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Recombination Faults in Gene Assembly in Ciliates

Modeled Using Multimatroids

Robert Brijder1

Hasselt University and Transnational University of Limburg, Belgium

Abstract

We formally model the process of gene assembly in ciliates on the level of in-
dividual genes using the notion of multimatroids introduced by Bouchet. Gene
assembly involves heavy splicing and recombination, and it turns out that mul-
timatroids form a suitable abstract model that captures essential features of this
process. We use this abstract model to study the effect of faulty recombinations
during the gene assembly process.

Keywords: gene assembly in ciliates, multimatroids, DNA recombination,
circuit partitions, 4-regular graphs

1. Introduction

Gene assembly is an intricate process going on in unicellular organisms called
ciliates. Gene assembly involves heavy splicing and recombination operations
occurring in a highly parallel fashion [21, 20, 22]. This process has been formally
studied on the level of individual genes, see, e.g., [13]. Intramolecular models of
gene assembly assume that recombination takes place within a molecule (in con-
trast to intermolecular models [18]). Two well-studied and essentially equivalent
models of intramolecular gene assembly are based on (1) particular operations
on signed double occurrence strings and (2) local and edge complementation on
graphs with loops (or signs) [12, 16], see also [13, 6].

In this paper we formalize gene assembly (on the level of genes) using mul-
timatroids, and in particular we focus on intramolecular gene assembly. Mul-
timatroids have been introduced by Bouchet [4] in an effort to generalize both
the theory of circuit partitions in 4-regular multigraphs initiated by Kotzig [17]
and to generalize the notions of delta-matroids [3] and isotropic systems [2], the
latter of which generalizes properties of pairs of mutually-dual binary matroids.
Multimatroids have computationally interesting properties, for example it al-
lows for a particular greedy algorithm. In this paper we show that only very
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Figure 1: MIC form of a gene
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Figure 2: MAC form of a gene

little (multi)matroid theory is necessary to appreciate its power in studying gene
assembly. In fact, while helpful, we require in this paper no prior knowledge of
matroids or multimatroids. We present an easy (but new) result on multima-
troids that generalizes some results in the literature on delta-matroids, isotropic
systems, and graphs involving local and loop complementation. Finally we ap-
ply this result to show how the set of particular strategies of recombination
changes when some erroneous recombination occurs. This is motivated by the
fact that various errors and mutations do occur in Nature — in fact mutations
are a driving force in evolution.

This paper is organized as follows. In Section 2 we recall the process of gene
assembly in ciliates, and in Section 3 we model this process (on the level of genes)
using 4-regular multigraphs. In Section 4 we recall the notion of multimatroids
are related notions such as a matroid, and we show how multimatroids relate to
4-regular multigraphs and gene assembly in particular. Then, in Section 5 we
show how different matroids in a multimatroid that are “close” to each other
(their ground sets differ only by a skew pair) are related to each other. We
show consequences for recombination faults during gene assembly in Section 6.
A discussion (Section 7) concludes this paper.

2. Gene Assembly

In this section we give a concise description of the process of gene assembly
on the level of individual genes. We refer to, e.g., [13] for a more gentle and
detailed treatment.

During sexual reproduction of unicellular organisms called ciliates, a nucleus,
called the micronucleus (MIC for short), is transformed into a structurally and
functionally different nucleus called the macronucleus (MAC) in a process called
gene assembly. On the level of individual genes, each gene is transformed from
its MIC form to its MAC form. The MAC form of a gene is able to transcribe,
while the MIC form can be seen as a scrambled version of the MAC form that
stays dormant.

The MIC form of a gene is a sequence of, possibly inverted (i.e., rotated
180 degrees), macronuclear destined sequences (MDSs for short) with internal
eliminated sequences (IESs for short) in-between, while the MAC form a gene is
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Figure 3: DNA recombination

a consecutive sequence of MDSs that appear in the right order (the MDSs are
ordered) and are not inverted2. The MIC form and MAC form of an example
gene is given in Figures 1 and 2, respectively. The Mi’s represent MDSs and the
Ii’s represent IESs, with bars indicating inversion. Notice that M2, M3, and M5

are inverted in Figure 1. Also, notice that the MDSs in Figure 2 appear in the
right order and they are not inverted — as required. This gene is the running
example of this paper.

During gene assembly, the MIC form is spliced and recombined to “glue”
each two consecutive MDSs; in this way obtaining the MAC form of the gene,
see Figure 3. This process, called recombination, is one way, i.e., two consecu-
tive MDSs that have been glued together will not be “unglued”. During gene
assembly, each IES ends up either left or right of the MAC form of the gene or
it becomes part of a circular DNA molecule consisting solely of IESs.

3. 4-Regular Multigraphs

A multigraph G is called Eulerian when each vertex has even degree. Note
that we do not require that G is connected. Also, G is 4-regular when each
vertex has degree 4. We allow self-loops, where a self-loop counts for two in the
calculation of the degree. A circuit partition of a multigraph G is a partition
P of the edges such that each C ∈ P is an (unoriented) circuit of G, where a
circuit is a closed walk, without orientation, allowing repetitions of vertices but
not of edges. The set of vertices of G is denoted by V (G).

We now show that the MIC form and the MAC form of a gene can naturally
be captured as circuit partitions within a 4-regular multigraph G. Let us call
the positions in the MIC where recombination takes place recombination points
(also called pointers in the literature). Recall from Figure 3 that recombination
glues each two MDSs Mi and Mi+1. Hence the boundary of the right-hand side
of each MDS Mi, except for the last MDS, is a recombination point, say ia, and
the boundary of the left-hand side of each MDS Mi, except for the first MDS, is
a recombination point, say (i−1)b. First we represent the MIC form of Figure 1
as a digraph, where each vertex has in-degree and out-degree equal to one, by

2Actually, the MDSs in the MAC form of the gene overlap slightly, where the overlapping
regions are called pointers. This is however irrelevant for this paper, and so, in order to
simplify the presentation, we do not discuss pointers here.
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Figure 4: Digraph representing the MIC form of the running example.
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Figure 5: 4-regular graph of the running example.
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Figure 6: Cycle graph representing the MIC form of the running example.
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Figure 7: Cycle graph representing the MAC form of the running example.
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(1) adding vertices for all recombination points ia and ib and (2) adding an arc
from each recombination point to the next recombination point, see Figure 4.
The arcs are labeled by the MDS/IES segments they represent. The segment
I8 on the right-hand side of the right-most recombination point is merged with
the segment I1M1 on the left-hand side of the left-most recombination point to
obtain a single edge labeled by I8, I1M1. This is done to obtain a cycle (which
will lead to a valid 4-regular graph). Now, the 4-regular multigraph of Figure 5
is obtained from Figure 4 by (1) merging the pair of vertices ia and ib for all i,
(2) forgetting the direction of the edges, and (3) by removing all bars (e.g., M5

instead of M5).
The MIC and MAC forms of the gene belong now to two particular circuit

partitions of Figure 5, which are illustrated by the graphs of Figures 6 and 7,
respectively. In particular, notice the similarities between Figures 4 and 6. Note
that the circuit partition of the MIC form is always an Eulerian circuit. Gene
assembly has also been modeled using 4-regular multigraphs in a similar way in
[15, 1].

We use terminology from [4]. For a set A, we denote the cardinality of A
by |A|. We associate to each edge e = {v, w} two half-edges. One half-edge
is incident to v and the other is incident to w. In particular, two half-edges
are associated to a self-loop e (which corresponds to the case v = w). The
half-edges of a graph are mutually distinct, and so the number of half-edges
is twice the number of edges. A local splitter of G at vertex v of an Eulerian
multigraph G is a pair sv = {r1, r2}, where sv is a partition of the set of
half-edges of G incident to v such that |r1| and |r2| are even and nonzero.3

Thus, if G is a 4-regular graph, then there are three distinct local splitters of
G at each vertex v. Indeed, there are precisely three partitions sv of the set
of 4 half-edges {h1, h2, h3, h4} incident to v into two pairs: {{h1, h2}, {h3, h4}},
{{h1, h3}, {h2, h4}}, and {{h1, h4}, {h2, h3}}.

Definition 1. The detachment of an Eulerian multigraph G at a local splitter
sv = {r1, r2} at vertex v, denoted by G||sv, is the multigraph obtained from G
by splitting v into two vertices v1 and v2 where v1 is incident to the half-edges
of r1 and v2 is incident to the half-edges of r2.

For a vertex v of a 4-regular graph, the three possible detachments at v are
illustrated in Figure 8.

Note that if G is Eulerian, then G||sv is again Eulerian. Also note that the
operation of detachment is defined up to isomorphism since the identities of the
vertices v1 and v2 are not specified. Finally note that detachment commutes
for local splitters sv and sw at distinct vertices v and w, i.e., (G||sv)||sw =
(G||sw)||sv when v and w are distinct. Hence for a set S of local splitters at
mutually distinct vertices, we write G||S to denote G||sv1 · · · ||svn for any order
of local splitters of S. As an example, the graph of Figure 6 (Figure 7, resp.)

3In [4] local splitters are called nonnull local splitters.
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Figure 8: The three possible detachments G||sv at a degree four vertex v. The three
cases correspond to the cases sv = {{h1, h3}, {h2, h4}}, sv = {{h1, h2}, {h3, h4}}, and
sv = {{h1, h4}, {h2, h3}}, respectively.

can be obtained from the graph of Figure 5 by detachment at a particular set
TMIC (TMAC, resp.) of local splitters for each vertex of G. Let us consider a
graph a cycle graph when each vertex is of degree 2. Notice that the graphs of
Figures 6 and 7 are cycle graphs because detachment has been applied at each
vertex of a 4-regular graph. Recall from above that Figures 6 and 7 represent
the MIC and MAC form of the gene, respectively. Hence, we may view TMIC

and TMAC as the sets of local splitters of G that belong to the MIC and MAC,
respectively.

A carrier is a tuple (U,Ω) where Ω is a partition of a finite set U , called
the ground set. Every ω ∈ Ω is called a skew class, and a p ⊆ ω with |p| = 2 is
called a skew pair of ω. A transversal (subtransversal, resp.) T of Ω is a subset
of U such that |T ∩ ω| = 1 (|T ∩ ω| ≤ 1, resp.) for all ω ∈ Ω. We denote the set
of transversals of Ω by T (Ω), and the set of subtransversals of Ω by S(Ω).

For a 4-regular multigraph G, we define the carrier PG = (U,Ω), where U
the set of local splitters of G and for all ω ∈ Ω, x, y ∈ ω if and only if x and y
are local splitters at a common vertex. Note that for all ω ∈ Ω, we have |ω| = 3.

Assume that G belongs to a gene. Let TMIC be the transversal of PG belong-
ing to the MIC form of a gene and let TMAC be the transversal of PG belonging
to its MAC form. Note that TMIC ∩ TMAC = ∅. Let pv ⊆ TMIC ∪ TMAC be a
skew pair belonging to vertex v. Then we notice that G||(TMIC ∆ pv), where ∆
denotes symmetric difference, is the cycle graph representing the DNA structure
obtained from the MIC form by applying recombination on the recombination
points belonging to vertex v. We can continue this process, obtaining a sequence
of cycle graphs, until we obtain the cycle graph representing the MAC form of
the gene. This process is captured by the notion of a strategy, defined below.

Definition 2. Let G be a 4-regular graph, and let TMIC and TMAC be disjoint
transversals of PG. Let P be a set of mutually disjoint skew pairs such that⋃
P = TMIC ∪ TMAC. A strategy s for G with respect to TMIC and TMAC is an

ordered partition of P , i.e., s = (P1, . . . , Pl), where the Pi’s are nonempty and⋃
i Pi = P .

Following strategy s, the following cycle graphs occur during gene assembly:

G||TMIC, G||(TMIC∆P1), G||(TMIC ∆P1 ∆P2), . . . , G||(TMIC ∆P1 ∆ · · ·∆Pl). (1)
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Figure 9: MIC form of a gene

We note that G||(TMIC ∆P1 ∆ · · ·∆Pl) = G||TMAC. The reason that the Pi’s
are sets of skew pairs instead of single skew pairs, is due to the fact that more
than one recombination operation may take place in parallel. This formalization
of a strategy is similar as done in [15] (see also [13, Chapter 14]) in the context
of gene assembly.

Definition 3. A refinement of a strategy s = (P1, . . . , Pl) is a strategy s′ =
(Q1, . . . , Qk) such that if x ∈ Pi and y ∈ Pj with i ≤ j, then x ∈ Qi′ and
y ∈ Qj′ where both (1) i′ = j′ implies i = j, and (2) i′ ≤ j′. We write in this
case s ≤ s′.

Note that ≤ is a partial order.
In the intramolecular model of gene assembly [13], recombination only takes

place within molecules. In this model, the strategies that are both intramolec-
ular and maximal with respect to the ≤ relation are of particular interest. This
notion is captured by the following definition. Let us denote the number of
connected components of a multigraph G by k(G).

Definition 4. Let s = (P1, . . . , Pl) be a strategy for G with respect to disjoint
transversals TMIC and TMAC of PG. Then s is called intramolecular if for all
i ∈ {0, . . . , l} and for all p ∈ ∪j∈{i+1,...,l}Pj , k(Gi) ≤ k(Gi||p) where Gi =
G||(TMIC ∆P1 ∆ · · ·∆Pi).

Moreover we say that s is maximal intramolecular if s is intramolecular and
for all intramolecular strategies s ≤ s′, we have s = s′.

It is shown in [14] (see also [13]) using strings instead of graphs, that for
each 4-regular multigraph and disjoint transversals TMIC and TMAC there is a
intramolecular strategy where each of the Pi’s are of cardinality at most 2.

This number 2 cannot be reduced in general (i.e., there does not always
exist an intramolecular strategy consisting of only singletons), as the following
example illustrates.

Example 5. Consider the MIC form of a gene of Figure 9. Note that two
recombinations are necessary to transform this gene to its MAC form: one
recombination glues M1 to M2 and another recombination glues M2 to M3. It
is easy to see that the only maximal intramolecular strategy for this gene is by
applying both recombinations in parallel. Indeed, applying only one of the two
recombination operations would split the molecule in two, while the end result,
i.e., the MAC form of the gene, consists of one molecule. Therefore, there exists
exactly one maximal intramolecular strategy s = (P1) for the corresponding
4-regular multigraph G, where P1 contains the two local splitters corresponding
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to the two recombinations. We remark that s corresponds to applying one so-
called double loop, alternating direct-repeat excision-reinsertion operation (dlad
for short), see, e.g., [13] for its definition. Moreover, any strategy s′ of G of the
form (P ′

1, P
′
2) (where P

′
1 and P ′

2 are therefore singletons) is not an intramolecular
strategy. �

Of course, PG alone cannot tell which strategies are maximal intramolecular
and which are not. In fact, almost all information is lost when considering PG

alone. We now extend the tuple PG to a triple QG that retains more information
regarding properties of the various possible strategies.

Definition 6. Let G be a 4-regular multigraph. We define QG to be the triple
(U,Ω, C) where PG = (U,Ω) and C ⊆ S(Ω) such that for C ∈ S(Ω) we have
C ∈ C if and only if C is minimal (with respect to inclusion) such that G||C has
a larger number of connected components than G.

Example 7. We continue the running example. Consider QG = (U,Ω, C) with
G as in Figure 5. We denote, for all vertices v of G, by vMIC the transition at
vertex v that is taken in the MIC form of the gene, cf. Figure 6, by vMAC the
transition at vertex v that is taken in the MAC form of the gene, cf. Figure 7,
and by vERR the third, “faulty”, transition at v (distinct from both vMIC and
vMAC). Then

C = { {2MAC}, {3MAC, 4MAC}, {5MIC, 6MAC}, {1MAC, 5MAC, 6MIC},

{1ERR, 5MIC}, {1ERR, 6MAC}, {3MIC, 4ERR}, {3ERR, 4MIC},

{1MIC, 5ERR, 6MIC}, {1MAC, 5ERR, 6ERR}, {1MIC, 5MAC, 6ERR}}.

Note that {3MAC, 4MAC} ∈ C and {2MAC} ∈ C are easily seen from Figure 7. �

While G cannot be completely reconstructed (not even up to isomorphism)
from QG, we will show in the next sections that QG retains key properties of
the various possible strategies.

4. Matroids and Multimatroids

In this section we make abstract essential properties of the effect of splitting
vertices using detachments [4]. It turns out that these essential properties are
elegantly captured using matroids and multimatroids. Although helpful, we do
not require in this paper prior knowledge of matroids or multimatroids. For a
more elaborate exposition of the notions and terminology concerning matroids,
we refer to the monographs [19, 23].

4.1. Matroids

Matroids can be defined in various different ways, such as in terms of rank,
bases, circuits, independent sets, etc. We define matroids here in terms of
circuits. The power set of a set X is denoted by 2X .
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Definition 8 ([4]). A matroid M (described by its circuits) is a tuple (E, C)
where E is a finite set called the ground set of M and C ⊆ 2E such that

1. ∅ /∈ C,

2. if C1, C2 ∈ C with C1 ⊆ C2, then C1 = C2, and

3. if C1, C2 ∈ C are distinct and x ∈ C1 ∩ C2, then there is a C ∈ C with
C ⊆ (C1 ∪C2) \ {x}.

The elements of C are called the circuits of M . We warn the reader that the
notion of circuit used here (and in the context of multimatroids in the next
subsection) is different from the notion of circuit in the context of 4-regular
multigraphs. We denote the ground set of M by E(M) and the set of circuits of
M by C(M). For any X ⊆ E(M), the restriction of M to X , denoted by M [X ],
is the matroid (X, C ∩ 2X). For x ∈ E we write M \ x for M [E(M) \ {x}].

A set B ⊆ E(M) is called a basis of M if B does not contain any circuit of
M and is maximal (with respect to inclusion) with this property. It turns out
that the bases of a matroid have a common cardinality called the rank of M ,
denoted by r(M). The nullity of M , denoted by n(M), is |E(M)| − r(M).

A x ∈ E is called a coloop of M if x is not contained in any circuit. If
x /∈ E(M), thenM⊕x denotes adding x as a coloop toM . Note that C(M⊕x) =
C(M) and E(M ⊕ x) = E(M) ∪ {x}.

4.2. Multimatroids

We recall now the notion of a multimatroid and related notions from [4]. Like
matroids, multimatroids can be defined in terms of rank, circuits, independent
sets, etc. We define multimatroids here in terms of circuits.

Definition 9 ([4]). A multimatroid Q (described by its circuits) is a triple
(U,Ω, C), where (U,Ω) is a carrier and C ⊆ S(Ω) such that:

1. for each T ∈ T (Ω), (T, C ∩ 2T ) is a matroid (described by its circuits) and

2. if C1, C2 ∈ C, then C1 ∪ C2 does not include precisely one skew pair.

The elements of C are called the circuits of Q. For any X ⊆ U , the restriction
of Q to X , denoted by Q[X ], is the multimatroid (X,Ω′, C ∩ 2X) with Ω′ =
{ω ∩ X | ω ∩X 6= ∅, ω ∈ Ω}. If X is a subtransversal, then we identify Q[X ]
with the matroid (X, C ∩ 2X) since Ω′ = {{u} | u ∈ X} captures no additional
information.

A projection of carrier (U,Ω) is a surjective function π : U → V such that
π(x) = π(y) if and only if x and y are in the same skew class ω ∈ Ω. Thus
each skew class is assigned by π to a unique element of V . If π : U → V is a
projection, then we also say that Q is indexed on V by π. As usual, we let for
X ⊆ U , π(X) = {π(x) | x ∈ X}. Let S be a subtransversal of Ω. The isomorphic
image of the matroid Q[S] induced by π (i.e., the renaming of the ground set
according to π) is called the projection of Q[S] by π and is denoted by π(Q[S]).
More explicitly, if Q[S] = (S, C), then π(Q[S]) = (π(S), {π(C) | C ∈ C}).
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4.3. Back to 4-regular multigraphs and gene assembly

It has been shown in [4] that QG defined at the end of Section 3 is a multi-
matroid.

Theorem 10 ([4]). Let G be a 4-regular multigraph. Then QG is a multima-
troid.

We say that QG is the multimatroid of G.
Note again that the circuits of QG are not to be confused with the circuits

of G.

Example 11. We continue the running example. Let TMAC (TMIC, resp.) be
the transversal of QG containing vMAC (vMIC, resp.) for all vertices v of G.
Then QG[TMAC] is the matroid (TMAC, {{3MAC, 4MAC}, {2MAC}}). The family
of bases of QG[TMAC] is

{{1MAC, 4MAC, 5MAC, 6MAC}, {1MAC, 3MAC, 5MAC, 6MAC}}.

�

Remark 12. We remark that QG turns out to fulfill a special property called
tightness [5], which ensures by [9, Theorem 13] that QG can be uniquely deter-
mined by QG[TMIC ∪ TMAC]. In the running example, the family of circuits of
QG[TMIC ∪ TMAC] is

{{2MAC}, {3MAC, 4MAC}, {5MIC, 6MAC}, {1MAC, 5MAC, 6MIC}}.

It turns out that multimatroids elegantly capture many interesting properties
of circuit partitions in 4-regular multigraphs [4]. For example, a basis of a
multimatroid of Q is a B ∈ S(Ω) that is maximal (with respect to inclusion)
such that it does not contain any circuit of Q. It turns out that the family
of bases of QG correspond precisely to circuit partitions that are the Eulerian
systems of G (an Eulerian system is a set of Eulerian circuits, one for each
connected component).

It is shown in [4] that for all S ∈ S(Ω), n(QG[S]) = k(G||S)−k(G), where we
recall that k(·) denotes the number of connected components of a multigraph.
While by definition the circuits of QG are the minimal sets such that k(G||C)−
k(G) > 0, it is interesting to observe that this nullity property shows that the
circuits of QG actually determine the value k(G||S) − k(G) for all S ∈ S(Ω)!
This is a prime example of the power of multimatroids when studying formal
properties of gene assembly.

Using this nullity result we can formulate the notion of an intramolecular
strategy completely in terms of the multimatroid QG as follows.

Corollary 13. Let G be a 4-regular multigraph and let s = (P1, . . . , Pl) be
a strategy for G with respect to some disjoint transversals TMIC and TMAC.
Then s is intramolecular if and only if for all i ∈ {0, . . . , l} and for all p ∈
∪j∈{i+1,...,l}Pj , n(QG[Si]) ≤ n(QG[Si ∆ p]) where Si = TMIC∆P1 ∆P2 · · ·∆Pi.
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If the 4-regular multigraph G corresponds to a gene, then n(QG[TMIC]) = 0
as the MIC form of the gene is one molecule (and thus forms an Eulerian circuit
in G) and n(QG[TMAC]) is one less than the number of molecules obtained after
gene assembly, one of which contains the MAC form of the gene.

Example 14. In the running example, we have n(QG[TMAC]) = 2. This follows
from Figure 7 as it contains three connected components and it also follows from
Example 11 where it is shown that the bases of QG[TMAC] are all cardinality 4.
Hence n(QG[TMAC]) = |V (G)| − 4 = 2. �

5. General Multimatroid Result

With multimatroids as a suitable abstraction of key properties of 4-regular
multigraphs in place, we formulate in this section the main technical result of
this paper. First we provide a characterization of multimatroids.

Lemma 15. Let Q = (U,Ω, C) with (U,Ω) a carrier and C ⊆ S(Ω). Denote for
S ∈ S(Ω), Q[S] = (S, C ∩ 2S). Then Q is a multimatroid if and only if

1. for each T ∈ T (Ω), Q[T ] is a matroid and

2. for all S ∈ S(Ω) and ω ∈ Ω with ω ∩ S = ∅, there is at most one x ∈ ω
with C(Q[S ∪ {x}]) 6= C(Q[S]).

Proof. First assume that Q is a multimatroid. Let S ∈ S(Ω) and ω ∈ Ω with
ω ∩ S = ∅. We have C(Q[S]) ⊆ C(Q[S ∪ {x}]) for all x ∈ ω. If there are
distinct x1, x2 ∈ ω with C(Q[S]) ( C(Q[S ∪ {xi}]) for all i ∈ {1, 2}, then there
are circuits C1 and C2 such that C1 ∪C2 contains the skew pair {x1, x2} but no
other skew pair. Thus, the second condition of the definition of a multimatroid
is violated. Hence there is at most one x ∈ ω with C(Q[S ∪ {x}]) 6= C(Q[S]).

Conversely, assume that the right-hand side of the equivalence holds. It
suffices to show that the second condition of the definition of a multimatroid
holds. Let C1, C2 ∈ C such that C1 ∪ C2 contains precisely one skew pair p.
Now the second condition of the right-hand side of the equivalence is violated
with S = (C1 ∪C2) \ p and ω ∈ Ω the unique skew class of Ω with p ⊆ ω. �

The important conceptual difference between Lemma 15 and the definition
of a multimatroid is that the former relates the entire families of circuits of
matroids Q[S ∪ {x}] and Q[S], while the latter relates individual circuits.

By Lemma 15, Q[S ∪ {x}] for all x ∈ ω are all mutually isomorphic except
for at most one. The next result essentially formalizes this observation. It is
the main technical result of this paper.

Theorem 16. Let Q be a multimatroid with carrier (U,Ω), and let p : U → V
be a projection of Q. Let S ∈ S(Ω), and let z be a skew pair of Ω with z∩S 6= ∅.

1. If r(Q[S]) ≤ r(Q[S∆ z]), then p(Q[S]) \ v⊕ v = p(Q[S∆ z]) where p(z) =
{v}.
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2. If r(Q[S]) = r(Q[S∆ z]), then we have C(Q[S]) = C(Q[S∆ z]), p(Q[S]) =
p(Q[S∆ z]), and for all C ∈ C(Q[S]), C ∩ z = ∅.

Proof. If r(Q[S]) ≤ r(Q[S∆ z]), then by Lemma 15 C(Q[S∆ z]) = C(Q[S\z]).
Hence C(Q[S∆ z]) = {C ∈ C(Q[S]) | C ∩ z = ∅} and therefore p(Q[S])\ v⊕ v =
p(Q[S∆ z]).

If r(Q[S]) = r(Q[S∆ z]), then by the first statement, C(Q[S]) = C(Q[S\z]) =
C(Q[S∆ z]). Since the sets of circuits of Q[S] and Q[S∆ z] are identical and
since p maps S and S∆ z to the same set we have p(Q[S]) = p(Q[S∆ z]). �

We remark that it is an easy consequence of the definition of a multimatroid
in terms of rank [4] (we do not recall this definition here) that r(Q[S]) and
r(Q[S∆ z]) differ by at most 1.

We stress that the proof of Theorem 16 is very short and with hindsight
straightforward only because its formulation is in terms of multimatroids de-
scribed by its circuits. In less general notions than multimatroids (or even
multimatroids described, say, by their bases) the result is less obvious. In fact
Theorem 16 is surprising and not obvious in various special cases that appear
in the literature, and have significant longer proofs there. For example, it has
been shown in [4] that isotropic systems (we not do recall its definition here)
may be viewed as a special class of multimatroids. Theorem 16 generalizes The-
orem 9.4 of [2] for isotropic systems. As another example, it has been shown
in [9] that vf-safe delta-matroids (again, we not do recall its definition here)
may also be viewed as a special class of multimatroids. Theorem 16 generalizes
Theorem 5.5 of [8] for vf-safe delta-matroids. Theorem 5.5 of [8] is in turn a
generalization of (an essential part of) Theorem 25 of [10] concerning the graph
operations of local complementation and loop complementation, see [7, 8] for
the correspondence between these graph operations and vf-safe delta-matroids.

6. Back to Gene Assembly: Faults in Recombination

We now describe the consequences of Theorem 16 for gene assembly. Let G
be the 4-regular multigraph where transversals TMIC and TMAC represent the
MIC and MAC forms of a gene, respectively.

We noticed already that the matroid QG[TMAC] captures information about
the MAC gene as n(QG[TMAC] describes the number of molecules obtained after
gene assembly. The next result shows that QG[TMAC] also captures information
about how the MAC gene is obtained during gene assembly. In other words, it
also captures some information about the possible strategies.

Proposition 17. Let G be a 4-regular multigraph and TMIC and TMAC disjoint
transversals with n(QG[TMIC]) = 0. Then B is a basis of QG[TMAC] if and only
if there is a strategy sB = (P0, . . . , Pl) where P0 contains those skew pairs in
TMIC ∪TMAC that intersect with B and the other Pi’s are singletons that do not
intersect with B, such that n(QG[TMIC∆P0 ∆ · · ·Pi]) = i for all i ∈ {0, . . . , l}.
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Proof. First assume that B is a basis of QG[TMAC]. Therefore, QG[B] does
not contain any circuits. By Lemma 15, for every ω ∈ Ω with ω ∩ B = ∅,
there is at most one x ∈ ω with C(Q[B ∪ {x}]) 6= C(Q[B]). Since B is a basis,
x ∈ TMAC. Consequently, QG[TMIC∆P0] does not have any circuits, and so
n(QG[TMIC ∆P0]) = 0. Since by definition of nullity, n(QG[TMAC]) = |TMAC| −
r(QG[TMAC]) = |TMAC| − |B|, we have l = n(QG[TMAC]). By the comment
below Theorem 16, n(QG[TMIC ∆P0 ∆ · · ·Pi]) and n(QG[TMIC ∆P0 ∆ · · ·Pi−1])
differ by at most 1 for all i ∈ {1, . . . , l}. Hence n(QG[TMIC ∆P0 ∆ · · ·Pi]) = i
for all i ∈ {0, . . . , l}.

Conversely, if n(QG[TMIC∆P0]) = 0, then B does not contain any circuits
and if n(QG[TMAC]) = l, then B is maximal with this property. Hence B is a
basis of QG[TMAC]. �

Proposition 17 shows that one can divide a strategy into two parts. For
each basis B of the matroid QG[TMAC], one can first recombine on the vertices
determined by B to transform the MIC form of a gene to an intermediate form
with only one molecule (since n(QG[TMIC∆P0]) = 0), and then recombine on
the remaining vertices where in each step the number of molecules is increased
(due to the splitting of a molecule). Hence the bases of QG[TMAC] characterize
the single-molecule intermediate forms that are “closest” to the MAC form of
the gene.

Example 18. In the running example, we recall from Example 7 that B =
{1MAC, 4MAC, 5MAC, 6MAC} is a basis of QG[TMAC]. Hence by Proposition 17,
n(QG[T0]) = 0 with T0 = B ∪ {2MIC, 3MIC}, n(QG[T1]) = 1 with T1 = B ∪
{2MIC, 3MAC}, and n(QG[T2]) = 2 with T2 = B ∪ {2MAC, 3MAC} = TMAC. �

Note that TMAC can only be obtained from TMIC if for each vertex v of
G the “right” skew pair pv ⊆ TMIC ∪ TMAC is chosen during gene assembly.
Assume that some fault occurs during recombination: by coincidence (perhaps
due to some spontaneous mutation) for some vertex v of G the wrong skew pair
pv ⊆ TMIC∪TERR is chosen. Then we obtain instead TMAC ∆ pv as the end result.
Theorem 16 now implies that either (1) p(QG[TMAC ∆ pv]) = p(QG[TMAC]) or
(2) n(QG[TMAC ∆ pv]) and n(QG[TMAC]) differ by 1, where p : U → V (G) is the
function that maps each local splitter sv at v to v. In case (1) the strategies
as given in Proposition 17 coincide for the “original” TMAC and the “faulty”
TMAC ∆ pv. However, in case (2) if n(QG[TMAC ∆ pv]) = n(QG[TMAC])− 1, then
for every basis B of QG[TMAC ∆ pv], B \{v} is a basis of QG[TMAC] and this will
be reflected in the strategies possible of the form described in Proposition 17.
A similar conclusion can be made if n(QG[TMAC ∆ pv])− 1 = n(QG[TMAC]).

Example 19. In the running example, assume that the faulty transition 5ERR

is taken at vertex 5. Then we obtain eventually, QG[TMAC ∆{5MAC, 5ERR}] =
QG[{1MAC, 2MAC, 3MAC, 4MAC, 5ERR, 6MAC}] for which its family of circuits is
equal to that of QG[TMAC]. This can be verified straightforwardly from the
family of circuits of QG given in Example 7 or by inspecting Figure 5. Hence
the two matroids are isomorphic.
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If, on the other hand, we assume that the faulty transition 1ERR is taken at
vertex 1, then the family of circuits of QG[T ] with T = TMAC ∆{1MAC, 1ERR} =
{1ERR, 2MAC, 3MAC, 4MAC, 5MAC, 6MAC} is not equal to that of QG[TMAC]. In-
deed, the family of circuits of QG[T ] is equal to

{{3MAC, 4MAC}, {2MAC}, {1ERR, 6MAC}},

and we notice that {1ERR, 6MAC} is a circuit of QG[T ] but not a circuit of
QG[TMAC]. Now, the family of bases of QG[T ] is equal to

{{4MAC, 5MAC, 6MAC}, {1ERR, 4MAC, 5MAC}, {3MAC, 5MAC, 6MAC},

{1ERR, 3MAC, 5MAC}}

as so we have n(QG[T ]) = |V (G)| − 3 = 3. �

7. Discussion

We have shown that multimatroids form an elegant abstract model to study
the formal properties of gene assembly in ciliates. Moreover, the main technical
result (Theorem 16) shows that matroids within a multimatroid for which their
ground sets differ only by a skew pair are very closely related. They are either
isomorphic or one can be obtained up to isomorphism from the other by deletion
and adding a coloop. Finally we showed its consequence for strategies of gene
assembly and in particular we showed the differences in strategies in case of one
recombination fault.

It turns out that MIC forms of distinct genes may be interleaved in the mi-
cronucleus [11]. It would be interesting to investigate the consequences of this
observation from a theoretical and computational point of view, and in partic-
ular to investigate its consequences in the abstract setting of multimatroids.
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