-66
Chaetosphaeria dilabens	331	9.E-90

Chaetothyriales sp 16708	484	5.E-136
Chalara microspora	462	2.E-129
Chalara pseudoaffinis	410	1.E-113
Chlamydotubeufia khunkornensis	180	2.E-44
Chlorociboria argentinensis	215	4.E-55
Chrysosporium merdarium	415	5.E-115
Chrysosporium pseudomerdarium	401	5.E-111
Cistella acuum	294	8.E-79
Cistella grevillei	391	7.E-108
Cistella spicicola	344	8.E-94
Cladonia borealis	446	2.E-124
Cladonia coniocraea	63	6.E-09
Cladonia diversa	407	1.E-112
Cladonia fimbriata	458	8.E-128
Cladonia foliacea	416	2.E-115
Cladonia furcata	350	1.E-95
Cladonia gracilis	443	1.E-123
Cladonia gracilis subsp elongata	448	5.E-125
Cladonia grayi	491	7.E-138
Cladonia merochlorophaea	340	1.E-92
Cladophialophora chaetospira	391	6.E-108
Cladophialophora humicolae	665	0.E+00
Cladophialophora minutissima	442	3.E-123
Cladophialophora modesta	207	1.E-52
Cladophialophora scillae	285	6.E-76
Cladosporium oxysporum	367	8.E-101
Claroideoglomus claroideum	57	5.E-07
Claviradulomyces dabeicola	237	2.E-61
Clitocybe vermicularis	223	3.E-57
Clitopilus hobsonii	434	1.E-120
Clonostachys rosea	497	8.E-140
Coccomyces mucronatus	131	8.E-30
Coemansia asiatica	58	1.E-07
Coleophoma eucalyptorum	364	9.E-100
Collophora hispanica	386	2.E-106
Collophora paarla	388	6.E-107
Coniochaeta gigantospora	442	4.E-123
Coniochaeta prunicola	169	5.E-41
Coniothyrium fuckelii	465	3.E-130
Conlarium duplumascospora	390	1.E-107
Conocybe echinata	545	3.E-154
Coprinellus disseminatus	559	2.E-158
Coprinellus verrucispermus	523	1.E-147
Coprinopsis atramentaria	546	1.E-154
Coprinopsis cinerea	545	4.E-154
Cordana pauciseptata	291	1.E-77
Cordyceps memorabilis	380	1.E-104
Cortinarius odorifer	168	2.E-40
Cortinarius parvannulatus	516	2.E-145
Corynascus kuwaitiensis	516	2.E-145
Cosmospora vilior	245	4.E-64
Cryptococcus	324	6.E-88
Cryptococcus aerius	559	2.E-158
Cryptococcus aff amylolyticus AS 22398	484	6.E-136

Cryptococcus aff laurentii D 0721a1	191	1.E-47
Cryptococcus cylindricus	560	1.E-158
Cryptococcus dimennae	204	2.E-51
Cryptococcus flavus	198	7.E-50
Cryptococcus laurentii	492	3.E-138
Cryptococcus paraflavus	258	9.E-68
Cryptococcus podzolicus	489	2.E-137
Cryptococcus randhawii	578	4.E-164
Cryptococcus sp BI20	196	2.E-49
Cryptococcus sp VPCI 1367 B1	111	8.E-24
Cryptococcus terricola	604	5.E-172
Cryptococcus victoriae	416	2.E-115
Cryptococcus wieringae	599	2.E-170
Cryptosporiopsis actinidiae	380	2.E-104
Cudoniella acicularis	399	3.E-110
Cudoniella clavus	378	4.E-104
Curreya pityophila	369	3.E-101
Cyphellophora hylomeconis	385	6.E-106
Dactylaria lanosa	340	1.E-92
Dactylella oviparasitica	163	4.E-39
Dactylellina drechsleri	504	1.E-141
Dactylellina ellipsospora	478	4.E-134
Dactylellina phymatopaga	174	1.E-42
Daldinia fissa	396	2.E-109
Davidiella tassiana	436	1.E-121
Debaryomyces hansenii	529	2.E-149
Debaryomyces polymorphus var polymorphus	543	1.E-153
Degelia gayana	313	2.E-84
Devriesia pseudoamericana	369	3.E-101
Dinemasporium morbidum	480	1.E-134
Dinemasporium pseudostrigosum	439	4.E-122
Dinemasporium strigosum	400	8.E-111
Dioszegia athyri	425	3.E-118
Dioszegia rishiriensis	415	4.E-115
Dokmaia monthadangii	459	2.E-128
Dothideomycetes sp DC2167	448	6.E-125
Dothideomycetes sp genotype 188	313	2.E-84
Drechslera erythrospila	475	4.E-133
Drechslera nobleae	329	3.E-89
Drechslera poae	381	6.E-105
Elsinoe ampelina	320	2.E-86
Emericella nidulans	381	6.E-105
Emericella purpurea	125	7.E-28
Emmonsia parva	519	2.E-146
Entoloma conferendum	439	4.E-122
Epacris microphylla root associated fungus 12	453	2.E-126
Epacris microphylla root associated fungus 17	472	3.E-132
Epacris microphylla root associated fungus 21	431	8.E-120
Epacris microphylla root associated fungus 26	425	3.E-118
Epacris microphylla root associated fungus 33	488	4.E-137
Epacris pulchella root associated fungus EP20	490	1.E-137
Epacris pulchella root associated fungus EP26	167	2.E-40
Epacris pulchella root associated fungus EP54	448	5.E-125
Epacris pulchella root associated fungus EP55	401	5.E-111

Epicoccum nigrum	347	1.E-94
Eudarluca caricis	212	5.E-54
Exobasidium kishianum	455	4.E-127
Exobasidium rostrupii	443	1.E-123
Exophiala bergeri	418	5.E-116
Exophiala equina	215	6.E-55
Exophiala eucalyptorum	491	7.E-138
Exophiala placitae	389	2.E-107
Exophiala sideris	462	3.E-129
Filobasidium uniguttulatum	622	2.E-177
Friedmanniomyces endolithicus	367	1.E-100
fungal endophyte	340	1.E-92
fungal sp 2747 YZ 2011	416	2.E-115
fungal sp ARIZ AZ0780	433	2.E-120
fungal sp NLEndoHerit 014 2008N5 26 2N	327	8.E-89
Funneliformis geosporum	112	7.E-24
Fusarium biseptatum	355	7.E-97
Fusarium culmorum	355	5.E-97
Fusarium equiseti	322	5.E-87
Fusarium merismoides	457	1.E-127
Fusarium oxysporum	448	6.E-125
Fusarium torulosum	497	8.E-140
Fusicladium cordae	502	3.E-141
Fusicladium phillyreae	213	2.E-54
Gaertneriomyces semiglobifer	81	4.E-14
Gammamyces ourimbahensis	86	6.E-16
Ganoderma adspersum	538	4.E-152
Ganoderma applanatum	542	4.E-153
Geoglossum atropurpureum	174	1.E-42
Geomyces pannorum	462	2.E-129
Geomyces vinaceus	442	3.E-123
Geopora clausa	82	$6 . \mathrm{E}-15$
Geosmithia langdonii	183	2.E-45
Geosmithia putterillii	137	2.E-31
Glomerella graminicola	453	1.E-126
Glomus custos	126	$4 . \mathrm{E}-28$
Glomus intraradices	106	6.E-22
Glomus sp 3 SUN 2011	95	9.E-19
Guignardia citricarpa	95	8.E-19
Helicodendron multiseptatum	440	1.E-122
Helotiaceae sp IV GK 2010	320	1.E-86
Helotiales sp 1 CG 2012	312	4.E-84
Helotiales sp 1 MV 2011	432	3.E-120
Helotiales sp 16 MV 2011	434	9.E-121
Helotiales sp 2 BB 2010	378	4.E-104
Helotiales sp 27 MV 2011	444	8.E-124
Helotiales sp 5 CG 2012	318	4.E-86
Helotiales sp I12F 02299	305	4.E-82
Helotiales sp MU 20093	345	4.E-94
Helotiales sp ODKB3	440	1.E-122
Helotiales sp PIMO 265	247	1.E-64
Helotiales sp REF045	405	3.E-112
Helotiales sp REF055	315	4.E-85
Helotiales sp SC3 4	467	9.E-131

ApPENDIX A

Helotiales sp SC9 3	388	5.E-107
Helotiales sp SL11101	233	2.E-60
Helotiales sp WMM 2012b	443	1.E-123
Helotiales sp WMM 2012g	336	3.E-91
Helvella maculata	291	8.E-78
Herpotrichiellaceae sp RB 2011	337	1.E-91
Heterobasidion annosum	415	4.E-115
Hirsutella minnesotensis	497	8.E-140
Homortomyces combreti	215	$6 . \mathrm{E}-55$
Humicolopsis cephalosporioides	404	1.E-111
Hyaloscypha hepaticola	385	4.E-106
Hyaloscypha sp 2 13c	366	3.E-100
Hydnotrya tulasnei	551	5.E-156
Hyphodontia breviseta	385	6.E-106
Hypholoma fasciculare	567	9.E-161
Hypocrea lixii	510	1.E-143
Hypocrea voglmayrii	259	3.E-68
Hypogymnia inactiva	148	$6 . \mathrm{E}-35$
Hypomyces cervinigenus	326	3.E-88
Infundichalara microchona	405	4.E-112
Inocybe lacera var lacera	559	2.E-158
Inocybe ochroalba	320	2.E-86
Johansonia chapadiensis	150	3.E-35
Knufia chersonesos	449	2.E-125
Kockovaella schimae	383	2.E-105
Kurtzmanomyces nectairei	215	8.E-55
Lachnum brevipilosum	301	7.E-81
Lachnum sp 1 MV 2011	453	2.E-126
Lachnum sp 252	318	5.E-86
Lachnum virgineum	150	2.E-35
Lasiosphaeria ovina	248	6.E-65
Lecanicillium psalliotae	492	2.E-138
Lecythophora sp BESC803p	446	2.E-124
Lecythophora sp YP363	271	1.E-71
Lenzites betulinus	556	2.E-157
Leotiomycetes sp ASR H18 12A	307	1.E-82
Leotiomycetes sp F21	321	7.E-87
Leotiomycetes sp genotype 134	364	6.E-100
Leotiomycetes sp NK264	462	2.E-129
Leotiomycetes sp NK266	420	2.E-116
Lepraria aff obtusatica BRY C56005	94	3.E-18
Lepraria elobata	228	9.E-59
Leptosphaeria doliolum	296	3.E-79
Leptosphaeria korrae	351	5.E-96
Leptosphaerulina chartarum	465	3.E-130
Leuconeurospora sp T11Cd2	377	1.E-103
Limnoperdon incarnatum	257	1.E-67
Linderina macrospora	71	2.E-11
Lobaria retigera	241	1.E-62
Lobariella pallida	267	1.E-70
Lophiostoma chamaecyparidis	374	1.E-102
Lophiostoma cynaroidis	294	8.E-79
Lophodermium baculiferum	79	8.E-14
Lophodermium conigenum	248	5.E-65

Lophodermium pinastri	464	8.E-130
Lophodermium seditiosum	451	5.E-126
Lycoperdon aff pyriforme Scl 611 L	553	2.E-156
Lyophyllum sp Cultivar Jpn	57	6.E-07
Macroconia leptosphaeriae	250	1.E-65
Magnaporthe poae	147	3.E-34
Malassezia globosa	579	3.E-164
Malassezia restricta	678	0.E+00
Malassezia sympodialis	651	$0 . \mathrm{E}+00$
Massariosphaeria typhicola	536	2.E-151
Melanelixia piliferella	168	1.E-40
Melanocarpus albomyces	386	2.E-106
Melanotaenium euphorbiae	103	6.E-21
Meliniomyces bicolor	459	2.E-128
Meliniomyces sp GK 2010	183	2.E-45
Meliniomyces sp SM7 2	392	3.E-108
Meliniomyces variabilis	383	2.E-105
Meliniomyces vraolstadiae	351	5.E-96
Metarhizium flavoviride	340	1.E-92
Metschnikowia hawaiiensis	87	2.E-16
Metschnikowia pulcherrima	89	8.E-17
Micarea denigrata	296	2.E-79
Micarea hedlundii	225	8.E-58
Microdochium bolleyi	391	6.E-108
Microscypha ellisii	375	3.E-103
Microsphaeropsis arundinis	459	2.E-128
Mollisia incrustata	237	1.E-61
Monoblepharis hypogyna	183	2.E-45
Mortierella alpina	573	1.E-162
Mortierella angusta	617	6.E-176
Mortierella bainieri	381	1.E-104
Mortierella cystojenkinii	603	2.E-171
Mortierella elongata	636	0.E+00
Mortierella jenkinii	141	2.E-32
Mortierella lignicola	612	3.E-174
Mortierella macrocystis	595	3.E-169
Mortierella parvispora	616	2.E-175
Mortierella polycephala	77	5.E-13
Mortierella turficola	436	2.E-121
Mortierellaceae sp PDKB9	612	3.E-174
Mucor moelleri	122	1.E-26
Mycena arcangeliana	569	3.E-161
Mycena corynephora	154	2.E-36
Mycena epipterygia	562	3.E-159
Mycena galopus	569	3.E-161
Mycena maurella	94	4.E-18
Mycena meliigena	423	3.E-117
Mycena metata	416	2.E-115
Mycena simia	547	7.E-155
Mycoblastus sanguinarioides	202	4.E-51
Myrmecridium banksiae	402	3.E-111
Myrmecridium phragmitis	293	3.E-78
Myrmecridium schulzeri	445	4.E-124
Myrothecium gramineum	206	5.E-52

NA	NA	NA
Naemacyclus niveus	464	8.E-130
Neocallimastix sp H GFM 2	97	4.E-19
Noosia banksiae	388	7.E-107
Ochrolechia juvenalis	153	2.E-36
Ogataea chonburiensis	126	3.E-28
Oidiodendron	0	0.E+00
Oidiodendron chlamydosporicum	439	3.E-122
Oidiodendron griseum	324	6.E-88
Oidiodendron pilicola	435	3.E-121
Oidiodendron reticulatum	454	6.E-127
Oidiodendron tenuissimum	97	2.E-19
Ophiocordyceps entomorrhiza	148	5.E-35
Ophiocordyceps irangiensis	63	4.E-09
Ophiocordyceps nutans	98	1.E-19
Ophiocordyceps prolifica	502	3.E-141
Ophiostoma bicolor	100	5.E-20
Paraconiothyrium brasiliense	145	7.E-34
Paraconiothyrium sporulosum	455	4.E-127
Paraphaeosphaeria michotii	383	1.E-105
Parastagonospora nodorum	361	7.E-99
Passalora zambiae	252	5.E-66
Penicillium aculeatum	457	1.E-127
Penicillium adametzii	494	7.E-139
Penicillium bialowiezense	423	2.E-117
Penicillium brevicompactum	228	9.E-59
Penicillium canescens	480	1.E-134
Penicillium cecidicola	477	8.E-134
Penicillium citreonigrum	393	2.E-108
Penicillium concentricum	150	2.E-35
Penicillium corylophilum	483	2.E-135
Penicillium herquei	351	5.E-96
Penicillium janthinellum	412	4.E-114
Penicillium lanosum	492	2.E-138
Penicillium montanense	490	1.E-137
Penicillium namyslowskii	494	7.E-139
Penicillium ochrochloron	497	8.E-140
Penicillium raistrickii	403	1.E-111
Penicillium simile	422	4.E-117
Penicillium tularense	423	2.E-117
Penidiella ellipsoidea	147	1.E-34
Peniophora lycii	444	9.E-124
Pesotum fragrans	82	5.E-15
Pezicula carpinea	258	8.E-68
Peziza ostracoderma	448	7.E-125
Pezizella discreta	294	7.E-79
Pezizomycetes sp genotype 454	443	1.E-123
Phaeoacremonium griseorubrum	224	1.E-57
Phaeococcomyces catenatus	542	4.E-153
Phaeococcomyces chersonesos	201	1.E-50
Phaeococcomyces eucalypti	307	1.E-82
Phaeococcomyces nigricans	381	5.E-105
Phaeosphaeria avenaria	453	2.E-126
Phaeosphaeria herpotrichoides	449	2.E-125

Phaeosphaeria nodorum	451	5.E-126
Phaeosphaeria phragmitis	414	6.E-115
Phaeosphaeriopsis sp C652	453	2.E-126
Phaeosphaeriopsis sp TMS 2011	323	2.E-87
Phaeotheca fissurella	377	8.E-104
Phellinopsis conchata	183	2.E-45
Phellinus pomaceus	92	1.E-17
Phialemonium curvatum	275	5.E-73
Phialocephala fortinii	436	1.E-121
Phialocephala fusca	396	2.E-109
Phialocephala virens	337	1.E-91
Phialophora lignicola	336	3.E-91
Phialophora phaeophora	532	2.E-150
Phialophora sp DF36	446	1.E-124
Phlebia livida subsp tuberculata	161	$1 . \mathrm{E}-38$
Phlyctochytrium africanum	195	1.E-48
Phlyctochytrium palustre	180	3.E-44
Pholiota populnea	573	1.E-162
Phoma betae	292	3.E-78
Phoma caloplacae	396	3.E-109
Phoma herbarum	294	8.E-79
Phoma macrostoma	320	1.E-86
Phyllachora phyllostachydis	345	5.E-94
Pichia kudriavzevii	57	3.E-07
Piriformospora sp $\times 30$	90	3.E-17
Placynthiella icmalea	442	4.E-123
Platismatia stenophylla	320	2.E-86
Plectania rhytidia	104	2.E-21
Pleopsidium chlorophanum	187	3.E-46
Pleospora herbarum	446	2.E-124
Pleosporales sp 28e	410	1.E-113
Pleosporales sp 5 TMS 2011	190	2.E-47
Pochonia bulbillosa	527	7.E-149
Pochonia suchlasporia	329	2.E-89
Podoscypha venustula	97	5.E-19
Podospora ellisiana	413	1.E-114
Podospora formosana	448	5.E-125
Podospora miniglutinans	420	1.E-116
Polyphlyctis unispina	161	1.E-38
Porosphaerella cordanophora	321	7.E-87
Powellomyces hirtus	94	5.E-18
Preussia australis	470	1.E-131
Preussia dubia	415	5.E-115
Preussia minima	343	1.E-93
Pringsheimia euphorbiae	294	8.E-79
Pseudocercosporella fraxini	367	1.E-100
Pyrenochaetopsis microspora	435	3.E-121
Pyrenophora tetrarrhenae	272	3.E-72
Pyrenula macrospora	115	7.E-25
Pyxine limbulata	99	7.E-20
Rachicladosporium pini	443	1.E-123
Ramaria abietina	111	8.E-24
Ramichloridium strelitziae	252	5.E-66
Rhexocercosporidium panacis	461	7.E-129

Rhizophlyctis harderi	86	7.E-16
Rhizophlyctis rosea	605	4.E-172
Rhizophydium globosum	82	9.E-15
Rhizophydium laterale	82	8.E-15
Rhizophydium sp JEL 385	79	9.E-14
Rhizoplaca chrysoleuca	110	2.E-23
Rhizopogon luteolus	654	0.E+00
Rhizopycnis vagum	87	2.E-16
Rhizoscyphus ericae	507	1.E-142
Rhodosporidium babjevae	340	1.E-92
Rhodotorula bloemfonteinensis	329	3.E-89
Rhodotorula cassiicola	257	1.E-67
Rhodotorula eucalyptica	386	2.E-106
Rhodotorula glutinis	483	2.E-135
Rhodotorula mucilaginosa	578	4.E-164
Rhynchostoma proteae	86	5.E-16
Rufoplaca tristiuscula	185	6.E-46
Saccharata intermedia	125	1.E-27
Sagenomella diversispora	448	6.E-125
Sagenomella humicola	489	2.E-137
Sagenomella striatispora	462	2.E-129
Sarcoscypha hosoyae	180	2.E-44
Sarea difformis	163	4.E-39
Sarea resinae	442	4.E-123
Scedosporium apiospermum	388	5.E-107
Schizothecium glutinans	271	1.E-71
Sclerotium delphinii	64	3.E-09
Scolecobasidium terreum	183	2.E-45
Scorias leucadendri	165	6.E-40
Scutellospora calospora	316	2.E-85
Scytalidium vaccinii	316	1.E-85
Sebacina grisea	92	1.E-17
Septoria digitalis	305	4.E-82
Septoria escalloniae	222	4.E-57
Septoria lamii	350	2.E-95
Sesquicillium microsporum	418	4.E-116
Siphula ceratites	183	2.E-45
Sistotrema diademiferum	290	3.E-77
Sistotrema sp B216	526	2.E-148
Sistotrema sp.	339	3.E-92
Skyttea nitschkei	283	2.E-75
Sordaria fimicola	446	2.E-124
Sordariales sp Pi GPB	261	9.E-69
Sordariomycetes sp 11344	418	5.E-116
Sordariomycetes sp DC2118	467	9.E-131
Sordariomycetes sp genotype 106	228	8.E-59
Sorocybe resinae	234	1.E-60
Spadicoides bina	212	4.E-54
Sphaerobolus iowensis	569	2.E-161
Sphaeropsis pyriputrescens	326	3.E-88
Sphaeropsis sapinea	464	6.E-130
Spizellomyces acuminatus	152	1.E-35
Spizellomyces dolichospermus	294	8.E-79
Spizellomyces lactosolyticus	121	2.E-26

Spizellomyces palustris	209	7.E-53
Spizellomyces plurigibbosus	163	3.E-39
Spizellomyces pseudodichotomus	264	1.E-69
Spizellomyces sp JEL 148	81	3.E-14
Sporendocladia foliicola	269	3.E-71
Sporobolomyces gracilis	553	2.E-156
Sporobolomyces inositophilus	445	5.E-124
Sporobolomyces lactophilus	290	3.E-77
Sporobolomyces tsugae	499	3.E-140
Sporormiella sp FBIO4	472	3.E-132
Squamarina gypsacea	180	2.E-44
Staphylotrichum boninense	232	2.E-60
Stictis radiata	291	9.E-78
Stilbum vulgare	123	2.E-27
Strelitziana mali	247	2.E-64
Stropharia cyanea	553	2.E-156
Suillus bovinus	611	5.E-174
Suillus luteus	611	5.E-174
Sydowia polyspora	488	6.E-137
Sympodiella acicola	464	8.E-130
Syzygospora bachmannii	291	1.E-77
Syzygospora effibulata	108	1.E-22
Talaromyces verruculosus	480	1.E-134
Talaromyces wortmannii	480	1.E-134
Teratosphaeria capensis	477	1.E-133
Teratosphaeria jonkershoekensis	394	8.E-109
Teratosphaeria persoonii	136	3.E-31
Thelephora	581	5.E-165
Thelephora terrestris	577	1.E-163
Thelotrema lepadinum	71	1.E-11
Thielavia fragilis	348	5.E-95
Tolypocladium cylindrosporum	451	5.E-126
Tolypocladium inflatum	434	1.E-120
Trechispora hymenocystis	390	1.E-107
Trechispora stevensonii	418	7.E-116
Trechispora subsphaerospora	423	2.E-117
Tremella brasiliensis	206	4.E-52
Tremella diploschistina	225	8.E-58
Tremella giraffa	240	2.E-62
Tremella taiwanensis	126	3.E-28
Trichocladium asperum	375	3.E-103
Trichoderma atroviride	38	1.E-01
Trichoderma koningiopsis	481	6.E-135
Trichoderma petersenii	412	4.E-114
Trichomerium deniqulatum	434	1.E-120
Trichomerium gleosporum	331	1.E-89
Trichopezizella otanii	176	3.E-43
Trichosporon debeurmannianum	147	3.E-34
Trichosporon porosum	494	7.E-139
Trichothecium roseum	133	6.E-30
Tricladium chaetocladium	191	9.E-48
Truncatella angustata	462	2.E-129
Tuber cistophilum	90	3.E-17
Umbelopsis autotrophica	548	5.E-155

Umbelopsis isabellina	543	1.E-153
Umbelopsis ramanniana	548	5.E-155
Umbelopsis sp I GK 2010	226	2.E-58
Umbilicaria calvescens	242	5.E-63
uncultured Archaeospora	520	1.E-146
uncultured Archaeosporales	580	1.E-164
uncultured Archaeosporales	531	7.E-150
uncultured Chytridiaceae	53	8.E-06
uncultured Cladosporium	446	2.E-124
uncultured Cladosporium	470	1.E-131
uncultured Dermateaceae	438	4.E-122
uncultured ectomycorrhizal fungus	386	2.E-106
uncultured fungus	576	1.E-163
uncultured fungus	664	$0 . \mathrm{E}+00$
uncultured fungus	400	8.E-111
uncultured Helotiaceae	418	5.E-116
uncultured Helotiaceae	453	2.E-126
uncultured Hypocreales	88	1.E-16
uncultured Leotiomycetes	462	2.E-129
uncultured Leptodontidium	469	3.E-131
uncultured Mortierella	183	3.E-45
uncultured Phaeococcomyces	229	3.E-59
uncultured Phialophora	367	8.E-101
uncultured Sebacina	489	2.E-137
uncultured Sebacina mycobiont of Trifolium pratense	418	5.E-116
uncultured Sebacinaceae	497	7.E-140
uncultured soil fungus	600	1.E-170
uncultured soil fungus	223	3.E-57
uncultured soil fungus	610	1.E-173
uncultured Trechisporales	554	6.E-157
uncultured Trechisporales	547	7.E-155
Unguiculariopsis lettaui	200	2.E-50
Urocystis agropyri	619	2.E-176
Vermispora fusarina	263	4.E-69
Verrucaria subcrustosa	231	1.E-59
Verrucariales sp RB 2011	241	1.E-62
Verticillium leptobactrum	518	5.E-146
Wallemia sebi	486	2.E-136
Wilcoxina mikolae	475	4.E-133
Wojnowicia sp NW 2013	331	8.E-90
Xanthoria parietina	172	5.E-42
Xenobotrytis acaducospora	250	2.E-65
Xenochalara juniperi	437	1.E-121
Xenopolyscytalum pinea	416	2.E-115
Xylaria globosa	97	3.E-19
Xylaria intracolorata	313	2.E-84
Xylodon sambuci	381	7.E-105
Zeloasperisporium hyphopodioides	213	2.E-54
Zopfiella tabulata	171	2.E-41
Zychaea mexicana	62	1.E-08

Appendix B
BLAST hit References, average relative read abundances, E-values and corresponding BLAST scores for all OTUs identified at a 97\% sequence similarity cut-off in the study presented in chapter 4. OTUs were blasted against the UNITE and INSD databases using the massBLASTer tool available from PlutoF v2.0 (http://unite.ut.ee/workbench.php). OTUs that did not have a BLAST hit in the UNITE or INSD databases were indicated as "not applicable (NA)".

| Reference name | Average relative
 abundance $\%$ | Standard error
 on average
 relative
 abundance | Score |
| :--- | :--- | :--- | :--- | E-value

Abrothallus suecicus	0.001	6.6E-07	318	4.E-86
Absidia caerulea	0.001	9.9E-07	492	2.E-138
Acanthostigma chiangmaiensis	0.001	6.6E-07	189	3.E-47
Acanthostigma perpusillum	0.007	8.0E-07	311	6.E-84
Acaulospora lacunosa	0.001	6.6E-07	420	1.E-116
Acephala applanata	0.001	6.6E-07	344	6.E-94
Acephala macrosclerotiorum	0.890	1.3E-05	436	9.E-122
Acremonium cavaraeanum	0.040	3.5E-06	298	5.E-80
Acremonium cellulolyticus	0.004	2.6E-06	457	1.E-127
Acremonium psammosporum	0.018	1.4E-06	104	1.E-21
Acremonium strictum	0.002	8.4E-07	492	2.E-138
Acrodontium crateriforme	0.001	9.9E-07	425	2.E-118
Acrostalagmus luteoalbus	0.001	6.6E-07	507	8.E-143
Agaricus pinsitus	1.000	2.4E-05	529	2.E-149
Agrocybe pediades	0.002	6.6E-07	547	5.E-155
Agrocybe vervacti	0.001	9.9E-07	298	6.E-80
Alatospora acuminata	0.001	6.6E-07	427	6.E-119
Alternaria alternata	0.002	6.6E-07	455	3.E-127

 Мّ

 000000000000000000000000000000000

 بَ

Chalara microchona Chalara microchona
Chalara microspora
Chaunopycnis alba Chaunopycnis pustulata
Chlamydotubeufia huaikangplaensis Chlamydotubeufia khunkornensis Chloridium sp Chloridium sp
Chlorociboria halonata Chrysosporium keratinophilum Chrysosporium merdarium
Chrysosporium pseudomerdarium Chrysosporium pseudomerd
Chytridiomycota sp Mori B3 Cistella grevillei Cladia aggregata Cladnia coniocraea Cladonia fimbriata Cladonia foliacea Cladonia furcata Cladonia grayia Cladophialophora chaetospira Cladophialophora minutissima Cladophialophora modesta Cladophialophora scillae Cladosporium cladosporioides Claroideoglomus claroideum Claroideoglomus drummondii Clavaria argillacea
Clavaria falcata
豙

©

No

 بَ بَ

Dactylellina phymatopaga
Daedaleopsis confragosa
Davidiella tassiana
Debaryomyces hansenii
Degelia gayana
Devriesia americana
Devriesia lagerstroemiae
Devriesia pseudoamericana
Diaporthe batatas
Diaporthe eres
Dictyonema sp R04
Dictyosporium toruloides
Dioszegia crocea
Dissoconium aciculare
Dissoconium dekkeri
Dokmaia monthadangii
Dothideomycetes sp DC2167
Drechslera erythrospila
Drechslera fugax
Elsinoe ampelina
Elsinoe banksiae
Embellisia lolii
Entoloma ameides
Entoloma platyphylloides
Entorrhiza aff fineranae PDD70949
Entrophospora sp
Entrophospora sp JJ61
Entrophospora sp shylm131
Epacris microphylla root associated fungus 1
Epacris microphylla root associated fungus 12
Epacris microphylla root associated fungus 20
Epacris microphylla root associated fungus 21
Epacris microphylla root associated fungus 26
Epacris microphylla root associated fungus 3

Epacris microphylla root associated fungus 31 Epacris microphylla root associated fungus 33 Epacris microphylla root associated fungus 5 Epacris microphylla root associated fungus 6 Epacris pulchella root associated fungus EP1 Epacris pulchella root associated fungus EP2 pacris pulchella root associated fungus EP2 Epacris pulchella root associated fungus EP23 Epacris pulchella root associated fungus EP42 Epicoccum nigrum Erythrobasidium hasegawianum Erychosphaeria capensis Eupenicillium hirayamae Eutypella scoparia Exidia recisa
Exobasidium Exobasidium inconspicuum Exophiala eucalyptorum
Exophiala salmonis Exophiala sp EXP0542F Faurelina indica
Fellomyces lichenicola Fibulobasidium inconspicuum Fibulobasidium murrhardtense Filobasidium capsuligenum Flagelloscypha minutissima Fomes fomentarius
Fulgensia schistidii Fusarium cerealis Fusarium incarnatum Fusarium larvarum Fusarium merismoides var crassum
Fusarium oxysporum

 ю犬

Oㅅㅇㅇㅅㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

 0000000000000000000000000000000000
 بَ

Helotiaceae sp IV GK 2010
Helotiaceae sp VI GK 2010 Helotiaceae sp VI GK 2010 Helotiales sp 16 MV 2011 Helotiales sp 27 MV 2011
Helotiales sp 31 MV 2011 Helotiales sp ARDL] 2009d Helotiales sp CWG F1 E3 Helotiales sp SC4 4 Hemibeltrania mitrata Herpotrichia juniperi Heyderia abietis Hirsutella minnesotensis
Hirsutella rhossiliensis Hirsutella rhossiliensis
Hirsutella thompsonii Holtermanniella festucosa Hyaloscypha sp
Hymenoscyphus scutula Hymenoscyphus scutula Hyphodiscus hymeniophilus Hyphodiscus hymeniophilus
Hyphodontia radula Hypholoma fasciculare Hypholoma fasciculare
Hypocenomyce scalaris Hypocenomyce scalaris
Hypocrea ceramica Hypocrea ceramica
Hypocrea koningii Hypocrea lixii
Hypocrea rufa Hypocrea virens
Hypoderma cordylines Hypoderma rubi Hypoxylon howeanum Ilyonectria radicic
Inocybe lacera

Inocybe lacera var helobia
Inocybe lacera var lacera
Inocybe ochroalba
Itersonilia perplexans
Kappamyces sp ARG063
Knufia chersonesos
Kochiomyces dichotomus
Laccaria proxima
Lachnum sp
Lachnum sp 1 MV 2011
Lactarius rufus
Laetiporus cincinnatus
Laetisaria lichenicola
Lasiodiplodia gonubiensis
Lasiodiplodia theobromae
Lasiosphaeria ovina
Lecanicillium attenuatum
Lecanicillium fusisporum
Lecanicillium psalliotae
Lecanora polytropa
Lecidea cancriformis
Lecidella carpathica
Lecythophora hoffmannii
Lecythophora mutabilis
Leohumicola minima
Leohumicola sp 1 MV 2011
Leotiomycetes sp NK264
Leptosphaeria contecta
Leptosphaeria doliolum
Leptosphaeria korrae
Leptosphaerulina australis
Leptosphaerulina chartarum
Leucopaxillus tricolor
Leucosporidiella muscorum
 بَّ ம்

 $\bigcirc 0.10000000000000000000000000000$
Microglossum olivaceum
Microscypha ellisii
Microsphaeropsis arundinis
Microsphaeropsis proteae
Mollisia cinerea
Mollisia fusca
Mollisia melaleuca
Monacrosporium doedycoides
Monilinia jezoensis
Monoblepharella mexicana
Monoblepharis macrandra
Mortierella alpina
Mortierella angusta
Mortierella cystojenkinii
Mortierella dichotoma
Mortierella elasson
Mortierella elongata
Mortierella fimbricystis
Mortierella gamsii
Mortierella gemmifera
Mortierella hyalina
Mortierella lignicola
Mortierella macrocystis
Mortierella minutissima
Mortierella paraensis
Mortierella parvispora
Mortierella sp CZ 2011
Mortierella sp TR065
Mortierella sp TR158
Mortierella verticillata
Mycena arcangeliana
Mycena corynephora
Mycena galopus
Mycena olida
状岗岗

Mycena silvae nigrae
Mycena tenax
Mycoblastus sanguinarius
Mycosphaerella delegatensis
Myrmecridium phragmitis
Myrmecridium schulzeri
Myxotrichum carminoparum
Myxotrichum chartarum
Myxotrichum deflexum
NA
Naemacyclus minor
Nemania abortiva
Neofusicoccum arbuti
Noosia banksiae
Occultifur aff externus IMUFRJ 52019
Ochrocladosporium frigidarii
Octospora wrightii
Oidiodendron chlamydosporicum
Oidiodendron flavum
Oidiodendron truncatum
Omphalina foliacea
Ophiocordyceps paracuboidea
Ophiocordyceps sinensis
Ophiostoma sp X ES 1996
Orbilia luteorubella
Paecilomyces carneus
Paecilomyces marquandii
Paraconiothyrium brasiliense
Paraconiothyrium cyclothyrioides
Paraconiothyrium sp HS 03
Paraphaeosphaeria sp
Paraphoma chrysanthemicola
Passalora zambiae
Penicillium aculeatum

人̂ㅇㅇㅇㅇㅇㅇㅇㅇㅇOOㅇㅇOㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

 بَ

人̂OᄋOㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

Phaeobotryosphaeria visci Phaeococcomyces catenatus Phaeococcomyces catenatus
Phaeococcomyces nigricans Phaeocollybia sipei
Phaeomoniella effusa Phaeophyscia exornatula Phaeophyscia squarrosa Phaeosclera dematioides Phaeosclera sp TRN524 Phaeosphaeria avenaria
Phaeosphaeria eustoma Phaeosphaeria herpotrichoide Phaeosphaeria nodorum Phaeosphaeria phragmitis Phaeosphaeria sp Phaeothecoidea melaleuca Phaeothecoidea proteae
Phanerochaete sordida Phialemonium curvatum Phialemonium curvatum
Phialocephala fluminis
Phialocephala fortinii Phialocephala helvetica Phialocephala virens Phialophora sp DF36 Phialophora sp MLB Phi Phlebia radiata Phoma eupyrena Phoma herbarum Phoma macrostoma Phomopsis liquidambari
号 بَّ $\stackrel{\text { 人) }}{\wedge}$

 ம்

Pseudaleuria quinaultiana

 Pseudeurotium bakeri Pseudeurotium desertorumPseudocyphellaria clathrata Pseudocyphellaria clathrata
Psilocybe montana Purpureocillium lilacinum Pyrenochaeta sp
Pyrenochaeta sp ZLY 2010b Pyrenochaetopsis microspora Pyrenophora leucospermi
Quambalaria cyanescens Quambalaria cyanescens
Rachicladosporium pini Raffaelea montetyi
Ramularia sp KACC 42532 Rhexocercosporidium panacis Rhizoctonia sp 266 Rhizoctonia sp KW214 Rhizophlyctis rosea Rhizophydium chaetiferum
Rhizophydium globosum Rhizophydium globosum Rhizophydium sp JEL 385 Rhizophydium sp JEL 385
Rhizopogon arctostaphyli Rhizopogon luteolus Rhizopogon subcaerulescens Rhizoscyphus ericae Rhodotorula auriculariae Rhodotorula bacarum
Rhodotorula cassiicola Rhodotorula cassiicola Rhodotorula diffluens Rhodotorula eucalyptica Rhodotorula fujisanensis
Rhodotorula graminis

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅅㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

Oㅇㅇㅇ

Sordariales sp MU 20091

Sphaceloma protearum
Sphaerobolus iowensis
Sphaeropsis pyriputrescens Sphaeropsis sapinea
Sphaeropsis sapinea
Sphaerostilbella aureonitens Sphaerostibella aureonitens
Spiromastix tentaculatu Spizellomyces dolichospermus Spizellomyces lactosolyticus Spizellomyces lactosolyticus
Spizellomyces palustris Spizellomyces plurigibbosus
Spizellomyces pseudodichotomus Spizellomyces pseudodichotomus
Sporobolomyces falcatus Sporobolomyces falcatus
Sporobolomyces gracilis Sporobolomyces inositophilus Sporobolomyces lactophilus
Sporobolomyces lactosus
Sporobolomyces roseus Sporobolomyces symmetricus Squamarina gypsacea Staphylotrichum coccosporum Steccherinum fimbriatum
Stictis radiata Suillus bovinus
Sydowia polyspora
Syncephalastrum racemosum Talaromyces helicus var major Talaromyces proteolyticus

 юِّ

식 n

Ñ～～～o
 m 응ํNN FmーNか
옹ㅇㅇ岗出出岗岗 べッのか
 0000

Appendix C
BLAST hit References, average relative read abundances, E-values and corresponding BLAST scores for all OTUs identified at a 97\% sequence similarity cut-off in the study presented in chapter 5. OTUs were blasted against the UNITE and INSD databases using the massBLASTer tool available from PlutoF v2.0 (http://unite.ut.ee/workbench.php). OTUs that did not have a BLAST hit in the UNITE or INSD databases were indicated as "not applicable (NA)".

| Reference name | Average
 relative
 abundance (\%) | Standard error on
 average relative
 abundance | Score |
| :--- | :--- | :--- | :--- | E-value

 0000000000000000000000000000000000000
Antarctic yeast CBS 8941
Antennariella placitae
Anthostomella eucalyptorum
Anthostomella pinea
Aphanoascus fulvescens
Aphanoascus verrucosus
Aphyllophorales sp EXP0530F
Apiosordaria otanii
Apiospora montagnei
Apodospora peruviana
Aquaticola hongkongensis
Archaeospora sp isa33
Archaeospora trappei
Armillaria novae zelandiae
Arnium macrotheca
Arthrinium arundinis
Arthrinium phaeospermum
Articulospora proliferata
Ascochyta hordei
Ascochyta manawaorae
Ascomycota sp AR 2010
Ascomycota sp BBC
Ascomycota sp CH NI20
Ascomycota sp CH Tc23
Ascomycota sp X33
Aspergillus flavipes
Aspergillus niger
Aspicilia aquatica
Aspicilia cinerea
Aspicilia dendroplaca
Aspicilia verruculosa
Astrocystis sublimbata
Aulographina pinorum
Aureobasidium pullulans

 $\stackrel{\sim}{\square}$

Bullera miyagiana
Byssoascus striatosporus
Cadophora finlandica
 Caloplaca cerina
Caloplaca chlorina
Calyptrozyma arxii
Camarographium kor
Candida morakotiae
Candida psychrophila
Candida santamariae var membranifaciens
Candida valdiviana
Capnobotryella sp MA 4701
Capronia sp 94003b
Capronia sp 97003b
Catenulifera brevicollaris

 بَ

[^0]Cladonia gracilis subsp elongata
Cladonia gracilis subsp turbinata
Cladonia pulvinata
Cladophialophora chaetospira
Cladophialophora minutissima
Cladophialophora scillae
Cladosporium cladosporioides
Clitopilus hobsonii
Clitopilus prunulus
Clitopilus scyphoides
Clitopilus sp FZ1433
Clonostachys candelabrum
Coccomyces dentatus
Codinaeopsis gonytrichoides
Coemansia sp ID05 F0205
Coleophoma empetri
Coleophoma eucalyptorum
Collophora africana
Collophora capensis
Collophora paarla
Collophora pallida
Collophora rubra
Collybia cirrhata
Coniochaeta africana
Coniochaeta prunicola
Coniochaeta sp 2 ICMP 18911
Coniophora olivacea
Coniothyrium fuckelii
Conoplea aff elegantula Kurogi sn
Coprinellus disseminatus
Coprinellus micaceus
Coprinopsis cinerea
Coprinus foetidellus
Cordana ellipsoidea
 بَ - نَ

[^1]
状宸

 нiへ

 ซ هِ

000 No 000000000000000000000000000000

Hypomyces aconidialis Hypomyces lateritius Inocybe lacera Inocybe lacera var helobia
Inocybe ochroalba
Itersonilia perplexans Kappamyces sp ARG063 Kappamyces sp ARG063
Knufia chersonesos Kockovaella machilophila Lachnum sp 1 MV 2011 Lachnum virgineum Laetisaria lichenicola Lasiodiplodia gonubiensis Lasiodiplodia theobromae Lasiosphaeria ovina Lecanicillium fusisporum Lecanora polytropa Lecidea cancriformis Lecythophora hoffmannii Lecythophora mutabilis
Lentinula edodes Lentinula edodes Leotiomycetes sp NK264
Leptosphaeria contecta
Leptosphaeria korrae Leptosphaerulina australis Leptosphaerulina australis Lewia infectoria
Limonomyces culmigenus

かo

 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Monacrosporium doedycoides Monoblepharella mexicana Mortierella alpina

Mortierella angusta Mortierella armillariicola Mortierella cystojenkinii Mortierella dichotom
Mortierella elasson

Mortierella elasson
Mortierella elongata Mortierella fimbricystis Mortierella gamsii
Mortierella gemmif Mortierella gemmifera

Mortierella hyalina
Mortierella lignicola Mortierella macrocystis Mortierella minutissima Mortierella parvispora Mortierella sp CZ 2011 Mortierella sp TR158 Mortierella verticillata Mucor fragilis Mycena arcangeliana Mycena corynephora Mycena galopus

Mycena olida
Mycena tenax
Mycena tenax
Mycoblastus sanguinarius Mycosphaerella delegatensis Mycosphaerella punctiformis Myrmecridium phragmitis

Occultifur aff externus IMUFRJ 52019 そ $\overbrace{2}^{\infty} \frac{0}{2} \frac{0}{2}$ Ochroconis gamsii
nsis
Oidiodendron chlamydosporicum
Oliveonia pauxilla
Omphalina foliacea
Ophiostoma sp X ES 1996
Ophiostoma sp X ES 1996
Paecilomyces marquandii
Paenaeolus papilionaceus
Pannaria pallida
Paraconiothyrium cyclothyrioides Paraconiothyrium sp HS 03 Paraphoma chrysanthemicola Passalora zambiae
Penicillium aculeatum Penicillium adametz Penicillium canescens
Penicillium cecidicola
Penicillium glabrum
Penicillium islandicum
Penicilitium lividum
Penicillium melinii

ㄱㅇㅇㅇ엉ㅇㅇㅇㄱㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ엉 N

出

山َ

へ⿵冂人一⿰⺝刂

 $\stackrel{n}{n}$

万す。
 м゙

Teratosphaeria microspora Tetracladium apiense Tetracladium apiensporium sancti jacobi Thanatephorus cucumeris Thanatephorus theobromae Thedgonia ligustrina 2010 Thelebolaceae sp BEA 2010 Thelebolus sp UFMGCB 3742 Thelephora terrestris Thermomyces lanuginosus
Thielavia microspora Thielavia microspora
Thielavia terrestris
Thozetella havanensis Tolypocladium cylindrosporum Torrendiella brevisetosa Trechispora confinis Trechispora hymenocystis Trechispora subsphaerospora
Tremella foliacea Tremella foliacea

Trichocladium asperum

 Trichoderma inhamatum Tricholoma albobrunneum Tricholoma imbricatumTricholoma scalpturatum
Tricholoma vaccinum
Tricholoma vaccinum
Trichophaea gregaria
Trichophaea gregaria
Trichosporon jirovecii
Trichosporon moniliiforme
Trichosporon porosum
Trimmatostroma betulinum
Trimmatostroma cordae
 بّ بَ

Tubeufia cerea

Tubeufia cerea
Umbelopsis autotrophica
Umbelopsis isabellina
Umbelopsis ramanniana
Umbilicaria esculenta
Varicosporium elodeae
Vascellum pratense
Vermispora fusarina
Verticillium leptobactrum
Volvariella pusilla
Vonarxia vagans
Wilcoxina mikolae
Woollsia root associated fungus X
Xanthoparmelia mexicana
Xanthoria parietina
Xenobotrytis acaducospora
Xenochalara juniperi
Xenopolyscytalum pinea
Xylaria globosa
Xylaria polymorpha
Zalerion arboricola
Zalerion varium
Zopfiella karachiensis
Zopfiella tabulata

[^0]:

[^1]: 00 io 00000000000000000000000000000000

