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Abstract

With the accumulation of large amounts of health related data, predictive analytics could
stimulate the transformation of reactive medicine towards Predictive, Preventive and Per-
sonalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However,
high-dimensionality and high-complexity of the data involved, prevents data-driven methods
from easy translation into clinically relevant models. Additionally, the application of cutting
edge predictive methods and data manipulation require substantial programming skills, lim-
iting its direct exploitation by medical domain experts. This leaves a gap between potential
and actual data usage. In this study, the authors address this problem by focusing on open,
visual environments, suited to be applied by the medical community. Moreover, we review
code free applications of big data technologies. As a showcase, a framework was devel-
oped for the meaningful use of data from critical care patients by integrating the MIMIC-II
database in a data mining environment (RapidMiner) supporting scalable predictive analyt-
ics using visual tools (RapidMiner's Radoop extension). Guided by the CRoss-Industry
Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform,
Load) was initiated by retrieving data from the MIMIC-I| tables of interest. As use case, cor-
relation of platelet count and ICU survival was quantitatively assessed. Using visual tools
for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes
for automatic building, parameter optimization and evaluation of various predictive models,
under different feature selection schemes. Because these processes can be easily adopted
in other projects, this environment is attractive for scalable predictive analytics in health
research.
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Introduction

The critical care sector generates bountiful data around the clock, which can paradoxically
complicate the quest for information, knowledge, and ‘wisdom’ [1]. The accumulation of clini-
cal data has outpaced the capacity for effective aggregation and analysis aiming to support clin-
ical quality, patient safety and integrated patient care. Intelligent data analysis promises a more
efficient representation of the complex relations between symptoms, diseases and treatment
[2]. Additionally intelligent data analysis hopes for a reduction of cost of care and faster design
and implementation of clinical guidelines [3]. In this respect, the secondary use of clinical and
operational data could support comparative effectiveness research, data mining, and predictive
analytics. Commonly used data analysis platforms in clinical practice, frequently only provide
support for data integration and monitoring, leaving all the analysis and decision taking to the
clinical end-users. The clinical end-user is not in the position to constantly monitor and pro-
cess the large amounts of data generated by patient monitoring and diagnostics. The potential
of predictive analytics is to provide the clinical end-user with validated medical decision sup-
port and ultimately leading to more Predictive, Preventive and Personalized Medicine—PPPM
[4]. PPPM is an integrative concept in health care that enables to predict individual predisposi-
tion before onset of the disease, to provide targeted preventive measures and create treatment
algorithms tailored to the person. PPPM relies on the potential of large amounts of heteroge-
neous data collected in medical environments (electronic health records, medical texts and
images, laboratory tests etc), but also from external data of increasingly popular wearable
devices, social media etc. Data driven predictive algorithms often fail to provide self explana-
tory models due to high-dimensionality and high-complexity of the data structure leading to
unreliable models. Also, successful predictive analytics and application of cutting edge machine
learning algorithms often demands substantial programming skills in different languages (e.g.
Python or R). This migrates modeling from the domain expert to the data scientist, often miss-
ing the necessary domain expertise, and vice versa, domain experts are not able to perform ad
hoc data analyses without the help of experienced analysts. This leads to slow development,
adoption and exploitation of highly accurate predictive models, in particular in medical prac-
tice, where errors have significant consequences (for both patients and costs). In this paper, we
address this problem by exploring the potential of visual, code free tools for predictive analyt-
ics. We also review the potential of visual platforms (RapidMiner, Knime and Weka) for big
data analytics. As a showcase, we integrated the MIMIC-II database in the RapidMiner data
analytics platform. Data extraction and preparation was performed on a Hadoop cluster, using
RapidMiner’s Radoop extension (S1 File). Further, we used RapidMiner Studio in order to
develop several processes that allow automatic feature selection, parameter optimization and
model evaluation (S2 File). The process compared several learning methods (Decision Stump,
Decision Tree, Naive Bayes, Logistic Regression, Random Forest, AdaBoost, Bagging, Stacking,
Support Vector Machine) in association with feature weighting and selection quantitatively
assessed in terms of Correlation, Gini Selection, Information Gain and ReliefF.

Scalable Predictive Analytics and Visual Open Platforms

The need for scalable and efficient frameworks, accessible to users with various levels of exper-
tise, was recently emphasized by Koliopoulos et al. [5]. These frameworks allow data analysts
and domain experts to focus on effective knowledge extraction and model tuning instead of
learning new programming languages. There are multiple tools supporting open-source devel-
opment with highly involved communities. This leads to faster implementation and deploy-
ment of cutting edge methods provided in the literature. The authors only address open-
source, visual tools in this paper. Reviews covering open, visual tools for data analyses have
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been previously published, identifying RapidMiner, Knime and Weka as platforms with the
highest potential for scalable big data analytics [6,7]. RapidMiner and Knime are also identified
as leaders in advanced analytics platforms by Gartner [8]. In this paper, we briefly describe the
available open technologies for predictive analysis of big data supported by visual tools, fol-
lowed by an overview of the visual tools allowing code free big data analytics [9].

First, Google introduced MapReduce allowing big data processing on clusters with Map-
ping (parallel processing of dataset partitions) and Reducing (aggregation of the results), assur-
ing fault-tolerance computation through replication [10].

Further, Yahoo developed Hadoop as an open source implementation of MapReduce [11].
The Hadoop Distributed File System (HDEFS) is a disk-based file system that spans across the
nodes of a distributed system. HDFS encapsulates distributed local storage into a single logical
unit and allows automatic division of data into blocks and replication on local disks, allowing
fault-tolerance computations. Map/reduce jobs on Hadoop can be developed on Hive [12],
enabling querying and managing large data on distributed storage. It provides a mechanism to
project structure on this data and query the data using an SQL-like language called HiveQL. It
also allows definition and execution of map/reduce map reduce jobs in other languages when
required. Vavilapalli et al. [13] noticed that the major disadvantage of Hadoop for general purpose
analytics is the thight coupling of a specific programming model with the resource management
infrastructure. In order to overcome this, a new architecture was developed, called YARN (Yet
Another Resource Negotiator) that decouples the programming model from the resource man-
agement infrastructure and delegates many scheduling functions (e.g., task fault tolerance) to per-
application components. Vavilapalli et al. provided experimental evidence of improved efficiency
of running YARN on production environments and many projects in the Hadoop ecosystem sup-
port work on YARN with almost the same feature set as on Hadoop: e.g. Hive [12], or Pig [14].

In order to exploit the potentials of Hadoop for predictive analytics, Mahout was developed
providing scalable data mining libraries [15]. Even though Mahout is widely used for scalable
predictive analytics, it is also criticized, as its libraries do not provide a general framework for
building algorithms, the quality of the provided solutions varies significantly being dependent
on the contributor expertise [5, 16]. Mahout also focuses on implementing specific algorithms,
rather than building execution models for algorithm methods.

Hadoop and its ecosystem gain high popularity over the years, but processing data from
disk made it inefficient for many data mining applications that often require iteration, which is
not easily performed in MapReduce [5, 9].

In order to tackle these insufficiencies, Spark, was developed allowing in-memory and itera-
tive computation [17]. Spark also implements the MapReduce paradigm and is Java-based (as
is Hadoop). These features enable users to deploy existing Hadoop application logic in Spark
via its Scala API. It is based on abstractions called Resilient Distributed Datasets (RDD),
which store data in-memory and provide fault tolerance without replication [17]. RDDs can be
understood as read-only distributed shared memory [18]. Spark has been shown to outperform
Hadoop by up to two orders of magnitude in many cases.

MLIib is the machine learning library for Spark covering the same range of learning catego-
ries as Mahout, but also adds regression models, which is lacking in Mahout [9, 19]. MLIib’s
reliance on Spark, in-memory computations and iterative batch and streaming approaches,
enable jobs to run significantly faster than those using Mahout [20]. However, the fact that it is
tied to Spark may present a problem for performing machine learning on multiple platforms
[21]. MLIib is still relatively young compared to Mahout.

SparkR [22] and PySpark [23] provide R and Python users a lightweight front-end to a Spark
system, by compiling the declarative scripts to low-level MapReduce jobs which is considered
valuable taking into account the popularity of R and Python in the data science community.
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RapidMiner (previously: Rapid-I, YALE) [24] became very popular in recent years and is
supported by a large community. Its visually appealing, user friendly GUI (graphical user inter-
face) and wiki-based contextual help (with process examples for each operator), allow ease of
use and a fast learning curve. This is also supported by the “Wisdom of crowds” which provides
suggestions (which operator should be used next) based on the community experience. Addi-
tionally, there are multiple extensions providing data and pre-defined processes suited for spe-
cific application areas (e.g. marketing, finance etc.) and a community is very active in sharing
processes on the RapidMiner “Marketplace”. One of the important strengths of RapidMiner is
its flexibility in process design through “Process/Sub-process” structures and “Macros” that
represent global variables of the environment. This enables a visual design of complex pro-
cesses, and a high level of automation (as presented in our experiments) which is usually possi-
ble only by programing (e.g. in R or Python). Furthermore this allows seamless parameter
optimization, being a necessary step for many cutting edge algorithms (e.g. SVMs). This tech-
nique allows simple maintenance of data flows (in comparison with pure coding environ-
ments). RapidMiner also provides a large number of machine learning algorithms, tools for
pre-processing and visualization, including wrappers for most of the Weka operators and sim-
ple tools for incorporation of custom-built R and Python scripts. Considering all this makes
RapidMiner a powerful predictive analytics environment for data analysts and/or domain
experts with variable levels of expertise. On the down side, the support for deep learning meth-
ods and some of the more advanced specific machine learning algorithms (e.g. extremely ran-
domized trees, various inductive logic programming algorithms) is currently limited [7] but
can be solved by incorporation of R and Python scripts. Additionally, the current version of
Rapidminer (6.5) has a free licence [7] with very few constraints compared to the commercial
version (e.g. SQL database support) and provides some of the previous versions free of charge
(currently, version 5.3 is available).

RapidMiner supports scalable predictive analytics on Big data through its Radoop exten-
sion. It allows code free, visual analytics on Hadoop, Spark, Hive, MapReduce, Pig and Mahout
through series of specialized operators that can be used with standard RapidMiner operators
within the used workflows. Additionally, Radoop enables incorporation of SparkR, PySpark,
Pig and HiveQL scripts within predictive analytics workflows. This allows seamless combina-
tion of data preparation on Spark and Hadoop with predictive analytics using Spark’s machine
learning library MLIib or Radoop’s Mahout.

Weka (Waikato Environment for Knowledge Analysis) is a very powerful and versatile data
analytics tool, also largely supported by a community and very popular in the academic world
[25]. The success of Weka is related to the availability of a wide range of well implemented
machine learning algorithms and model evaluation procedures and metrics. Weka also pro-
vides an API (application programming interface) for integration of its algorithms and proce-
dures resulting in a frequent adoption in other visual environments such as RapidMiner and
Knime. Even more interesting, Weka’s algorithms are also used in coding environments like R
and Python through APT’s. As RapidMiner and Knime, Weka allows implementation of exten-
sions independent of the used core system resulting in a fast increasing number of Weka fea-
tures provided by their community. In contrast, Weka’s GUI is not as visually appealing and
extendable as RapidMiner or Knime, it lacks many data survey and visualization methods and
it has the tendency to be more oriented towards classification and regression problems and less
towards descriptive statistics and clustering methods [7]. This probably explains why Weka
didn’t make it to the leaders quadrant in Gartners report on advanced analytics platforms [8].
Still, Weka offers a completely free and very powerful environment for code-free predictive
analytics. Weka also supported R scripting for a long time and recently a “wekaPython” exten-
sion provided Python scripting within data flows defined through GUI.
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Regarding big data tools, Weka does not have an integral environment for both Hadoop
and Spark, but it supports big data analytics through several extensions. It allows work with
Hadoop through DistributedWekaBase and DistributedWekaHadoop packages [25]. These
packages provide both base "map" and "reduce" tasks that are not tied to any specific distrib-
uted platform and Hadoop-specific wrappers and jobs for these base tasks. These packages
allow different data pre-processing, modeling and evaluation tasks on big data (e.g. computing
correlation and covariance matrices, PCA, training, scoring and evaluation of predictive mod-
els). In case of model learning, predictive algorithms are divided into “aggregatable” and “non-
aggregatable”. Aggregatable, produce a single model, that is learned in parts on a cluster and
aggregated in a Reduce job while models that cannot be aggregated in a Reduce job allow mak-
ing of ensemble models (e.g. Bagging) built separately on a cluster.

Recently DistributedWekaSpark, a distributed framework for in-memory cluster computa-
tion in Weka is proposed [5] allowing similar functionalities as previously described for
MapReduce and Hadoop. Weka extensions for big data do not offer wrappers for machine
learning algorithms already developed in Mahout or MLIib, but rather adapt its own algorithms
to work with MapReduce. This makes learning more difficult for entry level analysts [5].

KNIME (Konstanz Information Miner) is also considered a visual open-source tool, based
on the Eclipse project, but also offers commercial licenses for companies requiring professional
technical support [26]. It shares good features with RapidMiner allowing a fast learning curve
for entry level analytics: visually appealing and intuitive GUI, good documentation and com-
munity support, ease of development through core system and extensions and a large reposi-
tory of example workflows is available facilitating efficient learning of the tool. KNIME also
integrates Weka, allows scripting for R and Python and provides commercial extensions for
more specific functionalities.

Similar to RapidMiner, Knime provides support for big data analytics. The KNIME Big
Data Extension, which provides a set of nodes for accessing Hadoop/HDES via Hive from
inside KNIME can be easily installed and used of the shelf. Still, it lacks the support for direct
usage of Mahout and in-memory cluster analytics (like Spark), but this can be expected soon as
an update of Big Data extension.

Materials and Methods
Data source and experimental environment

The MIMIC II (version 2.6) clinical database consists of 32,536 ICU patients (medical, surgical,
coronary care and neonatal), admitted to Beth Israel Deaconess Medical Center (Boston, MA)
from 2001 to 2008 [27, 28]. The establishment of the database was approved by the Institu-
tional Review Boards of the Massachusetts Institute of Technology (Cambridge, MA) and Beth
Israel Deaconess Medical Center (Boston, MA). The data in the MIMIC-II database is available
to other researchers. The contents of the MIMIC-II Clinical Database are derived from original
data that contained protected health information (PHI), as defined by HIPAA. The providers
of the data have given scrupulous attention to the task of locating and removing all PHI,

so that the remaining data can be considered de-identified and therefore not subject to the
HIPAA Privacy Rule restrictions on sharing PHI. Because of the richness and detail of the data-
base, the data is released only to legitimate researchers under the terms and conditions as
described by Physionet.org [28]. All data and related metadata is available after successful com-
pletion of the NIH web-based training course named “Protecting Human Research Partici-
pants” enabling access to the entire MIMIC-II database. Accessing the database was approved
for authors S.V.P & Z.Z. (certification number: 1712927 & 1132877). Informed consent was
waived due to observational nature of the study.
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The MIMIC-II clinical database includes data related to patient demographics, hospital
admissions & discharge dates, room tracking, death dates (in or out of the hospital), ICD-9
codes, health care providers and types. All dates were surrogate dates but time intervals were
preserved. Additionally, physiological data (hourly vital sign metrics, SAPS score, SOFA score,
ventilator settings, etc.), medications consumption, laboratory investigations, fluid balance cal-
culations and notes & reports (discharge summary, nursing progress notes, cardiac catheteriza-
tion, ECG, radiology, and echo reports) were included. The SAPS-I score (Simplified Acute
Physiology Score) was calculated using the method outlined earlier [29]. A New Simplified
Acute Physiology Score (SAPS IT) based on a European/North American Multicenter Study
was later published [30].

The SOFA score (Sequential Organ Failure Assessment) was used to assess the incidence of
organ dysfunction [31]. The MIMIC-II database contained patients from five ICU types: medi-
cal (MICU), surgical (SICU), cardiac (CCU), cardiac surgery recovery (CSRU) and neonatal
(NICU).

The initial size of the dataset was identical to the size of the MIMIC-II Clinical Database. All
data for a given patient were contained in a set of 33 flat files for each patient. The data archives
contained the flat files for about 1000 subjects each. The decompressed flat files occupied about
31 GB in all. The process presented in this paper consisted of only a third of the number of
patients from the MIMIC-II database.

In order to enable a scalable environment for future research and to demonstrate seamless
usage of big data technologies within a code free environment, the MIMIC-II Clinical Database
flat files were integrated in a dedicated Hadoop cluster with Hive server [32, 33] (Fig 1).

RapidMiner 6.5 was installed following the instructions provided by RapidMiner. RapidMi-
ner provided data mining and machine learning procedures visualization, predictive analytics
and statistical modeling, evaluation, and deployment [34]. RapidMiner Radoop 2.3.0 was
installed through the extension manager of RapidMiner and used to connect to the Hadoop
cluster and to perform data loading and transformation (Extract, Transform, Load (ETL) and
initial preprocessing. RapidMiner Radoop pushed down visually designed workflows for ana-
lytics into Hadoop environments for processing the workflows—integrating with core Hadoop
technologies HDFS, MapReduce/YARN and Hive. The MIMIC-II database was initially

& RapidMiner Studio File Edit Process Tools View Help 209D @ 3 100% B3 Za23mel 11:10:40 Q@

o0 e ~ RapidMiner Studio 6.4.000 @ MacBo

sAEES oA P IE B- 6 (o

@ hep

& Retrieve from Hive

Retrieves a Hive table for analysis.

Description

Retrieves the Hive table for further
analysis. Th remains on the

cluster and Radoop only loads

references, metadata and statistics

about the table. It takes the same

amount of time to retrieve a huge table
il table.

Fig 1. lllustration of integration of the MIMIC-Il database in a Hadoop/RapidMiner computer cluster:
data retrieval and preprocessing.

doi:10.1371/journal.pone.0145791.g001
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imported in a PostgreSQL database and consequently converted to Hive. For the implementa-
tion of security, a 4-layer security model for Hadoop was used. The first level is responsible for
authenticating a user (Perimeter Security). The second level is responsible for authorizing
access to data (Data Access Security), i.e. granting access to users only to data, services and
resources that they are specifically entitled to use. The common goal of the third security level
is to foster accountability by allowing administrators to monitor and audit data access on
Hadoop. The fourth level of security covers data-at-rest encryption, on-the-wire encryption,
data masking, etc. The hardware used in this research consisted of a local machine (MacBook-
Pro 11.1; Intel Core i5; 2,4 GHz; 1 processor, 2 cores; L2-cache (per core): 256 KB; L3-cache: 3
MB Memory 8 GB) and a Hadoop cluster (5 nodes; 8GB/node; version 2.4.1; configured capac-
ity 7.1 TB)

In the following text we present the algorithms used for the analysis. First we focus on the
classification algorithms, then feature selection algorithms are covered.

Predictive algorithms

Naive Bayes (NB)—The Naive Bayesian learning uses Bayes theorem with “Naive” assumption
of independence between predictors [35]. Examples are classified based on the posterior proba-
bility that an example should be assigned to class.

ke{1..K}

y = arg max P(C)[ [ p(x/C)
i=1

Even though, independence assumption is violated in most real world applications, Naive
Bayes often demonstrated satisfactory performance in practice [36], and was classified as one
of the top 10 algorithms in data mining [37]. Additionally, Naive Bayes are easy to construct,
without any setting or adjusting of complex parameters, computational and time effectiveness.
Naive Bayes have the ability to work with large datasets (big data) and provide good interpret-
ability, which is a must in real world bio-medical applications [38].

Decision trees (DT) are predictive algorithms based on “greedy”, top-down recursively par-
titioning of data. DT algorithms perform an exhaustive search over all possible splits in every
recursive step. The attribute (predictor) demonstrating the best split by some evaluation mea-
sure is selected for branching the tree. Regularly used are information theoretic measures (e.g.
Information Gain, Gain Ratio, Gini etc.) or statistical tests quantifying significance of associa-
tion between predictors and class. The procedure is recursively iterated, until a stop criterion is
met. Greedy strategy for DT building is often criticized, but the ability to build strait forward
and the highly interpretable rules on massive data, led to many successful applications in medi-
cal applications [39,40]. In this research we used J48 algorithms which is the Java implementa-
tion of the C4.5 algorithm [41].

Logistic regression (LR) is a widely used linear classifier modeling the probability of a
dependent binary variable y given a vector of independent variables X. For the estimation of
the probability the example belongs to the positive class, a logit model is used:

1og(1’%p) — 0,4+ 0%, +...+0x

where p presents probability that y = 1, 8;, where j = 1,. . .,n present the weights of the corre-
sponding dependent variable, while p/(1-p) is called the odds ratio, Parameters 8;, where j =
I,...,n of the model can be interpreted as changes in log odds or the results can be interpreted
in terms of probabilities [42]. Interpretability, scalability and good predictive performance
made logistic regression a widely used classifier in the medical domain [43-45].
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Support Vector Machines (SVMs) construct hyper-planes between the examples (repre-
sented as points in high-dimensional space), in such a way that examples of the separate cate-
gories are divided by a clear gap that is as wide as possible [46, 47]. New examples are
subsequently mapped into the same space and predicted to belong to a category based on the
side of the gap they fall in. SVMs are considered as one of the state-of-the-art classification
models, with the ability to handle large feature spaces and to avoid over-fitting. Still, unlike NB,
DTs and LR they are not widely used in medical research because of the lack of interpretability
(examples represented in highly dimensional feature spaces), but also because of their model-
fitting nature, where hyper-parameters have to be optimized without clear theoretical
guidance.

In this research we used a radial basis function (rbf) and linear (lin) SVM models. In case of
rbf- SVM, two parameters are crucial to quantify the performance of a classifier: the soft-mar-
gin penalty or cost (C) represents the amount of errors allowed during the training and evalua-
tion steps and the y (gamma) representing the width of the SVM radial function.

Ensemble (meta-learning) methods combine multiple models in order to provide more
accurate or more stable predictions. Ensemble models can aggregate the same model that is
built on different sub-samples of data, different models built on the same sample or a combina-
tion of the previous two techniques. Ensemble methods are often used to improve the individ-
ual performance of algorithms that constitute ensembles [48] by exploiting the diversity
among the models produced. Next a short explanation of the ensemble methods used in this
paper is provided: Random Forest [49], Boosting [50], Bootstrap Aggregating (Bagging) [51]
and Stacking [52].

Random Forest (RF) is an ensemble classifier that evaluates multiple decision trees and
aggregates their results, by majority voting, in order to classify an example [49]. There is a two
level randomization in building these models. First, each tree is trained on a bootstrap sample
of the training data and second, in each recursive iteration of building a DT (splitting data
based on information potential of features), a subset of features for evaluation is randomly
selected. This strategy allows efficient model building, and despite its random nature often pro-
vides highly accurate predictive models. In this research we grew and evaluated Random Forest
(RF) with 10 trees (with the default parameters of Weka’s implementation of Random Forest).

Boosting is an ensemble meta-algorithm developed in order to improve supervised learning
performance of weak learners (models whose predictive performance is only slightly better
than random guessing). Boosting algorithms are built on a principle that subsequent classifiers
are adapted to improve predictive performance on those instances that are misclassified by pre-
vious classifiers. In this study, the Adaptive Boosting (AdaBoost) algorithm was used [50]. The
AdaBoost algorithm builds and applies multiple classifiers over a user defined number of itera-
tions. In each iteration, the weights of each incorrectly classified example by the previous classi-
fier are increased, and the weights of each correctly classified example are decreased in order
the new classifier is adapted to the data that is misclassified by previous ones.

Bagging algorithm builds and applies a series of models that are built on different data sub-
samples (with replacement) from the initial dataset, and apply, for example, a tree classifier
(e.g., CHAID) to the successive samples [51]. In practice, this method is often used in order to
address the instability of models often the case in small data sets. The final prediction of an
ensemble could be derived by simple or weighted voting.

Stacking (Stacked generalization) builds several different models (in contrast to bagging
that builds one type of model on different subsamples) [52]. Similar to Boosting, the final deci-
sion is made by simple or weighted voting. In this research we used the J48 algorithm and
Naive Bayes as basis for building a stacked classifier.
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Feature weighting and selection

In this study we evaluated several Filter and Wrapper feature selection schemes. Filter Selection
(FS) methods rely on the evaluation of the information potential of each input feature in relation
to the label. Filter Selection methods are very fast and scalable, but since they are not relating a
feature subset selection with the algorithm performance, they can underperform when applied
for specific predictive algorithms. Additionally, most of these techniques are based on weighting
(providing a list of weights on output). Consequently, a threshold search and selection of the
“right” number of features is needed. In this study, several schemes for filter feature weighting
and selection were implemented. The first is based upon Correlation returning the absolute or
squared value of the correlation as attribute weight. Furthermore we applied Information Gain
and Gini index, two weighting schemes that are based on information theoretic measures, fre-
quently used with decision trees for evaluation of potential splits [41]. The T-test calculated, for
each attribute, a p-value for 2-sided, 2-sample t-Test. Finally, the ReliefF evaluated the impact of
an attribute by repeatedly sampling an instance and considering the value of the given attribute
for the nearest instance of the same and different class [53].

Instead of relying on the evaluation of each feature independently (as is the case in filter fea-
ture selection methods), Wrapper methods evaluate the usefulness of feature sets based on the
predictive performance of the algorithms. This means that they provide a better estimation of
the final model performance [54]. Wrappers are much more computationally expensive than
filter techniques (since they build and evaluate the entire predictive model in each iteration).
This is the reason wrappers are usually not used in association with computationally demand-
ing models such as SVMs.

In this study we used two popular and diverse strategies from this class Forward Selection
and Backward elimination [55]. The Forward Selection operator starts with an empty selec-
tion of attributes and, in each round, it adds each unused attribute and evaluates it based on
algorithm performance. Only the attribute giving the highest increase of performance is added
to the selection. Then a new round is started with the modified selection. Backward elimina-
tion is based on the same strategy, but in opposite direction. It starts with the full set of attri-
butes and, in each round, it removes each remaining attribute of the given ExampleSet.

Evolutionary Search (ES) for parameter optimization: is a generalization of a genetic algo-
rithm inspired by the adaptation of many species to new-come problems. This adaptation
searches for adequate solutions over a huge number of genotypes [56]. It is considered popula-
tion-based, meta-heuristic using mechanisms inspired by biological evolution, such as repro-
duction, mutation, recombination, and selection. Solutions of the optimization problem, called
candidates, represents individuals of a population, and the fitness function determines the
quality of the solutions. Evolutionary algorithms often perform well in various types of optimi-
zation problems because they do not make any assumption about the underlying search space.
Because of prior mentioned advantages and successful applications in many areas, Evolution-
ary Search (ES) is often used for SVM parameter optimization [57]. Basic parameters are: num-
ber of units in population, number of generations, crossover and selection scheme. As
mentioned before, for the purpose of this study, ES for SVM parameter optimization was used
(with default values provided by RapidMiner).

Experiments and Results

In this section, the process of data extraction, pre-processing and exploratory analysis are
described. Furthermore, RapidMiner processes for automatic building of multiple predictive
models, parameter optimization and feature selection are illustrated. Finally the results of the
feature selection and classification models are evaluated.
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Data extraction, pre-processing and exploratory analyses

Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL pro-
cess started by retrieving data from the MIMIC-II tables of interest [34]. The database was
accessed within RapidMiner by a running connection to the Hive server. The relational data-
base of MIMIC-II consisted of of 38 tables. In this pilot, data was extracted from the following
tables: LABEVENTS,D_LABITEMS, COMORBIDITY_SCORES, ICUSTAY_DETAIL result-
ing in 3 data sets (Platelet Count, ICUdetail, Comorbidity) (Fig 1). Considering the entire data-
base as baseline, the initial query reduced the data to a selection of 11944 admissions. For this
purpose, RapidMiner Radoop was used for extracting the data from the cluster.

Attribute roles were defined (id, regular, label, etc) and example sets were joined using id
attributes as key. The dataset used for modeling and feature weighting consisted of 70 attributes
with icustay_expire_flg as label (Table 1).

All data was filtered returning a data set including rows that fulfilled a predefined condition
(ICU admission age = adult; laboratory test: platelet count (itemid = 50428)) (Fig 1). Platelet
count values were mapped to classes according to the following thresholds: normal platelet
count 150-450 x10°/L; mild, moderate, severe and extreme thrombocythemia, respectively for
platelet count values: 450-700 x10°/L, 700-900 x10°/L, 900-1000 x10°/L, >1000 x10°/L; grade
1-4 thrombocytopenia 150-75 x10°/L, 75-50 x10°/L, 50-25 x10°/L and <25 x10°/L.

A total of 11944 ICU admissions satisfied our inclusion criteria. From the 11944 patients
(age >15 years) admitted to ICU, ICU mortality was 11.5% (n = 1378). Patients who survived
ICU stay were significantly younger (63.9+18.4 years vs 70.3£16.2 years; p<0.001) and and sig-
nificantly more male patients survived ICU stay (57.0% vs 50.7%; p<<0.0001). SAPS-1 and
SOFA scores were significantly higher in the non-survivor group, respectively (13.9+ 4.7 vs
19.3+5.6 and 5.4+3.4 vs 9.6+4.5) (Table 2).

In the non-survivor group, significantly more patients suffered from renal failure, complicated
diabetes, coagulopathy and liver disease. Mortality was higher for patients admitted on MICU
and SICU. The prevalence of normal platelet count on ICU admission was 73.8%. Low platelet
count was observed in 12.5%, 2.3%, 1.2%, 0.6% of the cases on admission, respectively for grade
1,2, 3 and 4 thrombocytopenia. High platelet count was observed in 9.0%, 0.3%, 0.0%, 0.3% of
the cases on admission respectively for mild, moderate, severe and extreme thrombocythemia.
Mean platelet count on admission was 255.2+127.2 x10°/L. PLT, was significantly lower in non-
survivors than in survivors (238,2+132.4x10°/L; 257.4+126.4 x10°/L, p<0.001). Maximum and
mean platelet count during ICU stay were significantly lower in non-survivors vs survivors,
respectively 344.1+206.5x10°/L vs 469.3+227.4x10°/L and 212.4+117.0x10°/L vs 249.8
+111.6x10%/L. In the survivors, 74.4% of the patients had a normal platelet count. Low platelet
count was observed in 11.9%, 2.2%, 1.0%, 0.5% of the cases on admission, respectively for grade
1, 2, 3 and 4 thrombocytopenia. High platelet count was observed in 9.4%, 0.3%, 0.0%, 0.3% of
the cases on admission respectively for mild, moderate, severe and extreme thrombocythemia.
The non-survivors, 68.6% of the patients resulted in a normal platelet count. Low platelet count
was observed in 16.6%, 3.5%, 3.0%, 1.6% of the cases on admission, respectively for grade 1,2, 3
and 4 thrombocytopenia. High platelet count was observed in 6.4%, 0.6%, 0.0%, 0.0% of the cases
on admission respectively for mild, moderate, severe and extreme thrombocythemia.

Automatic model building, parameter optimization and evaluation

The process for automatic building, parameter optimization and evaluation of multiple predic-
tive models is illustrated in Fig 2.

The upper left part of the figure illustrates the main process. In the main process, the data
(Fig 1) was extracted from the 3 data sets (Platelet count, Comorbidity, ICUdetail) and basic
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Table 1. Attributes selected for modeling and feature selection (weighting).

Attributes (alphabetical order)

aids

alcohol_abuse
blood_loss_anemia
cardiac_arrhythmias
chronic_pulmonary
coagulopathy
congestive_heart_failure
deficiency_anemias
depression
diabetes_complicated
diabetes_uncomplicated
drug_abuse

fluid_electrolyte

gender = F

gender=M

height

hypertension

hypothyroidism
icustay_first_careunit = CCU
icustay_first_careunit = CSRU
icustay_first_careunit = FICU
icustay_first_careunit = MICU
icustay_first_careunit = NICU
icustay_first_careunit = SICU
icustay_first_service = CCU
icustay_first_service = CSRU
icustay_first_service = FICU
icustay_first_service = MICU
icustay_first_service = NICU
icustay_first_service = SICU
icustay_last_careunit = CCU
icustay_last_careunit = CSRU
icustay_last_careunit = FICU
icustay_last_careunit = MICU
icustay_last_careunit = NICU
icustay_last_careunit = SICU
icustay_last_service = CCU
icustay_last_service = CSRU
icustay_last_service = FICU
icustay_last_service = MICU
icustay_last_service = NICU
icustay_last_service = SICU
liver_disease

lymphoma
metastatic_cancer
obesity
other_neurological
(Continued)
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Table 1. (Continued)

Attributes (alphabetical order)
paralysis
peptic_ulcer
peripheral_vascular
PLTO

PLTmax

PLTmean

PLTmin

psychoses
pulmonary_circulation
renal_failure
rheumatoid_arthritis
sapsi_first
sapsi_max
sapsi_min
sofa_first

sofa_max

sofa_min
solid_tumor
valvular_disease
weight_first
weight_loss
weight_max
weight_min

doi:10.1371/journal.pone.0145791.1001

pre-processing was performed in a Sub-process operator. The final operator in the main process
(Loop) was defined by a global variable (macro) iterating over a user defined interval. This
allowed looping through multiple algorithms resulting in model building and evaluation in a
single process execution. The inner operators of the Loop consisted of a Select Subprocess, Per-
formance and Log. The Apply model took as an input the model provided from the Select Sub-
process and holdout data that were forwarded from a previous process level.

When the model was applied, AUPRC (Area Under the Precision Recall Curve) values were
calculated. Since currently RapidMiner does not provide AUPRC calculation within its Perfor-
mance operator, we used the RapidMiner-R extension allowing incorporation of R scripts
within the Execute-R operator, based on the PRROC R package [58]. In order to enable build-
ing and evaluation of multiple models in one process execution, the Select Sub-process operator,
consisted of an inner operator structure that could be iteratively executed for user defined
number of times. For the purpose of this paper, we defined 17 subprocesses, containing one
predictive algorithm (middle layer of Fig 2). The execution order is controlled by the iteration
macro, provided from the Loop operator.

Additionally, this process structure allowed parameter optimization if needed (e.g. for
SVMs). As described before we implemented an Evolutionary algorithm for parameter optimi-
zation of SVMs (Fig 2. 2nd sub-process from left, layer 2).

Additionally to the first process, described in Fig 2, we developed two processes as an exten-
sion allowing automatic feature selection, model building and evaluation under various feature
selection schemes (described in the Materials and Methods section) (Fig 3).
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Table 2. Characteristics of intensive care units survivors and non-survivors.

Characteristics Population (n = 11944) Survivors (n = 10566)
Age (years) 63.2+18.6 63.9118.4
Sex (male, %) 6025 (57.0%)
SAPS-1 on admission 14.7+4.5 13.9+4.7
SOFA on admission 6.01£3.6 5.413.4
Comorbidity (n, %)

Congestive heart failure 3263 (30.9%)
Paralysis 115 (1.1%)
Renal failure 1738 (16.4%)
Uncomplicated diabetes 2258 (21.4%)
Complicated diabetes 2658 (25.2%)
Coagulopathy 765 (7.2%)
AIDS 80 (0.8%)
Chronic pulmonary disease 2437 (23.1%)
Obesity 92 (0.9%)
Liver disease 471 (4.5%)
Types of care unit (n, %)

CCuU 2054(19.4%)
CSRU 2804 (26.5%)
MICU 4660 (44.1%)
sicu 181 (1.7%)
Platelet count (x 10E9/L)

PLTO 255.2+127.2 257.4+126.4
PLTmax 454.9+228.6 469.3+227.4
PLTmin 122.9+84.8 122.4+83.9
PLTmean 245.5+112.9 249.8+111.6

doi:10.1371/journal.pone.0145791.1002

Non-survivors (n = 1378) p

70.3+16.2 <0.0001
578 (50.7%) <0.0001
19.345.6 <0.0001
9.61+4.5 <0.0001
420 (30.5%) =0.766
13 (0.9%) =0.672
131 (9.5%) <0.0001
258 (13.7%) =0.015
59 (4,2%) <0.0001
144 (10.4%) <0.0001
9 (0.7%) =0.667
262 (19,0%) =0.008
8 (0.6%) =0.269
103 (7.5%) <0.0001
304 (22.1%) =0.751
306 (22.2%) =0.02
528 (38.3%) <0.0001
56 (4.1%) <0.0001
238,2+132.4 <0.0001
344.1+206.5 <0.0001
126.9491.7 =0.666
212.4£117.0 <0.0001

In case of Wrapper techniques, the only difference with the previously described process is
that we used ForwardSelection and BackwardElimination and embeded the part for model
learning and evaluation (Select Sub-process, ApplyModel and Execute R) into them. On the out-
put this resulted in one “optimal” feature set for each algorithm, which is further evaluated on

the test-set.

In case of Filter techniques we wrapped the previously described process in an additional
Loop operator (allowing automatic learning of each algorithm over each selected feature set).
As mentioned before, the problem with Filter selection is the determination of the right (most

Fig 2. Basic process for automatic building, parameter optimization and evaluation of multiple

predictive models as displayed in RapidMiner.

doi:10.1371/journal.pone.0145791.g002
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adequate) threshold of feature weights and selection of number of features. So, for each algo-
rithm and feature selection technique, we evaluated AUPRC performance based on thresholds
that select from 5 to 45 attributes (variables) with step of 5 [59, 60]. This was achieved by usage
of the OptimizeParameters operator with Grid strategy, that evaluated all algorithms in the
described range and returned the optimal number of parameters. This process demonstrated
the robustness and ease of implementation of a relatively complex experimental setups in
RapidMiner (this process automatically executes 672 experiments: 14 algorithms X 6 feature
selection schemes X 8 thresholds). Since optimization of parameters for SVM model fitting is
computationally very demanding, we excluded them from the experiments with different fea-
ture selection techniques (they are evaluated only on the complete set of features). In case rbf-
SVM we optimized v (kernel width) in range between 0.001 to 2 and C between 10~ to 10° as
suggested in [61]. In case of linear SVMs, only C is optimized in the same parameter range. As
an optimization technique, we used Evolutionary Search for parameter optimization (part of
standard RapidMiner package) with 10 generations and 10 population size. All other parame-
ters were fixed to their default values.

Evaluation

All evaluations reported in this paper are based on holdout (test) set created by stratified sam-
pling meaning that the initial distribution of positive and negative classes of the target attribute
are preserved. Experiments including some type of optimization (parameters or feature sets),
sensitive for over-fitting and reduced generalization of predictive models, are cross-validated
on training sets (70% of initial data). Because of the unbalanced nature of data we calculated
AUPRC (Area Under the Precision Recall Curve) values as evaluation parameter for model
comparison. Other parameters, frequently published in this respect, such as AUC (Area Under
the ROC Curve) and Accuracy are independent of class size ratios, but often provide mislead-
ing results in unbalanced data scenarios [59, 60]. AUPRC measured the fraction of negatives
misclassified as positives and resulting in a plot representing precision (TP/(TP+FP)) vs. recall
ratio (this is TPR, sometimes referred to as sensitivity)(TP: True Positive, FP: False Positive,
TPR: True Positive Ratio). By varying the threshold, the precision can be calculated at the
threshold that achieves that recall ratio. AUPRC is a less forgiving measure, and a high value
indicates that a classification model makes very few mistakes.

Performance and Feature Selection

All experimental results are summarized in Table 3.

AUPRC (Area Under the Precision Recall Curve) performance and the number of features
involved in model building (in brackets) are showed for each model (rows) and feature selec-
tion technique (columns). In bold, the best AUPRC performances for each row are illustrated,
revealing the best feature selection method for each model.

AUPRC performance and the number of features involved in model building (in brackets)
are showed for each model (rows) and feature selection technique (columns). In bold, the best
AUPRC performances for each row are provided, revealing the best feature selection method
for each model. Based on these results, the Random Forest (RF) was the dominant modeling
technique (provided by the best performance for each feature selection schema and for the
entire feature set). The best result in terms of AUPRC (AUPRC = 0.764) was achieved associat-
ing Random Forest (RF) and Backward Elimination (BE) technique (Fig 4).

It is interesting to observe that BE removed only one feature (icustay_first_service = CSRU)
resulting in an increased model performance from 0.743 to 0.764. Further inspection of the
results revealed that all other feature selection techniques put this feature above the 30th rank
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Fig 3. lllustration of the ensemble learning methods as displayed in RapidMiner (Decision Stump,
AdaBoost, Random Forest, Bagging, W-J48, Decision Tree, Naive Bayes, Stacking, Logistic
Regression, Support Vector Machine).

doi:10.1371/journal.pone.0145791.g003

(in a total of 70 features). Furthermore, it should be noticed that by using Random Forest,
there are three other, valuable feature selection techniques with respect to AUPRC values and
the number of features. Namely, in association with Forward selection (FS), Random Forest
(RF) resulted in AUPRC values of 0.744 (with 8 features). Random Forest in association with
Correlation and Gini Selection resulted in AUPRC values of 0.734 with only 5 features. (sofa_-
max, sofa_min, sapsi_max, sofa_first, sapsi_min). From a medical perspective, the selection of
these 5 features is no surprise because SOFA and SAPS values, as severity of disease classifica-
tion, are intrinsic related to other parameters [30, 31]. Forward Selection resulted in similar fea-
tures (except for sapsi_max) but added diabetes_uncomplicated,

icustay_first_careunit = CSRU, weight_min and PLTmean to its selection.

Table 3. AUPRC (Area Under the Precision Recall Curve) performance and feature selection.

Algorithm/Feature No Feature
selection selection
RM—Decision stump 0.275
J4.8 0.448
Naive Bayes 0.435
Logistic regression 0.687
RF-weka 0.743
AdaBoost-J48 0.668
AdaBoost—NB 0.555
AdaBoost—LR 0.432
Bagging-J48 0.494
Bagging—NB 0.460
Bagging (LR) 0.681
Stacking (DS, J4.8, 0.570
NB)
SVM—linear 0.465
SVM—rbf 0.588

doi:10.1371/journal.pone.0145791.1003

Info ReliefF MRMR  Correlation Gini Ttest Forward Backward
gain selection elimination

0.282 0.282 (5) 0.142 0.282 (5) 0.282 0.115 0.358 (1) 0.275 (69)
(5) (15) (5) (30)

0.537  0.484 (5) 0.115 0.593 (5) 0.593 0.115 0.575 (8) 0.454 (67)
(5) (15) (5) (15)

0.593 0.553 0.119(5) 0.573 (15) 0.569 0.125 0.588 (20) 0.623 (26)
(5) (10) (5) (35)

0.607 0.664 0.215 0.629 (5) 0.629 0.19 0.664 (32) 0.692 (57)
(5) (15) (45) (5) (45)

0.707 0.732 0.124 (5) 0.734 (5) 0.734 0.341 0.744 (8) 0.764 (69)
(5) (15) 5) (45)

0.628 0.5(5) 0.129(5) 0.654 (5) 0.654 0.127 0.637 (6) 0.661 (69)
(5) (5) (5)

0.515 0.519 0.155 0.499 (20) 0.475 0.142 0.433 (4) 0.534 (68)
(10) (20) (45) (10) (40)

0.575 0.571 0.169 0.565 (15) 0.555 0.174 0.384 (16) 0.436 (67)
(20) (25) (45) (15) (45)

0.501 0.511 0.115 0.53 (5) 0.530 0.115 0.525 (5) 0.478 (69)
(5) (10) (15) (5) (10)

0.592 0.554 0.189 0.569 (5) 0.568 0.146 0.594 (12) 0.483 (68)
(5) (10) (45) (5) (45)

0.605 0.66 (15) 0.205 0.628 (5) 0.628 0.187 0.659 (34) 0.686 (58)
5) (45) (5) (45)

0.486 0.511 0.115 0.51 (20) 0.496 0.157 0.327 (3) 0.397 (68)
(30) (30) (45) (25) (45)
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Fig 4. AUPRC curves for the 3 best models. Random Forest (RF) in association with Backward Selection
(BS) and 69 features (left), with Forward Selection (FS) and 8 features (middle) and Gini Selection (GS) and 5
features.

doi:10.1371/journal.pone.0145791.g004

Precision (the number of selected attributes that are relevant) and recall (the number of rele-
vant attributes that are selected) have an inverse relationship providing the option to increase
one at the cost of reducing the other (Fig 4).

In terms of feature selection, all methods provided similar performance over the models,
except for the t-test resulting in a maximum AUPRC in association with Random Forest (RF)
of 0.341 with all others values below 0.19.

Closer inspection of the 5 most important features based on the filter selection methods, the
sofa_max score was ranked first (3 times) and ranked second (once). Only the t-test method
provided a very low ranking for the sofa_max score (63rd rank). As already mentioned, this
test resulted in an overall poor performance. Congestive_heart_failure and diabetes_compli-
cated were also first ranked once (congestive_heart_failure was also ranked on a 4th place
once). On second place, popularly ranked were sofa min (3 times), sofa_max, hypertension, on
the third place: hypertension (once), sapsi_max, icustay_last_service = FICU, sapsi_max (3
times), on the fourth place: icu_stay_lastservice = CCU, sofa first (twice), weight_first and
finally on fifth place: chronic_pulmonary, reumathoid_arthritis, sapsi_min (twice) and weight
max.

Since this paper identified patients based on survival, it is preferable for the determination
of thresholds, to keep recall high (Fig 4), taking in to account not to make most of the predic-
tions false alarms. Based on our results, with recall values on > = 0.8 the model providing the
best precision values for that recall value could be recommended.

Discussion

This pilot study, is the first report presenting the integration of the MIMIC-II database in
RapidMiner data mining technology (Fig 1) and demonstrated the modalities of a code free
environment for building complex, automated processes in scalable environment.

Data selection from the MIMIC-II database resulted in 70 attributes which covered basically
the features previously validated as relevant in relation to outcome survival on ICU. Moreover,
platelet counts were added to this selection. Based on the modeling and feature selection pro-
cesses, the associating of Random Forest (RF) and Backward Elimination (BE) resulted in the
best AUPRC values. Additionally, the combination of Random Forest (RF) with Correlation,
Gini Selection and Forward Selection resulted in higher AUPRC values. It was no coincidence
finding SAPS and SOFA scores highly ranked as they were already validated as disease severity
scores. Interestingly, Random Forest (RF) and Forward Selection also retained PLT ., in its
selection. In the future, a similar modeling and feature selection procedure could be used
implementing features with no, unknown or minimal interdependency. This technique could
then provide medical and financial liability for the use of existing and the implementation of
new features resulting from laboratory tests or monitoring devices. Additionally, this approach

PLOS ONE | DOI:10.1371/journal.pone.0145791 January 5, 2016 16/21



@’PLOS ‘ ONE

Scalable Predictive Analysis in Critically Ill Patients

could provide more understanding how important certain features are in relation to the clinical
context they are used in.

The presented deployment offered an access to all MIMIC-II data, also for the non-coding
scientist community. Our results demonstrated the predictive value of platelet count in the sur-
vival of ICU patients. Additionally, changing data input by selecting data from tables of interest
and changing modeling and feature selection operators result in other survival predictions.

Although there are other clinical databases available for research in critical care medicine,
the MIMIC-II and recently the MIMIC-III database, is currently one of the largest clinical data-
bases able to provide high resolution clinical information [61]. Recently, the MIMIC-III data-
base is introduced with an update of patient data and a more efficient database architecture.

The advantage of using this type of databases is the representation of “real world” setting in
which no strict study protocol has been performed in collecting data. Indeed, many interven-
tional trials have been criticized for its strict inclusion and exclusion criteria [61]. Although a
web-based QueryBuilder and Virtual Machine image of the MIMIC-II database are available,
with clinical researchers rarely achieving the required expertise in SQL [62], the database is
underemployed. The RapidMiner platform has a code-free Ul and is available both in the
cloud and as an open-source client/server platform. With a platform including more than
1,500 methods across all stages of the predictive analytics life cycle, RapidMiner has the
breadth and flexibility adapted to the researchers’ need to consume data. RapidMiner helps
reduce time-to-insights and guide best practices for data analysts, analyzing the behavior of
their users to create “wisdom of the crowds” guidance. A report by Gartner, reviewed 16 analyt-
ics and data science firms over 10 criteria, based on completeness of vision and ability to exe-
cute data [8]. SAS, IBM, KNIME, and RapidMiner lead in Gartner 2015 Magic Quadrant for
Advanced Analytics Platforms.

Data mining on ICU-patient data opens opportunities enabling modeling with classifica-
tion, evaluating predictive accuracy of models, visualizing the performance of models using lift
charts and ROC charts, and finally ranking patients by the predicted confidence for a clinical
decision in order to select the best candidates for a therapy.

Several limitations need to be acknowledged. First, the study is retrospective and bears
potential limitations of such design. For instance, patients without platelet count measured
during ICU stay were excluded from the analysis, this may be responsible for bias because the
included cohort does not represent the whole study population. However, included and
excluded cohorts are similar in many clinical characteristics (data not shown), making our
cohort representative of the target population. Second, ICU patients were heterogeneous
including medical, surgical and cardiac surgical patients, whether narrowing study population
will improve the prognostic value of platelet count for survival requires further investigations.
Third, although every effort has been made to adjust for the confounding factors by using mul-
tivariate analysis, other unknown factors may still exist to confound the prognostic value of
platelet count. The authors used ICU mortality instead of the more commonly used ones such
as 28-day and 90-day mortality as the study endpoint. This is because data after ICU discharge
are not directly available in the MIMIC-II database [63].

Conclusion

This paper reports the integration of the MIMIC-II database in RapidMiner, enabling scalable
predictive analysis of clinical data from critically ill patients in a visual, code free environment.
The major benefit from the proposed integration is seamless manipulation, data extraction,
preprocessing and predictive analytics of huge amounts of data, using visual tools without the
need for writing a single line of code. As such this system has the potential to put cutting edge
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analytical tools into the hands of medical domain experts, eventually bridging the gap between
potential and actual usage of medical data. This approach enables the development of Digital
Research Environments (DRE) including data lakes (large object-based storage repositories
that holds data in its native format until it is needed) becoming attractive platforms in research
facilities around the world. As a showcase of the proposed environment we demonstrated a
prognostic value of platelet count in critically ill patients, by defining several processes for auto-
matic building of multiple models, parameter optimization, feature selection and model evalua-
tion. These processes are robust and flexible enough to provide fast and effective research in a
variety of clinical research questions with minimal adoptions. The authors did not have the
intention to provide any clinical relevance of the value of platelet counts on admission in rela-
tion to survival on ICU.

Supporting Information

S1 File. Extensible Markup Language (XML) file of the process (data retrieval and prepro-
cessing) as presented in this paper. Copy and paste this code into the RapidMiner XML view
(remove the previous xml code), click the green check symbol and switch back to the normal
Process (diagram) view.
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S2 File. Extensible Markup Language (XML) file of the process (modeling and feature selec-
tion) as presented in this paper. Copy and paste this code into the RapidMiner XML view
(remove the previous xml code), click the green check symbol and switch back to the normal
Process (diagram) view.
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