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Summary. The moment method is a well known mode identification technique in asteroseis-  

mology (where 'mode' is to be understood in an astronomical rather than in a statistical sense),  

which uses a time series of the first 3 moments of a spectral line to estimate the discrete os-  

cillation mode parameters e and m. The method, contrary to many other mode identification  

techniques, also provides estimates of other important continuous parameters such as the in-  

clination angle a, and the rotational velocity Ve. We developed a statistical formalism for the  

moment method based on so-called generalized estimating equations (GEE). This formalism  

allows the estimation of the uncertainty of the continuous parameters taking into account that  

the different moments of a line profile are correlated and that the uncertainty of the observed  

moments also depends on the model parameters. Furthermore, we set up a procedure to take  

into account the mode uncertainty, i.e., the fact that often several modes {£, m) can adequately  

describe the data. We also introduce a new lack of fit function which works at least as well  

as a previous discriminant function, and which in addition allows us to identify the sign of the  

azimuthal order m. We applied our method to the star HD181558 using several numerical  

methods, from which we learned that numerically solving the estimating equations is an in-  

tensive task. We report on the numerical results, from which we gain insight in the statistical  



uncertainties of the physical parameters involved in the moment method.  

 

Keywords: Generalized estimating equations, time series, sandwich estimator, astrostatistics,  

discriminant function  

 

1. Introduction  

 

Stars consist of a number of gas layers with different temperatures, pressures, and chemical  

compositions. During their sojourn on the main-sequence, i.e., when they transform hydro-  

gen into helium, some stars are subject to oscillations which in turn provide astronomers  

with a wealth of information about the stellar interior. This is the subject of asteroseis-  

mology. Such oscillations typically exhibit multiple frequencies and manifest themselves at  

the surface of the star through variations in brightness, temperature, and surface velocity;  

some of these are observable. A star can oscillate in one or more of its "natural" frequencies  

determined by the internal structure of the star. With suitable inversion techniques it is  

possible to use the observed frequencies to derive information about this internal structure.  

 

To do so, however, the characteristics of the oscillations need to be considered first. That  

is, a mode identification (note that 'mode' is an astronomical term) has to be carried out, in  
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which one estimates the parameters characterising the oscillations from observational data.  

There are few mode identification techniques, and the properties of their estimators are  

rarely studied. Statistical uncertainties of the estimates, for example, are never reported.  

Nevertheless, from an astrophysical point of view, such uncertainties are important because  

wrong mode identifications can bias inversion techniques. It is therefore necessary to know  



a priori the extent of possible errors in the estimates.  

 

In this paper, we study the statistical properties of one particular mode identification  

technique, the so-called moment method. For examples of applications of this method we  

refer to, e.g., Aerts et al. (1998), Uytterhoeven et al. (2001), Aerts & Kaye (2001), and  

Chadid et al. (2001).  

 

2. Astrophysical Background  

 

As in any inferential method, the moment method uses a theoretical model to describe the  

observations. To understand the statistically relevant properties of this theoretical model  

and its parameters, we first briefly discuss some of the physics of stellar oscillations and  

how they are observed.  

 

Figure Ogives a diagrammatic illustration of an orthographic planar projection of the  

surface of an oscillating star, i.e., parallel with the line of sight. For our application, the  

 

 

 

 

Fig. 1 . A diagrammatic illustration of an orthographic planar projection of the surface of an 

oscillating  

stars for the mode {£, m) = (5, 3). In the left picture we look at the equator, and in the right picture  

we look almost at the pole of the star.  

 

most important aspect of stellar oscillation is the surface velocity. The lighter parts of the  

stellar surface have an inward velocity while the darker parts have an outward velocity. The  

figure is only a snapshot: the star varies periodically and half an oscillation cycle later the  

situation is reversed with the lighter parts moving outward and the darker parts moving  

inward. For slowly-rotating oscillating stars, each of the oscillation modes can be described  

with a spherical harmonic F/" (which is actually the basis of our illustration in Figure ^ ,  



where £ is the total number of nodal lines and m is the number of nodal lines perpendicular  

to the equator. In reality, the motion of a surface element is more complex because it moves  

horizontally as well as vertically.  

 

In terms of model parameters we have to estimate 3 unknown parameters per oscillation  

mode: 2 discrete parameters and 1 continuous parameter. The 2 discrete parameters are  

the mode numbers £ and m of the spherical harmonic, which describe the configuration of  

the inward and outward going regions. To describe the 3-dimensional motion of the stellar  

matter, only one parameter is needed: the amplitude Vp of the vertical motion, since there is  

a theoretical linear relation between the amplitude of the vertical motion and the amplitude  
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Table 1. A summary of all unknown relevant model parameters, with their mean-  

ing and their physical range. The notation (3 = [Pi, 132, 133,13a)' for the continuous  

parameters will be introduced and used in Section|31  

 

 

 

Parameter  

 

 

Meaning  

 

 

Physical Range  

 



 

l  

 

 

 

 

Degree of the spherical harmonic  

 

 

{0,1,2,..-}  

 

 

m  

 

 

 

 

Azimuthal order of the spherical har-  

monic y/"  

 

 

{-^,---,o,---,+n  

 

 

Vp  

 

 

= l3i  

 

 

Velocity amplitude of the oscillation  



 

 

>  

 

 

a -  

 

 

= 132  

 

 

Width of line profile in absence of pul-  

sation and rotation (nuisance)  

 

 

>  

 

 

Ve  

 

 

= 03  

 

 

Equatorial rotational velocity  

 

 

>  

 

 

a :  



 

 

= I3a  

 

 

Inclination angle of the star  

 

 

[0°,360°)  

 

 

 

of the horizontal motion. To compute the constant of proportion K , however, the mass and  

the radius of the star are required and these quantities are often not very accurately known.  

Nevertheless, in what follows we will assume, as a first approximation, that K is known, to  

considerably simplify the treatment.  

 

A further continuous parameter related to the oscillation is the oscillation period P.  

However, for good datasets, this oscillation period can often be quite accurately determined  

from the data with other methods so that it is usually regarded as known.  

 

In the model, 2 additional unknown parameters not connected to the oscillations are  

present. A first one is the rotational velocity at the equator of the star, usually denoted  

as Ve- The second one is the inclination angle a under which we observe the star. This  

is illustrated in Figure ^ Both pictures show the same Y^™, but on the left hand side we  

are looking on the equator, while on the right hand side we are looking almost on the pole.  

Clearly, a has a large impact on how the surface velocity field is observed.  

 

A last unknown model parameter is specifically related to the kind of observational data  

we use. In the case of the moment method it concerns high-resolution spectroscopic data.  

The gathered star light is decomposed into its colours so that a detailed spectrum can be  



constructed, i.e., received light flux as a function of the wavelength of the light. At certain  

wavelengths, such a spectrum contains absorption lines where the light has been partially  

blocked by certain chemical elements at the surface of the star. An example of the Si"*"  

absorption line at A = 4f 2.805 nm for the non-radially oscillating star HD181558 is shown  

in the left hand panel of Figure|21 Here, an observational time series of TV = 30 high-quality  

spectra gathered by De Cat and Aerts (2002) is shown. The oscillations in the star cause  

the absorption line to change its position and shape in time. Precisely these line profile  

variations are used to estimate the parameters mentioned above. To model them, another  

unknown parameter is needed, denoted by a, which is related to the width the line profile  

would have in the absence of pulsation. From an astrophysical point of view this is an  

unimportant nuisance parameter. For convenience. Table ^summarizes all unknown model  

parameters mentioned above, their meaning and their physical range.  

 

Modeling the line profiles themselves turns out to be very computationally expensive.  

That is why Balona (1986) devised the moment method, which replaces each line profile by  

the first, second, and third moment denoted by j/i, 2/2, and 2/3 respectively. These quantities  

are measures for the average position, the square of the width and the skewness of the line  
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Fig. 2. In the left panel, a time series of Si+ (412.805 nm) absorption lines of the non-radially  

oscillating star HD181558 is shown. The line profiles are 'sorted' to cover an entire oscillation cycle  

of the dominant mode, which has a period of about 29h42m. Each of the line profiles is vertically  

shifted to obtain a clear visual effect. In the right panels, the first moment yi (in km/s), the second  

moment y2 (in km^/s^) and the third moment (in km^/s'') of all line profiles are shown as a function  

of the oscillation phase 0.  

 

 

 

profile. Precisely,  

 

 

 

/+^[l-p(</.,A)]A"dA  

 

 

 

(1)  

 

 

 



where p{(f>, A) is the line profile function at phase (j) and for wavelength A. For each (f>, there  

is a separate line profile in the left hand panel of Figure El leading to a point for each of the  

right hand side sub-panels, corresponding to n — 1,2,3. In practice, no higher moments  

are considered since these are often noisy and unduly complicate the calculations. One  

commonly expresses the moments in (km/s)", by transforming the wavelength A in |^ to  

a velocity using the Doppler transformation formula:  

 

A-Ao  

 

V = c ,  

 

Ao  

 

where c is the speed of light. The moments yni'f) can be expressed in terms of time t  

as well, where is defined as imodP/P, with 'mod' standing for the decimal part and P  

the oscillation period. A time series of theoretical moments can be computed much faster  

than one of theoretical line profiles. The nuisance parameter cr, however, remains. In the  
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right hand panels of Figure |21 we show a time series of the three moments for the star  

HD181558. The computation of such moments from spectral line profiles take the form of  

intensity-weighted sums, sums of squares, and sums of cubes.  

 

Fifteen years after the introduction of the moment method, this mode identification  

technique is still very relevant (see the recent references given in Section Indeed, the  

effort required for direct computation of time series of line profiles is currently still too  



computationally demanding to be useful for mode identification, even under simplifying  

assumptions concerning the shape of the absorption line.  

 

A theoretical moment at one point of time is computed by integrating over the contri-  

butions of all points on the visible stellar surface. Closed-form expressions for the moments  

exist (Aerts et al., 1992), but they are quite lengthy and of little practical use to computing  

derivatives, such as in Sectional We opt for different, computationally more advantageous,  

expressions, which involve an integration with bounds depending on the inclination angle  

a.  

 

 

 

3. Current Statistical Status  

 

The moment method is a multi-response problem where a time series of 3 responses is used  

to extract 6 (i.e., 2 discrete and 4 continuous) parameters. In what follows we will use the  

notation  

 

Y, EE (yiiU), y2{U), ysiU))'  

 

and  

 

H^ = {^i{U,£,m,f3), ^i2{Uj,m,f3), ^■i{Uj,m., (3))'  

 

for the first three observed and theoretical moments respectively, at time point ti {i =  

1, • ■ • , n), where f3 = (vp, a, Ve, a)' .  

 

It is important to understand how the moment method is currently used. Theoretically,  

it can be shown (Aerts et al., 1992) that for a monopcriodic star, the time dependence of  

the moments takes the following form:  

 



/ii = fli sin(27ri'i + Ki), '1  

A*2 = bo + bi sin{2Tnyt + di) + b2 sm{ATrvt + 52), > (2)  

 

= ci sin(27ri^i + 7i) + C2 sin(47ri^t + 72) + C3 sin(67rzyi + 73), J  

 

where v is the oscillation frequency. The phases ai. Si, jj are constants, while the pos-  

itive amplitudes ai, hi, Cj depend on the parameters (£, to,/3). A discriminant r™(/3) is  

constructed to estimate these parameters by comparing the observed amplitudes with their  

theoretical counterparts:  

 

rr = I (/a, \ai - ail) + ^ (^/^^ vf^) + E </ \^'^ ~ ^'1 M ' (3)  

 

where the tilde denotes observed quantities, and where the weights / are introduced to  

incorporate the estimated standard errors Adi, Abi and Acj of the corresponding observed  

amplitudes:  

 

/ ^ VF-i / = i, h. = A,  

 

Aai' At, Aq'  
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W EE — ^ H H ^ H ^- H — H ^ + — ^  

 

Aai A60 A5i A62 Aci Ac2 Acs  

 



(Aerts 1996). The form of F™ in © prevents the third moment 1/3 with its large values from  

dominating the first moment yi, but has the disadvantage that it cannot discriminate the  

sign of the mode number m. The parameters are estimated by searching for the minimum  

of in a rectangular grid in the parameter space. For the continuous parameters, it is  

hoped for that the grid is fine enough in order not to miss the global minimum. Finally, a  

table is produced with the top 5 or 6 best fitting {£,m,P) parameter sets.  

 

The best strategy to obtain the final estimate for (£, m) and f3 together with their  

uncertainties, is currently open to debate. Despite the usefulness of the table with the best  

parameter sets, there is no estimate of the uncertainties of the parameters obtained with  

the moment method, because of severe theoretical and computational complexity. This  

paper takes an important first step towards estimating the uncertainties of the continuous  

parameters f3. Estimating the uncertainties of the discrete parameters £ and m is an even  

more challenging problem, and will be left for future research.  

 

Even for a given {£, m) value, it is currently unknown how precise the continuous pa-  

rameters are estimated. For example, is the uncertainty in the inclination angle as small as  

5°, or is perhaps 30° a more typical value? Moreover, very often several {£,m) pairs give  

almost equally good fits. The question is raised as to how should we take this into account  

for our best estimate of /3 and its uncertainty? In what follows, we will try to answer these  

questions.  

 

4. New Statistical Approach  

 

We consider a new estimating method which produces both point and interval estimates.  

 

We first note that the three responses yi, j/2 and j/3 are dependent, and that their  

covariance matrix V is unknown. Formulating a statistical model for the noise on the  

moments is non-trivial as it would involve a model for both the instrumental and the  

atmospheric noise. In addition, we note that the relation between the coefficients oi, bi,  

Ci in (01, and the parameters (3 is non- linear thereby preventing the easy computation of  



a Jacobian matrix. Estimating /3 and its covariance matrix Cov[/3] using a simple variable  

transformation technique is therefore not possible.  

 

A first alternative is the least squares method. Although multi-response least-squares  

estimation has been used before to deal with correlated responses where the covariance  

matrix has to be estimated, Seber and Wild (1989) show that this technique should not  

be used if the covariance matrix V depends on the parameters /3, as is the case here. For  

example, the uncertainty in the first moment of a line profile (j/i) can be estimated with  

the second moment (2/2), and the latter depends on m, and /3. Or, with an astrophysical  

example, the faster the star rotates (larger Ve) the broader and flatter the line profile, and  

the less precision with which wc know the position or the first moment of the line profile.  

To avoid confusion, we stress that our argument in the example above is not that the  

uncertainty of the first moment yi depends on the uncertainty of the second moment y2 ,  

but that the uncertainty of the first moment yi always depends on the second moment itself  

of which we know that it depends in turn on the parameters f3.  

 

We must therefore conclude that in the case of the moment method, minimizing the  

weighted sum of squares is not appropriate, regardless of how V is estimated, because it  
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will not yield a consistent estimate of the parameters f3 and it will reduce the efficiency of  

the estimator (Seber and Wild, 1989).  

 

The generalized estimating equations (GEE) methodology, as developed by Liang and  

Zeger (1986), is better suited for the purpose of the moment method. We recall that this  

method does not assume a particular joint probability density for the responses j/i, y2  



and 2/3, nor that they are i.i.d. The theory does not assume that the theoretical model is  

linear in its parameters, while the covariance matrix V of the responses does not need to  

be completely specified. The method does assume, however, that the different observations  

Yj (z = 1, • • • , n) are independent, that a working approximation of the covariance matrix of  

the responses is available, and that the expectation values -EiYi] = /i.,;(^, m, f3) {i = 1, ■ ■ ■ ,n)  

are correctly specified.  

 

We therefore use GEE to estimate the uncertainties of the continuous parameters f3.  

We recall that in the GEE method, the parameters are estimated by locating the root of  

the quasi-score function U(/3):  

 

N  

 

U(/3)^^D*.Wri.(Y,-M,), (4)  

 

where N is the size of the time series. The 3x4 matrix D = dfi/dfi^, and the 3x3  

symmetric matrix is a working approximation of the true covariance matrix of the  

quantities Y^:  

 

V, EE E[iY, - M,(/3))(Y. - tiMYl (5)  

 

where (3 are the true (but unknown) parameters. It can be shown (e.g., Liang and Zeger,  

1986; Zeger and Liang 1986; Diggle et al. 2002) that the root ^ is a consistent and asymp-  

totically normal estimate of the true /3, with sandwich covariance matrix  

 

Cov[^] =1-1 Ii Igi, (6)  

 

N  

 

 

 



where  

 

 

 

d(3  

 

 

 

and  

 

Ii Cov[U(/3)] = ^D* Wri V, Wr^ D,  

 

 

 

N  

 

 

 

The unknown covariance matrices in the expression for Ii are estimated by  

 

V, = (Y,-M,(;9)).(Y,-/x,(;9))*.  

 

The so-called sandwich estimator in Q is robust against misspecification of the covariance  

matrix of the responses.  

 

For the working approximation Wj for the covariance matrix , we suggest the follow-  

ing idea, where we estimate the uncertainty of the first three moments of the line profile  

with the higher moments, as is sometimes done with the moments of a probability distri-  

bution function. Consider the mirror image ({(j), v) ~ I —p{4>, v) of the spectral fine p{4>, v)  
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as a distribution function for the velocity v, and compute, for a given time U  

 

 

 

EC,  

 

 

 

E  

 

 

 

^ Cj [v] - Mr) ■ XI («| - Ms)  

 

] 3  

 

r • {iJ-r+s — l^r Ms)j  

 

 

 

where the sum over the index j runs over all the velocity points (pixels) of the spectral line,  

and where we define  

 

 

 

 



Here, we assume that the different observed points of the line profile are uncorrelated. The  

extra factor F appears because, contrary to probability distribution functions, line profiles  

are not normalized in area. Note that we use the higher theoretical moments and not the  

observational ones because, as mentioned before, the latter are often too noisy. It is difficult  

to assess the influence of the working approximation W on the final uncertainties on /3, but  

we refer to Diggle et al. (2002) where it is shown that the sandwich estimator © for the  

covariance matrix of /3 is quite robust against misspecification of V.  

 

Having derived an estimator for /3 and its uncertainty, given an (£, to) pair, we should  

take into account that we do not actually know the correct {£, m) values. If £ and to were  

continuous parameters, we would have a total of 6 continuous parameters for which we  

would have liked to compute a 6-dimensional confidence region. As I and to are discrete,  

however, it is notoriously hard to find an equivalent "confidence region" . We remind that  

it is current practice simply to take the (3 values of the best-fitting (^, to) pair with no error  

estimate at all. As a first alternative, we propose to "weight" each mode (£, to) with a  

lack-of-fit function. The best guess for both /3 and its uncertainty is then computed with  

a weighted mean over all relevant modes (£, m). The entire estimation procedure can be  

summarized as follows:  

 

(a) Specify a set of pairs of the degree H. and the azimuthal number to: {(^j, Wj)}.  

 

(b) For each of the pairs {£j,mj), solve the quasi-score equations and estimate the con-  

tinuous parameters f3j and their covariance matrix Cov[/3j].  

 

(c) Compute for each of the modes {£j, rrij), the lack-of-fit parameter G| which indicates  

 

how well the theoretical moments /x(/3) fit the observed moments y:  

 

 

 

N  



 

 

 

Gi  

 

 

 

EE  

 

 

 

(d) The best estimate for the degree and the azimuthal number {£, to) is the {£j  

 

 

 

(7)  

 

 

 

that  

 

 

 

has the lowest lack-of-fit G^. The corresponding best estimate for the continuous  
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parameters (3 can be computed with  

 



 

 

and the corresponding covariance matrix is the sum of the intra-mode variance and  

the inter-mode variance:  

 

E Cov[/3;.] E ' ^j) ■ - GJ'  

Cov[P]='-^^ . (9)  

 

{iej,m.j)} {(^i.m,-)}  

 

For both practical and astrophysical reasons, only modes with a degree up to a certain  

limit (e.g. £ < A) are considered.  

 

In the following section this estimation procedure is applied to a dataset of the star  

HD181558.  

 

 

 

5. Application to HD181558  

 

HD181558 belongs to the class of the Slowly Pulsating B stars (SPBs). Although the star is  

multi-periodic (De Cat and Aerts 2002) it has a very dominant (in amplitude) first mode,  

which justifies a monoperiodic approximation. The amplitude of this mode is the largest  

ever observed for an SPB. The dataset used for this GEE application has already been  

shown in Figure 13 In what follows we always assume the theoretically predicted value  

K = 21.  

 

Our first goal was to estimate (3 for each mode {£, m) with < 4, by solving the non-  

linear quasi-score equations. It turned out, however, that this was not just a technical detail  

of the procedure, but was in fact a major issue.  

 



First, it turned out that the quasi-score function U(/3) is computationally slow to eval-  

uate, with one evaluation requiring 18 time series evaluations: 6 for the moments fJ-i-fJ-e for  

the working approximation W, and 12 for the moments /X1-/X3 for different parameters (3 to  

numerically compute (with forward differences) the derivatives in D. For this reason, prior  

to using we first determined a good initial guess for ^ for the local search routine, using  

a rough scan of the 4D parameters space for each mode {i, m) with a computationally less  

expensive lack-of-fit function g{(3):  

 

 

 

\  

 

 

 

1 ^  

 

j^Y. \yd{u)-iid{u,/3)\. (10)  

 

 

 

The construction with the d*'' root and the division by d simply prevents the higher order  

moments from numerically dominating the lower order moments. The sampling of the  

parameter space was done probabilistically and non- uniformly. For each parameter (3i, a  

physical range was determined and this range was subdivided into intervals. After each  

set of 10000 sampled points, each interval of each parameter (Ji was assigned a sampling  

probability according to the lowest g{0) value recorded up to then, with the f3i component  
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Table 2. For each {£, m) pair,  

the 4D parameter space was  

scanned with the lack-of-fit func-  

tion g defined by equation  

and with the dataset of the star  

HD181558 shown in Figure  

The minimum gmin of the g{/3)  

values for each of the {£, m) pairs  

is given.  

 

 

 

m  

 

 

 

 

 

 

 

 

 

 

1  

 

 

2  

 

 

3  

 



 

4  

 

 

+4  

 

 

 

 

 

 

 

 

11.9  

 

 

+3  

 

 

 

 

 

 

7.52  

 

 

11.0  

 

 

+2  

 



 

 

 

6.57  

 

 

6.71  

 

 

11.3  

 

 

+1  

 

 

4.72  

 

 

4.74  

 

 

5.85  

 

 

10.8  

 

 

 

 

 

6.37  



 

 

6.37  

 

 

6.79  

 

 

11.6  

 

 

-1  

 

 

4.79  

 

 

6.57  

 

 

7.05  

 

 

10.7  

 

 

-2  

 

 

 

 



4.68  

 

 

6.86  

 

 

10.5  

 

 

-3  

 

 

 

 

 

 

6.92  

 

 

11.3  

 

 

-4  

 

 

 

 

 

 

 

 



11.3  

 

 

 

in the corresponding interval. The sum of probabihties over aU intervals of a parameter f3i  

was set to one. For each {l,m) pair a total of 200,000 points was sampled. This procedure  

was set up to sample the more promising regions of the parameter space.  

 

In Table[5]we give for the star HD181558 the lowest g{l3) value recorded for each mode  

{£,m). The {i,ni) — (0,0) pair can be excluded on astrophysical grounds because such  

modes do not occur in SPBs. As can be seen, no mode {£,m) stands out, but there are  

several candidate modes that describe the data well. Our final estimate of /3 should take  

into account this mode uncertainty. We also note that Table|21is not symmetric with respect  

to the sign of m. The moments indeed behave differently when the pulsational wave goes in  

the same direction as the rotation then when the wave goes in the opposite direction. This  

sensitivity to the sign of m was lost in the old approach (outlined in Section |3J) where one  

only uses the absolute value of the amplitudes.  

 

The 24 scans of a 4D parameter space with 200,000 points each, was a rather time  

consuming but necessary task to find suitable initial guesses for (3 for the local search  

algorithm. We implemented two derivative-free methods: the conjugate-direction (Powell's)  

method (see, e.g., Press et al., 1992, p. 420) and the Torczon (1989) simplex method. The  

former of which, having the best performance, was used to locate the root /3 of U for all  

modes {£,m). We found that these methods had much stabler performance than quasi-  

Newton methods, such as Newton-Raphsons, Fisher scoring, or variations to this theme.  

 

Even with the conjugate-direction method, the algorithm did not always converge. The  

reason, as it turns out, is that the quasi-score functions have "false" zeros, for example there  

are cases where the components of U approach zero for cr — > oo. Quite often, the algorithm  

converged to a point outside the physically relevant range of the parameters, even when  

several different initial guesses for ^ were tried. Although they did not occur for our dataset  



of the star HD181558, we should mention two other possible causes of numerical difficulties.  

First, it may be possible that the working approximation W is not invertible, for example  

if f3 approaches zero. Second, the matrix 1q may not be invertible, and hence no covariance  
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matrix can be computed. This occurs, for example, for a — > 0° because Ve appears only  

in Ve sin a in the equations, so that the third row and the third column of lo are zero. We  

stress, however, that the latter example is a problem of intrinsic non-idcntifiability and is  

not specific for the GEE approach. One simply cannot derive the rotational velocity if the  

star is looked pole-on.  

 

Making detailed ID slices of the 4D function ||U|| too time consuming, but we record the  

minimal lack-of-fit values gmm in each of the intervals of each parameter (disregarding the  

values of the other parameters). Figure O shows typical examples. Although the function  

 

 

 

 

Fig. 3. Representative examples of the minimal lack-of-fit value gmin for each sample interval of a  

parameter, for the star HD1 81 558. We remark that although the size of the intervals for the 

parameter  

Vp is fixed, the relevant range of Vp depends on the mode numbers {£, m).  

 

g{(3) need not have exactly the same behaviour as the function ||U(/3)|| (the difference  

is similar to the well-known difference between Li-norm and L2-iiorm minimization), we  

assume that the functions share many features. We observe that the minimum in the upper  



left panel of Figure for the well-fitting mode {£,m) = (2,-2) is quite localized. This is  

much in contrast with the almost flat surface in the lower left panel for the badly-fitting  

mode {£, m) = (4, —3). Intuitively, one can expect that the equivalent for the case of the ||U||  

function hampers the iterations towards the minimum, and that this increases the chance  

of wandering from the physically relevant part of the parameter space. This is exactly what  

happened for this mode. More generally, we observe strong correlation between how well  

a mode fits the data (with gmin as lack-of-fit value) and the chances that the root finding  

algorithm does not converge. The lower right panel shows two minima in the plot of the  

inclination angle a, since we consider a full 360° range. While over such a range symmetry  
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Table 3. Roots of the quasi-score functions for those modes where there was convergence  

in the physically relevant part of the parameter space, for the star HD1 81 558. The values  

between brackets are the standard errors obtained with the sandwich estimator is  

the lack-of-fit value of the mode as defined by Eq. Q. Vp, a and Ve are expressed in km/s,  

and the inclination angle a in degrees.  
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relations exist, these depend on i and m and taking them into account to limit the range of  

a would entail a lot of bookkeeping that can elegantly be avoided by simply considering the  

entire range. The feature that we quite often do not seem to find the root of U does not  

necessarily contradict the theory outlined in Section^ We solve for the root of the observed  

U function because we know that E[\J] = 0. However, the latter is only true if the model  

is correctly specified, i.e. if E{Y] = fi{£,ni,(3). Therefore, theoretically, the existence of a  

root in the 4D parameter space of the continuous parameters (3 cannot be guaranteed for a  

"wrong" {£, m) pair, and this is exactly what we observe for badly fitting modes. For this  

reason we interpreted a non-convergence (after repeatedly trying) as an indication that the  

candidate mode should be disregarded.  

 

In Table 01 we list the roots of the quasi-score function for those modes for which there  

was convergence in the physically relevant part of the parameter space. The closeness of ||U||  

to zero varies from mode to mode. In cases where this value fails to be small, we checked  

this is not due to premature convergence, since restarting the algorithm at the point where  

it stopped, did not further decrease ||U||. One possible explanation might be that, for some  



of the solutions, the algorithm has converged to a local minimum, such as for the modes  

(£,m) = (3,-1) and (4,0).  

 

In Figure ^ we show fits for the three best fitting modes, with the function (see  

Eq. d) as a lack-of-fit. As mentioned before, there is not just one, but several modes  

that can fit the observed data quite well. The lack-of-fit values in Table El provide us  

with an indication of the relative merits of wave number choice {£,m). Of course, at  

this point we lack knowledge about the reference distribution of these values, unlike in  

classical fit statistics (e.g., likelihood-ratio based). However, similar instances exist in both a  

frequentist (e.g., Akaike Information Criterion) and a Bayesian context (e.g., Bayes factors).  

Nevertheless, we assert that these numbers, especially when supported by careful graphical  

inspection, are useful to narrow down substantially our uncertainty about the wavenumbers,  

in spite of an intrinsically complicated modelling endeavor. To this end, the last column  

in Figure 01 displays mode {£,ni) = (3, 1) with a substantially worse fit than the one in the  

first three columns of the same figure.  
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(l,m) = (1.1) (l.m) - (2.1) (l.m) - (2.-2) (l,m) - (3.1)  
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Fig. 4. Theoretical models (solid lines) of the observed moments (bullets) for the three best fit-  

ting modes {£,m) = (1,1), {£,m) = (2,1), and {e,m) = (2,-2), plus the poorer fitting mode  

{e,m) = (3,1), with as a lack-of-fit function. The theoretical models were obtained with the  

model parameters obtained with the GEE method. The first, the second and the third row are for the  

first moment yi (km/s), the second moment y2 (km^/s^) and the third moment ys (Wm^/s^) respec-  

tively. The moments are shown as a function of the phase. Note that the models of the different  

promising modes differ mainly for the second moment.  

 

 

 

We used the modes in Table 13 to compute the weighted mean /3 and its standard error,  

with Eqs. ||HJ and 0. The results, including the intra- mode and inter-mode variance, are  

given in Table 01 In the specific case of HD181558, one could argue that the modes with  

£ = 3 and £ = 4 can be disregarded on astrophysical grounds. The reason is that these  

modes would require a very large oscillation amplitude at the surface of the star to cause  

the large observed amplitude of the first moment yi. For this reason, we also computed (3  

with the £ = 1 and £ = 2 modes of Table |31 only. The results are listed in Table [S] With  

Tables 01 and [SI we achieve the goal of this application of the revised version of the moment  

method: we have obtained a best guess for the continuous parameters and their standard  

errors, where we took into account the mode uncertainty. An important result is that the  

uncertainties of the parameters can be large, in fact larger than we expected. Especially  

the rotational velocity cannot be estimated precisely. The large inter-mode uncertainty  

of the inclination angle a is not surprising since the inclination angle is known to be largely  

dependent on the mode numbers {£,m). We note that the values for the weighted means  
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Table 4. The weighted mean over all 1 2 modes in Table|31 computed with  

Eqs. js) and |9|. The values mentioned between brackets are standard  

errors. The intra-mode variance and inter-mode variance are computed  

with respectively the first and the second term of Vp, a, Ve are ex-  

pressed in km/s, and the inclination angle a is expressed in degrees.  
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Table 5. The same information as in Table|4]is shown, except that the  

mean is computed over those 7 modes in Table|31with £ = 1 and £ ^2.  
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Inter-mode Variance  
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2.0 (1.0)  

 



 

0.19  

 

 

0.71  
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5.3 (2.0)  

 

 

0.82  

 

 

3.1  
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16 (12)  

 

 

100  

 

 

37  

 

 



a  

 

 

170 (137)  

 

 

8342  

 

 

10450  

 

 

 

do not change much by excluding the £ — 3 and £ — A modes. The reason is that the latter  

modes have a lower weight anyway, as can be seen from the values in Table |3I  

 

The fact that the standard errors for the continuous parameters are large turns out not to  

be specific for the star HD181558. We applied our method to several artificial datasets, and  

we obtained similar results. Hence, we conclude that estimates of the continuous parameters  

generally can be quite uncertain.  

 

6. Summary and Conclusions  

 

We made a first but arguably important step to develop a statistical formalism for the  

moment method. In this first stage we aimed to incorporate estimates of the uncertainties  

of the continuous parameters. Because of the many difficulties to overcome, this was never  

done for the moment method, nor for any other mode identification technique.  

 

We found that, in the specific case of the moment method, the method of least-squares  

does not give consistent estimates of the continuous parameters and we resort to the GEE  

method (Liang and Zeger 1986). This method requires a working approximation of the  



covariance matrix of the 3 responses, based on the higher theoretical moments. Note that  

the higher moments, known to be imprecise, are not used in the actual model. An important  

source of uncertainty is the fact that often not just one but several candidate modes can  

describe the data. We set up a separate procedure to weight each mode and to compute a  

weighted mean over all modes of the parameter vector and its uncertainty. To compute the  

latter we introduced the intra-mode and the inter-mode uncertainty.  

 

Subsequently, we apphed our procedure to the SPB star HD181558, from which we  

learned the strong and the weak points of our method. We found out that solving the  

estimating equations is a computationally demanding and tedious task: convergence of  

the algorithm was not evident, despite the fact that we experimented with several robust  

local root finding methods, of which we selected the method of conjugate directions as  

the most efficient one. On the other hand, we also proposed a new lack-of-fit function to  

scan the parameter space to obtain good initial guesses for the local search method. This  
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lack-of-fit function proved to be very useful on its own, as it works at least as well as the  

old discriminant (O and allows in addition to discriminate between positive and negative  

azimuthal numbers which was one of the shortcomings of the previous discriminant. Our  

strategy to scan the parameter space also proved that there are several modes that can  

explain the dataset of HD181558. Only taking into account the very best fitting one, would  

therefore not be useful.  

 

This is why we retained 12 modes as candidate modes for which an estimate of the  

continuous parameters f3 can be computed, and used these estimates to obtain a best guess  

(3 for the continuous parameters plus their uncertainties, taking into account the mode  

uncertainty. Doing so, we discovered that the parameter uncertainties can be large, a result  

which was moreover confirmed in the case of artificial datasets.  



 

Prior to our study, such large uncertainties were not anticipated. On the contrary,  

one sometimes assumed the uncertainties to be quite small in order to be able to apply a  

two-stage approach in the multiperiodic case. In such an approach the inclination angle a  

and the rotational velocity Ve are determined with the dominant mode, and subsequently  

fixed while determining the mode parameters of the other modes, to have the dimension  

of the parameter space reduced. Our new results show that such an approach can be  

very dangerous: in the case of HD181558 it can hardly be justified because of the large  

uncertainty on a.  

 

The method we outlined in this paper is the very first attempt to develop a statistical  

formalism for the moment method. Even though there is undoubtedly room for additional  

work before our proposed method can be deemed widely applicable, we conclude it makes  

an important first step in our understanding of the uncertainties and usefulness of the  

continuous parameters, estimated with the moment method. It furthermore underscores  

that some conclusions reached in the past need to be revisited.  

 

We conclude with several possible future improvements. First, it may be worth to in-  

vestigate alternative parameterizations /3' which, while mathematically equivalent to the  

original one, may improve upon the convergence and robustness properties of the algo-  

rithm. We already experimented, for example, with using VeSina instead of Ve, and with  

using Vp sin a and Vp cos a instead of Vp and a. Second, it would be useful to extend the  

formalism to include the uncertainty on K. Third, it might also be interesting to use several  

spectral lines at the same time to improve the statistics. Including multiple modes might  

also improve the convergence properties. Although this would imply 3 more parameters  

(Z2, r7i2, Wp,2) per mode, multiple modes would set more stringent restrictions on the incli-  

nation angle a which has a significant impact on the estimation of the other parameters.  

To further validate all of the above, more simulations are necessary. In addition, such  

simulations can also clarify what impact the number and the signal to noise ratio of the  

observational spectral lines has on the performance of the algorithm.  
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