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Abstract

In survival analysis, it is very common to assume that the lifetime variable and the

censoring variable are independent. In this case, the product limit estimator is the

standard non-parametric estimator for the distribution function of the lifetime variable.

When the assumption of independence is not satisfied, Zheng and Klein (1995) proposed

a copula-graphic estimator where the dependence between lifetime and censoring variable

is described by a known copula. Rivest and Wells (2001) derived an explicit form for this

estimator if the copula is Archimedean.

In this paper, we extend the estimator of Rivest and Wells (2001) to the fixed design

regression case. For our copula-graphic estimator, we find an asymptotic representation

and prove weak convergence to a Gaussian limit. We perform a sensitivity analysis to

assess the influence of a misspecified copula function on the estimator. Furthermore we

illustrate the estimation method with a dataset on survival of Atlantic halibut.

1 Introduction

At fixed design points 0 ≤ x1 ≤ . . . ≤ xn ≤ 1, we have nonnegative responses Y1, . . . , Yn

such as survival times or failure times. These responses are independent random vari-

ables and the distribution function of the response Yi at xi will be denoted by Fxi
(t) =

P (Yi ≤ t).

In many clinical or industrial trials, the responses Y1, . . . , Yn are subject to random right

censoring. For each response, there is a censoring variable Ci with conditional distribution

function Gxi
(t) = P (Ci ≤ t). The observed random variables at design point xi are in
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fact Zi and δi (i = 1, . . . , n), with

Zi = min(Yi, Ci) and δi = I(Yi ≤ Ci).

At a given fixed design value x ∈ [0, 1], we write Fx, Gx, Hx for the distribution function

of respectively the response Yx, the censoring variable Cx and the observed variable

Zx = min(Yx, Cx) at x. Also we will write δx = I(Yx ≤ Cx). Note that for the design

variables xi, we write Yi, Ci, Zi, Fi, . . . instead of Yxi
, Cxi

, Zxi
, Fxi

, . . ..

In order to estimate uniquely the distribution function Fx from the observed data, we have

to make an assumption about the dependence between the Yi and Ci for each i (Tsiatis

1975). It is very common in survival analysis to assume independence between these

random variables (conditional on the covariate). However we see that in some practical

situations this assumption clearly does not hold. For example in medicine when the event

of interest is death due to a given disease and the censoring event is death due to other

diseases. In industrial testing, it may occur that some piece of equipment is taken away

(is censored) because it shows some sign of future failure. Therefore a dependence model

is used in which the dependence structure is given by specifying a copula for the joint

distribution of Yx and Cx. Assume that the joint survival function of the response Yx

and the censoring variable Cx at x can be written as

Sx(t1, t2) = P (Yx > t1, Cx > t2) = Cx(F̄x(t1), Ḡx(t2))

where Cx is a known copula function depending in a general way on x and F̄x(t) (resp.

Ḡx(t)) is the survival function of Yx (resp. Cx) at x. Without covariates x, this idea was

introduced by Zheng and Klein (1995). However their copula-graphic estimator had no

closed form expression. Rivest and Wells (2001) got around this problem by focusing on

the class of Archimedean copulas. In this work, we will extend their ideas to the fixed

design regression case.

We assume that at a fixed design value x ∈ [0, 1], the joint survival function is given by

Sx(t1, t2) = ϕ[−1]
x (ϕx(F̄x(t1)) + ϕx(Ḡx(t2))) (1)

where, for each x, ϕx : [0, 1] → [0, +∞] is a known continuous, convex, strictly decreasing

function with ϕx(1) = 0. ϕ[−1]
x is the pseudo-inverse of ϕx, as defined in Nelsen (1999)

and given by

ϕ[−1]
x (s) =

⎧⎨⎩ ϕ−1
x (s) 0 ≤ s ≤ ϕx(0)

0 ϕx(0) ≤ s ≤ +∞ .

We note from (1) that,

1 − Hx(t) = H̄x(t) = Sx(t, t) = ϕ[−1]
x (ϕx(F̄x(t)) + ϕx(Ḡx(t))).
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This relation will be used to find a conditional distribution estimator Fxh for Fx where

x ∈]0, 1[ is a fixed design value. We organized this paper as follows. In Section 2, we define

the distribution function estimator Fxh and show that it is an extension of the Beran

estimator, as it was studied by Van Keilegom and Veraverbeke (1996, 1997a and 1997b).

After specifying some assumptions in Section 3, we give for this estimator an asymptotic

representation and a weak convergence result in Section 4. In Section 5, we perform a

sensitivity analysis to investigate the bias that is introduced by a misspecification of the

copula function. In Section 6 we apply the estimator to a practical situation in which

we explore different choices for the generator function ϕx. In the Appendix we give the

proofs of the results in Section 4.

2 Copula-graphic estimator

For a fixed design value x ∈ ]0, 1[, we derive an estimator for the distribution function

Fx(t). Since we only have observations at the design points x1, . . . , xn, we use smoothing

weights to give observations at a design point close to x a larger contribution in our

estimator than observations at design points far away from x. In a fixed design regression

it is natural to work with Gasser-Müller weights,

wni(x, hn) =
1

cn(x, hn)

xi∫
xi−1

1

hn

K
(

x − z

hn

)
dz (i = 1, . . . , n), (2)

cn(x, hn) =

xn∫
0

1

hn

K
(

x − z

hn

)
dz (3)

where x0 = 0, K is a known probability density function, called the kernel and {hn}
is a sequence of positive constants, tending to zero as n → +∞, called the bandwidth

sequence.

Let us assume that there are no ties in the observations. To find an estimator for F̄x(t)

(resp. Ḡx(t)) at the design point x, we work as Rivest and Wells (2001) and look for the

right continuous step function F̄xh(t) (resp. Ḡxh(t)) with F̄xh(0) = 1 (resp. Ḡxh(0) = 1),

which has jumps at the points Zi with δi = 1 (resp. δi = 0) satisfying

ϕ[−1]
x (ϕx(F̄xh(Zi)) + ϕx(Ḡxh(Zi))) = H̄xh(Zi)

where H̄xh(t) =
n∑

i=1
wni(x, hn)I(Zi > t).

To get a closed form expression for F̄xh, we take a point Zi with δi = 1. The function Ḡxh
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has not jump in this point i.e. Ḡxh(Z
−
i ) = Ḡxh(Zi), and the jump of F̄xh at Zi satisfies

ϕx(F̄xh(Z
−
i )) − ϕx(F̄xh(Zi)) = ϕx(H̄xh(Z

−
i )) − ϕx(H̄xh(Zi))

= ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn)).

Hence

ϕx(F̄xh(t)) = − ∑
Zi≤t,δi=1

ϕx(F̄xh(Z
−
i )) − ϕx(F̄xh(Zi))

= − ∑
Zi≤t,δi=1

ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn))

and

F̄xh(t) = ϕ[−1]
x

⎛⎝− ∑
Zi≤t,δi=1

ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn))

⎞⎠ . (4)

Since the argument of ϕ[−1]
x is never larger then ϕx(0), we can replace in (4), without

any complications, the pseudo inverse ϕ[−1]
x by the inverse ϕ−1

x . Furthermore we note

that this estimator in general does not tend to 0 as t → +∞. In order to have a proper

distribution estimator, we use the modification

F̄xh(t) = ϕ−1
x

⎛⎝− ∑
Zi≤t,δi=1

ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn))

⎞⎠ I(t < Z(n)) (5)

where Z(n) is the largest order statistic in the sample Z1, . . . , Zn. When we take the

independent copula (ϕx(t) = − log(t)), we note that this estimator becomes equal to the

Beran estimator given by

Fxh(t) = 1 −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

Z(i)≤t

⎛⎜⎜⎜⎝1 − wn(i)(x, hn)

1 − i−1∑
j=1

wn(j)(x, hn)

⎞⎟⎟⎟⎠
δ(i)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ I(t < Z(n))

as it was studied by Van Keilegom and Veraverbeke (1996, 1997a and 1997b).

3 Regularity conditions

For the design points x1, . . . , xn we write Δn = min
1≤i≤n

(xi−xi−1) and Δ̄n = max
1≤i≤n

(xi−xi−1).

The notations ||K||∞ = sup
u∈IR

K(u), ||K||22 =
+∞∫
−∞

K2(u)du, μK
1 =

+∞∫
−∞

uK(u)du, μK
2 =

+∞∫
−∞

u2K(u)du will be used for the kernel K.

4



We use the following assumptions on the design and on the kernel.

(C1) xn → 1, Δ̄n = O(n−1), Δ̄n − Δn = o(n−1).

(C2) K is a probability density function with finite support [−M, M ] for some M > 0,

μK
1 = 0 and K Lipschitz of order 1.

The assumption (C1) expresses that the chosen design points are asymptotically equidis-

tant points, selected uniformly over the whole interval [0, 1]. This implies that, for

cn(x, hn) defined in (3), cn(x, hn) = 1 for n sufficiently large. Therefore we may take

cn(x, hn) = 1 in all proofs of the asymptotic results.

If L is any (sub)distribution, then TL denotes the right endpoint of its support (TL =

inf{t : L(t) = L(+∞)}). Here we have that THx ≤ min(TFx , TGx) where we attain the

equality in case ϕx(0) = +∞. For ϕx(0) < +∞, it depends on the function ϕx whether

or not we have an equality. To obtain our results, we need some smoothness conditions

on the functions Hx(t) = P (Zx ≤ t) and Hu
x (t) = P (Zx ≤ t, δx = 1). For a fixed T > 0,

(C3) L̇x(t) = ∂
∂x

Lx(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ]

(C4) L′
x(t) = ∂

∂t
Lx(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ]

(C5) L̈x(t) = ∂2

∂x2 Lx(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ]

(C6) L′′
x(t) = ∂2

∂t2
Lx(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ]

(C7) L̇′
x(t) = ∂2

∂x∂t
Lx(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ].

The generator ϕx(v) of the Archimedean copula needs to satisfy the following properties.

(C8) ϕ′
x(v) = ∂

∂v
ϕx(v) and ϕ′′

x(v) = ∂2

∂v2 ϕx(v) are Lipschitz in the x-direction with a

bounded Lipschitz constant, and ϕ′′′
x (v) = ∂3

∂v3 ϕx(v) ≤ 0 exists and is continuous in

(x, v) ∈ [0, 1]×]0, 1].

These assumptions and the fact that ϕx is a generator for an Archimedean copula, give

that ϕ′
x(v) is monotone increasing with ϕ′

x(v) < 0 and ϕ′′
x(v) is monotone decreasing with

ϕ′′
x(v) ≥ 0.

5



4 Asymptotic results

In this section we give some asymptotic results for the copula-graphic estimator Fxh(t).

We show an asymptotic representation for this estimator in Theorem 1 and prove in

Theorem 2 the weak convergence of the related empirical process (nhn)−1/2(Fxh(·)−Fx(·))
in the space l∞[0, T ] of uniformly bounded functions on [0, T ], endowed with the uniform

topology. The proofs of these theorems are put in the Appendix at the end of this paper.

Before we show these results, we give a lemma about the distribution function Fx.

Lemma 1. If Hx(t) and Hu
x (t) satisfy (C4) in [0, 1] × [0, T ] with T < THx and ϕ′

x(v)

exists on [0, 1]×]0, 1], then under (1),

F̄x(t) = ϕ−1
x

⎛⎝− t∫
0

ϕ′
x(H̄x(s))dHu

x (s)

⎞⎠ .

Proof. Under (1) and with Tsiatis (1975), we get that

Hu
x
′(t) = − ∂

∂t1
Sx(t1, t2)

∣∣∣∣∣
t1=t2=t

=
ϕ′

x(F̄x(t))F
′
x(t)

ϕ′
x(H̄x(t))

.

This leads to

ϕ−1
x

⎛⎝− t∫
0

ϕ′
x(H̄x(s))dHu

x (s)

⎞⎠ = ϕ−1
x

⎛⎜⎝− F̄x(t)∫
1

ϕ′
x(w)dw

⎞⎟⎠ = F̄x(t).

Theorem 1. Assume (C1), (C2), Hx(t) and Hu
x (t) satisfy (C5), (C6) and (C7) in [0, T ]

with T < THx , ϕx satisfies (C8), hn → 0,
log n

nhn

→ 0,
nh5

n

log n
= O(1). Then, under (1) as

n → +∞,

Fxh(t) − Fx(t) =
n∑

i=1

wni(x, hn)gtx(Zi, δi) + Rn(t)

where

gtx(Zi, δi) =
−1

ϕ′
x(F̄x(t))

⎡⎣ t∫
0

ϕ′′
x(H̄x(s))(I(Zi ≤ s) − Hx(s))dHu

x (s)

− ϕ′
x(H̄x(t))(I(Zi ≤ t, δi = 1) − Hu

x (t))

−
t∫

0

ϕ′′
x(H̄x(s))(I(Zi ≤ s, δi = 1) − Hu

x (s))dHx(s)

⎤⎦
and sup

0≤t≤T
|Rn(t)| = O((nhn)−3/4(log n)3/4) a.s.
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Theorem 2. Assume (C1), (C2), Hx(t) and Hu
x (t) satisfy (C5), (C6), (C7) in [0, T ] with

T < THx and ϕx satisfies (C8).

(a) If nh5
n → 0 and

(log n)3

nhn

→ 0, then, under (1), as n → +∞,

(nhn)−1/2(Fxh(·) − Fx(·)) → W (·|x) in l∞[0, T ]

(b) If hn = Cn−1/5 for some C > 0, then, under (1), as n → +∞,

(nhn)−1/2(Fxh(·) − Fx(·)) → W̃ (·|x) in l∞[0, T ]

where W (·|x) and W̃ (·|x) are Gaussian processes with covariance function given by

Γx(t, s) =
||K||22

ϕ′
x(F̄x(t))ϕ′

x(F̄x(s))

⎧⎪⎨⎪⎩
min(t,s)∫

0

ϕ′
x(H̄x(z))2dHu

x (z)

+

min(t,s)∫
0

(ϕ′′
x(H̄x(w))H̄x(w) + ϕ′

x(H̄x(w)))

w∫
0

ϕ′′
x(H̄x(y))dHu

x (y)dHu
x (w) (6)

+

min(t,s)∫
0

ϕ′′
x(H̄x(w))

max(t,s)∫
w

(ϕ′′
x(H̄x(y))H̄x(y) + ϕ′

x(H̄x(y)))dHu
x (y)dHu

x (w)

−
t∫

0

(ϕ′′
x(H̄x(y))H̄x(y) + ϕ′

x(H̄x(y)))dHu
x (y)

s∫
0

(ϕ′′
x(H̄x(w))H̄x(w) + ϕ′

x(H̄x(w)))dHu
x (w)

⎫⎬⎭
and for W̃ (·|x), mean function given by

btx =
−C5/2μK

2

2ϕ′
x(F̄x(t))

t∫
0

[ϕ′′
x(H̄x(s))Ḧx(s)dHu

x (s) − ϕ′
x(H̄x(s))dḦu

x (s)].

Remark 1. Note that when lifetime and censoring time are independent (ϕx(t) =

− log(t)), we obtain the well-known formulas for the asymptotic mean and variance of

the Beran estimator as in Van Keilegom and Veraverbeke (1997a).

Remark 2. In order to keep the presentation simple, we have chosen for a fixed design

setting. The theory for random design points X1, . . . , Xn is similar but leads to somewhat

more complicated expressions for the bias btx and the covariance Γx(t, s), involving the

density of the design points and its first derivative. The weights in (2) are then replaced by

the simpler Nadaraya-Watson weights. Also an extension to multidimensional covariates

is possible at the cost of more complexity.
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5 Sensitivity analysis

In the previous section we have shown several results for the conditional copula-graphic

estimator. We note that each result depends strongly on the underlying dependence

structure between the survival time and the censoring time, which is described by a

known Archimedean copula function. In a real data analysis it is very hard to know this

copula function. The design of the experiment will in most cases give some hints about

the association pattern between survival time and censoring time. In this section we

explore the bias of the copula-graphic estimator due to a misspecified copula function.

We will also consider the misspecification bias in a more general situation where the

underlying dependence structure between survival time and censoring time is described

by a general copula function instead of an Archimedean copula.

To determine the misspecification bias in the copula-graphic estimator, we assume that

the true joint survival function is given by (1). If we use the generator φx in the cal-

culations of the conditional copula-graphic estimator, we estimate the survival function

F̄ ∗
x (t) defined as

F̄ ∗
x (t) = φ−1

x

⎛⎝− t∫
0

φ′
x(H̄x(s))dHu

x (s)

⎞⎠ . (7)

Using (1), we can rewrite (7) as

F̄ ∗
x (t) = φ[−1]

x

⎛⎝− t∫
0

φ′
x(H̄x(s))

ϕ′
x(H̄x(s))

ϕ′
x(F̄x(s))dFx(s)

⎞⎠ (8)

= φ[−1]
x

⎛⎝− t∫
0

φ′
x

(
ϕ[−1]

x (ϕx(F̄x(s)) + ϕx(Ḡx(s)))
)

ϕ′
x

(
ϕ

[−1]
x (ϕx(F̄x(s)) + ϕx(Ḡx(s)))

)ϕ′
x(F̄x(s))dFx(s)

⎞⎠ .

This survival function is different from the marginal survival function F̄x(t) except when

φx(t) = aϕx(t) with a a constant (see Lemma 1). In a situation without censoring

(Ḡx(t) = 1) we note that Hx(t) = Hu
x (t) = Fx(t) = F ∗

x (t) and the bias due to misspeci-

fication is here also zero. In general we see that the misspecified survival function F̄ ∗
x (t)

not only depends on the survival function F̄x(t), but also on the survival function Ḡx(t)

of the censoring time. This means that the percentage of censoring influences the mis-

specification bias. Along the same lines as in Proposition 2 of Rivest and Wells (2001),

we can show that this bias is increasing with the percentage of censoring if φ′
x(u)/ϕ′

x(u)

is monotone in u.

For the situation of a general copula function, we proceed as in Rivest and Wells (2001)

and define a generator function for this copula. Let us assume that the true joint survival
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function is given by

Sx(t1, t2) = Cx(F̄x(t1), Ḡx(t2)) (9)

where Cx(u, v) is a general copula function. We calculate the crude hazard rates of the

uncensored observations, both under model (9) and also under the Archimedean model

(1). Equating these two hazard rates, we obtain

ϕ′
x(F̄x(t)) = C1

x(F̄x(t), Ḡx(t))ϕ
′
x(Sx(t, t))

where C1
x(u, v) = ∂

∂u
Cx(u, v) is the first partial derivative of the copula function Cx.

Let us now define a generator ϕxC for a general copula Cx as a positive decreasing function

satisfying ϕxC(1) = 0 and for which the derivative is given by

ϕ′
xC(s) = C1

x(s, Kx(s))ϕ
′
xC(Cx(s, Kx(s))) (10)

where Kx(s) = Ḡx(F̄
−1
x (s)).

We note that for a general copula function Cx, it is difficult to solve equation (10). Often

we cannot find a closed form solution ϕxC for this differential equation because we do not

know the function Kx(s). One of the situations where we can find a solution for ϕxC in

(10), is when Cx is an Archimedean copula with generator ϕx. In this case any generator of

the form a.ϕx, with a a constant, is a solution of this equation. Another situation is when

Fx(t) = Gx(t) and Cx is symmetric (i.e. Cx(u, v) = Cx(v, u), for all u, v). Integrating

both sides of the equation, we can rewrite (10) as ϕxC(s) = ϕxC(Cx(s, s))/2 which is

equivalent to Cx(s, s) = ϕ−1
xC(2ϕxC(s)). A solution ϕxC of this equation is the generator

of an Archimedean copula with the same diagonal section as Cx. The construction of

such an Archimedean copula was discussed in Sungur and Yang (1996). The misspecified

survival function F̄ ∗
x (t) of (7) can now be rewritten as F̄ ∗

x (t) = φ−1
x (1

2
φx(Cx(F̄x(t), F̄x(t))))

and hence the maximal bias due to misspecification is

max
t∈IR

|F̄ ∗
x (t) − F̄x(t)| = max

s∈[0,1]

∣∣∣∣φ−1
x

(
1

2
φx(Cx(s, s))

)
− s

∣∣∣∣ .
We note that this maximal bias only depends on Cx and φx, not on the marginals Fx(t)

and Gx(t). In Table 5.1 we have calculated the maximal bias due to misspecification for

several combinations of the underlying copula function Cx and the misspecified generator

function φx. For the underlying copula function Cx we consider the independence copula

(uv), the Gumbel-Morgenstern copula (uv+u(1−u)v(1−v)), the Fréchet-Hoeffding lower

bound copula (max(u + v − 1, 0)) and the Fréchet-Hoeffding upper bound (min(u, v)).

For the misspecified generator function φx we take φx = − log(t) from the independence

copula and φx = 1− t from the Fréchet-Hoeffding lower bound. We see that the maximal
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φx(t)

Cx(u, v) − log(t) 1 − t

Independence 0 0.5

Gumbel-Morgenstern 0.06744 0.5

Fréchet-Hoeffding lower bound 0.5 0

Fréchet-Hoeffding upper bound 0.25 0.5

Table 5.1 : The calculated maximal bias due to misspecification for several combinations of

underlying copula function Cx and misspecification generator φx.

bias due to misspecification is zero when the misspecified generator φx is a generator of

the underlying Cx, as was expected. For the misspecified generator φx(t) = 1− t, we note

that the maximal bias due to misspecification is here always 0.5 when the underlying

copula is not the Fréchet-Hoeffding lower bound copula.

Remark. A possible attempt to design a method for selecting an appropriate copula

from a parametric family {ϕθ,x} of Archimedean copula generators has been suggested

by a referee and is inspired by Andersen et al (2001). The idea is to use ϕ
θ̂,x

where θ̂ is

a maximizer of the likelihood function

L(θ) =
∏
δi=1

ϕ′
θ,x(F̄x(Zi))F

′
x(Zi)

ϕ′
θ,x(H̄x(Zi))

∏
δi=0

ϕ′
θ,x(Ḡx(Zi))G

′
x(Zi)

ϕ′
θ,x(H̄x(Zi))

after Fx, F ′
x, Gx, G′

x and Hx have been replaced by estimators obtained under the as-

sumption of independence of Yx and Cx.

6 Example: survival of Atlantic halibut

In this section, we apply the copula-graphic estimator on a practical data set about sur-

vival of Atlantic halibut, studied by Neilson, Waiwood and Smith (1989). An important

issue was the survival time of the fish after it was caught and handled as in the com-

mercial fishery. For this purpose they had installed special holding tanks on the research

vessel in which they placed the fish. Each fish was followed until it died. However some

fish, mainly large fish, were removed after 48 hours to make space for other experimental

animals. So the time until death was censored by the time that the animal had spent in

the holding tank. Also the fish that were alive at the end of the experiment, were treated

as censored observations. The researchers recorded several covariates among which we

10
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Figure 1 : Atlantic halibut data set: Survival times (in hours) versus fork length (in cm). Fish died in

the holding tanks: +, fish removed from the holding tanks or alive at the end of the study: O.

focus on the fork length of the fish. In previous analyses of the data set, a significant

effect of fork length on survival time had been found. In Figure 1 we show a scatter plot

of the survival time versus the fork length of each animal, where we use + for uncensored

observations and O for censored observations. The main causes of death for the fish were

the stress of the new environment and also an infection caused by sick fishes in the tank.

Therefore we believe that the survival time Yx of a fish depends on the time that this

fish has spent in the holding tank Cx, where the time in the holding tank has a negative

influence on the survival time.

For these data, we construct the copula-graphic estimator for different choices of ϕx at

fork lengths 32 cm and 53 cm, representing typical small fishes and typical large fishes.

The four choices of the function ϕx that we will consider here, will lead each time to a

different association for the dependence structure between the survival time and the time

spent in the holding tank. This association can be measured in several ways. In this

example, we take Kendall’s τ which is defined in Nelsen (1999) as τ(x) = 1 + 4
1∫
0

ϕx(t)

ϕ′
x(t)

dt

and which has a range from -1 till 1. The association gets stronger when τ goes further

away from zero.

11
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Figure 2 : Kendall’s tau τ(x) for the different choices of generator ϕx. Independence (solid line), Fréchet

- Hoeffding lower bound (dashed line), Frank family 1 (longdashed line) and Frank family 2 (dotted

line).

The first choice is the independent copula (ϕx(t) = − log(t)). This is the (possibly wrong)

choice used in previous analyses of the data. In this case Kendall’s tau τ(x) is equal to

0. The other choices of ϕx are such that they express that the time spent in the holding

tank has a negative influence on the survival time. This is the notion of discordance, as

defined formally in Nelsen (1999). The second choice of ϕx is the Fréchet-Hoeffding lower

bound (ϕx(t) = 1 − t), which is the most extreme discordance that can be considered.

Here τ(x) = −1. For the next choices we take a generator function ϕx which really

depends on the fork length x. Our third choice is the Frank family 1 copula given by

ϕx(t) = − log

(
e(x−20)t − 1

ex−20 − 1

)

and the fourth choice is the Frank family 2 copula given by

ϕx(t) = − log

(
e(60−x)t − 1

e60−x − 1

)
.

From Figure 2, we see that for the Frank family 1 copula, Kendall’s tau is a decreasing,

negative function and hence gives a stronger discordant association for larger fishes than

12



for small fishes. For the fourth choice there is a stronger discordant association for small

fishes.

In Figure 3, we show the copula-graphic estimates for the conditional survival function

F̄x(t) at fork lengths of 32 cm and 53 cm, and for bandwidths 20 and 40. The fork length

is kept equal for plots in the same column and the bandwidth is equal for plots in the

same row. In each of the four plots, we construct the copula-graphic estimator for the

four choices of ϕx. We use in this data set the Gasser-Müller weights with a biquadratic

kernel given by K(z) = (15/16)(1 − z2)2I(|z| ≤ 1). As we saw in Figure 1, the covariate

fork length of a fish is measured crudely on a scale of whole centimeters such that the

observations form vertical lines on this plot. It is therefore possible to treat this covariate

as fixed. It is also easy to see that our results for the copula-graphic estimator remain

valid in the interval [25, 60] for the covariate x, instead of the standard interval [0, 1]. The

choices of the bandwidth are selected here for illustration purpose only. It is possible to

set up a bandwidth selection criterium using, for example, the asymptotic mean squared

error expression, but this would lead us into a field of research that we do not enter at

this moment.

We note in Figure 3 that the estimates for the conditional survival function lie close

together in each of the four plots and lie even almost on top of each other in the plots

of the first column. This means that the choice of the generator function ϕx does not

have a great influence on the survival time of small fishes. In the plots at the fork length

of 53 cm we see that the copula-graphic estimates can be divided in two groups. The

Fréchet-Hoeffding lower bound copula and the Frank family 1 copula give estimates that

lie almost on top of each other but that are clearly different from the estimates of the

independent copula and the Frank family 2 copula which form the second group. By

this division in two groups, we see that this data set reacts differently to two different

situations. The choices of ϕx in the first group have in common that they assume a large

discordant association between survival time and time spent in the holding tank for larger

fishes. In the second group, the choices of ϕx assume practically no discordant association

for larger fishes. This influences the estimates for the survival function. With a ϕx from

the first group, the estimated survival function for larger fish is higher than with a ϕx

from the second group (in particular the ϕx that describes independence). This allows

us to make some comments on the previous research that has been done on this data set.

The researchers used at that time only the independent copula and ignored in this way

that some of the fishes in their experiment did not die from the catch and handling but

from stress caused by the living conditions in the holding tank. Therefore the estimate

for the survival time that they found is an underestimate of the true survival time. By

13
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Figure 3 : Different copula-graphic estimates for the conditional survival function at lengths 32 cm and

53 cm and bandwidths 20 and 40. Independence (solid line), Fréchet - Hoeffding lower bound (dashed

line), Frank family 1 (longdashed line) and Frank family 2 (dotted line).

the analysis in this example, we are able to show that for larger fishes their estimate is

an underestimate and that the stress caused to a fish has to be taken into account in the

estimate of the survival function. This is also positive news since fishes of this size are

able to survive the catch and handling in commercial fishing better than the researchers

originally expected. To finish this section, we note that the estimates for the survival

function do not change much when we use a different bandwidth in the calculations.

Appendix

In this section we prove the asymptotic results of Section 4. We will make frequent use of

several results of Van Keilegom and Veraverbeke (1997b), who dealt with the special case

of independence (ϕx(t) = − log(t)). Results based on observable quantities like Hx(t)

and Hu
x (t) will be taken over from their work, since they do not depend on the underlying

dependence structure of the model.
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We start with the asymptotic representation for the conditional copula-graphic estimator.

Proof of Theorem 1. Based on Lemma 1, we can write for t < THxh
,

Fxh(t) − Fx(t) =

⎡⎣−ϕ−1
x

⎛⎝− ∑
Zi≤t,δi=1

ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn))

⎞⎠

+ ϕ−1
x

⎛⎝− ∑
Zi≤t,δi=1

ϕ′
x(H̄xh(Zi))wni(x, hn)

⎞⎠⎤⎦

−
⎡⎣ϕ−1

x

⎛⎝− t∫
0

ϕ′
x(H̄xh(s))dHu

xh(s)

⎞⎠− ϕ−1
x

⎛⎝− t∫
0

ϕ′
x(H̄x(s))dHu

x (s)

⎞⎠⎤⎦ .

Applying a first order Taylor expansion on the first term and a second order Taylor

expansion on the second term, we get

Fxh(t) − Fx(t) =
−1

ϕ′
x(F̄x(t))

⎡⎣− t∫
0

ϕ′
x(H̄xh(s))dHu

xh(s) +

t∫
0

ϕ′
x(H̄x(s))dHu

x (s)

⎤⎦
+Rn1(t) + Rn2(t)

where

Rn1(t) =
ϕ′′

x(ϕ
−1
x (ε1))

2ϕ′
x(ϕ

−1
x (ε1))3

⎡⎣− t∫
0

ϕ′
x(H̄xh(s))dHu

xh(s) +

t∫
0

ϕ′
x(H̄x(s))dHu

x (s)

⎤⎦2

Rn2(t) =
−1

ϕ′
x(ϕ

−1
x (ε2))

⎡⎣− ∑
Zi≤t,δi=1

(ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn)))

+
∑

Zi≤t,δi=1

ϕ′
x(H̄xh(Zi))wni(x, hn)

⎤⎦
with ε1 between −

t∫
0

ϕ′
x(H̄xh(s))dHu

xh(s) and −
t∫
0

ϕ′
x(H̄x(s))dHu

x (s), and ε2 between

− ∑
Zi≤t,δi=1

(ϕx(H̄xh(Z
−
i ))−ϕx(H̄xh(Z

−
i )−wni(x, hn))) and − ∑

Zi≤t,δi=1
ϕ′

x(H̄xh(Zi))wni(x, hn).

Furthermore, for t < THxh
:

−
t∫

0

ϕ′
x(H̄xh(s))dHu

xh(s) +

t∫
0

ϕ′
x(H̄x(s))dHu

x (s) =

−
t∫

0

(ϕ′
x(H̄xh(s)) − ϕ′

x(H̄x(s)))dHu
x (s) −

t∫
0

ϕ′
x(H̄x(s))d(Hu

xh(s) − Hu
x (s))

−
t∫

0

(ϕ′
x(H̄xh(s)) − ϕ′

x(H̄x(s)))d(Hu
xh(s) − Hu

x (s)).
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On the integrand of the first term, we use a second order Taylor expansion and the second

term can be rewritten by partial integration. So we get

−
t∫

0

ϕ′
x(H̄xh(s))dHu

xh(s) +

t∫
0

ϕ′
x(H̄x(s))dHu

x (s) =

t∫
0

ϕ′′
x(H̄x(s))(Hxh(s) − Hx(s))dHu

x (s) − ϕ′
x(H̄x(t))(H

u
xh(t) − Hu

x (t))

−
t∫

0

ϕ′′
x(H̄x(s))(H

u
xh(s) − Hu

x (s))dHx(s) + Rn3(t) + Rn4(t) (11)

where

Rn3(t) = −
t∫

0

ϕ′′′
x (ε3)

2
(Hxh(s) − Hx(s))

2dHu
x (s)

Rn4(t) = −
t∫

0

(ϕ′
x(H̄xh(s)) − ϕ′

x(H̄x(s)))d(Hu
xh(s) − Hu

x (s))

with ε3 between H̄xh(s) and H̄x(s).

Since Hx(T ) < 1 and Hxh(T ) → Hx(T ) a.s. (Lemma A.2. of Van Keilegom and Veraver-

beke (1997b)), we may suppose that T < THxh
. For Rn3(t) we have

sup
0≤t≤T

|Rn3(t)| ≤ 1

2
sup

0≤t≤T
(Hxh(t) − Hx(t))

2 max( sup
0≤t≤T

|ϕ′′′
x (H̄xh(t))|, sup

0≤t≤T
|ϕ′′′

x (H̄x(t))|)

= O((nhn)−1 log n) a.s.

by applying Lemma A.4. of Van Keilegom and Veraverbeke (1997b). By Lemma 2 below,

we see that sup
0≤t≤T

|Rn4(t)| = O((nhn)−3/4(log n)3/4) a.s.

From (11), Lemma A.4. of Van Keilegom and Veraverbeke (1997b) and the bounds on

Rn3(t) and Rn4(t), we get

sup
0≤t≤T

∣∣∣∣∣∣−
t∫

0

ϕ′
x(H̄xh(s))dHu

xh(s) +

t∫
0

ϕ′
x(H̄x(s))dHu

x (s)

∣∣∣∣∣∣ = O((nhn)−1/2(log n)1/2) a.s.

This leads to sup
0≤t≤T

|Rn1(t)| = O((nhn)−1 log n) a.s. Furthermore in Lemma 3 below, we

show that sup
0≤t≤T

|Rn2(t)| = O((nhn)−1) a.s. which finishes the proof of this theorem.

We still have to prove the two lemmas used above.

16



Lemma 2. Under the conditions of Theorem 1, as n → +∞,

sup
0≤t≤T

∣∣∣∣∣∣−
t∫

0

(ϕ′
x(H̄xh(s)) − ϕ′

x(H̄x(s)))d(Hu
xh(s) − Hu

x (s))

∣∣∣∣∣∣ = O((nhn)−3/4(log n)3/4) a.s.

Proof. Divide [0, T ] into kn = O((nhn)1/2(log n)−1/2) subintervals [ti, ti+1] of length

O((nhn)−1/2(log n)1/2). We can find, as in the proof of Lemma 2 of Lo and Singh (1985),

that

sup
0≤t≤T

∣∣∣∣∣∣−
t∫

0

(ϕ′
x(H̄xh(s)) − ϕ′

x(H̄x(s)))d(Hu
xh(s) − Hu

x (s))

∣∣∣∣∣∣
≤ 2 max

1≤i≤kn

sup
ti≤y≤ti+1

|ϕ′
x(H̄xh(y)) − ϕ′

x(H̄x(y)) − ϕ′
x(H̄xh(ti)) + ϕ′

x(H̄x(ti))|

+kn sup
0≤t≤T

|ϕ′
x(H̄xh(t)) − ϕ′

x(H̄x(t))| max
1≤i≤kn

|Hu
xh(ti+1) − Hu

x (ti+1) − Hu
xh(ti) + Hu

x (ti)|
≤ 2 max

1≤i≤kn

sup
ti≤y≤ti+1

ϕ′′
x(H̄x(ti+1))|Hu

xh(y) − Hu
x (y) − Hu

xh(ti) + Hu
x (ti)|

+kn sup
0≤t≤T

|ϕ′
x(H̄xh(t)) − ϕ′

x(H̄x(t))| max
1≤i≤kn

|Hu
xh(ti+1) − Hu

x (ti+1) − Hu
xh(ti) + Hu

x (ti)|
+O((nhn)−1 log n).

In the last inequality we used a second order Taylor expansion and Lemma A.4. of Van

Keilegom and Veraverbeke (1997b). To estimate the first term we further divide each

[ti, ti+1] into an = O((nhn)1/4(log n)−1/4) subintervals [tij, ti,j+1] of length

O((nhn)−3/4(log n)3/4). By using Berstein’s inequality, we can show that this term is

bounded a.s. by C max
1≤i≤kn

max
0≤j≤an−1

|Hxh(ti,j+1) − Hx(ti,j+1) − Hxh(ti) + Hx(ti)| +
O((nhn)−3/4(log n)3/4), for some constant C > 0. Applying Lemma A.5 and Corollary A.1

of Van Keilegom and Veraverbeke (1997b) gives that this term is O((nhn)−3/4(log n)3/4)

a.s. The second term is treated similarly and leads to the same order.

Lemma 3. Assume (C1), (C2), Hx(t) satisfies (C3) in [0, T ] with T < THx , hn → 0,
log n

nhn

→ 0, ϕx satisfies (C8). Then as n → +∞,

sup
0≤t≤T

∣∣∣∣∣∣−
∑

Zi≤t,δi=1

(ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn)) − ϕ′

x(H̄xh(Zi))wni(x, hn))

∣∣∣∣∣∣
= O((nhn)−1) a.s.

Proof. Because Hx(T ) < 1 and Hxh(T ) → Hx(T ) a.s. (Lemma A.2. Van Keilegom and

Veraverbeke (1997b)), we may suppose that T < THxh
. If t < T , then after applying a
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second order Taylor expansion, we get

− ∑
Zi≤t,δi=1

(ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn)) − ϕ′

x(H̄xh(Zi))wni(x, hn))

= −1

2

∑
Zi≤t,δi=1

ϕ′′
x(εi)w

2
ni(x, hn)

with εi between H̄xh(Zi) and H̄xh(Zi) + wni(x, hn).

Hence

sup
0≤t≤T

∣∣∣∣∣∣−
∑

Zi≤t,δi=1

(ϕx(H̄xh(Z
−
i )) − ϕx(H̄xh(Z

−
i ) − wni(x, hn)) − ϕ′

x(H̄xh(Zi))wni(x, hn))

∣∣∣∣∣∣
≤ 1

2
ϕ′′

x(H̄(T ))
n∑

i=1

w2
ni(x, hn) = O((nhn)−1) a.s.

Before we prove the weak convergence result, we give two lemmas about the asymptotic

bias and variance of the conditional copula-graphic estimator.

Lemma 4. Assume (C1), (C2), Hx(t) and Hu
x (t) satisfy (C3) and (C5) in [0, T ] with

T < THx and ϕx satisfies (C8), hn → 0. Then, as n → +∞

sup
0≤t≤T

∣∣∣∣∣∣
n∑

i=1

wni(x, hn)Egtx(Zi, δi) +
μK

2 h2
n

2ϕ′
x(F̄x(t))

⎛⎝ t∫
0

ϕ′′
x(H̄x(s))Ḧx(s)dHu

x (s)

−
t∫

0

ϕ′
x(H̄x(s))dḦu

x (s)

⎞⎠∣∣∣∣∣∣ = o(h2
n) + O(n−1).

Proof. For fixed t ≤ T ,

n∑
i=1

wni(x, hn)Egtx(Zi, δi) =
−1

ϕ′
x(F̄x(t))

×⎛⎝ t∫
0

ϕ′′
x(H̄x(s))(EHxh(s) − Hx(s))dHu

x (s) −
t∫

0

ϕ′
x(H̄x(s))d(EHu

xh(s) − Hu
x (s))

⎞⎠
By Lemma A.1.b of Van Keilegom and Veraverbeke (1997b), we get the result.

Lemma 5. Assume (C1), (C2), Hx(t) and Hu
x (t) satisfy (C3) in [0, T ] with T < THx and

ϕx satisfies (C8), hn → 0, nhn → +∞. Then, as n → +∞

sup
0≤t≤T

∣∣∣∣∣
n∑

i=1

w2
ni(x, hn)Cov(gtx(Zi, δi), gts(Zi, δi)) − 1

nhn

Γx(t, s)

∣∣∣∣∣ = o((nhn)−1)

where Γx(t, s) is given by (6).
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Proof. Some straightforward calculations show that

Cov(gtx(Zi, δi), gts(Zi, δi)) =
1

ϕ′
x(F̄x(t))ϕ′

x(F̄x(s))

⎧⎪⎨⎪⎩
min(t,s)∫

0

ϕ′
x(H̄x(z))2dHu

xi
(z)

+

min(t,s)∫
0

w∫
0

ϕ′′
x(H̄x(y))dHu

x (y)[ϕ′′
x(H̄x(w))H̄xi

(w)dHu
x (w) + ϕ′

x(H̄x(w))dHu
xi

(w)]

+

min(t,s)∫
0

ϕ′′
x(H̄x(w))

max(t,s)∫
w

[ϕ′′
x(H̄x(y))H̄xi

(y)dHu
x (y) + ϕ′

x(H̄x(y))dHu
xi

(y)]dHu
x (w)

−
t∫

0

[ϕ′′
x(H̄x(y))H̄xi

(y)dHu
x (y) + ϕ′

x(H̄x(y))dHu
xi

(y)] ×
s∫

0

[ϕ′′
x(H̄x(w))H̄xi

(w)dHu
x (w) + ϕ′

x(H̄x(w))dHu
xi

(w)]

⎫⎬⎭
from which the result follows via standard calculations of asymptotic variances in a fixed

design regression situation.

Proof of Theorem 2. From Theorem 1 and Lemma 4, we find

Fxh(t) − Fx(t) =
n∑

i=1

wni(x, hn)ξtx(Zi, δi) + h2
nb̄tx + R̄n(t)

where ξtx(Zi, δi) = gtx(Zi, δi) − Egtx(Zi, δi), sup
0≤t≤T

|R̄n(t)| = O((nhn)−3/4(log n)3/4) +

o(h2
n) a.s. and b̄tx =

−μK
2

2ϕ′
x(F̄x(t))

t∫
0

[ϕ′′
x(H̄x(s))Ḧx(s)dHu

x (s)−ϕ′
x(H̄x(s))dḦu

x (s)]. The bias

(nhn)1/2h2
nb̄tx is o(1) under conditions (a) and equals btx under conditions (b). Hence it

suffices to prove the weak convergence of Whx(·) = (nhn)1/2
n∑

i=1
wni(x, hn)ξ·x(Zi, δi) to the

Gaussian process W (·|x) with mean zero and covariance function Γx(t, s).

This will be done in two steps. First we show the convergence of the finite dimensional

distributions. Next we verify the asymptotic tightness by Theorem 2.11.9 (Bracketing

central limit theorem) of van der Vaart and Wellner (1996).

Convergence of the finite dimensional distributions is that for any q = 1, 2, . . . and any

0 ≤ t1 ≤ . . . ≤ tq ≤ T : (Whx(t1), Whx(t2), . . . , Whx(tq))
D→ N(0, Γx(ti, tj)). Since

Whx(ti) =
n∑

k=1
Wnki where Wnki = (nhn)1/2wnk(x, hn)ξtix(Zk, δk), it suffices to check that

(see e.g. Araujo and Giné (1980)),

lim
n→+∞

n∑
k=1

E(WnkiWnkj) = Γx(ti, tj) (1 ≤ i, j ≤ q)
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lim
n→+∞

n∑
k=1

∫
{|Wnk|>ε}

|Wnk|2dP = 0

for every ε > 0, where |Wnk|2 =
q∑

i=1
W 2

nki. Now, applying Lemma 5,

n∑
k=1

E(WnkiWnkj) = (nhn)
n∑

k=1

w2
nk(x, hn)Cov(gtix(Zk, δk), gtjx(Zk, δk)) = Γx(ti, tj) + o(1).

Since the functions ξtix(Zk, δk) are uniformly bounded, it follows that max
1≤k≤n

|Wnk| =

O((nhn)−1/2) a.s. and
n∑

k=1
|Wnk|2 = O(1) a.s., and hence,

n∑
k=1

∫
{|Wnk|>ε}

|Wnk|2dP ≤ O(1)P ( max
1≤k≤n

|Wnk| > ε) = o(1).

To prove the asymptotic tightness, we denote the process Whx(t) as Whx(t) =
n∑

i=1
Zni(t)

where Zni(t) = (nhn)1/2wni(x, hn)ξtx(Zi, δi).

To verify the three conditions of Theorem 2.11.9 of van der Vaart and Wellner (1996),

we put on F = [0, T ], the semimetric

ρ(t, t′) = max

{∣∣∣∣∣ −1

ϕ′
x(F̄x(t))

+
1

ϕ′
x(F̄x(t′))

∣∣∣∣∣ , |ϕ′
x(H̄x(t)) − ϕ′

x(H̄x(t
′))|,

|Hx(t) − Hx(t
′)|, sup

x′∈[0,1]

√
|Hu

x′(t) − Hu
x′(t′)|

}
.

In the third condition, we need the bracketing number N[ ](ε,F , Ln
2 ). This number is

defined as the minimal number of sets in a partition of F = [0, T ] =
⋃

j Fεj such that for

every set Fεj :
n∑

i=1

E

[
sup

t,t′∈Fεj

|Zni(t) − Zni(t
′)|2
]
≤ ε2.

Let us divide F = [0, T ] into subintervals 0 = t0 ≤ t1 ≤ . . . ≤ tq = T where ρ(t, t′) ≤ Cε

for all t, t′ ∈ [tj−1, tj], j = 1, . . . , q with C some constant which we will determine further

on. For the partition F = [0, t1]
⋃ q⋃

j=2
]tj−1, tj], we find after some tedious calculations

that

|Zni(t) − Zni(t
′)| ≤ (nhn)1/2wni(x, hn)

(
−ϕ′′

x(H̄x(T ))

ϕ′
x(1)

|Hu
x (t) − Hu

x (t′)|

+(ϕ′′
x(H̄x(T )) − 2ϕ′

x(H̄x(T )))

∣∣∣∣∣ −1

ϕ′
x(F̄x(t))

+
1

ϕ′
x(F̄x(t′))

∣∣∣∣∣+ |ϕ′
x(H̄x(t)) − ϕ′

x(H̄x(t
′))|

−ϕ′
x(H̄x(T ))(|I(Zi ≤ t, δi = 1) − I(Zi ≤ t′, δ = 1)| + |Hu

xi
(t) − Hu

xi
(t′)|)

+
ϕ′

x(H̄x(T ))

ϕ′
x(1)

|Hx(t) − Hx(t
′)|
)

(12)
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So

sup
t,t′∈Fεj

|Zni(t) − Zni(t
′)|2 ≤ (nhn)w2

ni(x, hn){C1(Cε)2

+ C2(Cε)|I(Zi ≤ tj, δi = 1) − I(Zi ≤ tj−1, δ = 1)|
+ ϕ′

x(H̄x(T ))2|I(Zi ≤ tj, δi = 1) − I(Zi ≤ tj−1, δ = 1)|2}

where C1, C2 are constants, uniquely determined by the right hand side of (12). For the

appropriate choice of C, this leads to

n∑
i=1

E

[
sup

t,t′∈Fεj

|Zni(t) − Zni(t
′)|2
]
≤ ε2.

Hence the bracketing number N[ ](ε,F , Ln
2 ) is equal to O(ε−1) and we get

δn∫
0

√
log N[ ](ε,F , Ln

2 )dε =

δn∫
0

√
log O(ε−1)dε → 0

when δn → 0.

We do not need to verify the second condition of Theorem 2.11.9 in van der Vaart and

Wellner (1996), since our partition of F = [0, T ] is independent of n. As last condition

we have to check whether for all η > 0,

n∑
i=1

E

[
sup

0≤t≤T
|Zni(t)|I

(
sup

0≤t≤T
|Zni(t)| > η

)]
→ 0 as n → +∞.

Since ξtx(Zi, δi) is bounded uniformly and max
1≤i≤n

wni(x, hn) = O((nhn)−1) a.s., we get that

sup
0≤t≤T

|Zni(t)| = O((nhn)−1/2) a.s., which is always smaller than η for n sufficiently large.

So the first condition is also satisfied. By Theorem 2.11.9 of van der Vaart and Wellner

(1996), we have that Whx(·) → W (·|x) in l∞[0, T ].
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