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Summary

Proportional hazard models with multivariate random effects (frailties) acting multiplicatively on the
baseline hazard have recently become a topic of an intensive research. One of the main practical prob-
lems related to the models is the estimation of parameters. To this aim, several approaches based on the
EM algorithm have been proposed. The major difference between these approaches is the method of
the computation of conditional expectations required at the E-step. In this paper an alternative imple-
mentation of the EM algorithm is proposed, in which the expected values are computed with the use of the
Laplace approximation. The method is computationally less demanding than the approaches developed
previously. Its performance is assessed based on a simulation study and compared to a non-EM based
estimation approach proposed by Ripatti and Palmgren (2000).

Key words: Multivariate failure-time data; Frailty model; EM algorithm; Laplace approxi-
mation.

1 Introduction

Proportional hazard models with random effects acting multiplicatively on the baseline hazard, often
called frailty models, have been focus of the research aimed at methods of analyzing multivariate or
clustered failure-time data for a long time. Initially, the research concentrated on univariate shared
frailty models, with a univariate random effect shared by all the observations from a particular cluster.
These models have several limitations, e.g., they generally impose a positive association between the
failure-times coming from the same cluster (Xue and Brookmeyer, 1996). For this reason, multivariate
random-effects models have recently started to attract some attention. One of the main practical prob-
lems related to the latter is the estimation of the parameters. Several approaches have been proposed
to deal with the problem. McGilchrist and Aisbett (1991) and McGilchrist (1993, 1994), extending the
‘best linear unbiased prediction’ argument for normal linear mixed-effects model, used the penalized
partial likelihood approach to estimate the fixed effects and the restricted maximum likelihood to
estimate the random effects. Xue and Brookmeyer (1996) formulated a bivariate log-normal random-
effects model fitted using the EM algorithm, with numerical integration used at the E-step. Xue
(1998) developed an alternative fitting method for the same model using estimating equations derived
from a Poisson regression formulation, while Xue and Ding (1999) used a Gibbs sampling approach.
Ripatti and Palmgren (2000) considered a more general form of the proportional hazard model with
random effects and proposed estimation based on a penalized partial likelihood developed by applying
the Laplace approximation to the marginal likelihood function. Vaida and Xu (2000), on the other
hand, suggested a Monte Carlo EM (MCEM) algorithm, with Monte Carlo Markov Chain (MCMC)
sampling used at the E-step. Ripatti, Larsen, and Palmgren (2002), following the ideas by Vaida and
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Xu (2000) introduced a MCEM algorithm, where the conditional expectations at the E-step were
computed by drawing from a posterior distribution of the random effects using the rejection sampling.
They also provided a stopping rule based on absolute convergence of the algorithm.

The purpose of this paper is to investigate an alternative implementation of the EM algorithm for
the proportional hazard models with random effects. It is based on the use of the Laplace approxima-
tion at the E-step. The main advantage of the proposed method is that it is numerically simpler than,
e.g., the use of MCMC methods or numerical integration.

The paper is organized as follows. Section 2 briefly recalls the proportional hazard model with
random effects. In Section 3 the main features of the EM algorithm are summarized. In Section 4 the
use of the Laplace approximation at the E-step is described. In Section 5 we briefly describe the
approach proposed by Ripatti and Palmgren (2000). Section 6 presents results of a simulation study in
which the performance of the proposed method is evaluated and compared with the approach pro-
posed by Ripatti and Palmgren (2000). Both methods are also applied to a case study and the results
are discussed in Section 7. The discussion, presented in Section 8, concludes the paper.

2 The Proportional Hazard Model with Random Effects

We will consider clustered failure-time data with N clusters. The failure-time variable corresponding
to subject j (j ¼ 1; . . . ; ni) from cluster i (i ¼ 1; . . . ; N) will be denoted by Yij. It is assumed that
observations of Yij can be right-censored. Thus, for subject j in cluster i we observe Tij ¼ min ðCij; YijÞ,
where Cij is a random censoring time independent of Yij. Additionally, a censoring indicator dij is
observed, with dij equal to 1 if Tij ¼ Yij, and 0 if Tij ¼ Cij.

In the paper the following mixed-effects proportional hazard model for Tij will be considered:

lðtij j bi; biÞ ¼ l0ðtijÞ exp xT
ijbi þ zT

ijbi

� �
; ð1Þ

where l0ðtÞ is the baseline hazard function, bi is a vector of cluster-specific fixed-effects correspond-
ing to a vector of covariates xij, and bi is a vector of random effects associated with a vector of
covariates zij. The random effects bi are assumed to be randomly distributed with mean 0 and var-
iance-covariance matrix D ¼ DðqÞ, which depends on a d-dimensional vector of parameters
q ¼ ðq1; q2; . . . ; qdÞ. The density function of the bi which, except for q, is assumed to be known, will
be denoted by f ðbiÞ. At this moment we do not need to specify the nature of the distribution in more
detail. To simplify formulas, we will also use the baseline cumulative hazard defined as

L0ðtÞ ¼
Ðt
0

l0ðuÞ du :

Model (1) can be seen as a linear mixed-effects model on the log-hazard scale. The estimation of the
parameters bi and q from the observed data on Tij is our main interest. Assuming the conditional
independence of the observations within a cluster given bi, one might write the (conditional) log-like-
lihood for the observed data as

lCðb; l0; bÞ ¼
PN
i¼1

lC
i ðbi; l0; biÞ ; ð2Þ

where

lC
i ðbi; l0; biÞ ¼

Pni

j¼ 1
dij ln l0 ðtijÞ þ xT

ijbi þ zT
ijbi

n o
�L0ðtijÞ exp xT

ijbi þ zT
ijbi

� �h i
ð3Þ

is the (conditional) log-likelihood for the observed data in the i-th cluster, and b and b denote the
vectors resulting from “stacking” vectors bi and bi for all clusters, respectively. The (marginal) likeli-
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hood of the observed data for all clusters can then be expressed as

LMðb; q; l0Þ ¼
QN
i¼1

Ð
LA

i ðbi; q; l0; biÞ dbi ; ð4Þ

where

LA
i ðbi; q; l0; biÞ ¼ f ðbiÞ elCi ðbi; l0; biÞ : ð5Þ

Function (5) can be regarded as the likelihood of the “augmented” data for cluster i, treating bi as
additional observations. Consequently,

LAðb; q; l0; bÞ ¼
QN
i¼1

LA
i ðbi; q; l0; biÞ ; ð6Þ

is the likelihood of the “augmented” data for all clusters.
One might consider using the likelihood function (4) in the inference on b and q. There are two

major problems with using it for this purpose, however. First, it depends on the baseline hazard func-
tion l0. Second, the integral in (4) will usually be multi-dimensional, unless a very simple model is
considered, and in general will not be available in a closed form. For these reasons, the use of the EM
algorithm to estimate the parameters of Model (1) has been proposed (Klein, 1992; Xue and Brook-
meyer, 1996; Vaida and Xu, 2000). In the following section the basic features of the EM algorithm
are reviewed.

3 The EM Algorithm

The EM algorithm consists of two steps: the E-step and the M-step. Starting from initial values of
parameters, the algorithm iterates between the two steps until convergence is reached (Dempster, Laird
and Rubin, 1977). It is important to remark that, under regularity conditions, the algorithm is guaran-
teed to converge to a stationary point (Dempster, Laird and Rubin, 1977; Wu, 1983; Vaida, 2004). The
E-step and the M-step of the algorithm to estimate the parameters of Model (1) will be reviewed in
more detail now.

3.1 The E-step

In the E-step the expectation of the logarithm of the augmented-data likelihood (6), conditional on the
observed data and on the current values ~bb, ~qq and ~ll0 of parameters b, q and l0, respectively, is com-
puted. The expectation will be denoted by Qðb; q; l0Þ. It turns out that it can be expressed as (Klein,
1992; Vaida and Xu, 2000)

Qðb; l0; qÞ ¼ Q1ðb; l0Þ þ Q2ðqÞ ; ð7Þ
where

Q1ðb; l0Þ ¼
PN
i¼1

Pni

j¼ 1
dij ln l0 ðtijÞ þ xT

ijbi þ zT
ij E ðbiÞ

n o
�L0ðtijÞ exp xT

ijbi þ ln E ðezT
ij biÞ

n oh i
ð8Þ

and

Q2ðqÞ ¼
PN
i¼1

E ½ln f ðbiÞ� ; ð9Þ

with Eð:Þ denoting conditional expected values given the observed values of the Tij and dij. To simplify
the notation, the dependence of the expected values in (8) and (9) on the observed data and ~bb, ~qq and
~ll0 has been suppressed.

The set of initial values for b and l0 can be obtained using the Cox regression without random
effects. The initial values for q can be specified by taking DðqÞ equal to, e.g., the identity matrix.
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3.2 The M-step

In the M-step new estimates ~bb and ~qq are found by maximizing the functions Q1 and Q2, respectively.
The estimation of b is complicated by the dependence of Q1 on l0. Via the profile-likelihood argu-
ments for l0 (Johansen, 1993; Vaida and Xu, 2000) one can arrive at the following estimating func-
tion for bi:

Q01ðbÞ ¼
PN
i¼1

Pni

j¼1
dij xT

ijbi � ln
P

tkl�tij

exp xT
klbk þ ln E ðezT

klbkÞ
n o" #

: ð10Þ

The form of (10) resembles that of the partial log-likelihood for the Cox proportional hazard model
with offsets ln EðezT

ij biÞ. Estimates of parameters bi, can thus be obtained by maximizing Q01 using
standard software for the Cox model.

If the density f of the random effects bi belongs to an exponential family, then Q2 is the log-likeli-
hood of a sample of N observations with sufficient statistics replaced by their conditional expecta-
tions. In such a situation, the estimation of q is generally straightforward and can be achieved by
maximizing Q2. For instance, consider the case where the random effects are multivariate normal with
mean 0 and an unconstrained variance-covariance matrix D. Then maximizing Q2 would lead to the
estimator

D̂D ¼ 1
N

PN
i¼1

E bib
T
i

� �
; ð11Þ

where, again, the expectation is conditional on the observed data and ~bb, ~qq and ~ll0.

3.3 Variance estimation for the EM

The variance-covariance matrix of the solution ðb̂b; l̂l0; q̂qÞ obtained from the EM algorithm, can be
estimated using the inverse of an observed information matrix computed from the formula proposed
by Louis (1982):

Iðb; l0; qÞ ¼ E �lA
00ðb; l0; qÞ

n o
� E lA0ðb; l0; qÞ lA0ðb; l0; qÞT

n oh i
;

where lA0 and lA00 are the first and the second derivatives with respect to ðb; l0; qÞ of the logarithm of
the “augmented” likelihood (6). More explicitly, the components of lA

0
are

lA0 ¼
I0b
I0l
I0q

0
B@

1
CA ; I0b ¼

I0b1

I0b2

..

.

I0bN

0
BBBB@

1
CCCCA ; I0l ¼

I0l1

I0l2

..

.

I0lr

0
BBBB@

1
CCCCA and I0q ¼

I0q1

I0q2

..

.

I0qd

0
BBBB@

1
CCCCA ;

where

I0bi
¼ @ ln LA

@bi
¼
Pni

j¼1
xij dij �L0ðtijÞ exp xT

ijbi þ zT
ijbi

� �n o
; ð13Þ

I0lm
¼ @ ln LA

@lm
¼ 1

lm
�
P

tkl�tm

exp xT
klbk þ zT

klbk

� �
; ð14Þ

I0qk
¼ @ ln LA

@qk
¼ @ ln f ðbiÞ

@qk
; ð15Þ

with lm ¼ l0ðtmÞ, where tm ðm ¼ 1; . . . ; rÞ are the distinct uncensored failure times.
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The components of the second derivative lA
00

are:

lA00 ¼
I00bb I00bl I00bq

I00bl I00ll I00lq

I00bq I00lq I00qq

0
B@

1
CA

where

I00bb ¼

I00b1b1
I00b1b2

. . . I00b1bN

I00b1b2
I00b2b2

. . . I00b2bN

..

. ..
. . .

. ..
.

I00b1bN
I00b2bN

. . . I00bN bN

0
BBBB@

1
CCCCA ; I00ll ¼

I00l1l1
I00l1l2

. . . I00l1lr

I00l1l2
I00l2l2

. . . I00l2lr

..

. ..
. . .

. ..
.

I00l1lr
I00l2lr

. . . I00lrlr

0
BBBB@

1
CCCCA ;

I00bl ¼

I00b1l1
I00b1l2

. . . I00b1lr

I00b2l1
I00b2l2

. . . I00b2lr

..

. ..
. . .

. ..
.

I00bN l1
I00bN l2

. . . I00bN lr

0
BBBB@

1
CCCCA ; I00qq ¼

I00q1q1
I00q1q2

. . . I00q1qd

I00q1q2
I00q2q2

. . . I00q2qd

..

. ..
. . .

. ..
.

I00q1qd
I00q2qd

. . . I00qdqd
;

0
BBBB@

1
CCCCA

with

I00bibi0
¼ @

2 ln LA

@bi @bi0
¼ �

Pni

j¼1
xijx

T
i0jL0ðtijÞ exp xT

ijbi þ zT
ijbi

� �" #
1ði ¼ i0Þ ; ð16Þ

I00lmlm0
¼ @

2 ln LA

@lmlm0
¼ 1

l2
m

1ðm ¼ m0Þ ; ð17Þ

I00bklm
¼ @2l
@bk @lm

¼ �
P

tkl�tm

xkl exp ðxT
klbk þ zT

klbkÞ
� �

; ð18Þ

I00qkqk0
¼ @2 ln LA

@qk @qk0
¼ @2 ln f ðbiÞ

@qk @qk0
; ð19Þ

with 1ðBÞ being the indicator function of event B.
The other off diagonal elements (I00bq; I

00
lq) of lA

00
are zero (Vaida and Xu, 2000).

4 Issues in the Implementation of the EM Algorithm

The use of the EM algorithm, as described above, is complicated by the need to compute the condi-
tional expected values in (8) and (9) at the E-step. Usually, they will not be available in a closed-
form. To compute the expected values, Xue and Brookmeyer (1996) proposed to use numerical inte-
gration. This solution is feasible, however, only for low-dimensional random vectors bi. Vaida and Xu
(2000) and Ripatti et al. (2002) proposed to use MCMC methods. This approach is numerically inten-
sive and introduces issues related to the assessment of the convergence of the MCMC algorithm.

An alternative solution, not yet considered in the literature, is to use the Laplace approximation.
This is the option we will discuss in more detail now.

4.1 The Laplace approximation

The approximation of multidimensional integrals can be obtained in many ways (see, e.g., Murray,
1984; Bleistein and Handelsman, 1986; Wong, 1989). One of the most common techniques is the
Laplace method (Evans and Swartz, 2000). In the multivariate context the Laplace theorem states that,
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under some weak conditions, the following asymptotic equivalence holds:

Ð
A

hðtÞ e�fkðtÞ du �
f!þ1

hðt̂tÞ e�fkðt̂tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd

jfKðt̂tÞj ;

s
ð20Þ

where A is an open subset of Rd, f > 0 is a real-valued parameter, KðtÞ is the matrix of the second
derivatives of kðtÞ, and t̂t is an isolated global minimum of kðtÞ over A.

4.2 EM and the Laplace approximation

As it was mentioned in Section 3.1, at the E-step, we need conditional expectations of functions of
the random effects. The conditional expectations involve integrals of the form

E fgðbiÞg ¼
Ð

gðbiÞ elCi
~bbi;

~ll0; bið Þþ ln f ðbiÞ dbiÐ
elCi ð~bbi;

~ll0; biÞþ ln f ðbiÞ dbi

: ð21Þ

Using the Laplace formula, it can be shown that

EfgðbiÞg � gðb̂biÞ ; ð22Þ
where b̂bi is an isolated global minimum of

kðbiÞ ¼ � lC
i

~bbi;
~ll0; bi

� �
þ ln f ðbiÞ

n o
: ð23Þ

It is the first-order approximation, as it is based on first-order terms of the Taylor series expansion.
The formal asymptotic error order of the approximation is Oðn�1

i Þ. It is possible to construct higher-
order approximations which involve higher-order terms of the Taylor series expansion (Kass, Tierney,
and Kadane, 1990).

By the use of the Laplace approximation, the problem of the computation of the expected values
(21) is translated into the need of finding the isolated global minimum b̂bi of the function given by
(23). Various numerical procedures are available for this purpose. In most cases, these procedures will
require less computation time than, e.g., multi-dimensional numerical integration or MCMC methods.

4.3 Estimation of variance

To estimate the variance-covariance matrix using the information matrix Iðb; l0; qÞ defined by (12),
one also needs conditional expectations of functions of bi. Again, the Laplace approximation can be
used to compute these expectations. One additional problem is related to the fact that, in order to
compute standard error for the parameters of Model (1), it would be necessary to invert Iðb; l0; qÞ.
The dimension of the matrix can be very large, since it depends on the number of distinct uncensored
failure times. A possible way to tackle this problem is by inverting only the submatrices we are inter-
ested in. More specifically, let us partition the information matrix Iðb; l0; qÞ as follows:

Iðb; l0; qÞ ¼
Ibb Ibl Ibq

Ibl Ill Ilq

Ibq Ilq Iqq

0
@

1
A ¼ Ibl

* Iblq
*

ðIblq
* ÞT Iqq

� 	
;

where

Ibl
* ¼ Ibb Ibl

Ibl Ill

� 	
and Iblq

* ¼ Ibq

Ilq

� 	
:

Now, instead of inverting Iðb; l0; qÞ, one might consider inverting only submatrices Ibb and Iqq. In
fact, other authors also considered a similar solution: for instance, Therneau and Grambsch (2000)
considered the ‘sparse’ option in S-Plus software to avoid the computation of the inverse of the full
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information matrix. In this paper we will follow this simplified strategy and invert only submatrices
Ibb and Iqq. Its adequacy for the computation of standard error of parameter estimates will be evalu-
ated in the simulations presented in Section 6. In the next section we will briefly describe Ripatti and
Palmgren’s approach (2000), with which we will compare the estimation method that we are propos-
ing in this article.

5 The Approach of Ripatti and Palmgren (2000)

Using the derivation of a penalized likelihood solution obtained by Breslow and Clayton (1993) for
the generalized linear mixed model assuming Gaussian random effects, Ripatti and Palmgren (2000)
presented a parallel approximation for Model (1). To this aim, they approximated the marginal like-
lihood (4) using the Laplace approximation. Assuming that the random effects are normally distribu-
ted with variance-covariance matrix DðqÞ, the marginal likelihood can be expressed as

LMðb; q; l0Þ ¼ c jDðqÞj�
N
2
Ð

e�jðbÞ db ; ð24Þ

where

jðbÞ ¼ lCðb; l0; bÞ � 1
2 bT DðqÞ�1b ; ð25Þ

with lCðb; l0; bÞ given by (2). Using the Laplace theorem, Ripatti and Palmgren (2000) showed that
the logarithm of (24) can be approximated by

lMðb;q; l0Þ � �
N
2
jln DðqÞj � 1

2
ln jj00ð~bbÞj � jð~bbÞ ; ð26Þ

where j0 and j00 denote, respectively, the first and the second order partial derivatives of j with
respect to b, and ~bb ¼ ~bbðb; qÞ is the solution to j0ð~bbÞ ¼ 0. They further argued that, for fixed q, the
values b̂bðqÞ and b̂bðqÞ, which maximize the penalized log-likelihood (25), also maximize the penalized
partial log-likelihood

PN
i¼1

Pni

j¼1
dij ðxT

ijbþ zT
ijbiÞ � ln

P
tkl�tij

exp ðxT
klbþ zT

klbkÞ

 �" #

� 1
2 bT DðqÞ�1b : ð27Þ

Based on the penalized partial log-likelihood (27), the estimating equations for bðqÞ and bðqÞ, given
q, can be derived. Once b̂bðqÞ and b̂bðqÞ are computed, q can be updated by maximizing the approxi-
mate profile likelihood derived from (26):

lPPLðb̂bðqÞ; b̂bðqÞ; qÞ � �N
2
jln DðqÞj � 1

2
ln jj00ðb̂bÞj � 1

2
b̂bT DðqÞ�1b̂b : ð28Þ

Based on empirical evidence, Ripatti and Palmgren (2000) proposed to use in (28) j00PPLðb̂bÞ ¼
ð@2lPPLÞ
ð@b @bTÞinstead of j00ðb̂bÞ.

To obtain the standard error of the estimated fixed effects, one can use standard software for the
Cox model with the estimated random effects as an offset. To calculate the standard error of the
estimates of variance-covariance parameters q, Ripatti and Palmgren (2000) suggest the computation
of the expected value, with respect to b, of the second derivative of (28) with respect to q. The
necesssary formulas are given in Ripatti and Palmgren (2000).

6 Simulation Study

The performance of the EM algorithm with the Laplace approximation at the E-step was evaluated in
a set of simulations. The setting of the simulation does not strictly fall under the setup discussed
earlier, it is an extension in which we allow different baseline hazards for each of the failure-times.
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The data were generated using the following proportional hazard model:

lij1ðtij1 j bi1; bi1Þ ¼ l1ðtij1Þ ebi1þxT
ij b1 ; ð29Þ

lij2ðtij2 j bi2; bi2Þ ¼ l2ðtij2Þ ebi2þxT
ij b2 ; ð30Þ

with

bi1

bi2

� 	
� N2

0
0

� 	
;

s2
1 s12

s12 s2
2

� 	� 
: ð31Þ

The model corresponds to the setting of data for N clusters (indexed by i), containing ni observations
(indexed by j) for each of two (possibly censored) failure-times. The two failure-times are of poten-
tially different nature, what is reflected in Model (29)–(30) by the use of different baseline hazards
(l1 and l2). The random effects b1 and b2 are correlated. Note that, conditionally on the random
effects bi, no extra association between the two times is assumed. This setting may be seen as corre-
sponding to, e.g., a multi-center clinical trial with centers as clusters and two different, independent
failure-times recorded for each patient. In the model the (fixed) effect of a single binary covariate xij

was considered. This can be regarded as, e.g., a time- and center-specific effect of treatment.
Model (29)–(30) is similar to one of the models considered for simulations by Ripatti and Palmgren

(2000). They considered N ¼ 50 clusters with ni ¼ 2 observations for each of the two failure-times.
In our simulation study, as compared to the one conducted by Ripatti and Palmgren (2000), a broader

range of configurations of the parameters was considered. The aim was to investigate the performance of
the proposed version of the EM algorithm for varying numbers of clusters and observations per cluster,
percentage of censored observations, and magnitude of the variance and covariance parameters asso-
ciated with the distribution of the random effects (31). Moreover, a comparison with the performance of
the alternative, non-EM based estimation method of Ripatti and Palmgren (2000), was of interest.

More specifically, the number of clusters ranged between 10 and 100 (N ¼ 10; 20, 50, 100). The
number of bivariate observations (subjects) within the cluster varied from 20 to 100 (ni ¼ 20; 50,
100). (We will slightly abuse the notation now and use ni to denote the number of pairs of observed
failure-times rather than the total number of observations per cluster.) The baseline hazards were
assumed constant, with l1ðtÞ ¼ 0:5 and l2ðtÞ ¼ 1. The effects of covariate xij were assumed to be
equal, bi1 ¼ bi2 � b, with b ¼ 1. The variances associated with the random effects bi1 and bi2 were
also assumed to be equal, s2

1 ¼ s2
2 � s2, with s2 ¼ 0:2 and s2 ¼ 1. Two values of the covariance

parameter s12 were considered for each value of s2: s12 ¼ 0:1 and 0:18 for s2 ¼ 0:2, and s12 ¼ 0:5
and 0:9 for s2 ¼ 1. This is equivalent to assuming, for each value of s2, two different values (0:5 and
0:9) of the correlation coefficient q for b1 and b2. None or 20% censoring was considered. The cen-
soring was induced by using a pair of independent random variables, generated from two different
uniform distributions, so that 20% of observations for each of the two failure-times were censored.
For each setting of the parameters, 250 simulated datasets were generated.

The EM algorithm was implemented using SAS-IML v8.2 (the code can be obtained from the first
author upon request). Both the first- and second-order Laplace approximations were considered. How-
ever, in simulations the results for the second-order approximation were essentially the same as for the
first-order. Thus, in what follows, the use of the first-order approximation is assumed.

The method proposed by Ripatti and Palmgren (2000) was applied using the S-Plus functions devel-
oped by Therneau (2003). The functions do not produce standard errors of the estimated parameters;
they were obtained separately using the formulas provided by Ripatti and Palmgren (2000).

For both methods, the common value b of the fixed-effects parameters b1 and b2 was estimated
using data from both failure-times. On the other hand, although it was assumed that s2

1 ¼ s2
2, the two

parameters were estimated separately. This latter choice was motivated by our interest in the assess-
ment of the ability of both methods to distinguish between different components of variability.

The preliminary set of simulations indicated considerable bias in the estimation of parameters s2
1,

s2
2 and q, especially for s2 ¼ 0:2. For univariate shared frailty models Therneau and Grambsch (2000,
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p. 254) argue that the estimates of random effects should be centered so that the “penalty” term Q2 in
(7) is minimized. In the case of normally-distributed random effects this means their estimates should
have zero mean. In fact, this is the solution used, e.g., in the implementation of the univariate shared
frailty model in S-Plus software (Therneau, Grambsch, and Pankratz, 2000). For the more general
Model (1) the argument of Therneau and Grambsch holds only for random intercepts. Nevertheless,
we have followed the idea and modified the EM algorithm by centering the estimates of the random
effects for all covariates at zero after each E-step.
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Table 1 The mean estimates for 250 simulated datasets for the proposed EM algorithm (first row for
each N) and the method of Ripatti and Palmgren (second row for each N), when s2

1 ¼ s2
2 ¼ 0:2 and

different values of s12, with 20% censoring. In parentheses: the mean estimated (first number) and
empirical (second number) standard errors.

N b s2
1 s2

2 s12 q

s12 ¼ 0:1

ni ¼ 10
10 1.069 (0.248; 0.303) 0.269 (0.153; 0.122) 0.263 (0.146; 0.122) 0.122 (0.109; 0.115) 0.458

1.007 (0.252; 0.277) 0.258 (0.074; 0.164) 0.235 (0.115; 0.156) 0.134 (0.098; 0.168) 0.546
50 1.069 (0.105; 0.118) 0.210 (0.072; 0.053) 0.211 (0.069; 0.044) 0.101 (0.053; 0.055) 0.481

0.990 (0.111; 0.103) 0.200 (0.039; 0.071) 0.192 (0.040; 0.064) 0.097 (0.050; 0.051) 0.497
100 1.074 (0.077; 0.084) 0.206 (0.051; 0.039) 0.208 (0.050; 0.032) 0.100 (0.038; 0.041) 0.486

0.992 (0.079; 0.073) 0.196 (0.020; 0.052) 0.194 (0.020; 0.047) 0.097 (0.025; 0.037) 0.498

ni ¼ 50
10 1.015 (0.104; 0.107) 0.180 (0.091; 0.097) 0.182 (0.089; 0.091) 0.087 (0.069; 0.077) 0.482

1.004 (0.108; 0.114) 0.181 (0.065; 0.105) 0.180 (0.066; 0.098) 0.094 (0.037; 0.082) 0.518
50 1.010 (0.046; 0.044) 0.195 (0.044; 0.045) 0.195 (0.044; 0.039) 0.097 (0.034; 0.035) 0.495

1.002 (0.048; 0.046) 0.197 (0.040; 0.048) 0.195 (0.036; 0.042) 0.099 (0.026; 0.035) 0.504
100 1.012 (0.033; 0.032) 0.199 (0.032; 0.031) 0.198 (0.032; 0.027) 0.099 (0.025; 0.025) 0.499

0.999 (0.034; 0.033) 0.199 (0.030; 0.033) 0.200 (0.023; 0.029) 0.100 (0.021; 0.025) 0.501

s12 ¼ 0:18

ni ¼ 10
10 1.080 (0.240; 0.263) 0.322 (0.108; 0.172) 0.301 (0.111; 0.156) 0.263 (0.093; 0.140) 0.845

1.020 (0.252; 0.269) 0.318 (0.094; 0.180) 0.290 (0.114; 0.173) 0.263 (0.110; 0.177) 0.867
50 1.071 (0.105; 0.118) 0.262 (0.053; 0.060) 0.255 (0.052; 0.054) 0.226 (0.045; 0.055) 0.877

1.000 (0.113; 0.104) 0.256 (0.060; 0.112) 0.241 (0.067; 0.103) 0.221 (0.084; 0.110) 0.891
100 1.076 (0.074; 0.084) 0.229 (0.037; 0.038) 0.222 (0.037; 0.033) 0.199 (0.032; 0.035) 0.885

0.997 (0.081; 0.075) 0.224 (0.051; 0.083) 0.218 (0.048; 0.077) 0.198 (0.050; 0.081) 0.895

ni ¼ 50
10 1.015 (0.104; 0.108) 0.191 (0.091; 0.104) 0.191 (0.091; 0.098) 0.170 (0.081; 0.096) 0.889

1.007 (0.108; 0.113) 0.194 (0.070; 0.091) 0.195 (0.072; 0.085) 0.176 (0.067; 0.082) 0.903
50 1.010 (0.046; 0.044) 0.196 (0.044; 0.048) 0.195 (0.044; 0.043) 0.175 (0.040; 0.045) 0.896

1.002 (0.048; 0.045) 0.200 (0.055; 0.060) 0.197 (0.048; 0.053) 0.179 (0.044; 0.054) 0.902
100 1.012 (0.033; 0.032) 0.200 (0.032; 0.033) 0.199 (0.032; 0.029) 0.179 (0.029; 0.031) 0.899

0.999 (0.034; 0.032) 0.199 (0.030; 0.035) 0.199 (0.029; 0.031) 0.180 (0.027; 0.030) 0.903
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Tables 1 and 2 present the results of simulations for the four combinations of the values of param-
eters q and s2. Only results for 20% censoring are presented, as the results under no censoring are
qualitatively similar, but with a slightly smaller bias and variability of the estimated quantities.

One can observe that, in general, the fixed-effect b is estimated well by both methods, with a
relative absolute bias less then 8% in any of the considered cases. The bias decreases with the increas-
ing cluster size ni, but is not substantially influenced by the number of clusters N. Increasing s2 from
0:2 to 1 or q from 0.5 to 0.9 does not seem to change the magnitude of bias. The estimates obtained
by the Ripatti and Palmgren (2000) approach are on average closer to the true value of the parameter
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Table 2 The mean estimates for 250 simulated datasets for the proposed EM algorithm (first row for
each N) and the method of Ripatti and Palmgren (second row for each N), when s2

1 ¼ s2
2 ¼ 1:0 and

different values of s12, with 20% censoring. In parentheses: the mean estimated (first number) and
empirical (second number) standard errors.

N b s2
1 s2

2 s12 q

s12 ¼ 0:5

ni ¼ 10
10 1.078 (0.238; 0.276) 0.900 (0.535; 0.687) 0.895 (0.523; 0.617) 0.414 (0.394; 0.387) 0.461

0.994 (0.262; 0.284) 0.925 (0.406; 0.496) 0.886 (0.396; 0.479) 0.444 (0.252; 0.364) 0.491
50 1.068 (0.104; 0.122) 0.974 (0.264; 0.435) 0.974 (0.251; 0.285) 0.472 (0.198; 0.192) 0.485

0.995 (0.116; 0.109) 0.982 (0.182; 0.232) 0.971 (0.184; 0.224) 0.490 (0.115; 0.176) 0.502
100 1.075 (0.073; 0.086) 0.982 (0.185; 0.283) 0.984 (0.179; 0.207) 0.481 (0.141; 0.146) 0.489

0.995 (0.082; 0.077) 0.983 (0.139; 0.180) 0.979 (0.125; 0.163) 0.493 (0.102; 0.134) 0.503

ni ¼ 50
10 1.011 (0.104; 0.108) 0.893 (0.423; 0.487) 0.901 (0.424; 0.454) 0.439 (0.329; 0.352) 0.489

1.007 (0.109; 0.114) 0.899 (0.362; 0.480) 0.911 (0.350; 0.443) 0.466 (0.284; 0.343) 0.496
50 1.009 (0.046; 0.045) 0.976 (0.208; 0.284) 0.979 (0.205; 0.202) 0.486 (0.162; 0.171) 0.498

1.003 (0.049; 0.049) 0.979 (0.204; 0.224) 0.976 (0.171; 0.195) 0.491 (0.138; 0.165) 0.499
100 1.011 (0.032; 0.033) 0.991 (0.147; 0.160) 1.003 (0.150; 0.145) 0.497 (0.117; 0.121) 0.498

0.999 (0.034; 0.033) 0.990 (0.127; 0.148) 1.004 (0.122; 0.138) 0.504 (0.104; 0.118) 0.504

s12 ¼ 0:9

ni ¼ 10
10 1.081 (0.239; 0.278) 0.881 (0.424; 0.505) 0.876 (0.438; 0.499) 0.780 (0.392; 0.412) 0.887

0.995 (0.257; 0.275) 0.886 (0.296; 0.411) 0.860 (0.282; 0.400) 0.779 (0.246; 0.360) 0.893
50 1.069 (0.104; 0.122) 0.977 (0.225; 0.270) 0.969 (0.224; 0.243) 0.869 (0.208; 0.202) 0.893

0.992 (0.117; 0.107) 0.979 (0.166; 0.225) 0.971 (0.163; 0.226) 0.878 (0.124; 0.199) 0.900
100 1.076 (0.073; 0.086) 0.980 (0.160; 0.185) 0.971 (0.158; 0.162) 0.873 (0.147; 0.141) 0.895

0.993 (0.083; 0.076) 0.985 (0.139; 0.175) 0.976 (0.138; 0.170) 0.884 (0.114; 0.156) 0.901

ni ¼ 50
10 1.013 (0.104; 0.109) 0.893 (0.424; 0.505) 0.902 (0.432; 0.476) 0.798 (0.399; 0.428) 0.889

1.005 (0.109; 0.111) 0.901 (0.365; 0.477) 0.904 (0.377; 0.448) 0.815 (0.297; 0.436) 0.903
50 1.010 (0.046; 0.045) 0.980 (0.205; 0.229) 0.974 (0.204; 0.216) 0.876 (0.192; 0.205) 0.896

0.999 (0.048; 0.048) 0.980 (0.217; 0.232) 0.976 (0.197; 0.213) 0.875 (0.211; 0.223) 0.895
100 1.012 (0.032; 0.032) 0.993 (0.148; 0.174) 0.997 (0.149; 0.151) 0.894 (0.140; 0.150) 0.898

0.998 (0.034; 0.033) 0.994 (0.149; 0.157) 0.999 (0.140; 0.145) 0.898 (0.139; 0.146) 0.901
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(b ¼ 1). The variability of estimates of b, measured by the empirical standard error, is similar for both
methods. In general, the model-based estimates for the proposed version of the EM algorithm ade-
quately estimate this variability, though with a slight underestimation (especially for ni ¼ 10). The
model-based estimates for the Ripatti and Palmgren method give plausible values for ni ¼ 50. For
smaller cluster sizes, however, they overestimate the empirical variability. The overestimation is sub-
stantial especially for ni ¼ 10. Overall, the mean squared error is generally smaller (data not shown)
for the estimates obtained by the Ripatti and Palmgren approach.

The relative bias for s2
1 is presented graphically in Figure 1; the estimates for s2

2 show a similar
behaviour. One can conclude that for both estimation approaches there is a substantial bias when the
number of clusters is small (N ¼ 10). The absolute bias decreases with increasing N and ni, but it
remains above 10% even for N ¼ 100 if the cluster size is small (ni ¼ 10) and there is low variability
in cluster-specific random effects (s2 ¼ 0:2). If the variability is large (s2 ¼ 1), the absolute bias is
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low (around or below 5%) for N � 20, irrespectively of the cluster size ni. It is worth noting that both
estimation methods produce underestimates for s2 ¼ 1, irrespectively of N and ni. In general, the
estimates for both methods give on average similar results, with a close agreement for q ¼ 0:9. The
empirical variability of estimates of s2

1 and s2
2 is slightly smaller for the proposed version of the EM

algorithm, as compared to the method of Ripatti and Palmgren, for s2 ¼ 0:2. For s2 ¼ 1, the opposite
trend seems to be present. In general, the model-based standard errors underestimate the variability for
both methods. The estimates for the proposed version of the EM algorithm are in most cases closer to
the empirical standard error than the values obtained for the Ripatti and Palmgren method.

Both estimation methods tend to underestimate the covariance parameter s12 for s2 ¼ 1. For
s2 ¼ 0:2, there is no obvious pattern. The absolute bias decreases with increasing N and ni. In general,
it is smaller for the Ripatti and Palmgren method. The empirical variability of the estimates is similar
for both methods. The model-based standard errors underestimate the variability for both methods.
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The estimates for the proposed version of the EM algorithm are generally closer to the empirical
standard error than the values obtained for the Ripatti and Palmgren method.

Overall, for all variance-covariance parameters, the mean squared error (data not shown) of the
estimates obtained by the proposed version of the EM algorithm is smaller than for the Ripatti and
Palmgren approach when s2 ¼ 0:2, while the opposite trend could be seen for s2 ¼ 1.

A natural measure to assess the association between the two random effects is the correlation coef-
ficient. Note that, since it was not used as a parameter in Model (29)–(30), it needs to be computed
from the estimated values of s2, s1 and s12. Figure 2 presents graphically the relative bias for q. The
absolute relative bias remains around or below 5% for q ¼ 0:9; for q ¼ 0:5, it does so for ni � 20.
The bias generally decreases with increasing N and ni, and is smaller when s2 increases. One can
observe that there are substantial differences between the estimates produced by both methods, espe-
cially when there is low variability in cluster-specific random effects (s2 ¼ 0:2). In general, the esti-
mates obtained using the method of Ripatti and Palmgren are closer to the true value of the correla-
tion coefficient. One can also conclude that the proposed version of the EM algorithm tends to
underestimate the true value of the coefficient. Since the correlation coefficient was not used in the
parametric form of Model (29)–(30), its model-based standard error was not directly available.
Though it could be computed from the estimated errors for s2, s1 and s12 by using the delta-method,
we did not pursue a more detailed analysis of this aspect of the estimation of q.

7 Case Study: Analysis of Survival Data
in a Breast Cancer Clinical Trial

In this section we will use a proportional hazard model with multivariate random effects to investigate
the between-center variation (heterogeneity) in both the baseline risk and the effectiveness of therapy
in a multicenter clinical trial. The variation is of interest because it decreases the power to detect
clinically important treatment differences. On the other hand, more heterogeneous trials lead to more
general conclusions as they are based on a wider patient population. Moreover, the differences be-
tween centers can be studied to determine whether differences in clinical practice at the center level
have an influence on the outcome (Yamaguchi and Ohashi, 2000; Duchateau et al., 2002). Investiga-
tion of the heterogeneity is sometimes called “treatment outcome research” (Duchateau et al., 2002).

As an example we will use data on survival time of patients from the European Organization for the
Research and Treatment of Cancer (EORTC) early breast cancer clinical trial comparing peri-operative
chemotherapy with surgery alone (Clahsen et al., 1996). The trial includes 15 centers, with the follow-
ing number of patients per center: 6, 19, 25, 39, 48, 53, 54, 60, 78, 184, 185, 206, 311, 622, 902.
Duchateau et al. (2002) used this trial to study the between-center variability in the baseline hazard.
To this aim, they applied a shared frailty model with a gamma-distributed frailty to model progression
free survival. As a result, they estimated baseline hazard (assumed constant) and the hazard ratio for
the surgery-alone treatment to equal 0.07 and 1.16, respectively. The variance of the frailty distribu-
tion was estimated to be equal to 0.092.

We will re-analyze the data used by Duchateau et al. (2002), allowing for the variation in both the
baseline hazard and the treatment effect. To this aim, we will use the following model:

lijðtij j b; bi0; bi1Þ ¼ l0ðtijÞ ebi0þxijðbþbi1Þ ; ð32Þ
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Table 3 Results for the analysis of the survival data in the breast cancer trial
(standard error in parentheses).

Method b s2
0 s2

1 s01

EM-Laplace 0.160 (0.071) 0.093 (0.034) 0.035 (0.011) 0.022 (0.014)
Ripatti 0.162 (0.072) 0.091 (0.041) 0.036 (0.014) 0.021 (0.017)
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where
bi0

bi1

� 	
� N2

0
0

� 	
;

s2
0 s01

s2
1

� 	� 
: ð33Þ

A similar model was used by Yamaguchi and Ohashi (2002) in another case study, but with the
covariance between the two random effects constrained to 0. They fitted the model using an extension
of the penalized partial likelihood approach developed by McGilchrist and Aisbett (1991) and
McGilchrist (1993).

The parameter estimates for Model (32), obtained by the method of Ripatti and Palmgren (2000)
and by the version of the EM algorithm proposed in this paper, are presented in Table 3. The result
for both methods are quite comparable. Worth noting are somewhat larger standard errors for the
variance-covariance parameters for the Ripatti and Palmgren approach. This is consistent with the
results of the simulation study presented in the previous section.

Since Duchateau et al. (2002) used a different model to analyze the data, it is difficult to directly
compare their results to those shown in Table 3. Nevertheless, some similarities can be noted. For
instance, the estimated value of b presented in the table gives the hazard ratio of 1.17, which is very
similar to the value of 1.16 obtained by Duchateau et al. (2002). Moreover, the estimated cumulative
baseline hazard for Model (32) showed a linear trend (data not shown), suggesting a constant baseline
hazard equal to 0.067 for the Ripatti and Palmgren method and 0.066 for the EM algorithm. These
values are comparable to the value of 0.07 obtained by Duchateau et al. (2002). Finally, the estimated
variance of the gamma frailty (0.092) given by Duchateau et al. (2002) implies that, in their analysis,
the distribution of the logarithm of the frailty can by approximated by a normal distribution with
variance w0ð1=0:09Þ ¼ 0:094, where w0ðÞ is the trigamma function (Johnson and Kotz, 1970, p. 181).
Thus, the shared gamma-frailty model used by Duchateau et al. (2002) might be approximately
equivalent to Model (32) without the random treatment effects bi1 and with normally-distributed ran-
dom intercepts bi0 with variance 0.094. This value is only slightly higher than the estimates of s2

0
given in Table 3.

On the other hand, Model (32) provides additional information about the heterogeneity of treatment
effects. More specifically, the estimated value of s2

1 implies that in 95% of cases the center-specific
hazard ratio for treatment should remain in the interval exp ð0:16� 1:96	 0:189Þ, i.e., (0.81, 1.70).
This range of the variability is thus rather wide. Additionally, the estimates of s01 shown in Table 3
suggest a low correlation (0.37 for the Ripatti and Palmgren method, 0.38 for the EM algorithm)
between bi0 and bi1.

It is worth noting here that, in the context of “treatment outcome research”, the explicit use of
random effects in Model (32) is of importance, as it allows to quantify the magnitude of between-
center heterogeneity in baseline hazards and treatment effects. If one’s interest, however, lies only in,
e.g., testing for center effects, alternative methods, not requiring a random effects formulation, can be
considered (Gray, 1995).

8 Concluding Remarks

Proportional hazard models with multivariate random effects offer several advantages over univariate
shared frailty models (Xue and Brookmeyer, 1996), especially when survival times from the same
cluster are negatively associated. The main stumbling block in the use of the former models are
estimation methods.

In this paper we have proposed an estimation method based on the EM algorithm. Its main advan-
tage is a lower computational complexity, as compared to the previously developed implementations
of the algorithm (Xue and Brookmeyer, 1996; Vaida and Xu, 2000; Ripatti et al., 2002). In the current
paper normally-distributed multivariate random effects were considered, but the method might in prin-
ciple be extended to other types of multivariate distributions. A drawback of the method is the asymp-
totic nature of the Laplace approximation: to get estimates, one needs a cluster size that cannot be too
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small. In fact, in our simulation study we did not include the settings with clusters with less than 10
subjects, since for these settings convergence problems were too frequent.

An important issue in the assessment of any estimation method are the statistical properties of the
obtained estimates. The consistency of the estimates produced by the EM algorithm has been proven
only for the case of the shared frailty model with a univariate, gamma-distributed frailty (Murphy,
1995; Parner, 1998). No formal results are available for other distributions. An empirical study of
Ferreira and Garcia (2002) of the EM-algorithm-based estimation method proposed by Nielsen et al.
(1992) suggests that the estimates of the variance parameter may be non-consistent when the gamma
assumption fails.

Even less is known about the multivariate frailty models. For this reasons we conducted a simula-
tion study, in which we compared our proposal with the non-EM based approach developed by Ripatti
and Palmgren (2000). Comparison with other versions of the EM algorithm (Xue and Brookmeyer,
1996; Vaida and Xu, 2000) was not possible due to the numerical complexity and problems with the
implementation of these methods. Xue and Brookmeyer (1996) in their paper stated that “although it
is computationally feasible for analysis of specific data sets, it is not efficient enough to being consid-
ered for computer simulation studies”, implying that their approach is fairly computational intensive.
Vaida and Xu (2000) reported an MCEM inference approach, where they used Gibbs sampling to
draw from the posterior distribution of the random effects where convergence of the algorithm is
assessed by visual inspection of the estimates. This is also a limitation if simulations are conducted
together with the fact that for large dimensions of the random effects relative to the sample sizes can
encountered convergence problems.

In the simulation study both approaches produced on average similar estimates of the variances of
random effects. More difference was seen in the estimation of the fixed effects and the covariance/
correlation, where the estimates for the method of Ripatti and Palmgren (2000) showed smaller bias.
For both methods the bias in the parameter estimates seemed to disappear with the increasing cluster
size and (except for the fixed effects) the number of clusters. The empirical variability of the param-
eter estimates was in general similar for both methods. For the Ripatti and Palmgren method the
model-based estimates tended to overestimate the empirical standard error for the fixed-effects param-
eters (especially when the cluster size was small) and to underestimate the standard error for the
variance-covariance parameters. For the proposed version of the EM algorithm the estimates generally
underestimated the error, but they were closer to the true value than the estimates for the method of
Ripatti and Palmgren. The underestimation was due to the fact, that to reduce numerical complexity,
the estimates were computed by inverting only the appropriate sub-matrices of the observed Fisher
information matrix. Overall, the mean squared error of the estimated fixed-effects parameters obtained
by the proposed version of the EM algorithm was larger than for the Ripatti and Palmgren approach.
For the variance-covariance parameters, the relationship depended on the variability of the random
effects: when the variability was small (large), the mean squared error for the proposed version of the
EM algorithm was smaller (larger) than for the method of Ripatti and Palmgren. Finally, it is worth
mentioning that the computation time needed for the latter method to converge was, in general, shorter.
This is not surprising, in view of the linear rate of convergence for the EM algorithm.

The aforementioned simulation results indicate that both the proposed version of the EM algorithm,
as well as the method of Ripatti and Palmgren (2000), have some advantages to offer. A more definite
evaluation of their merits requires further research.

Acknowledgement The authors would like to thank Terry Therneau for providing the S-Plus functions for the
Ripatti and Palmgren approach, the assistance in implementing the software and comments regarding the content
of the manuscript. They would also like to thank the Breast Cancer Group of the EORTC for providing the data
for the peri-operative chemotherapy trial, and Richard Sylvester and Catherine Legrand from the EORTC for
useful comments. Both authors gratefully acknowledge support from Belgian IUAP/PAI network “Statistical Tech-
niques and Modeling for Complex Substantive Questions with Complex Data”.

Biometrical Journal 47 (2005) 6 861

# 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



References
Bleistein, N. and Handelsman, R. A. (1986). Asymptotic Expansions of Integrals. Dover, New York.
Clahsen, P. C., van de Velde, C. J., Julien, J. P., Floiras, J. L., Delozier, T., Mignolet, F. Y., and Sahmoud, T. M.

(1996). Improved local control and disease-free survival after preoperative chemotherapy for early-stage
breast cancer. A European Organization for Research and Treatment of Cancer breast cancer cooperative
group study. Journal of Clinical Oncology 14, 745–753.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1997). Maximum likelihood from incomplete data via the EM
algorithm (with discussion). Journal of the Royal Statistical Society B 39, 1–38.

Duchateau, L., Janssen, P., Lindsey, P., Legrand, C., Nguti, R., and Sylvester, R. (2002). The shared frailty model and
the power for heterogeneity tests in multicenter trials. Computational Statistics and Data Analysis 40, 603–620.

Evans, M. and Swartz, T. (2000). Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford
University Press, Oxford.

Ferreira, A., and Garcia, N. L. (2002). Simulation study for misspecifications on a frailty model. Brazilian Jour-
nal of Probability and Statistics 15, 121–134.

Gray, R. J. (1995). Tests for variation over groups in survival data. Journal of the American Statistical Association
90, 198–203.

Johansen, S. (1993). An extension of Cox’s regression model. International Statistical Review 51, 258–262.
Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions, Vol. 1. Houghton Mifflin, Boston.
Kass, R. E., Tierney, L., and Kadane J. B. (1990). The validity of posterior expansions based on Laplace’s method.

Bayesian and likelihood methods in statistics and econometrics (ed. S. Geisser, J. S. Hodges, S. J. Press and
A. Zellner). Elsevier Science North Holland, Amsterdam, 473–488.

Klein, J. P. (1992). Semiparametric estimation of random effects using the Cox model based on the EM algorithm.
Biometrics 48, 795–806.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal
Statistical Society B 44, 190–200.

McGilchrist, C. A. and Aisbett, C. W. (1991). Regression with frailty in survival analysis. Biometrics 47, 461–466.
McGilchrist, C. A. (1993). REML estimation for survival models with frailty. Biometrics 49, 221–225.
McGilchrist, C. A. (1994). Estimation in generalized mixed models. Journal of the Royal Statistical Society B 56, 61–69.
Murray, J. D. (1984). Asymptotic Analysis. Springer-Verlag, New York.
Murphy, S. A. (1995). Asymptotic theory for the frailty model. Annals of Statistics 23, 182–198.
Nielsen, G. G., Gill, R. D., Andersen, P. K., and Sorensen, T. I. A (1992). A counting process approach to maxi-

mum likelihood estimation in frailty models. Scandinavian Journal of Statistics 19, 25–43.
Parner, E. (1998). Asymptotic theory for the correlated gamma-frailty model. Annals of Statistics 26, 183–214.
Ripatti, S. and Palmgren, J. (2000). Estimation of multivariate frailty models using penalized partial likelihood.

Biometrics 56, 1016–1022.
Ripatti, S., Larsen, K., and Palmgren, J. (2002). Maximum likelihood inference for multivariate frailty models

using an automated Monte Carlo EM algorithm. Lifetime Data Analysis 8, 349–360.
Therneau, T. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox model. Springer-Verlag,

New York.
Therneau, T., Grambsch, P. M., and Shane Pankratz, V. (2000). Penalized survival models and frailty. Technical

Report (June 2000).
Therneau, T. (2003). On mixed effect Cox models, sparse matrices, and modelling data from large pedigree.

Technical Report (July 2003).
Vaida, F. (2004). Parameter convergence for EM and MM Algorithms. Statistica Sinica, to appear.
Vaida, F. and Xu, R. (2000). Proportional hazards model with random effects. Statistics in Medicine 19, 3309–3324.
Wong, R. (1989). Asymptotic Approximations of Integrals. Academic Press, San Diego.
Wu, C.-F. J. (1983). On the convergency properties of the EM algorithm. Annals of Statistics 11, 95–103.
Xue, X. (1998). Multivariate survival data under bivariate frailty: an estimating equation approach. Biometrics 54,

1631–1637.
Xue, X. and Brookmeyer, R. (1996). Bivariate frailty model for the analysis of multivariate survival time. Lifetime

Data Analysis 2, 277–289.
Xue, X. and Ding, Y. (1999). Assessing heterogeneity and correlation of paired failure times with the bivariate

frailty model. Statistics in Medicine 18, 907–918.
Yamaguchi, T. and Ohashi, Y. (1999). Investigating centre effects in a multi-centre clinical trial of superficial

bladder cancer. Statistics in Medicine 18, 1961–1971.
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